
ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 1 of 9

Software Formalization

Year: 2015 Semester: Spring Team: 2 Project: R.I.S.K.

Creation Date: February 19, 2015 Last Modified: October 7, 2015

Author: <redacted> Email: rdacted@purdue.edu

Assignment Evaluation:

Item Score (0-5) Weight Points Notes

Assignment-Specific Items

Third Party Software

Description of Components

Testing Plan

Software Component Diagram

Writing-Specific Items

Spelling and Grammar

Formatting and Citations

Figures and Graphs

Technical Writing Style

Total Score

5: Excellent 4: Good 3: Acceptable 2: Poor 1: Very Poor 0: Not attempted

General Comments:

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 2 of 9

1.0 Utilization of Third Party Software

We are using no third party software on our microcontroller, outside of the basic interfacing

header files and C standard library provided by Microchip.

The Raspberry Pi Libraries being used are as follows:

Name License Description Use

BCM2835 library GPL V2 “This is a C library for Raspberry Pi

(RPi). It provides access to GPIO

and other IO functions on the

Broadcom BCM 2835 chip, allowing

access to the GPIO pins on the 26

pin IDE plug on the RPi board so

you can control and interface with

various external devices.” [1]

We will be using this

library for our SPI

communication on the

Raspberry Pi’s end.

Apache2 Apache

License

“The Apache HTTP Server Project is

an effort to develop and maintain an

open-source HTTP server for

modern operating systems including

UNIX and Windows NT. The goal

of this project is to provide a secure,

efficient and extensible server that

provides HTTP services in sync with

the current HTTP standards.” [2]

We will be using the

web server to host our

web application.

Socket.IO MIT “Socket.IO enables real-time

bidirectional event-based

communication. It works on every

platform, browser or device,

focusing equally on reliability and

speed.” [3]

We will most likely

be using socket.io in

our project to allow

bidirectional

communication which

will make our updates

faster to the client

devices.

iScroll 5 MIT “iScroll is a high performance, small

footprint, dependency free, multi-

platform javascript scroller.” [4]

We will be using

iScroll to provide a

side scrolling view on

the web app that

allows more cards to

exist than the screen

can display at once.

The additional cards

will be hidden off of

the screen until they

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 3 of 9

are scrolled onto the

screen.

Table 1. Raspberry Pi Libraries

2.0 Description of Software Components

The software components for the project are as follows: Game Logic, Basic I/O, and Raspberry

Pi.

The game logic component is responsible for keeping track of various aspects of the game state,

including troop counts and country ownership, and for advancing the game state based on user

input. The game logic takes the form of a single large state machine that is “clocked” each time

input is provided by a player pressing buttons or making a card exchange in the web application.

The current game state is repeatedly read by the Basic I/O system to convert the game state into a

format that can be displayed on the country board LEDs. This component was written entirely by

our team and has been completely developed, so all that remains is its final testing.

The Basic I/O component is responsible for displaying game state information to the players via

the RGB LEDs, 7-segment displays, and LCD screen, and for detecting user input via the buttons

and rotary encoder. Data will be shifted out to the LEDs and 7-segment displays using SPI

(which the microcontroller natively supports), and a simple LCD driver will control

communication with the LCD screen. This component will be developed entirely by our team,

and we do not plan on using any third-party software for it.

The Raspberry Pi component is responsible for running a mobile web application (written in

HTML, CSS, JavaScript, and PHP) that will be used by the players to manage and use their

country cards. There will be several libraries used here, all of which are mentioned in Table 1 in

the previous section. The website itself will be developed completely by the team and will not

be borrowing from other projects or third-party applications. The Pi will also have a program

running to send and receive data from the microcontroller using the SPI protocol. This data will

determine what the web application displays. All of the web server functionality will be

delivered over an ad-hoc WiFi network that is hosted by the Pi. The Raspberry Pi will be running

all of these applications using Linux as an operating system.

3.0 Testing Plan

The Basic I/O component will be tested on a piecewise basis. Each country board must be able to

display any two-digit number and one of six potential colors - therefore, a test will be written that

cycles through all of these. Additionally, it is crucial that the SPI be working properly to send the

country information to each of the territories when they are all chained together, which will

require a test similar to the previous one but which shifts out data for all 42 boards. Small-scale

tests will be run to ensure the LCD is able to receive and display messages - these will consist

simply of sending each line of the LCD text and checking that the right output is displayed. To

check the rotary encoder, a test will be set up to emulate scrolling between countries: the selected

country will be “flashing” (alternating between some color and white), and when the knob is

turned the next country in sequence will begin flashing. Button testing is as simple as displaying

a message on the LCD which describes which button was pressed. This is the most important

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 4 of 9

component to test - without displays, the game cannot be seen, and without buttons, the game

cannot be played.

The Game Logic component will be tested by enacting all of the various gameplay scenarios that

can happen within RISK - including battles, troop movements, troop reinforcements, using cards,

and many others. A simple GUI program has already been developed to test the game logic code

independently of the microcontroller; this has allowed for the code to be developed and run

through initial tests. Once the displays are set up, the game code will be run on the

microcontroller through the various scenarios mentioned in order to test that the main loop is

running properly on it. This is the second most important component to test - though it is crucial

to running the game, it is less important than getting the displays to work.

The Raspberry Pi is the least critical piece of the game. It will first be tested by making sure that

data can be sent to and received from the microcontroller over SPI. Once that connection is

established it will have its ad-hoc network tested to verify that mobile devices can connect to the

web application. The third test will be to receive card data from the microcontroller and to

display that data on the mobile devices. The fourth and final test will be to test the user of the

mobile device choosing to play their cards and having the Pi send that data over SPI to the

microcontroller. This component is the third most important, since the game can be played

without cards.

4.0 Sources Cited:

[1] McCauley, Mike. “C library for Broadcom BCM 2835 as used in Raspberry Pi.” Internet:

http://www.airspayce.com/mikem/bcm2835/, [Feb. 26, 2015].

[2] “HTTP SERVER PROJECT.” Internet: http://httpd.apache.org/, 2015 [Feb, 26, 2015].

[3] “socket.io.” Internet: http://socket.io/, [Feb. 26, 2015].

[4] Spinelli, Matteo. “ISCROLL 5.” Internet: http://cubiq.org/iscroll-5, Jan. 10, 2014 [Feb.

26, 2015].

https://engineering.purdue.edu/ece477
http://www.airspayce.com/mikem/bcm2835/
http://httpd.apache.org/
http://socket.io/
http://cubiq.org/iscroll-5

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 5 of 9

Appendix 1: Software Component Diagram

Figure 1: Overall Code Structure

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 6 of 9

Figure 2: Initialization Code, Interrupts, and Basic I/O Structure

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 7 of 9

Figure 3: Game Logic Structure

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 8 of 9

Figure 4: Game Logic Structure Definitions

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design v1.1

https://engineering.purdue.edu/ece477 Page 9 of 9

Figure 5: Web Application Code Diagram

https://engineering.purdue.edu/ece477

