ECE 477: Digital Systems Senior Design

Software Formalization

Year: 2015 Semester: Spring Team: 2
Creation Date: February 19, 2015

Author: <redacted>

Assignment Evaluation:

Project: R.1.S.K.
Last Modified: October 7, 2015
Email: rdacted@purdue.edu

vl1.l

Item

‘ Score (0-5) | Weight | Points ‘

Notes

Assignment-Specific Items

Third Party Software

Description of Components

Testing Plan

Software Component Diagram

Writing-Specific Items

Spelling and Grammar

Formatting and Citations

Figures and Graphs

Technical Writing Style

Total Score

5: Excellent 4: Good 3: Acceptable 2: Poor

General Comments:

https://engineering.purdue.edu/ece477

1: Very Poor 0: Not attempted

Page 1 of 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design

1.0 Utilization of Third Party Software
We are using no third party software on our microcontroller, outside of the basic interfacing
header files and C standard library provided by Microchip.

The Raspberry Pi Libraries being used are as follows:

vl1.l

Name License [Description Use

BCM2835 library | GPL V2 | “Thisis a C library for Raspberry Pi | We will be using this
(RPI). It provides access to GPIO library for our SPI
and other 10 functions on the communication on the
Broadcom BCM 2835 chip, allowing | Raspberry Pi’s end.
access to the GP10O pins on the 26
pin IDE plug on the RPi board so
you can control and interface with
various external devices.” [1]

Apache2 Apache | “The Apache HTTP Server Project is | We will be using the

License [an effort to develop and maintain an | web server to host our
open-source HTTP server for web application.
modern operating systems including
UNIX and Windows NT. The goal
of this project is to provide a secure,
efficient and extensible server that
provides HTTP services in sync with
the current HTTP standards.” [2]

Socket.10 MIT “Socket.IO enables real-time We will most likely
bidirectional event-based be using socket.io in
communication. It works on every our project to allow
platform, browser or device, bidirectional
focusing equally on reliability and communication which
speed.” [3] will make our updates

faster to the client
devices.

iScroll 5 MIT “iScroll is a high performance, small | We will be using

footprint, dependency free, multi-
platform javascript scroller.” [4]

iScroll to provide a
side scrolling view on
the web app that
allows more cards to
exist than the screen
can display at once.
The additional cards
will be hidden off of
the screen until they

https://engineering.purdue.edu/ece477

Page 2 of 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design vll

are scrolled onto the
screen.

Table 1. Raspberry Pi Libraries

2.0 Description of Software Components
The software components for the project are as follows: Game Logic, Basic I/O, and Raspberry
Pi.

The game logic component is responsible for keeping track of various aspects of the game state,
including troop counts and country ownership, and for advancing the game state based on user
input. The game logic takes the form of a single large state machine that is “clocked” each time
input is provided by a player pressing buttons or making a card exchange in the web application.
The current game state is repeatedly read by the Basic I/O system to convert the game state into a
format that can be displayed on the country board LEDs. This component was written entirely by
our team and has been completely developed, so all that remains is its final testing.

The Basic 1/0 component is responsible for displaying game state information to the players via
the RGB LEDs, 7-segment displays, and LCD screen, and for detecting user input via the buttons
and rotary encoder. Data will be shifted out to the LEDs and 7-segment displays using SPI
(which the microcontroller natively supports), and a simple LCD driver will control
communication with the LCD screen. This component will be developed entirely by our team,
and we do not plan on using any third-party software for it.

The Raspberry Pi component is responsible for running a mobile web application (written in
HTML, CSS, JavaScript, and PHP) that will be used by the players to manage and use their
country cards. There will be several libraries used here, all of which are mentioned in Table 1 in
the previous section. The website itself will be developed completely by the team and will not
be borrowing from other projects or third-party applications. The Pi will also have a program
running to send and receive data from the microcontroller using the SPI protocol. This data will
determine what the web application displays. All of the web server functionality will be
delivered over an ad-hoc WiFi network that is hosted by the Pi. The Raspberry Pi will be running
all of these applications using Linux as an operating system.

3.0 Testing Plan

The Basic 1/0 component will be tested on a piecewise basis. Each country board must be able to
display any two-digit number and one of six potential colors - therefore, a test will be written that
cycles through all of these. Additionally, it is crucial that the SPI be working properly to send the
country information to each of the territories when they are all chained together, which will
require a test similar to the previous one but which shifts out data for all 42 boards. Small-scale
tests will be run to ensure the LCD is able to receive and display messages - these will consist
simply of sending each line of the LCD text and checking that the right output is displayed. To
check the rotary encoder, a test will be set up to emulate scrolling between countries: the selected
country will be “flashing” (alternating between some color and white), and when the knob is
turned the next country in sequence will begin flashing. Button testing is as simple as displaying
a message on the LCD which describes which button was pressed. This is the most important

https://engineering.purdue.edu/ece477 Page 3 0f 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design vll

component to test - without displays, the game cannot be seen, and without buttons, the game
cannot be played.

The Game Logic component will be tested by enacting all of the various gameplay scenarios that
can happen within RISK - including battles, troop movements, troop reinforcements, using cards,
and many others. A simple GUI program has already been developed to test the game logic code
independently of the microcontroller; this has allowed for the code to be developed and run
through initial tests. Once the displays are set up, the game code will be run on the
microcontroller through the various scenarios mentioned in order to test that the main loop is
running properly on it. This is the second most important component to test - though it is crucial
to running the game, it is less important than getting the displays to work.

The Raspberry Pi is the least critical piece of the game. It will first be tested by making sure that
data can be sent to and received from the microcontroller over SPI. Once that connection is
established it will have its ad-hoc network tested to verify that mobile devices can connect to the
web application. The third test will be to receive card data from the microcontroller and to
display that data on the mobile devices. The fourth and final test will be to test the user of the
mobile device choosing to play their cards and having the Pi send that data over SPI to the
microcontroller. This component is the third most important, since the game can be played
without cards.

4.0 Sources Cited:
[1] McCauley, Mike. “C library for Broadcom BCM 2835 as used in Raspberry Pi.” Internet:
http://www.airspayce.com/mikem/bcm2835/, [Feb. 26, 2015].

[2] “HTTP SERVER PROJECT.” Internet: http://httpd.apache.org/, 2015 [Feb, 26, 2015].

[3] “socket.io.” Internet: http://socket.io/, [Feb. 26, 2015].

[4] Spinelli, Matteo. “ISCROLL 5.” Internet: http://cubig.org/iscroll-5, Jan. 10, 2014 [Feb.
26, 2015].

https://engineering.purdue.edu/ece477 Page 4 of 9

https://engineering.purdue.edu/ece477
http://www.airspayce.com/mikem/bcm2835/
http://httpd.apache.org/
http://socket.io/
http://cubiq.org/iscroll-5

ECE 477: Digital Systems Senior Design

Appendix 1: Software Component Diagram

Program

¥

Initialization
Code (function
group)

b |

vl1.l

Code Progress Key

] - Completed
[] - In Progress
[- Future Development

Interrupts

(function group)

Y

Basic 1O
(function
aroup)

Figure 1: Overall Code Structure

https://engineering.purdue.edu/ece477

l

Game Loglc
{function
group)

Page 5 of 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design

group)

Initialization
Code (function

Interrupts
(function
group)

initClocks

- Set System and Timer
clocks to 200 MHz

- Set SPI and RNG clocks
to 100 MHz

initinterrupts

- Enables Interrupts for
timer, buttons, and rotary
encoder

initPorts

- Initialize input/output
directions for each pin

- Configure interrupts for
pins connected to butfons

initTimers

- Initialize 4 timers to:

1: flash LEDs

2: provide pracise delays
for LCD interface

3: provide interrupts to
update LED displays

4: generate unpredictabie
value for PRNG seed

initSPI

= Initialize 3 SPI modules:
1: Master for outputs to
country board

2: Master for writing bytes
to LCD

3: Slave for reading and
writing to Raspberry Pi

initRNG

- Initialize and seed PRNG
to provide random numbers
to game logic

startLCD

- Send LCD commands to
tum on display

Basic I/O

vl.l

Port change

set flag

—»1 corresponding to
which input triggered
the interrupt

Main loop
polls for
button/rotary
encoder input
flags

Timer 3

set flag telling main
loop to SPI out
country data

Pass inputs to
gameinput

SPI 3 Receive
Pass card inputs to
game logic through
cardinput

Convert game
state to proper
format for
display, set LEDs
via SPI

Send relevant
game state and
statistics
information to Pi
by SPI

setTextDisplay
Called by game
logic; updates
text displayed on
LCD

Figure 2: Initialization Code, Interrupts, and Basic 1/O Structure

https://engineering.purdue.edu/ece477

Page 6 of 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design

Game Logic

(function

group)
Territory (struct) |<— gamelnput

4) Calls one of a
group of functions
Continent | ¢« based on current
(struct) state to update the
state machine
Card (struct) D Sm— based on input
Hand (struct) - | chooseOptions
> selectTerritories
> deployTroops
cardinput
Updates player =
reinforce
cards based on a ¢ >
card exchange
request from web
app > declareAttack
updateText > resolveBattle
Passes game text
to setTextDisplay |[#——
to update text on > conquerTerritory
LCD
N moveTroops
N moveTroopsTarget

Figure 3: Game Logic Structure

https://engineering.purdue.edu/ece477

Page 7 of 9

vl1.l

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design

vl.l

-

- The id number of

the player in
possession of the
—tefritery—

troops (int)
- The number of
troops stationed in

the territory

value of the continent

Figure 4: Game Logic Structure Definitions

https://engineering.purdue.edu/ece477

Continent
Territory (struct) (struct) Card (struct) Hand (struct)
name (String) name (String) cardtype (CardType) hand (Card array)
—»{ - The name of the | - The name of the - The unit type »! - The cards
territory continent displayed on the card
- One of: INFANTRY, SonpNisa e hand
neighbors (int array) firstmember (int) CAVALRY, =ards (v
« Array of id numbers - starting index of the ARTILLERY, WILD o
> : ; B ; . | - The number of
of neighboring continent in the i
territory lerritories array territory (int) cards in the hand
- - The id of the
cardtype (CardType) members (int) territory represented
- The unit type .| - The number of by the card
~ displayed on its card territories contained
- One of: INFANTRY, within the continent
FERSEE vare g}
[ARTILLERY, WILD _] Ly . The troop bonus
rowner-tint)

Page 8 of 9

https://engineering.purdue.edu/ece477

ECE 477: Digital Systems Senior Design vl.l

Code Progress Key

[- Completed
[- In Progress
[- Future Development

SPI Program Web Application

L SPI

Initialization

Read input s
N s_tring_'.from —»| Card Images

stream

Transmit string
over SPI

Figure 5: Web Application Code Diagram

https://engineering.purdue.edu/ece477 Page 9 of 9

https://engineering.purdue.edu/ece477

