
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 1

CSC 221 – Introduction to Software Engineering

software processes
extract from Sommerville’s chapter 3 slides

Alan Dix

www.hcibook.com/alan/teaching/CSC221/

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 2

Software Processes

λ Coherent sets of activities for
specifying, designing, implementing
and testing software systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 3

The software process

λ A structured set of activities required to develop a
software system
• Specification

• Design

• Validation

• Evolution

λ A software process model is an abstract
representation of a process. It presents a
description of a process from some particular
perspective

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 4

Generic software process models

λ The waterfall model
• Separate and distinct phases of specification and development

λ Evolutionary development
• Specification and development are interleaved

λ Formal systems development
• A mathematical system model is formally transformed to an

implementation

λ Reuse-based development
• The system is assembled from existing components

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 5

Waterfall model
Requirements

definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 6

Waterfall model phases

λ Requirements analysis and definition

λ System and software design

λ Implementation and unit testing

λ Integration and system testing

λ Operation and maintenance

λ The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 7

Waterfall model problems

λ Inflexible partitioning of the project into distinct
stages

λ This makes it difficult to respond to changing
customer requirements

λ Therefore, this model is only appropriate when
the requirements are well-understood

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 8

Evolutionary development

λ Exploratory development
• Objective is to work with customers and to evolve a final

system from an initial outline specification. Should start with
well-understood requirements

λ Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 9

Evolutionary development

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Concurrent
activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 10

Evolutionary development

λ Problems
• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be
required

λ Applicability
• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 11

Formal systems development

λ Based on the transformation of a mathematical
specification through different representations to
an executable program

λ Transformations are ‘correctness-preserving’ so it
is straightforward to show that the program
conforms to its specification

λ Embodied in the ‘Cleanroom’ approach to
software development

N.B. really about replacing/ augmenting/supporting
the design and implementation phase of
software development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 12

Formal systems development

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 13

Formal transformations

R2
Formal

specification
R3

Executable
program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 14

Formal systems development

λ Problems
• Need for specialised skills and training to apply the technique

• Difficult to formally specify some aspects of the system such as
the user interface

λ Applicability
• Critical systems especially those where a safety or security case

must be made before the system is put into operation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 15

Reuse-oriented development

λ Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems

λ Process stages
• Component analysis

• Requirements modification

• System design with reuse

• Development and integration

λ This approach is becoming more important but
still limited experience with it

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 16

Reuse-oriented development

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 17

Process iteration

λ System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of the
process for large systems

λ Iteration can be applied to any of the generic
process models

λ Two (related) approaches
• Incremental development

• Spiral development

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 18

Incremental development

λ Rather than deliver the system as a single
delivery, the development and delivery is broken
down into increments with each increment
delivering part of the required functionality

λ User requirements are prioritised and the highest
priority requirements are included in early
increments

λ Once the development of an increment is started,
the requirements are frozen though requirements
for later increments can continue to evolve

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 19

Incremental development

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 20

Incremental development advantages

λ Customer value can be delivered with each
increment so system functionality is available
earlier

λ Early increments act as a prototype to help elicit
requirements for later increments

λ Lower risk of overall project failure

λ The highest priority system services tend to
receive the most testing

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 21

Extreme programming

λ New approach to development based on the
development and delivery of very small
increments of functionality

λ Relies on constant code improvement, user
involvement in the development team and
pairwise programming

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 22

Spiral development

λ Process is represented as a spiral rather than as a
sequence of activities with backtracking

λ Each loop in the spiral represents a phase in the
process.

λ No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
is required

λ Risks are explicitly assessed and resolved
throughout the process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 23

Spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 24

Spiral model sectors

λ Objective setting
• Specific objectives for the phase are identified

λ Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key

risks

λ Development and validation
• A development model for the system is chosen which can be

any of the generic models

λ Planning
• The project is reviewed and the next phase of the spiral is

planned

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 25

λ waterfall model

λ evolutionary development

λ formal development

λ reuse-oriented development

summary
normative process models

mainly effect
design and
implementation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 26

λ requirements and specification

λ design and implementation
• architectural design, detailed and sub-system design,

integration of components, deployment

λ testing, verification and validation

λ evolution
• deployment, maintenance, changing requirements

summary
similar activities

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 27

λ waterfall model
• each activity in sequence

• whole system within each activity

λ incremental development
• each ‘slice’ of system in sequence

• all activities for each part

λ spiral development
• when it seems right!

summary

... but different timings
R&S D&I V&V E

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 (extract) Slide 28

documents and activities

more than

stages and phases

common theme

(software quality)

(management)

