
D R . T A R E K A . T U T U N J I

R E V E R S E E N G I N E E R I N G

P H I L A D E L P H I A U N I V E R S I T Y , J O R D A N

2 0 1 5

Software RE
Rev II

References

 Reversing: Secrets of Reverse Engineering by
Eldad Eilam. Published by Wiley Publishing 2005

 Reversing: Reverse Engineering, Recent Advances
and Applications edited by Telea. Published by
InTech 2012

 Reverse Engineering for Beginners by Dennis
Yurichev 2015

Software is Everywhere

 PCs and Laptops

 Mobile phones

 Networks

 Washing machines

 Microwaves

 Automated Industry
Controllers

 Automobiles

 Airplanes

 Spaceships

Software is Everywhere

We rely on too much software that we do not
understand and do not know very well at all.

 We buy software packages.

 We run setup utilities that install numerous files, change

system settings, delete or disable older versions , and
modify critical registry files.

 We access websites that might interact with programs

 We purchase CD games

 We download programs , updates, and patches

S/W Reverse Engineering

 S/W RE is the process of analyzing a system to
identify its components and their
interrelationships and to create representations
of the system in another form or at a higher level
of abstraction -- IEEE 1990

 S/W RE is about opening up a program’s “box” and
looking inside

 S/W Reverse engineering is a critical set of techniques
and tools for understanding what software is really
all about.

S/W Reverse Engineering

 The techniques of analysis, and the application of
automated tools for software examination, give us a
reasonable way to comprehend the complexity of the
software and to uncover its truth.

 Reverse engineering occurs every time someone
looks at someone else’s code.

 Reverse engineering is a discovery process.

What does this program do?

S/W RE

 S/W RE involves skills:

 Code breaking

 Puzzle solving

 Programming

 Logical analysis

Applications

 There are two main categories of reverse
engineering applications:

Security-related

Software development–related.

Security Applications

 Finding malicious code
 RE can be used to detect viruses and worms by understanding how

the code is structured and functions.

 Discovering unexpected flaws and faults
 RE can help identify flaws and faults (bugs) in application software

before they are released to the public.

 Cracking
 To crack a program, means to trace and use a serial number or any

other sort of registration information, required for the proper
operation of a program.

 RE can provide that information by decompiling a particular part of
the program.

Software Development Applications

 Learning from others’ programs
 Re-use the code in other programs
 Learn and build on a growing body of code knowledge.
 RE techniques can enable the study of advanced software

approaches.

 Discovering features or opportunities
 Existing techniques can be reused in new contexts.
 RE can lead to new discoveries about software and new opportunities

for innovation.

 Developing Competing Software
 Observe and understand competitor’s design
 Determine if another company used your code

Legacy Software Development Process

Reference: Teodoro Cipresso, St. Jose State University

S/W RE Basics

 In order to perform software RE, a good
understanding of the computer H/W and S/W is
needed.

 The following slides provide some basics about

 Assembly Language

 Operating Systems

Software Layers

Low Level Software

 Computers and software are built layers upon
layers.
 At the bottom layer, there is the microprocessor
 At the top layer, there are some elegant looking graphics, a keyboard,

and a mouse—the user experience.

 Most software developers use high-level languages that
take easily understandable commands and execute them.

 Reversing requires a solid understanding of the lower

layers.

 Reversers must literally be aware of anything that comes

between the program source code and the CPU.

Assembly Language

 The lowest level in the software chain

 If software performs an operation, it must be visible
in the assembly language code.

 Assembly language is the language of reversing.

 Assembly language vs. Machine Code

Assembly Language

 An assembler program translates the textual
assembly language code into binary code, which can
be decoded by a CPU.

 A disassembler does the exact opposite. It
reads object code and generates the textual mapping
of each instruction in it.

 Disassemblers are a key tool for reverse engineers

Compilers

 A text file containing instructions that describe the
program in a high-level language is fed into a compiler.

 A compiler is a program that takes a source file and
generates a corresponding machine code file while
Decompilers do the opposite

 Depending on the high-level compilers for programming
languages (such as C and C++), decompilers generate
machine-readable object code from the textual source
code.

Operating Systems

 An operating system is a program that manages the
computer, including the hardware and software
applications.

 An operating system takes care of many different tasks
and can be seen as a kind of coordinator between the
different elements in a computer.

 Operating systems are such a key element in a
computer that any reverser must have a good
understanding of what they do and how they work

RE Process

 RE can be divided into two separate phases.

 System-level reversing techniques help determine
the general structure of the program and sometimes even
locate areas of interest within it.

 Code-level reversing techniques provides detailed
information on a selected code chunk

RE Process

Ref: Software RE in Domain of Complex Embedded Systems
by Kienle, Kraft and Muller

System Level RE

 System-level reversing involves running various
tools on the program and utilizing various operating
system services to obtain information, inspect
program executables, track program input and
output, and so forth.

 Most of this information comes from the operating
system, because by definition every interaction that a
program has with the outside world must go through
the operating system.

Code Level RE

 Code-level reversing observes the code from a very
low-level

 Software can be highly complex
 Even with access to a program’s well-written and properly-

documented source code can be difficult to comprehend

 Extracting design concepts and algorithms from a
program binary is a complex process that requires a
mastery of reversing techniques along with a solid
understanding of software development, the CPU, and
the operating system.

RE Tools

 Disassemblers

 Debuggers

 Decompilers

 System Monitoring Tools

Disassemblers

 A disassembler decodes binary machine code
into a readable assembly language text.

 The disassembler process
 Looks up the opcode in a translation table that contains the

textual name of each instructions along with their formats.

 Analyze which operands are used in a particular instruction.

 The specific instruction encoding format and the
resulting textual representation are entirely
platform-specific.

Disassemblers

Example: IDA Pro

 IDA (Interactive Disassembler) by DataRescue is an
extremely powerful disassembler that supports:
 A variety of processor architectures : IA-32, IA-64 (Itanium),

AMD64, and many others.

 A variety of executable file formats, such as PE (Portable Executable,
used in Windows), ELF (Executable and Linking Format, used in
Linux), and even XBE, which is used on Microsoft’s Xbox.

 IDA is capable of producing flowcharts for a given
function. These are essentially logical graphs that show
chunks of disassembled code and provide a visual
representation of the program flow

Example: IDA Pro

IDA Pro screen showing: code disassembly, function and string lists

Example: IDA Pro

IDA-generated function flow

Debuggers

 Debuggers exist primarily to assist software
developers with locating and correcting errors in
their programs, but they can also be used as powerful
reversing tools.

 The idea is that the debugger provides a
disassembled view of the currently running function
and allows the user to step through the disassembled
code and see what the program does at every line.

Important Debugger Features

 Powerful Disassembler
 View the code clearly, with cross-references that reveal which

branch goes where and where a certain instruction is called
from.

 View of Registers and Memory
 Provide a good visualization of the important CPU registers

and of system memory.

 Process Information
 Most basic ones are a list of the currently loaded executable

modules and the currently running threads

Important Debugger Features

 Software and Hardware Breakpoints

 Software breakpoints are instructions added into the
program’s code by the debugger at runtime. These instructions
make the processor pause program execution and transfer
control to the debugger when they are reached during
execution.

 Hardware breakpoints are a special CPU feature that allow the
processor to pause execution when a certain memory address
is accessed, and transfer control to the debugger.

Example: OllyDbg

 OllyDbg includes a powerful disassembler

 Its code analyzer can identify loops, switch blocks, and other

key code structures.

 It shows parameter names for all known functions and APIs,

and supports searching for cross-references between code and
data—in all possible directions.

 It supports a wide variety of views, including listing imports

and exports in modules

 It also includes a built-in assembling and patching engine

Example: OllyDbg

Typical OllyDbg Screen

Example: SoftICE

Decompilers

 Decompilers attempt to produce a high-level
language source-code-like representation from a
program binary.

 It is never possible to restore the original code in its
exact form because the compilation process always
removes some information from the program.

System Monitoring Tools

 System-monitoring tools is a general category of software
tools that observe the various channels of I/O that exist
between applications and the operating system.

 These are tools such as file access monitors that display
every file operation (such as file creation, reading or
writing to a file, and so on) made from every application
on the system.

 This is done by hooking certain low-level components in
the operating system and monitoring any relevant calls
made from applications.

Example: Process Explorer

 Process Explorer is like a turbo-charged version of
the built-in Windows Task Manager, and was
actually designed to replace it.

 Process Explorer can show processes, DLLs loaded
within their address spaces, handles to objects within
each process, detailed information on open network
connections, CPU and memory usage graphs, and
the list just goes on and on.

Example: Process Explorer

Other RE Tools: GUISURFER

Ref.: GUIsurfer: A Reverse Engineering Framework for User Interface Software
by Campos, Saraiva, and Silva

FIRMWARE RE

FOR

PIC MICROCONTROLLER

Microchip PICKit Debugger / Programmer

 The PICkit 3 debugger was developed for programming
and debugging embedded processors with debug
functions.

 The PICkit 3 features include:

 Full-speed USB support using Windows standard drivers
 Real-time execution
 Processors running at maximum speeds
 Built-in over-voltage/short circuit monitor
 Low voltage to 5V (1.8-5V range)
 Diagnostic LEDs (power, active, status)
 Read/write program and data memory of microcontroller
 Erasing of all memory types (EEPROM, ID, configuration and program)

with verification
 Peripheral freeze at breakpoint

PICKit Debugger

PIC – Debugger Connection

MPLAB

Machine Code vs. Assembly Language

Conclusion

 S/W are used in many products and therefore S/W
RE has gained much attention in the industry and
research.

 S/W RE requires

 In-depth knowledge in software construction (such as
Assembly Language and O/S).

 Great skills in puzzle solving and code breaking.

 Knowledge and skills in identifying and using RE tools.

