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Software is Everywhere

O

» PCs and Laptops » Automated Industry
Controllers

» Mobile phones
» Automobiles

» Networks
 Airplanes

» Washing machines
» Spaceships

» Microwaves




Software is Everywhere

O

We rely on too much software that we do not
understand and do not know very well at all.

» We buy software packages.

* We run setup utilities that install numerous files, change
system settings, delete or disable older versions , and
modify critical registry files.

» We access websites that might interact with programs

* We purchase CD games

» We download ﬁmﬁrams , uidates, and ﬁatches




S/W Reverse Engineering

O

e S/W RE is the process of analyzing a system to
identify its components and their
interrelationships and to create representations
of the system in another form or at a higher level
of abstraction -- IEEE 1990

* S/W RE is about opening up a program’s “box” and
looking inside

» S/W Reverse engineering is a critical set of techniques
and tools for understanding what software is really
all about.




S/W Reverse Engineering

O

» The techniques of analysis, and the application of
automated tools for software examination, give us a
reasonable way to comprehend the complexity of the
software and to uncover its truth.

» Reverse engineering occurs every time someone
looks at someone else’s code.

» Reverse engineering is a discovery process.




What does this program do?

O

int A[SIZE] = {54,15,32,768,23,90,458,86,23,65);
int i, 7, min, temp;

for (1 = 07 1 « BIZE - 1; i+H+)14
min = i:

for (3 = 1+l; 7 « 3IZE; J++){
if (A[3] < Afmin]){
min = i
¥
¥

temp = &A[1]:
A[1] = A[min]:
Almin] = tenp;




S/W RE

O

* S/W RE involves skills:

o Code breaking
o Puzzle solving
O Programming

o Logical analysis




Applications

O

e There are two main categories of reverse
engineering applications:

o Security-related

o Software development—related.




Security Applications

O

 Finding malicious code

o RE can be used to detect viruses and worms by understanding how
the code is structured and functions.

e Discovering unexpected flaws and faults

o RE can help identify flaws and faults (bugs) in application software
before they are released to the public.

e Cracking

o To crack a program, means to trace and use a serial number or any
other sort of registration information, required for the proper
operation of a program.

o RE can provide that information by decompiling a particular part of
the program.




Software Development Applications

O

e Learning from others’ programs
o Re-use the code in other programs
o Learn and build on a growing body of code knowledge.

o RE techniques can enable the study of advanced software
approaches.

* Discovering features or opportunities
o Existing techniques can be reused in new contexts.

o RE can lead to new discoveries about software and new opportunities
for innovation.

 Developing Competing Software
o Observe and understand competitor’s design
o Determine if another company used your code




Legacy Software Development Process
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S/W RE Basics

O

* In order to perform software RE, a good
understanding of the computer H/W and S/W is
needed.

» The following slides provide some basics about
o Assembly Language

o Operating Systems




Software Layers

Application

| B
Operating System

2 ==

Hardware

lowest level, machine code

Hardware x86/ CISC/ RISC | etc.

software level, drivers
NASM / TASM

Assembly languages

0S level, high performance

System languages C/C++/C#/ Go

productivity, portability, business logic

Application languages Java | PHP [ Visual Basic




L.ow Level Software

O

e Computers and software are built layers upon
layers.
o At the bottom layer, there is the microprocessor

o At the top layer, there are some elegant looking graphics, a keyboard,
and a mouse—the user experience.

* Most software developers use high-level languages that
take easily understandable commands and execute them.

o 1Reversing requires a solid understanding of the lower
ayers.

» Reversers must literally be aware of anything that comes
between the program source code and the CPU.




Assembly Language

O

o The lowest level in the software chain

» If software performs an operation, it must be visible
in the assembly language code.

» Assembly language is the language of reversing.

» Assembly language vs. Machine Code




Assembly Language

O

* An assembler program translates the textual
assembly language code into binary code, which can
be decoded by a CPU.

* A disassembler does the exact opposite. It
reads object code and generates the textual mapping
of each instruction in it.

o Disassemblers are a key tool for reverse engineers




Compilers

O

» A text file containing instructions that describe the
program in a high-level language is fed into a compiler.

» A compiler is a program that takes a source file and
generates a corresponding machine code file while
Decompilers do the opposite

» Depending on the high-level compilers for programming
languages (such as C and C++), decompilers generate
machine-readable object code from the textual source
code.




Operating Systems

O

» An operating system is a program that manages the
computer, including the hardware and software
applications.

» An operating system takes care of many different tasks
and can be seen as a kind of coordinator between the
different elements in a computer.

» Operating systems are such a key element in a
computer that any reverser must have a good
understanding of what they do and how they work




RE Process

O

» RE can be divided into two separate phases.

o System-level reversing techniques help determine
the general structure of the program and sometimes even
locate areas of interest within it.

o Code-level reversing techniques provides detailed
information on a selected code chunk




RE Process

O
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System Level RE

O

e System-level reversing involves running various
tools on the program and utilizing various operating
system services to obtain information, inspect
program executables, track program input and
output, and so forth.

» Most of this information comes from the operating
system, because by definition every interaction that a
program has with the outside world must go through
the operating system.




Code Level RE

O

* Code-level reversing observes the code from a very
low-level

» Software can be highly complex

o Even with access to a program’s well-written and properly-
documented source code can be difficult to comprehend

e Extracting design concepts and algorithms from a
program binary is a complex process that requires a
mastery of reversing techniques along with a solid
understanding of software development, the CPU, and
the operating system.




RE Tools

O

» Disassemblers
» Debuggers

» Decompilers

» System Monitoring Tools




Disassemblers

O

e A disassembler decodes binary machine code
into a readable assembly language text.

» The disassembler process

o Looks up the opcode in a translation table that contains the
textual name of each instructions along with their formats.

o Analyze which operands are used in a particular instruction.

» The specific instruction encoding format and the
resulting textual representation are entirely
platform-specific.




Disassemblers

Instruction MOD/BM .
Opcode Byte Displacement
8B 79 04
MOV Opcode MOD/RM Byte:
Defined as: Specifies a register and memory-address pair. .
MOV Register, Displacement Byte
Register/Memory

MOD (2 bits) | REG (3 bits) | R/M (3 bits)

" Describes the ™.
i formatofthe |
' address side

-,

a

" Specifies a \
register for the |
*.. address side

/" Specifiesa /
register

MOV

EDI, DWORD PTR| ECX




Example: IDA Pro

O

» IDA (Interactive Disassembler) by DataRescue is an
extremely powerful disassembler that supports:

o A variety of processor architectures : 1A-32, IA-64 (Itanium),
AMDG64, and many others.

o A variety of executable file formats, such as PE (Portable Executable,
used in Windows), ELF (Executable and Linking Format, used in
Linux), and even XBE, which is used on Microsoft’s Xbox.

» IDA is capable of producing flowcharts for a given
function. These are essentially logical graphs that show
chunks of disassembled code and provide a visual
representation of the program flow




Example: IDA Pro
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Example: IDA Pro
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Debuggers

O

» Debuggers exist primarily to assist software
developers with locating and correcting errors in
their programs, but they can also be used as powertul
reversing tools.

» The idea is that the debugger provides a
disassembled view of the currently running function
and allows the user to step through the disassembled
code and see what the program does at every line.




Important Debugger Features

O

e Powerful Disassembler

o View the code clearly, with cross-references that reveal which
branch goes where and where a certain instruction is called
from.

* View of Registers and Memory

o Provide a good visualization of the important CPU registers
and of system memory.

e Process Information

o Most basic ones are a list of the currently loaded executable
modules and the currently running threads




Important Debugger Features

O

e Software and Hardware Breakpoints

o Software breakpoints are instructions added into the
program’s code by the debugger at runtime. These instructions
make the processor pause program execution and transfer
control to the debugger when they are reached during
execution.

o Hardware breakpoints are a special CPU feature that allow the
processor to pause execution when a certain memory address
is accessed, and transfer control to the debugger.




Example: OllyDbg

O

» OllyDbg includes a powerful disassembler

» Its code analyzer can identify loops, switch blocks, and other
key code structures.

» It shows parameter names for all known functions and APIs,
and supports searching for cross-reterences between code and
data—in all possible directions.

* It supports a wide variety of views, including listing imports
and exports in modules

» It also includes a built-in assembling and patching engine
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e SEERS0631

Fibs  Ect  Wew . Pavortss  Tooks  Hep

Pbak - = - B Boearch TyFddes |05 U7 K o | B-
Address |2 c\websymbeleltoskinl b EESS0R1

R e

=]
ted
]
2

BERE soooO DI
o S
£85% Fa

SO a

U E@416B3E
3 ﬂd’ﬂ“!‘ﬂﬁEthu*i\iﬂLi te
ESP

E-E ERARR 5o

GmTEEdme Sl

ga EEEEE gD |
Soba B

R E GRIER oMM |
=ax=Jull= =R ete=tel == BN}

a4
[4

"I
+
-
-
*

i2

—mgm-u

L E!B:IH- @a1
CECX+B8C], &8

[ ECX+BE] .80

-

IRIIETEERR

nnatﬁgzg [ EBF+8C1 , 88

.

Hﬂc Ei‘“hLEE BiBBIBS0 BLUNSPca BlBBBEIG ViPBebid Prsrsnildle

BEEEEEEE Eﬁzééxna sgukgrnl - Exﬁr.- wi reﬂﬁsuu.rl:eExl:l usiveliter@@bd

:ﬁﬁ Er-i B
BEB"S"CHB BH'IE:I 591 Iuli n3ik' tlseprsie THl ndowFos+@0RE b
[ Enta L command LI bow helpd —______________________________ LEWFLOHE

[alewealuatealakal Aualalal

Se9eEaest
P ———

i
&
-
E

PRRSERRRRRRS

Ul el =t - ]
WNETRSESONT W

o
Z

1 chiscts)




Decompilers

O

» Decompilers attempt to produce a high-level
language source-code-like representation from a
program binary.

» It is never possible to restore the original code in its
exact form because the compilation process always
removes some information from the program.




System Monitoring Tools

O

» System-monitoring tools is a general category of software
tools that observe the various channels of I/O that exist
between applications and the operating system.

» These are tools such as file access monitors that display
every file operation (such as file creation, reading or
writing to a file, and so on) made from every application
on the system.

» This is done by hooking certain low-level components in
the operating system and monitoring any relevant calls
made from applications.




Example: Process Explorer

O

» Process Explorer is like a turbo-charged version of
the built-in Windows Task Manager, and was
actually designed to replace it.

» Process Explorer can show processes, DLLs loaded
within their address spaces, handles to objects within
each process, detailed information on open network
connections, CPU and memory usage graphs, and
the list just goes on and on.




Example: Process Explorer
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Other RE Tools: GUISURFER

Language dependent

O

Language independent

Code slicing
[ AstAnalyser ] s e
Entry point
T Widgets names
Forms names

TParsm

T.‘:‘-nurce code files

Wx/Haskell code
GWT source code
Java/Swing code
GUI
Business
Diata

Ref.: GUIsurfer: A Reverse Engineering Framework for User Interface Software
by Campos, Saraiva, and Silva

Control flow and GUT related tree fragments
Program dependency graph

GUT statements

Conditional statements

Events statements

Maximum events sequence length

v |
G ]
v v

Forms behavior

Flow between windows

GUT models: Haskell specifications, event flow graph,

state machine

GUI inspection and certification

OuickCheck (Haskell properties)
Graph-Tool (Metrics)
Graph manipulation
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Microchip PICKit Debugger / Programmer

O

* The PICKit 3 debugger was developed for programming
?nd debugging embedded processors with debug
unctions.

» The PICKkit 3 features include:

Full-speed USB support using Windows standard drivers

Real-time execution

Processors running at maximum speeds

Built-in over-voltage/short circuit monitor

Low voltage to 5V (1.8-5V range)

Diagnostic LEDs (power, active, status)

Read/write program and data memory of microcontroller

Erasing of all memory types (EEPROM, ID, configuration and program)
with verification

Peripheral freeze at breakpoint
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PICKit Debugger

... Pin 1 Indicator

\ Pin Description*®
MICROCHIP b. 1 1 = MCLR/Vepr
4"@ Legend: g 2 =Voo Target
1 - Lanyard Loop ; 3 =Vss (ground)
2 — USB Port Connection a 4 =PGD (ICSPDAT)

3 — Pin 1 Marker / 5 =PGC (ICSPCLEK)

4 — Programming Connector / 6 =PGM (LVFP)
& — Indicator LEDs

6 — Push Button

Indicator
Lights

PICKit 3

y

a0
W

USB Cable to PC

To Target Board




PIC — Debugger Connection
+5V (%)

L 4

R1 VDD
C4 ==

v ol 100 nF 10k 15
GND | O+H2—-@

MCLR j MCLR

PeD | O s PGD (RB7)

PGC | O PGC (RB6)
PGM | O PGM (RB3/RB5*)
R2 [ ® 0SC1

1k Q1 —/—m
Vss
C1 c2
22 pF 22 pF
@ @ @
GND
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Machine Code vs. Assembly Language

O

Memory address | Machine code | Assembly Meaning

000 3000 MOVLW 00 |Load working register (W) with number 0
001 0066 TRIS 06 | Store W in Port B direction code register
002 0186 CLRF 06 |Clear Port B data register

003 OA86 INCF 06 |Increment Port B data register

004 2803 GOTO 03 |Jump back to address 0003 above




Conclusion

O

» S/W are used in many products and therefore S/W
RE has gained much attention in the industry and
research.

* S/W RE requires

o In-depth knowledge in software construction (such as
Assembly Language and O/S).

o Great skills in puzzle solving and code breaking.
o Knowledge and skills in identifying and using RE tools.




