Software RE
Rev 11

O

DR. TAREK A. TUTUNJI

REVERSE ENGINEERING
PHILADELPHIA UNIVERSITY, JORDAN
2015

References

O

» Reversing: Secrets of Reverse Engineering by
Eldad Eilam. Published by Wiley Publishing 2005

» Reversing: Reverse Engineering, Recent Advances
and Applications edited by Telea. Published by
InTech 2012

» Reverse Engineering for Beginners by Dennis
Yurichev 2015

Software is Everywhere

O

» PCs and Laptops » Automated Industry
Controllers

» Mobile phones
» Automobiles

» Networks
 Airplanes

» Washing machines
» Spaceships

» Microwaves

Software is Everywhere

O

We rely on too much software that we do not
understand and do not know very well at all.

» We buy software packages.

* We run setup utilities that install numerous files, change
system settings, delete or disable older versions , and
modify critical registry files.

» We access websites that might interact with programs

* We purchase CD games

» We download ﬁmﬁrams , uidates, and ﬁatches

S/W Reverse Engineering

O

e S/W RE is the process of analyzing a system to
identify its components and their
interrelationships and to create representations
of the system in another form or at a higher level
of abstraction -- IEEE 1990

* S/W RE is about opening up a program’s “box” and
looking inside

» S/W Reverse engineering is a critical set of techniques
and tools for understanding what software is really
all about.

S/W Reverse Engineering

O

» The techniques of analysis, and the application of
automated tools for software examination, give us a
reasonable way to comprehend the complexity of the
software and to uncover its truth.

» Reverse engineering occurs every time someone
looks at someone else’s code.

» Reverse engineering is a discovery process.

What does this program do?

O

int A[SIZE] = {54,15,32,768,23,90,458,86,23,65);
int i, 7, min, temp;

for (1 = 07 1 « BIZE - 1; i+H+)14
min = i:

for (3 = 1+l; 7 « 3IZE; J++){
if (A[3] < Afmin]){
min = i
¥
¥

temp = &A[1]:
A[1] = A[min]:
Almin] = tenp;

S/W RE

O

* S/W RE involves skills:

o Code breaking
o Puzzle solving
O Programming

o Logical analysis

Applications

O

e There are two main categories of reverse
engineering applications:

o Security-related

o Software development—related.

Security Applications

O

 Finding malicious code

o RE can be used to detect viruses and worms by understanding how
the code is structured and functions.

e Discovering unexpected flaws and faults

o RE can help identify flaws and faults (bugs) in application software
before they are released to the public.

e Cracking

o To crack a program, means to trace and use a serial number or any
other sort of registration information, required for the proper
operation of a program.

o RE can provide that information by decompiling a particular part of
the program.

Software Development Applications

O

e Learning from others’ programs
o Re-use the code in other programs
o Learn and build on a growing body of code knowledge.

o RE techniques can enable the study of advanced software
approaches.

* Discovering features or opportunities
o Existing techniques can be reused in new contexts.

o RE can lead to new discoveries about software and new opportunities
for innovation.

 Developing Competing Software
o Observe and understand competitor’s design
o Determine if another company used your code

Legacy Software Development Process

Software Module
Enhancement Request

I
e

Software
Engineer

O

Design
Recovery

Source
exists?

Yes

Edt,
Compile,
and Test

Encapsulate
Binary and
Test

Deploy

Patch
Binary and
Test

@ Deploy

Legacy
System

S/W RE Basics

O

* In order to perform software RE, a good
understanding of the computer H/W and S/W is
needed.

» The following slides provide some basics about
o Assembly Language

o Operating Systems

Software Layers

Application

| B
Operating System

2 ==

Hardware

lowest level, machine code

Hardware x86/ CISC/ RISC | etc.

software level, drivers
NASM / TASM

Assembly languages

0S level, high performance

System languages C/C++/C#/ Go

productivity, portability, business logic

Application languages Java | PHP [Visual Basic

L.ow Level Software

O

e Computers and software are built layers upon
layers.
o At the bottom layer, there is the microprocessor

o At the top layer, there are some elegant looking graphics, a keyboard,
and a mouse—the user experience.

* Most software developers use high-level languages that
take easily understandable commands and execute them.

o 1Reversing requires a solid understanding of the lower
ayers.

» Reversers must literally be aware of anything that comes
between the program source code and the CPU.

Assembly Language

O

o The lowest level in the software chain

» If software performs an operation, it must be visible
in the assembly language code.

» Assembly language is the language of reversing.

» Assembly language vs. Machine Code

Assembly Language

O

* An assembler program translates the textual
assembly language code into binary code, which can
be decoded by a CPU.

* A disassembler does the exact opposite. It
reads object code and generates the textual mapping
of each instruction in it.

o Disassemblers are a key tool for reverse engineers

Compilers

O

» A text file containing instructions that describe the
program in a high-level language is fed into a compiler.

» A compiler is a program that takes a source file and
generates a corresponding machine code file while
Decompilers do the opposite

» Depending on the high-level compilers for programming
languages (such as C and C++), decompilers generate
machine-readable object code from the textual source
code.

Operating Systems

O

» An operating system is a program that manages the
computer, including the hardware and software
applications.

» An operating system takes care of many different tasks
and can be seen as a kind of coordinator between the
different elements in a computer.

» Operating systems are such a key element in a
computer that any reverser must have a good
understanding of what they do and how they work

RE Process

O

» RE can be divided into two separate phases.

o System-level reversing techniques help determine
the general structure of the program and sometimes even
locate areas of interest within it.

o Code-level reversing techniques provides detailed
information on a selected code chunk

RE Process

O

Artifacts Workflow Tool Support
specs source coda
Extract A | | |
= Fact Extractors
i build : i
tsCTipls :
. .- i
yze pol_ |
execution P | Repository
' ' s = I
: ; Analyses with
! log files fact base
Dvnamic !
Artifacts Visualize } S | | J
traces | | P J
?lr'emsgages i 5 Visualizers

...

Ref: Software RE in Domain of Complex Embedded Systems
by Kienle, Kraft and Muller

System Level RE

O

e System-level reversing involves running various
tools on the program and utilizing various operating
system services to obtain information, inspect
program executables, track program input and
output, and so forth.

» Most of this information comes from the operating
system, because by definition every interaction that a
program has with the outside world must go through
the operating system.

Code Level RE

O

* Code-level reversing observes the code from a very
low-level

» Software can be highly complex

o Even with access to a program’s well-written and properly-
documented source code can be difficult to comprehend

e Extracting design concepts and algorithms from a
program binary is a complex process that requires a
mastery of reversing techniques along with a solid
understanding of software development, the CPU, and
the operating system.

RE Tools

O

» Disassemblers
» Debuggers

» Decompilers

» System Monitoring Tools

Disassemblers

O

e A disassembler decodes binary machine code
into a readable assembly language text.

» The disassembler process

o Looks up the opcode in a translation table that contains the
textual name of each instructions along with their formats.

o Analyze which operands are used in a particular instruction.

» The specific instruction encoding format and the
resulting textual representation are entirely
platform-specific.

Disassemblers

Instruction MOD/BM .
Opcode Byte Displacement
8B 79 04
MOV Opcode MOD/RM Byte:
Defined as: Specifies a register and memory-address pair. .
MOV Register, Displacement Byte
Register/Memory

MOD (2 bits) | REG (3 bits) | R/M (3 bits)

" Describes the ™.
i formatofthe |
' address side

-,

a

" Specifies a \
register for the |
*.. address side

/" Specifiesa /
register

MOV

EDI, DWORD PTR| ECX

Example: IDA Pro

O

» IDA (Interactive Disassembler) by DataRescue is an
extremely powerful disassembler that supports:

o A variety of processor architectures : 1A-32, IA-64 (Itanium),
AMDG64, and many others.

o A variety of executable file formats, such as PE (Portable Executable,
used in Windows), ELF (Executable and Linking Format, used in
Linux), and even XBE, which is used on Microsoft’s Xbox.

» IDA is capable of producing flowcharts for a given
function. These are essentially logical graphs that show
chunks of disassembled code and provide a visual
representation of the program flow

Example: IDA Pro

ml i:[ﬂﬂ“iﬁﬁhﬁemnmmﬁl.mé

=&

Fiz: Edit Jump Scorch ¥eow [ebugger Cptiom Wndeons Help

vl

M H# | =+x |BEDF
HNed| BENT | FEE eT| | FAEA =

mae|me |

BEn||gineg v o NX | ®- g-wSHKMH- F|| : i %5

]l [N

E] I‘.I.!-.v-.l‘m-& [4] HaeWew BB Ewpeile ﬂ Izl | I"sr Furelinz | "' Slirge | ﬂ _Ellml_n._mf.-_::En Evin |

W& AT A

==)

‘ﬂ Euimnrtinne wi e

(=S =

T Funcion name
"ﬁ:lh_;iﬂid-liﬂ
Mijaub_dn 410
“upeub_din 3
Y sub_ A 414
M =uh_a0 500
Mijauh_diiain
“ijsub_Ain A0
M A0 a0
“suh_d02430
Mrpauh_dn24m
“risch AL
£

(sl

unes5¥0af 624

At S trmies win S

Sking
CPracmss rdow
Fragress Window

Al rodidas hoaded

P mdule
Synibod
fi enlies s found
Hd erhes weis lound

£ I o T T o S e T o I Y o T Y

3 08 View-d
EeRt:ABNATANE ; wvold Sub_SHadandfuoid) e
Jtewt-ABafdAan -:m_ummn proe near : BATA XREF: suh BATAROs4HTn
Jtaxr Al ARG o
toxtcOBBIARE var WD = dword ptr —hibh
LLexlb ABya1Ane
* Ltext:RBRATANA push chp
* _TexCIRBeRiARd noy enp, 2sp
" LLERCIRBNRTARD sul BSp, 4N
® sbtesti0BE1ARG push ehx
" Ltoxb:iDDe@inng puch un i
* _text:opeAiang push e
Yo _text:ABsA1AAY 1ea edi,. [ebpruar LE]
" Ltext:RBadiARG nou ecx, 1in
" LtextioDeEi1AE nov eax, BLCCCLCCCCH
© LtexbiAByE1ABG rep stosd
S JIEKLIABSATARYE nou B, OFFSeL unk 78354
* text:RBSE1ADD call sub_ 4B113H
® text:dbeEdACz pop edi
" LtoxbcDRGHACE pop esi
" rexliBRWATALL o el
* L TextRBRATACS adi BS, 40
f _textzAsdiACH cmp ebp, asp
* LtextidBsdiALA call _thkesp
 .tExC:PBRB1ACF noy esp, abp
* LLexL:pBwaiAnd pop wbp
" Ltext:ARsAIADD rekn
_tewt cRETADE b AIH RS D anip
Sbeet tABRA1AN2
L EEREHERETANE S T T T T T T T
" texb:RBYATADI align 18h
texr:ARAATAEA
JEEXTIOUSRTALYE Loc 4iMAEW: : CODE NEEF: sub BaqirETq
et LexLI98u1AED push ebp S
. < i = £l
) in

Astriening infarmation From Lhe database ALE jds Dann | Digk; 58 ODODOEAD OOHOERAT saby 40EAAT

ol

Lne & oF 475

o msl enter tegt fir seanc

P cibuies sl lcading, Sone e —
COMMaND_UPDATE [

\,'.,\.'.rHa-J1'¢.-n'-.-wﬂ1|n'\|drg5"f .
1 }

-
£

Example: IDA Pro

Fie Wew Zoom Move Help

g alals® +|[Folelm= N

Trput Ao (e e o 2 =
=t edi, edi
push ;t-bg
o , ®
push esq -
o ea1, [ebprarg 4]
dec ducrd ptr [esirdih]
teat pir [esirOER], B
=z =hort 1oc_BFESESE
| [
1 |
falze true
TRFESE4ED -
oy ea, [ebprara 8]
Cip duord pir [ea=], 0
il shart, oo BFESE 4R I
I_‘ =
true faloe
BFEEE TG :
cnp dword [e=i+1Ch], 0
= short Ioo BROCEYES
true falas
TBFESE4TE: : ;
MivI= e, b esitCh
inul = 3&3 g =
ik ok =
4 £ I3

33,37% [-111,0) 9 modes, 28 edge segnents, 0 crossings

Debuggers

O

» Debuggers exist primarily to assist software
developers with locating and correcting errors in
their programs, but they can also be used as powertul
reversing tools.

» The idea is that the debugger provides a
disassembled view of the currently running function
and allows the user to step through the disassembled
code and see what the program does at every line.

Important Debugger Features

O

e Powerful Disassembler

o View the code clearly, with cross-references that reveal which
branch goes where and where a certain instruction is called
from.

* View of Registers and Memory

o Provide a good visualization of the important CPU registers
and of system memory.

e Process Information

o Most basic ones are a list of the currently loaded executable
modules and the currently running threads

Important Debugger Features

O

e Software and Hardware Breakpoints

o Software breakpoints are instructions added into the
program’s code by the debugger at runtime. These instructions
make the processor pause program execution and transfer
control to the debugger when they are reached during
execution.

o Hardware breakpoints are a special CPU feature that allow the
processor to pause execution when a certain memory address
is accessed, and transfer control to the debugger.

Example: OllyDbg

O

» OllyDbg includes a powerful disassembler

» Its code analyzer can identify loops, switch blocks, and other
key code structures.

» It shows parameter names for all known functions and APIs,
and supports searching for cross-reterences between code and
data—in all possible directions.

* It supports a wide variety of views, including listing imports
and exports in modules

» It also includes a built-in assembling and patching engine

Example:

mndur.m

=

b iw Cebig Fugm Optiors Widow Hek

517
Ell--u--- i ntdil - T.:Jldﬁ'
Address || Hane | EEED B LERUE ~|Reaisters (FPU3 |
7r92078F | _RtlpGetLengthUithoutlastPath || #B9E2ZEAT L. €3 RETH Efx FFFDERNA
TL97MAEF || RE1pDetarnd nelbosPathHaneT ype MUEMZERE G 51 (PUSH EGR ECY WIZFFIO
709203404 ||_RElpUind ZHtRD0E JUNEIERY | . O4:AT F0008688(N0 ERK,DWDRD FTR FS:[30] EDX FCOBERTY ntoll.KiFastss
FEO2ELA || REIpWHNAZHERDOES 1as5h - HEREEY MU DWORD T SSC[LSE]LERS EBY FFFOEDAN
FCY2Es || T 08 1YMICDECKERY SARYITSAATE (| PPYOZEEZ | . SBENZY HOw ERi,DWORD PTR 35:[ESF] ESP @012FFAE
THYZOPSF || REIREaIULDF PrOCesSKEmry SIe BRABZEDD] - BHAE G HOU-EAKDUORD: PIR BS:TEANSCYE |ERP BEVZFFCD
Teorgaiz| _RU1StatMenoryitreandiz GEhEZEDE | « BDNE BC MOV ERK ,DUORD PTR PE:[Efx-C] E51 FFFFFFFF
TEIZMATE || _GUTD_HULL L :2":;;2: - :::: = :;: E::;:: :;: ::’E::]m =leon revincas nroLl o FewIess
FEPE@aT ||| LdrAccess0utOfProcessiesourcd = h 5 ¢ 2 AT
FEO20AcH :Rtlcmatenctivatiunnuﬂtnﬂlﬁ; apunzEre| . 59 POP ECX EIP BRLEZERF DeFendet. BONA
7C000BE || RtlpUalidatefctivationContes amhAiECY L. €3 | RETH C 8 E5 80823 82bit O(FFFFF
FEO20E34 || _REIFinalReleacefutBfProcecchh ADRAZELE | . A1 ARGOARR MOU ERX .DUDRD PTR DS:[ROGRAAR |p 4 oo oseco g92bit Qe rres
FEYREECE || _RE1SetCurrentbirectory UEY dOhGIECT| . HBCE MW ECK ERX A 0 St BAIZ 27hit O(FFFFF
7971129 || _1drpGopuiind codes Fei ngRk Hﬂhi‘lﬂ:n'? . AR@A MO ERKDWIRD PTR DE:TEAK] Z 1 D5 AA?A AThit BLFFFFT
70921198 || Rtllnitializekesourcey dBhGIECE| . EB BC JHF SHORT Defender.QOUEZED? o g F5 ARIE 3700t 7FFRDAA
TEO21240 || _ucsstr ADRATECD > A0 AERRRFAT | CHP E/X,1RF RIAE T 0 RS ARAD HULL
7e92135n || RelbestrogEnvirennenti pehgzEDZ] .. 74 14 |JE SHORT Defender.@Gs@2EEL [
] ECK 8 & - Ihe
TEO21462 [RE1SpLay@Ey d I~_' TR Bl 00 LastEre ERROR SIGCESS
B Hand s Zl |l stack SS:[AOAZFFAG]-A01IFFER EFL @apasa2ss (HD HO,E,DE H
Handle | Type |hers |meeess |~ ST8 empty -UNDEH BEEC #185
mnanaRE | plrectaory RS TITITTERIES - - S m—[—l
BIORUE1 s | birectory T6. | BOUF BOLF I.H‘FHH-'|H1-H:!= Lony il PELEETIR)| =
BORRNZ | EVENT 3. | mmiFenea DOk 06 BED DEO0ORGH BODEnEaD 0onE0aNn woeppopo | S| EBP-14 DEh DL IZE
E002000G | F1le (dir) Z. | b peaze (TP ER] LETEETT CITTT T naaEnaE LT RAE 28 ZER1N8
0ABANAS | EeycdEvent T4, | AA0F BART BOh @é 02 8 EROBARHE A0EEAAHD LGRS [LLLNGTE ERP-L FFFFFFFF
GOR00ES | Fort 9. | #E1F B84 Bbh O 0 4 CLTTET CITTTTTY CEETTTT T CLITTET ERP-# RE1ZFFRR
0300024 | Hedowstation 165, | MBOFEITF i 34 Ok & GOOEE06E B00HEI00 GG TEL PBEO0BED EBP-1 BE12FFBE
Ak 6 1% B ERONARER AnDEALBD LI LG ERP ==> | REIZFFFR
A% B4 86 B FOOAAROA OAABAEAD AORDAGED BACOODAGA EBP+h FLH1b04F
AL E AR BT AR n AnpERLAN naRBIAAR INERAGER ERP-& e
IORRGGEE| GPOAGAGD GODEAERD BODEOARD GOROBED Edp+L FFEFFFFE
AL AE B0 A BRRNARAN ANRBARAD AOARRARR [CLETTEE ERP+10 TFFOEAAR
JBRAE0AG) CODBORGD GOBBAIDD BADOOOBD BECOOBER EfFs1a | BESUE Y
LOTE R AREN AR ANREALAN nARARAAR ORERNARRA EBF-18 BFIZFFGE
ik GdBLa GhBaan6h dhbeaean GooBbahe baEBoGER ERFr1L BEFA10HE
AL AE AN A RARGARDA ANRBARAN AARRAANA IRERNARA EBP~Z0 FFFFFEFFE)
[k punEeBEG LTSI diBEdenY HEEBHEEE [T ERF+Zh Feaaedral =
(]| LTI EHIE AL 311 AERERERY [T aneannen | () EOP-20 FCETANSH) [

r_... Paused

Example: SoftICE

e SEERS0631

Fibs Ect Wew . Pavortss Tooks Hep

Pbak - = - B Boearch TyFddes |05 U7 K o | B-
Address |2 c\websymbeleltoskinl b EESS0R1

R e

=]
ted
]
2

BERE soooO DI
o S
£85% Fa

SO a

U E@416B3E
3 ﬂd’ﬂ“!‘ﬂﬁEthu*i\iﬂLi te
ESP

E-E ERARR 5o

GmTEEdme Sl

ga EEEEE gD |
Soba B

R E GRIER oMM |
=ax=Jull= =R ete=tel == BN}

a4
[4

"I
+
-
-
*

i2

—mgm-u

L E!B:IH- @a1
CECX+B8C], &8

[ECX+BE] .80

-

IRIIETEERR

nnatﬁgzg [EBF+8C1 , 88

.

Hﬂc Ei‘“hLEE BiBBIBS0 BLUNSPca BlBBBEIG ViPBebid Prsrsnildle

BEEEEEEE Eﬁzééxna sgukgrnl - Exﬁr.- wi reﬂﬁsuu.rl:eExl:l usiveliter@@bd

:ﬁﬁ Er-i B
BEB"S"CHB BH'IE:I 591 Iuli n3ik' tlseprsie THl ndowFos+@0RE b
[Enta L command LI bow helpd —______________________________ LEWFLOHE

[alewealuatealakal Aualalal

Se9eEaest
P ———

i
&
-
E

PRRSERRRRRRS

Ul el =t -]
WNETRSESONT W

o
Z

1 chiscts)

Decompilers

O

» Decompilers attempt to produce a high-level
language source-code-like representation from a
program binary.

» It is never possible to restore the original code in its
exact form because the compilation process always
removes some information from the program.

System Monitoring Tools

O

» System-monitoring tools is a general category of software
tools that observe the various channels of I/O that exist
between applications and the operating system.

» These are tools such as file access monitors that display
every file operation (such as file creation, reading or
writing to a file, and so on) made from every application
on the system.

» This is done by hooking certain low-level components in
the operating system and monitoring any relevant calls
made from applications.

Example: Process Explorer

O

» Process Explorer is like a turbo-charged version of
the built-in Windows Task Manager, and was
actually designed to replace it.

» Process Explorer can show processes, DLLs loaded
within their address spaces, handles to objects within
each process, detailed information on open network
connections, CPU and memory usage graphs, and
the list just goes on and on.

Example: Process Explorer

Fd: Cptors fisw PBracss e Hende Help

(= [N R B S o

Fioess | PID CPU| Ceescriplion Uaei Mame Ptk | Handles| Wirdow Tiks)
= TSt ldb Process i HT ATHORITYASYS1EN 0 0
:Inlwrupt,:l nia Hordvamiz Inbengie 1] n =
TTIDFCe afa Defeiiad Frozeduie Calle 1] u] L4
= T laysen a BT AUTHORITYASYSTEY B &1
s T 12 Windawie NI Seteier Uanag AT AUTHORI TSV TEN 1 m
1=) Wi gen exe | findoss NI Logon & ppdcelis MT AUTHORITYYSYSTEN 13 EES
E Fsevices.con 7he Serdzes and Contiolk ooo MT AUTHORITYYEYSTEN L] 4
E::g::':;m g :-".l'.-' exe 04 Properties — |- CE&J
= [swchics e L] Genstic Heal Pocess | Perfemance | Perfaimance Giagn| Theack | TCRAP. | Secuite | 4 1k
B s i Gentic ol Pacest e | Perfamence | Pefanerce Gion | [T22AP | Securiy | ¢+
[dnisrrte.ens 4344 Loged Uk Menager CRU © CsvichData| St Addass |
Clschoten 102 Gewiee Pocess || S aveRemee T
= Es‘-‘m:rsl.m 1164 Genenic Hmi Focess vireredMNalficaionT braad |
o EESTEH 1082 indoes Seculy Let CeagavdliCafnimequest Thiead
W rusaches: 260 Aulonabe Updeles CEASAN.INCH S bopiR sques Triaad 4 e
= e PP 450 Pmraric Mt Pocwrs CEASAWV.ANCwA i eguest Thiead - = __
£] warers Al AT ety T stk 2]
2 - warstedlSladCrest eSydeml busads ==
Ha.. ¢ Tupe Acier Nane wirsr Al larCresteSysiml hiead: —
o4 KBt QOIFOINE emeblbect O SeeduD e CEASAN ANzl quest Thiead L
8 Dirschak OO el CEASAW ANCwA R eqiesti Thiesad |
0 Rl CLOOTEOE G M DS gl wir T = —
010 Dirsetay OLOOCFONF 4 easicne BHOLIMES %] . T Stack for thisad 73 [X
14 Kew MOFA BELAYEYSTEM Conn ol3a0001"
18 Suniold i OOTFOINT 5 essiens EHOLINES Y Theasd |0 _— 0 reestonl evelkiSneplanied-dide
04C Dirschar OOIFOIOF S essionshl o 1 1 recsinl eselfiSuzpendl breads il
B Lirschay GUOLFOIF S emensh [\ Doslieves Hart Times et '*_N;:':-ﬂf:im:*r:ljpfﬂf:u
B2 Dizdoy DMOGFONE Yndons Sl walillzaFie ARASc i Hand nd
D@0 Diaion QUOOIFOIOF Easebaned Dbject: gl Tine: itssie:]2 Hn32 sticcCueabe SuenT hieads BED
DM Dieochon DOO0FOI0F Do Mo od DbjectatPlosrizisd 3 windzh sl seCallneRaant k)
MW Gmcian M LRSS S arhinrd bicad User Tine Q0000000 § ol oK atCaEniy 0
aal TR e R 7 ool diRiFassyEomC IR otz
(ITI e CMINOOIE LS S acliord_ s Coreew Bwichies: WE2BBAM | | g Lo et e
Bld Secian OOIO0I0H “HLEMSectienCT e e
48 Secion DROODC0I0 LS sSectiznSoikap
04T Sezion OO0 LSS ectiznGon Thiz
HEL K OOCFOIE HELM Capy g
WS Ewent FOI0G NS sehlansd Dbpctzvitack T hiesdb et .
00 Thiesd OD0TFOIFF cores exe(341 704
074 Diackow OOTI0F \ZaechlamodDbjocts
0T Theesd OROIFOIFF carss exelFA4} 708 =

PI Lsage: 100% | Commi Chargas T1,70% | Propasses: BT Paused

Other RE Tools: GUISURFER

Language dependent

O

Language independent

Code slicing
[AstAnalyser] s e
Entry point
T Widgets names
Forms names

TParsm

T.‘:‘-nurce code files

Wx/Haskell code
GWT source code
Java/Swing code
GUI
Business
Diata

Ref.: GUIsurfer: A Reverse Engineering Framework for User Interface Software
by Campos, Saraiva, and Silva

Control flow and GUT related tree fragments
Program dependency graph

GUT statements

Conditional statements

Events statements

Maximum events sequence length

v |
G]
v v

Forms behavior

Flow between windows

GUT models: Haskell specifications, event flow graph,

state machine

GUI inspection and certification

OuickCheck (Haskell properties)
Graph-Tool (Metrics)
Graph manipulation

O

FIRMWARE RE
FOR
PIC MICROCONTROLLER

Microchip PICKit Debugger / Programmer

O

* The PICKit 3 debugger was developed for programming
?nd debugging embedded processors with debug
unctions.

» The PICKkit 3 features include:

Full-speed USB support using Windows standard drivers

Real-time execution

Processors running at maximum speeds

Built-in over-voltage/short circuit monitor

Low voltage to 5V (1.8-5V range)

Diagnostic LEDs (power, active, status)

Read/write program and data memory of microcontroller

Erasing of all memory types (EEPROM, ID, configuration and program)
with verification

Peripheral freeze at breakpoint

O OO O O O O O

@)

PICKit Debugger

... Pin 1 Indicator

\ Pin Description*®
MICROCHIP b. 1 1 = MCLR/Vepr
4"@ Legend: g 2 =Voo Target
1 - Lanyard Loop ; 3 =Vss (ground)
2 — USB Port Connection a 4 =PGD (ICSPDAT)

3 — Pin 1 Marker / 5 =PGC (ICSPCLEK)

4 — Programming Connector / 6 =PGM (LVFP)
& — Indicator LEDs

6 — Push Button

Indicator
Lights

PICKit 3

y

a0
W

USB Cable to PC

To Target Board

PIC — Debugger Connection
+5V (%)

L 4

R1 VDD
C4 ==

v ol 100 nF 10k 15
GND | O+H2—-@

MCLR j MCLR

PeD | O s PGD (RB7)

PGC | O PGC (RB6)
PGM | O PGM (RB3/RB5*)
R2 [® 0SC1

1k Q1 —/—m
Vss
C1 c2
22 pF 22 pF
@ @ @
GND

MPLAB

Fil= Edk View Project Debugger Frogremmer Took Configure Window Help
DEFH | 2R MAF o@D &8 ecnuenPefR
l — —
) ItEFDATA.mow L.l I Disassembly Listing - _-'_"i :ﬁﬂl
= IntEEDATA.mCp] | oooiEz EZEE MOWF Dxfué, F, ACCESE 53 ol =l
r— = (T BCF Oxifad, 027, [— ; Y
Crh L ain. - "Eu'- S4AE BCF Oxisé, D2, — Spechal Funclion Registers =
unsigned char Timeout :I SEFZ BCF Oxifl, 0«7, SFR Nam © [Hex] Bimacy
e mes wmwouss (Ton o N—
EEAT MOWWE Oxfa?, ACC
b vl BEAR MOVLE Oxas IMTCOOH AD 10100000
i SEAT s 0=ray, acc | THTCOHE 34 10000100
Timecat = [B2AE BSF Oxfas, Oxl, .| INTCON3 <o ligoooon
INTEAN = 0x20 Fidisable global and enal BEFZ BEF Oxffz, D=7 LPRL rr iiliiliz
INTEANE = x84 JITMED high pririty 0003 SLEEF IPRZ 1F 00011111
RCONbits BEN = | Flenable priaray levels B4RE BSF Oxfad, Oxz, | LATA oo ooooooon |
TMEOH = 0 | fctear timer . Lz BETURN 0 sk — s
THMROL — o — e
Tncm_.\llun.-nl h - | L.:-'
hrca] Gstwmea) ronroe
TRISE= _ Stopwalch._Tolsl Simisiad Address | Symbol Tans | value
EADR= Insiruction Cpciss 21511834 21511834 TRIEH e ox087s,
) oFCE ADCOND ox00 !
for fin @ Time [Secs] 4.30237% 4302379 OFa1 PORTE ox00 |
OFFD TS DxOo0D1zZ6 '
. L - = .
while Processn Fraquercy [MHz] 201000000 | B
'HI_I_I] Clean Simdation Time O Aeset . ‘Watch 1 U«'mﬁﬂl wﬂﬂlgl ".-"ateh-l|
{ JHardware Stack || La.'J
Tamegat = U LA TR T SF T I ——r —
EEWRITE(PORTC, EADR 51, ool To8 | 3tack Level | Return Address | Location | |
Hopd - —_—— o EmpTy
| » J— 1 oo0o0%4 _scarcup +
PR e ———— L3 2 00012 & main + 0x40
32 O00EB &B&D CLEF Tim=out, BINEED ———— = oooi19sg CTile
33 0D0EA DEZD HOVLY OxZ0 Ll 4 nluluzalsln]
34 O0EC &XF2 MOVHF INTCOM, ACCESS —— 5 000000
35 O00EE O0OES4 HOVLY OxSd W & oooooo
HOWNF INTCOMEZ, ACCESS e o Docooo e
= P
S — — b

Machine Code vs. Assembly Language

O

Memory address | Machine code | Assembly Meaning

000 3000 MOVLW 00 |Load working register (W) with number 0
001 0066 TRIS 06 | Store W in Port B direction code register
002 0186 CLRF 06 |Clear Port B data register

003 OA86 INCF 06 |Increment Port B data register

004 2803 GOTO 03 |Jump back to address 0003 above

Conclusion

O

» S/W are used in many products and therefore S/W
RE has gained much attention in the industry and
research.

* S/W RE requires

o In-depth knowledge in software construction (such as
Assembly Language and O/S).

o Great skills in puzzle solving and code breaking.
o Knowledge and skills in identifying and using RE tools.

