
Submitted To: IEEE: 3rd Wkshp on Formal Descriptions and Software Reliability 2000

Software Requirements Specification and Analysis Using Zed and Statecharts

Frederick T. Sheldon and Hye Yeon Kim
Washington State University

Pullman, Washington 99164-2752, USA
+1 509 335 6138 | +1 509 335 5856
sheldon@acm.org | hyekim@ieee.org

Abstract

This paper presents a prototypical study, of an embedded
system requirement specification, used to establish the
basis for a complete case study. We are interested in
comparing different specification methods that
accommodate the notion of state.

A partial modeling of a NASA provided Guidance and
Control Software (GCS) development specification was
employed. The GCS describes, in natural language, how
software is used to control a planetary landing vehicle
during the terminal phases of descent. Our ultimate goal is
to develop a complete software requirement specification
based on the IEEE Standard 830-1998.

The first step in the study was to derive a Zed
description for a small portion of the system (Altitude
Radar Sensor Processing [ARSP]). The ARSP module
reads the altimeter counter provided by the radar and
converts the data into a measure of distance to the planet
surface.

In the second step, Statecharts were developed to model
and graphically visualize the Zed specified ARSP. Using
Statemate we analyzed the specification for completeness
and consistency. This was accomplished through the
generation of activity-charts and simulations.

We present the results of this work and discuss the issues
associated with comparing the two methods in terms of
their ability to ascertain consistency and completeness of
the final products. A more comprehensive assessment of
tools publicly available for the specification, modeling and
analysis of embedded systems is envisioned.

Keywords: Natural language software specifications, Zed,
Statecharts, requirements analysis, reliability

1 PROBLEM DEFINITION
Our greatest need today, in terms of future progress rather
than short-term coping with software engineering projects,
is not for new languages or tools to implement our
inventions, but for more in-depth understanding of whether
our inventions are effective and why or why not [1].
Space-born expedition demands very highly engineered
systems. A failure in the control software of these systems
can be economically and politically disastrous and/or safety
critical. To avoid problems in the latter development phases
and reduce life-cycle costs it is crucial to ensure that the
specification be reliable. By reliable, we mean, is the
specification correct, precise, unambiguous, complete, and

consistent? Can the specification be trusted to the extent
that design and implementation can commence while
minimizing the risk of costly errors?

It is difficult to create a reliable specification because
such control software tends to be highly complex. Natural
language (NL) specifications, though common, have the
problem that they are often subject to multiple
interpretations, which only complicate the correctness-
checking task. Even when NL specifications are developed
systematically, it is difficult to ensure their integrity
without some form of correctness checking. On the other
side, automated correctness checking obligates the use of a
mathematically based requirements specification language
(RSL). Such languages are notoriously difficult to
understand, and minimally require a proficient level of
knowledge in discrete mathematics. This posses a serious
concern to industry because there are many different
classes of requirements. Different stakeholders typically
represent different ways of looking at the problem (or
problem viewpoints). Thus, in regards to requirements
specification, a multi-perspective analysis is important, as
there is no single correct way to analyze system
requirements [2]. The usefulness of the requirements
specification is diminished by not being understandable to
the diverse set of stakeholders. Nevertheless, to address the
need to break free of the uncertainty of NL, we investigated
the merits of two different mathematically based RSLs.

2 MOTIVATION
Although some members of the software engineering
community are quick to announce the latest breakthrough
in software engineering technology based on individual
success stories, many researchers concur that computer
science, especially the software side, needs an
epistemological foundation to separate the general from the
accidental results [3, 4]. According to Wiener [5], “we need
to codify standard practices for software engineering—just
as soon as we discover what they should be. Regulations
uninformed by evidence, however, can make matters
worse.” Clearly, scientific experimentation is needed to
supply the empirical evidence for evaluating software
engineering methods.

To confront the growing complexity and quantity of
software used in commercial aircraft, government
regulatory agencies such as the FAA and the DoD have
required the use of certain software development processes
and techniques. However, no software engineering
method(s) (or combination) has been shown to consistently
produce reliable, safe software. In fact, little quantitative

 2

evidence exists to show a direct correlation of software
development method to product quality. Software
verification is the subject of considerable controversy. No
general agreement has been reached on the best way to
proceed or on the effectiveness of various methods [6, 7].
Moreover, the knowledge base for software engineering has
not reached maturity [8].

Computer software allows us to build systems that
would otherwise be impossible and provides the potential
for great economic gain [1]. The logical constructs of
software provide the capability to express extremely
complex systems. In fact, computer programs are ranked
among the most complex products ever devised by
humankind [6]. The complexity intensifies the difficulty of
enumerating, much less understanding, all possible states of
the program, and thus results in unreliability [9].
Identifying unusual or rare states are particularly
problematic. Unfortunately, its those rare software error(s)
in a critical system that may cost a human life(s) [10].

Statemate was chosen to model the Zed version of the
specification because the key goal of this modeling is
testability and pre-development evaluation of the
specification itself. We focused on the following issues
throughout the process:

• Can ambiguous expressions be found during the process
of this study?

• Can the reliability of the end product (i.e., the code) be
predicted given the operational environment?

• Is specification level testing (i.e., without
implementation) feasible/possible?

3 TOOL BASED ANALYSIS
There are some tools that can be used to test and assess the
quality of the software specifications. In this section, three
of those tools are briefly reviewed. Consider BEACON, a
tool designed for specifying embedded applications. It has
some graphical features that are used to create object-based
documentation. The design specifications provide a way to
graphically visualize the system, are executable and can be
used to generate code (i.e., C, Ada, and Fortran). In
addition, BEACON supports test case generation and is
especially well suited for reverse engineering projects by
reason of its legacy code interfacing feature [11].

Workbench is a general-purpose modeling and
simulation tool for use in designing sophisticated systems
of various types. Workbench evaluates the correctness and
performance of a system design. Performance evaluation is
done by simulating the model derived from the system
specification. Correctness is evaluated by executing, during
the simulation, assertions (consistency constraints) that a
user attaches to each design specification component [12].
Workbench provides a unique graphical notation for
representing the design specification. Workbench is
particularly well suited for specifying and evaluating
complex systems involving a high degree of concurrency.
Using SES Workbench, one can sample data throughout the

simulation. Its differentiating features include a statistical
navigator and automatic documentation [13].

Statemate [14] also provides a popular and intuitive
graphical specification language (in addition to automated
documentation and testing capabilities). Users create
activity-charts and state charts to represent system
operation using a graphical editor. A simulation tool allows
one to visualize the system’s functionality without creating
a physical realization (i.e., code). It also provides a code
generator (e.g., C and Ada). Using the above two features
the specification can be more thoroughly subjected to
evaluation and analysis for such properties as consistency
and completeness [15]. By executing the (generated) code
one can “debug” the design specifications however the
simulation feature provides a better means of fine tuning
the design.

4 METHODS
A two-step process was performed using Zed and
Statecharts. Our goal was to develop a more “reliable”
(i.e., complete and consistent) software requirements
specification (SRS). We used an objectified approach to
evaluating the results of our two-step process. First, the NL
based GCS specification was transformed into a Zed
specification. This step necessitated we interpret and make
the specification precise (to clarify any ambiguities). Zed
proved useful in this regard.

The Zed notation is a mathematical language with a
powerful structuring mechanism. In combination with
natural language, it can be used to produce a formal
specification. We may reason about this specification using
the proof techniques of mathematical logic1. We may also
refine a specification, yielding another description that is
closer to executable code [16]2.

In the second step, Statecharts were used to describe the
system behaviors combined with activity-charts, which
were used to describe the system activities (i.e., its
functional building blocks, capabilities, and objects) and
the data that flows between them. By using these two
languages and Statemate, we developed a conceptual
system model. These languages are highly diagrammatic in
nature, constituting full-fledged visual formalisms,
complete with rigorous semantics [17]3.

1 Additionally, for system designers and managers who do not
have a good understanding of Zed, it is necessary to provide
English descriptions of Zed structures to convey an intuitive
understanding of the specification.
2Even though there are currently many free or commercial tools
that are available for checking Zed specifications, our experience
from a pragmatic view was problematic. To summarize, we were
blocked from using automated methods for checking the
correctness of the Zed specification.
3 The conceptual model can be linked with the system’s physical
(or structural) model, which is described using module-charts (a
third language).

 3

5 METHODS APPLICATION
Our experiment focused on applying the methods described
above to the Altimeter Radar Sensor Processing (ARSP)
module of the Guidance and Control Software (GCS)
Development Specification [18]. The GCS, an embedded
real-time software system, is at the heart of the Viking
Mars Lander. This system was designed to provide
software control of the embedded sensors and actuators
during the terminal decent phase of the Viking Mars
mission. The ARSP module reads data provided by the
altimeter radar sensor to determine the lander’s altitude
from the Mars surface.

The NL specification for the ARSP module, a part of the
GCS, is the starting point in this study. Figure 1 shows the
location of the ARSP module in the entire GCS system.
The next step transformed the B5 into Zed as a concrete
specification form. Zed is thus presented as an intermediate
step. Subsequently, the ARSP was represented (and
evaluated) as Statecharts and activity-charts. The outcome
from this evaluation is therefore described below as the
final result of our analysis.

SENSOR_OUTPUT

GUIDANCE_STATE

CRCP AECLP RECLP

CONTROL AND
TELEMETRY

OUTPUTS
CP

SENSOR DATA

ASP GSP TSP ARSP TDLRSP ASP

GPRUN_PARAMETERS

PACKET

Figure 1 Process 2. RUN_GCS

5.1 B5 – THE NL BASED SPECIFICATION
The GCS Development Specification indicates that it was
developed based on the RTCA/DO178A. The DO178
provides guidelines for Software Considerations In
Airborne System and Equipment Certification. It does not
provide any standards (recommended practice/guidelines)
concerning the actual requirements specification of the
software unlike the IEEE Std 830-1998. The IEEE
standard outlines the specific material and format needed.
The GCS however has a concrete and systematic format
that it uses to present its content. The format is resembles
the old B5 style format used in various Military projects
during the Cold War. Hence, we choose to refer to the

GCS Development Specification as the “B5[19].” However
the B5 clearly states that it is one part of the life cycle data
required to fulfill the RTCS/DO178A. In Version 2.2 of
the B5, it is clear that this data is considered to be the
“Software Requirements” document. While in the Version
2.3 of the B5 (which refers to Version B of RTCS/DO178),
the wording “Software Requirements” have been removed.
In any case, we used Version 2.2 (with Mods 1-8).

The ARSP module is provided below exactly as it
appears within the complete GCS specification [18, 20].

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS
K_ALT

PROCESS:
It is only necessary that this functional module perform
its normal calculations every other frame, namely on the
odd-numbered frames; however, it is required that this
functional module execute every frame. The reason for
this is that during its normal processing it must rotate
history variables. This means that during the frames
when it does not need to calculate new outputs, namely
the even-numbered frames, it must still rotate its history
variables and set its new or current values equal to the
previous values, thus creating double entries for each
rotated variable. By doubling the entries, consistency of
time histories will be maintained at the expense of
keeping two copies of each value in these variables, and
forcing the functional module to execute every frame.

The processing of the altimeter counter data
(AR_COUNTER) into the vehicle's altitude above the
planet's terrain depends on whether or not an echo is
received by the altimeter radar for the current time step.
The distance covered by the radio pulses emitted from the
altimeter radar is directly proportional to the time
between transmission and reception of its echo. A digital
counter (AR_COUNTER) is started as the radar pulse is
transmitted. The counter increments AR_FREQUENCY
times per second. If an echo is received, the lower order
fifteen bits of AR_COUNTER contain the pulse count, and
the sign bit will contain the value zero. If an echo is not
received, AR_COUNTER will contain sixteen one bits.

• ROTATE VARIABLES
Rotate AR_ALTITUDE, AR_STATUS, and K_ALT.

• PERFORM ALTERNATE PROCESSING:
If FRAME_COUNTER is an even number, insure that
the current values of AR_ALTITUDE, AR_STATUS,
and K_ALT are equal to the previous values of
AR_ALTITUDE, AR_STATUS, and K_ALT
respectively.

 4

• DETERMINE ALTITUDE:
a. If an echo is received,

Convert the AR_COUNTER value to a distance to
be returned in the variable AR_ALTITUDE
according to the following equation:

Equation 1: AR_ALTITUDE Element calculation

AR_ALTITUDE =
AR_COUNTER • 3 × 108 m

sec
AR_FREQUENCY • 2

b. If an echo is not received, compute AR_ALTITUDE
as follows:

1) If all four previous values of AR_STATUS are
healthy:

In order to smooth the estimate of altitude; fit a
third-order polynomial to the previous four values
of AR_ALTITUDE. Use this polynomial to
extrapolate a value for AR_ALTITUDE for the
current time step.

2) If any of the previous four values of AR_STATUS
is failed:

Set the current value of AR_ALTITUDE equal to
the previous value of AR_ALTITUDE.

• UPDATE STATE:
Set the current values for AR_STATUS and K_ALT
according to the following table.

Table 1: Determination of Altitude Status.
CURRENT STATE ACTIONS TO BE TAKEN

ECHO
RETURNED?

All 4 previous
AR_STATUS

values
healthy?

AR_STATUS K_ALT

yes don’t care healthy 1
no yes failed 1
no no failed 0

Table 1 gives the state-action constraints. In Table 1, the

K_ALT value is used in the Guidance Processing (GP)
module to determine the correction term value of
GP_ALTITUDE variable. If K_ALT = 0, the correction
term is set to zero. Otherwise, a non-zero value is used in
the correction term.

5.2 Zed Specification
The Zed version of the ARSP module is shown and
described at length in this section [16, 21]4. There are
some issues concerning ambiguity that needed to be
clarified. The first issue concerns the exact meaning (i.e.,
purpose) of the rotate variables because the rotational

4 The "?" notation in Zed represents a variable as an input. One
problem was that the B5 defined variables as both input and
output. Zed does not provide a way to describe this. So, those
variables were treated as variables with neither "?", nor "!"
notation.

direction of the variables is unclear. The second issue
concerns the type assigned to the AR_COUNTER variable.
Issue number three is about the fact that an undefined 3rd
order polynomial is used to determine the AR_ALTITUDE
value. Finally, there is some question about where the
AR_COUNTER should be modified.

Three variables are identified that are to be rotated. In
this context, it could mean exchanging the values among
one another (e.g., Temp:=AR_ALTITUDE,
AR_ALTITUDE:= AR_STATUS, etc.) or as was assumed
in the Zed version (Fig. 5), rotation occurs within the
variable since each variable is a four element array.

As explained above, the AR_STATUS, AR_ALTITUDE,
and K_ALT array element values are rotated. The rotation
direction could be left shift or right shift. We decided to
shift the array element to the right. In Figure 2, “New”
means the currently processed value. E1 is the newest and
E4 is the oldest value of the array.

E 1 E 2 E 3 E 4

N e wE 1 E 2 E 3

A f t e r th e r o t a ti o n
V a ri a b l e a r r a y

Figure 2 Variable rotation direction

The B5 ARSP module specification describes the
AR_COUNTER as a 16-bit binary number. In the data
dictionary it is described differently (i.e., as a 2-byte
integer). In the Zed version we assumed the data dictionary
was correct. In addition, a third-order polynomial is used
for estimating the AR_ALTITUDE value however no
definition was given anywhere. Accordingly, an undefined
function was specified in Zed to represent the fact that such
a function is required for estimating the altitude value that
would need to be output (i.e., AR_ALTITUDE).

In addition, there are two confusing interpretations about
how the AR_COUNTER value is processed. In the first
interpretation, if a timely echo (i.e., off the surface of Mars)
is received from the altimeter radar then the value of the
AR_COUNTER is considered to be the number of pulses
from whence the echo was first transmitted. Otherwise, a
constant value is assumed (i.e., -1). This is not just an input
variable but depends on the state of the radar altimeter and
hence can be thought of as an internal ASRP variable.
Therefore the actual value of AR_COUNTER is determined
internally as part of the ASRP processing. However, the B5
gives the impression that this counter should not be updated
inside the ARSP since it is declared as an input variable!
Additionally, the B5 claims that AR_COUNTER
accumulates the radar pulse cycles from the time of the
radar pulse transmission. Which means that the
AR_COUNTER value must be a positive number after the
transmission whether or not the echo is received in time.

Given this description two possible cases were
considered. The first case considers the AR_COUNTER to

 5

be updated inside the ARSP module. The other case
assumes that the AR_COUNTER value is ready to be used
(and will not be updated by the ARSP processing). The
first case is presented as a Zed specification in section
5.2.1. The other case is presented in section 5.2.2.

5.2.1 Case 1: AR_COUNTER updated inside the ARSP
In case one, two conditions are considered. Because we
assume the AR_COUNTER value is updated within the
ARSP module, it should not represent the arrival of the
radar echo pulse. Accordingly, a Boolean flag expressing
this condition is introduced (timely arrival or not). To
determine the AR_COUNTER value, the time between the
initial radar pulse transmission and reception of the return
echo is needed. The B5 does not distinguish the difference
between the Boolean condition (of a timely echo arrival)
and the time value represented by the counter. We believe
these should be considered separately for the purpose of
clarity. The time value and the echo flag are mentioned
inside of the B5 but they are not treated as separate entities.
Consequently, in this study we chose to define separate
variables with the appropriate types to avoid coupling a
double meaning to one variable.

Echo : {Yes, No}

FRAME_COUNTER? : �

AR_ FREQUENCY? : �

AR_COUNTER? : �

K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW: �

AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW: {healthy, failed}

K_ALT: K_ALT_1 � K_ALT_2 � K_ALT_3 � K_ALT_4

AR_STATUS: AR_STATUS_1 � AR_STATUS_2 � AR_STATUS_3 �

AR_STATUS_4

AR_ALTITUDE: AR_ALTITUDE_1 � AR_ALTITUDE_2 � AR_ALTITUDE_3 �

AR_ALTITUDE_4

AR_COUNTER? � -1..32767

AR_FREQUENCY? � 1..2450000000

FRAME_COUNTER? � 1..2147783647

AR_ALTITUDE_1 � 1..2000 � AR_ALTITUDE_2 � 1..2000 �

AR_ALTITUDE_3 � 1..2000 � AR_ALTITUDE_4 � 1..2000 �

AR_ALTITUDE_NEW � 1..2000

ARSP_RESOURCE

�

�

�

�

�

�

�

�

	

�

�

�

Figure 3 ARSP_RESOURCE Schema

The ARSP_RESOURCE schema (Figure 3) defines the
ARSP module input and output variables5. Echo (Sig. �)
is a Boolean variable that represents whether the return
pulse (radar echo pulse) has been received or not. The
FRAME_COUNTER? (Sig. �) is an input variable giving
the present frame number and is typed as a natural number.

AR_FREQUENCY? (Sig. �) represents the rate at which
the AR_COUNTER? has been incremented and is typed as a
real number. The AR_COUNTER? (Sig. �) is an input
variable that is used to determine the AR_ALTITUDE
value and its type is an integer.

5 All data types given in the B5 are defined to satisfy the
constraints described in the data dictionary [18].

The K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, and
K_ALT_NEW (Sig. �, also see Table 1) variables are
defined as a set of binary elements. The AR_ALTITUDE_1,
AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
and AR_ALTITUDE_NEW (Sig. �) are defined as a set of
real numbers that altitude as determined by altimeter radar.
AR_STATUS_1, AR_STATUS_2, AR_STATUS_3,
AR_STATUS_4, and AR_STATUS_NEW (Sig. �) are
defined as binary values that represent health status for the
various elements of the altimeter radar. The AR_STATUS,
AR_ALTITUDE, and K_ALT (Sigs. �-) arrays hold the
previous 4 values of their elements respectively.

The AR_STATUS, AR_ALTITUDE, and K_ALT
variables were defined as a 4-element array in the B5
specification. Zed does not have a specific array construct
so these variables are designed as 4-element Cartesian
products. The array can be also represented as a 4-element
sequence. The Cartesian product method was chosen
because this composition assumes that any element can be
accessed directly without having to search though the
sequence. The predicate
, �, and � represent the
variables ranges. The predicate
 constrains the values for
the sets defined in the Signature �.

�ARSP_RESOURCE
SEC : second

Echo = No � AR_COUNTER?’= -1

Echo = Yes � AR_COUNTER?’ = AR_COUNTER? + AR_FREQUENCY * SEC

ARSP_INIT

�

�
�

�
Figure 4 ARSP_INIT Schema

The ARSP_INIT schema (Figure 4) defines the initial
state of the ARSP module. It initializes the
AR_COUNTER? value to –1 meaning the radar sent out a
pulse but has not yet received the echo. Otherwise, the
AR_COUNTER? value will be updated as defined by
predicate �. The SEC (Sig. �) variable represents
seconds from the point the initial radar pulse was
transmitted to the present time. It is defined in
ARSP_INIT instead of ARSP_RESOURCE because it is
not defined as an input by the B5.

The ARSP schema (Figure 5) is the main functional
schema. The ARSP_RESOURCE schema is imported for
changing in the Signature �. The
Altitude_Polynomial function (Sig. �) obtains the
AR_ALTITUDE as input and estimates the current altitude
by fitting a third-order polynomial to the previous value of
the AR_ALTITUDE. The AR_STATUS_Update (Sig. �)
is a function that obtains its current value
(AR_STATUS_NEW) and the AR_STATUS as input and
updates the AR_STATUS array. The K_ALT_Update
(Sig. �) is a function that modifies the K_ALT array by
assigning the K_ALT_NEW the new value (a correction
term needed by the guidance process).

The AR_ALTITUDE_Update (Sig. �) is a function
that updates the AR_ALTITUDE variable by shifting the
1st, 2nd, and 3rd elements value into 2nd, 3rd, and 4th elements

 6

respectively. The current value of AR_ALTITUDE_NEW is
pushed into the first element place. The
“FRAME_COUNTER? mod 2” is used to represent
whether the FRAME_COUNTER? values for the rest of the
predicate part are odd or even.

� ARSP_RESOURCE

Altitude_Polynomial: AR_ALTITUDE � �

AR_STATUS_Update: AR_STATUS_NEW � AR_STATUS � AR_STATUS

K_ALT_Update: K_ALT_NEW � K_ALT � K_ALT

AR_ALTITUDE_Update: AR_ALTITUDE_NEW � AR_ALTITUDE �

AR_ALTITUDE

FRAME_COUNTER? mod 2 = 0 � AR_ALTITUDE’ = AR_ALTITUDE_Update

(AR_ALTITUDE_1, AR_ALTITUDE) � AR_STATUS’ =

AR_STATUS_Update (AR_STATUS_1, AR_STATUS)� K_ALT’ =
K_ALT_Update (K_ALT_1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � Echo = Yes � AR_ALTITUDE’=

AR_ALTITUDE_Update(AR_COUNTER? � 300000000 div
AR_FREQUENCY div 2, AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � Echo = No � AR_STATUS = (healthy,

healthy, healthy, healthy)�

AR_ALTITUDE’ = AR_ALTITUDE_Update(Altitude_Polynomial
AR_ALTITUDE, AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � Echo = No � AR_STATUS �(healthy,

healthy, healthy, healthy)�

AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_1,
AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � Echo = Yes � AR_STATUS’ =

AR_STATUS_Update(healthy, AR_STATUS) �

K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � Echo = No � AR_STATUS = (healthy,

healthy, healthy, healthy)� AR_STATUS’ =

AR_STATUS_Update(failed, AR_STATUS) �

K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � Echo = No � AR_STATUS � (healthy,

healthy, healthy, healthy)� AR_STATUS’ =

AR_STATUS_Update(failed, AR_STATUS) �

K_ALT’ = K_ALT_Update(0, K_ALT)

ARSP

�

�

�

�

�

�

�

�

	

�

�

Figure 5 ARSP Schema

Predicate
 requires that the current AR_ALTITUDE,
AR_STATUS, and K_ALT values remain the same as their
previous value when the FRAME_COUNTER? is even.

Predicate � defines the AR_ALTITUDE update. The
update takes the current value calculated by Equation 1
when FRAME_COUNTER? is odd and the radar pulse echo
has arrived on time.

Predicate � requires that newest AR_ALTITUDE value be
estimated by the Altitude_Polynomial function
when the FRAME_COUNTER? is odd, the radar echo pulse
did not arrive on time, and all AR_STATUS elements are
healthy.

Predicate
 requires that the newest AR_ALTITUDE value
be the same as the previous value when
FRAME_COUNTER? is odd, the radar pulse echo did not
arrive, and any of the AR_STATUS elements are not
healthy.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd and the
radar echo pulse is received on time.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd, the echo
of the radar echo pulse has not yet been received, and all of
the AR_STATUS elements are healthy.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd, the radar
echo pulse has not yet been received, and any of the
AR_STATUS elements are not healthy.

5.2.2 Case 2: AR_COUNTER, the input variable
In case two, only two schemas are defined and the
ARSP_RESOURCE schema of this case is different than in
the case one (i.e., the Echo variable is not included). Also,
the case one ARSP_INIT schema is not needed. The only
assumption in this case is that the AR_COUNTER value
must be updated from outside of the ARSP module and is
ready for immediate use. When the AR_COUNTER value is
–1 this indicates that the echo of the radar pulse has not yet
been received. If the AR_COUNTER value is a positive
integer, it means that the echo of the radar pulse arrived at
the time indicated by the value of the counter.

The ARSP_RESOURCE schema (Figure 6) defines the
input and output variables for the ARSP module. All of the
Zed data types were defined based on their data dictionary
entry in the B5 [18]. The FRAME_COUNTER? (Sig. �) and
the AR_FREQUENCY? (Sig. �) are defined the same as in
case one (no need to repeat here). However, the
AR_COUNTER? (Sig. �) is an input variable that contains
the counter value of elapsed time from the time of the
initial radar pulse transmission toward Mars.

FRAME_COUNTER? : �

AR_ FREQUENCY? : �

AR_COUNTER? : �

K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW: �

AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW: {healthy, failed}

K_ALT: K_ALT_1 � K_ALT_2 � K_ALT_3 � K_ALT_4

AR_STATUS: AR_STATUS_1 � AR_STATUS_2 � AR_STATUS_3 �

AR_STATUS_4

AR_ALTITUDE: AR_ALTITUDE_1 � AR_ALTITUDE_2 � AR_ALTITUDE_3 �

AR_ALTITUDE_4

AR_COUNTER? � -1..32767

AR_FREQUENCY? � 1..2450000000

FRAME_COUNTER? � 1..2147483647

AR_ALTITUDE_1 � 1..2000 � AR_ALTITUDE_2 � 1..2000 �

AR_ALTITUDE_3 � 1..2000 � AR_ALTITUDE_4 � 1..2000 �

AR ALTITUDE NEW � 1..2000

ARSP_RESOURCE

�

�

�

�

�

�

�

�

	

�

�

Figure 6 ARSP_RESOURCE schema

The K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, and
K_ALT_NEW (Sig. �), and AR_ALTITUDE_1,
AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
and AR_ALTITUDE_NEW (Sig. �), and the
AR_STATUS_1, AR_STATUS_2, AR_STATUS_3,
AR_STATUS_4, and AR_STATUS_NEW (Sig. �) as well
as AR_STATUS, AR_ALTITUDE, and K_ALT (Sigs. �-
�) are all defined the same as in case one. Predicate
, �,
and � represent value ranges of the variables and predicate

 defines the possible element values of the predefined
sets in Signature � as was true for case one.

The ARSP schema (Figure 7) is the main functional
schema of the ARSP module. The ARSP_RESOURCE

 7

schema is imported (and is modified) in the Signature �.
The Altitude_Polynomial function (Sig. �) obtains
the AR_ALTITUDE as input and estimates the current
altitude by fitting a third-order polynomial to the previous
value of the AR_ALTITUDE, which is the same as in case
one. Similarly, the following signatures are unchanged:
AR_STATUS_Update (Sig. �), K_ALT_Update (Sig.
�), and AR_ALTITUDE_Update (Sig. �). Also, the
FRAME_COUNTER? is used in the same fashion specified
in case one. The difference lies in how the predicates are
specified below.

� ARSP_RESOURCE

Altitude_Polynomial: AR_ALTITUDE � �

AR_STATUS_Update: AR_STATUS_NEW � AR_STATUS � AR_STATUS

K_ALT_Update: K_ALT_NEW � K_ALT � K_ALT

AR_ALTITUDE_Update: AR_ALTITUDE_NEW � AR_ALTITUDE �

AR_ALTITUDE

FRAME_COUNTER? mod 2 = 0 � AR_ALTITUDE’ = AR_ALTITUDE_Update

(AR_ALTITUDE_1, AR_ALTITUDE) � AR_STATUS’ =

AR_STATUS_Update (AR_STATUS_1, AR_STATUS)� K_ALT’ =
K_ALT_Update (K_ALT_1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER � 0 � AR_ALTITUDE’=

AR_ALTITUDE_Update(AR_COUNTER? � 300000000 div
AR_FREQUENCY div 2, AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER = -1 � AR_STATUS =

(healthy, healthy, healthy, healthy)�

AR_ALTITUDE’ = AR_ALTITUDE_Update(Altitude_Polynomial
AR_ALTITUDE, AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER = -1 � AR_STATUS

	(healthy, healthy, healthy, healthy)�

AR_ALTITUDE’ = AR_ALTITUDE_Update (AR_ALTITUDE_1,
AR_ALTITUDE)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER � 0 � AR_STATUS’ =

AR_STATUS_Update(healthy, AR_STATUS) �

K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER = -1 � AR_STATUS =

(healthy, healthy, healthy, healthy)� AR_STATUS’ =

AR_STATUS_Update(failed, AR_STATUS) �

K_ALT’ = K_ALT_Update(1, K_ALT)

FRAME_COUNTER? mod 2 = 1 � AR_COUNTER = -1 � AR_STATUS 	

(healthy, healthy, healthy, healthy)� AR_STATUS’ =

AR_STATUS_Update(failed, AR_STATUS) �

K_ALT’ = K_ALT_Update(0, K_ALT)

ARSP

�

�

�

�

�

�

�

�

	

�

�

Figure 7 ARSP schema

Predicate
 requires that the current AR_ALTITUDE,
AR_STATUS, and K_ALT element values be the same as
the predecessors when FRAME_COUNTER? is even.

Predicate � defines the AR_ALTITUDE update. The
update takes the current value, calculated by the Equation
1, when FRAME_COUNTER? is odd and AR_COUNTER? is
greater than or equal to zero.

Predicate � states that the AR_ALTITUDE value is
updated (i.e., estimated) by the Altitude_Polynomial
function. This is done when FRAME_COUNTER? is odd,
AR_COUNTER? is -1, and all the AR_STATUS elements
are healthy.

Predicate
 requires that the current value in
AR_ALTITUDE be the same as the previous values when
FRAME_COUNTER? is odd, AR_COUNTER? is -1 and any
of the elements in AR_STATUS are not healthy.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd and the

AR_COUNTER? is -1.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd, the
AR_COUNTER? is -1, and all of the AR_STATUS elements
are healthy.

Predicate � requires that the updates to AR_STATUS and
K_ALT occur when FRAME_COUNTER? is odd,
AR_COUNTER? is -1, and any of the elements in
AR_STATUS indicate the Altimeter Radar is not healthy.

5.2.3 Discussion
Let’s compare the two cases. Case one presumes that the
two separate constraints (i.e., two values with different
types) defined in the B5 be represented by two separate
variables (i.e., Echo and AR_COUNTER). In the B5, the
sign bit of AR_COUNTER represents whether the radar echo
pulse is received on time. In case one this condition is split
off into the Echo variable while in case two the Echo
variable is not introduced. The Zed specification is
consistent with the B5 as long as this newly defined Echo
variable does not affect any processing unit outside of the
ARSP module. This could be the case if, by chance, the
sign bit is accessed by some other process. The Echo
variable should be treated as an additional input to the
ARSP module because otherwise there is no way to
determine if the radar echo pulse has been received. This
variable was therefore considered an input to the ARSP
module.

This leaves the problem of where the Echo, as an input
to the ARSP module, will come? Accordingly, we had to
revise the Zed version of the ASRP specification to account
for this problem. This revision impacts the whole approach
to how we planned to specification. Therefore, the
interpretation of case one is inconsistent with the B5.
However, it reflects the principle that mandates decoupling
data [2]. Case 2 does not define any additional variables.
Case 2 inherits only the variables defined in the B5 and all
the requirements specified in B5 were covered.

Therefore, this reformulation of the B5 is a consistent
and complete transformation. For this reason, case 2 was
chosen as the basis from which to build the Statecharts. In
this way Statemate could be used to analyze, visualize and
determine if indeed the reformulation was consistent.

5.3 Statecharts
The Zed version of the ARSP was translated into
Statecharts. An ARSP project was created within the
Statemate framework first to enable the process. Graphic
editors were used to create Statecharts and activity-charts.
Once the graphical forms were characterized, state
transition conditions and data items were defined. These
items and/or conditions trigger activities and state
transitions that occur within the Statemate model based on
definitions within the “data dictionary” and/or the “data
bank browser.” The Statecharts and activity-chart are
shown in Figure 8, 10, and 11. Once all variables and

 8

possible conditions had been defined, a simulation could
proceed. Statemate’s Color changes are used to animate
how the actions modify the state of the system (i.e., evolve
the system defined by all of the various charts). The
specification was checked by changing initial (and current)
values and conditions and rerunning (and resuming) the
simulation. Statemate was used to simulate the translated
charts and generate C code directly from the charts.

Figure 8 ARSP activity-chart generated with Statemate

The ARSP activity-chart shows the data flow between the
data stores and the ARSP module. This chart is based on
the information in Figure 9.

EXTERNALRUN_PARAMETERS

SENSOR_OUTPUTGUIDANCE_STATE

TDLRSP
.3

GSP
.4

ARSP
.2

ASP
.1

TSP
.5

TDSP
.6

Figure 9 DFD 2.1 SP- Sensor Processing [20]

Figure 9 shows the information flow between the data
store and processes, but it does not show which parameters
go where. The direction of the data flow in Figure 8
follows the information described in the B5 data dictionary
[18].

The “@INIT” control activity in the ARSP activity-chart
(Figure 8) represents the link to the INIT Statechart (Figure
10). Figure 10 shows the initialization of the ARSP
module and a portion of the ARSP schema (Figure 7)
operation. The FRAME_COUNTER_UPDATE is an event
that triggers the activity. The transition from the
CURRENT_STATE state to KEEP_PREVIOUS_VALUE
state describes the predicate
 from the ARSP Schema.
The KEEP_PREVIOUS_VALUE state is one of the module
termination states. The termination states are marked with
“>” at the end of the state name. The transition from the
CURRENT_STATE to the CALCULATION state represents
a condition where the value of FRAME_COUNTER is odd.
This was described as “FRAME_COUNTER mod 2 = 1” in
the ARSP Schema.

Figure 10 INIT Statechart generated with Statemate

Figure 11 ALTIMETER Statechart generated with Statemate

The ALTIMETER Statechart (Figure 11) is represented
by the “@ALTIMETER” control activity of the ARSP
activity-chart. The ODD state is activated by the default
transition when the CALCULATION activity of the ARSP
activity-chart is begun. The transition from the ODD state
to the ESTIMATE_ALTITUDE state occurs when the
AR_COUNTER value is set to -1 and all the elements of the
AR_STATUS value are set to “healthy”. When this
transition begins, the AR_STATUS and K_ALT values
will be updated as described by predicate � of the ARSP
Schema. The 0 (zero) value of the AR_STATUS means
“healthy.” It corresponds to the value given in the B5 data
dictionary [18].

The transition from the ODD state to the
CALCULATE_ALTITUDE state begins when a positive
value of the AR_COUNTER is given. This transition
process is equivalent to the predicate � of the ARSP
Schema. The transition from the ODD to the
KEEP_PREVIOUS state is triggered when the

 9

AR_COUNTER value is set to -1 and at least one of
AR_STATUS elements are not healthy. This transition has
the same meaning as predicate �.

The transition from the ESTIMATE_ALTITUDE state to
the DONE state happens when the
ESTIMATION_FINISHED event occurs. We represented
this process as an event because this transaction was
described as an undefined third-order polynomial
estimation in B5, and an undetermined function in Zed (i.e.,
predicate � of the ARSP Schema). Statemate does not
provide predefined mathematical functions, which, in this
case, would need to support solving a differential equation
to estimate the AR_ALTITUDE value. The transaction
from the CALCULATE_ALTITUDE state to the DONE state
denotes predicate �. The transaction from the
KEEP_PREVIOUS state to the DONE state denotes the
operation of predicate
.

We tested these three charts by running the Statemate
simulator. The data used in the simulation is provided in
Table 2, 3 and 4 while the simulated system itself is
specified by the activity and statecharts shown in Figure 8,
10, and 11.

Table 2: ARSP Specification Simulation Conditions
Variable

Condition
1

Condition
2

Condition
3

Condition
4

Condition
5

Condition
6

FRAME_COUNTER_UPDATE - X X X X X
FRAME_COUNTER DC 2 2 1 1 3
AR_STATUS DC DC DC [0, 0, 0, 0] DC [0, 1, 0, 0]
AR_COUNTER DC -1 19900 -1 20000 -1

 X Event occured, DC Don’t Care.

Six conditions are defined as shown in Table 2. These
conditions represent test cases against the charts we
developed. They represent the way we visualized and were
able to inspect the specification we derived from the B5
using our Zed-to-Statecharts method. The
AR_FREQUENCY value was fixed at 1,500,000,000 to
calculate the value of AR_ALTITUDE for all test cases.

Condition 1 represents the situation where the
FRAME_COUNTER value is not updated. The ARSP
module is scheduled to run once every frame. This test case
covers the time period between frame updates. The
expected results are the process blocking at ARSP (see the
ARSP activity-chart Fig. 8) with no data changes.

Condition 2 and 3 cover the ARSP module’s reaction based
on the reception status of the radar echo pulse when the
FRAME_COUNTER is even. In both cases’ the results
should not be different.

Condition 2 covers the case when the FRAME_COUNTER
value is changed, its an even value, and the radar echo
pulse is not yet received. The process is expected to stop in
the KEEP_PREVIOUS_VALUE state. Variable rotation
should occur in the AR_STATUS, K_ALT, and
AR_ALTITUDE array variables. The first two elements for
each of these should be same for this test case.

Condition 3 covers the case when the FRAME_COUNTER

value is changed, its an even value, and the radar echo
pulse has been received. The process is expected to stop in
the KEEP_PREVIOUS_VALUE state. Variable rotation
should occur to the AR_STATUS, K_ALT, and
AR_ALTITUDE. The first two elements of these should be
same after the process.

Condition 4 is when the updated FRAME_COUNTER is an
odd value, the radar echo pulse is not yet received, and all
the AR_STATUS elements’ values are healthy. The process
should reach the DONE state by traversing through the
ESTIMATE_ALTITUDE state. The AR_STATUS, K_ALT,
and AR_ALTITUDE should be updated with new values.
The value one (healthy satuts value) should be in the first
element of the updated AR_STATUS, and K_ALT
variables. AR_ALTITUDE’s new value should be an
estimated value from the third order polynomial as shown
in the Figure 7 predicate �.

Condition 5 is when the updated FRAME_COUNTER is an
odd value, the radar echo pulse is received, and all the
AR_STATUS elements’ values are healthy. The process
should reach the DONE state through the
CALCULATE_ALTITUDE state. The AR_STATUS,
K_ALT, and AR_ALTITUDE should be updated with new
values. The zero value should be the first element value of
the AR_STATUS, and the one value for the K_ALT.
AR_ALTITUDE’s new value should be a value calculated
based on the process shown in the Figure 7 predicate �.

Condition 6 is when the updated FRAME_COUNTER
value is odd, the echo is not arrived, and one or more of the
AR_STATUS elements’ values are not healthy. The
AR_STATUS and K_ALT variables should be updated with
new values and the AR_ALTITUDE variable should have
the previous value. The new value for AR_STATUS
should be one, and for K_ALT it should be zero.
AR_ALTITUDE’s first two elements should be the same
value after the process because it is keeping the previous
value as the current value.

Table 3: ARSP Specification Simulation Result
Condition Name of

Chart
Activity / State

Name 1 2 3 4 5 6
ARSP A A A A A A ARSP

CALCULATE - A A A A A
CURRENT_STATE - A A A A A

KEEP_PREVIOUS_VALUE> - A A - - -
INIT

CALCULATION - - - A A A
ODD - - - A A A

ESTIMATE_ALTITUDE - - - A - -
CALCULATE_ALTITUDE - - - - A -

KEEP_PREVIOUS - - - - - A

ALTIMETER

DONE> - - - A A A
A Activated, - not activated.

Table 3 and 4 show the results of the simulation.
Activation of the states and activities as specified in the
charts are shown as an “A” in Table 3.

At condition 1, the ARSP activity is activated but is
blocked before the CALCULATE control activity. This is
the expected reaction of the system for this condition.

 10

At condition 2 and 3, activity/state activation order is
ARSP, CALCULATE, CURRENT_STATE, and
KEEP_PREVIOUS_VALUE. This is the correct order as
expected.

At condition 4, the activation order is ARSP, CALCULATE,
CURRENT_STATE, CALCULATION, ODD,
ESTIMATE_ALTITUDE, and DONE. This is the correct
order as expected.

At condition 5, the activation order is ARSP, CALCULATE,
CURRENT_STATE, CALCULATION, ODD,
CALCULATE_ALTITUDE, and DONE. This is the correct
order as expected.

At condition 6, the activation order is ARSP, CALCULATE,
CURRENT_STATE, CALCULATION, ODD,
KEEP_PREVIOUS, and DONE. This is the correct order as
expected.

Table 4 ARSP Outputs from the Simulation
Variable Condition

1
Condition

2
Condition

3
Condition

4
Condition

5
Condition

6
AR_STATUS NA KP KP [1, 0, 0, 0] [0, -, -, -] [1, 0, 1, 0]

K_ALT NA KP KP [1, 1, 1, 1] [1, -, -, -] [0, 1, -, 1]
AR_ALTITUDE NA KP KP [*, -, -, -] [2000,-,-,-] KP
NA Not Applicable, - Don’t care, KP Keep Previous value, * An estimated value.

The values of the ARSP output variables are shown in
Table 4. The outputs under condition one are not applicable
because no data processing occurred. KP in Table 4 means
that the first two element values of the output are same. All
the output values are the same (as expected).

All the transitions, activities, and states in the charts
were activated precisely. All of the variables were updated
as expected. The result of this simulation show the
previous specification was developed correctly. Debugging
the C code generated by the code generator feature in
Statemate from these charts is another way to test those
specifications.

6 CONCLUSION
Even though the entire GCS specification was not
evaluated by this method, the result of the completed partial
analysis reveals that it is possible to develop a complete
and consistent specification with this method (Zed-to-
Statecharts). We uncovered some ambiguity issues
associated with our interpretation of the B5 specification.
The outputs from the ARSP module were examined and
shown to be consistent with our expectations by running
the simulation. In this context the simulation has provided a
means for determining the consistency (i.e., a specification
level test) of the requirements.

 Our prototypical study has shown that it is possible
(albeit time consuming) to use both Zed and Statecharts
combined to verify the consistency of software
requirements. Using these two RSLs provides and
alternative approach to correctness checking on a NL
requirements specification. Consequently, this approach
can help to avoid the waste problem that results in
redevelopment effort from incorrectly specified products.

Reference

1. N. Leveson, "High-Pressure Steam Engines and
Computer Software," Computer, 1994.

2. I. Sommerville, "Software Engineering," Addison-
Wesley, 2000.

3. W. Gibbs, "Software's Chronic Crisis," Sci. American,
1994.

4. C. M. Holloway, "Software Engineering and
Epistemology," ACM SIGSOFT Software Engineering
Notes, 1995.

5. L. R. Wiener, "Digital Woes - Why We Should Not
Depend on Software," Addison-Wesley, 1993.

6. I. Peterson, "Fatal defect-Chasing Killer Computer
Bugs," Random House, Inc, 1995.

7. R. W. Butler, and Finelli, G.B., "The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software," IEEE Trans. on Software Engineering,
1993.

8. K. J. Hayhurst, "Framework Small-Scale Experiments
in Software Engineering (Guidance and control
software Project: Software Engineering Case Study),"
NASA Langley Research Center, 1998.

9. F. P. Brooks, Jr., "No Silver Bullet - Essence and
Accidents of Software Engineering," IEEE Computer,
1987.

10. T. Williams, ed., "It Takes More Than a Keen Nose to
Track Down Software Bugs.," Computer Design, 1993.

11. ADI, "Software Development," 2000.
12. SES, "SES/Workbench Creating Models," 1994.
13. Hyperformix.com, "SES/workbench®," 2000.
14. iLogix, "Product Overview," 2000.
15. iLogix, "Statemate Magnum Tutorial," 1999.
16. J. Woodcock, and Davies, J., "Using Z: Specification,

Refinement, and Proof," Series of Computer Science,
Prentice Hall International, 1996.

17. D. Harel, and Politi, M., "Modeling Reactive Systems
with Statecharts," McGraw-Hill, 1998.

18. NASA, "Software Requirements - Guidance and
Control Software Development Specification Version
2.2 with the formal mods 1-8," National Aeronautics
and Space Administration, Langley Research Center,
1993.

19. DoD, "DOD-STD-2167A," 1988.
20. NASA, "Software Requirements - Guidance and

Control Software Development Specification Version
2.2 with formal mods 1-26.," National Aeronautics and
Space Administration, Langley Research Center, 1993.

21. J. M. Spivey, "The Z Notation: A Reference Manual,"
Prentice Hall Int'l, 1992.

1

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Formal Descriptions and Software Reliability
Oct. 7th, 2000.

Frederick T. Sheldon and Hye Yeon Kim
School of Electrical Engineering and Computer Science

Washington State University

SEDS Research Group School of EECS, Washington State University

Software Requirements Specification and
Analysis Using Zed and Statecharts

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Research Agenda

� Goal:
Develop a complete software requirement specification based on the
IEEE Standard 830-1998.
� Determine completeness and consistency.
� Compare methods.

� Target specification:
A NASA provided Guidance and Control Software (GCS)
development specification for the Viking Mars Lander.

� Analysis Approach:
Zed, and Statecharts.

� Summary of present research status and future study.

2

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Focus: Testing the Requirements

� Can ambiguous expressions be found
during the process of this study?

� Can the reliability of the end product (i.e.,
the software system) be predicted given
the operational environment?

� Is specification level testing (i.e., without
implementation) feasible/possible?

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Completeness

- IEEE STD 830-1998, pp.5-6.

An SRS is complete if, and only if, it includes the following
elements:
– All significant requirements, whether relating to functionality,

performance, design constraints, attributes, or external interface. In
particular, any external requirements imposed by a system
specification should be acknowledged and treated.

– Definition of the response of the software to all realizable classes
of input data in all realizable classes of simulations. Note that it is
important to specify the responses to both valid and invalid input
values.

– Full labels and references to all figures, tables, and tables and
diagrams in the SRS and definition of all terms and units of
measure.

3

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Guidance and Control Software

� Software Requirements - GCS Development
Specification.

� This system was designed to provide software
control of the embedded sensors and actuators of
the Viking Mars Lander during the terminal
decent phase of the mission.

� The ARSP module reads data provided by the
altimeter radar sensor to determine the lander’s
altitude from the Mars surface.

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Process 2: RUN_GCS

SENSOR_OUTPUT

GUIDANCE_STATE

CRCP AECLP RECLP

CONTROL AND
TELEMETRY

OUTPUTS
CP

SENSOR DATA

ASP GSP TSP ARSP TDLRSP ASP

GPRUN_PARAMETERS

PACKET

4

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Ambiguity issues

� The exact meaning of the rotate variables,
and direction of the rotation was unclear

� The type assigned to the AR_COUNTER
variable was unclear

� An undefined 3rd order polynomial

� Where the AR_COUNTER should be
modified? (dividing point of the cases I and II)

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Zed – Case 1 continue

DARSP_RESOURCE
SEC : second

Echo = No ¤ AR_COUNTER?’= -1
Echo = Yes ¤ AR_COUNTER?’= AR_COUNTER? + AR_FREQUENCY * SEC

ARSP_INIT

1

2
1

2

5

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Zed – Discussion

• Echo and AR_COUNTER
• Case 1 is inconsistent with B5 due to use of

two newly defined variable (Echo and SEC)
(requires revision of whole specification)

• Case 2 completely models the B5 definitions
and requirements without any addition (verbatim
interpretation)

• Case 2 was used to build the Statecharts

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Statemate’s – Activity Charts
Case 2

6

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Statecharts continue

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Statecharts continue

7

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Simulation Conditions (inputs to Sim)

-1

DC

2

X

2

-120000-119900DCAR_COUNTER

[0,1,0,0]DC[0,0,0,0]DCDCAR_STATUS

1112DCFRAME_COUNTER

XXXX-
FRAME_COUNTER_

UPDATE

65431Variables
Condition

X: Event occurred, DC: Don’t Care

� AR_FREQUENCY value was fixed @ 150,000,000 for all cases.

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

ARSP Activity/State Activation
Results

-

-

-

-

-

-

A

A

A

A

3

AAA--DONE>

A----KEEP_PREVIOUS

-A---CALCULATE_ALTITUDE

--A--ELSTIMATE_ALTITUDE

AAA--ODD

ALTIMETER

AAA--CLACULATION

---A-KEEP_PREVIOUS_VALUE>

AAAA-CURRENT_STATE

INIT

AAAA-CALCULATE

AAAAAARSP
ARSP

65421

Conditions
Activity/State Name

Name of
Chart

8

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

ARSP Outputs from Simulation

NA: Not Applicable, -: Don’t Care, KP: Keep Previous value, *: An estimated value

KP

KP

KP

2

KP[2000,-,-,-][*,-,-,-]KPNAAR_ALTITUDE

[0,1,-,1][1,-,-,-][1,1,1,1]KPNAK_ALT

[1,0,1,0][0,-,-,-][1,0,0,0]KPNAAR_STATUS

65431Variables
Condition

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Conclusion

� It is possible to develop a complete and
consistent specification with Zed-to-Statecharts
method.

� We uncovered some ambiguity issues.

� The outputs from the ARSP module were
examined and shown to be consistent with our
expectations by running the simulation.

� In this context the simulation has provided a
means for determining the consistency (i.e., a
specification level test) of the requirements.

9

SEDS Research Group School of EECS, Washington State UniversitySEDS Research Group School of EECS, Washington State University

Future Study

� ARSP model analysis with Petri-net
based tool (e.g., UltraSAN or SPNP6).

� GCS scheduling mechanism analysis with
a model based method other than Zed and
SES Workbench.

� Build complete and consistent GCS SRS
with the analysis results.

	PROBLEM DEFINITION
	MOTIVATION
	TOOL BASED ANALYSIS
	METHODS
	METHODS APPLICATION
	B5 – THE NL BASED SPECIFICATION
	Zed Specification
	Case 1: AR_COUNTER updated inside the ARSP
	Case 2: AR_COUNTER, the input variable
	Discussion

	Statecharts

	CONCLUSION

