

Software Requirements Specification (SRS)

Cooperative Adaptive Cruise Control 3

Authors: Audrey Guest, Josh Jarvis, Manish Rajendran, Danielle Kelley, Jack Brooks

Customer: Mr. William Milam, Ford Motor Company

Instructor: Dr. Betty Cheng

1. Introduction

1.1. Purpose

The purpose of this document is to offer a detailed description of the Cooperative

Adaptive Cruise Control system. The document will explain the features of the system and their

purpose, the system’s interface, how the system will function, how the system reacts to the

external environment, and the constraints under which it must operate. This information is

intended for the stakeholders and development team.

1.2. Scope

The Cooperative Adaptive Cruise Control (CACC) system is a software-based electronic

control system that increases the convenience and safety features provided to drivers. The

software of the system will utilize a combination of information from the cameras, sensors, and

radio communications to provide an interface for the user’s dashboard. From the dashboard the

user will be able to enable or disable the system, and view warnings as they appear.

Once enabled, the system will maintain a constant vehicle speed. The system is designed

to set up a platoon of vehicles that follow and collect speed and location information from a lead

vehicle, while maintaining a safe following distance. If a driver wishes to leave the platoon, they

can disable the system and the system will notify the appropriate vehicles in the platoon.

1.3. Definitions, acronyms, and abbreviations

Term Definition

CACC++, CACC Cooperative Adaptive Cruise Control

Following vehicle The vehicle that is directly behind a vehicle in a platoon.

Platoon A grouping of vehicles, following one after another at a

constant speed.

Software Requirements

Specification (SRS)

A document that completely describes all of the functions

of a proposed system and the constraints under which it

must operate. For example, this document.

Stakeholder Any person with an interest in the project who is not a

developer.

Target vehicle The vehicle that is used as the point of reference for speed

for the vehicle behind it.

V2V Vehicle to vehicle communication. V2V is the way in

which vehicles can wirelessly transit information to each

other.

1.4. Organization

Section 2 of the SRS document provides an overview of the CACC system’s

functionality and its constraints. Section 2.1 specifically describes the context and constraints of

the system. Section 2.2 describes the functionality of the CACC system as a whole and how the

system will perform. Section 2.3 explains what is expected from the user in order for the CACC

system to function correctly. Section 2.4 describes the constraints of the system and section 2.5

explains the assumptions and dependencies. Finally, section 2.6 explains requirements that are

out of the scope of the current product, but could be implemented in the future.

Section 3 describes the specific requirements of the CACC system and provides further

requirements relating to the security of the CACC system.

Section 4 of the SRS document shows and describes use case diagrams, domain models,

sequence diagrams, and state diagrams that show the specific scenarios of the CACC product and

how their behavior would be handled.

The fifth section of the SRS document offers information about the prototype, how it

works and how to access it. Section 5 specifically covers the functionality of the prototype.

Section 5.1 explains what is needed to run the prototype and section 5.2 gives a sample scenario

of the CACC system.

Finally, section 6 of the document enumerates the resources used to create the

requirements of the project and section 7 is a point of contact for the project.

2. Overall Description

This section will provide background information for the CACC system/product. A broad

view of how the product fits with other systems will be provided, along with the main purposes

of the product and its constraints. Expectations for the user of CACC will be laid out in order to

give further context for the product. Any assumptions regarding hardware, software, the system

environment, user interactions, or other factors will be noted. Finally, requirements that are

determined to be beyond the scope of our project, but reasonable for future versions will

conclude this section.

2.1. Product Perspective

 CACC is one of many subsystems that comprise the larger system of a vehicle. It is not

essential, and in fact few vehicles currently possess it as part of their systems. However, it is

reasonable to project that CACC will become increasingly popular and eventually an essential

element of a vehicle in order to increase safety and autonomy for the driver. Figure 1 shows the

relationship of the CACC system to a vehicle in relation to other essential parts of a vehicle. The

essential components of the vehicle include the engine, brakes, accelerator, dashboard, and

steering wheel. The vehicle must have one of each of these in order for it to operate, and they can

all exist as parts without the vehicle. CACC, however, is a nonessential part of the vehicle that

cannot exist on its own without being connected to a vehicle. CACC is a system that will assist

the larger system of a vehicle.

Figure 1: CACC’s relationship to a larger vehicle system.

The CACC system has both interface and memory related constraints. The environment

system constraints include weather and road conditions that could affect the abilities of the

camera and radar sensors. The weather and road condition constraints can also be seen as

hardware constraints. Rainy or snowy weather can cause the camera or radar sensors to fault.

Another hardware constraint is that each vehicle with CACC must have a dashboard for a user

interface and hardware for radio communication. Software constraints include having to choose

when one feature of CACC must override another feature in order to keep the driver safe.

Software constraints also include the large amount of memory needed for the system because

CACC holds data for its own vehicle as well as target and following vehicles. A final constraint

is for CACC to be fully operational and work with platoons of cars, the majority of cars on the

road must also be equipped with CACC, or some sort of V2V technology, to allow the vehicles

to communicate with each other.

2.2. Product Functions

The CACC system’s main functions are that it provides a more effective adaptive cruise control

when the vehicle is in a platoon, or group of other CACC vehicles. If the vehicle is the lead

vehicle in the platoon, the system will act as a normal Adaptive Cruise Control system adjusting

speed based on the non CACC vehicle in front of it. The lead vehicle will also communicate with

the platoon vehicles behind it in order to minimize following distance. If the vehicle is in a

platoon and is not the lead, it will communicate with the vehicle in front of it in order to receive

data about the vehicle. The vehicle will be constantly calculating the safest following distance

while changing speed in order to maintain that dynamic distance. If the vehicle is not in a platoon

at all, it will act as a normal Adaptive Cruise Control system with the exception that the vehicle

will be trying to find a platoon to join.

2.3. User Characteristics

It is expected that the driver is licensed to drive. Due to the extensive capabilities of CACC, the

driver can only enable/disable the system with a push of a button. The driver should preferably

have general knowledge of CACC so that they are not surprised by its behavior. The primary

responsibility of the driver in the system is simply observing the CACC software guide the

vehicle in different scenarios.

2.4. Constraints

There are features of the vehicle that must be operational in order for the system to be enabled,

disabled or to operate properly. It is critical that the acceleration, deceleration and steering wheel

in the vehicle are functional in order for the CACC system to operate. The system will also be

inoperable if there is a delay in radio communication between the target vehicle and the

following vehicle. This communication is critical in the maintenance of the appropriate speed

and can affect the overall safety of the system when enabled. Furthermore, if there is a delay in

communication between a target vehicle and its following vehicle, the following vehicle will not

know what speed or location to adjust itself to. This lack of knowledge can cause the safe

distance to be violated and possibly cause a collision.

2.5. Assumptions and Dependencies

We are operating under various assumptions regarding the CACC system in order to accurately

assess its behavior. One assumption about the software is that it is much more effective at

guiding a vehicle than a human driver. For this reason, the driver should have limited override

capability. In case of emergency, the driver can revert back to ACC. Our assumption regarding

the environment is that the CACC system will be able to adjust to extreme weather conditions.

So long as conditions are not deemed so dangerous that driving is not advised, the system should

be able to utilize weather data to guide the vehicle. Finally, we assume that nearly all vehicles on

the road have CACC or some sort of system that allows them to communicate with other

vehicles. The primary benefit of CACC over ACC is communication between vehicles, and this

is rendered ineffective if there are a significant amount of vehicles without the software required.

2.6. Apportioning of Requirements

Some initial requirements of the CACC system have been determined to be out of the current

scope of the project and may be addressed in future versions of the product. An enumerated list

of the future requirements are listed below.

1. A platoon is capable of splitting into two platoons the account for an individual car

entering or leaving the platoon.

2. CACC will control the steering wheel in order to change lanes for object avoidance.

3. There will be a button for the driver to press to autonomously change lanes.

4. CACC will use GPS to determine traffic data and autonomously choose the best route for

the vehicle to take based on the data.

5. The user interface for CACC will include vehicle diagnostics.

3. Specific Requirements

1. The vehicle will have a front camera to detect and calculate the speed of the vehicle in

front of it (target vehicle).

1.1. The camera will identify the target vehicle and find its speed and location.

1.2. The camera will act as a backup for the radar sensors if there is a failure.

2. The vehicle will have radar sensors to detect and find the speed of the vehicle in front of

it.

2.1. The radar sensors will detect, identify, and track the vehicle ahead of it.

3. Append sensors to appropriate place on the vehicle. Optimal placement is that which will

allow full awareness of objects in front of vehicle.

4. Sensors must be able to detect objects up to 300 meters in front of the vehicle and 150

meters behind the vehicle.

5. The vehicle will be capable of being a part of a platoon, or a large line of vehicles all

travelling at the same speed.

5.1. Communicate with platoon leader/platoon member ahead of vehicle to adjust

speed accordingly.

5.2. V2V hardware must be included in the hardware stack. This may include

antennas, GPS, network cards, or multiple embedded systems.

5.3. The vehicle will use GPS to communicate with the other cars in the platoon.

5.3.1. The GPS will track the location, speed, and direction of the other vehicles

in the platoon.

5.3.2. The GPS will help the radar sensor detect the difference between target

cars, and fixed objects.

5.3.3. The GPS will maintain appropriate distance between the vehicles in the

platoon if the radar fails.

5.4. Vehicles will receive information about braking and accelerating capabilities of

the target vehicle.

5.4.1. Constraint: Vehicles can only decelerate at 2 Gravity and vehicles have

different braking and accelerating capabilities based on their size.1

6. There must be software that can detect when one feature must override another. For

example, a speed/hill warning that causes deceleration should override the adaptive cruise

control that may want acceleration.1

7. The vehicle will use radio communication to communicate with other cars in the platoon.

7.1. The radio system can be restarted by the vehicle controller.

8. There will be an electric throttle that can control the cars speed by adding or removing

power.

9. The vehicle will brake by wire, or apply the brakes, to regulate the vehicles speed.

10. There will be a vehicle controller that connects all of the sensors and systems together.

10.1. The vehicle controller will take in the speed of the vehicle and target vehicle and

adjust the vehicle’s speed accordingly.

10.2. The vehicle controller will command the throttle and brakes.

10.3. The vehicle controller will receive information from the radar sensors and camera.

10.4. The vehicle controller will communicate with the radio communication system.

11. There will be a system to detect a failure to start a task and detect memory leaks.

11.1. The system will decide how to recover from these memory leaks.

12. There will be an independent monitoring function to ensure that the values being sent to

the throttle match the actual input values from the target vehicle.

13. There will be additional safety features to assist the Cooperative Adaptive Cruise Control

(CACC) system. The safety features must not cause any software faults for the system.

13.1. There will be adaptive cruise control.

13.2. There will be lane keeping / lane centering.

13.3. There will be curve speed assist.

13.4. There will be hill management.

14. The CACC system must work with congested traffic, various weather and road

conditions, various states of vehicle health, and varying skill levels of drivers.1

14.1. Prompt user if one or more sensors are obstructed.

14.2. Notify audibly and visually that the system is unavailable.

14.3. Will function regardless of varying road slope/grade.

15. The system must have a simple interface for the user.

16. System must be enabled by default.

16.1. The system must have override available to the user in case of malfunction.

17. Must maintain speed and gap setting set by user.

18. There must be an automatic procedure to join and leave the platoon regardless of location

in the platoon due to safety reasons.

19. If CACC becomes unavailable, the system will fall back to ACC. If ACC is unavailable,

the system will fall back to regular cruise control.

20. There will be system status icons for CACC and ACC displayed all the time.

21. Secure system to prevent malicious attacks.

22. Alert driver of potential hazards/collisions.

Cyber Security Requirements:

23. CACC system must constantly check whether vehicle in platoon (most importantly the

lead vehicle of a platoon) has been compromised.

24. Messages that are sent to other vehicles must be encrypted.

25. Messages that are received from other vehicles must be able to be decrypted.

26. Messages that are received from other vehicles must be checked to ensure integrity.

27. Synchronized clocks must be used to protect against replay attacks (data fraudulently

repeated or delayed).

28. Digital signatures must be used to counteract message falsification attacks.

29. Must search for inconsistencies between radar and camera and fall back to ACC if any

are found.

30. System must collect messages between vehicles in platoon and check them against each

other to determine whether a jamming attack (transmission of interfering radio signals)

has occurred.

30.1. All vehicles in platoon should fall back to ACC.

4. Modeling Requirements

Use Case Diagram:

System Boundary: The system boundary is the sensors, camera, and everything within and

including the CACC system.

Figure 2: Use case diagram.

Use Case Documentation:

Use Case: Object Avoidance System

Actors: Driver

Description: Vehicle radar sensors or camera detects an object, and sends the data to the

vehicle controller. The vehicle controller communicates to the other cars in

the platoon using vehicle to vehicle communication, causing all vehicles in

platoon to adjust accordingly. Adjustment includes change of speed and/or

change of direction.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 5, 5.1, 5.2, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 7,

7.1, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 14, 21

Use cases: N/A

Use Case: Turn off system

Actors: Driver

Description: If driver would like to turn off the system and regain control of the vehicle,

the driver can hit a button on the user interface. The vehicle will leave a

platoon if it is in one and transfer vehicle control to the driver. The system

will go from CACC to ACC (Adaptive cruise control).

Type: Primary

Includes: Use adaptive cruise control

Extends: N/A

Cross-refs: 13, 13.1, 14, 16, 16.1, 19, 21

Use cases: N/A

Use Case: Turn on system

Actors: Driver

Description: In order to enable the system, the driver must push a button on the user

interface. This will cause the vehicle to start driving autonomously and

begin searching for a platoon or another vehicle to create a platoon.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 5, 5.1, 5.3, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 10,

10.1, 10.2, 10.3, 10.4, 11, 11.1, 14, 21, 23, 24, 25, 26, 27, 28, 29, 30, 30.1

Use cases: N/A

Use Case: Use adaptive cruise control

Actors: Driver

Description: The vehicle will fallback onto adaptive cruise control when the system’s

cooperative component becomes unavailable. When the vehicle is using

adaptive cruise control, it will not be able to join a platoon nor will it be

able to maintain a smaller gap.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 8, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 13, 13.1, 14,

17, 19, 21

Use cases: Turn off system

Use Case: User override

Actors: Driver

Description: While in the platoon, the CACC system will have control of the vehicle.

Any driver input in relation to speed will be ignored (i.e. the driver hitting

the brakes will not cause the vehicle to brake). The driver can turn off the

system to override and regain control.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: 6, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 14, 16, 16.1, 21

Use cases: Vehicle enters platoon

Use Case: Vehicle and platoon data displayed on dashboard

Actors: Driver

Description: On the vehicle’s dashboard, the vehicle’s current speed and the target

vehicle’s speed, acceleration, and deceleration will be available to the

driver through radio, GPS, camera and sensor detection. Once the vehicle

leaves the platoon, the data will no longer be available for the driver to

access.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 5, 5.1, 5.2, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 7,

7.1, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 14, 15, 20, 21, 23, 24, 25, 26

Use cases: Warning displayed on dashboard

Use Case: Vehicle enters platoon

Actors: Driver

Description: When the system is activated, the vehicle searches for a platoon of vehicles

using vehicle-to-vehicle communication. When a platoon is found, the

system will automatically join the platoon by getting behind the last

vehicle in the platoon and making it the target vehicle. It will then sync the

speed of all of the vehicles in the platoon.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: 5, 5.1, 5.2, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 7, 7.1, 10, 10.1, 10.2, 10.3,

10.4, 11, 11.1, 14, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29, 30, 30.1

Use cases: N/A

Use Case: Vehicle leaves platoon

Actors: Driver

Description: If the driver decides to leave the platoon they will initiate the leave platoon

function. Similarly, if a fault occurs within the system, the leave platoon

function will be initiated and the user will be warned that the system is

turning off. If the vehicle that wishes to leave the platoon is the lead

vehicle or a vehicle with another vehicle in front or behind it, it will send

out a message to the vehicle behind it. If the vehicle that wishes to leave

the platoon is the last vehicle it will decelerate.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: 5, 5.1, 5.3, 5.3, 5.3.1, 5.3.3, 5.4, 5.4.1, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1,

14, 18, 21

Use cases: N/A

Use Case: Vehicle Maintains Safe Distance

Actors: Driver

Description: The system detects an object in front of the vehicle by using radar, sensors,

and GPS. The system will then use vehicle-to-vehicle communication with

the target vehicle in front of it. The vehicle controller will receive data

from the target vehicle and send data to the vehicle behind it and compute

whether the vehicle needs to accelerate, decelerate, or stay the same speed

in order to maintain the correct distance from the vehicle in front of it. The

car may need to adjust its speed when travelling around a curve or down a

hill. The vehicle may need to accelerate when travelling up a hill.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 5, 5.1, 5.2, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 6, 7,

7.1, 8, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 13, 13.4, 14, 17, 21

Use cases: N/A

Use Case: Vehicle stays in lane

Actors: Driver

Description: The system will communicate with the vehicle’s lane management system

in order to autonomously stay within the lane that the vehicle is in. It will

still be syncing with the target vehicle in the platoon to ensure they are the

same speed.

Type: Primary

Includes: N/A

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 6, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 13, 13.2, 14,

21

Use cases: N/A

Use Case: Warning displayed on dashboard

Actors: Driver

Description: Occurs when there are any components unoperational within the system.

There will be an indication on the vehicle’s dashboard. This can include

sensor obstructed warning, potential hazard warning, or CACC system

unavailable warning.

Type: Primary

Includes: Vehicle and platoon data displayed on dashboard

Extends: N/A

Cross-refs: #1, 1.1, 1.2, 2, 2.1, 3, 4, 5, 5.1, 5.2, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.4, 5.4.1, 7,

7.1, 10, 10.1, 10.2, 10.3, 10.4, 11, 11.1, 14, 14.1, 14.2, 14.3, 15, 21, 22

Use cases: Vehicle and platoon data displayed on dashboard

Domain Model:

Figure 3: Domain model.

Data Dictionary for Domain Model:

Element Name Description

Brake Brake represents the brakes of a

vehicle.

Operations

 decelerate(power : double):

void

Apply the given power to the brakes by

wire to decelerate the vehicle.

Relationships Brake is a part of VehicleController. It can be commanded by

VehicleController to decelerate the vehicle by a certain speed.

UML

Extensions

Brake is an aggregation of VehicleController. Brake can have one

VehicleController.

Element Name Description

CACC It encapsulates the entire system that is

used by platoons and cars.

Relationships CACC is used by all platoons and any vehicle that is equipped with the

CACC system. CACC represents the system as a whole.

UML

Extensions

Platoon is an aggregation of CACC. CACC can have 0 to infinite

Platoons.

Element Name Description

Camera Class that represents a camera that

detects objects in front of the vehicle

Operations

 detectObject() : bool Returns true if an object is in front of

the vehicle

 detectSpeed() : double Detects and returns the speed of the

object ahead.

 track() : void Track the target vehicle in order to

account for a vehicle going around a

curve.

Relationships Camera is a part of VehicleController. It can be commanded by

VehicleController to detect an object in front of the vehicle

UML

Extensions

Camera is an aggregation of VehicleController. Camera can have 1

VehicleController

Element Name Description

ElectronicThrottle Class that represents the electronic

throttle of the vehicle. Used to

accelerate the vehicle

Operations

 accelerate(power : double):

void

Accelerates the vehicle by sending the

given amount of power to the throttle.

Relationships ElectronicThrottle is a part of VehicleController. It can be commanded by

VehicleController to accelerate the vehicle by a certain speed.

UML

Extensions

ElectronicThrottle is an aggregation of VehicleController.

ElectronicThrottle can have one VehicleController.

Element Name Description

GPS Class that represents GPS system to

detect the location and direction of

vehicle

Operations

 detectLocation():

vector<double>

Returns a double of the longitude and

latitude of the vehicle

 detectDirection(): double Returns a double of the direction of the

vehicle

 getTargetGPS() : GPS Returns the GPS object of the target

vehicle in the platoon.

Relationships GPS is a part of VehicleController. It can be commanded by

VehicleController to detect the location of the vehicle and the direction

the vehicle is travelling in.

UML

Extensions

GPS is an aggregation of VehicleController. GPS can have one

VehicleController.

Element Name Description

Platoon Class that represents a platoon of

vehicles that communicates with each

other using the CACC system

Attributes

 vehicles : vector<Vehicle> A vector of the vehicles in the platoon.

Operations

 addVehicle(vehicle : Vehicle):

void

Vehicle joins the platoon

 removeVehicle(vehicle :

Vehicle): void

Vehicle leaves the platoon

 disband(): void All vehicles leave the platoon

Relationships Platoon is a part of CACC. Vehicle is a part of Platoon. Vehicles can join

and leave a platoon.

UML

Extensions

Platoon is an aggregation of CACC. Platoons have 1 CACC. Vehicle is an

aggregation of Platoon. Platoons are made up of 1 or more Vehicle.

Element Name Description

RadarSensor RadarSensor represents each radar

sensor used in the CACC system.

Operations

 detectDistance(): double This function detects and returns the

distance of the target vehicle.

Relationships RadarSensor is a part of VehicleController. It can be commanded by

VehicleController to detect the speed of the vehicle.

UML

Extensions

RadarSensor is an aggregation of VehicleController. RadarSensor can

have one VehicleController.

Element Name Description

RadioCommunication RadioCommunication represents the

radio communication software used by

CACC for communication between

vehicles.

Operations

 communicate(vehicle :

Vehicle): void

This function communicates, i.e.

retrieves data, from a given vehicle.

Relationships RadioCommunication is a part of VehicleController. It can be

commanded by VehicleController to communicate with another given

vehicle.

UML

Extensions

RadioCommunication is an aggregation of VehicleController.

RadioCommunication can have one VehicleController.

Element Name Description

SecurityController SecurityController represents the

software used to secure the CACC

system from any outside attacks.

Operations

 encryptMessage(message :

string) : string

Encrypt data that will be sent from the

vehicle and given to another. Returns

the encrypted message.

 decryptMessage(message :

string) : string

Decrypt data that has been sent from

another vehicle. Returns the decrypted

message.

 ensureIntegrity(message :

string) : bool

Ensure the integrity of data sent from

another vehicle. Return bool whether or

not the message is safe.

Relationships SecurityController is a part of VehicleController. It can be commanded

by VehicleController to encrypt the CACC system’s software.

UML

Extensions

SecurityController is a composition of VehicleController.

SecurityController can have one VehicleController.

Element Name Description

UserInterface Class that represents a user interface.

The user interface alerts the driver and

shows data.

Operations

 alert(message : string) : void Warns driver by displaying given

message on user message.

Relationships UserInterface is a part of VehicleController. It can be commanded by

VehicleController to alert the driver.

UML

Extensions

VehicleController has an association to UserInterface. UserInterface has 1

VehicleController.

Element Name Description

Vehicle Vehicle represents a vehicle that will be

equipped with CACC software. It may

or may not be part of a platoon.

Attributes

 speeed : double The speed of the vehicle.

 location : vector<double> The location of the vehicle.

 inPlatoon : bool A bool stating whether or not the

Vehicle is in a platoon.

 direction : double The direction the Vehicle is travelling

in.

 decelConstant : double The decelerating capabilities of the

Vehicle.

 accelConstant : double The accelerating capabilities of the

Vehicle.

 systemOn : bool A bool stating whether or not the

system is on. It is True by default.

Operations

 accelerate(speed : double): void Accelerate the Vehicle to a certain

speed.

 decelerate(speed : double): void Decelerate the Vehicle to a certain

speed.

 turnOnSystem() : void Command the vehicle controller to turn

on the system.

 turnOffSystem() : void Command the vehicle controller to turn

off the system.

 calcSafeDist() : double Calculate and return the safe stopping

distance for the vehicle at the current

speed.

 buttonPress() : void The user has pressed the on or off

button on the dashboard.

Relationships Vehicle is a part of Platoon. It also communicates with VehicleController

to get all of the data needed for CACC to function.

UML

Extensions

Vehicle is an aggregation of Platoon. VehicleController is a composition

of Vehicle. Vehicle can have zero or one Platoon and one

VehicleController.

Element Name Description

VehicleController Class that represents the vehicle

controller. The vehicle controller

controls all sensors and communication

links for the CACC system.

Attributes

 radars : vector<RadarSensor> A vector of all the radar sensors in the

system.

 userInterface : UserInterface The user interface for the vehicle.

 throttle : ElectronicThrottle The vehicle’s electronic throttle.

 gps : GPS The vehicle's GPS system.

 brake : Brake The vehicle’s brakes.

 cameras : vector<camera> A vector of all the cameras used in the

system.

 speed : double The speed of the vehicle that the

vehicle controller is a part of.

 radio : RadioCommunication The vehicle’s radio communication

object.

 failure : bool True if there was a failure to start task

or a memory leak.

 safeDistance : double The distance that the vehicle should be

behind the target vehicle.

 object : bool True if there is an object that is

detected.

 objectSpeed : double The speed of the object in front of the

vehicle.

Operations

 detectFailure() : void Checks if there was a failure to start

task or a memory leak, and sets failure

to False if so.

 restartRadio() : void Restart the radio communication

system.

 monitorThrottle() : void Checks if there is a discrepancy

between the command value to the

throttle and the system context. Adjusts

the throttle command if needed.

 communicateManeuver() : void This function is called when the driver

does not have time to safely stop before

hitting an obstacle. The driver will be

alerted to change lanes.

 trackTarget() : void Command the camera to track the

target vehicle in order to account for a

vehicle going around a curve.

Relationships VehicleController is a part of Vehicle. It also communicates with

RadioCommunication, UserInterface, RadarSensor, ElectronicThrottle,

GPS, Brake, Camera, and SecurityController.

UML

Extensions

VehicleController is a composition of Vehicle. RadioCommunication,

RadarSensor, ElectronicThrottle, GPS, Brake, and Camera are

aggregations of VehicleController. Vehicle can have zero or one Platoon

and one VehicleController. SecurityController is a composition of

VehicleController. VehicleController has an association with

UserInterface. VehicleController can have one Vehicle, one

RadioCommunication, one UserInterface, one to infinite RadarSensors,

one ElectronicThrottle, one GPS, one Brake, one to infinite Cameras, and

one SecurityController.

Sequence Diagrams:

Figure 4 represents scenario one. Figure 4 shows the scenario for when a vehicle is not in a

platoon and chooses to enter the nearest platoon. If the vehicle is not in a platoon, it will request

to join the nearest platoon. In turn, the platoon will add the vehicle to itself.

Figure 4: Sequence diagram for entering a platoon.

Figure 5 shows the scenario for when a vehicle is in a platoon and the driver chooses deactivate

the CACC system. If the vehicle is in a platoon and the user presses the button to deactivate

CACC, the vehicle will request to leave the platoon. In turn, the platoon will remove the vehicle

from itself.

Figure 5: Sequence diagram for leaving a platoon.

Figure 6 shows the scenario for how the vehicle functions if it is not a part of a platoon the same

scenario applies if the vehicle is the leader of a platoon. The vehicle controller will command the

camera to detect for an object or target vehicle to follow. The vehicle controller will then

command the radar sensors to detect the distance from the target vehicle. It will then calculate its

safe stopping distance based on its current speed. The vehicle controller will command the

brakes by wire to decelerate the vehicle while the safe stopping distance is less than the distance

from the target vehicle. The vehicle controller will command the electronic throttle to accelerate

the vehicle until the safe stopping distance is greater than the distance from the target vehicle.

Figure 6: Sequence diagram for a vehicle that is not part of a platoon or is the leader of a platoon.

Figure 7 shows the scenario for when a vehicle is a follower in a platoon. The vehicle controller

will command the camera to detect for a target vehicle to ensure that the target vehicle is there.

The vehicle controller will command the radio communication to get the GPS object of the target

vehicle. The vehicle controller will then find the target vehicle’s location and direction using its

GPS object and calculate the distance between itself and that vehicle. It will then calculate its

safe stopping distance based on its current speed. The vehicle controller will command the

brakes by wire to decelerate the vehicle while the safe stopping distance is less than the distance

from the target vehicle. The vehicle controller will command the electronic throttle to accelerate

the vehicle until the safe stopping distance is greater than the distance from the target vehicle.

Figure 7: Sequence diagram for a vehicle that a follower of a platoon.

Figure 8 shows the scenario for when there is an object that is not a vehicle in front of the car.

The vehicle controller will command the camera to detect for an object and the object’s speed. If

the object’s speed is 0 mph, the vehicle controller will command the user interface to alert the

driver that there is an obstacle that needs to be avoided. The vehicle controller will also

command the brakes by wire to begin braking in order to offset the chance of hitting the obstacle.

Figure 8: Sequence diagram for a vehicle that detects an obstacle ahead.

Figure 9 shows the scenario for a normal functioning vehicle in a two car platoon, and how the

vehicle checks for failure to start task or a memory leak. Everytime the vehicle controller

commands an object of the vehicle, it detects for a failure to start task and memory leaks. If there

is no failure, the vehicle continues functioning with the CACC system. If there is a failure,

however, the system will begin shutting down and a warning will be displayed to the user that

there is a system failure.

Figure 9: Sequence diagram for a vehicle in a platoon where the CACC system continuously

checks for software failures.

Figure 10 shows the scenario for a normal functioning vehicle in a two car platoon, and the radio

communication system fails. The vehicle controller will know if the radio communication system

fails because when it tries to use the communication to obtain the GPS object of the target

vehicle, no object will be returned. The vehicle controller then restarts the radio communication

system.

Figure 10: Sequence diagram for a vehicle in a platoon where the radio communication system

fails.

Figure 11 shows the scenario for when the vehicle controller attempts to command the throttle to

do an extreme acceleration that is not appropriate for the vehicle’s given context. The vehicle

controller monitors the throttle value and adjusts it if necessary before actually commanding the

electronic throttle to accelerate.

Figure 11: Sequence diagram for a vehicle in a platoon where the vehicle controller monitors the

throttle values before commanding the electronic throttle.

Figure 12 shows the scenario where the leader of the platoon runs into a scenario where it must

stop and then choose whether to tell the rest of the platoon to stop, or to move to adjacent open

lanes. The vehicle controller will command the camera to detect an object. If the object has a

speed of 0 mph, implying that it is an obstacle, the vehicle controller will command the radar

sensors to detect the object’s distance from the vehicle. The vehicle controller will command the

user interface to alert the driver of an obstacle. The vehicle controller will then calculate the safe

distance needed for stopping. If the safe distance is less than the distance from the obstacle, the

vehicle controller will command the brakes by wire to decelerate the vehicle. If the safe distance

is more than the distance from the obstacle, the vehicle controller will alert the driver to

maneuver to a different lane and will command the radio system to communicate to the

following vehicles to manually move to an adjacent lane.

Figure 12: Sequence diagram for when a leading vehicle in a platoon needs to avoid an obstacle

and it chooses whether to stop or move to an adjacent lane.

Figure 13 shows the scenario where the target vehicle is moving around a curve and the vehicles

in the adjacent lane appear to be in front of the driving vehicle. The vehicle controller commands

the camera to keep track of the target vehicle, so that it knows when the target vehicle is moving

around a curve.

Figure 13: Sequence diagram for when the vehicle and its target vehicle drive around a curve.

Figure 14 shows the scenario for when the vehicles in a platoon are travelling up or down a hill

and must maintain speed. The vehicle is continuously command the radar sensors to detect the

distance behind the target vehicle. It will then calculate its safe stopping distance based on its

current speed. The vehicle controller will command the brakes by wire to decelerate the vehicle

while the safe stopping distance is less than the distance from the target vehicle. The vehicle

controller will command the electronic throttle to accelerate the vehicle until the safe stopping

distance is greater than the distance from the target vehicle.

Figure 14: Sequence diagram for when the vehicle is travelling up or down a hill and must

maintain its speed and distance from the target vehicle.

State Diagrams:

The camera system starts by searching for an object, if the object is found, it moves to the

tracking object state. In the tracking object state, it senses the object’s speed and moves into the

sensing speed state. In the sensing speed state, if the object is lost, it switches back into the

looking for object state.

Figure 15: State diagram for camera.

The Electronic Throttle Control (ECT) can be in three main states: accelerating, maintaining

speed, and not accelerating. It transitions between the states depending on the target and safe

distances.

Figure 16: State diagram for ElectronicThrottle.

The GPS component transitions into two states simultaneously and remains active in those states.

It continuously locates the vehicle and also calculates direction of travel.

Figure 17: State diagram for GPS.

The Platoon’s initial state is the created state when two vehicles join up. When the Platoon

contains only the lead, the lead vehicle can disband the Platoon and therefore destroying it.

Figure 18: State diagram for Platoon.

The RadarSensor is in the sensing state when it is commanded by the VehicleController to sense

the target vehicle. When the radarSensor is in the Sensing state, it continuously senses the target

vehicle.

Figure 19: State diagram for RadarSensor.

The RadioCommunication system is initially in the receiving state, waiting to receive any

information from a following vehicle. While in the receiving state, the radio system can be

commanded by a following vehicle to transmit data to the following vehicle. The radio

communication system is now in the transmitting state where it will transmit the vehicle data to

another vehicle. While in the transmitting state, it can be commanded by the vehicle controller to

receive data from the target vehicle, transitioning the radio communication system to the

receiving state.

Figure 20: State diagram for RadioCommunication.

The security controller enters and constantly remains in the encrypting state while continuously

encrypting the data.

Figure 21: State diagram for SecurityController.

The UserInterface is initially in the No Alert state. In this state, no warning is displayed on the

dashboard of the vehicle. If the user interface is commanded by the vehicle controller to alert the

user it transitions to the Alerted state. In this state, the dashboard displays a warning message to

the driver. After a timeout period, the user interface will remove the alert and return to the No

Alert state.

Figure 22: State diagram for UserInterface.

The vehicle starts with the CACC system not activated. If the system is turned on it is now

activated and automatically in the solo state where it is not a part of a platoon. It can then search

for and join a platoon to become in the platoon state. It can then leave the platoon to go back to

the solo state. If the system is not activated, the user can turn on the system and it will be

activated. The user can turn off the system and it will no longer be activated only if it’s in the

Solo or System On state.

Figure 23: State diagram for Vehicle.

The vehicle controller simultaneously activates many sub-components and keeps those

components constantly running. When the vehicle controller is activated, it activates the radio,

user interface, radar, throttle, gps, brake, camera, and security controller systems. Then each sub-

system constantly runs its routine.

Figure 24: State diagram for VehicleController.

The brakes are initially not braking as the car is moving. If the distance between the target

vehicle becomes greater than the safe distance, the brakes take the above safe distance transition

to the braking state, where it begins braking. If the distance between the target vehicle becomes

less than the safe distance, the brakes begin braking.

Figure 25: State diagram for Brake.

5. Prototype

 Our prototype for the CACC system will display its main components and applications in

a visually pleasing way. Proper documentation of the system includes a set of scenarios whereby

the behavior of the system can be displayed. Our CACC prototype will describe some of these

scenarios in detail, and provide an animation to accompany the description. The user can select a

specific scenario with a simple press of a button, and both the description and animation will

appear. Designing our prototype in this way will allow the user to better imagine how CACC

works in the real world.

5.1. How to Run Prototype

 Due to its location on our project website, prototype interaction will require access to the

Internet. Our animations will be embedded Vimeo clips, which can only be viewed in browsers

that can decode H.264 videos in an HTML5 player. Such browsers include: Chrome 30+, Firefox

27+, Internet Explorer 11, Microsoft Edge, and Safari 9+. Full functionality can only be

guaranteed for operating systems that are still being supported by their proprietors. As of now,

the animation begins immediately upon pressing a specific scenario button.

Link to Prototype v1: https://cse.msu.edu/~rajend16/prototypes/prototype1.html

5.2. Sample Scenarios

Ford Motor Company has provided us with a set of six scenarios to consider when

outlining the behavior of CACC. One such scenario involves a vehicle’s behavior in a platoon: if

the lead vehicle in the platoon determines an emergency stop is necessary due to road conditions,

how should the rest of the vehicles in the platoon behave (Scenario Four)? Can the platoon

successfully stop or must the vehicles be diverted to adjacent lanes or the shoulder? The future

version of our prototype will include an animation and description of this scenario amongst the

rest, but for now, we have outlined the basic scenario of a vehicle entering a platoon.

https://cse.msu.edu/~rajend16/prototypes/prototype1.html

Figure 26: A vehicle (in red) just before entering a platoon (vehicles in green).

Figure 27: Vehicle after entering platoon.

6. References

[1] D. Thakore and S. Biswas, “Routing with Persistent Link Modeling in Intermittently

Connected Wireless Networks,” Proceedings of IEEE Military Communication, Atlantic City,

October 2005.

[2] Anayor, Chikamso, et al. “Cooperative Adaptive Cruise Control of A Mixture of Human

Driven and Autonomous Vehicles.” SoutheastCon 2018, 2018, doi:10.1109/secon.2018.8479268.

[3] Chang, Ben-Jye, et al. “Cooperative Adaptive Driving for Platooning Autonomous Self

Driving Based on Edge Computing.” International Journal of Applied Mathematics and

Computer Science, vol. 29, no. 2, 2019, pp. 213–225., doi:10.2478/amcs-2019-0016.

[4] “Cooperative Adaptive Cruise Control.” Cooperative Adaptive Cruise Control |

California Partners for Advanced Transportation Technology,

path.berkeley.edu/research/connected-and-automated-vehicles/cooperative-adaptive-cruise-

control.

[5] Ko, Wonshick, and Dong Eui Chang. “Cooperative Adaptive Cruise Control Using Turn

Signal for Smooth and Safe Cut-In.” IEEE Computer, 13 Dec. 2018.

[6] Milam, William. “Cooperative Adaptive Cruise Control++ (CACC++).” Ford Motor

Company.

[7] Milanes, Vicente, et al. “Cooperative Adaptive Cruise Control in Real Traffic

Situations.” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, 2014, pp.

296–305., doi:10.1109/tits.2013.2278494.

[8] Shladover, Steven E., et al. “Cooperative Adaptive Cruise Control: Definitions and

Operating Concepts.” Transportation Research Record: Journal of the Transportation Research

Board, vol. 2489, no. 1, 1 Jan. 2015, pp. 145–152., doi:10.3141/2489-17.

[9] Shladover, Steven E et al. “Using Cooperative Adaptive Cruise Control (CACC) to Form

High-Performance Vehicle Streams.” Berkeley California PATH Program, 2014,

https://escholarship.org/uc/item/3m89p611.

[10] U.S. Department of Transportation. “Cooperative Adaptive Cruise Control Taking Cruise

Control to the Next Level.” Federal Highway Administration,

www.fhwa.dot.gov/publications/research/ear/16044/16044.pdf.

[11] Wang, Ziran, et al. “A Review on Cooperative Adaptive Cruise Control (CACC)

Systems: Architectures, Controls, and Applications.” 2018 21st International Conference on

Intelligent Transportation Systems (ITSC), 2018, doi:10.1109/itsc.2018.8569947.

[12] Rajendran, Manish. “Team CACC3’s Starter Site for CSE435.” 2019.

http://cse.msu.edu/~rajend16/.

7. Point of Contact

For further information regarding this document and project, please contact Prof. Betty H.C.

Cheng at Michigan State University (chengb at msu.edu). All materials in this document have

been sanitized for proprietary data. The students and the instructor gratefully acknowledge the

participation of our industrial collaborators.

http://cse.msu.edu/~rajend16/

