

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Software Requirements Specification (SRS)

Project: Cooperative Adaptive Cruise Control++

Authors: Duale Mahat, Sasha Morford, Sarah Mostofizadeh, Mitchell Setsma, Katie Sydlik-

Badgerow

Customer: Mr. William Milam, Ford Motor Company

Instructor: Dr. James E. Daly

1 Introduction
This Software Requirements Specification document will overview the requirements needed

to develop the Cooperative Adaptive Cruise Control++ system. The requirements will include the

implementation of several subsystems. The subsystems necessary to implement the system

include cruise control, vehicle detection, and driving assist.
This section of this Software Requirements Specification document covers the purpose,

scope, and key definitions of the Cooperative Adaptive Cruise Control++ (CACC++) system. The

‘2 - Description’ section of the SRS will specify the perspective, functions, characteristics, and

constraints of the product. The ‘Description’ section will also include the assumptions,

dependencies, and requirements which are negligible in the current scope of the product.

The ‘3 - Specific Requirements’ section will outline every requirement which must be

implemented to have an outstanding product, and the ‘4 - Modeling Requirements’ section will

provide the design and domain for each of these requirements. The ‘5 - Prototype’ section will

describe what an ideal prototype would consist of and it will include example designs.
Every outside source that is used in the production of this document will be provided in the ‘6

- Resource’ section. Additionally, the ‘7 - Point of Contact’ section indicates where further

information regarding the document can be obtained.

1.1 Purpose
The general purpose of this Software Requirements Definition document is to outline the

requirements and design of the Cooperative Adaptive Cruise Control++ system. The intended

audience of this document is first the customer, to ensure that the requirements meet their

specifications. The document should also be used as a guide to the developers producing the

Cooperative Adaptive Cruise Control++ system, to ensure that all requirements have been met.

1.2 Scope
The product to be implemented is the Cooperative Adaptive Cruise Control++ (CACC++)

system. This project is a part of the Automated Vehicle Control domain. The application of the

CACC++ system’s software is to assist the user in maintaining safe control over the motion of the

vehicle. The system will assist a vehicle in maintaining a speed that is equivalent to the speed of

the vehicle in its front. This automatic speed matching eases the user’s strain on long term

driving.

The CACC++ should work by maintaining a vehicle speed which is either specified by the

user [2] or determined by matching the speed of the vehicle in front of the user’s vehicle. The

CACC++ system determines and calculates the speed of surrounding vehicles using radar,

sensors, and GPS communication [2].

Formatted: Normal

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

The CACC++ system should decrease the number of rear end collisions, due to safe

following distances and speed adjustments. Thus, one benefit of the CACC++ is the increased

safety that it provides to both the occupants of the vehicle and people in the vicinity. The system

should also benefit the producing company, Ford Motor Company. By creating a system which

increases safety, the cost of vehicles with the system implemented can increase. The system

should both produce revenue for Ford Motor Company and establish the company as the industry

leaders in CACC++.

One objective is developing a CACC++ system that is secure, and thus free from any sort of

malicious attacks. Another objective is to implement a platoon system, which is a collection of

cars with CACC++ activated and maintains an equivalent speed for each car in the platoon. Thus,

the platoon prevents a vehicle in the rear from going faster than the vehicles in front of it and

creates an ease of travel for the vehicles in the platoon. The CACC++ system should be reliable

and safely react when there are software and/or hardware failures. The system should also be

intuitive, easy to use, and aid users while driving in adverse conditions.
The main goals of the project are as follows: produce a system that stays under budget,

release adequately tested software, and add value to vehicles through the introduction of the

CACC++ system. Value can be added by decreasing the chance of user errors. Another goal is to

increase safety for vehicle occupants with this software installed.

The software application will assist the user in maintaining control over the motion of the

vehicle in a variety of circumstances. It will do this by making appropriate decisions and acting

on them through communication with the hardware. The CACC++ will not function unless the

user turns on the system. Not functioning means that the system will not take in sensory data

and/or modify the motion of the vehicle. The system’s software will only take commands from

the user or the system itself.

1.3 Definitions, acronyms, and abbreviations
Table 1: Acronym for the Cooperative Adaptive Cruise Control++ System

Acronym Phrase

CACC++ Cooperative Adaptive Cruise Control++

Table 2: Definitions for the Cooperative Adaptive Cruise Control++ System

Term Definition

Cooperative

Adaptive

Cruise

Control++
System

Defined in the “Cooperative Adaptive Cruise Control++” document as a

system which “attempts to maintain a constant forward vehicle speed, as

specified by the driver. In addition, using a combination of forward radar

and camera sensors, CACC detects when another vehicle (called the target

vehicle) is in its forward path and adjusts its own speed via throttle and

braking control to maintain a safe following distance behind it.” [2]

GPS

Information

Information which contains a vehicle’s location, speed, and direction. This

information is broadcasted to and received by surrounding vehicles. [2]

Platoon A group of vehicles that follow a lead vehicle. All vehicles receive

broadcasted GPS information about the other vehicles and have equivalent

speeds. [2]

Radar A system that detects the presence, direction, distance, and speed of a target

vehicle and/or object. [2]

Throttle A device that controls both the speed and the flow of fuel in an engine. [2]

Safe Spacing The distance between a target and a trailing vehicle that is considered a safe

following distance. [2]

Vision/Camera

Sensors

Sensors which capture images that determine the presence of target vehicles

and objects in their field of view. [3]

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Actuators Devices that control vehicles’ longitudinal accelerations, lateral directions,

and vertical displacements. [4]

Supervisory
Controller

A controller that determines which intent is most appropriate to be

commanded to the actuator. [2]

Target Vehicle A vehicle that has been detected by the CACC++ system using sensors and

radar. This vehicle’s speed is detected and matched by a vehicle with the

CACC++ system activated. [2]

1.4 Organization
The section of this Software Requirements Specification document introduced the scope and

key definitions needed for the Cooperative Adaptive Cruise Control++ (CACC++) system. The ‘2

- Description’ section of the SRS will specify the perspective, functions, characteristics, and

constraints of the CACC++ product. The ‘Description’ section will also designate which tasks are

not necessary to be completed in the initial development of the system.

The remainder of the Software Requirements Specification will define the requirements

needed to develop the CACC++ and the scenarios that must be accounted for. The ‘3 - Specific

Requirements’ section will outline every requirement which must be implemented to produce a

successful system. The ‘4 - Modeling Requirements’ section will provide the design and domain

for each of the requirements which are listed in section 3. The ‘5 - Prototype’ section will

describe an ideal prototype and will example scenarios and responses to the scenarios.
The ‘6 - Resource’ section of the SRS will list every resource that is used in the creation of

the SRS. Additionally, the ‘7 - Point of Contact’ section indicates where further information

regarding the document and its contents can be obtained.

The Software Requirements Specification document covers the purpose, scope, and key

definitions of the Cooperative Adaptive Cruise Control++ system. The SRS will specify the

perspective, functions, characteristics, and constraints of the product. It will also include the

assumptions, dependencies, and requirements which are negligible in the current scope of the

product. The design and domain for each of these requirements will be provided. There will be an

overview of an ideal prototype and its design. The SRS also includes a ‘Resource’ and ‘Point of

Contact’ section.

2 Overall Description
This section gives an overview of the product. How the product interacts with its

surroundings will also be discussed in this section. This will include other system dependencies

and user interactions.

2.1 Product Perspective
The product is designed for the motor vehicle industry. The CACC++ will be part of the

vehicle’s larger system. This relationship is shown in Figure 1. The Cooperative Adaptive Cruise

Control++ system will be initiated via a button on the vehicle’s steering wheel. The interface will

not be complex. A simple ‘on’ and ‘off’ switch will be provided to the user.

The vehicle and CACC++ will have a software interface. This interface will include speed

exchange. The CACC++ will take over speed operations once engaged. The interface will also

display warnings outputted from the CACC++ system. The CACC++ will use the new hardware

systems: radar and camera sensors. These hardware features will be connected to the vehicle and

may be used for safety features in the future. However, currently the camera and radar sensors

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

will be physically connected and used for location detection for the CACC++ system. The

location detections will provide information to determine the correct speed of the vehicle.
Memory will be a constraint that needs to be taken into consideration. In theory, there can be

an infinite number of objects that are surrounding the vehicle. Each object will take up memory

and have location and dimension characteristics attached to the object. Therefore, there must be a

system in place to eliminate the risks associated with memory overflow. Additionally, time is an

important constraint for the CACC++, thus the system needs optimized code and proficient

hardware. Seconds while driving could be the difference between a user's life or death.

The operation that this system has access to, is speed. Given these constrains, the system

must be able to account for all possible scenarios. This includes, but is not limited to, hill terrain,

sudden breaking of objects ahead, and vehicles with different braking distances. The users can

decide to customize the CACC++ System with their desired minimum car follow distance.

Figure 1: The relationship between the vehicle and the CACC++ system.

2.2 Product Functions
How the product is functions will be determined by simple interactions of systems within the

CACC++. The whole purpose of the system is to maintain a constant forward speed, either by

matching the speed of a leading vehicle or allowing the user to specify their vehicle’s speed.

Through a combination of radar and camera sensors, the CACC++ detects a target vehicle in its

forward path. This will allow for the adjustment of speed, to maintain a safe following distance.

The adjustment is done automatically by the system, through transmitted data, or by user

specification.

On the user-display window, the user has the option to match their vehicle’s speed to the

speed of the vehicle in front of it. The vehicle with a CACC++ system installed also transmits

location information to its trailing vehicle, thus creating a platoon of vehicles with safe following

distances. The system will utilize encapsulation because the user of each vehicle does not need to

know how the GPS information is transmitted, but the user sees all the relevant information on a

screen to start the chain of relevant actions.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 2: A diagram of high-level goals of the CACC++.

2.3 User Characteristics
The user, a driver, must meet all requirements to be a certified driver in the context of the law

that is applicable to the area of operation. The user should be able to understand (through reading

or listening) simple information details displayed on a screen such as the location, speed,

performance and direction of a target vehicle.

2.4 Constraints
The CACC++ will have the constraints of cost, time, memory, ability to function with current

systems, camera technology, radar technology, parallel operations, language differences, and

security [5]. The systems in parallel will be the CACC++ and the normal functions of the vehicle.
There will be a cost and time restriction for this feature. As in other car features, this feature

will have a value to the customer and thus the company. However, if this the cost exceeds the

value, then the feature is not worth implementing. The feature will also have a time constraint.

There is a window for the time that this feature will be relevant. If the process is prolonged more

risks are added. For example, the risk that the update will become outdated before release.

There are other constraints beyond cost and time that apply to the CACC++ system. The

system will be implemented in a functional vehicle. It is important that the new system does not

interfere with the current systems. This could risk the safety of the user. For example, the braking

system needs to work as it did previously, but with an added feature. The camera and radar

technology currently available are also a limiting factor. The system will not have the ability to

use radar or camera in a way that has not been developed. The system must be able to run as a

parallel operation. Other functions will be running at the same time as the CACC++. It is vital

that the CACC++ will not stop the other systems from functioning when it is engaged. The

system will also have constraints pertaining to language. The other coding languages used in the

vehicle will have to be compatible to the one used for the CACC++. The language used already in

the vehicle should be highly considered for use in the CACC++ system. Security will also be a

constraint. The CACC++ has access to acceleration. If this system is open to be tampered with,

the safety of the user is compromised.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

There must be safety features that have been tested and proven effective before the product is

released. The CACC++ will automatically control the vehicle, in place of a human driver. There

are many unknown actions that a human subconsciously makes when maintaining the direction

and speed of a vehicle. When replacing a human operator there is the risk of overlooking one of

these actions/procedures. Therefore, it is vital for the system to be extensively tested. Also, this

system will be designed to work in adverse conditions. This includes but is not limited to snow,

rain, or hail.
The system will not allow the vehicle to operate faster than the posted speed limit. This

principle will also apply for speed limit changes in construction zones. This information will be

broadcasted from the GPS. The system cannot function on unpaved roads. This is to prevent the

system from needing to handle situations where regulated stops occur. This includes situations

such as traffic lights and stop signs where the system will not be able to function properly.

2.5 Assumptions and Dependencies
When developing the system, it can be assumed that the car has hardware with the ability to

accelerate and break. Additionally, it can be assumed that the previous software for cruise control

works. It can be assumed that the system will not be turned on when the vehicle is on unpaved

roads. The assumptions about the user interaction are that the user has full driving capabilities and

knows when the system should be turned on and off.

2.6 Approportioning of Requirements
For future releases, the use of the cameras and sensors may provide backing up assistance.

Additionally, the CACC++ should be able to interact with similar systems that have been

produced by other companies. Also, the system will get periodical updates and occasional bug

fixes.

3 Specific Requirements
1. HARDWARE

1.1. Sensors
1.1.1. Radar: The radar detects, identifies, and tracks a target vehicle in its

forward path. The radar transmits the speed of the target vehicle.
1.1.2. Camera: The camera identifies an obstacle in the path of the vehicle.

1.2. Global Positioning System (GPS)
1.2.1. The GPS collects the vehicle’s speed, location, and direction. This is done

through communication with a satellite-based data system.
1.2.2. In the case of radar failure, the GPS collects the position of the leading

vehicle.
1.3. Vehicle Controller

1.3.1. The main vehicle facilitates adjustments to maintain a safe following

distance. The controller will communicate with the GPS, the radar, and the

camera. The minimum distance between vehicles will be set by the user or

automatically calculated by the system.
1.3.2. The vehicle controller also controls all the other subsystems, including but

not limited to steering, brake lights, and turn signals.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

1.3.3. The controller also triggers commands to the brakes and throttle to ensure a

safe following distance is maintained.
1.3.4. The controller implements radio communication between a platoon of

vehicles.

1.4. Radio Communication

1.4.1. The radio communication sends information between vehicles in the

platoon. It also handles the infrastructure, ensuring the broadcast of speed and

location of vehicles within the platoon.

2. USER INTERFACE
2.1. The Graphical User Interface

2.1.1. The user interface provides the user interaction with the CACC++ system

through alerts or warnings directed to the user through text on a screen.

2.1.2. The interface allows visual display of information such as the speed, the

target vehicle distance, and the description of target vehicle performance. The

performance information includes target vehicle braking and acceleration

capabilities in G units of gravity.
2.1.3. The GUI will notify the user in the circumstance where an imminent

diversion is needed.

3. SAFETY AND MEMORY
3.1. Memory

3.1.1. Memory should not be allocated dynamically, as it will require more time

at runtime. Thus, static memory will be used.
3.2. Security

3.2.1. In the case of suspected software infiltrations, the system should

automatically turn off itself
3.3. Multitasking control

3.3.1. In the event where the vehicle controller receives several requests relating

to different actions, the controller should be able to decide the requests

completion appropriately.

4. USER

4.1. User/ Vehicle Operator
4.1.1 The user, provided they met the user characteristics described above,

interacts with the GUI. This interaction is completed through an initial button

press to start or stop the CACC++ system. The remainder of the interactions are

as described in section 5 of the ‘Specific Requirements’.

4 Modeling Requirements

The use case diagram of the CACC++ system is as follows:

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 3: use-case for the CACC++ system

Use Cases

1: Use Case: Start System

Actor: Driver

Type: Primary, essential

Description: The user starts the CACC++ system through a button press “Start” in

the Graphical User Interface. This initiates the system and all its related features

Cross References: Requirements: 1,2,3,4

 2: Use Case: Stop System

Actor: Driver

Type: Primary, essential

Description: The user stops the CACC++ system through a button press “Stop” in

the Graphical User Interface. This stops the system and all its related features.

Cross References: Requirements: 1,2,3,4

 3: Use Case: Join platoon

Actor: Driver

Type: Primary, essential

Description: The user decides to join an existing platoon through a button press

“Join” in the Graphical User Interface. This makes the vehicle join the platoon

receiving and transmitting information amongst the platoon.

Cross References: Requirements: 1: 1.2, 1.4, 2

 4: Use Case: Detect/Identify/track target

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Actor: Radar

Type: Primary, essential

Description: The radar detects and identifies target information.

Cross References: Requirements: 1.1.1 , 1.1.2

 5: Use Cases: Identify target, estimate speed, Backup Radar

Actor: Camera

Type: Primary, essential

Description: The camera either identifies the target vehicle, estimates the speed or

acts as a backup for the radar

Cross References: Requirements: 1.1.1 , 1.1.2 , 1.4

 6: Use Case: Adjust Speed

Actor: Vehicle Controller

Type: Primary, essential

Description: The Vehicle controller adjusts the speeds through the use of the

brakes and throttles.

Cross References: Requirements: 1.3

 7: Use Case: transmit

Actors: Radar, Camera, Lead Vehicle

Type: Primary, essential

Description: Information is transmitted by each of the actors.

Cross References: Requirements: 1, 2, 3, 4

 8: Use Case: Send Data

Actor: Radio

Type: Primary, essential

 Description: Sends information between vehicles in the platoon.

Cross References: Requirements: 1.4

 9: Use Case: Send GPS Data, Broadcast Data

Actor: Lead Vehicle

Type: Primary, essential

 Description: Sends and broadcast GPS data to the trailing vehicle.

Cross References: 1,2,3,4

 10: Use Cases: Get Location, aid failed Radar

Actor: GPS

Type: Primary, essential

 Description: Gets the location of a vehicle and acts as a helper during radar failure
 Includes: Satellite Data

 Cross References: Requirements: 1.2, 1.1.1

 11: Use Cases: Satellite Data

Actor: External satellite

Type: Secondary

 Description: Contains relevant GPS information of vehicles in the platoon.

 Cross References: Requirements: 1.2

A high-level class diagram includes the following classes:

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Element Name Description

AccelerationMonitor Monitors and implements the

speed changes of items

controlled by the

CACC++System.

Brief description (e.g.,

purpose and scope).

Attributes

 mph : Float The speed of the items

controlled by the

CACC++System.

 accelerationMilesPerSecSqu :

Float

The acceleration in

(miles/seconds^2).

Operations

 Brake() This operation will decrease

the speed of all the items in

the CACC++System.

Relationships VehicleSupervisory The VehicleSupervisory

notifies AccelerationMonitor

if a speed change is

necessary.

 ThrottleController The acceleration of an item

impacts the gas consumption

of an item.

Element Name Description

CACC++System The overall system which is

created when the CACC++

button is pressed. After the

button is pressed, the system

is activated.

Relationships VehicleSupervisory The VehicleSupervisory

software makes the decisions

that the CACC++

implements.

 Platoon There can be multiple

platoons using the CACC++

system at one time.

UML Extensions Aggregation with obstacle.

Element Name Description

GPS The GPS software that a car

utilizes.

Attributes

 location : Location The location of a PlatoonCar.

UML Extensions GPS has composition with

PlatoonCar.

Element Name Description

GraphicalUserInterface The screen that the user can

utilize to direct the

CACC++’s decisions

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Attributes

 message : String The message that is displayed

to the user.

Operations

 DisplayWarning(Integer) Displays the message

associated with the warning

inputted.

UML Extensions GraphicalUserInterface has

composition with PlatoonCar.

Element Name Description

LaneAssist Controls the fuel flow of

items.

Operations

 Adjust() This operation will adjust the

lane of an item.

Relationships VehicleSupervisory The VehicleSupervisory

notifies LaneAssist when a

lane adjustment is necessary.

Element Name Description

Obstacle Anything the sensors or GPS

locate.

Attributes

 location : Location The location of the obstacle.

 avoid : Boolean Whether or not vehicles with

CACC++ implemented

should avoid the obstacle.

Relationships Sensor The sensors on should detect

the obstacles in the path of a

vehicle.

UML Extensions PlatoonCar is derived from

obstacle. Aggregation with

CACC++System.

Element Name Description

PlatoonCar A vehicle that is eligible to be

part of a platoon (vehicles

with the CACC++ system

installed).

Attributes

 speedInMPH : Float The speed of the PlatoonCar.

 breakingDistance : Float The distance that the

PlatoonCar must have to

break.

 followingDistance : Float The distance that the

PlatoonCar must be from the

car in front of it.

Operations

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

 AvoidObject() This operation will tell the

PlatoonCar if it should avoid

some obstacle.

 ScanForPlatoon() This operation will check for

platoons in the area that the

PlatoonCar can join.

 ListenForSignals() This operation will listen to

radio signals for information.

 SendSignals() This operation will send radio

signals to other PlatoonCars.

Relationships VehicleSupervisory The VehicleSupervisory is

the software that commands

the PlatoonCar.

 Radio The radio transmits

information to a PlatoonCar.

UML Extensions PlatoonCar is derived from

Obstacle. PlatoonCar has

composition with Radio,

Sensor, GPS,

GraphicalUserInterface, and

Platoon.

Element Name Description

Platoon A collection of PlatoonCars.

Attributes

 speedInMPH : Float The speed of the PlatoonCars

in the Platoon.

 maxSpeedInMPH : Float The maximum legal speed for

the cars in the Platoon.

 leadCar : PlatoonCar The PlatoonCar at the front of

the Platoon.

Operations

 Split() This operation will break the

collection of PlatoonCars into

multiple Platoons.

 Brake() This operation will decrease

the speed of all the

PlatoonCars in the Platoon.

Relationships CACC++System There can be multiple

platoons using the CACC++

system at one time.
UML Extensions Platoon has composition with

PlatoonCar.

Element Name Description

Radio Allows transmission of

information from one vehicle

to another.

Relationships PlatoonCar The radio transmits

information to a PlatoonCar.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

UML Extensions Radio has composition with

PlatoonCar.

Element Name Description

Sensor A sensor on a vehicle.

Operations

 Warning() An operation that detects

objects.

Relationships Obstacle The sensors detect obstacles.

UML Extensions Sensor has composition with

PlatoonCar.

Element Name Description

ThrottleController Controls the fuel flow of

items.

Attributes

 GallonsReleasing : Float The amount of gas being

released in gallons.

Operations

 ReleaseGas() This operation will release

gas from an item.

Relationships VehicleSupervisory The VehicleSupervisory

monitors the fuel

consumption via the

ThrottleController.

 AccelerationMonitor The acceleration of an item

impacts the gas consumption

of an item.

Element Name Description

VehicleSupervisory The software that makes the

decisions on how the

CACC++System responds to

situations.

Operations

 InititateLaneCorrection() This operation will notify the

user of a PlatoonCar if their

vehicle is changing lanes

while the CACC++ is

activated.

 InitiateSpeedCorrection() This operation will decide if

it is necessary to adjust the

speed of all the PlatoonCars

in the Platoon.

Relationships CACC++System The VehicleSupervisory

software makes the decisions

that the CACC++

implements.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

 PlatoonCar The VehicleSupervisory is

the software that commands

the PlatoonCar.

 LaneAssist The VehicleSupervisory

notifies LaneAssist when a

lane adjustment is necessary.

 ThrottleController The VehicleSupervisory

monitors the fuel

consumption via the

ThrottleController.

 AccelerationMonitor The VehicleSupervisory

notifies AccelerationMonitor

if a speed change is

necessary.

Figure 4: The high-level class diagram of the CACC++ system.

The scenarios of the system and their corresponding sequence diagrams are as

follows:

 Sequence diagrams are the interactions of different objects in time. They can show data

structures involved in the scenario and communication between them. The full descriptions of the

scenarios listed below can be found in section 5.2.

Scenario 1: The system is required to create a new task, but the memory is full. Since CACC++

does not use dynamic allocating memory the system must clear memory in a different way [6].

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 5: Sequence Diagram for Scenario 1

Scenario 2: The radio connection fails and before warning the user, the system should try to

restart the radio. This will save time and improve the user experience [6].

Figure 6: Sequence Diagram for Scenario 2

Scenario 3: The Acceleration monitor catches abnormal amounts of acceleration that may be

dangerous to the user. The monitor catches the error in time and corrects the acceleration based

on other data it has analyzed [6].

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 7: Sequence Diagram for Scenario 3

Scenario 4: Adverse road and weather conditions force the lead platoon car to make the decision

to stop and get off the road. Is there a shoulder to pullover on, or does the platoon need to stop in

an empty lane? The system if working properly, the lead vehicle should decide where to pull the

platoon over [6].

Figure 8: Sequence Diagram for Scenario 4

Scenario 5: During a turn the radar may be deceived into thinking that a vehicle is in its

upcoming path [6].

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 9: Sequence Diagram for Scenario 5

Scenario 6: The lead car in the platoon is beginning its accent over a large hill. To maintain

speed the vehicle needs to accelerate. This means that the following cars also need to accelerate at

the appropriate time [6].

Figure 9: Sequence Diagram for Scenario 6

The state diagram of the CACC++:

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

Figure 10: State Diagram for Scenario 6

 The state diagram above displays all the changes that the user can make to the

system while it is turned on. The System starts when the user presses the start button for

the CACC++. This then begins the boot process for the main program. Once the

CACC++ is successfully booted the user interface appears with relevant information for

the user. Now the user has the choice to turn off the system, set a speed, or join a platoon.

If the user decides to set a speed, they press the appropriate buttons, and after they release

the button the system returns to the same user interface as previous. If they elect to join a

platoon, they press the appropriate button, then are immediately prompted with a screen

to set the follow distance. Once the follow distance has been set the system returns the

user back to the same user interface with relevant data. The last option is to turn off the

system. This can be done by simply pressing the appropriate button. The process then

ends.

5 Prototype
The prototype will display a system that will be able to safely assist a driver in maintaining

control over their vehicle. It will be able to function accordingly, and in a safe and expected

manner, in the six scenarios defined below. The user will have access to an interface that will

show the communication between the system and the user. In this interface, the system will

display all automatic decisions as well as required and expected input from the driver.

5.1 How to Run the Prototype
The prototype will be accessible on our website and through a web browser a user will be

able to run the system. The interface of our prototype will explore the six scenarios previously

mentioned and will be able to properly depict these scenarios, and show the user how the system

makes adjustments automatically. By the creation of the first prototype the system will provide a

basic interface for the user to understand while testing the prototype. The final prototype will

have all required functionality of the system and will be able to act autonomously in making

decisions to assist a driver in the required scenarios.

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

5.2 Sample Scenarios
Using the prototype, the user will be able to run through six main scenarios to test the

system’s functionality. Each scenario will challenge the system in a different manner in order to

ensure that it has all required functionality. These scenarios are described as follows.
In Scenario 1 a vehicle is in a platoon of two and is the trailing vehicle. Everything is

working as expected and there is a task in the vehicle controller that cannot start due to the lack of

memory. While dynamically allocated memory is not used, each instance of a task starting,

procedure called, or object created does require memory to be allocated by the operating system

(OS). The vehicle controller (VC) creates individual objects to track targets. One of the targets is

the lead vehicle; others are vehicles that are not part of the platoon. These objects will likely be

created to detect failure to start tasks. The system should be able to diagnose a lack of memory

and decide how to recover.
For Scenario 2 a vehicle is in a platoon of two and is the trailing vehicle. Everything is

working according to plan when the radio system no longer responds. Assume the radio system

also has some dynamic object creation/destruction to track communication links to multiple

vehicles and to the infrastructure. If a failed garbage collection scheme occurred, the radio system

should be restarted by a command from the VC.
Scenario 3 has a coding error in the arbitration logic within the vehicle supervisory

controller, not caught during system verification and testing. This situation results in a large

acceleration command to the throttle controller that is inappropriate given the current system

context. An independent monitoring function detects the discrepancy between the commanded

value to the throttle controller and the system context based on system inputs and state variables,

and determines that the throttle command must be reduced to a more moderate value.
In Scenario 4 the lead vehicle in the platoon determines an emergency stop is required

due to road conditions. Based on current state of the platoon and the vehicle performance

envelopes the platoon decides if it should stop or divert its members to adjacent empty lanes or

shoulder.
Scenario 5 explores when traffic in adjacent lanes can appear to be in the anticipated path

of the lead vehicle. This is especially true for large trucks which have a large radar signature. The

system must discriminate real targets from false targets when more than one moving vehicle is

detected.
Lastly, Scenario 6 tests when traveling in a platoon in moderately hilly terrain vehicles

need to provide additional torque to maintain speed and separation. The system must ensure that

all members of the platoon maintain speed and separation when going up or down a hill.
In each of these scenarios our prototype will display to the user any changes in their

vehicles speed as well as the speed of the vehicles in the platoon. Warning messages, speed

updates, platoon status, and system control access will all be displayed to the user, and available

on the user’s steering wheel and dashboard. All vehicles in the platoon will be in communication

with each other internally and will relay relevant information to their drivers.

6 References

Start of your text.
[1] D. Thakore and S. Biswas, “Routing with Persistent Link Modeling in Intermittently

Connected Wireless Networks,” Proceedings of IEEE Military Communication, Atlantic

City, October 2005.

[2] Cooperative Adaptive Cruise Control++ (CACC++) [Online] / auth. Milam Mr. William.

- http://www.cse.msu.edu/~cse435/Projects/F2018/ProjectDescriptions/cacc.pdf

http://www.cse.msu.edu/~cse435/Projects/F2018/ProjectDescriptions/cacc.pdf

Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information) have

been made by Betty H.C. Cheng, Michigan State University (chengb at chengb.cse.msu.edu)

[3] Introductory guide to

sensors: https://www.keyence.com/ss/products/sensor/sensorbasics/vision/info/

[4] Actuator definition : Car manufacturing [online] /

https://www.actuatorzone.com/blog/automotive-industry/linear-actuators-automotive-

industry/

[5] K. E. Wiegers, "SRS Template IEEE," p. 8, 1999.

[6] “The Project.” Team CACC++1, cse.msu.edu/~sydlikb1/.

7 Point of Contact

For further information regarding this document and project, please contact Dr. James E.

Daly at Michigan State University (dalyjame at cse.msu.edu). All materials in this

document have been sanitized for proprietary data. The students and the instructor

gratefully acknowledge the participation of our industrial collaborators.

https://www.keyence.com/ss/products/sensor/sensorbasics/vision/info/
https://www.actuatorzone.com/blog/automotive-industry/linear-actuators-automotive-industry/
https://www.actuatorzone.com/blog/automotive-industry/linear-actuators-automotive-industry/

	Software Requirements Specification (SRS)
	Project: Cooperative Adaptive Cruise Control++
	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Definitions, acronyms, and abbreviations
	1.4 Organization

	2 Overall Description
	2.1 Product Perspective
	2.2 Product Functions
	2.3 User Characteristics
	2.4 Constraints
	2.5 Assumptions and Dependencies
	2.6 Approportioning of Requirements
	3 Specific Requirements
	4 Modeling Requirements
	5 Prototype
	5.1 How to Run the Prototype
	5.2 Sample Scenarios
	6 References
	[1] D. Thakore and S. Biswas, “Routing with Persistent Link Modeling in Intermittently Connected Wireless Networks,” Proceedings of IEEE Military Communication, Atlantic City, October 2005.
	[2] Cooperative Adaptive Cruise Control++ (CACC++) [Online] / auth. Milam Mr. William. - http://www.cse.msu.edu/~cse435/Projects/F2018/ProjectDescriptions/cacc.pdf
	[3] Introductory guide to sensors: https://www.keyence.com/ss/products/sensor/sensorbasics/vision/info/
	[4] Actuator definition : Car manufacturing [online] / https://www.actuatorzone.com/blog/automotive-industry/linear-actuators-automotive-industry/
	[5] K. E. Wiegers, "SRS Template IEEE," p. 8, 1999.
	[6] “The Project.” Team CACC++1, cse.msu.edu/~sydlikb1/.
	7 Point of Contact

