
1

Software Testing

Testing: Our Experiences

Software
to be tested

Test Case

Output

2

When to Stop?

Software
to be tested

Test Case

Output

Enough?
No

Yes

Test Case
Generation

Verification

Test Coverage

Sorting
Program

A Real Testing Example
SPECS:

Takes a list
of numbers;
returns a

sorted list.

{1,3,2}
{1,2,3}
{3,2,3}

{}
{-1, -2}

Just a list.
A sorted list.
Repeated entry.

Empty list.
Negative numbers.

Test Cases

{1, 2, 3}
Output
{1, 2, 3}
Output
{2, 3, 3}
Output

{}
Output
{-2, -1}
Output

3

Automated Testing

Software
to be tested

Test Case

Output

Enough?
No

Yes

Test Case
Generation

Verification

Test Coverage

Automated Testing

Software
to be tested

Test Case

Output

Coverage
Evaluator

Test Case
Generator

Verifier
OR

Test Oracle

Test
Specs

4

Testing the New Version

Original
Test
Cases

Original
Software

Modified
Software

New
Test
Cases

Regression Testing

Original
Test
Cases

Original
Software

Modified
Software

New
Test
Cases

5

•  Process of determining whether a
task has been correctly carried out
[Schach ’96]

•  Goals of testing
–  Reveal Faults

•  Correctness
•  Reliability
•  Usability
•  Robustness
•  Performance

What is Testing?

Conflicting Goals?

Types of Testing
•  Execution-based Testing
•  Non-execution based Testing

•  Discussion

6

Execution-based Testing
•  Generating and Executing Test
Cases on the Software

•  Types of Execution-based Testing
–  Testing to Specifications

•  Black-box Testing
–  Testing to Code

•  Glass-box (White-box) Testing

Black-box Testing
•  Discussion: MAC/ATM Machine
Example
–  Specs

•  Cannot withdraw more than $300
•  Cannot withdraw more than your account

balance

Software x

Balance

7

White-box Testing
•  Example

INPUT-FROM-USER(x);

If (x <= 300) {

 INPUT-FROM-FILE(BALANCE);

 If (x <= BALANCE)

 GiveMoney x;

 else Print “You don’t have $x in your account!!”}

else

 Print “You cannot withdraw more than $300”;

Eject Card;

1

2

3

4

5

6

x: 1..1000;
Generate test cases

to cover each statement

Discussion
•  Which is superior?
•  Each technique has its strengths –
Use both

8

Determining Adequacy
•  Statement coverage
•  Branch coverage
•  Path coverage
•  All-def-use-path coverage

Surprise Quiz
•  Determine test cases so that each
print statement is executed at least
once

input(x);

if (x < 100)

 print “Line 1”;

else {

 if (x < 50) print “Line 2”

 else print “Line 3”;

}

if

1 if

2 3

end

begin

x<100 x>=100

x>=50 x<50 x>=100 x>=100

9

Non-execution Based
•  Walkthroughs

–  Manual simulation by team leader
•  Inspections

–  Developer narrates the reading
•  Key Idea

–  Review by a team of experts: Syntax
checker?

•  Code Readings
•  Formal Verification of Correctness

–  Very Expensive
–  Justified in Critical Applications

•  Semi-formal: Some Assertions

Simulation
•  Integration with system hardware is
central to the design

•  Model the external hardware
•  Model the interface

•  Examples
•  Discussion

10

Boundary-value Analysis
•  Partition the program domain into
input classes

•  Choose test data that lies both
inside each input class and at the
boundary of each class

•  Select input that causes output at
each class boundary and within each
class

•  Also known as stress testing

Testing Approaches
•  Top-down
•  Bottom-up
•  Big Bang

•  Unit testing
•  Integration testing
•  Stubs
•  System testing

11

Mutation Testing
•  Errors are introduced in the
program to produce “mutants”

•  Run test suite on all mutants and
the original program

Test Case Generation
•  Test Input to the Software
•  Some researchers/authors also
define the test case to contain the
expected output for the test input

12

Category-partition Method
•  Key idea

– Method for creating functional test
suites

–  Role of test engineer
•  Analyze the system specification
• Write a series of formal test specifications

–  Automatic generator
•  Produces test descriptions

Steps
•  Decompose the functional specification

into functional units
–  Characteristics of functional units

•  They can be tested independently
•  Examples

–  A top-level user command
–  Or a function

•  Decomposition may require several stages
•  Similar to high-level decomposition done

by software designers
–  May be reused, although independent

decomposition is recommended

13

Steps
•  Examine each functional unit

–  Identify parameters
•  Explicit input to the functional unit

–  Environmental conditions
•  Characteristics of the system’s state

•  Test Cases
–  Specific values of parameters
–  And environmental conditions

Steps
•  “Test cases are chosen to maximize

chances of finding errors”
•  For each parameter & environmental

condition
–  Find categories

•  Major property or characteristic
•  Examples

–  Browsers, Operating Systems, array size
•  For each category

–  Find choices
»  Examples: (IE 5.0, IE 4.5, Netscape 7.0), (Windows

NT, Linux), (100, 0, -1)

14

Steps
•  Develop “Formal Test Specification”
for each functional unit
–  List of categories
–  Lists of choices within each category

•  Constraints
•  Automatically produces a set of
“test frames”
–  Consists of a set of choices

AI Planning Method
•  Key Idea

–  Input to Command-driven software is a
sequence of commands

–  The sequence is like a plan
•  Scenario to test

–  Initial state
–  Goal state

15

Example
•  VCR command-line software
•  Commands

–  Rewind
•  If at the end of tape

–  Play
•  If fully rewound

–  Eject
•  If at the end of tape

–  Load
•  If VCR has no tape

Preconditions & Effects
•  Rewind

–  Precondition: If at end of tape
–  Effects: At beginning of tape

•  Play
–  Precondition: If at beginning of tape
–  Effects: At end of tape

•  Eject
–  Precondition: If at end of tape
–  Effects: VCR has no tape

•  Load
–  Precondition: If VCR has no tape
–  Effects: VCR has tape

16

Preconditions & Effects
•  Rewind

–  Precondition: end_of_tape
–  Effects: ¬end_of_tape

•  Play
–  Precondition: ¬end_of_tape
–  Effects: end_of_tape

•  Eject
–  Precondition: end_of_tape
–  Effects: ¬has_tape

•  Load
–  Precondition: ¬has_tape
–  Effects: has_tape

Initial and Goal States
•  Initial State

–  end_of_tape
•  Goal State

–  ¬end_of_tape
•  Plan?

–  Rewind

17

Initial and Goal States
•  Initial State

–  ¬end_of_tape & has_tape
•  Goal State

–  ¬has_tape
•  Plan?

–  Play
–  Eject

Test Coverage & Adequacy
•  How much testing is enough?
•  When to stop testing
•  Test data selection criteria
•  Test data adequacy criteria

–  Stopping rule
–  Degree of adequacy

•  Test coverage criteria
•  Objective measurement of test
quality

18

Preliminaries
•  Test data selection

– What test cases
•  Test data adequacy criteria

– When to stop testing
•  Examples

–  Statement Coverage
–  Branch coverage
–  Def-use coverage
–  Path coverage

Goodenough & Gerhart [‘75]
•  What is a software test adequacy
criterion
–  Predicate that defines “what
properties of a program must be
exercised to constitute a thorough
test”, i.e., one whose successful
execution implies no errors in a tested
program

19

Uses of test adequacy
•  Objectives of testing
•  In terms that can be measured

–  For example branch coverage
•  Two levels of testing

–  First as a stopping rule
–  Then as a guideline for additional test
cases

Categories of Criteria
•  Specification based

–  All-combination criterion
•  choices

–  Each-choice-used criterion
•  Program based

–  Statement
–  Branch

•  Note that in both the above types, the
correctness of the output must be
checked against the specifications

20

Others
•  Random testing
•  Statistical testing
•  Interface based

