Soil Mechanics II 2 – Basics of Mechanics

- 1. Definitions
- 2. Analysis of stress and strain in 2D Mohr's circle
- 3. Basic mechanical behaviour
- 4. Testing of soils apparatuses

Continuum

Continuous mathematical functions describing the material properties

Homogeneity

Smallest (V \rightarrow 0) volumes occupied by physically and chemically identical material / matter

Isotropy

Physical – mechanical properties identical in all directions from the given (studied) point

 $3D \rightarrow 2D$ simplifying the problem whenever possible

Plane strain – in EG/GT frequently applicable

cf Plane stress – without practical use in EG/GT

```
(see above: \sigma_v \neq 0 since \varepsilon_v = 0)
```

Definitions

..... another simplification of algebra: axial symmetry ... (not 2D though!)

Definitions

Stress = Force / Area

Strain = Change in dimension / Original dimension (or change of right angles)

Deformation (≈ result of loading)

change in shape and/or size of a continuum body depends on the size of the body, i.e. structure / model / specimen

Strain

the geometrical measure of deformation - the relative displacement between particles of the body (contrary to the rigid-body displacement).

normal strain

the amount of stretch or compression along a material line elements or fibers

shear strain

the amount of distortion associated with the sliding of plane layers over each other

Sign convention in Geotechnics

Compression is positive Extension negative

Definitions

Constitutive equation (= physical, material eq.)

[1]

Definitions

Normal stress σ_x , σ_y , σ_z ,

Shear stress T_{xy} , T_{yz} , T_{zx} , T_{yx} , T_{zy} , T_{xz} ($T_{zy} = T_{yz}$ etc)

[3]

Stress Tensor: 9 components, 6 independent

$$\begin{bmatrix} \sigma_x & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \sigma_y & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{bmatrix}$$

Tensor – numerical value, direction, orientation of coordinate system

Definitions

Rotation of coordinate system

at every point three perpendicular planes exist (= a rotation exists) where shear stresses zero and normal stresses extreme values – principal stresses $\sigma_1 > \sigma_2 > \sigma_3$

 $\sum \sigma_{ii}$ = konst. the first invariant of stress tensor

 $p = 1/3(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) = mean normal stres = const.$ useful quantity for stress

Equilibrium in a point in 2D: three equilibrium conditions: forces in two direction and moment

1. Moment = 0:

$$T_{zx} \times dx \times dz = T_{xz} \times dz \times dx$$

 $T_{zx} = T_{xz}$

On two neighbouring planes shear stresses are equal and of opposite direction

Analysis of stress in 2D

2. Sum of forces in two perpendicular directions = 0

 $\sigma_{\alpha} dx / \cos \alpha = \sigma_{z} dx \cos \alpha + \tau_{zx} dx \sin \alpha + \tau_{xz} dx \sin \alpha + \sigma_{x} dx \sin^{2} \alpha / \cos \alpha$

 $T_{\alpha} dx / \cos \alpha = -\sigma_z dx \sin \alpha + T_{zx} dx \cos \alpha - T_{xz} dx \sin^2 \alpha / \cos \alpha + \sigma_x dx \sin \alpha$

 $\sigma_{\alpha} dx / \cos \alpha = \sigma_{z} dx \cos \alpha + \tau_{zx} dx \sin \alpha + \tau_{xz} dx \sin \alpha + \sigma_{x} dx \sin^{2} \alpha / \cos \alpha$

$$\sigma_{\alpha} = \sigma_{z} \cos^{2}\alpha + \sigma_{x} \sin^{2}\alpha + 2\tau_{zx} \sin\alpha \cos\alpha$$

 $\cos^2\alpha = 1/2(1 + \cos^2\alpha); \sin^2\alpha = 1/2(1 - \cos^2\alpha)$

$$\sigma_{\alpha} = \sigma_{z}/2 + \sigma_{z}/2 \cos 2\alpha + \sigma_{x}/2 - \sigma_{x}/2 \cos 2\alpha + \tau_{zx} \sin 2\alpha$$

$$\sigma_{\alpha} = (\sigma_{z} + \sigma_{x})/2 + (\sigma_{z} - \sigma_{x})/2 \cos 2\alpha + \tau_{zx} \sin 2\alpha$$
(1)

 $\tau_{\alpha} dx / \cos \alpha = -\sigma_{z} dx \sin \alpha + \tau_{zx} dx \cos \alpha - \tau_{xz} dx \sin^{2} \alpha / \cos \alpha + \sigma_{x} dx \sin \alpha$ $\cos^{2} \alpha - \sin^{2} \alpha = \cos 2 \alpha$

$$\tau_{\alpha} = (\sigma_{x} - \sigma_{z})/2 \sin 2\alpha + \tau_{zx} \cos 2\alpha$$
 (2)

Principal normal stress = extremes at $\alpha = \alpha_0$

(1):
$$\sigma_{\alpha} = (\sigma_z + \sigma_x)/2 + (\sigma_z - \sigma_x)/2 \cos 2\alpha + \tau_{zx} \sin 2\alpha$$
derivation = 0...

direction of two perpendicular planes, so called principal planes, on which extreme normal stresses act:

$$tg2\alpha_0 = \tau_{zx} / ((\sigma_z - \sigma_x)/2)$$
 (3)

(the same expression is obtained from (2) for $\tau_{\alpha} = 0$ (i.e., on principal planes there are zero shear stresses)

 $\begin{aligned} &manipulation using goniometric expressions: \\ & cos2\alpha = 1/(1+tg^22\alpha)^{1/2}; \ sin2\alpha = tg2\alpha/(1+tg^22\alpha)^{1/2} \\ & \to cos2\alpha_0 = 1/(1+4\tau_{zx}^{-2} / (\sigma_z - \sigma_x)^2)^{1/2} = (\sigma_z - \sigma_x)/((\sigma_z - \sigma_x)^2 + 4\tau_{zx}^{-2})^{1/2} \\ & \to sin2\alpha_0 = (2\tau_{zx}/(\sigma_z - \sigma_x))/(1+4\tau_{zx}^{-2} / (\sigma_z - \sigma_x)^2)^{1/2} = 2\tau_{zx}/((\sigma_z - \sigma_x)^2 + 4\tau_{zx}^{-2})^{1/2} \\ & and using tg2\alpha_0 due to (3) \end{aligned}$

values of principal (normal) stress:

$$\sigma_{1,2} = (\sigma_z + \sigma_x)/2 \pm (((\sigma_z - \sigma_x)/2)^2 + \tau_{zx}^2)^{1/2}$$
(4)

....the meaning of the previous page:

at all points of continuum at the given stress state such rotation of planes/axes $(\alpha = \alpha_0)$ can be found at which the normal stresses are extremes and shear stress is zero

in 2D: minimum a maximum normal stress = 2 principle stresses acting on principal planes

convention: $\sigma_1 > \sigma_2$

in 3D: 3 principle stresses acting on principal planes

convention: $\sigma_1 > \sigma_2 > \sigma_3$

Similarly, a different rotation (angle α , i.e. different planes) can be found at every point, where the shear stresses reach extreme values:

(2)
$$T_{\alpha} = (\sigma_x - \sigma_z)/2 \sin 2\alpha + T_{zx} \cos 2\alpha$$

...derivation=0...
$$\rightarrow tg2\alpha_{max} = (\sigma_x - \sigma_z) / 2\tau_{zx}$$
 (5)

...putting into (2):
$$T_{max,min} = \pm (((\sigma_x - \sigma_z)/2)^2 + T_{zx}^2)^{1/2}$$
 (6)

Relations (3) to (6) are the results of the stress analysis in 2D (all the needed quantities / values are derived

K. Culmann (1866) and O. Mohr (1882) – graphic representation of the equations (3) až (6), i.e., equations (1) a (2), using a circle.

[2]

$$\sigma_{\alpha} - (\sigma_{z} + \sigma_{x})/2 = (\sigma_{z} - \sigma_{x})/2 \cos 2\alpha + \tau_{zx} \sin 2\alpha \qquad (1)$$

$$\tau_{\alpha} = (\sigma_{x} - \sigma_{z})/2 \sin 2\alpha + \tau_{zx} \cos 2\alpha \qquad (2)$$

squaring and summing (1) a (2):

 $(\sigma_{\alpha} - (\sigma_{z} + \sigma_{x})/2)^{2} + \tau_{\alpha}^{2} = (\sigma_{z} - \sigma_{x})^{2}/4 \cos^{2}2\alpha + 2\tau_{zx}(\sigma_{z} - \sigma_{x})/2 \cos^{2}\alpha \sin^{2}\alpha + \tau_{zx}^{2} \sin^{2}2\alpha + (\sigma_{x} - \sigma_{z})^{2}/4 \sin^{2}2\alpha + 2\tau_{zx}(\sigma_{x} - \sigma_{z})/2 \sin^{2}\alpha \cos^{2}\alpha + \tau_{zx}^{2} \cos^{2}2\alpha$

 $(\sigma_{\alpha} - (\sigma_{z} + \sigma_{x})/2)^{2} + \tau_{\alpha}^{2} = ((\sigma_{z} - \sigma_{x})/2)^{2} + \tau_{zx}^{2}$

 $(\sigma - m)^2 + \tau^2 = r^2$

i.e., equation of a circle for variables σ_{α} ; τ_{α} (σ ; τ)

Knowing σ_z , σ_x , τ_{zx} , τ_{xz} , it is straightforward to

draw Mohr's circle of stresses determine principal stresses determine the directions of principal planes (α_0) Analysis of stress in 2D

Pole of planes: a point on the M.C. A parallel line with any arbitrary direction (plane) intersects the M.C. at the stress point defining the stresses acting on the particular plane.

Usage: 1 Find pole; 2 Draw parallel line with the direction; 3 Read the stress.

Pole of stress directions also may be used

Analysis of stress in 2D

NB: the angle θ remains at its position.

PRINCIPLE OF EFFECTIVE STRESSES

Terzaghi (1936):

The stresses in any point of a section through a mass of earth can be computed from the total principal stresses n_{I} , n_{II} and n_{III} which act in this point. If the voids of the earth are filled with water under a stress n_{W} , the total principal stresses consist of two parts. One part, n_{W} , acts in the water and in the solid in every direction with equal intensity. It is called the neutral stress. The balance, $n_{I} = n_{I}$ - n_{W} , $n_{II} = n_{II}$ - n_{W} and $n_{III} = n_{III}$ - n_{W} , represents an excess over the neutral stress n_{W} and it has its seat exclusively in the solid phase of the earth.

This fraction of the total principal stresses will be called the <u>effective principal stresses</u>. For equal values of the total principal stresses, the effective stresses depend on the value of n_w . In order to determine the effect of a change of n_w at a constant value of the effective stresses, numerous tests were made on sand, clay and concrete, in which n_w was varied between zero and several hundred atmospheres. All these tests led to the following conclusions, valid for the materials mentioned:

A change of the neutral stress n_w produces practically no volume change and has practically no influence on the stress conditions for failure. Each of the porous materials mentioned was found to react on a change of n_w as if it were incompressible and as if its internal friction were equal to zero. All the measurable effects of a change of the stress, such as compression, distortion and a change of the shearing resistance are exclusively due to changes in the effective stresses, n_{I} , n_{II} and n_{III} . Hence every investigation of the stability of a saturated body of earth requires the knowledge of both the total and the neutral stresses.

 $\sigma' = \sigma - u$

What is NOT effective stress:

Incompressible grains; only the stress fraction over pore pressure can cause deformation:

Summing over all *n* (average) contacts: $\sigma' = n ((P / A) - u) A = n P - u n A = \sigma_i - u n A$ $\sigma' \neq \sigma_i$ Effective stress IS NOT intergranular stress

(Effective stress is less than the average stress between grains.)

 \rightarrow MOHR CIRCLES FOR TOTAL AND EFFECTIVE STRESSES

DRAINED LOADING

UNDRAINED LOADING + CONSOLIDATION

1. Relation between volumetric and normal strain:

initial state / dimensions: index 0

final state: index f

 $\begin{array}{ll} \text{volumetric strain:} & \epsilon_v = -\Delta dV/dV_0 & = -\left(dV_f - dV_0\right) / dV_0 \\ \text{normal strain:} & \epsilon_x = -\Delta dx/dx_0 & = -\left(dx_f - dx_0\right) / dx_0 & \rightarrow dx_f = (1 - \epsilon_x)dx_0 \end{array}$

$$\varepsilon_v = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

For small strains volumetric strain is a sum of normal strains

Analysis of strain in 2D

→ Mohr's circle of strain

In comparison with stress:

- 1. an initial value of strain zero does not exist \rightarrow increments must be considered
- 2. normal strain typically exhibit both positive and negative values (opposite signs) during the loading event
- 3. for mathematical expressions engineering definition of shear strain (change of right angles) is not sufficient (as it consists of both change in shape and movement of the body) $\delta \epsilon_{xz} = \delta \epsilon_{zx} = \frac{1}{2} \gamma_{zx}$

Analysis of strain in 2D

$$\delta \epsilon_{xz} = \delta \epsilon_{zx} = \frac{1}{2} \gamma_{zx}$$

From M.C. od strain follows:

1. $\delta \epsilon_v = 2 \times OS$

 two planes exist with δε = 0, only shear strains act ≡ shear surfaces "planes of zero extension"

Analysis of strain in 2D

sin ψ = - ($\delta \varepsilon_z + \delta \varepsilon_h$) / ($\delta \varepsilon_z - \delta \varepsilon_h$) tan ψ = - $\delta \varepsilon_v$ / $\delta \gamma$

direction of zero extension: - ψ + 2 α_0 = 90° $\rightarrow \alpha_0$ = β_0 =45°+1/₂ ψ

Basics of mechanical behaviour

HARDENING - SOFTENING

STIFFNESS (Moduli)

STIFFNESS

Young modulus $\sigma_2 = \sigma_3 = \text{const}$

bulk modulus $\sigma_1 = \sigma_2 = \sigma_3 (= \sigma = p)$

shear modulus

Poisson's ratio

Strains at one-dimensional increase of stress:

Poisson's ratio: $-v = \epsilon_h / \epsilon_v$ $(\equiv -\mu)$

Poisson's constant: m = 1 / v

Incompressible material, e.g. $\Delta \sigma_x \neq 0$:

$$\epsilon_{v} = 0$$

$$\epsilon_{v} = \epsilon_{x} + \epsilon_{y} + \epsilon_{z} = \epsilon_{x} (1 - 2v) = 0$$

$$v = 0.5$$

 \rightarrow saturated soil at undrained loading: v= 0,5

Basics of mechanical behaviour

strength of water.....?

...strength is the largest Mohr Circle

STRENGTH

Coulomb (1776): S = c A + 1/n N (S = shear force at failure); c = cohesion; A area; N= normal force; 1/n = friction coefficient); i.e. failure due to reaching limiting shearing stress Present formulation: $T_{max} = c + \sigma tg\phi$

(Saint Vénant's failure criterion: failure at $\varepsilon \ge \varepsilon_{max}$)

Mohr suggested the criterion of τ_{max} - maximum stress envelope combined with Coulomb's criterion

STRENGTH - MOHR-COULOMB failure criterion

$$T_{max} = c + \sigma tg\phi$$

effective stress: $T_{max} = c' + \sigma' tg\phi'$

$$\phi \neq 0$$

$$c = 0$$

$$g = \frac{\sigma_{1} - \sigma_{3}}{\sigma_{1} + \sigma_{3}}$$

$$\frac{\sigma_{4}}{\sigma_{3}} = \frac{1 + \sin \phi}{1 - \sin \phi}$$

$$\phi = 0$$

$$c \neq 0$$

$$\sigma_{3} = 2c$$

$$\phi \neq 0$$

$$c \neq 0$$

$$\frac{1}{\sigma_{3}} = \frac{1(\sigma_{1} - \sigma_{3})}{\sigma_{1}}$$

$$\sin \phi = \frac{1}{2}(\sigma_{1} - \sigma_{3}) + c \cot \phi$$

Soil description, state, classification the procedures have been explained

For mechanical parameters \rightarrow Field and laboratory tests

Requirements:

- measurement and controlling of total and pore pressures ($\rightarrow \sigma'$)
- control of drainage (drained vs. undrained event)
- range of values accuracy: strength large strains vs. stiffness small strains
- determination of Mohr circle (stress known) for interpretation

Field tests – σ^{\prime} and interpretation is a problem

Lab - specimen is a problem

One-dimensional compressibility – oedometer

Standard procedure:

undrained loading in steps

waiting for pore pressure dissipation \rightarrow effective stress known \rightarrow one point of the compressibility curve

Determining mechanical parameters in SM

Strength – shear box – different modifications – always direct measurement of shear force

ring shear (rotation, torsion)

Strength and stiffness – triaxial apparatus

Strength and stiffness – triaxial apparatus

Standard "compression" triaxial test:

$$\sigma_a = \sigma_r + F_a / A$$

 $F_a / A = \sigma_a - \sigma_r = \sigma_a' - \sigma_r' = q$
(deviatoric stress)

Invariants for stress and strain in soil mechanics

 $p = 1/3(\sigma_a + 2\sigma_r)$ $p' = 1/3(\sigma_a' + 2\sigma_r') = p - u$ q' ≡ q $q = \sigma_a - \sigma_r$ $\varepsilon_v = \varepsilon_a + 2\varepsilon_r$ $\varepsilon_s = 2/3(\varepsilon_a - \varepsilon_r)$ $s' = 1/2(\sigma_a' + \sigma_r') = s - u$ $s = 1/2(\sigma_a + \sigma_r)$ $t = 1/2(\sigma_a - \sigma_r)$ t' ≡ t

Drained standard triaxial test: Mohr circle + stress path

Undrained standard triaxial test: Mohr circle + stress path

Determining mechanical parameters in SM

Determining mechanical parameters in SM

http://labmz1.natur.cuni.cz/~bhc/s/sm1/

Atkinson, J.H. (2007) The mechanics of soils and foundations. 2nd ed. Taylor & Francis.

Further reading:

- Wood, D.M. (1990) Soil behaviour and critical state soil mechanics. Cambridge Univ.Press.
- Mitchell, J.K. and Soga, K (2005) Fundamentals of soil behaviour. J Wiley.
- Atkinson, J.H: and Bransby, P.L. (1978) The mechanics of soils. McGraw-Hill, ISBN 0-07-084077-2.
- Bolton, M. (1979) A guide to soil mechanics. Macmillan Press, ISBN 0-33318931-0.
- Craig, R.F. (2004) Soil mechanics. Spon Press.
- Holtz, R.D. and Kovacs, E.D. (1981) An introduction to geotechnical engineering, Prentice-Hall, ISBN 0-13-484394-0
- Feda, J. (1982) Mechanics of particulate materials, Academia-Elsevier.)

[1] Atkinson, J.H. (2007) The mechanics of soils and foundations. 2nd ed. Taylor & Francis.

[2] Parry, R.H.G. (1995) Mohr circles, stress paths and geotechnics. Spon, ISBN 0419192905.

- [3] Hudson, J.A. and Harrison, J.P. (1997) Engineering rock mechanics. An introduction to the principles, Pergamon.
- [4] Simons, N. et al. (2001) Soil and rock slope engineering. Thomas Telford, ISBN 0727728717.