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Soil Mechanics II

2 – Basics of Mechanics

1. Definitions

2. Analysis of stress and strain in 2D – Mohr's circle

3. Basic mechanical behaviour

4. Testing of soils - apparatuses
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Continuum

Continuous mathematical functions describing the material properties

Homogeneity

Smallest (V→0) volumes occupied by physically and chemically identical 
material / matter

Isotropy

Physical – mechanical properties identical in all directions from the given 
(studied) point

DefinitionsDefinitions
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3D → 2D simplifying the problem whenever possible

Plane strain – in EG/GT frequently applicable

cf Plane stress – without practical use in EG/GT

(see above: σ
y
 ≠ 0 since ε

y 
= 0)

DefinitionsDefinitions
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..... another simplification of algebra: axial symmetry ... (not 2D though!)

σ
x

= σ
y

= σ
r
 

ε
x

= ε
y

= ε
r
 

DefinitionsDefinitions
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Stress = Force / Area

Strain = Change in dimension  / Original dimension (or change of right angles)

dσ = dF
n
 / dA → σ = F

n
 / A

dε = dl / dz (→ ε = δl / δz)

dτ = dF
s
 / dA → τ = F

s
 / A

dγ = dh / dz (→ γ = δh / δz)

DefinitionsDefinitions
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Deformation (≈ result of loading)
change in shape and/or size of a continuum body
depends on the size of the body, i.e. structure / model / specimen

Strain
the geometrical measure of deformation - the relative displacement between 

particles of the body (contrary to the rigid-body displacement). 

normal strain
the amount of stretch or compression along a material line elements or 

fibers
shear strain

the amount of distortion associated with the sliding of plane layers over 
each other

Sign convention in Geotechnics

Compression is positive
Extension negative

DefinitionsDefinitions
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Constitutive equation (= physical, material eq.)

[1]

DefinitionsDefinitions
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Normal stress σ
x
, σ

y
, σ

z
, 

Shear stress τ
xy

, τ
yz

, τ
zx

, τ
yx

, τ
zy

, τ
xz

 (τ
zy

= τ
yz 

etc)

[3]

DefinitionsDefinitions
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Stress Tensor: 9 components, 6 independent

Tensor – numerical value, direction, orientation of coordinate system

DefinitionsDefinitions
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Rotation of coordinate system

at every point three perpendicular planes exist (= a rotation exists) where shear 
stresses zero and normal stresses extreme values – principal stresses 
σ

1
>σ

2
>σ

3
 

DefinitionsDefinitions
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∑σ
ii
 = konst.  .... the first invariant of stress tensor

p = 1/3(σ
xx

+σ
yy

+σ
zz

)  = mean normal stres = const.
useful quantity for stress

DefinitionsDefinitions
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Equilibrium in a point in 2D: three equilibrium 
conditions: forces in two direction and 
moment

 

Analysis of stress in 2D

1. Moment = 0: 

τ
zx

 × dx × dz = τ
xz

 × dz × dx

τ
zx

 = τ
xz

On two neighbouring planes shear stresses are equal and of 
opposite direction
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2. Sum of forces in two perpendicular directions = 0

σ
α 
dx / cosα = σ

z 
dx cosα + τ

zx 
dx sinα + τ

xz 
dx sinα + σ

x 
dx sin2α / cosα

τ
α 
dx / cosα = - σ

z 
dx sinα + τ

zx 
dx cosα – τ

xz 
dx sin2α / cosα + σ

x 
dx sinα

Analysis of stress in 2D
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σ
α 
dx / cosα = σ

z 
dx cosα + τ

zx 
dx sinα + τ

xz 
dx sinα + σ

x 
dx sin2α / cosα

σ
α

= σ
z
 cos2α + σ

x 
sin2α + 2 τ

zx 
sinα cosα 

cos2α=1/2(1+cos2α); sin2α=1/2(1-cos2α)

σ
α

= σ
z
 /2 + σ

z
 /2 cos2α + σ

x 
/2 - σ

x
 /2 cos2α + τ

zx 
sin2α

σ
α

= (σ
z
 + σ

x
)/2 + (σ

z
 - σ

x
)/2 cos2α + τ

zx 
sin2α (1)

τ
α 
dx / cosα = - σ

z 
dx sinα + τ

zx 
dx cosα – τ

xz 
dx sin2α / cosα + σ

x 
dx sinα

cos2α – sin2α= cos2α

τ
α 

= (σ
x 
– σ

z
)/2 sin2α + τ

zx 
cos2α (2)

Analysis of stress in 2D
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Principal normal stress = extremes at α=α
0

 
(1): σ

α
=(σ

z
 + σ

x
)/2 + (σ

z
 - σ

x
)/2 cos2α + τ

zx 
sin2α ....derivation = 0...

direction of two perpendicular planes, so called principal planes, on which 
extreme normal stresses act:

tg2α
0
= τ

zx
 / ((σ

z
- σ

x
)/2) (3)

(the same expression is obtained from (2) for τ
α
 = 0 (i.e., on principal planes there 

are zero shear stresses)

....manipulation using goniometric expressions:
 cos2α=1/(1+tg22α)1/2; sin2α=tg2α/(1+tg22α)1/2

→cos2α
0
=1/(1+4τ

zx
2 / (σ

z
- σ

x
)2)1/2 = (σ

z
- σ

x
)/((σ

z
- σ

x
)2+4τ

zx
2)1/2

→sin2α
0
=(2τ

zx
/(σ

z
- σ

x
))/(1+4τ

zx
2 / (σ

z
- σ

x
)2)1/2 = 2τ

zx
/((σ

z
- σ

x
)2+4τ

zx
2)1/2

and using tg2α
0
 due to (3) 

values of principal (normal) stress:

σ
1,2 

=(σ
z
 + σ

x
)/2 ± (((σ

z
 - σ

x
)/2)2 + τ

zx 
2)1/2 (4)

Analysis of stress in 2D
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....the meaning of the previous page:

at all points of continuum at the given stress state such rotation of planes/axes 
(α=α

0
) can be found at which the normal stresses are extremes and shear 

stress is zero

in 2D: minimum a maximum normal stress = 2 principle stresses acting on 
principal planes

convention: σ
1
 > σ

2

in 3D: 3 principle stresses acting on principal planes

convention: σ
1
 > σ

2
 > σ

3

Analysis of stress in 2D



SM1_2 October 25, 2017 17

Similarly, a different rotation (angle α, i.e. different planes) can be found at every 
point, where the shear stresses reach extreme values:

(2) τ
α 

= (σ
x 
– σ

z
)/2 sin2α + τ

zx 
cos2α

...derivation=0...  → tg2α
τmax

= (σ
x 
– σ

z
) / 2τ

zx
(5)

...putting into (2): τ
max,min

= ± (((σ
x
 - σ

z
)/2)2 + τ

zx 
2)1/2 (6)

Relations (3) to (6) are the results of the stress analysis in 2D (all the needed 
quantities / values are derived

Analysis of stress in 2D
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K. Culmann (1866) and O. Mohr (1882) – graphic representation of the equations 
(3) až (6), i.e., equations  (1) a (2), using a circle.

[2]

Analysis of stress in 2D
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σ
α
 - (σ

z
 + σ

x
)/2 = (σ

z
 - σ

x
)/2 cos2α + τ

zx 
sin2α (1)

τ
α 

= (σ
x 
– σ

z
)/2 sin2α + τ

zx 
cos2α (2)

squaring and summing (1) a (2):

(σ
α
 - (σ

z
 + σ

x
)/2)2 + τ

α
2 = (σ

z
 - σ

x
)2/4 cos22α + 2τ

zx
(σ

z
 – σ

x
)/2 cos2α sin2α + τ

zx
2 sin22α + 

(σ
x 
– σ

z
)2/4 sin22α + 2τ

zx
(σ

x
 – σ

z
)/2sin2α cos2α + τ

zx
2

 
cos22α

(σ
α
 - (σ

z
 + σ

x
)/2)2 + τ

α
2  = ((σ

z
 - σ

x
)/2)2 + τ

zx
2

(σ - m)2 + τ2  = r2

i.e., equation of a circle for variables 
σ

α
; τ

α
 (σ

 
; τ)

Analysis of stress in 2D
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Knowing σ
z
, σ

x
, τ

zx
, τ

xz
, it is straightforward to

draw Mohr's circle of stresses

determine principal stresses

determine the directions of principal 
planes (α

0
)

Analysis of stress in 2D
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Pole of planes: a point on the M.C. A parallel line with any arbitrary direction (plane) 
intersects the M.C. at the stress point defining the stresses acting on the 
particular plane.

Usage: 1 Find pole;  2 Draw parallel line with the direction; 3 Read the stress.

Pole of stress directions also may be used

Analysis of stress in 2D
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(zdroj: [1])

NB: on rotating the drawing the poles shift – change their positions;
NB: the angle θ remains at its position.

Analysis of stress in 2D
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PRINCIPLE OF EFFECTIVE STRESSES

[4]

Analysis of stress in 2D – effective stress
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Terzaghi (1936): 

σ' = σ - u

Analysis of stress in 2D – effective stress
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What is NOT effective stress:

P average contact force
n number of contacts in X-X
σ

i
 = nP intergranular force per unit area 

(intergranular stress)

Incompressible grains; only the stress fraction over pore pressure can cause deformation:

Summing over all n (average) contacts:
 σ' = n ((P / A) – u) A = n P – u n A = σ

i
 – u n A

 σ' ≠ σ
i
 

Effective stress IS NOT intergranular stress

 (Effective stress is less than the average stress between grains.)

[4]

Analysis of stress in 2D – effective stress
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→ MOHR CIRCLES FOR TOTAL  AND  EFFECTIVE  STRESSES

[1]

Analysis of stress in 2D – effective stress
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DRAINED LOADING UNDRAINED LOADING + CONSOLIDATION

Analysis of stress in 2D – effective stress
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1. Relation between volumetric and normal strain:
initial state / dimensions: index 0

final state: index f

volumetric strain: ε
V
 = - ΔdV/dV

0
= - (dV

f 
- dV

0
) / dV

0
 

normal strain: ε
x
 = - Δdx/dx

0
= - (dx

f
-dx

0
) / dx

0
→ dx

f 
= (1-ε

x
)dx

0

ε
V
 = - ((1-ε

x
)dx

0
(1-ε

y
)dy

0
(1-ε

z
)dz

0 
- dx

0
dy

0
dz

0
) / (dx

0
dy

0
dz

0
)

= - (1-ε
x
)(1-ε

y
)(1-ε

z
) + 1

= - 1+ε
x
+ε

y
+ε

z
+1 + multiples of a higher order....

....with small ε, the multiples can be neglected:

ε
V
 = ε

x
+ ε

y 
+ ε

z

For small strains volumetric strain is a sum of normal strains

Analysis of strain in 2D
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Analysis of strain in 2D

→ Mohr's circle of strain

In comparison with stress:
1. an initial value of strain  - zero - does not exist → increments must be considered
2. normal strain typically exhibit both positive and negative values (opposite signs) 

during the loading event
3. for mathematical expressions engineering definition of shear strain (change of 

right angles) is not sufficient (as it consists of both change in shape and 
movement of the body)  δε

xz
= δε

zx
= ½ γ

zx
 

Analysis of strain in 2D
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Analysis of strain in 2D

δε
xz

= δε
zx

= ½ γ
zx

 

From M.C. od strain follows:

1. δε
V
 = 2 × OS

2. two planes exist with δε = 0, only shear 
strains act ≡ shear surfaces

„planes of zero extension“

Analysis of strain in 2D
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Analysis of strain in 2D

planes of zero extension, slip planes, angle of dilation

sin ψ = - (δε
z
+ δε

h
) / (δε

z
- δε

h
)

tan ψ = - δε
V
 / δγ

direction of zero extension: -ψ + 2 α
0
 = 90º→ α

0
 = β

0
 =45º+½ψ

Analysis of strain in 2D
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ELASTICITY
reversible strains
non / linear elasticity

PLASTICITY
yielding

ELASTOPLASTICITY irrecoverable strains
(plastic)

IDEAL PLASTICITY

Basics of mechanical behaviour
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HARDENING - SOFTENING

Softening

Hardening

Basics of mechanical behaviour
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STIFFNESS (Moduli)

Gradient = Stiffness

Yielding

Tangent stiffness

Secant stiffness

Basics of mechanical behaviour
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STIFFNESS

Young modulus bulk modulus shear modulus
σ

2
= σ

3
 = const σ

1
= σ

2
= σ

3 
(= σ = p)

Basics of mechanical behaviour
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Poisson's ratio

Strains at one-dimensional increase of stress:

Poisson's ratio: - ν  =  ε
h
 / ε

v
( ≡ -μ)

Poisson's constant: m = 1 / ν

Incompressible material, e.g. Δσ
x
 ≠ 0:

ε
V

= 0 
ε

V
= ε

x
 + ε

y
 + ε

z
 = ε

x
 (1 – 2ν) = 0

ν = 0,5

→ saturated soil at undrained loading: ν= 0,5

Basics of mechanical behaviour
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Strength

„in tension“

„compressive“

„in shear“

strength of water......?

...strength is the largest Mohr Circle

Basics of mechanical behaviour
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STRENGTH

Coulomb (1776): S = c A + 1/n N   (S = shear force at failure); c = cohesion; A 
area; N= normal force; 1/n = friction coefficient);
i.e. failure due to reaching limiting shearing stress
Present formulation: τ

max
 = c + σ tgφ

(Saint Vénant's failure criterion: failure at ε ≥ ε
max

)

Mohr suggested the criterion of τ
max

   - maximum stress envelope combined with 
Coulomb's criterion

Basics of mechanical behaviour
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STRENGTH  -  MOHR-COULOMB failure criterion

τ
max

 = c + σ tgφ

effective stress: τ
max

 = c' + σ' tgφ'

Basics of mechanical behaviour
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Soil description, state, classification ..... the procedures have been explained

For mechanical parameters → Field and laboratory tests

Requirements:

measurement and controlling of  total and pore pressures (→ σ')

control of drainage (drained vs. undrained event)

range of values - accuracy: strength – large strains vs. stiffness – small 
strains

determination of Mohr circle (stress known) for interpretation

Field tests – σ' and interpretation is a problem

Lab - specimen is a problem

Determining mechanical parameters in SM
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One-dimensional compressibility – oedometer

Standard procedure:

undrained loading in steps

waiting for pore pressure dissipation → effective stress known → one point 
of the compressibility curve

Determining mechanical parameters in SM
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Strength – shear box – different modifications – always direct measurement of 
shear force

 translation

simple shear ring shear (rotation, torsion)

Determining mechanical parameters in SM
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Strength and stiffness – triaxial apparatus

[1]

Determining mechanical parameters in SM
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Strength and stiffness – triaxial apparatus

Standard „compression“ triaxial test:

σ
a
 = σ

r
 + F

a 
/ A

F
a 
/ A = σ

a
 - σ

r
 = σ

a
'– σ

r
' = q 

(deviatoric stress)

Determining mechanical parameters in SM
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Invariants for stress and strain in soil mechanics

p = 1/3(σ
a
+2σ

r
) p' =1/3(σ

a
'+2σ

r
') = p - u 

q = σ
a
 – σ

r 
q' ≡ q

ε
v
= ε

a
+2ε

r

ε
s
 = 2/3(ε

a
- ε

r
)

s = 1/2(σ
a
+σ

r
) s' = 1/2(σ

a
'+σ

r
') = s - u

t = 1/2(σ
a
- σ

r
) t' ≡ t

Determining mechanical parameters in SM
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Drained standard triaxial test: Mohr circle + stress path

Determining mechanical parameters in SM
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Undrained standard triaxial test: Mohr circle + stress path

Determining mechanical parameters in SM
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Stress paths in situ

Determining mechanical parameters in SM
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Stress paths in situ

Determining mechanical parameters in SM
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http://labmz1.natur.cuni.cz/~bhc/s/sm1/

Atkinson, J.H. (2007) The mechanics of soils and foundations. 2nd ed. Taylor & Francis.

Further reading:

Wood, D.M. (1990) Soil behaviour and critical state soil mechanics. Cambridge 
Univ.Press.

Mitchell, J.K. and Soga, K (2005) Fundamentals of soil behaviour. J Wiley.

Atkinson, J.H: and Bransby, P.L. (1978) The mechanics of soils. McGraw-Hill, ISBN 0-
07-084077-2.

Bolton, M. (1979) A guide to soil mechanics. Macmillan Press, ISBN 0-33318931-0.

Craig, R.F. (2004) Soil mechanics. Spon Press.

Holtz, R.D. and Kovacs, E.D. (1981) An introduction to geotechnical engineering, 
Prentice-Hall, ISBN 0-13-484394-0

Feda, J. (1982) Mechanics of particulate materials, Academia-Elsevier.)

Literature for the course in Soil Mechanics
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