Soil Mechanics II

 2 - Basics of Mechanics

 2 - Basics of Mechanics}

1. Definitions
2. Analysis of stress and strain in 2D - Mohr's circle
3. Basic mechanical behaviour
4. Testing of soils - apparatuses

Definitions

Continuum

Continuous mathematical functions describing the material properties

Homogeneity

Smallest $(\mathrm{V} \rightarrow 0)$ volumes occupied by physically and chemically identical material / matter

Isotropy
Physical - mechanical properties identical in all directions from the given (studied) point

Definitions

$3 \mathrm{D} \rightarrow 2 \mathrm{D}$ simplifying the problem whenever possible
Plane strain - in EG/GT frequently applicable

cf Plane stress - without practical use in EG/GT
(see above: $\sigma_{\mathrm{y}} \neq 0$ since $\varepsilon_{\mathrm{y}}=0$)

Definitions

..... another simplification of algebra: axial symmetry ... (not 2D though!)

$$
\begin{aligned}
& \sigma_{x}=\sigma_{y}=\sigma_{r} \\
& \varepsilon_{x}=\varepsilon_{y}=\varepsilon_{r}
\end{aligned}
$$

Definitions

Stress = Force $/$ Area

Strain $=$ Change in dimension / Original dimension (or change of right angles)

Definitions

Deformation (\approx result of loading)
change in shape and/or size of a continuum body
depends on the size of the body, i.e. structure / model / specimen

Strain

the geometrical measure of deformation - the relative displacement between particles of the body (contrary to the rigid-body displacement).
normal strain
the amount of stretch or compression along a material line elements or fibers
shear strain
the amount of distortion associated with the sliding of plane layers over each other

Sign convention in Geotechnics
Compression is positive Extension negative

Definitions

Constitutive equation (= physical, material eq.)

[1]

Definitions

Normal stress $\sigma_{x^{\prime}}, \sigma_{y^{\prime}} \sigma_{z}$

Shear stress $\mathrm{T}_{\mathrm{xy}}{ }^{\prime} \mathrm{T}_{\mathrm{yz}}, \mathrm{T}_{\mathrm{zx}}, \mathrm{T}_{\mathrm{yx}}, \mathrm{T}_{\mathrm{zy}}, \mathrm{T}_{\mathrm{xz}}\left(\mathrm{T}_{\mathrm{zy}}=\mathrm{T}_{\mathrm{yz}} \mathrm{etc}\right)$

Definitions

Stress Tensor: 9 components, 6 independent

$$
\left[\begin{array}{lll}
\sigma_{x} & \tau_{y x} & \tau_{z x} \\
\tau_{x y} & \sigma_{y} & \tau_{z y} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right]
$$

Tensor - numerical value, direction, orientation of coordinate system

Definitions

Rotation of coordinate system

$$
\left[\begin{array}{lll}
\sigma_{\mathrm{xx}} & \tau_{\mathrm{xy}} & \tau_{\mathrm{xz}} \\
\tau_{\mathrm{yx}} & \sigma_{\mathrm{yy}} & \tau_{\mathrm{yz}} \\
\tau_{\mathrm{zx}} & \tau_{\mathrm{zy}} & \sigma_{\mathrm{zz}}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right]
$$

at every point three perpendicular planes exist (= a rotation exists) where shear stresses zero and normal stresses extreme values - principal stresses $\sigma_{1}>\sigma_{2}>\sigma_{3}$

Definitions

$\sum \sigma_{\mathrm{ii}}=$ konst. the first invariant of stress tensor

$$
\begin{aligned}
& p=1 / 3\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right)=\text { mean normal stres = const. } \\
& \text { useful quantity for stress }
\end{aligned}
$$

Analysis of stress in 2D

Equilibrium in a point in 2D: three equilibrium conditions: forces in two direction and moment

1. Moment $=0$:

$$
\begin{aligned}
& T_{z x} \times d x \times d z=T_{x z} \times d z \times d x \\
& T_{z x}=T_{x z}
\end{aligned}
$$

On two neighbouring planes shear stresses are equal and of opposite direction

Analysis of stress in 2D

2. Sum of forces in two perpendicular directions $=0$

$$
\begin{aligned}
& \sigma_{\alpha} d x / \cos \alpha=\sigma_{z} d x \cos \alpha+T_{z x} d x \sin \alpha+T_{x z} d x \sin \alpha+\sigma_{x} d x \sin ^{2} \alpha / \cos \alpha \\
& T_{\alpha} d x / \cos \alpha=-\sigma_{z} d x \sin \alpha+T_{z x} d x \cos \alpha-T_{x z} d x \sin ^{2} \alpha / \cos \alpha+\sigma_{x} d x \sin \alpha
\end{aligned}
$$

Analysis of stress in 2D

$\sigma_{\alpha} d x / \cos \alpha=\sigma_{z} d x \cos \alpha+T_{z x} d x \sin \alpha+T_{x z} d x \sin \alpha+\sigma_{x} d x \sin ^{2} \alpha / \cos \alpha$

$$
\begin{align*}
\sigma_{\alpha}= & \sigma_{z} \cos ^{2} \alpha+\sigma_{x} \sin ^{2} \alpha+2 T_{z x} \sin \alpha \cos \alpha \\
& \cos ^{2} \alpha=1 / 2(1+\cos 2 \alpha) ; \sin ^{2} \alpha=1 / 2(1-\cos 2 \alpha) \\
\sigma_{a}= & \sigma_{z} / 2+\sigma_{z} / 2 \cos 2 \alpha+\sigma_{x} / 2-\sigma_{x} / 2 \cos 2 \alpha+T_{z x} \sin 2 \alpha \\
\sigma_{\alpha}= & \left(\sigma_{z}+\sigma_{x}\right) / 2+\left(\sigma_{z}-\sigma_{x}\right) / 2 \cos 2 \alpha+T_{z x} \sin 2 \alpha \tag{1}
\end{align*}
$$

$T_{\alpha} d x / \cos \alpha=-\sigma_{z} d x \sin \alpha+T_{z x} d x \cos \alpha-T_{x z} d x \sin ^{2} \alpha / \cos \alpha+\sigma_{x} d x \sin \alpha$

$$
\cos ^{2} \alpha-\sin ^{2} \alpha=\cos 2 \alpha
$$

$$
\begin{equation*}
T_{\alpha}=\left(\sigma_{x}-\sigma_{z}\right) / 2 \sin 2 \alpha+T_{z x} \cos 2 \alpha \tag{2}
\end{equation*}
$$

Analysis of stress in 2D
Principal normal stress $=$ extremes at $\alpha=\alpha_{0}$
(1): $\quad \sigma_{\alpha}=\left(\sigma_{z}+\sigma_{x}\right) / 2+\left(\sigma_{z}-\sigma_{x}\right) / 2 \cos 2 \alpha+T_{z x} \sin 2 \alpha \ldots$ derivation $=0 \ldots$
direction of two perpendicular planes, so called principal planes, on which extreme normal stresses act:

$$
\begin{equation*}
\operatorname{tg} 2 \alpha_{0}=T_{z x} /\left(\left(\sigma_{z}-\sigma_{x}\right) / 2\right) \tag{3}
\end{equation*}
$$

(the same expression is obtained from (2) for $\mathrm{T}_{\alpha}=0$ (i.e., on principal planes there are zero shear stresses)
....manipulation using goniometric expressions:

$$
\begin{aligned}
& \quad \cos 2 \alpha=1 /\left(1+\operatorname{tg}^{2} 2 \alpha\right)^{1 / 2} ; \sin 2 \alpha=\operatorname{tg} 2 \alpha /\left(1+\operatorname{tg}^{2} 2 \alpha\right)^{1 / 2} \\
& \rightarrow \cos 2 \alpha_{0}=1 /\left(1+4 \mathrm{~T}_{z x}{ }^{2} /\left(\sigma_{z}-\sigma_{x}\right)^{2}\right)^{1 / 2}=\left(\sigma_{z}-\sigma_{x}\right) /\left(\left(\sigma_{z}-\sigma_{x}\right)^{2}+4 \mathrm{~T}_{z x}{ }^{2}\right)^{1 / 2} \\
& \rightarrow \sin 2 \alpha_{0}=\left(2 T_{z x} /\left(\sigma_{z}-\sigma_{x}\right)\right) /\left(1+4 \mathrm{~T}_{z x}{ }^{2} /\left(\sigma_{z}-\sigma_{x}\right)^{2}\right)^{1 / 2}=2 \mathrm{~T}_{z x} /\left(\left(\sigma_{z}-\sigma_{x}\right)^{2}+4 T_{z x}{ }^{2}\right)^{1 / 2}
\end{aligned}
$$

and using tg $2 \alpha_{0}$ due to (3)
values of principal (normal) stress:

$$
\begin{equation*}
\sigma_{1,2}=\left(\sigma_{z}+\sigma_{x}\right) / 2 \pm\left(\left(\left(\sigma_{z}-\sigma_{x}\right) / 2\right)^{2}+T_{z x}^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

....the meaning of the previous page:
at all points of continuum at the given stress state such rotation of planes/axes $\left(\alpha=\alpha_{0}\right)$ can be found at which the normal stresses are extremes and shear stress is zero
in 2D: minimum a maximum normal stress $=2$ principle stresses acting on principal planes
convention: $\sigma_{1}>\sigma_{2}$
in 3D: 3 principle stresses acting on principal planes

$$
\text { convention: } \sigma_{1}>\sigma_{2}>\sigma_{3}
$$

Analysis of stress in 2D

Similarly, a different rotation (angle a, i.e. different planes) can be found at every point, where the shear stresses reach extreme values:

$$
\begin{align*}
& \qquad(2) \mathrm{T}_{\alpha}=\left(\sigma_{x}-\sigma_{z}\right) / 2 \sin 2 \alpha+T_{z x} \cos 2 \alpha \\
& \ldots \text { derivation }=0 \ldots \quad \rightarrow \operatorname{tg} 2 \alpha_{r \max }=\left(\sigma_{x}-\sigma_{z}\right) / 2 T_{z x} \tag{5}\\
& \ldots \text { putting into }(2): \quad T_{\max , \min }= \pm\left(\left(\left(\sigma_{x}-\sigma_{z}\right) / 2\right)^{2}+T_{z x}^{2}\right)^{1 / 2} \tag{6}
\end{align*}
$$

Relations (3) to (6) are the results of the stress analysis in 2D (all the needed quantities / values are derived
K. Culmann (1866) and O. Mohr (1882) - graphic representation of the equations (3) až (6), i.e., equations (1) a (2), using a circle.

Analysis of stress in 2D

$$
\begin{align*}
\sigma_{\alpha}-\left(\sigma_{z}+\sigma_{x}\right) / 2 & =\left(\sigma_{z}-\sigma_{x}\right) / 2 \cos 2 \alpha+T_{z x} \sin 2 \alpha \tag{1}\\
T_{\alpha} & =\left(\sigma_{x}-\sigma_{z}\right) / 2 \sin 2 \alpha+T_{z x} \cos 2 \alpha \tag{2}
\end{align*}
$$

squaring and summing (1) a (2):

$\left(\sigma_{\alpha}-\left(\sigma_{z}+\sigma_{x}\right) / 2\right)^{2}+T_{\alpha}{ }^{2}=\left(\sigma_{z}-\sigma_{x}\right)^{2} / 4 \cos ^{2} 2 \alpha+2 T_{z x}\left(\sigma_{z}-\sigma_{x}\right) / 2 \cos 2 \alpha \sin 2 \alpha+T_{z x}{ }^{2} \sin ^{2} 2 \alpha+$ $\left(\sigma_{x}-\sigma_{z}\right)^{2} / 4 \sin ^{2} 2 \alpha+2 \tau_{z x}\left(\sigma_{x}-\sigma_{z}\right) / 2 \sin 2 \alpha \cos 2 \alpha+T_{z x}{ }^{2} \cos ^{2} 2 \alpha$
$\left(\sigma_{\alpha}-\left(\sigma_{z}+\sigma_{x}\right) / 2\right)^{2}+T_{\alpha}{ }^{2}=\left(\left(\sigma_{z}-\sigma_{x}\right) / 2\right)^{2}+T_{z x}{ }^{2}$
$(\sigma-m)^{2}+T^{2}=r^{2}$
i.e., equation of a circle for variables $\sigma_{a} ; \mathrm{T}_{\mathrm{a}}(\sigma ; \mathrm{T})$

Analysis of stress in 2D

Knowing $\sigma_{z}, \sigma_{x}, T_{z x}, T_{x z}$, it is straightforward to

draw Mohr's circle of stresses determine principal stresses determine the directions of principal planes $\left(\alpha_{0}\right)$

Analysis of stress in 2D

Pole of planes: a point on the M.C. A parallel line with any arbitrary direction (plane) intersects the M.C. at the stress point defining the stresses acting on the particular plane.
Usage: 1 Find pole; 2 Draw parallel line with the direction; 3 Read the stress.
Pole of stress directions also may be used

Analysis of stress in 2D

NB: on rotating the drawing the poles shift - change their positions; NB: the angle θ remains at its position.

Analysis of stress in 2D - effective stress

PRINCIPLE OF EFFECTIVE STRESSES

Analysis of stress in 2D - effective stress

Terzaghi (1936):

The stresses in any point of a section through a mass of earth can be computed from the total principal stresses $n_{I}^{\prime}, n_{I I}$ and $n_{I I I}{ }^{\prime}$ which act in this point. If the voids of the earth are filled with water under a stress $n_{w, ~ t h e ~ t o t a l ~ p r i n c i p a l ~ s t r e s s e s ~ c o n s i s t ~ o f ~ t w o ~ p a r t s . ~ O n e ~ p a r t, ~} \mathrm{n}_{\mathrm{w}}$, acts in the water and in the solid in every direction with equal intensity. It is called the neutral stress. The balance, $n_{I}=n_{T}{ }^{\prime}-n_{W,} n_{I I}=n_{I I}-n_{w}$ and $n_{I I I}=n_{I I I}-n_{W}$, represents an excess over the neutral stress n_{w} and it has its seat exclusively in the solid phase of the earth.

This fraction of the total principal stresses will be called the effective principal stresses. For equal values of the total principal stresses, the effective stresses depend on the value of n_{w}. In order to determine the effect of a change of n_{W} at a constant value of the effective stresses, numerous tests were made on sand, clay and concrete, in which n was varied between zero and several hundred atmospheres. All these tests led to the following conclusions, valid for the materials mentioned:

A change of the neutral stress n_{w} produces practically no volume ohange and has practically no influence on the stress conditions for failure. Each of the porous materials mentioned was found to react on a change of n_{w} as if it were incompressible and as if its internal friction were equal to zero. All the measurable effects of a change of the stress, suoh as compression, distortion and a ohange of the shearing resistance are exclusively due to changes in the effective stresses, n_{I}, $n_{I I}$ and $n_{I I I}$ e Hence every investigation of the stability of a saturated body of earth requires the knowledge of both the total and the neutral stresses.

Analysis of stress in 2D - effective stress
What is NOT effective stress:

P average contact force
$n \quad$ number of contacts in X-X
$\sigma_{\mathrm{i}}=\mathrm{nP}$ intergranular force per unit area (intergranular stress)
[4]

Incompressible grains; only the stress fraction over pore pressure can cause deformation:
Summing over all n (average) contacts:

$$
\begin{gathered}
\sigma^{\prime}=n((P / A)-u) A=n P-u n A=\sigma_{i}-u n A \\
\sigma^{\prime} \neq \sigma_{i}
\end{gathered}
$$

Effective stress IS NOT intergranular stress
(Effective stress is less than the average stress between grains.)

\rightarrow MOHR CIRCLES FOR TOTAL AND EFFECTIVE STRESSES

[1]

Analysis of stress in 2D - effective stress

DRAINED LOADING

UNDRAINED LOADING + CONSOLIDATION

Analysis of strain in 2D

1. Relation between volumetric and normal strain: initial state / dimensions: index 0
final state: index f
volumetric strain: $\varepsilon_{V}=-\Delta d V / d V_{0}=-\left(d V_{f}-d V_{0}\right) / d V_{0}$
normal strain: $\quad \varepsilon_{\mathrm{x}}=-\Delta \mathrm{dx} / \mathrm{dx} \mathrm{x}_{0}=-\left(\mathrm{dx}_{\mathrm{f}}-\mathrm{dx}_{0}\right) / \mathrm{dx} \mathrm{o}_{0} \rightarrow \mathrm{dx}_{\mathrm{f}}=\left(1-\varepsilon_{\mathrm{x}}\right) \mathrm{dx} \mathrm{x}_{0}$
$\varepsilon_{V} \quad=-\left(\left(1-\varepsilon_{x}\right) d x_{0}\left(1-\varepsilon_{y}\right) d y_{0}\left(1-\varepsilon_{z}\right) d z_{0}-d x_{0} d y_{0} d z_{0}\right) /\left(d x_{0} d y_{0} d z_{0}\right)$
$=-\left(1-\varepsilon_{x}\right)\left(1-\varepsilon_{y}\right)\left(1-\varepsilon_{z}\right)+1$
$=-1+\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}+1+$ multiples of a higher order....
....with small ε, the multiples can be neglected:

$$
\varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
$$

For small strains volumetric strain is a sum of normal strains

Analysis of strain in 2D

Analysis of strain in 2D

\rightarrow Mohr's circle of strain
In comparison with stress:

1. an initial value of strain - zero - does not exist \rightarrow increments must be considered
2. normal strain typically exhibit both positive and negative values (opposite signs) during the loading event
3. for mathematical expressions engineering definition of shear strain (change of right angles) is not sufficient (as it consists of both change in shape and movement of the body) $\delta \varepsilon_{x z}=\delta \varepsilon_{z x}=1 / 2 Y_{z x}$

Analysis of strain in 2D
Analysis of strain in 2D
$\delta \varepsilon_{x z}=\delta \varepsilon_{z x}=1 / 2 \gamma_{z x}$

From M.C. od strain follows:

1. $\delta \varepsilon_{v}=2 \times O S$
2. two planes exist with $\delta \varepsilon=0$, only shear strains act 三 shear surfaces „planes of zero extension"

$$
\downarrow \delta \delta_{0}
$$

Analysis of strain in 2D

Analysis of strain in 2D
planes of zero extension, slip planes, angle of dilation

$\sin \psi=-\left(\delta \varepsilon_{z}+\delta \varepsilon_{h}\right) /\left(\delta \varepsilon_{z}-\delta \varepsilon_{h}\right)$
$\tan \psi=-\delta \varepsilon_{v} / \delta \gamma$
direction of zero extension: $-\psi+2 \alpha_{0}=90^{\circ} \rightarrow \alpha_{0}=\beta_{0}=45^{\circ}+1 / 2 \psi$

Basics of mechanical behaviour

ELASTICITY

reversible strains non / linear elasticity

yielding irrecoverable strains (plastic)

IDEAL PLASTICITY

HARDENING - SOFTENING

STIFFNESS (Moduli)

STIFFNESS

Young modulus
$\sigma_{2}=\sigma_{3}=$ const

bulk modulus
$\sigma_{1}=\sigma_{2}=\sigma_{3}(=\sigma=p)$

shear modulus

Poisson's ratio

Strains at one-dimensional increase of stress:
Poisson's ratio: $\quad-v=\varepsilon_{h} / \varepsilon_{v} \quad(\equiv-\mu)$

Poisson's constant: $\quad m=1 / v$

Incompressible material, e.g. $\Delta \sigma_{x} \neq 0$:

$$
\begin{aligned}
& \varepsilon_{\mathrm{v}}=0 \\
& \varepsilon_{\mathrm{v}}=\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}=\varepsilon_{\mathrm{x}}(1-2 \mathrm{v})=0 \\
& \mathrm{v}=0,5
\end{aligned}
$$

\rightarrow saturated soil at undrained loading: $v=0,5$

Basics of mechanical behaviour

Strength

„in tension"
"compressive"

> „in shear"

Basics of mechanical behaviour

STRENGTH

Coulomb (1776): $S=c A+1 / n N \quad(S=$ shear force at failure); c = cohesion; A area; $\mathrm{N}=$ normal force; $1 / \mathrm{n}=$ friction coefficient); i.e. failure due to reaching limiting shearing stress

Present formulation: $\mathrm{T}_{\max }=\mathrm{c}+\sigma \operatorname{tg} \varphi$
(Saint Vénant's failure criterion: failure at $\varepsilon \geq \varepsilon_{\text {max }}$)

Mohr suggested the criterion of $\mathrm{T}_{\max }$ - maximum stress envelope combined with
Coulomb's criterion

Basics of mechanical behaviour

STRENGTH - MOHR-COULOMB failure criterion

$$
\sin \phi=\frac{\sigma_{1}-\sigma_{3}}{\sigma_{1}+\sigma_{3}}
$$

$$
\frac{\sigma_{1}}{\sigma_{3}}=\frac{1+\sin \phi}{1-\sin \phi}
$$

$$
\begin{array}{l|l}
\phi=0 \\
\cline { 2 - 3 } & \\
\cline { 2 - 3 } & \\
& \sigma_{3}
\end{array}
$$

$$
\sigma_{1}-\sigma_{3}=2 c
$$

$$
\mathrm{T}_{\max }=\mathrm{c}+\sigma \operatorname{tg} \varphi
$$

effective stress: $T_{\max }=c^{\prime}+\sigma^{\prime} \operatorname{tg} \varphi^{\prime}$

$$
\begin{gathered}
\phi \neq 0 \\
c \neq 0
\end{gathered} \underset{\sigma_{3} \sum_{\sigma_{1}}}{ }
$$

$$
\sin \phi=\frac{\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)}{\frac{1}{2}\left(\sigma_{1}+\sigma_{3}\right)+c \operatorname{cotg} \phi}
$$

Soil description, state, classification the procedures have been explained

For mechanical parameters \rightarrow Field and laboratory tests

Requirements:

measurement and controlling of total and pore pressures ($\rightarrow \sigma^{\prime}$)
control of drainage (drained vs. undrained event)
range of values - accuracy: strength - large strains vs. stiffness - small strains
determination of Mohr circle (stress known) for interpretation

Field tests - σ^{\prime} and interpretation is a problem
Lab - specimen is a problem

Determining mechanical parameters in SM
One-dimensional compressibility - oedometer

Standard procedure:
undrained loading in steps
waiting for pore pressure dissipation \rightarrow effective stress known \rightarrow one point of the compressibility curve

Determining mechanical parameters in SM

Strength - shear box - different modifications - always direct measurement of shear force

translation

simple shear

ring shear (rotation, torsion)

Determining mechanical parameters in SM

Strength and stiffness - triaxial apparatus

Determining mechanical parameters in SM

Strength and stiffness - triaxial apparatus
Standard „compression" triaxial test:

$$
\begin{aligned}
& \sigma_{a}=\sigma_{r}+F_{a} / A \\
& F_{a} / A=\sigma_{a}-\sigma_{r}=\sigma_{a}^{\prime}-\sigma_{r}^{\prime}=q \\
& \quad \text { (deviatoric stress) }
\end{aligned}
$$

Determining mechanical parameters in SM

Invariants for stress and strain in soil mechanics

$$
\begin{array}{ll}
p=1 / 3\left(\sigma_{a}+2 \sigma_{r}\right) & p^{\prime}=1 / 3\left(\sigma_{a}^{\prime}+2 \sigma_{r}^{\prime}\right)=p-u \\
q=\sigma_{a}-\sigma_{r} & q^{\prime} \equiv q \\
\varepsilon_{\mathrm{v}}=\varepsilon_{a}+2 \varepsilon_{r} & \\
\varepsilon_{\mathrm{s}}=2 / 3\left(\varepsilon_{a}-\varepsilon_{r}\right) & \\
s=1 / 2\left(\sigma_{a}+\sigma_{r}\right) & s^{\prime}=1 / 2\left(\sigma_{a}^{\prime}+\sigma_{r}^{\prime}\right)=s-u \\
t=1 / 2\left(\sigma_{a}-\sigma_{r}\right) & t^{\prime} \equiv t
\end{array}
$$

Determining mechanical parameters in SM
Drained standard triaxial test: Mohr circle + stress path

Determining mechanical parameters in SM
Undrained standard triaxial test: Mohr circle + stress path

SM1_2
October 25, 2017

Determining mechanical parameters in SM

Stress paths in situ

Determining mechanical parameters in SM

Stress paths in situ

Literature for the course in Soil Mechanics

http://labmz1.natur.cuni.cz/~bhc/s/sm1/

Atkinson, J.H. (2007) The mechanics of soils and foundations. $2^{\text {nd }}$ ed. Taylor \& Francis.

Further reading:
Wood, D.M. (1990) Soil behaviour and critical state soil mechanics. Cambridge Univ.Press.
Mitchell, J.K. and Soga, K (2005) Fundamentals of soil behaviour. J Wiley.
Atkinson, J.H: and Bransby, P.L. (1978) The mechanics of soils. McGraw-Hill, ISBN 0-07-084077-2.
Bolton, M. (1979) A guide to soil mechanics. Macmillan Press, ISBN 0-33318931-0.
Craig, R.F. (2004) Soil mechanics. Spon Press.
Holtz, R.D. and Kovacs, E.D. (1981) An introduction to geotechnical engineering, Prentice-Hall, ISBN 0-13-484394-0
Feda, J. (1982) Mechanics of particulate materials, Academia-Elsevier.)

References - used figures etc.

[1] Atkinson, J.H. (2007) The mechanics of soils and foundations. $2^{\text {nd }}$ ed. Taylor \& Francis.
[2] Parry, R.H.G. (1995) Mohr circles, stress paths and geotechnics. Spon, ISBN 0419192905.
[3] Hudson, J.A. and Harrison, J.P. (1997) Engineering rock mechanics. An introduction to the principles, Pergamon.
[4] Simons, N. et al. (2001) Soil and rock slope engineering. Thomas Telford, ISBN 0727728717.

