

Soil Properties and Soil Fertility

Daniel Geisseler

Nutrient Management Specialist, UC Davis

Alfalfa Symposium November 27, 2018

Overview

- Introduction
- Soil components
- Important soil physical and chemical properties

Soil fertility

What is soil fertility?

- The capacity of a soil to support plant growth
- Provide plants with
 - a space for roots to grow
 - mineral nutirents
 - water
 - air (O₂)

Input and output of plant available nutrients in soil

Input

- Weathering of soil minerals
- Biological N fixation
- Decomposition of plant litter
- Fertilizers, organic amendments

Output

- Losses (leaching, runoff, gaseous losses)
- Removal with crops
- Chemical fixation in soil

Soil components

Soil pores

Functions:

- Water infiltration
- Aeration
- Water retention

- Large pores are readily drained of water and filled by air after a heavy rain
- Small pores hold water against gravity and pull water up from a water table by capillary action.

Soil mineral particles

Sand: feels gritty

Silt: feels smooth

Clay: feels sticky

Particle size distribution: Texture

Effect of soil mineral particles on soil properties

Property/Behavior	Sand	Silt	Clay
Water holding capacity	Low	Med-high	high
Aeration	Good	Med	Poor
Leaching potential	High	Med	Low
OM decomposition	Fast	Med	Slow
Water erosion susceptibility	Med	High	Low
Wind erosion susceptibility	Med	High	Low
Susceptibility to compaction	Low	Med	High
Nutrient supply	Poor	Med-high	High

Functions of organic matter

- Supplies nutrients to soil organisms and plants
- Prevents cations from leaching (CEC)
- Energy and carbon source for soil organisms
- pH buffer
- Improves soil structure and aggregate formation
- Increases pore volume, water holding capacity and infiltration
- Binds toxic compounds

Effect of soil organic matter on soil properties

Effect of soil organic matter

Property/Behavior	Sand	Silt	Clay
Water holding capacity	Low	Med-high	high
Aeration	Good	Med	Poor
Leaching potential	High	Med	Low
OM decomposition	Fast	Med	Slow
Water erosion susceptibility	Low	High	Low
Wind erosion susceptibility	Med	High	Low
Susceptibility to compaction	Low	Med	High
Nutrient supply	Poor	Med-high	High

Sources of organic material

- Plants
 - Shoots (if not harvested)
 - Roots
 - Root exudates
- Microbial residues
- Soil animals
- Organic amendments (e.g. manure, compost)

Managing soil organic matter

- Apply manure or compost
- Reduce tillage intensity
- Grow cover crops
- Increase crop residue input

- ⇒ Provide plant available nutrients
- □ Improve soil health

Soil structure

Three-dimensional arrangement of particles

- Strong effect on
 - Water infiltration
 - Aeration
 - Pore volume

Soil structure: Aggregates

Managing soil structure

- No tillage when soil is too wet
- Reduced tillage
- Addition of organic material
 - Cover crop
 - Compost
 - Manure

Soil pH

What is pH?

- Concentration of H⁺ ions in solution
 - Scale 1-14.
 - Low pH (acidic): High H⁺ ion concentration
 - High pH (alkaline): Low H⁺ ion concentration

Why is pH important?

- Nutrient availability
- Nutrient toxicity (i.e. aluminum at low pH)
- Extreme pH an physically injure plants
- Affects microbial activity

Soil pH and nutrient availability

Effect of pH on forms and availability of soil phosphorus

pH and ammonia volatilization

$$NH_4^+ \Leftrightarrow NH_3 + H^+ (pK_a 9.3)$$

Chemical equilibrium reaction

Managing soil pH

- Correct pH
 - Acidic soils: Apply lime
 - Alkaline soils: Apply elemental sulfur, sulfuric acid, phosphoric acid

- Nutrient management
 - Increase application rate ⇒ expensive
 - Band application of P instead of broadcasting
 ⇒ may damage roots in established alfalfa stands
 - Foliar application of micronutrients

Cation exchange capacity (CEC)

Capacity of a soil to adsorb positively charged ions (e.g. ammonium, magnesium, calcium, potassium,)

Sources:

- Clay minerals
- Soil organic matter
- Iron and aluminum oxides

CEC and soil type

Soil type	Classification	CEC	
		(mmol _c kg ⁻¹)	
Strongly weathered, often acidic soil	Ultisol	35	
Intermediately weathered soil	Alfisol	90	
Soil with organic top soil	Mollisol	187	
Clay soil	Vertisol	356	
Organic soil	Histosol	1280	

Significance of CEC

- Pool of readily available nutirents
- Reduces leaching of cations

http://www.humintech.com

Essential nutrients - cations

Structural elements:

- Carbon (CO₂)
- Oxygen (CO₂, H₂O)
- Hydrogen (H₂O)

Macronutrients:

- Nitrogen (NH₄+, NO₃-)
- Phosphorus (HPO₄²⁻; H₂PO₄-)
- Potassium (K⁺)
- Calcium (Ca²⁺)
- Magnesium (Mg²⁺)
- Sulfur (SO_4^{2-})

Micronutrients:

- Boron (H_3BO_3)
- Chlorine (Cl⁻)
- Copper (Cu²⁺)
- Iron (Fe²⁺; Fe³⁺)
- Manganese (Mn²⁺)
- Molybdenum (MoO₄²⁻)
- Nickel (Ni²⁺)
- Silicon (H₄SiO₄)
- Sodium (Na⁺)
- Zinc (Zn²⁺)

Managing CEC

- Increase CEC
 - Change texture ⇒ Not realistic in a field
 - Increase pH ⇒ Only in acidic soils
 - Increase soil organic matter ⇒ May be slow, especially in sandy soils

- Adjust management; especially K
 - No applications that supply enough nutrients for several years
 - Split applications (similar to N)

Soil survey data: http://ucanr.edu/soilweb

Soil survey data: http://ucanr.edu/soilweb

Thank you!

