Soil Properties and Soil Fertility #### **Daniel Geisseler** Nutrient Management Specialist, UC Davis Alfalfa Symposium November 27, 2018 #### **Overview** - Introduction - Soil components - Important soil physical and chemical properties ### Soil fertility #### What is soil fertility? - The capacity of a soil to support plant growth - Provide plants with - a space for roots to grow - mineral nutirents - water - air (O₂) ## Input and output of plant available nutrients in soil #### Input - Weathering of soil minerals - Biological N fixation - Decomposition of plant litter - Fertilizers, organic amendments #### Output - Losses (leaching, runoff, gaseous losses) - Removal with crops - Chemical fixation in soil ## Soil components ### Soil pores #### **Functions:** - Water infiltration - Aeration - Water retention - Large pores are readily drained of water and filled by air after a heavy rain - Small pores hold water against gravity and pull water up from a water table by capillary action. ## Soil mineral particles Sand: feels gritty Silt: feels smooth Clay: feels sticky ## Particle size distribution: Texture ## Effect of soil mineral particles on soil properties | Property/Behavior | Sand | Silt | Clay | |------------------------------|------|----------|------| | Water holding capacity | Low | Med-high | high | | Aeration | Good | Med | Poor | | Leaching potential | High | Med | Low | | OM decomposition | Fast | Med | Slow | | Water erosion susceptibility | Med | High | Low | | Wind erosion susceptibility | Med | High | Low | | Susceptibility to compaction | Low | Med | High | | Nutrient supply | Poor | Med-high | High | ## **Functions of organic matter** - Supplies nutrients to soil organisms and plants - Prevents cations from leaching (CEC) - Energy and carbon source for soil organisms - pH buffer - Improves soil structure and aggregate formation - Increases pore volume, water holding capacity and infiltration - Binds toxic compounds ## Effect of soil organic matter on soil properties #### **Effect of soil organic matter** | Property/Behavior | Sand | Silt | Clay | |------------------------------|------|----------|------| | Water holding capacity | Low | Med-high | high | | Aeration | Good | Med | Poor | | Leaching potential | High | Med | Low | | OM decomposition | Fast | Med | Slow | | Water erosion susceptibility | Low | High | Low | | Wind erosion susceptibility | Med | High | Low | | Susceptibility to compaction | Low | Med | High | | Nutrient supply | Poor | Med-high | High | ### Sources of organic material - Plants - Shoots (if not harvested) - Roots - Root exudates - Microbial residues - Soil animals - Organic amendments (e.g. manure, compost) ## Managing soil organic matter - Apply manure or compost - Reduce tillage intensity - Grow cover crops - Increase crop residue input - ⇒ Provide plant available nutrients - □ Improve soil health #### Soil structure Three-dimensional arrangement of particles - Strong effect on - Water infiltration - Aeration - Pore volume ## Soil structure: Aggregates ## Managing soil structure - No tillage when soil is too wet - Reduced tillage - Addition of organic material - Cover crop - Compost - Manure ### Soil pH #### What is pH? - Concentration of H⁺ ions in solution - Scale 1-14. - Low pH (acidic): High H⁺ ion concentration - High pH (alkaline): Low H⁺ ion concentration #### Why is pH important? - Nutrient availability - Nutrient toxicity (i.e. aluminum at low pH) - Extreme pH an physically injure plants - Affects microbial activity #### Soil pH and nutrient availability ## Effect of pH on forms and availability of soil phosphorus ### pH and ammonia volatilization $$NH_4^+ \Leftrightarrow NH_3 + H^+ (pK_a 9.3)$$ Chemical equilibrium reaction ### Managing soil pH - Correct pH - Acidic soils: Apply lime - Alkaline soils: Apply elemental sulfur, sulfuric acid, phosphoric acid - Nutrient management - Increase application rate ⇒ expensive - Band application of P instead of broadcasting ⇒ may damage roots in established alfalfa stands - Foliar application of micronutrients ### Cation exchange capacity (CEC) Capacity of a soil to adsorb positively charged ions (e.g. ammonium, magnesium, calcium, potassium,) #### **Sources:** - Clay minerals - Soil organic matter - Iron and aluminum oxides ## **CEC** and soil type | Soil type | Classification | CEC | | |---------------------------------------|----------------|---------------------------------------|--| | | | (mmol _c kg ⁻¹) | | | Strongly weathered, often acidic soil | Ultisol | 35 | | | Intermediately weathered soil | Alfisol | 90 | | | Soil with organic top soil | Mollisol | 187 | | | Clay soil | Vertisol | 356 | | | Organic soil | Histosol | 1280 | | ## Significance of CEC - Pool of readily available nutirents - Reduces leaching of cations http://www.humintech.com #### **Essential nutrients - cations** #### **Structural elements:** - Carbon (CO₂) - Oxygen (CO₂, H₂O) - Hydrogen (H₂O) #### **Macronutrients:** - Nitrogen (NH₄+, NO₃-) - Phosphorus (HPO₄²⁻; H₂PO₄-) - Potassium (K⁺) - Calcium (Ca²⁺) - Magnesium (Mg²⁺) - Sulfur (SO_4^{2-}) #### **Micronutrients:** - Boron (H_3BO_3) - Chlorine (Cl⁻) - Copper (Cu²⁺) - Iron (Fe²⁺; Fe³⁺) - Manganese (Mn²⁺) - Molybdenum (MoO₄²⁻) - Nickel (Ni²⁺) - Silicon (H₄SiO₄) - Sodium (Na⁺) - Zinc (Zn²⁺) ### **Managing CEC** - Increase CEC - Change texture ⇒ Not realistic in a field - Increase pH ⇒ Only in acidic soils - Increase soil organic matter ⇒ May be slow, especially in sandy soils - Adjust management; especially K - No applications that supply enough nutrients for several years - Split applications (similar to N) ## Soil survey data: http://ucanr.edu/soilweb ## Soil survey data: http://ucanr.edu/soilweb ## Thank you!