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Abstract—The goal of this article is to investigate and research
solar generation forecasting in a laboratory-level micro-grid,
using the UCLA Smart Grid Energy Research Center (SMERC)
as the test platform. The article presents an overview of the
existing solar forecasting models and provides an evaluation of
various solar forecasting providers. The auto-regressive moving
average (ARMA) model and the persistence model are used to
predict the future solar generation within the vicinity of UCLA.
In the forecasting procedures, the historical solar radiation data
originates from SolarAnywhere. System Advisor Model (SAM)
is applied to obtain the historical solar generation data, with
inputting the data from SolarAnywhere. In order to validate the
solar forecasting models, simulations in the System Identification
Toolbox, Matlab platform are performed. The forecasting results
with error analysis indicate that the ARMA model excels at
short and medium term solar forecasting, whereas the persistence
model performs well only under very short duration.

I. INTRODUCTION

Current power grids are constantly facing reliable problems
especially when unexpected periods of interruption occur.
In recent years, the micro-grid has been proposed as a
complimentary solution to help mitigate the reliability is-
sues. The micro-grid, as part of the smart grid realization,
consists of renewable generation, energy storage units and
demand management through a low-voltage distribution net-
work. Moreover, the micro-grid has the abilities to quickly
respond to dynamic changes and island itself from the main
grid [1]. Proliferation of renewable generation is one of the
key drivers of establishing the need of micro-grid. Presently,
renewable resources, e.g., solar energy, are employed globally
due to the rapid development of the technologies and benefits
to the environment. However, the integration of renewable
generation into the micro-grid will require the assistant from
forecasting. Forecasting is the ability to determine periods of
stable generation from renewable sources. This is paramount
to the reliability issues since it can reduce the uncertainty of
the inconsistent renewable generation.

The objective of the article is to study solar generation
forecasting in a laboratory-level micro-grid. The UCLA Smart
Grid Energy Research Center (SMERC) performs research
focusing on the integration of solar generation in a laboratory-
level micro-grid [2], [3], [4]. Components of the laboratory-
level micro-grid consist of solar PV panels, battery storage
units and laboratory loads, such as laptops, LEDs and electric
vehicles. The architecture of the laboratory-level micro-grid
is displayed in Figure 1. Prediction models are developed

Figure 1. The laboratory-level micro-grid with solar PV panels, battery
storage units and lab loads for the UCLA SMERC

to obtain accurate solar generation forecasting, which benefit
the micro-grid by determining available power at any time
and balancing the loads accordingly. The prediction models
used in the article include the auto-regressive moving average
(ARMA) model and the persistence model, due to their appli-
cability in the micro-grid. The advantages for using the ARMA
model and the persistence model are their simplicity, cost-
effectiveness and accuracy for timely forecasting. The purpose
of the research is not to compete with a variety of solar fore-
casting tools that are academically or commercially available
today, but to generate our own solar forecasting results using
the simple, inexpensive and effective methods, based on the
environment of UCLA, which can be implemented for the
laboratory-level micro-grid.

Section II summarizes various existing forecasting methods.
In addition, an investigation into the existing academic and
commercial forecasting tools is provided. In Section III and
IV, the ARMA and the persistence models are introduced, and
the forecasting procedures for both models are described step-
by-step respectively. The forecasting results with error analysis
are presented in Section V. Conclusion of findings and future
work are documented in Section VI.

II. LITERATURE REVIEW

A. Forecasting Methods

Both references [5] and [6] carry out surveys on the
current status of the art in solar forecasting. Essentially, the
existing solar forecasting methods can be categorized into
persistence method, satellite data/imagery method, numeric
weather prediction (NWP) method, statistical method and
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hybrid method. A general overview of the solar forecasting
methods is presented in Table I.

Table I
SUMMARY OF THE FORECASTING METHODS

Method Description Time Horizon Example
Persistence High correlations Very short term CAISO

between past and future
Satellite Data Data analysis and Short term UCSD

/Imagery image processing
NWP Physical model Long term UCSD

Statistical Mathematical Short and UCLA
model medium term

Hybrid Combination of Adjustable CAISO
different approaches

The simplest way to perform a solar forecasting is to use
persistence method. California Independent System Operator
(CAISO) uses persistence method in its renewable energy
forecasting and dispatching [7]. This method is highly ef-
fective in very short term prediction, i.e., 1 hour-ahead. It
is often used as a comparison to other advanced methods.
References [8] and [9] describe the method based on satellite
data/imagery. Satellite data/imagery provides important atmo-
spheric and meteorological information on cloudiness, cloud
motion vector, etc., for predicting the solar irradiance. This
method is evaluated to be the best method for 1 to 5 hour-
ahead forecasting according to reference [5]. NWP method
models solar radiation in the air with consideration of the
cloud layers in the forecasting process. It is deemed to be
the most successful method for long term solar forecasting,
e.g., day-ahead, at present. Results from NWP method exhibit
higher accuracy for longer time horizons as presented in refer-
ences [10] and [11]. Statistical method develops mathematical
models which include auto-regressive with exogenous input
(ARX), ARMA, auto-regressive integrated moving average
(ARIMA) and artificial neural network (ANN). This method
is based on training the historical data spanning over a long
time period, e.g., one year, to tune the model coefficients.
References [10], [12] and [11] use ARX, ARIMA and ANN
to predict the solar generation respectively. They perform well
in the time horizons ranging from 1 hour up to 36 hours,
which are short and medium term forecastings. In practice, as
numerous articles concluded, hybrid method is a combination
of different approaches that can be applied to obtain an optimal
solar prediction. For example, references [5] and [6] both
recommend a combination of NWP method and a statistical
post-processing tool as a promising option for solar prediction.

B. Forecasting Tools

In this section, we explore the existing academic solar
forecasting tools and commercial solar forecasting providers.
Most of the forecasting tools and providers apply the satellite
data/imagery and NWP methods. According to the investiga-
tion, Green Power Research offers solar forecasting service
and solar resource assessment based on geostationary opera-
tional environmental satellite imagery, for utilities, indepen-
dent system operators (ISO) and solar power producers[13].

3Tier offers a solar predictor based on NWP method, with
the integration of cloud forecasting capability [14]. AWS
Truepower (AWST) offers a solar forecasting system based
on NWP method, with statistical procedures for cloud pattern
tracking [15]. SolarAnywhere offers solar forecasting up to 7
day-ahead based on satellite data such as cloud motion vector
for short term forecasting, and NWP method for long term
forecasting [16]. SolarCasters offers solar predictions for day-
ahead and hour-ahead, and delivers both irradiance forecast-
ing and plant-specific generation forecasting using TRNSYS
simulation software based on NWP method, with proprietary
radiative transfer models to predict the irradiance reaching the
ground [17]. SOLARFOR offers solar power predictions for
0-48 hour-ahead based on NWP method [18]. Atmospheric
and Environmental Research (AER) Solar Forecast offers solar
forecasting based on satellite data observations and NWP
method, as well as with proprietary radiative transfer models
[19]. Solar2000 offers solar irradiance forecasting at 1 to
1, 000,000 nm throughout the solar system based on NWP
method, with measuring sun rotation and infrared wavelength
[20].

III. FORECASTING SETUP FOR THE ARMA MODEL

The ARMA model, also known as the Box–Jenkins model
(1976), is one type of the time-series models in statistical
method. It can be used to solve the problems in the fields of
mathematics, finance and engineering industry that deal with
a large amount of observed data from the past. The model
description and forecasting procedure for the ARMA model
are explained as below.

A. Model Description
The ARMA model is developed using Equation 1. It consists

of two parts, the auto-regressive (AR) part and the moving
average (MA) part.

S(t) =

p∑
i=1

αiS(t− i) +
q∑

j=1

βje(t− j) (1)

In Equation 1, S(t) is the forecasted solar generation at time
t. In the AR part, p is the order of the AR process, and αi is the
AR coefficient. In the MA part, q is the order of the MA error
term, βj is the MA coefficient and e(t) is the white noise that
produces random uncorrelated variables with zero mean and
constant variance [21]. Typically, this method requires a large
amount of historical data, e.g., one year, to obtain the ARMA
model. That is to find the orders p, q and the coefficients
αi, βj . In addition, due to the geographical differences, each
location corresponds to its own unique model. Based on the
given historical data, the construction of the model for each
location consists of two phases, identifying the orders p, q
and determining the coefficients αi, βj . In particular, we limit
p, q ≤ 10 to simplify the process. The algorithms to realize
the model are discussed in Step III-B3.

B. Forecasting Procedure
The five steps below are followed to complete the forecast-

ing process.



Figure 2. Hourly GHI in 2010 for the UCLA SMERC

1) Obtain the historical solar radiation data: Since we
aim to forecast the solar generation for the laboratory-level
micro-grid, the traces of historical solar generation data are
used as the input of the ARMA model. In the first step, we
collect hourly solar radiation data from SolarAnywhere, a web-
based service that offers hourly global horizontal irradiance
(GHI), direct normal irradiance (DNI) and diffuse horizontal
irradiance (DHI) for locations within the U.S.A. that dates
from 1998 to 2011 [16]. The data we collect covers the entire
year from Jan. 1st, 2010 to Dec. 31st, 2010 for the vicinity
of UCLA, California (latitude 34.065, longitude -118.445).
The Figure 2 shows the hourly GHI in 2010 for the UCLA
SMERC, which is the most essential solar radiation data for
generating solar energy.

2) Simulate the historical solar generation data: We use
System Advisor Model (SAM) to produce the hourly solar
generation data from Jan. 1st, 2010 to Dec. 31st, 2010, with
inputting the hourly solar radiation data from SolarAnywhere.
As a performance-based model in the renewable energy in-
dustry, SAM can promptly assist the decision making process
in various aspects of solar power generation [22]. To be
more specific, it has functions of modeling PV system and
simulating the solar production. Our design of the PV system
in SAM is composed of a desired array (size of 1 kW dc),
a module (SAM/Sandia Modules/SunPower SPR-210-BLK
[2007(E)]) and a grid-connected PV inverter (capacity of 4 kW
ac). The solar generation data simulated by SAM is shown in
Figure 3. It is estimated that the total solar generation in 2010
for the UCLA SMERC is 3.324 MW and the peak is 1.7491
kW with the average of 0.3795 kW.

3) Realize the ARMA model: The mathematical methods
of finding the orders and coefficients of the ARMA model
are introduced in reference [23]. The order identification is
proposed by Daniel and Chen (1991), and coefficients determi-
nation is calculated by applying the Yule-Walker relations for
αi and the Newton-Raphson algorithms for βj . In the article,
the two-phase realization of the ARMA model is implemented
in the System Identification Toolbox, Matlab platform [24]. By
inputting the data resulted from SAM into Matlab, the System
Identification Toolbox is capable of constructing mathematical
models, i.e. finding the orders and coefficients in Equation 1.
As a result, the realized ARMA model is able to deliver time-

Figure 3. Hourly solar generation simulated by SAM with 1 kW PV in 2010
for the UCLA SMERC

series output for forecasting in the next step.
4) Predict the future values: The future values can be

predicted using the realized ARMA model. For example,
Equation 2 is applied to predict the h hour-ahead forecasting
(h = 1, 2, 3...hours).

S(t+ h) =

p∑
i=1

αiS(t− i) +
q∑

j=1

βje(t− j) (2)

where S(t+h) is the forecasted solar generation at time t+h.
5) Analyze the errors: In order to measure the accuracy of

the predictions, the errors between the forecasted values and
actual data are analyzed here. In the forecasting procedure,
we train the hourly solar generation data for 2010 to obtain
the ARMA model, and use the model to forecast the hourly
solar generation values for 2011, for the UCLA SMERC. In
the article, Mean Absolute Error (MAE) and Mean Squared
Error (MSE), defined in Equation 3 and 4, are used as the
errors to validate the prediction method.

MAE =
1

n

n∑
t=1

|A(t)− F (t)| (3)

MSE =
1

n

√√√√ n∑
t=1

(A(t)− F (t))2 (4)

where n is the length of the time horizon, i.e., n = 744 if
we choose January for the time horizon, and A(t) and F (t)
denote the actual data and the forecasted value at time t.
In the forecasting procedure, the historical data are for 2010
from Step III-B2, the forecasted values are for 2011 from Step
III-B4 and the actual data are for 2011 from SAM. The data
entered into SAM are the solar radiation data for 2011 from
SolarAnywhere.

IV. FORECASTING SETUP FOR THE PERSISTENCE MODEL

A. Persistence Model

As a comparative study, the persistence model is developed
using Equation 5 to predict the h hour-ahead forecasting (h =



1, 2, 3...hours).

S(t+ h) = S(t) (5)

where S(t+h) is the forecasted solar generation at time t+h.

B. Forecasting Procedure

Similarly, the forecasting procedure for the persistence
model includes obtaining the historical solar radiation data
from SolarAnywhere, simulating the historical solar genera-
tion data by SAM, predicting the future values by applying
Equation 5 and analyzing the errors. Differently, the historical
data and the actual data are the same, both for 2011 from
SAM. The data entered into SAM are the solar radiation data
for 2011 from SolarAnywhere.

V. FORECASTING RESULTS

A. The realized ARMA model

We conduct the Matlab simulations to obtain the ARMA
model. Table II presents the values of the orders and coeffi-
cients for the ARMA model for the UCLA SMERC.

Table II
THE REALIZED ARMA MODEL

p q αi βj
α1 = −1.597 β1 = −0.2072

2 3 α2 = 0.6882 β2 = 0.1768
β3 = 0.0513

B. The forecasted values and actual data

Figure 4 shows the curves of the forecasted solar generation
and actual data for 1 hour-ahead on Jan. 1st, 2011 for the
laboratory-level micro-grid. Figure 5 shows the curves of the
forecasted solar generation and actual data for 1 hour-ahead
on Jul. 1st, 2011. There are at least three points that are of
interest.

• On Jan. 1st, for the very short term forecasting, i.e., 1
hour-ahead, the curve produced by the ARMA model
resembles the actual data from 6:00 AM to 11:00 AM but
varies considerably at a later time. In particular, there is
a small fluctuation around 4:00 AM. However, such time
periods cannot obtain much sunlight. Therefore, there is
a need to improve the model by taking actual weather
data into account in the future.

• On the other hand, the curve produced by the persistence
model has a tiny shift along the time horizon compared to
the actual data. Nonetheless, this model is still accurate.

• On Jul. 1st, the ARMA model matches more closely
to the actual data than that on Jan. 1st. The ARMA
model performs better in the prediction during the months
that have more sunlight. Similar errors are found around
4:00 AM, which emphasize the importance of improving
the ARMA model by considering actual weather data.
Similarly, the persistence model performs well in the 1
hour-ahead forecasting on Jul. 1st.

Figure 6 and Figure 7 show the curves of the forecasted
solar generation and actual data for 3 hour-ahead on Jan.

Figure 4. 1 hour-ahead solar generation forecasting and actual data on Jan.
1st, 2011 for the UCLA SMERC

Figure 5. 1 hour-ahead solar generation forecasting and actual data on Jul.
1st, 2011 for the UCLA SMERC

1st and Jul. 1st, 2011 for the laboratory-level micro-grid
respectively. There are at least three points that are of interest.

• Both on these two days, the ARMA model presents better
predictions than the persistence model for short term
forecasting, i.e., 3 hour-ahead, which illustrates that the
persistence model is only accurate for very short term
forecasting.

• For the predictions based on the ARMA model, it is
evident that the results for 1 hour-ahead are better than
3 hour-ahead. The prediction accuracy decreases as the
hour-ahead increases.

• Similar trends can be found for the persistence model.
The prediction accuracy decreases considerably as the
hour-ahead increases.

C. The Error Analysis

As mentioned in Step III-B5, we use MAE and MSE
to measure the accuracy. Figure 8 shows the distributions
of the MAE for each month during 2011 for 1 hour-ahead
forecasting, for the ARMA model and the persistence model
respectively. There are at least three points that are of interest.

• For each month of the year, the MAE of the ARMA
model is smaller than the persistence model, which
translates into the conclusion that the ARMA model is



Figure 6. 3 hour-ahead solar generation forecasting and actual data on Jan.
1st, 2011 for the UCLA SMERC

Figure 7. 3 hour-ahead solar generation forecasting and actual data on Jul.
1st, 2011 for the UCLA SMERC

more reliable for 1 hour-ahead forecasting. Take January
as example, the ARMA model shows an improvement of
as much as 17.62% compared to the persistence model.

• The maximum MAE of the ARMA model is 0.1013 kW
in March while the minimum MAE is 0.073 kW in July,
with the average MAE of 0.0894 kW.

• The maximum MAE of the persistence method is 0.1322
kW in April while the minimum MAE is 0.1033 kW in
January, with the average MAE of 0.1213 kW.

Figure 8. The MAE of the ARMA model and the persistence model for 1
hour-ahead forecasting for each month of 2011 for the UCLA SMERC

Figure 9. The MSE of the ARMA model and the persistence model for 1
hour-ahead forecasting for each month of 2011 for the UCLA SMERC

Figure 9 shows the distributions of the MSE for each month
during 2011 for 1 hour-ahead forecasting, for the ARMA
model and the persistence model respectively. There are at
least three points that are of interest.

• Similar trends can be found in this comparison. The
MSE of the ARMA model is smaller than the persistence
model, for each month of the year for 1 hour-ahead
forecasting. Take January as example, the ARMA model
shows an improvement of as much as 44.38% compared
to the persistence model.

• The maximum MSE of the ARMA model is 0.028 kW in
March while the minimum MAE is 0.0121 kW in July,
with the average MAE of 0.0206 kW.

• The maximum MAE of the persistence model is 0.0502
kW in September while the minimum MAE is 0.0356
kW in January, with the average MAE of 0.042 kW.

Figure 10 shows the variations of the MAE and the MSE
for different hour-ahead forecasting, in July, 2011. The hour-
ahead ranges from 1 to 5. There are at least three points that
are of interest.

• As results illustrated, as the forecasting hour-ahead in-
creases, the MAE and the MSE for each model increase
accordingly. However, they increase by different degrees
for different models. Generally speaking, the errors of the
ARMA model are smaller than the persistence model.

• The errors in the ARMA model varies steadily. When
the hour-ahead is larger than 4, the MAE and the MSE
almost remain constant. The results further demonstrate
that the ARMA model is suitable for short and medium
term forecasting.

• The errors in the persistence model increase considerably
as the hour-ahead increases. The results further demon-
strate that the persistence model is only suitable for very
short term forecasting.

VI. CONCLUSIONS

Solar generation can be gradually integrated into the power
grid starting at the micro-grid level, as the prominent power
generation technology for the UCLA SMERC. Due to the
unpredictability and variability of the current solar generation,



Figure 10. The MAE and MSE of the ARMA model and the persistence
model in July, 2011 for different hour-ahead forecasting for the UCLA
SMERC

the wide adoption of solar generation forecasting is still
underway.

According to the reviews carried out in the article, based on
the assessment of solar forecasting methods, statistical method
performs well for solar generation prediction especially for
short and medium term. Currently, academic and commercial
forecasting models have their unique identities, and perform
well depending on whether it is for short term or long term
forecasting. We suggest that a combination of solar forecasting
models should be used to solve the reliability issues associated
with the integration of solar generation into the micro-grid.

As discussed in the article, statistical method typically uses
time-series models such as the ARMA model to obtain desir-
able forecasting results. We extract information from current
forecasting algorithms and produce our own forecasting proce-
dure for the ARMA model. The procedure includes obtaining
the historical solar radiation data from SolarAnywhere, simu-
lating the historical solar generation data by SAM, realizing
the ARMA model, predicting the future values and analyzing
the errors. In the meanwhile, we use the persistence model
as a comparison. The error analysis reveals that the ARMA
model is preferred for short and medium term prediction on a
micro-grid level. Moreover, results indicate that the persistence
model performs well in very short term prediction.

The next step is to produce a hybrid energy system that
includes solar PV panels and battery storage units, in order
to realize the isolated operation for some periods of time.
Continuous research is needed to establish hybrid method to
improve the prediction of its solar generation output.
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