

Draw the best diagram of our solar system that you can in your notes. Make sure to include labels!

Chapters 28 \& 29 Objectives

1. Describe early models of our solar system. This means I can:
a. Explain the geocentric model of the solar system and how retrograde motion brought change to that mode
b. Describe the contributions and changes to solar system arrangement due to the following scientists: Nicolaus Copernicus, Kepler, Isaac Newton, Galileo.
2. Examine the modern heliocentric model of our solar system. This means I can:
a. Explain Kepler's $1^{\text {st }}$ Law and its relationship to the following terms astronomical unit, focus, major axis, semi-major axis, the Sun, and eccentricity.
b. Determine the relative shape (elongated oval, oval, circle) of an orbit when given its eccentricity value.
3. Relate gravity to the motions of celestial bodies. This means I can Describe how mass, center of mass, and distance between 2 objects affects their gravitational pull on each other

4/19/2017

Summarize the properties of the solar system that support the theory of the solar system's formation. This means I can:
a. Describe how the planets formed from a disk surrounding the young Sun
b. Define \& describe how the following terms are involved in the theory of the solar system's formation: interstellar cloud, planetesimal.
c. Explain how the theory is supported by the types of elements and density differences of the inner terrestrial vs. outer gas giants.
d. Using distance from the sun and resulting temperature differences throughout the solar system, explain why lightweight gases such as hydrogen and helium are rare in the terrestrial planets but common in the gas giants.
5. Explore remnants of solar system formation. This means I can:
a. Define asteroid. Identify the location of the asteroid belt on a solar system diagram.
b. Define and describe the composition of a comet.
c. Discuss the location of the two main clusters of comets, including how far they are from the sun in astronomical units.
6. Compare and contrast the properties of the inner/terrestrial vs. outer/gas planets. This means I can
a. Describe similarities and differences in composition, size, surface, composition (main elements), density, rings, number of moons.
b. Explain why/how the inner and outer planets are composed of different substances.
7. Explain the Impact Theory about the Moon's formation, including evidence supporting the theory
8. Identify features on the Moon. This means I can:
a. Define, draw and label the following surface features of the Moon on a diagram: highlands, maria, impact craters, regolith.
b. Describe the history of the Moon's surface features; contrast the age and formation of maria vs. highlands.
c. Determine the relative age of features on the moon using the principle of superposition
9. Identify the relative positions and motions of Earth, Sun \& Moon. This means I can:
a. Explain what causes earth's day and night, seasons.
b. Compare and contrast summer solstice, winter solstice, autumnal and vernal equinoxes.
c. Describe the following motions and their effects: rotation, revolution, tilt of axis, synchronous rotation.
d. Compare and contrast high \& low tides as well as spring \& neap tides according to sun and moon alignment, tidal range, frequency and location.
$29 \& 30$ Solur System \& Stars

Geocentric Model of the Universe

B. Problem: Didn't explain retrograde motion
i. This is a sudden change in planetary motion when planets suddenly appear to move backwards
ii. Very hard problem to solve
iii. Scientists began looking for a better model of the universe/solar system retrograde motion

Fig 29.1 Retrograde Motion, p. 776
What is the REASON Mars APPEARS to move backwards below?

Heliocentric Model

3. Heliocentric Model = Sun-centered
A. Suggested by Copernicus in 1543
B. Explained retrograde motion...So WHY do we see planets moving "backwards"?
i. Inner planets move faster than outer planets around the sun
ii. Earth will "pass" a slower moving planet
iii. The slower planet temporarily appears to move backwards

Kepler's First Law

1. Kepler's $\mathbf{1}^{\text {st }}$ Law: Most planets orbit the Sun in an ellipse, NOT a circle
A. Ellipse $=0$ val that is centered on TWO points (foci), not 1 like a circle

- (Focus - singular, foci-plural)

Kepler's First Law

Eccentricity \& Aphelion/Perihelion

Eccentricity = HOW oval-shaped the orbit is, and is'fiased on the ratio of distance between the 2 foci to the major axis.
http://www.youtube.com/watch?v=BIBz GQDga0

1. Planets vary in their distance from the Sun, therefore the distance between focus points is different for each planet.
2. A planet is NOT at a constant distance from the Sun
3. $\mathbf{1}$ Astronomical Unit $(\mathrm{AU})=$ the average distance between

Sun \& earth

- Is the unit used for distances between the Sun and planets.

4/1912017
Ch 29 \& 30 Solar System \& Stars

Kepler's First Law
4. Major axis: runs end to end through both foci.

- Is the maximum diameter

5. Semi-major axis: $1 / 2$ length of major axis.

- Is the planet's average distance to the Sun

Eccentricity Values:

What is the range?
6. Eccentricity has a value between 0 to 1

- $0=$ perfect circle (Distance between the 2 foci is $\underline{0}$)
- 1 = very elongated oval

\qquad Ch 29 \& 30 Solar System \& Sarrs ${ }_{21}$

Gravity Activity Cont’d

Time for Predictions:

1. Out of all the objects you selected, what will fall to the ground most quickly?
2. Out of all the objects you selected, what will fall to the ground most slowly?

Procedure:
Time to testyour predictions.
Go into the hallway and mark a height on the wall using masking tape. This is your start position from which each object will be dropped.
table and hold them up to the start line.
Count to 3 to give the timer time to get the stop watch ready.
Drpat
Repeat the above steps so both pairs of objects has a total of 3 trials.
Grab the next pair of objects, switch jobs, and repeat steps 3-6.
GRAVITY: Post Lab Questions:

1. Were your predictions accurate? Why or why not?
2. What relationship did you observe between the speed an object falls towards the Earth and the amount it weighs?

Did any object defy this relationship? If so, why do you think this happened?

Eccentricity: Mini Lab Questions

Distance foci are apart	Length of major axis in cm -Longest length (use 1 decimal)	Equation/ Calculation (Show your work)	Eccentricity Value (Calculation answer)	Describe/Draw Relative Shape of Drawing
2 cm				
9 cm				
Ocm (Just use 1 pin)				

Analyze and Conclude:

1. What do the 2 pins represent?
2. For planets orbiting in our solar system, what is always one of the foci?
3. How does the eccentricity number AND the shape change as:
A. The distance between the foci (pins) gets larger?
B. The distance between the foci (pins) gets smaller?
4. What is the eccentricity value of a perfect circle? How far apart are the foci of a circle?

4/19/2017

Gravity
 (\& Galileo)

. In the late $16^{\text {th }}$ century early $17^{\text {th }}$ century Galileo was working with gravity.
2. Performed experiments dropping objects off the Tower of Pisa and rolling balls down inclines
WHAT DID HE DISCOVER?? LET'S RECREATE GALILEO'S EXPERIMENTS: Need: Timers, masking tape, bin of objects to drop
Experiment: Testing Gravity's Influence on Falling Objects

1. **Pick 4 objects of different weights from across the room. You can use anything safe to drop. If you want to use anything of the teacher's, please ask before you grab it.

Gravity
 (\& Galileo)

Post-Lab Animation - Elephant vs. Feather Free-Fall

1. In the late $16^{\text {th }}$ century early $17^{\text {th }}$ century Galileo was working with gravity.
2. Performed experiments dropping objects off the Tower of Pisa and rolling balls down inclines
3. Gravity accelerates the fall of all objects at the same rate.
4. Air resistance causes lighter objects to fall more slowly.

Gravity (\& Newton)

Sir Isaac Newton \& Gravity

1. $\mathbf{1 6 8 7}$ Newton published his theory of universal gravitation.

- Also called the inverse square law

2. This theory helped discover Neptune.

- Watched Uranus's movements:
-Gravity of something large was affecting the movements of the planet.
Basics of the Inverse Square Law:
- Any two objects attract each other
- Depends upon their masses AND the distance between them.

92017
Ch $29 \& 30$ Solar System \& Stars

How Do Scientists Determine Theories for How Our Solar System Formed?

1. Scientists Examined
A. Why the planets are so different.

- Especially Outer vs. Inner Planets
B. Asteroids, Meteorites, and Comets.

Universe Formation Timeline

3. 10-20 billion years ago \rightarrow universe started to expand from a pebble-size to astronomical size.
4. Expansion continues, but much more slowly now billions of years later.
5. Over time, more diverse kinds of atoms began to form, and they eventually condensed into the stars and galaxies of our present universe

Video The

Beginning of Everything The Big Bang: https://www.yo utube.com/watc $\mathrm{h} ? \mathrm{v}=\mathrm{wNDGgL73}$ hY

Intro to Universe Formation

1. Based on the following observation:
a) Galaxies are moving away from ours at great speed, in all directions, as if propelled by an explosive force - the "Big Bang".
2. What was it like before the Big Bang?
a) All universe compressed into hot, dense mass, just a few millimeters across, that existed for just a fraction of the first second of time.

Formation of Our Solar System

3. These clouds usually look dark because the dust blocks light.

- Like Smog
- Stars behind this cloud can't shine through it.
- But....Sometimes the light from stars within the cloud causes these interstellar clouds to glow.

4. Location
A. There are many interstellar clouds found within our Milky Way Galaxy.
B. Astronomers look for high amounts of gas and dust

Formation of Our Solar System

5. Collapsing Interstellar Cloud Theory
A. When enough gas and dust is present, scientists think these interstellar clouds condense because of gravity.
B. Can form a star or planet
C. Cloud begins collapsing slowly.

D. The smaller it gets the faster it begins to collapse and spin
E. This spinning motion with eventually form a flat rotating disk with a very dense center (core).

Formation of OUR Solar System

5. This difference in temperature as the solar system cooled caused...
A. Heavy metals (iron, lead, etc.)
i. condense athigh temperatures and
ii. became solids close to the Sun
B. Lighter elements (hydrogen, helium, etc)
i. don't condense until the temperature is very cold
ii. remained gaseous
iii. didn't become solid until they were further from the Sun
C. This is why inner planets and outer planets have such different compositions

Fig 29-28 p. 795 Element Composition of Planets
What are differences you can see between inner \& outer planets?

Inner vs. Outer -Distance from Sun

Terrestrial (Inner) Planets

Terrestrial Planets
**What does terrestrial mean? Composed of "land"

1. Inner Four Planets
A. Closest to the Sun
B. Mercury, Venus, Earth, and Mars
2. Small (Close to the size of Earth)
A. Smaller because the Sun's gravity captured the majority of materials found here
3. Solid Surfaces
A. Made of Rocks and Metals. AKA "Heavy Metal" planets, because higher mass elements condensed at high temps close to the sun
4. Few Moons
A. Sun's gravity took all the loose debris

4/19/2017
Ch 29 \& 30 Solar System \& Stars

Development of Outer Planets

Outer Planet Formation

1. The planets formed by a process in which dust and gas gravitationally attracted each other
A. As size increases, gravity increases \& pulls even more gas \& dust in
B. Over time this collected and formed larger and larger bodies.
2. $\quad 1^{\text {st }}$ planet of the gas to form was Jupiter
A. This is why Jupiter is the largest.
B. Had the most materials to build with
3. Then Saturn, Uranus and Neptune (the rest of the gas giants) formed
A. Not as large because Jupiter had taken most of the materials; gas, dust, and ice to make itself.
4. "Leftovers" became moons that form along equatorial planes of planets 41929017 Ch $29 \& 30$ Solar Syytem \& Sturs

Space Rocks

3. Most found in $\mathbf{1}$ of $\mathbf{2}$ clusters
A. Kuiper Belt - close to Pluto ($30-50 \mathrm{AU}$) from the Sun B. Oort cloud - $>100,000 \mathrm{AU}$ from the Sun
4. Comet Structure (Parts of a comet)
A. Icy nucleus = small, solid core
i. When it is heated, it releases gas \& dust to form the coma \& the tail
B. Coma $=$ glowing gas surrounding nucleus
C. Tail - always points away from the Sun due to solar wind

Moving from Solar System to Our Moon
One last diagram of solar system formation.
Now that we've seen that the theories of how the universe and solar system involve lots of matter and debris flying around and collapsing:
We'll move on to theories of how our moon was formed

Impact Theory

TT \#87 How Did the Moon Form?
Formation Theories - 3 main ones What does this diagram tell about them? - Impact Theory is most widely accepted of the 3 Theories - the only 1 you need to explain

Moon History- Highland Age

1. Highlands are $3.8-4.6$ billion years old
A. Heavily bombarded during the first 800 million years by flying space objects
B. Caused surface to be covered with regolith,
I. Regolith $=$ a layer of loose, ground-up rock caused by impacts
C. Regolith allows astronaut footprints to still be visible

Moon Topography

3. Impact craters: Depressions formed by space object crashing onto the Moon's surface (Use various objects to make craters in highlands)
4. Regolith: Layers of loose, rocky matter caused by the impacts
A. Very fine regolith has a texture like snow
B. Thicker in highlands than in maria
5. No erosion
A. No atmosphere (no wind \& no flowing water)
B. Impact craters remain unchanged

Moon History - Rilles, Far Side of Moon

3. Highlands remain high in elevation because lava did not completely fill the basins
4. Far Side of the Moon: NO Maria on the far side of the Moon
A. The crust isthicker on the far side of the moon the impact cracks weren't deep enough to reach the lava

Sec 28.3 The Sun-Earth-Moon System

Motions of the Earth

1. Rotation: Spinning of the earth around its axis
A. Daily motion
B. Causes day \& night, and setting \& rising of the sun
C. Causes the "appearance" of the sun rising in the east \& setting in the west
2. Revolution: Orbital motion around the Sun
A. Annual Motion
B. Year $=$ the time to complete $\mathbf{1}$ revolution
C. Ecliptic: Plane in which the Earth orbits the Sun

Ch 28 The Sun : Earth Moon System

If the Earth's orbit around the Sun is the same, then how do we get seasons?

https://www.youtube.com/wa
tch? $\mathrm{v}=\mathrm{p} 0 \mathrm{wk} 4 \mathrm{qG} 2 \mathrm{mlg}$

Solstices

Solstice: Is the day when the sun reaches its greatest distance N or S of the equator

1. Summer solstice (for N. Hemisphere) is when the sun is the furthest north
A. Longest amount of daylight, shortest night
B. Most direct light is at $23.5^{\circ} \mathrm{N}$ - Tropic of Cancer
C. June 21
D. Arctic circle has constant daylight
E. Antarctic has constant darkness A

[^0]

Equinox

Motions of the Moon - Synchronous Rotation Do this slide IF TIME: Synchronous Rotation:

1. The Moon makes 1 revolution (orbit around earth) and 1 rotation (on axis) in the same amount of time
2. So the same side of the Moon always faces the Earth
3. We never saw the far side of the moon until space program

Winter Solstice

Winter solstice (for N. Hemisphere) is when the sun is the furthest south
A. Shortest amount of daylight, longest night
B. Most direct light is at $23.5^{\circ} \mathrm{S}$ - Tropic of Capricorn
C. December 21
D. Arctic circle has constant darkness
E. Antarctic has constant daylight

B

Question of the Day \#2
(Was also asked earlier in PowerPoint)

Draw the best diagram of our solar system that you can in your notes. Make sure to include labels!

Question of the Day \#10

Describe the process that produces gas giant planets.

Miscellaneous Review Questions

1. List 3 characteristics common to all terrestial planets
2. List 3 characteristics common to all gas giants
3. Compare and contrast asteroids and comets
4. According to the solar nebular theory, what caused the inner planets to be dense and rocky and the outer planets to be light with H \& He ?
5. What does an eccentricity of 0.1 tell you?
6. What is retrograde motion?
7. Name the 4 terrestrials
8. What are 2 things that effect gravity?

Review \#2 - Solstices \& Equinoxes

[^0]: Ch 28 The Sun:EarthMoon System

