SOLID Design Principles

\% Jon Reid

Quality @qcoding
Coding

Single Responsibility Principle

OPen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

@qcoding

@qcoding

Principle
Principle
Principle
Principle

Principle

Principle:

e |dea you conform to

e Guidepost for behavior

e Gravity

e Axiom / Fundamental truth

e Religion

@qcoding

Dogma: But what's 1t for?

e Religious/moral principles

e Dogma: “a principle or set of principles laid down by an
authority as incontrovertibly true”

e “Good” vs. “Bad”

e “Good for ”

e “Bad for ;

e SOLID, huh! What is good for?

@qcoding

Examples of when something was
harder to change than expected:

e String parsing in Swift
e Design around Notch!
e Extensions?

e Libraries

e Breaking circular dependencies

@qcoding

@qcoding

Conseguences of when something
was harder to change than ex

Frustration

Breakage

Time

Unexpected compromise
Conflict

Product canceled, entire team fired

Decteq:

SOLID: Roots In
Object Oriented Programming

But with Swift embracing Functional Programming...

@qcoding

@qcoding

SOLID guestions

e What is it good for?

o |s it still relevant for Swift?

@qcoding

Single Responsibility Principle

OPen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

@qcoding

°pen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

Single Responsibility Principle

@qcoding

Open-Closed Principle

A module should be open for extension, but closed for
modification.

struct Authenticator {
let publicKey = "68a325daae67ba95cf3ef28c2e1684c8"
let privateKey = "4hc5beOd70ealad761lfallc4dc4a3tfh649e”

func hash(timestamp: String) -> String {
Llet hash = md5(timestamp + privateKey + publicKey)
return "&hash=\(hash)"”

@qcoding

Fxamples of OCP violations:

e Have to change the guts of a thing
e Server URL: Staging vs. production

e URL versioning

@qcoding

OCP technigues:

e Delegates

* Protocols

e Strategy design pattern
e Configuration objects
e Dependency injection
e Subclass and override

e Blocks / Closures

@qcoding

Over-application

 Delegates

* Protocols

e Strategy design pattern
e Configuration objects

e Dependency injection

e Subclass and override

e Blocks / Closures

@qcoding

OPEN CLOSED PRINCIPLE

Brain surgery is not necessary when putting on a hat.

@QCOdiﬂg http://devig.com/open-closed-principle/

http://deviq.com/open-closed-principle/

Liskov Substrtution Principle

Subclasses should be substitutable for their base classes.

@qcoding

Liskov Substitution Principle

Rectangle

/\

@qcoding

Examples of LSP violations:

e Single table inheritance & battling notifications
e Radio button: UlControl clear
e Sequences, collections

e NSMutableArray: NSArray

e All related to mutability

@qcoding

Examples of LSP violations:

required init?(coder _: NSCoder) {
fatalError("init(coder:) has not bheen implemented")

}

required init?(coder _: NSCoder) {
fatalError("(’ °0°)) . 4=Lm)

}

@qcoding

LSP: Only applies to subclasses?

e |lied: It’s not subclassing, it’s sub-typing
e |mplement a protocol

* “I’'m going to implement this protocol, but leave these
blank™

@qcoding

Liskov Substitution Principle:
Semantic, not syntactic

@qcoding

-

?i\ F
:L——- |

o

e N

LISKOV SUBSTITUTION

If it looks like a duck, quacks like a duck, but needs batteries —

you probably have the wrong abstraction.

http://devig.com/liskov-substitution-principle/

http://deviq.com/liskov-substitution-principle/

Interface Segregation Principle

Many client-specific interfaces are better than one general-purpose
interface.

Consequences of “fat’ classes:

e Adaptability
e Mock ALL THE THINGS?
e Coupling too much stuffs
e Hard to read

e Hard to share

@qcoding

Fat classes affect build times

FBLoginDialog L=
SnapApison AN / - Font
Facebook FBC sonnect M’W”’l
i}
Soundutt
st
FBDialog ViewControlier NetificationCell
Photo ler
\'I‘ 1’ V/SVaNe,: N 1)
// \ nstant ViewController
PR PhetoGetenMewConbcher HomeNaviga seratonViewControier | L]\ ——
Te SnapTabBarController
—
InstantMessageNotificat
lobeg
w SQLProfle
AYIL Sontroller tification
Three20/TTLauncherBution it H A v Sontrolier
|Snm|.o| irm|
m 0; angePa
iewCo
Three20/Three20 \ ntroller
el AN} Y 3
TapetectingimageView >/
AYI turePromptViewControler
-] DateFeal
TTLauncherViewsExtension Sul .
SNAPContextVendor LognViewControll FaqViewController
I“h DONumD
Keychaipiifis
AYIDate ller
AYIStoreOl
AYIProfile Lant ler
. Fep— pp——
ConversationCafl CDMessage
f 4
AYIPhoto Filereer (atRoom M
Ba X AViUserProfie roller m
COConi n
S
1]
WriteMessageControlier 01
SQLMessage
MyCLControl
UsersViewControll
Profile
ontroller1
SNAPI ache MessageCell
SnapConnection
SentMessageControlier WinksOorireiler
SNAPTypes ComrgctionsViewController
SNAPHTTPOperation
" D S/AY
DaiaModels/AYIProfie ConnectonsCel
SearchViewController

AYIDateReplyViewControlier

@qcoding

DATA STRUCTURE SEGREGATION
't matters, too!

@qcoding

INTERFACE SEGREGATION

Tailor interfaces to individual clients’ needs.

@CICOdiﬂg http://devig.com/liskov-substitution-principle/

http://deviq.com/liskov-substitution-principle/

Dependency Inversion Principle

High-level modules should not depend on low-level modules.

Both should depend on abstractions.

Manager

Manager

Worker

@qcoding

Stuff Doer

/\

Worker

Examples of DIP violations:

e View talk directly to model
e Swift 2
e Storyboards

e CocoaPod

@qcoding

High-impact DIP violation:

Parse
Object

/\

My Model

@qcoding

Introducing an abstraction

My Model

N the miadle

Parse
Object

Persistent

@qcoding

Model

/\

My Parse
Model

Routing dependencies:
before

VC A

> VCB >

@qcoding

VCC

Routing dependencies:

after
VC B VC C
™| Protocol ™ Pprotocol
/\ /\

VC A VvC B VCC

@qcoding

Would you solder a lamp directly to the electrical source?

@CICOdiﬂg http://devig.com/dependency-inversion-principle/

http://deviq.com/dependency-inversion-principle/

Single Responsibility Principle

A module should have one and only one reason to change.

"@QCOding = ‘/ 1 \ \/ ” _ ; o ——— : le r.chm/h> 0 /”O,PiCTU —«‘: 50433\6 | A

N w

https://www.flickr.com/photos/ilopictures/35043310111/

cxamples of “technical”
reasons to change

e Need to improve performance
o Swift
e New framework

e TJestability

@qcoding

Examples of “business”
reasons to change

e Requirements change
e Accessibility

e Analytics

e | ocalization

e Security vulnerabilities

@qcoding

Avoid tightly coupling your tools together.
http://devig.com/single-responsibility-principle/

http://deviq.com/single-responsibility-principle/

WHAT IS SOLID FOR!

Keep the end in mind.

@qcoding

EVOLU TIONARY DESIGN:
"Responding to change”

>

Design Patterns
Elements of Reusable
Object-Oriented Software

'R'EFACTORING

IMPROVING THE DESIGN
oF ExistinG Copk

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

MARTIN FOWLER

With contributions by Kent Beck, John Brant,
William Opdyke, ass Don Roberts

Forewerd by Erich Gamma
Object Technology International, Inc.

[SEEEY TECHMOLO4Y

BOOCK
JACHBSEN

;3 ﬂm‘i }

S ETemy

>
S
=
2
é
ra
-
=
~
v
Z
=
-
©
ol
Q
™
7
w
-~
s
7z
>
=
~
Q
>
<
=
C
=
Z
()
o
2
=
-
w

Foreword by Grady Booch

g

ABenron we maY

R EFACTORING
TO PATTERNS

JosHUA KERIEVSKY

T

AV A

P L :/v’

2 INUKT S
Forewords by Ralph Johnson and Martin Fowler
Afterword by John Brant and Don Roberts

@qcoding

SWIFT PROTOCOLS!

A single language construct has many purposes.

@qcoding

Go make faster-building
SOLID (but soft) Swift!

\‘?@

Slides and show notes:
qualitycoding.org/talk/swittxnw20 | /

