
SOLID Design Principles

Jon Reid
@qcoding

@qcoding

S
O
L
I
D

 ingle Responsibility Principle

 pen-Closed Principle

 iskov Substitution Principle

nterface Segregation Principle

 ependency Inversion Principle

@qcoding

S
O
L
I
D

 ingle Responsibility Principle

 pen-Closed Principle

 iskov Substitution Principle

nterface Segregation Principle

 ependency Inversion Principle

Principle

Principle:

• Idea you conform to

• Guidepost for behavior

• Gravity

• Axiom / Fundamental truth

• Religion

@qcoding

Dogma: But what’s it for?

• Religious/moral principles

• Dogma: “a principle or set of principles laid down by an
authority as incontrovertibly true”

• “Good” vs. “Bad”

• “Good for ______”

• “Bad for ______”

• SOLID, huh! What is good for?

@qcoding

Examples of when something was
harder to change than expected:

• String parsing in Swift

• Design around Notch!

• Extensions?

• Libraries

• Breaking circular dependencies

@qcoding

Consequences of when something
was harder to change than expected:

• Frustration

• Breakage

• Time

• Unexpected compromise

• Conflict

• Product canceled, entire team fired

@qcoding

SOLID: Roots in  
Object Oriented Programming

But with Swift embracing Functional Programming…

@qcoding

@qcoding

Object Oriented

Programming

@qcoding

SOLID questions

• What is it good for?

• Is it still relevant for Swift?

@qcoding

@qcoding

O
L
I
D

 pen-Closed Principle

 iskov Substitution Principle

nterface Segregation Principle

 ependency Inversion Principle

S ingle Responsibility Principle

O
L
I
D

 pen-Closed Principle

 iskov Substitution Principle

nterface Segregation Principle

 ependency Inversion Principle

S ingle Responsibility Principle
@qcoding

Open-Closed Principle
A module should be open for extension, but closed for
modification.

@qcoding

Examples of OCP violations:

• Have to change the guts of a thing

• Server URL: Staging vs. production

• URL versioning

@qcoding

OCP techniques:

• Delegates

• Protocols

• Strategy design pattern

• Configuration objects

• Dependency injection

• Subclass and override

• Blocks / Closures

@qcoding

Over-application

@qcoding

• Delegates

• Protocols

• Strategy design pattern

• Configuration objects

• Dependency injection

• Subclass and override

• Blocks / Closures

@qcoding

Brain surgery is not necessary when putting on a hat.
http://deviq.com/open-closed-principle/

http://deviq.com/open-closed-principle/

Liskov Substitution Principle
Subclasses should be substitutable for their base classes.

@qcoding

Liskov Substitution Principle

@qcoding

Rectangle

Square

Examples of LSP violations:

• Single table inheritance & battling notifications

• Radio button: UIControl clear

• Sequences, collections

• NSMutableArray: NSArray

• All related to mutability

@qcoding

Examples of LSP violations:

@qcoding

LSP: Only applies to subclasses?

• I lied: It’s not subclassing, it’s sub-typing

• Implement a protocol

• “I’m going to implement this protocol, but leave these
blank”

@qcoding

Liskov Substitution Principle:
Semantic, not syntactic

@qcoding

@qcoding

If it looks like a duck, quacks like a duck, but needs batteries — 
you probably have the wrong abstraction.

http://deviq.com/liskov-substitution-principle/

http://deviq.com/liskov-substitution-principle/

Interface Segregation Principle
Many client-specific interfaces are better than one general-purpose
interface.

@qcoding

Consequences of “fat” classes:

• Adaptability

• Mock ALL THE THINGS?

• Coupling too much stuffs

• Hard to read

• Hard to share

@qcoding

Fat classes affect build times

@qcoding

DATA STRUCTURE SEGREGATION  
It matters, too!

@qcoding

@qcoding http://deviq.com/liskov-substitution-principle/

Tailor interfaces to individual clients’ needs.

http://deviq.com/liskov-substitution-principle/

Dependency Inversion Principle
High-level modules should not depend on low-level modules.

@qcoding

Both should depend on abstractions.

Manager

Worker

Stuff DoerManager

Worker

Examples of DIP violations:

• View talk directly to model

• Swift 2

• Storyboards

• CocoaPod

@qcoding

High-impact DIP violation:

@qcoding

Parse
Object

My Model

💀

Introducing an abstraction
in the middle

@qcoding

Parse
Object

My Parse
Model

Persistent
ModelMy Model

Routing dependencies: 
before

@qcoding

VC CVC BVC A

Routing dependencies: 
after

@qcoding

VC CVC BVC A

VC B
Protocol

VC C
Protocol

@qcoding

Would you solder a lamp directly to the electrical source?
http://deviq.com/dependency-inversion-principle/

http://deviq.com/dependency-inversion-principle/

Single Responsibility Principle
A module should have one and only one reason to change.

@qcoding https://www.flickr.com/photos/ilopictures/35043310111/

https://www.flickr.com/photos/ilopictures/35043310111/

Examples of “technical”
reasons to change

• Need to improve performance

• Swift

• New framework

• Testability

@qcoding

Examples of “business”
reasons to change

• Requirements change

• Accessibility

• Analytics

• Localization

• Security vulnerabilities

@qcoding

@qcoding

Avoid tightly coupling your tools together.
http://deviq.com/single-responsibility-principle/

http://deviq.com/single-responsibility-principle/

WHAT IS SOLID FOR?
Keep the end in mind.

@qcoding

EVOLUTIONARY DESIGN:
“Responding to change”

@qcoding

SWIFT PROTOCOLS!
A single language construct has many purposes.

@qcoding

Slides and show notes: 
qualitycoding.org/talk/swiftxnw2017

Go make faster-building 
SOLID (but soft) Swift!

