
SOLID Design Principles

Jon Reid
@qcoding



@qcoding

S
O
L
I
D

 ingle Responsibility Principle 

  pen-Closed Principle 

 iskov Substitution Principle 

nterface Segregation Principle 

  ependency Inversion Principle



@qcoding

S
O
L
I
D

 ingle Responsibility Principle 

  pen-Closed Principle 

 iskov Substitution Principle 

nterface Segregation Principle 

  ependency Inversion Principle

Principle



Principle:

• Idea you conform to


• Guidepost for behavior


• Gravity


• Axiom / Fundamental truth


• Religion
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Dogma: But what’s it for?

• Religious/moral principles


• Dogma: “a principle or set of principles laid down by an 
authority as incontrovertibly true”


• “Good” vs. “Bad”


• “Good for ______”


• “Bad for ______”


• SOLID, huh! What is good for?

@qcoding



Examples of when something was 
harder to change than expected:

• String parsing in Swift


• Design around Notch!


• Extensions?


• Libraries


• Breaking circular dependencies
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Consequences of when something 
was harder to change than expected:

• Frustration


• Breakage


• Time


• Unexpected compromise


• Conflict


• Product canceled, entire team fired
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SOLID: Roots in  
Object Oriented Programming

But with Swift embracing Functional Programming…
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Object Oriented

Programming
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SOLID questions

• What is it good for?


• Is it still relevant for Swift?
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Open-Closed Principle
A module should be open for extension, but closed for 
modification.
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Examples of OCP violations:

• Have to change the guts of a thing


• Server URL: Staging vs. production


• URL versioning
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OCP techniques:

• Delegates


• Protocols


• Strategy design pattern


• Configuration objects


• Dependency injection


• Subclass and override


• Blocks / Closures
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Over-application

@qcoding

• Delegates


• Protocols


• Strategy design pattern


• Configuration objects


• Dependency injection


• Subclass and override


• Blocks / Closures



@qcoding

Brain surgery is not necessary when putting on a hat.
http://deviq.com/open-closed-principle/
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Liskov Substitution Principle
Subclasses should be substitutable for their base classes.
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Liskov Substitution Principle
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Examples of LSP violations:

• Single table inheritance & battling notifications


• Radio button: UIControl clear


• Sequences, collections


• NSMutableArray: NSArray


• All related to mutability
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Examples of LSP violations:
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LSP: Only applies to subclasses?

• I lied: It’s not subclassing, it’s sub-typing


• Implement a protocol


• “I’m going to implement this protocol, but leave these 
blank”
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Liskov Substitution Principle: 
Semantic, not syntactic
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If it looks like a duck, quacks like a duck, but needs batteries — 
you probably have the wrong abstraction.

http://deviq.com/liskov-substitution-principle/
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Interface Segregation Principle
Many client-specific interfaces are better than one general-purpose 
interface.
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Consequences of “fat” classes:

• Adaptability


• Mock ALL THE THINGS?


• Coupling too much stuffs


• Hard to read


• Hard to share
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Fat classes affect build times
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DATA STRUCTURE SEGREGATION  
It matters, too!
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@qcoding http://deviq.com/liskov-substitution-principle/

Tailor interfaces to individual clients’ needs.

http://deviq.com/liskov-substitution-principle/


Dependency Inversion Principle
High-level modules should not depend on low-level modules.
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Both should depend on abstractions.

Manager

Worker

Stuff DoerManager
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Examples of DIP violations:

• View talk directly to model


• Swift 2


• Storyboards


• CocoaPod
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High-impact DIP violation:
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Parse 
Object

My Model

💀



Introducing an abstraction
in the middle
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Routing dependencies: 
before
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Routing dependencies: 
after
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Would you solder a lamp directly to the electrical source?
http://deviq.com/dependency-inversion-principle/
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Single Responsibility Principle
A module should have one and only one reason to change.
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Examples of “technical”
reasons to change

• Need to improve performance


• Swift


• New framework


• Testability
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Examples of “business”
reasons to change

• Requirements change


• Accessibility


• Analytics


• Localization


• Security vulnerabilities
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Avoid tightly coupling your tools together.
http://deviq.com/single-responsibility-principle/
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WHAT IS SOLID FOR?
Keep the end in mind.
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EVOLUTIONARY DESIGN:
“Responding to change”
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SWIFT PROTOCOLS!
A single language construct has many purposes.
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Slides and show notes: 
qualitycoding.org/talk/swiftxnw2017

Go make faster-building 
SOLID (but soft) Swift!


