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Single Responsibility Principle

OPen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle
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Principle:

e |dea you conform to

e Guidepost for behavior

e Gravity

e Axiom / Fundamental truth

e Religion
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Dogma: But what's 1t for?

e Religious/moral principles

e Dogma: “a principle or set of principles laid down by an
authority as incontrovertibly true”

e “Good” vs. “Bad”

e “Good for ”

e “Bad for ;

e SOLID, huh! What is good for?
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Examples of when something was
harder to change than expected:

e String parsing in Swift
e Design around Notch!
e Extensions?

e Libraries

e Breaking circular dependencies
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Conseguences of when something
was harder to change than ex

Frustration

Breakage

Time

Unexpected compromise
Conflict

Product canceled, entire team fired

Decteq:




SOLID: Roots In
Object Oriented Programming

But with Swift embracing Functional Programming...
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SOLID guestions

e What is it good for?

o |s it still relevant for Swift?
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Single Responsibility Principle

OPen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

@qcoding



°pen-CIosed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

Single Responsibility Principle
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Open-Closed Principle

A module should be open for extension, but closed for
modification.

struct Authenticator {
let publicKey = "68a325daae67ba95cf3ef28c2e1684c8"
let privateKey = "4hc5beOd70ealad761lfallc4dc4a3tfh649e”

func hash(timestamp: String) -> String {
Llet hash = md5(timestamp + privateKey + publicKey)
return "&hash=\(hash)"”
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Fxamples of OCP violations:

e Have to change the guts of a thing
e Server URL: Staging vs. production

e URL versioning
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OCP technigues:

e Delegates

* Protocols

e Strategy design pattern
e Configuration objects
e Dependency injection
e Subclass and override

e Blocks / Closures
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Over-application

 Delegates

* Protocols

e Strategy design pattern
e Configuration objects

e Dependency injection

e Subclass and override

e Blocks / Closures

@qcoding



OPEN CLOSED PRINCIPLE

Brain surgery is not necessary when putting on a hat.

@QCOdiﬂg http://devig.com/open-closed-principle/
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Liskov Substrtution Principle

Subclasses should be substitutable for their base classes.
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Liskov Substitution Principle

Rectangle

/\
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Examples of LSP violations:

e Single table inheritance & battling notifications
e Radio button: UlControl clear
e Sequences, collections

e NSMutableArray: NSArray

e All related to mutability
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Examples of LSP violations:

required init?(coder _: NSCoder) {
fatalError("init(coder:) has not bheen implemented")

}

required init?(coder _: NSCoder) {
fatalError("(’ °0°)) . 4=Lm)

}
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LSP: Only applies to subclasses?

e |lied: It’s not subclassing, it’s sub-typing
e |mplement a protocol

* “I’'m going to implement this protocol, but leave these
blank™
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Liskov Substitution Principle:
Semantic, not syntactic
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LISKOV SUBSTITUTION

If it looks like a duck, quacks like a duck, but needs batteries —

you probably have the wrong abstraction.

http://devig.com/liskov-substitution-principle/



http://deviq.com/liskov-substitution-principle/

Interface Segregation Principle

Many client-specific interfaces are better than one general-purpose
interface.




Consequences of “fat’ classes:

e Adaptability
e Mock ALL THE THINGS?
e Coupling too much stuffs
e Hard to read

e Hard to share
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Fat classes affect build times
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DATA STRUCTURE SEGREGATION
't matters, too!
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INTERFACE SEGREGATION

Tailor interfaces to individual clients’ needs.

@CICOdiﬂg http://devig.com/liskov-substitution-principle/



http://deviq.com/liskov-substitution-principle/

Dependency Inversion Principle

High-level modules should not depend on low-level modules.

Both should depend on abstractions.

Manager

Manager

Worker
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Examples of DIP violations:

e View talk directly to model
e Swift 2
e Storyboards

e CocoaPod
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High-impact DIP violation:

Parse
Object

/\

My Model
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Introducing an abstraction

My Model

N the miadle

Parse
Object

Persistent
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Routing dependencies:
before

VC A

> VCB >
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Routing dependencies:

after
VC B VC C
™| Protocol ™ Pprotocol
/\ /\

VC A VvC B VCC
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Would you solder a lamp directly to the electrical source?

@CICOdiﬂg http://devig.com/dependency-inversion-principle/



http://deviq.com/dependency-inversion-principle/

Single Responsibility Principle

A module should have one and only one reason to change.
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https://www.flickr.com/photos/ilopictures/35043310111/

cxamples of “technical”
reasons to change

e Need to improve performance
o Swift
e New framework

e TJestability
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Examples of “business”
reasons to change

e Requirements change
e Accessibility

e Analytics

e | ocalization

e Security vulnerabilities
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Avoid tightly coupling your tools together.
http://devig.com/single-responsibility-principle/



http://deviq.com/single-responsibility-principle/

WHAT IS SOLID FOR!

Keep the end in mind.
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EVOLU TIONARY DESIGN:
"Responding to change”

>

Design Patterns
Elements of Reusable
Object-Oriented Software

'R'EFACTORING

IMPROVING THE DESIGN
oF ExistinG Copk

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

MARTIN FOWLER

With contributions by Kent Beck, John Brant,
William Opdyke, ass Don Roberts

Forewerd by Erich Gamma
Object Technology International, Inc.
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SWIFT PROTOCOLS!

A single language construct has many purposes.
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Go make faster-building
SOLID (but soft) Swift!
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Slides and show notes:
qualitycoding.org/talk/swittxnw20 | /




