
Faculteit der Exacte Wetenschappen

TNO Defensie en veiligheid

Bachelorproject verslag Natuur- en Sterrenkunde, omvang 12 EC,
uitgevoerd als stage bij TNO defensie en veiligheid in de periode

26-04-2010 tot 01-07-2010

Solid propellant grain geometry
design, a model for the evolution

of star shaped interfaces

Auteur:
Arnon Lesage,
5795656

Begeleiders:
Ir. Francois Bouquet

Dr. Rudolf Sprik

August 9, 2010

Contents

1 Introduction 5

2 Solid rocket motors 6
2.1 Passive regulation . 6
2.2 Thrust and mass flow . 8
2.3 Burn rate . 9

2.3.1 Pressure and burn rate . 10
2.3.2 Temperature and burn rate 10
2.3.3 Erosive burning . 11
2.3.4 Other effects . 11

2.4 Mass flow and pressure . 11

3 Grain geometry 13
3.1 Propagating interface . 14
3.2 Interface propagation methods 15
3.3 Cellular automaton . 15
3.4 Fast marching algorithm . 18
3.5 Geometric solution of a parametric star 18
3.6 The chosen method . 19

4 Geometric evolution of a parametric star - Building the model 21
4.1 The parameters . 21
4.2 Initial shape . 23
4.3 Evolution of the shape . 27
4.4 Intersection points . 29
4.5 Burn area . 30
4.6 Achievements and Limitations of the algorithm 31
4.7 Results and comparison with the current software, GDP[1] 32
4.8 Improvements and beyond . 32

5 Conclusion 36

1

Nomenclature

ṁ Mass flow

ṙ Burn rate

πK Temperature sensitivity of pressure

ρc Chamber gas density

ρe Exhaust gas density

ρp Propellant mass density

θ(θ∗) The angle from the origin to a point on the off-center circle

θ∗ The angle from the origin of the off-center circle to a point on the off-
center circle

θi Angles representing the limits of the angular range over which the piece-
wise functions of r(θ) work

θi(bd) Angles representing the limits of the angular range over which the piece-
wise functions of r(θ, bd) work

a angle used in geometry,= π
N

At Nozzle throat area

a0 Propellant constant that depends on initial grain temperature

Ab Burn Area

Ae Nozzle exit Area

At Throat Area

b angle used in geometry,= k1π
N

bd Burn Depth

c Angle used in geometry,= k2π
N

F Thrust

Fr1 The initial Radius of the first fillet

Fr2 The initial Radius of the second fillet

IR Inner radius

k Specific heat ratio

k1 Fraction of angles, = b
a

2

k2 Fraction of angles, = c
a

N Number of star points

n Combustion index

OR Outer radius

Pa Outer pressure

Pc Combustion chamber pressure

Pe Exit pressure

Pa Point angle

R Gas constant, or later on circle radius

r(θ) Radial function describing the initial interface

Rc The radius function of an off-center circle

ri(θ) Radial function describing a single piece of the geometry

ri(θ, bd) Radial function describing a single piece of the geometry as it evolves
as a function of burn depth

rfi(θ) Radial function describing the fillet piece of the geometry

rfi(θ, bd) Radial function describing the fillet piece of the geometry as it evolves
as a function of burn depth

Tc Combustion temperature

Vc Grain cavity volume

Ve Exit gas velocity

3

Samenvatting

Vaste stuwstof motoren bieden geen mogelijkheid om zich actief te reguleren.
Actief reguleren houdt in dat het mogelijk is om tijdens het vliegen de stuwkracht
te veranderen naar wensen. Na het ontsteken, verbrandt de stuwstof en levert
het een bepaalde stuwkracht. De stuwkracht is afhankelijk van de hoeveelheid
verbrandingsoppervlak van de stuwstof. Door de stuwstof een bepaalde ge-
ometrische vorm te geven, is het mogelijk de hoeveelheid stuwkracht toch passief
te kunnen reguleren. In tegenstelling tot actief reguleren, houdt passief reguleren
in dat de stuwkracht veranderingen vantevoren, dus voor het ontsteken worden
bepaald. Tijdens het verbranden van de stuwstof, zet de vaste stuwstof zich om
in gas, en verandert de geometrische vorm van de stuwstof massa. De stuwstof
geometrie moet dan ook na het veranderen nog steeds aan de stuwkrachteisen
voldoen. Hiervoor is een model nodig dat de manier waarop de geometrie veran-
dert kan simuleren. Hiermee kan het model berekenen wat de stuwkracht is van
een bepaald geometrie ontwerp tijdens zijn gehele verbranding. Het model dat
hier wordt bestudeerd zal de eerste stap zetten naar een optimalisatie model.
Het optimalisatiemodel, het einddoel, is een model dat een stuwstof geometrie
berekent die aan bepaalde prestatie-eisen voldoet. De stap die in dit onder-
zoek wordt bestudeerd is niet de optimalisatie, maar het berekenen van de
prestaties van cilindrische geometrie, gebaseerd op twee dimensionale sterge-
ometrie. Het model is uitgewerkt in MatLab, in opdracht van TNO Defensie
en Veiligheid. Het model berekent de prestaties op een manier die optimal-
isatie mogelijk maakt. Dit was nog niet mogelijk met de bekende methodes, en
daarom werd het huidige model ontwikkeld.

4

1 Introduction

TNO Defence Security and safety provides many solutions to the overall safety
and security as a strategic partner of the Ministry of Defence. TNO has a long
history in researching propellants. The research began in the middle of the
1980’s, with the design of igniters and starter engines for the Ariane 5 main
engine (Vulcain). The Ariane 5 is a civilian rocket used as a carrier of satellites
into orbit.

Over the years, development provided detailed methods by which the per-
formance of a given propellant and propellant-geometry can be determined.
The currently used software, GDP[1], is able to calculate the performance and
burn behavior in detail. Yet, it does not provide fast analysis or a basis for
optimizations of the propellant geometry, also known as the grain geometry.
Optimization is an essential ingredient for the development of grain geometry.
The grain, which is the propellant bulk, is developed when the requirements of
the rocket are known. It is therefore needed to have a method that calculates
a grain-geometry based on the given performance requirements. Further cal-
culations and fine tuning of the geometry can then be done using the current
software models.

The project is split into two separate projects. The first is the development
and implementation of a model that provides fast performance calculations of
a given propellant and propellant-geometry. Different approaches are available
which will be discussed. The chosen approach is implemented in MATLAB.
Fast analysis of the grain is the key ingredient of the chosen approach. Speed is
important because in the next step, optimization, simulation of many different
grains takes place. It is therefore desired to have an approach that minimizes
the time of a single analysis to under a second. The second part of the project
is the optimization phase. A grain geometry will be calculated that provides
the requirements for the mission at hand. The subject discussed is the first part
of the project, the analysis of a grain geometry. In (4.8) a discussion follows
that provides some points of thought for the second part of the project, the
optimization.

The model produced will concentrate on burn area evolution, as a function
of burn depth. This means it will not take into account all factors affecting
the burn rate, and with that the production of thrust. These factors will be
discussed though in order to understand, why these can be examined separately
and how future implementation is possible.

5

2 Solid rocket motors

A solid rocket motor (SRM) is a machine that provides thrust. Every SRM
provides a different amount of thrust depending on payload, destination and
other factors. But thrust is not the only performance variable of a SRM. For
example the mass of the propellant is also a major factor. As the propellant
burns, it’s mass decreases, allowing higher acceleration. Therefore performance
assessment models also look at specific impulse, mass flow and other variables.
This model will only examine a few aspects of the performance of a SRM,
although many others can also be examined.

The solid rocket motor is one of two major classes of motors, where liquid
propellant is the other kind. What makes solid unique versus the liquid propel-
lant, is the simplicity of the motor. The solid propellant contains the fuel and
oxidizer. It is therefore enough to ignite the propellant and no other chemical
has to be added for combustion to take place. There are different propellant
compositions, usually double base or composite, that all have different proper-
ties. Burn rate, ignition temperature, flame temperature and other properties
that can all be found using experimentation and modeling.

The simplicity of the solid propellant is also it’s drawback. Requiring nothing
external to burn, the SRM’s burning cannot be regulated in-flight by providing
more or less fuel, as in engines. A form of active, real time, control of the SRM’s
thrust is not possible. Once ignited it will continue to burn until combustion
stops. Combustion stops when the propellant has depleted or when it is not
possible to sustain combustion conditions (temperature and pressure). The
only form of active thrust control is a thrust termination system. A thrust
termination system allows shutdown of the motor, but this usually destroys
the motor, and does not allow re-ignition. These systems are usually used as
a failsafe to stop failing rockets, or when a stage rocket is separated from the
main rocket.

Active control of an SRM is not possible and therefore interest lies in a form
of passive control. It is possible to determine in advance at which phase of the
SRM’s burning it will provide more or less thrust. A model that calculates when
a rocket provides more or less thrust is able to predict a way of passive control
of the thrust of an SRM.

2.1 Passive regulation

The ultimate goal of the project is the optimization of a propellant grain. Re-
quirements will be provided in the form of a thrust profile (a gabarit curve),
with an allowed margin of error (Fig. 1). The thrust profile is a thrust vs. time
diagram. Different missions require different thrust profiles, either rising thrust,
neutral or more complex profiles (Fig. 2). The goal is to provide a grain config-
uration that meets the specified thrust profile requirements, and falls within the
allowed margins of thrust. In the first part of the project we need to be able to
produce a thrust diagram of a certain grain geometry. We will mostly be able
to simulate burn area and burn rate though, so how these exactly provide the

6

Figure 1: A thrust profile. It shows the way performance requirements are
expressed, the white area is the area where within it’s margin we wish to have
the thrust profile. The red profile fulfills the requirement.

Figure 2: A selection of thrust profiles, showing progressive, neutral, regressive
and more exotic burning profiles.

thrust is a subject that will be discussed in a later section (2.2). With passive
control as a goal, all factors that affect thrust are examined. Narrowing down
the factors to those important variable factors that can be modeled and allow
for easy passive control. After ignition of the motor, the pressure first builds up
until it stabilizes. The assumption of the model is a quasi steady state where
the pressure is stable. The transient states describing ignition and extinction,
are then best described by the current, and more detailed software GDP.

The thrust provided by an SRM is a function of several factors. Among
them the propellant, the geometry of the propellant and design of the motor
and rocket. The rocket and motor design is basically the design of the nozzle and
the rocket hull, the materials used and so on. The design is predetermined and
does not change flight performance in-flight. Moreover other factors supply the
requirements for the rocket hull and nozzle. We are then left with an acceleration
that is a function of the composition of the propellant and the geometry of the

7

Figure 3: SRM definitions showing:
Combustion pressure Pc, Combus-
tion temperature Tc, Outer pressure
Pa, Throat Area At, Nozzle exit
Area Ae, Exit pressure Pe and Exit
gas speed Ve providing the thrust F .

propellant. In the following sections these are discussed, narrowing them down
to the most important effects.

Although thrust is described as the main performance variable of an SRM,
this is not entirely true for igniters. Igniters are special kind of SRM that have to
ignite the main rocket motor. This is done by exhausting hot gas into the main
motor’s combustion chamber. What makes igniters unique is then that thrust
is of lesser importance and mass flow, and thermal energy is where interest lies.

2.2 Thrust and mass flow

The model developed specializes in determining the burn area vs. burn depth of
a certain propellant geometry. To calculate a thrust diagram, the burn rate, the
nozzle, the propellant and other factors are taken into account. I will attempt
to explain briefly how these factors come into play. A few definitions can be
seen in (Fig. 3), which are at play in a typical SRM.

A few assumptions are made to make matters simple. The first is the as-
sumption of isentropic flow, which translates to an ideal rocket with adiabatic
gas expansion, and no thermal losses. This is not entirely true but the effects
are small for SRM’s. Moreover, the assumption is made of a quasi steady state,
where mass flow through the nozzle is constant with min = mout. The last
assumption is not wrong, but it is not correct for the entire duration of com-
bustion, at ignition and extiction we are not at a quasi steady state. Therefore
these stages will be modeled with other software.

The thrust F contains two terms, The first is called ”Momentum thrust”,
and the second ”Pressure thrust”.

F = ṁVe + (Pe − Pa)Ae (1)

8

The first term the ”Momentum thrust” ṁVe, is a function of the mass flow ṁ
and Ve the speed of the gas when exiting the nozzle. The second expression
of (1), the ”Pressure thrust” is a function of the ambient pressure outside of
the rocket Pa, the pressure of the gas when it leaves the nozzle Pe, and that
difference multiplied with the area of the nozzle-end where these two pressures
come in contact Ae.

The mass flow of gas out of the nozzle can be expressed as ṁ = ρeVeAe.
Where ρe is the density of the exhausted gas, Ve it’s speed and Ae the surface
through which it moves when exiting the nozzle. But the mass flow is assumed
to be constant min = mout and so, at an earlier phase of the combustion, the
mass flow converted to gas comes from the solid propellant. The rate at which
the propellant mass is converted into gas can be expressed as:

ṁ = ρpṙAb (2)

Where ρp is the mass density of the propellant, ṙ it’s burning speed and Ab the
burning surface.

The thrust is thus a function of many variables, but the last expression for
the mass flow (2) is of great interest: it is the most dominant term and because
in igniters mass flow is the important performance variable. The mass flow (2)
is a function of burn rate and burn area, which are both variable and predictable
and therefore provide a way of passive control over mass flow and thrust.

All mass flow variables are now examined to see what affects them. The
model specializes in the geometry and therefore a separation is needed of the
mass flow (2) variables, that are a function of the modeled geometry, and those
that are not. Burn rate, geometry and propellant density are easily described.
Geometry is mostly discussed from section (3) onwards, but then the evolution
of the grain is examined. Basically Ab is the surface of the geometry. The value
of Ab can be found using geometry, it changes with time though and so is best
described as a function of burn depth Ab(r) (later on Ab(bd)) or time Ab(t).
The propellant density ρp is a propallant property which is easy to determine,
and is constant at all times. Last is the burn rate ṙ which is discussed next.

2.3 Burn rate

Burn rate is one of two major variables of the mass flow, yet many factors affect
the burn rate itself. Composition of the propellant plays a major role but is
predetermined. Moreover the composition is usually the same throughout the
entire propellant mass. So by experimentally determining the properties of the
propellant composition we can leave out much of it’s properties as they will not
have an effect on variable performance. Therefore if the other affecting factors
are negligible the burn rate is very predictable. The conditions affecting the
burn rate are[2][3]:

• First and foremost the pressure in the combustion chamber.

• Initial temperature of the propellant.

9

• Gas flow along burning surface.

• Motion of the rocket (fast spinning for example).

The research towards the effects of these conditions, is not yet able to provide
an analytic prediction. But the effects of each of the conditions separately have
been studied, and provides empirical predictions[2][3]. Following is a deeper
examination of these conditions as a background to why none are taken into
account by the model, and how they could be implemented. These are not the
point of focus in this model, as they have already been modeled using other
models. Our focus still lies in the geometry evolution, but it is still necessary
to understand what their effect might be.

2.3.1 Pressure and burn rate

Experimental testing of propellants provides burn rate’s dependence on pressure.
Quick examination of such experimental measurements[2] provides the following
expression[4] for the relation

ṙ = a0P
n
c + b (3)

Where ṙ is the burn rate, Pc is the pressure, a0 and b are functions of the
initial temperature of the propellant and n is known as the combustion index.
This relation can be simplified though, for the case of rockets where b is usually
very small[3]. The simplified result

ṙ = a0P
n
c (4)

This is known as the Saint-Robert’s or Vieille’s law. Where a0 and n are
found empirically for a certain propellant. They usually apply for a certain
range of pressures. A set of different values for a0 and n can provide the needed
relations between burning rate and pressure throughout the combustion.

2.3.2 Temperature and burn rate

Temperature affects the rate at which chemical reactions take place. There-
fore the initial propellant temperature affects the burning rate. It is there-
fore common to place the rocket in a temperature controlled space, or at least
protect from the sun prior to ignition. Moreover initial temperature require-
ments are determined, so that if conditions exceed the conditions, launch is
delayed. As a rocket in-flight is exposed to extreme temperatures, from 220K
up-to 344K, it is important to see how the propellant performs in these extreme
variations. A typical composite propellant experiences a variation of up-to 20%
to 35% in chamber pressure Pc[2]. Moreover, for such temperature variations
the thrust operation time varies with the same percentage. Nonuniform temper-
ature within the grain may have an even more disastrous effect as the pressure
may not be symmetric and the thrust vector alters. The effect of grain temper-
ature on pressure is expressed as ∆P = Pπk∆T

0 . Where ∆P is the variation of

10

pressure from the reference pressure P0, at a temperature variation of ∆T with
πk an experimentally measured coefficient known as the temperature sensitivity
of pressure at a constant burning area (K). By determining the a0 parame-
ter for the correct reference temperature, and giving the entire propellant that
uniform temperature, we can neglect the effect of a temperature difference.

2.3.3 Erosive burning

Erosive burning[5][6] is the increase in burning rate because of the fast flow
of hot gases along the burning surface. This problem mainly exists near the
nozzle where gas flow is fastest. This is primarily a product of the pressure
gradient within the combustion chamber. This results in an uneven burning
along different sections of the grain, which would make for a very hard to predict
thrust profile. Erosive burning is strongest when the flow is fastest. So when
the amount of burning propellant is large, we have a large amount of gas. And
it flows fast when it has to go through a small opening. We can therefore say
that erosive burning is a function of Ab

Ap
. With Ab burn area, and Ap the port

area or the cross section area of the grain cavity. The larger this fraction the
more likely is the occurrence of erosive burning. In small igniters this is usually
a smaller scale effect than in large SRM’s, but it can be of importance in both
cases. The model does not take erosive burning into account at the moment,
which is one of the subjects the more detailed software can handle.

2.3.4 Other effects

Many other effects take place in a nonideal rocket engine. None will be taken
into account, as this would require highly complex computations. Among these
effects are erosion of the nozzle throat and movement of the rocket motor. Both
of these are assumed to not pose a big problem in our case. When erosion of the
nozzle throat takes place, the nozzle throat grows bigger as it erodes because
of the the high temperature. Nozzle erosion is basically a variable At which we
have seen in (2.2). This affects pressure build up in the combustion chamber,
among other things. Rocket movement can also have an effect. A spinning rocket
will create higher pressures at the outer most area of the combustion chamber.
Higher pressures affect burn rate, and therefore movement is not desired. These
effects can play a role, but simply complicate matters. The model does not take
these into account, although it could be done in future versions.

2.4 Mass flow and pressure

All variables contributing to the mass flow (2) have been accounted for: the
variable area Ab(r), a geometric value, the constant propellant density, ρp, and
the burn rate, ṙ(Pc), a function of the pressure and constants as described
by (4). Therefore, the missing piece is the chamber pressure, Pc. Using the
principle of conservation of matter, we can derive another relation. The amount
of propellant mass burned per unit time (2) is equal to the sum of change in mass

11

within the combustion chamber, and the mass flowing out of the chamber[2].

ṁ =
∂

∂t
(ρcVc) +AtPcCd

√
k

RTc
(

2

k + 1
)

k+1
k−1 (5)

Where ṁ on the left is the mass flow (2). The first term on the right is the
change in mass amount in the chamber grain cavity, a function of the chamber
gas density, ρc, and grain cavity volume Vc. The second term on the right
expresses the mass flowing out of the nozzle. A function of nozzle throat area,
At, chamber pressure Pc, chamber gas temperature Tc, R the gas constant, and
k the specific heat ratio. This expression can be simplified using to[3]:

ṁ =
ΓCdPcAt√

RTc
(6)

Now all the needed elements are there, combining (6) and (2) the pressure Pc
is expressed as a function of two area expressions Ab and At. The burn area
is a function of burn depth, Ab(r), which is the part modeled by the algorithm
and discussed in the following sections. And burn rate is a function of pressure
ṙ(Pc).

The model produces only burn area and burn depth numbers, and never
makes the above transformation to mass flow and thrust. Yet, mass flow and
thrust can be expressed with little added complication.

12

3 Grain geometry

Burn rate determines how fast a propellant burns. The amount of propellant
actually available for burning at that burn rate is determined by the shape of
the propellant mass, the grain geometry. The burning takes place at the surface,
and the amount of surface a certain shape has is determined by it’s geometry.
The propellant mass is distributed on the inside of the combustion chamber.
The mass is usually extruded or molded in a certain shape within the cylinder.
In most cases the shape forms a cavity within the propellant mass, which is
connected to the nozzle. This space is where hot gases move towards the nozzle.
On ignition all exposed surfaces around this space will burn. When burning,
the surface recedes as solid propellant turns to gas. The receding takes place in
a direction that is normal to the surface.

The configuration of the grain or the shape of it defines how it behaves
in time. The grain is in most cases cylindrically symmetric. In that case it
is sufficient to examine a two dimensional cross section of the grain. Rocket
models with variations along their length axis do exist but these require more
complex calculations. While a complexer configuration does not necessarily
provide a performance that is not achievable in a simpler constant 2D cross
section model. This study will only focus on grain geometries that can be
described by a two dimensional cross section. Another symmetry often found in
the grain is a rotational symmetry. This is often the case because it is important
to get a rotationally symmetric exhaust out of the nozzle, or else the rocket net
thrust vector will not be straight.

Performance of a grain is usually measured in a thrust vs time diagram.
Alternatively when neglecting burn rate effects, burn area vs burn depth, is
used instead of the thrust/time. These diagrams can easily display if a grain is
progressive or regressive, which translates to growing or diminishing thrust(Fig.
2). But these can be easily described with cylindrical grains burning in or out.
More complex grain are required for more complex performances. A combina-
tion of progressive followed by regressive, or constant burn, usually require more
exotic shapes, like a stars or fynocyls. (Fig. 2)

The performance of a grain the model looks at is ultimately the burning
surface as a function of burn depth. In a two dimensional grain it is therefore
necessary to calculate the circumference of the grain along the burning interface,
as a function of burn depth. For a circular interface(Fig. 4) this is simple
enough. The burning interface recedes radially so burn depth translates linearly
to a greater circle radius. The circumference unlike the sphere area example
mentioned above, is of a circle C = 2πR, and thus the thrust profile increases
linearly S = 2πRL with L cylinder length.

Grain geometry evolution is a problem that is best described by an inter-
face. The interface is the front of the propellant that is burning. As the the
interface propagates the it’s geometry changes, and the the amount of burning
surface changes. The way to describe a propagating interface is not so simple.
The interface propagation problem at hand has similarities with other physical
problems. The burning front in forest fires, paper, ocean waves and crystal

13

Figure 4: Circle or cylinder receding outward as it burns. The red lines show
the initial and final burn interfaces. As the interface moves outward, its length
grows translating to more combustion taking place.

formation are some of the examples where a propagating interface plays a role.
Most problems are different than ours. The interface propagation speed is usu-
ally not consistent. When looking at burning of normal fuels, the burn rate
is dependent on the amount of available oxygen. Convex surface are exposed
to more oxygen than concave shape, and therefore propagation speed in many
problems is curvature dependent. Propellant are different though, because the
oxidizer is within the propellant the burn rate is consistent over the entire burn
surface.

The property that sets the grain geometry problem apart, rises from the fact
that the fuel and oxidizer are present within the propellant. This causes the
burn rate to be constant over the entire interface.

3.1 Propagating interface

In this section the problems are examined that arise when trying to solve a
propagating interface problem. A closed curve is considered, in a two dimen-
sional plane. An exact approach fails and raises many problems, while a numeric
approach can be relatively easy to achieve.

We begin with an initial closed curve C(0) at time t = 0. Where C(t) is the
curve as it propagates in time. Propagation takes place in a direction normal
to the curve, at a speed V . Parameterizing the curve as a function of θ seems
logical, and for the sake of simplicity we take a curve that is best described
in polar coordinates, and is similar to star shapes. ~r(θ, t) is then the position
vector that parametrizes the curve as it propagates. With the the boundary
condition that ~r(2π, t) = ~r(0, t). The normal ~n(θ, t) at any point along the

14

Figure 5: Interface evolution fails. Figure 6: Interface evolution succesful.

curve is used for the propagation direction. From this follows that

~n(θ, t) · ∂~r(θ, t)
∂t

= V (θ, t) (7)

with V (θ, t) = V0 being constant. This is also known as Eikonal’s equation,
and the solution is quite straight forward. This can be rewritten in terms of
~r(θ, t) = (x(θ, t), y(θ, t)) coordinates, which provides [7]

∂x(θ, t)

∂t
= V0

∂θy√
(∂θx)2 + (∂θy)2

(8)

∂y(θ, t)

∂t
= −V0

∂θx√
(∂θx)2 + (∂θy)2

(9)

Using these an attempt is made at the evolution of a shape. It can be seen
in (Fig. 5) how this method fails. Round corners should form cusps but fail
to do so. The solution used is indeed the correct solution that shows evolution
for a propagating interface that evolves perpendicular to itself. But it is not
physically the correct evolution, as the interface cannot cross the same point
twice. The propellant is burnt after the first time the interface moves over it.

3.2 Interface propagation methods

It is obvious that a better approach is needed in order to solve this problem
correctly. Either by approximation or exact. The requirements we have from
the method or model is that it can primarily handle star like shapes, and that
it paves the way to optimizations. We will now examine three approaches to
see how they cope with those requirements, and what their weaknesses and
strengths are.

3.3 Cellular automaton

This approach is very simple and thus very easy to implement. It does have
a few major drawbacks. The idea is that the combustion chamber or cylinder

15

is converted into a grid of cells, which visually are pixels. Each cell is then
assigned a value describing it’s state. The initial values are initially determined
by the grain configuration we examine. The states are for example ”Burning”,
”Propellant” and ”No propellant”. Then we define rules that help evolve the
grid. Every iteration the algorithm scans all cells and changes states according
to the rules.

The strength of this method is that any shape or grain can be examined.
Two methods were examined of inputting the initial grain configuration. One
option is the use of an image file where the grain is visually sketched. This can
be converted into a matrix where each pixel in the image is a cell in the matrix.
The color of the pixel defines the value or state of the cell. Using images allows
for the greatest possible versatility in grain design. Another option is based on
parameters that define functions. These functions are then used to input the
values within the matrix. This is not very versatile and not fast.

So we start with a grid of N by N cells. Using one of the methods above the
initial state of each cell is determined. The possible cell states are as described
above, ”Burning”, ”Non-burning, Contains propellant” and ”Non-burning, No
propellant”. After the construction of the initial grid or matrix, a loop code is
used to evolve the grain. Every iteration the rules are used and the states of
certain cells change. The rules used to evolve the grain are:

• If cell state is ”Burning” and neighboring cell state is ”Non-burning, Con-
tains propellant”, then change neighboring cell to ”Burning”.

• If cell state is ”Burning”, then change to ”Non-burning, No propellant”.

• Count the amount of burning cell to determine circumference or burning
area.

The definition of a neighboring cell to a burning cell has a strong influence on
the evolution. A neighboring cell is a cell that is a maximum distance from the
burning cell. Lets call this maximum distance ”neighbor distance”. We then
have a situation where a circle or radius ”neighbor distance” of cells around
the burning cells should start burning. But in a simple model this maximum
distance of neighboring cells is small, approximately 1 or 2 cells. In that case
the circle will not appear as circle but appear very ”pixelated” (Fig. 7). The
consequences of this for small values of neighbor distance can be seen in (Fig.
8). To make this work better the ”neighbor distance” must be large, to form a
nice circle. But then the grid would also need to be large, so N has to be large.
This raises the biggest drawback of this method. The algorithm scans every cell
of the N2 cells, at every iteration. This makes for a calculation heavy algorithm.
Moreover to know the state of the grid after a certain time all iteration steps
before that have to take place as well. Both of these factors do not work well
with future optimization steps.

This method is good if one wants to examine an eccentric shape that doesn’t
have any symmetries, or a shape that cannot be easily described, and therefore
has to be sketched. Nevertheless this method is not suitable for optimization
mainly because of the long calculation times.

16

Figure 7: Two examples showing some variations in neighbor distance, the first
with neighbor distance set to 1, the second set to 2.

Figure 8: An example showing the incorrect evolution of a circular interface
using neighbor distance set to 1.

17

Figure 9: An example showing the way the fast marching algorithm translates
a moving two dimensional interface into a stationary three dimensional surface.

3.4 Fast marching algorithm

Developed by Sethian J.A. in many articles[7][8][9] over many years. The fast
marching algorithm doesn’t try to follow and move the interface. Instead, a 2D
interface is turned into a 3D surface. The cross section of the surface describes
the interface at a specific time(Fig. 9). The surface has to be constructed first
though. This is done by evolving it at every level, and contructing the next level.
This is time consuming, and for a simple geometry with an acceptable resolution
10’s of seconds are normal calculation time. The fast marching algorithms
strength is it’s ability to handle variable and inconsistent propagation speeds.
Aslo it handles the formation of cusps and islands and other complexities well.
This ability makes it a prime candidate for many other interface propagation
problems. Yet it’s weakness make unsuitable for optimization. Requiring long
calculation times is one of the weaknesses, another is that to construct the
surface all levels are needed until the level required is modeled. It is not possible
to simply look at the interface evolution after a certain time without calculating
all levels before. Algorithms based on fast marching algorithms are available
for MatLab and Mathematica. These were tested and it was established that
these method’s strengths are not needed at the moment. We are not faced
with complex speed functions, difficult geometries. Moreover it simply does not
provide an algorithm that works well with optimization. This method would
be very suitable for more complex and more versatile interface propagation
problems.

3.5 Geometric solution of a parametric star

Using this method concentration is put on star-like shapes made out of straight
lines and arcs. The star shape is defined by parameters, where the set of chosen
parameters defines a unique star shape. After producing an initial shape the star
evolution is modeled, using certain reference points within the shape that do

18

Figure 10: The radial function, r(θ), defined as the distance from the origin to
the interface. The function r(θ) plotted over the range θ : 0→ 2π describes the
entire interface.

not change when evolving. As mentioned the star is made of straight sections or
circle sections, and these sections are defined as functions. Polar coordinates are
used and the function describing the interface is the radial distance as a function
of the angle r(θ) (Fig. 10). Points of intersection between the different sections
are determined. From these points of intersection it is possible to extract the
order at which certain sections burn off or disappear. Using all these points,
functions and disappearance time of certain sections, it is possible to construct
the shape as a function of burn depth. This method is the only method that
gives an exact solution to the problem. This is due to the fact that the function
describing the shape is not continuous but a piecewise-defined function. Every
piece of the piecewise function, is easily evolved as a function of burn depth.
A straight line evolves by moving in a direction perpendicular to itself. The
distance the line is moved is equal to the burn depth. A concave circle section as
described earlier in the circle example (Fig. 4), evolves by growing. The radius
will grow linearly with the burn depth(Fig. 11). Likewise a convex circle section
diminishes (Fig. 12). It’s radius shrinks linearly with burn depth, until the burn
depth is equal to it’s initial radius. In that case the circle’s radius has reached
zero. A circle section with radius zero translates to a sharp corner. In that case
the circle section is omitted altogether from further steps of calculation and the
bordering function pieces intersect each other. Using all different intersection
points and function pieces the ranges of every piece of the piecewise function is
determined. Using the function describing the shape information is gathered:
the shape is plotted, the circumference of the shape is calculated and so are the
remaining area/volume of propellant and port area.

3.6 The chosen method

The last method, the geometric evolution of a parametric star (3.5), was chosen
as the favorite method that answers requirements. Built into it is the use of
parameters as a definition of the geometry. While the other numeric methods

19

Figure 11: Interface evolution of a
concave shape, a sharp cusp disap-
pears.

Figure 12: Interface evolution of a
convex shape, forming a sharp cusp.

do not yet provide a simple implementation of the geometry. They can han-
dle any geometry even if it is defined as an image, and provide it’s evolution.
But providing an image out of the performance requirements would be impos-
sible. Trying out parameters on the other hand is already a simple form of
optimization, and would be very easy to implement if the geometry is defined
parametrically. The parametric definition of the geometry could also be imple-
mented using the numerical methods, so the other reasons to make the choice
was that a geometric evolution is analytic and therefore fast. A fast algorithm
is very suitable for optimization.

20

4 Geometric evolution of a parametric star -
Building the model

Examination of several models for interface propagation, has resulted in the
chosen geometric evolution model. It is the fastest and provides the best per-
formance for optimization. An examination of the inner workings of the model
will now follow. First defining how the geometry’s initial shape is constructed
and then it’s evolution.

A parametric star is defined by a number of parameters. Each parameters
defines a key aspect of the star geometry, it could be a length of a line, or an
angle. After the definition of the parameters, the initial shape and therefore it’s
evolution are determined. It is important to keep in mind that the model we
are developing should be able to provide initial optimization steps. The grain is
thoroughly examined and fine tuned using the current grain modeling software
GDP. It is therefore recommended to use parameters that are compatible with
the parameters used by the current software. After constructing the initial
shape, we can continue and see how this shape evolves as a function of burn
depth.

4.1 The parameters

Defining a star can be done relatively simple, with only a few parameters. In
this case a star like shape extruded out of a cylinder. The parameters defining a
simple star would be(Fig. 15): the star point opening angle or Point Angle(Pa),
the number of star points(N), and the outer and inner radius (OR) and (IR)
respectively(Fig. 13a). Adding more complexity to the star is done by defining
that the star points are spaced apart (Fig. 13b). The spacing is achieved by
defining two angles a and b, that specify at what angle θ a few key points are
placed. The angle a is deduced using the N parameter, a = π

N . The parameter

k1 specifies an angular fraction k1 ≡ b
a . With the parameter k1 and the angle a,

the angle b is expressed. This is easier to work with than defining b explicitly.
A b angle defined explicitly would mean that any time we change N we have to
redefine b while in this way b is derived from other parameters N and k1. As a
function of parameters only the definition is b = k1a = k1π

N .
A higher order of complexity within the star is achieved by defining a star

whose point are ”cut off”. It was chosen that the cut is a circular arc with it’s
center at the center of the star (Fig. 13c). The fraction of the star point that
is cut off is defined using another angle c, which is deduced from the parameter
k2, defined as k2 ≡ c

a . This definition is similar to the fraction we saw before
as k1, it defines the angular fraction of the cut off section c compared to the
entire star point section a. As a function of parameters only the definition is
c = k2a = k2π

N .
Another adjustment made to the simple star geometry is the introduction

of rounding fillets. The fillets make the grain stronger, allowing it to withstand
the vibrations and forces it is exposed to. Two fillets are defined, one concave,

21

(a) Simple Star (b) Added spacing between star
points

(c) Added point cut-off

Figure 13: How the parameters affect a star geometry

(a) Without the rounding fillet (b) With the rounding fillet

Figure 14: The effect of a rounding fillet.

and one convex. For each of these a radius is defined which is the fillet radius,
named Fr1 and Fr2. The radius expresses the radius of the circle section that
is the fillet. The fillet is tangential to both sections that it connects, which is
how the center of the fillet circle is found.

Figure 15 shows the way the parameters of the star geometry are defined. In
total eight parameter values have to be specified. The parameters shown in red
in figure 15 are not directly defined. Rather indirectly by another parameter.
The eight parameters are:

• N is the number of star points, which corresponds to a = π
N .

• k1 is the fraction of angles, k1 = b
a .

• k2 is the fraction of angles, k2 = c
a .

22

Figure 15: The parameters defining the star geometry.

• Pa is the point angle.

• OR is the outer radius where the propellant reaches the outer casing.

• IR is the inner radius defining at what outer radius the star points begin.

• Fr1 is the radius of the rounding fillet section rf1(θ, bd).

• Fr2 is the radius of the rounding fillet section rf2(θ, bd).

4.2 Initial shape

Well chosen parameters are very important for an easy calculation of the initial
shape. Having just defined all the necessary parameters, it is now necessary
to be able to construct the shape right. Visually it is easy to confirm that the
initial grain description is right. When the function describing it is without
errors the model can go on and calculate the circumference.

23

Figure 16: The 5 different piecewise functions, that describe the entire shape.
r1(θ) in black, rf1(θ) in purple, r2(θ) in green, rf2(θ) in cyan and r3(θ) in blue.

The function describing the shape is a polar function r(θ). For simplicity
we would like to describe the smallest part of the star possible. It is obvious
that symmetries are present, rotational symmetry means that we only need
to describe an angular fraction of the star circular cross section. An angular
fraction of 2π

N = 2a, which translates to a cyclic permutation of r(θ) = r(θ+2a).
But an angular fraction of 2a of the star is also describing too much. An angular
fraction a of the star is sufficient. The shape is mirrored along the a angle so
that r(θ) = r(2a − θ). So based on symmetry of the shape alone, we have
narrowed down the part we have to describe to the function r(θ) in the range
0→ a.

The polar function r(θ) is thus our main interest. Because r(θ) contains
sharp corners it’s derivative cannot be continuous. It is therefore necessary to
define it by way of piecewise functions. I use r1(θ), r2(θ), r3(θ) for the different
sections(Fig. 16). Where r1(θ) and r3(θ) are circle sections and r2(θ) is a
straight section. rf1(θ) and rf2(θ) describe r(θ) at the fillets. Eventually five
different functions contribute to r(θ).

24

r(θ) =

r1(θ) for 0 ≤ θ < θ1

rf1(θ) for θ1 ≤ θ < θ2

r2(θ) for θ2 ≤ θ < θ3

rf2(θ) for θ3 ≤ θ < θ4

r3(θ) for θ4 ≤ θ < a

(10)

Here the angular range borders θi are the angles to the intersection points
between the bordering sections. These angles define the range of angles over
which each of the section functions is used.

Using the different parameter definitions an in-depth look is made into the
function r(θ). To show the calculations involved more detailed focus is put r2(θ)
and later as a function of the burn depth, r2(θ, bd).
The function r1(θ) is the simplest function expression, it describes a circle arc
with circle center at the star center. Therefore r1(θ) is constant, which creates
a circle section. Initially it’s value is r1(θ) = IR, as defined by the parameters.
The functions r2(θ) and r3(θ) are more complicated. We now first assume that
fillet radius 1 (Fr1) and fillet radius 2 (Fr2) parameters are equal to 0, so the
corners are not rounded. In that case we know that r2 passes through the points
(r, θ): (r1(b), b) and (r3(c), c).
r3(θ) can be found geometrically to be

r3(θ) = IR
sin(Pa

2 − b)
sin(Pa

2 − c)
for Fr1 = Fr2 = 0 (11)

r3(θ) is shown to be constant as r3(θ) is a circle section around the center of the
star, similar to r1(θ). So now we have two points, where through the straight
line r2(θ) goes (r, θ):

(IR, b) and (IR
sin(pa

2 − b)
sin(pa

2 − c)
, c) (12)

Using two points it is easy to find the line gradient being equal to

m =
y2 − y1

x2 − x1
=

IR sin(pa
2 −b)

sin(−c+ pa
2) sin(c)− IR sin(b)

IR sin(pa
2 −b)

sin(−c+ pa
2) cos(c)− IR cos(b)

(13)

The gradient in use is a Cartesian gradient, so the two polar points are converted
to Cartesian coordinate points where after the line is determined. The line
function which is defined in Cartesian coordinates is then converted again to
polar coordinates.

When the fillet radii are greater than zero we are faced with a slightly more
complex situation. Each of the fillets is also defined differently. Fr2 is purely
a rounding fillet and adapts itself to the corner it rounds. On the other hand,
Fr1 whose center point is defined by the angle b. So when Fr1 is formed other
sections have to move. First we examine the effect of Fr1, which are seen in

25

(a) Fr1 makes sections move (b) Fr2 just makes the corner round

Figure 17: The effect of a rounding fillet.

(Fig. 17a). The fillet 1 forms between r1 and r2, in a way that makes r2 shift.
The gradient of r2(θ) remains fixed, but the line itself is moved. The fillet is
then formed in between in a way that it is tangential to both sections it borders.

The way r2 shifts because of Fr1 can also be seen in (Fig. 17a) as the
straight section that moves. Each of the two points representing r2 is shifted to
it’s proper location. Geometrically it can be found that the shift is equal to:

xi,correct = xi − Fr1(cos(θ1)− cos(arctan(−1/m))) (14)

yi,correct = yi − Fr1(sin(θ1)− sin(arctan(−1/m))) (15)

Where xi,correct and yi,correct representing the correct position of two points
that form the straight line r2. The expression arctan(−1/m) is the angle of the
normal to r2. Using these points the function that represents the straight line
can be expressed.

The second fillet expressed by Fr2, doesn’t affect the position of any of the
bordering sections, it only makes the corner round. (Fig. 17b) The algorithm
makes use of the given parameter Fr2 which is the radius of a circle. Using
that information the algorithm looks for a circle with the required radius that
is tangent to the straight line r2 and to the circle section r3.

The way the functions rf1(θ) and rf2(θ) are expressed also deserves some
special attention. The problem is finding an expression for an off-center circle
in polar coordinates, where the center point of the off-center circle is specified
in Cartesian coordinates (xc, yc) (Fig. 18). Starting with a centered circle
r(θ) = Rc with θ : 0⇒ 2π. If I now take the Cartesian components Xcircle(θ) =
Rc cos θ and Ycircle(θ) = Rc sin θ and shift them so they are centered around
(xc, yc), so that X∗(θ∗) = Rc cos θ(θ∗) + xc and Y ∗(θ∗) = Rc sin θ(θ∗) + yc.
Here θ(θ∗) is the angle from the origin to a point on the off-center circle, as a
function of θ∗ the angle from the off-center circle center to a point on the circle.

26

Figure 18: An off-center circle. The blue line shows the final product of interest
the function r(θ∗) or r(θ).

Transforming back to polar coordinates gives:

r(θ∗) =
√

(Rc cos θ∗ + xc)2 + (Rc sin θ∗ + yc)2 (16)

θ(θ∗) = arctan(
‘rrc cos θ∗ + xc
Rc sin θ∗ + yc

) (17)

Using these functions the circular sections of the fillets can be expressed. The
functions run over a certain range of angles, but these angles are then specified
as θ∗ or as the angle when viewed from the fillet center point, and not the star
center point. Rc(θ

∗) is the radius function of the fillets. In later stages when
the radius of the fillet is variable, this is the radius function that will be altered.

4.3 Evolution of the shape

Until now we have examined the static initial grain. Now the evolution of the
grain is examined as a function of the burn Depth (Variable name bd). I take
the initial shape function and make the necessary adjustments to be able to see
the burn depth dependence. Now the functions vary with burn depth as do the
intersection points that form the section ranges. r(θ)⇒ r(θ, bd)

27

r(θ, bd) =

r1(θ, bd) for 0 ≤ θ < θ1(bd)

rf1(θ, bd) for θ1(bd) ≤ θ < θ2(bd)

r2(θ, bd) for θ2(bd) ≤ θ < θ3(bd)

rf2(θ, bd) for θ3(bd) ≤ θ < θ4(bd)

r3(θ, bd) for θ4(bd) ≤ θ < a

(18)

First participating shapes’ evolution in general is examined. The participat-
ing shapes are (1) a concave circle section,(2) a convex circle section and (3)
a straight line. (1) When burned a concave circle’s radius will grow with burn
depth. Any concave circle section with initial radius Ri will have a burn depth
dependent radius Ri(bd) = Ri + bd. (2) Likewise to the concave case a convex
circle section will have it’s radius affected, unlike the concave case it’s radius
will shrink. An initial convex circle section with initial radius Ri will have a
burn depth dependent radius Ri(bd) = Ri − bd. (3) Straight lines move in a
direction perpendicular to themselves. So the straight line (x) = mx + y0 will
move perpendicular to itself in the direction − 1

m . It will move a distance of bd
in that direction.

In more detail it can be seen how the front described by r2(θ, bd) evolves.
It was already discussed how it shifts due to rounding of fillet radius Fr1. And
it was just remarked that straight lines move a distance of bd in the direction
perpendicular to themselves. So as before when r2(θ) was handled, actually
not the line is handled but two points on the line. The points are moved and
through them the line described by r2(θ, bd) is formed. The amount of shift
is bd and the direction is perpendicular to the line. As before the gradient of
the line described by r2(θ, bd) is m, and the normal gradient is − 1

m . The angle
of that normal arctan(− 1

m). Taking the x and y component the points can be
altered easily.

xi,evo = xi,correct + bd cos(arctan(− 1

m
)) (19)

yi,evo = yi,correct + bd sin(arctan(− 1

m
)) (20)

The rest of the shapes are circular with a certain radius. For the concave
sections r1(θ, bd), r3(θ, bd) and fr1(θ, bd). The radius is adjusted in the same
way as described before to Ri(bd) = Ri + bd. For r1(θ, bd) and r3(θ, bd) this is
simple as their defining function is their radius. So their adjustment are:

r1(θ, bd) = r1(θ) + bd (21)

r3(θ, bd) = r3(θ) + bd (22)

The fillet Fr1 is not centered around the star center, therefore the position
function rf1(θ, bd) does not represent it’s radius, but it’s distance from the cen-
ter of the star (Fig. 16). The radius function has to be adjusted to have the bd
addition. For the second fillet Fr2, the same applies. The burn depth adjust-
ment applies to the radius function and not to the position function rf2(θ, bd).

28

The adjustment in this case is negative. The radius function of rf2(θ, bd) di-
minishes as Ri(bd) = Ri − bd. So in equations 21 and 22 the radius constant
R would be exchanged with a radius function R(bd) = R ± bd. Using all these
calculation methods the expressions for all different sections are found. The
goal now is to see at what range of angles each of these functions is used.

4.4 Intersection points

The functions r1(θ, bd), r2(θ, bd), r3(θ, bd), rf1(θ, bd) and rf2(θ, bd) are known.
But it is important to find the range over which each of these is used. The
angles θ1−4(bd) express the boundaries of the piecewise function ranges. Some
require more complex calculations than others, which rely on the intersection
points between certain sections. Not only bordering sections have intersection
points. Sometimes sections burn off and their neighbors start to intersect each
other. An analytic solution was used in the calculation of these intersections,
and so it requires some algorithms. Two different algorithms are being used in
all these cases, which describe the intersection between all different sections. (1)
The intersection between two circles, (2) the intersection between a circle and
a straight line.

At this point of the evolution care has to be taken in how the grain evolves.
For almost any initial geometry design, some sections disappear during it’s
evolution. When a section disappears the bordering sections start to intersect
each other. It is necessary to find a set of rules that know at what point which
sections disappear. Five different cases have been identified, and separated using
a set of rules. Each of these cases is like a burn phase where the total burning
surface stays linear within the phase, the only factor breaking the linearity is if
the grain is starting to reach it’s outside border.

1. This phase takes place in most grains. It happens when both fillet radii
are non zero. The phase describes a shape where all sections are present
and burning. Usually this will end with the fillet section described by
rf2(θ, bd) disappearing. The interface in this phase is described by all five
functions.

2. In many cases the second burn phase, after grain section fillet 2 has dis-
appeared. all the other sections are still burning and present. The shape
is then described using the four remaining section functions r1(θ, bd),
rf1(θ, bd), r2(θ, bd) and r3(θ, bd). In this case the intersection between
r2(θ, bd) and r3(θ, bd) provides the boundary to both of these functions.

3. The grain section described by r2(θ, bd) has disappeared, yet the section
described by r3(θ, bd) has not. Therefore the fillet section rf1(θ, bd) is
intersecting r3(θ, bd). And the intersection point provides the boundary
to these functions.

4. The grain section described by r3(θ, bd) has disappeared, yet the section
described by r2(θ, bd) has not. r2(θ, bd) goes up-to the boundary of our
shape, a.

29

5. The grain sections described by r2(θ, bd) and r3(θ, bd) have both disap-
peared. Now the section of the first fillet rf1(θ, bd) continues up-to the
boundary of our shape, a.

A grain always loses sections, never develops new, so a shape evolves only into a
higher number phase never to a lower number. Also, a shape can only undergo
one of the phases (3) or (4). The algorithm does not climb or drop down
the ladder. For every value of bd it determines which phase the grain is in.
This means that the history of the grain is not important, the algorithm knows
immediately what the grain geometry is at a specific burn depth, without it
having to know what it was in earlier burn steps.

Using this set of rules coupled with the intersection points, and combining
all this with functions describing each section, the model is able to describe the
grain evolution.

4.5 Burn area

Describing the shape of the grain is a great achievement of the model. Once
the grain has been modeled it is a matter of simple calculation to find the
circumference of the grain. And the circumference of the 2D cross section is
converted to a burn area when multiplied by the length of the grain. The model
doesn’t do this step though, it only calculates the circumference. To calculate
the circumference two different methods are used. (1) For straight lines like
the one described by r2(θ, bd), The distance between the two border points is
determined. This is the distance between two polar points (r1, θ1) and (r2, θ2):

d =
√

(x2 − x1)2 + (y2 − y1)2 =
√
r2
2 + r2

1 − 2r2r1 cos (θ1 − θ2) (23)

(2) The circular sections are defined by a radius and two border angles. The
circumference of a circle section with radius R and beginning and ending angle
θ1, θ2 can be easily determined using:

c = R(θ2 − θ1) (24)

These two simple calculations on all five sections provide the circumference of
the shape when multiplied by the 2N permutations that describe the entire
geometry.

An extra complication is added when looking at the burning at later stages.
As the interface approaches the casing the propellant at that section is depleted.
The algorithm continues to evolve the interface, also outside the casing. Yet,
the algorithm calculates all intersection points of the interface with the casing.
Using the intersection points with the casing, the algorithm finds which sections
or within the casing, which are partially in partially out, and which are entirely
outside of the casing. Those that are entirely outside are ignored from circum-
ference calculation and plots. Those that are within the casing are handled as
usual. And those that are found to be partially outside, are treated that way.
Their length are calculated using their intersection point with the casing, and

30

they are plotted up to the casing. The circumference only calculates burning
propellant interface, and although the casing closes the interface shape in the
late stages, it is not counted as burn area.

4.6 Achievements and Limitations of the algorithm

The algorithm is able to provide an analytical description of the grain. Following
this the algorithm provides an analytic description of the grain’s evolution. It
is able to do so for a given set of parameters, for any given burn depth. The
correctness of the evolution is examined visually, an incorrect evolution can be
easily observed. An error in the evolution shows up as sections that overlap, or
parts of the shape that are missing.

Many examples exist of when the algorithm fails, but the main limitation is
probably when the Pa angle is too small. When the angle Pa reaches smaller
values the star point goes beyond the origin into negative r(θ) values. In this
case the entire algorithm breaks down, and we are left with odd results. Odd
is what is troublesome because a grain is formed, but not a correct one, and
one that also evolves incorrectly. If the algorithm is called to provide only the
burning area(like intended) then there is no clear indication that the algorithm
failed. So this leaves us with a two options. Either one has to always examine
the grain’s evolution visually, or we need to determine the parameter limits at
which the algorithm fails.

The second option would be most ideal, and would fit well with an optimiza-
tion algorithm, providing boundaries for parameters search. A third solution
also exists and it is to alter the algorithm so it can handle the case of star points
going beyond the origin. This would solve the problem but unlike the former
solution it would not solve further problems. All the parameters used have
certain limitations as a function of the other parameters, and the point going
beyond the origin, is only one example of these failures. The fillet radii may not
be too large, N cannot be zero, OR has to be set larger than IR, and in the
same way there are many more limits that arise when the parameter definitions
are examined. At no point does the algorithm check for any of these limits.

I will now summarize the problems that might make an invalid grain.

1. The number of star points, N , has to be larger than 1.

2. The outer radius, OR, has to be larger than the inner radius, IR.

3. The fillets 1 and 2 may not be too big so that they do not intersect.

4. Fillet 2 may not be too big so that it cannot go beyond the shape border,
the line at an angle θ = a.

5. Star point may not go beyond the origin into a negative radius range.

31

4.7 Results and comparison with the current software,
GDP[1]

The developed software is able to construct star geometries based on parameters,
evolve them and calculate burn area profiles. Eventually two different programs
developed use the developed algorithm. The first is a function that accepts
geometry parameters and a single burn depth value, as input. The output
produced is the burn area, at the particular stage in the geometry evolution,
defined by the given burn depth. This function could prove to be very useful
in future optimization steps. The second program that uses the algorithm also
accepts the parameters as input, as well as a range of burn depths, and a number
of calculation steps. It produces two figures(Fig. 19), a burn area vs. depth
profile for a geometry, and figure showing the evolution of the geometry at
different burn stages or burn depths.

The current software, GDP[1], allows for grain modeling and combines nu-
merical and analytic methods depending on grain geometry. A star like shape
like ours is done analytically. But the software also allows for more complex
grains, which are analyzed with a numeric algorithm which is not fast, and could
take a several minutes to complete a geometry evolution.

A comparison of the grains and their evolution is shown in (Fig. 20). It
can be clearly seen that the currently developed algorithm provides the exact
same results. moreover the way the parameters in our algorithm were defined
the parameters can be plugged into the old software package instantly. The
differences one should keep in mind are that in the old software package a
diameter is used while in ours a radius. And that we have two extra parameters
(k2, Fr2)that need to be set to zero in order to compare the results.

4.8 Improvements and beyond

The algorithm provides exactly what it was meant to do. It can provide an
analytic evolution of a star like grain geometry. Optimization of the grain and
implementation of limits is the following step. But other improvements that
can be implemented are also possible. Some of these are discussed next.

The algorithm can model the evolution of a star like shape, and produce the
burn area profile, yet that is not the thrust or mass flow the rocket provides.
To be able to provide other performance variables we will need to take the burn
rate into account. Overlaying the burn area vs. burn depth with the burn rate is
basically making the burn depth a function of time. This means stretching out
or compressing the profile at different times. In section (2.3) the burn rate was
examined, and it was found to be a function of pressure or burn area, depending
on the expression used. And pressure is a function of burn area, port area and
other factors. A model that takes into account all these factors is complicated
and is probably done numerically. It was chosen that our model will concentrate
on the burn area vs. burn depth, while the complicated calculations are done
using GDP. But in order to optimize a grain for specific thrust or mass flow
requirements and not for specific burn area requirements, this will have to be

32

Figure 19: Two examples of algorithm output: The left part shows the evolution
of the grain. The figure is made of many lines that show the geometry interface
at different burn depths. The redder the interface line the later in the evolution
we are looking. The right figure shows the burn area vs. burn depth profile of
the grain.

33

Figure 20: A comparison between the old software package (Blue line), and our
algorithm(Red points). Both presenting the burn area vs. burn depth profile
for a geometry with parameters: OR = 35, IR = 25, k1 = 0.8, k2 = 0, Pa =
50, Fr1 = 4, Fr2 = 0 and N = 7.

added in some way to the algorithm.
If and when burn rate is taken into account into the model, one can also ex-

amine the possibility of including effects like erosive burning(see 2.3.3), rocket
movement and other effects(see 2.3.4) that usually affect different kinds of rock-
ets. This would complicate matters, and the analytic strengths of this algorithm
could be lost. That would again leave us with a model that does not lend it self
well to optimization steps. Moreover the currently available software already
takes these effects into account, and therefore I would advice against it.

As discussed before there should be some kind of verification of the param-
eters. Nowhere does the algorithm check if the parameters actually construct a
shape that is correct. This is a good first step in the direction of optimization.
The optimization needs to know which parameter values are allowed, therefore it
needs to know the range of values each of the parameters can have as a function
of the other parameters. This is done using geometry providing maximum and
minimum limits to the parameter values. Only a few limit equations have to be
set-up, as each equation is a function of a few parameters. Then the algorithm
checks if the parameters obey the limits. These limits can then be used as the
range of values to be attempted in the optimization steps.

A few methods are available for future optimizations steps. Our main goal
once again is to have a number of points defining the thrust as a function of time
or burn area/burn depth that are the algorithm’s input, and a grain geometry
expressed as parameters as the output. One method is by ”intelligent” trial and
error: the algorithm scans different parameter values until one of the parameter
fulfills one of the required points, afterwards the algorithm tries to fulfill the
next requirement point. Some parameters have more effect on earlier stages of
the evolution while others more on the later stages, that is when use is made

34

Figure 21: An example showing the way requirements are expressed using
points.

of intelligent trial and error. Knowing which parameter to fine tune to affect
a certain phase in evolution, reduces the amount of values that are attempted.
This could be improved by using some knowledge about what kind of geometries
provide certain profiles, and fine tuning the values.

There is one more option I would like to propose, which is more elegant,
and makes better use of our analytic solution. Again we have a certain amount
of points which are set as the requirements(Fig. 21). Our parameters are the
variables. And the algorithm produces the function. By providing as many
points as we have parameters we can solve the function for each point. This
is easier said than done, and I will try to explain why. I described before that
while evolving the grain undergoes several phases (Section (4.4)). Each of these
phases is basically a different compilation of piecewise functions, with different
boundaries. So each point in the requirement can be in a different phase of the
same geometry. The phase or function we need to use at each point is only
known once we know the parameters. Therefore this approach is not very easy
to solve, and requires some additional steps. Perhaps as a variation of the least
squares method this could provide a good solution.

35

5 Conclusion

The problem examined is the burning and thrust function of star-like grain
geometries. Several different methods have been examined that can simulate
the burning of the grain geometry. Eventually the method we have based it
on is a geometric parametric approach. It is based initially on defining a star
using parameters. The star is built out of sections, which all change and burn
independently. This model is able to describe the shape of the propellant grain
at all different burn steps, and does so at great speed and accuracy. A single step
calculation time is approximately 0.1 to 0.01 sec. Moreover the model is very
suitable for future steps that optimize the geometry according to performance
requirements. The performance delivered is the burn area vs. burn depth, while
ultimately it should deliver the mass flow vs. time profile. It was examined how
the burn area profile should be translated into a thrust profile. The model
algorithm is compatible with the current software, GDP.

References

[1] Grain Design Program, AED Electronics,
http://www.aedelectronics.nl/gdp/gdp.htm.

[2] Sutton G.P., Wiley Interscience, Rocket Propulsion Elements, 1992.

[3] Barrere M. and Jaumotte A. and de Veubeke B. F. and Vandenkerckhove
J., Elsevier, Rocket Propulsion, 1960.

[4] Geckler R., Butterworths scientific publications, The mechanism of combus-
tion of solid propellants, 1954.

[5] J. C. Godon, J. Duterque, and G. Lengellet, JOURNAL OF PROPULSION
AND POWER, Vol. 9, No. 6, Erosive Burning in Solid Propellant Motors,
1993.

[6] H. S. Mukunda and P. J. Paul, COMBUSTIONAND FLAME, 109:224-236,
Universal Behaviour in Erosive Burning of Solid Propellants, 1997.

[7] Sethian J.A., Comm. in Math. Phys., 101, 487-499, Curvature and the Evo-
lution of Fronts, 1985.

[8] Sethian J.A., J. Differential Geometry, 31, 131-161, Numerical Algorithm for
propagating Interfaces: Hamilton-Jacobi Equations and Conservation Laws,
1990.

[9] Sethian J.A., Cambridge Monograph on Applied and Computational Math-
ematics, Level Set Methods and Fast Marching Methods Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Ma-
terials Science, Cambridge University Press, 1999.

36

