PHILIPS sense and simplicity

Solid State Lighting

October 2010

Agenda

- 1. SSL Market Forecast
- 2. Industry Targets
- 3. LED Technology

4. Major Challenges and Potential Ways Forward

Haitz Efficacy and Price Roadmap: March 2010

Source & Courtesy Of: Roland Haitz

DOE Efficacy and Price Roadmap

U.S. DEPARTMENT OF ENERGY EFFICACY AND PRICE FORECAST 2009-2015

Source & Courtesy Of: Strategies Unlimited

Major SSL Market Sectors

APPLICATION FORECAST SUMMARY Revenue (\$ Million) 2010-2014

Source & Courtesy Of: Strategies Unlimited

InGaN High Power LEDs Dominate

U.S. SUMMARY FORECAST BY MATERIAL AND PACKAGE TYPE Revenues (\$ Million) 2010-2014

Source & Courtesy Of: Strategies Unlimited

LEDs dropping from 40% to <20% of the Luminaire cost

PROJECTED LED LUMINAIRE COST TRACK

Target: LED adoption for general illumination

- ✓ Technology has crossed a performance threshold
 - ✓ >80 Im/W efficiency for "warm-white" LEDs
 - ✓ Specialized LED fixtures deliver system efficiency exceeding CFL levels
- ✓ The "Green" factor and legislation
- ✓ Cost of ownership
- × First in cost

Analysis assumes 10 ¢/kWh, 8 h/day operation, and 90 % LED driver efficiency

840 Im Source	Input Power	Source Cost	Energy cost per year	Source Lifetime	COO (one year)	COO (five years)
60 W Incandescent	60 W	\$0.30	\$17.50	1,000 hr	\$18.40	\$92.00
17 W CFL	17 W	\$2.00	\$5.00	10,000 hr	\$7.00	\$29.00
Today's 75 lm/W Warm White LEDs	12 W	>\$12.00	\$3.50	50,000 hr	>\$15.50	>\$29.50
Future 150 lm/W Warm White LED	6 W	\$4.00 (?)	\$1.75	50,000 hr	\$3.75	\$20.00

Elements of high-power LED technology

Luminous efficacy defined

a short history of the WHITE pcLED

The white LED was born as a 5 mm LED with YAG:Ce³⁺ on top of a blue LED chip

different manufacturers of course have different packages

some drawbacks of phosphor slurries

over time LED efficiency AND power density increased, but thermal load too:

Phosphor particles in a different-index-resin scatter pump light and their own luminescence, If somewhere in the package is absorption, scattering means multiple absorption, dramatically lowering Package Efficiency. A PE of 0.7 is fairly possible – 30% below optimum LOP !

consequence – reduce organics

LUMIRAMIC™

Lumiramic Phosphor Technology has

been developed in Philips and is used solely by Philips Lumileds Lighting (PLL).

LUMIRAMIC[™],

- it greatly simplifies the binning problem
- it reduces the amount of organic material in LEDs
- it allows to tailor optical properties, maximizing Package Efficiency
- it is perfectly matched to PLL's Thin Film Flip Chip (TFFC) technology

High-power LED technology

- Package
 - Low thermal resistance
 e.g., Luxeon K2: ~5 K/W
- Chip
 - Efficient heat extraction
 - High electrical efficiency
 - High extraction efficiency e.g., TFFC LED: ~80 %
- Phosphors
 - High conversion efficiency (Im/W_{opt})
 - High color rendering (CRI)
 - Imperceptible color variation (CCT) e.g., Lumiramic technology

High power LED Technology

How achievable is 150 lm/W, 1000 lm LED?

For single 1000 lm emitter, 2 A drive current needed

450-nm-pumped YAG:Ce pcLED, 4650K, 2 A, 1x1 mm²

		Best Lab Result	Commercial	
		Today	Future	
Internal Quantum Efficiency	IQE	53%	80%	
Extraction Efficiency	EXE	90%	90%	\mathcal{D}
External Quantum Efficiency	EQE	47%	72%	/
Forward Voltage (leads to ELE)	V _f (V)	3.4	3.3	\sim
Wall Plug Efficiency	WPE	39%	60%	
Phosphor Conversion Efficacy	CE (Im/W _{opt})	228	252	
Luminous Efficacy	η∟ (Im/W)	90	150	
Luminous Flux	φ (lm)	611	1000	

- High-current-density (~ 250 A/cm²) internal quantum efficiency is critical
 - Must increase by ~ 1.5 x
- Improved phosphor conversion efficacy is the other major area of focus

Challenge 1: Narrow red phosphor for white LEDs

- Current red phosphors have broad emission (90-100nm)
- Substantial amount of light is emitted in far-red reducing lumen output, and also having limited benefit for color rendering
- Reducing the FWHM of red phosphor emission to 30nm can bring up to 20% increase in luminous efficacy of warm white LEDs

Options:

- 1. Quantum Dots (non Cd containing)
- 2. Novel inorganic phosphors
- 3. Novel organic phosphors

Challenge 2: "Efficiency droop" in III-nitride LEDs

- Large decrease of quantum efficiency as current density increases beyond ~10 A/cm² – "efficiency droop"
- Unique to III-nitride-based LEDs (blue, green, white)
 - AlInGaP (red, red-orange) LEDs exhibit much milder version, at much higher current density
- Fundamental problem for the whole industry
 - everyone's LEDs & lasers exhibit this behavior
 - regardless of differences in details of mfg processes and device structures)
- Drives up the cost of ownership of LED lighting

Typical InGaN MQW Power LEDs

Hypothetical Explanations for the Droop

- nm-scale fluctuations in the atomic composition of the InGaN alloy light emitting layer
 - prevent electrons & holes from recombining non-radiatively at the ubiquitous threading dislocations, but can hold only so many carriers
- Electrons or holes "leak" out of the active region
 - because of ineffective confinement layers
 - because capture cross-section of quantum wells is small
- Electrons and holes are inhomogeneously distributed throughout the multiple-quantum-well active region
 - and distribution changes strongly with applied current
- Auger recombination hypothesis led by Philips Lumileds
 - gradually gaining acceptance in the scientific community as the best explanation

Measuring Recombination Coefficients—PL fitting

Samples:

- Grown by MOCVD on different *c*plane templates:
 - GaN on Al_2O_3 (TDD~5x10⁸ cm⁻²)
 - ELOG GaN (TDD~2x10⁷ cm⁻²)
- InGaN is pseudomorphic
- Quasi-bulk InGaN, t > 10 nm
 - Results in flat bands

$$\eta_{\rm int} = \frac{R_{rad}}{R_{total}} = \frac{Bn^2}{An + Bn^2 + Cn^3}$$

- A = Hall-Shockley-Read non-radiative (s^{-1})
- B = radiative (cm³ s⁻¹)
- C = Auger non-radiative (cm⁶ s⁻¹)

Assumptions:

- 100% injection efficiency (true for resonant PL excitation)
- n = p
 - Accurate for active region doping $< 1 \times 10^{18} \text{ cm}^{-3}$
- *B* is independent of *n*

Implication

- Auger coefficient C ~ 1.4 2.0 x 10⁻³⁰ cm⁶s⁻¹ in quasi-bulk (10 77 nm) In_xGa_{1-x}N layers with x ~ 0.09 - 0.15
- Auger recombination rates are significant in InGaN for $n > 10^{18}$ cm⁻³
- Typical operating conditions for InGaN LEDs : $n \sim 5 10 \times 10^{18} \text{ cm}^{-3}$
- Auger recombination is the dominant cause for efficiency "droop" in all state-of-the-art commercially available visible-spectrum InGaN-GaN LEDs
- Knowledge of this limiting mechanism \rightarrow new active region designs to reduce carrier density and increase η
 - Double-heterostructure is one example

Approaches to Reducing Droop

- Reduce polarization-induced electric fields (according to the carrier distribution hypothesis and the carrier leakage hypothesis) in the active region by
 - replacing GaN barriers with InGaN or AlInGaN
 - replacing AlGaN electron blocking layer with AlInGaN
 - using a substrate which gives an active region grown in a non-polar or semi-polar crystallographic orientation (such as (100), (201), (112), etc.)
- Tailor the electron and hole distribution in the active region
 - dopants in the active region
 - complicated quantum well designs, superlattices, etc.
- Double-heterostructures
- Reduce threading dislocations and other defects (bulk or quasi-bulk GaN substrates, optimized deposition conditions for the active region)

Summary of Challenges

- Goal of 1000 lm/\$ for Illumination requires solutions to:
- Challenge 1: Reduce the FWHM of red phosphor emission to 30nm can bring up to 20% increase in luminous efficacy of warm white LEDs
- Challenge 2: Improve droop to meet High Current Density (~ 250 A/cm²) IQE improvement by a factor of~ 1.5 x
- Requires fundamental new materials development, industrialization and volume deployment within 4 years.

