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Structure & Diffraction

Crystal Diffraction (continued)

2.4 Experimental Methods

Notes:

• examples showphotographic film, for x-rays.

• Can also use electronic detection for x-rays.

• Need counters (e.g.BF3) for neutrons.

• Information:

– Positions of lines (geometry)
– Intensities of lines (electronics, or photogrammetry to measure

darkness of lines on films)
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2.4.1 Laue Method

1912: Max von Laue (assisted by Paul Knipping and Walter Friedrich).
CuSO4 and ZnS.
Broad x-ray spectrum – single crystal
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Forward scattering Laue image of hexagonal crystal.
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Shows crystal symmetry – when crystal appropriately oriented.
Use for aligning crystal for other methods.
Range ofλ, so cannot determinea from photographic image, but if
outgoing wavelengths can be measured,canuse to find lattice param-
eters.

6



2.4.2 Rotating Crystal Method

Single x-ray wavelength – single crystal rotated in beam.

Either full 360◦ rotation (as above) or small (5 to15◦) oscillations.
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2.4.3 Powder Methods

Single x-ray wavelength – finely powdered sample.
Effect similar to rotating crystal, but rotated about all possible axes.
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X-ray powder diffraction pattern of NaClO3 taken with CuKα radi-
ation.

X-ray powder diffraction pattern of SiO2 taken with CuKα radia-
tion.
Powder diffraction patterns are often used for identifying materials.
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2.5 Mathematics of Diffraction

2.5.1 Monatomic Structure

Incoming plane wave

ψi = A exp[i(ki.r− ωt)]

Scattered by the atom in unit cellI at rI .
Assume scattered amplitude isS A – all the unit cells are the same,
so independent ofI.
When incident wave hits atom, it is

A exp[i(ki.rI − ωt)].

It is scattered with a different wave-vector,kf , so from the atom to a
point r its phase changes bykf .(r− rI).
The scattered wave is thus

S A exp[i(ki.rI − ωt)] exp[ikf .(r− rI)]

or
S A exp[i(kf .r− ωt)] exp[i(ki − kf ).rI ].
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So if a plane wave with wavevectorkf is scattered from the crystal,
it is the sum of the waves scattered by all the atoms, or

Total Wave = S A exp[i(kf .r− ωt)]
∑
I

exp[i(ki − kf ).rI ].

Write ∆k = kf − ki:

Total Wave = S A exp[i(kf .r− ωt)]
∑
I

exp[−i∆k.rI ],

and as the amplitude of the outgoing waveexp[i(kf .r− ωt)] is 1,

Total Amplitude ∝ S
∑
I

exp[−i∆k.rI ]. (1)
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2.5.2 The Reciprocal Lattice

Define a new set of vectors(A,B,C) with which to define ∆k.
Require

a.A = 2π , a.B = 0 , a.C = 0
b.A = 0 , b.B = 2π , b.C = 0
c.A = 0 , c.B = 0 , c.C = 2π

(2)

In general,

A =
2πb× c

a.b× c

B =
2πc× a

a.b× c

C =
2πa× b

a.b× c
(3)

The vectors(A,B,C) define thereciprocal lattice.
For simple cubic system, reciprocal lattice vectors are just2π/a along
the x, y and z axes.
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Lattice Reciprocal Lattice
Simple cubic Simple cubic

FCC BCC
BCC FCC

Hexagonal Hexagonal
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2.5.3 The Scattered Amplitude

Let
∆k = hA + kB + lC,

and remember that our structure is periodic:

rI = n1a + n2b + n3c.

Immediately we have

∆k.rI = 2π(hn1 + kn2 + ln3).

So∑
I

exp[−i∆k.rI ] =
∑
n1

∑
n2

∑
n3

exp[−2πi(hn1 + kn2 + ln3)]

=

∑
n1

e−2πihn1


∑

n2

e−2πikn2


∑

n3

e−2πiln3

 .

Sums, in principle, go over−∞ < ni < ∞, or at least over a very
large range1 ≤ ni ≤ Ni.
Phases lead to cancellation unlessh, k and l are integers, when each
term is 1 and total amplitude isSN1N2N3.
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So we see

• we have a strong reflection when∆k is a reciprocal lattice vector;

• remembering that ∆k is perpendicular to the reflecting plane, an
(hkl) reflection has∆k = hA + kB + lC.
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2.6 The Laue Construction

This is a diagram in the reciprocal lattice.
Just as the lattice is an abstract mathematical object, so is the recip-
rocal lattice.
Neither ki nor kf need to be reciprocal lattice vectors, butkf −ki is.
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Note that only certain special incident directions ofki will give a
diffracted signal.

17



2.7 Non-Monatomic Structures

2.7.1 Simple Treatment

Example: an FCC structure (thought of as simple cubic with a basis
of two atoms, one at(0, 0, 0), three more at(1

2,
1
2, 0), (1

2, 0,
1
2), 0, 1

2,
1
2).

For simple cubic, there is a strong reflection from(110) planes:

18



but face-centred cubic has extra atoms in the orginal planes and be-
tween them:

These extra planes have the same number of atoms as the original
(110) planes. But if the original planes correspond to a path length
difference ofλ, these have path length difference ofλ/2 – their signals
will be out of phase. If the atoms are all the same, the(110) reflection
will be missing. If the atoms are different, the amplitude of the(110)
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reflection will be reduced.
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Thesemissing orderstell us something about the structures:

• simple cubic – no missing orders;

• fcc – only see(hkl) whereh, k and l are all even OR all odd.

• bcc – only see(hkl) whereh + k + l is even.
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Summary

• Experimental methods – broad-band or single-wavelength;

• Bragg’s law explained by von Laue’s treatment;

• Scattering treatment;

• The reciprocal lattice;

• Effect of atomic basis.

Next:

• Detailed treatment of structure with a basis;

• Other information from diffraction;

• Binding of crystals.
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