Crystal Structure

thelecture thenextlecture

SOLID STATE PHYSICS Lecture 5

A.H. Harker Physics and Astronomy

UCL

Structure & Diffraction

Crystal Diffraction (continued)

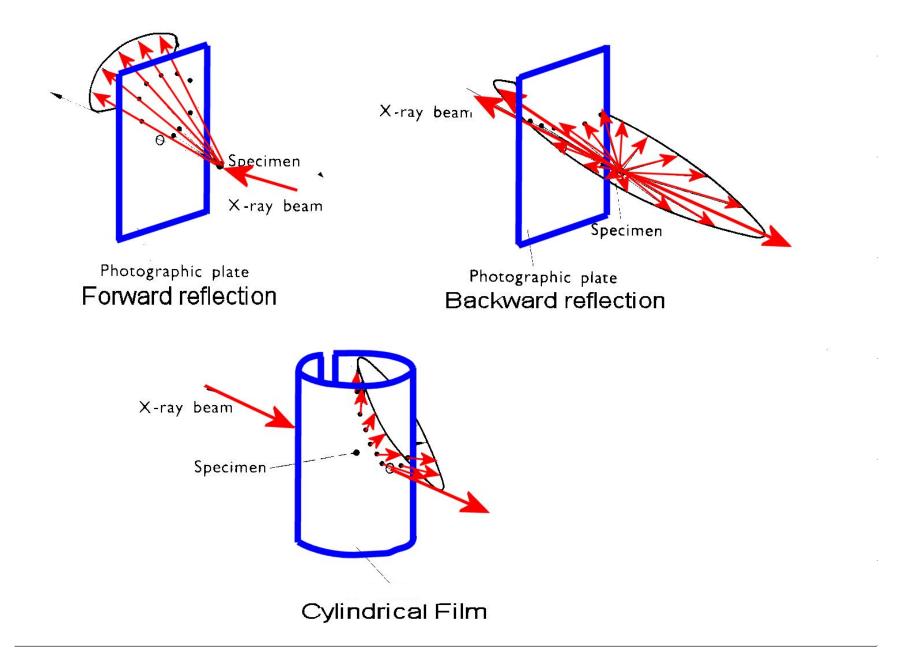
2.4 Experimental Methods

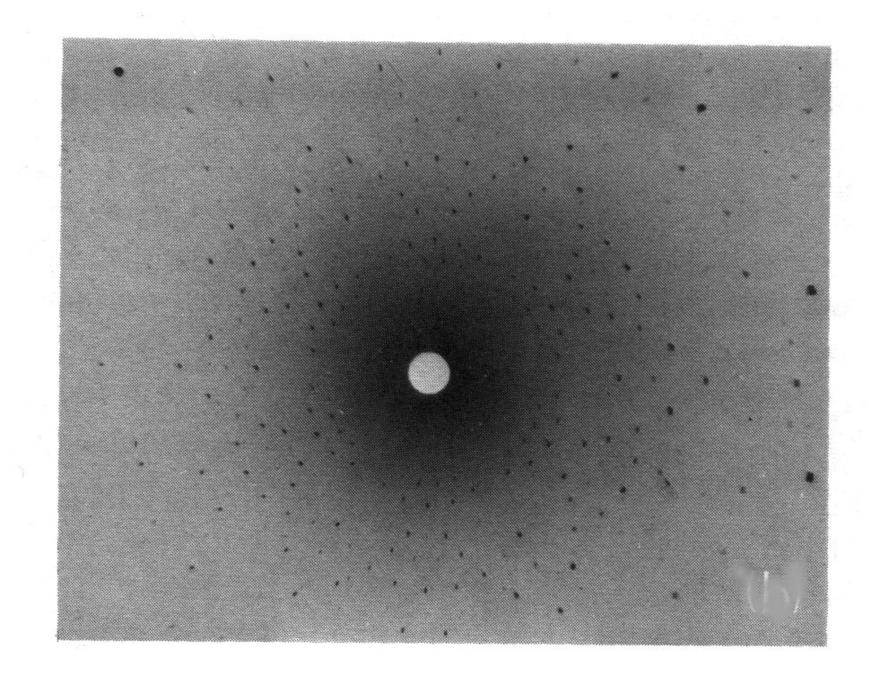
Notes:

- examples show *photographic film*, for x-rays.
- Can also use electronic detection for x-rays.
- Need counters (e.g. BF₃) for neutrons.
- Information:
 - Positions of lines (geometry)
 - Intensities of lines (electronics, or photogrammetry to measure darkness of lines on films)

2.4.1 Laue Method

1912: Max von Laue (assisted by Paul Knipping and Walter Friedrich). CuSO₄ **and ZnS. Broad x-ray spectrum – single crystal**





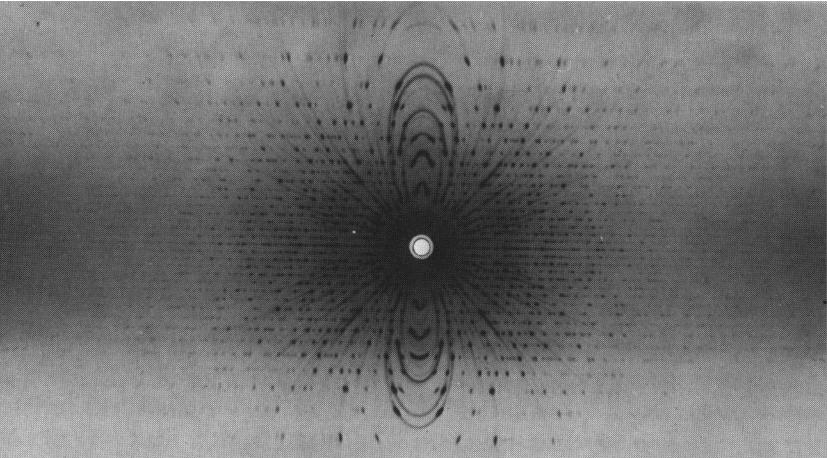
Forward scattering Laue image of hexagonal crystal.

Shows crystal symmetry – when crystal appropriately oriented. Use for aligning crystal for other methods.

Range of λ , so cannot determine *a* from photographic image, but if outgoing wavelengths can be measured, *can* use to find lattice parameters.

2.4.2 Rotating Crystal Method

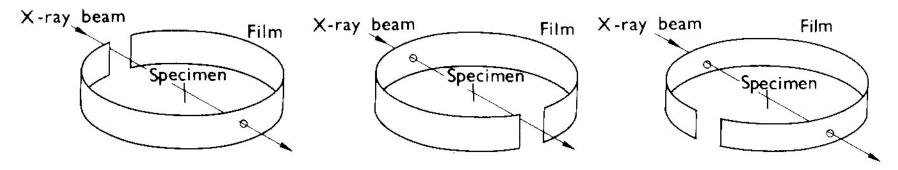
Single x-ray wavelength – single crystal rotated in beam.

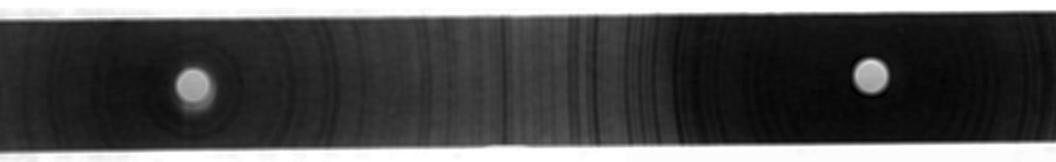


Either full 360° rotation (as above) or small (5 to 15°) oscillations.

2.4.3 Powder Methods

Single x-ray wavelength – finely powdered sample. Effect similar to rotating crystal, but rotated about all possible axes.





X-ray powder diffraction pattern of NaClO₃ **taken with** $CuK\alpha$ **radiation.**

X-ray powder diffraction pattern of SiO_2 taken with $\mathbf{Cu}K\alpha$ radiation.

Powder diffraction patterns are often used for identifying materials.

2.5 Mathematics of Diffraction

2.5.1 Monatomic Structure

Incoming plane wave

$$\psi_i = A \exp[i(\mathbf{k}_i \cdot \mathbf{r} - \omega t)]$$

Scattered by the atom in unit cell I at r_I .

Assume scattered amplitude is S A – all the unit cells are the same, so independent of I.

When incident wave hits atom, it is

$$A \exp[i(\mathbf{k}_i \cdot \mathbf{r}_I - \omega t)].$$

It is scattered with a different wave-vector, \mathbf{k}_f , so from the atom to a point r its phase changes by $\mathbf{k}_f \cdot (\mathbf{r} - \mathbf{r}_I)$. The scattered wave is thus

$$S A \exp[i(\mathbf{k}_i \cdot \mathbf{r}_I - \omega t)] \exp[i\mathbf{k}_f \cdot (\mathbf{r} - \mathbf{r}_I)]$$

or

$$S A \exp[i(\mathbf{k}_f \cdot \mathbf{r} - \omega t)] \exp[i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{r}_I].$$

So if a plane wave with wavevector k_f is scattered from the crystal, it is the sum of the waves scattered by all the atoms, or

Total Wave =
$$S A \exp[i(\mathbf{k}_f \cdot \mathbf{r} - \omega t)] \sum_{I} \exp[i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{r}_I].$$

Write $\Delta k = \mathbf{k}_f - \mathbf{k}_i$:
Total Wave = $S A \exp[i(\mathbf{k}_f \cdot \mathbf{r} - \omega t)] \sum_{I} \exp[-i\Delta \mathbf{k} \cdot \mathbf{r}_I],$
and as the amplitude of the outgoing wave $\exp[i(\mathbf{k}_f \cdot \mathbf{r} - \omega t)]$ is 1,
Total Amplitude $\propto S \sum_{I} \exp[-i\Delta \mathbf{k} \cdot \mathbf{r}_I].$ (1)

2.5.2 The Reciprocal Lattice

Define a new set of vectors $({\bf A}, {\bf B}, {\bf C})$ with which to define $\Delta {\bf k}.$ Require

a.**A** =
$$2\pi$$
 , **a**.**B** = 0 , **a**.**C** = 0
b.**A** = 0 , **b**.**B** = 2π , **b**.**C** = 0
c.**A** = 0 , **c**.**B** = 0 , **c**.**C** = 2π
(2)

In general,

$$\mathbf{A} = \frac{2\pi \mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$$
$$\mathbf{B} = \frac{2\pi \mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$$
$$\mathbf{C} = \frac{2\pi \mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$$
(3)

The vectors (A, B, C) define the *reciprocal lattice*. For simple cubic system, reciprocal lattice vectors are just $2\pi/a$ along the x, y and z axes.

Lattice	Reciprocal Lattice
Simple cubic	Simple cubic
FCC	BCC
BCC	FCC
Hexagonal	Hexagonal

2.5.3 The Scattered Amplitude

Let

$$\Delta \mathbf{k} = h\mathbf{A} + k\mathbf{B} + l\mathbf{C},$$

and remember that our structure is periodic:

$$\mathbf{r}_I = n_1 \mathbf{a} + n_2 \mathbf{b} + n_3 \mathbf{c}.$$

Immediately we have

$$\Delta \mathbf{k} \cdot \mathbf{r}_I = 2\pi (hn_1 + kn_2 + ln_3).$$

So

$$\sum_{I} \exp[-i\Delta \mathbf{k} \cdot \mathbf{r}_{I}] = \sum_{n_{1}} \sum_{n_{2}} \sum_{n_{3}} \exp[-2\pi i(hn_{1} + kn_{2} + ln_{3})]$$
$$= \left\{ \sum_{n_{1}} e^{-2\pi i hn_{1}} \right\} \left\{ \sum_{n_{2}} e^{-2\pi i kn_{2}} \right\} \left\{ \sum_{n_{3}} e^{-2\pi i ln_{3}} \right\}$$

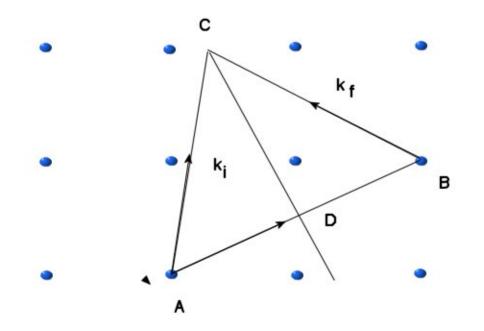
Sums, in principle, go over $-\infty < n_i < \infty$, or at least over a very large range $1 \le n_i \le N_i$.

Phases lead to cancellation unless h, k and l are integers, when each term is 1 and total amplitude is $SN_1N_2N_3$.

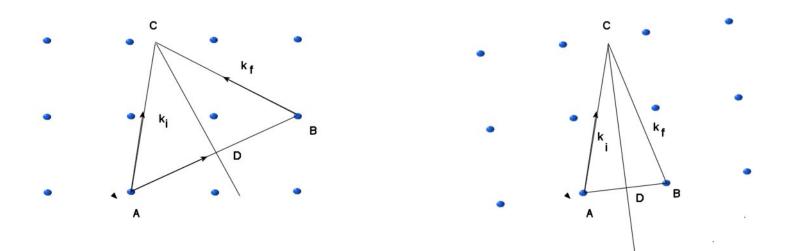
So we see

- \bullet we have a strong reflection when Δk is a reciprocal lattice vector;
- remembering that $\Delta \mathbf{k}$ is perpendicular to the reflecting plane, an (hkl) reflection has $\Delta \mathbf{k} = h\mathbf{A} + k\mathbf{B} + l\mathbf{C}$.

2.6 The Laue Construction



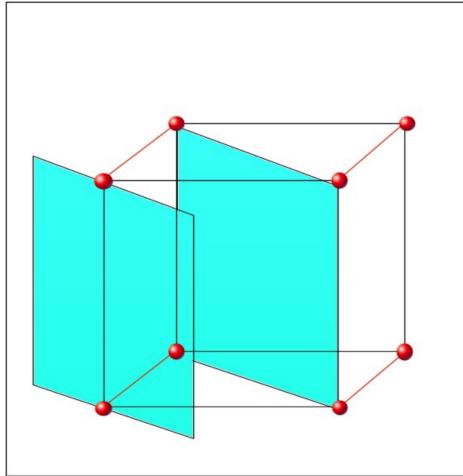
This is a diagram in the *reciprocal lattice*. Just as the lattice is an abstract mathematical object, so is the reciprocal lattice. Neither \mathbf{k}_i nor \mathbf{k}_f need to be reciprocal lattice vectors, but $\mathbf{k}_f - \mathbf{k}_i$ is. Note that only certain special incident directions of k_i will give a diffracted signal.



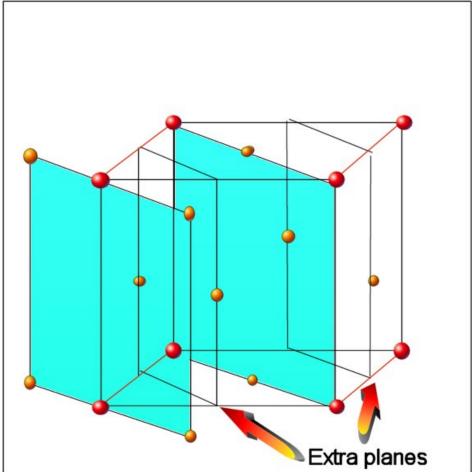
2.7 Non-Monatomic Structures

2.7.1 Simple Treatment

Example: an FCC structure (thought of as simple cubic with a basis of two atoms, one at (0, 0, 0), three more at $(\frac{1}{2}, \frac{1}{2}, 0)$, $(\frac{1}{2}, 0, \frac{1}{2})$, $0, \frac{1}{2}, \frac{1}{2})$. **For simple cubic, there is a strong reflection from** (110) **planes:**



but face-centred cubic has extra atoms in the orginal planes and between them:



These extra planes have the same number of atoms as the original (110) planes. But if the original planes correspond to a path length difference of λ , these have path length difference of $\lambda/2$ – their signals will be *out of phase*. If the atoms are all the same, the (110) reflection will be missing. If the atoms are different, the amplitude of the (110)

reflection will be reduced.

These missing orders tell us something about the structures:

- simple cubic no missing orders;
- \bullet fcc only see (hkl) where h,k and l are all even OR all odd.
- **bcc only see** (hkl) where h + k + l is even.

Summary

- Experimental methods broad-band or single-wavelength;
- Bragg's law explained by von Laue's treatment;
- Scattering treatment;
- The reciprocal lattice;
- Effect of atomic basis.

Next:

- Detailed treatment of structure with a basis;
- Other information from diffraction;
- Binding of crystals.