SOLUBILITY CURVES

Answer the following questions based on the solublilly curve below.

1. Which salt is least soluble in water ot $20^{\circ} \mathrm{C}$ KClO_{3}
2. How many grams of potasslum chloride can be dissolved in 200 g of water at $80^{\circ} \mathrm{C}$? log
3. At $40^{\circ} \mathrm{C}$, how much potassium niltrate can be dissolved in 300 g of water? \qquad
4. Which salt shows the least change In solubility from $0^{\circ}-100^{\circ} \mathrm{C}$?
\qquad
i. At $30^{\circ} \mathrm{C}, 90 \mathrm{~g}$ of sodium nitrate is dissolved in 100 g of water. Is this solution saturated, unsaturated or supersaturated?

unsaturated

6. A saturated solution of potassium chlorate is formed from one hundred grams of water. If the saturated solution is cooled from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, how many grams of precipifate are formed? $40-20 \mathrm{~g}=20 \mathrm{~g}$
7. What compound shows a decrease in solubility from 0° to $100^{\circ} \mathrm{C}$? \qquad NH_{3}
8. Which salt is most soluble at $10^{\circ} \mathrm{C}$? \qquad
KI
9. Which salt is least soluble at $50^{\circ} \mathrm{C}$?

Which salt is least soluble at $90^{\circ} \mathrm{C}$? \qquad NH_{3}
\qquad
\qquad
\qquad

Solubility Curves

Study the solubility curves in the figure, and then answer the questions that follow.

1. What relationship exists between solubility and temperature for most of the substances shown?
2.a. What is the exception? NH,
b. What general principle accounts for this exception?
Edthe wt gwor
2. a. Approximately how many grams of NaNO_{3} will dissolve in 100 g of water at $20^{\circ} \mathrm{C}$? 8,9
b. How many grams will dissolve at $60^{\circ} \mathrm{C}$?
3. How many grams of $\mathrm{NH}_{4} \mathrm{Cl}$ will dissolve in $1 \mathrm{dm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$?
4. Ninety grams of NaNO_{3} is added to 100 g of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. With constant stirring, to what temperature must the solution be raised to produce a saturated solution with no solid NaNO_{3} remaining?
5. A saturated solution of KClO_{3} was made with 300 g of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$. How much KClO_{3} could be recovered by evaporating the solution to dryness?
6. Five hundred grams of water is used to make a saturated solution of KCl at $10^{\circ} \mathrm{C}$. How many more grams of KCl could be dissolved if the temperature were raised to $100^{\circ} \mathrm{C}$? \qquad
7. A saturated solution of KNO_{3} in 200 g of $\mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$ is cooled to $20^{\circ} \mathrm{C}$. How much KNO_{3} will precipitate out of solution?

SCIENCE

- Solubility Calculations

1. Calculate the maximum number of grams of each solute that can be dissolved:
a) potassium nitrate in $300 \mathrm{~cm}^{3}$ of water at $80^{\circ} \mathrm{C}$.
$\frac{170 \mathrm{KNO}_{3}}{10 \mathrm{OH}}=\frac{x}{3009}$

$$
510 \mathrm{~g} k 003
$$

b) sodium chloride in $1250 \mathrm{~cm}^{3}$ of water at $40^{\circ} \mathrm{C}$.
$\frac{38 \mathrm{~g} N \mathrm{aC}}{10 \mathrm{Og}+\mathrm{O}}=\frac{x}{1250 \mathrm{~g}}$

475 g Natl
c) sodium nitrate in $50 \mathrm{~cm}^{3}$ of water at $0^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\frac{70 \mathrm{NaNO}_{3}}{100 \mathrm{HgO}}=\frac{x}{50 \mathrm{H}_{2} \mathrm{O}} \\
35 \mathrm{gNaNO}
\end{gathered}
$$

2. Calculate the minimum volume of water needed to dissolve:
a) 500 g of sodium chloride in water at $100^{\circ} \mathrm{C}$.

b) 10.0 g of potassium nitrate in water at $0^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \frac{10.09 \mathrm{KNO}_{3}}{x}=\frac{159 \ln 0_{3}}{100 \mathrm{H} 4} 0 \\
& .679400
\end{aligned}
$$

c) 1.00 kg of sodium nitrate in water at $50^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \frac{100 \mathrm{gNaNO}_{3}}{x}=\frac{119 \mathrm{NO}^{2}}{100 \mathrm{~N}_{2}^{2}} \\
& 877 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

3. Calculate the temperature the water must be to just dissolve;
a) 80.0 g of potassium nitrate in $200 \mathrm{~cm}^{3}$ of water.
b) 60.0 g of potassium nitrate in $50 \mathrm{~cm}^{3}$ of water.

$$
\frac{80.09 \mathrm{KNO}_{3}}{200 \mathrm{gHo}}=\frac{x}{10 \mathrm{~g}_{\mathrm{gt}}}
$$

$\frac{40 g \mathrm{gNO}}{1009+0} \quad 27^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \frac{60.0 g \mathrm{knO}_{3}}{50 g+10}=\frac{x}{100940} \\
& \frac{120 g \mathrm{kno}_{3}}{1009+60} \quad 64^{\circ} \mathrm{C}
\end{aligned}
$$

c) 500.0 g of sodium nitrate in $500 \mathrm{~cm}^{3}$ of water.

4. Calculate the mass of precipitate in each case below;
a) a saturated solution of sodium nitrate in $400 \mathrm{~cm}^{3}$ of water at $100^{\circ} \mathrm{C}$ is made. The temperature is then changed to $13^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \frac{100 g}{1009+60}=\frac{x 9}{400 g+00} \\
& 720 g N a n 03 \\
& \frac{809}{100 g}=\frac{x 9}{400 g+10} \\
& 320 g N 0 N 03
\end{aligned}
$$

b) a saturated solution of potassium nitrate in $250 \mathrm{~cm}^{3}$ of water at $80^{\circ} \mathrm{C}$ is made. The temperature is then changed to $8^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \frac{1709}{100 g+20}=\frac{x}{250 g+120} \\
& 4259 \mathrm{kNO}^{103}
\end{aligned}
$$

$7209 \operatorname{mon}_{3}-320 g \mathrm{NaNO}_{3}$
3. The dissolving of both salt and sugar involves the solid separating into particles too small to see. The salt solution contatns ions of sodium and chlorine and will conduet a current, while the sugar dissolves to release sugar molecules, so its solation will not conduct electricity.

Try This Activity: Substances in Water

(Page 265)

(a) The potassium permanganate, sugar, and ethanol dissolve.
(b) Sugar and ethanol are certainly soluble, as they disappear completely. The solubility of potassium permanganate is less certain, as some of it remains undissolved.
Note: Students may be uncertain about any substance that does not "disappear" completely upon dissolving, because they rarely encounter this. Expect discussion about potassum permanganate, if they had some remain in solid state. Students thay be uncertain if they speculate about whether some calcium carbonate or vegetable oil dissolves, even though there is no visible reduction of the original phase. They have only visible evidence of sample "shrinking" to go on, where no colour change is involved.
(c) The calcium carbonate and vegetable oil do not dissolve.
(d) We cannot be extirely certain, as a small amount may have dissolved.
(e) Properties are different: solutions are visibly homogencous. Some other properties that might differ include electrical conductivity, acidity, melting/freezing points, viscosity, and so forth.
(f) Acidity could be tested with pH paper or conductivity with a multimeter.

Note: Tests listed by students should be consistent with their answers to (e).

6.1 DEFINING A SOLUTION

PRACTICE

(Page 269)

Understanding Concepts

1. (a) Heterogeneous: different substances are visible.
(b) Homogencous: only one phase is visible.
(c) Homogeneous if it has been decanted; if not, there may be sediment in the bottle and the red wine would then be considered heterogeneous.
(d) Heterogeneous if corroded; if clean, bronze appears homogeneous.
(c) Homogeneous: the metal looks all the same throughoat.
(f) Heterogeneous if corroded; otherwise it is homogeneous.
(g) Humid air is usually homogeneous; however, when cloud, fog, or rain forms, the solution is heterogeneous.
(h) Heterogeneous: the suspended droplets of water make it opaque.
(i) Heterogeneols: the water is not clear.
2. The solutions are (b), (d), (h) and (i).
(a), (c), (e), (f) and (g) are not solutions.
3. Solutions may be classified by type of solvent, by electrical conductivity, by acidity, by colour, or by physical state at room conditions. Even categories such as viscosity, volatility, etc., can be used to classify substances.
4. (a) An aqueous solution is one in which the solvent is water.
(b) Aqueous solutions found aromd the home will be substances such as shampoo, vinegar, syrup, clear fruit juices, tea, bleach, drain cleaners.
5. Methanol is a nonelectrolyte (it is a nonacidic molecular substance); sodium chloride is an electrolyte (it dissolves to release ions), hydrochloric acid is an electrolyte (acids are the only molecular substances to conduct electricity); and potassiun hydroxide is an electrolyte (it is ionic).
6. (a) Electrolyte solutes include soluble ionic compounds (including ionic hydroxides) and acids.
(b) electrolyte: a substance that dissolves in water to form a conducting solution
7. (a) Acidic solutions have acid solutes.
(b) Basic soutions have ionic hydroxide solutes.
(c) Neurral solutions have molecular solutes (other than acids) or ionic solutes (other than ionic hydroxides).
8. (a) Electrolytes: citric acid, salt (assume sodium chloride), sodium citrate, and monosodium phosphate (4 of the 11 substances listed).

Molarity Practice Problems - Answer Key

1) How many grams of potassium carbonate are needed to make 200 mL of a 2.5 M solution? 69.1 grams
2) How many liters of 4 M solution can be made using 100 grams of lithium bromide? 3.47 L
3) What is the concentration of an aqueous solution with a volume of 450 mL that contains 200 grams of iron (II) chloride? 3.51 M
4) How many grams of ammonium sulfate are needed to make a 0.25 M solution at a concentration of 6 M ? 171.2 grams
5) What is the concentration of a solution with a volume of 2.5 liters containing 660 grams of calcium phosphate? 0.85 M
6) How many grams of copper (II) fluoride are needed to make 6.7 liters of a 1.2 M solution? 1081.4 grams
7) How many liters of a 0.88 M solution can be made with 25.5 grams of lithium fluoride? 1.11 L
8) What is the concentration of a solution with a volume of 660 mL that contains 33.4 grams of aluminum acetate? 0.25 M
9) How many liters of a 0.75 M solution can be made with 75 grams of lead (II) oxide? 12.6 grams
10) How many grams of manganese (IV) oxide are needed to make 5.6 liters of a 2.1 M solution? 1021.6 grams
11) What is the concentration of a solution with a volume of 9 mL that contains 2 grams of iron (III) hydroxide? 2.08 M
12) How many liters of a 3.4 M isopropanol solution can be made with 78 grams of isopropanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$? 0.41 L
13) What is the concentration of a solution with a volume 3.3 mL that contains 12 grams of ammonium sulfite? 31.3 W
