Solubility of gases in water: Henry's Law

• concentration dissolved α partial pressure of the gas

$$K_H \text{ (units mol L}^{-1} \text{ atm}^{-1}) = c_X/p_X$$

Large K_H means high solubility; K_H always decreases with T; gases less soluble at higher T (all gases, all solvents)

Henry's law constants at 298 K: K_H in mol L⁻¹ atm⁻¹ from Seinfeld and Pandis, *Atmospheric Chemistry and Physics*, Wiley, 1998 p. 341; values do not include subsequent reactions of the dissolved species, such as acid dissociation.

substance	$\mathbf{K}_{\mathbf{H}}$	substance	$\mathbf{K}_{\mathbf{H}}$
O_2	1.3×10^{-3}	NO	1.9×10^{-3}
NO_2	1.2×10^{-2}	O_3	1.13×10^{-2}
N_2O	2.5×10^{-2}	CO_2	3.4×10^{-2}
H_2S	0.12	SO_2	1.23
CH_3ONO_2	2.6	CH_3O_2	6
OH	25	HNO_2	49
NH_3	62	CH ₃ OH	220
CH ₃ OOH	230	HCl	730
HO_2	2000	CH ₃ COOH	8800
H_2O_2	75,000	HNO_3	200,000

Note: Environment Canada quotes K_H in the reverse direction (escape from water): units Pa m³ mol⁻¹, hence large K_H —> low water solubility.

Solubility of O_2 in water – context is whether water will support aquatic life

$$K_{\rm H} = 1.3 \times 10^{-3} \text{ mol L}^{-1} \text{ atm}^{-1} \text{ at equilibrium, at } 25^{\circ}\text{C}$$
 $\longrightarrow c(O_2) = 2.7 \times 10^{-4} \text{ mol /L}$
 $\longrightarrow 8.7 \text{ mg/L (8.7 ppm)}$

Note definition of ppm for solids and solutions (by mass)

- $c(O_2) < 8.7 \text{ ppm}$:
 - at higher temperatures (thermal pollution)
 - if decaying or oxidizable material consumes O_2 -> concept of biochemical oxygen demand (BOD)
 - water is stagnant (reduced air exchange)

Measures of the oxygen status of water

- BOD; incubate with microorganisms for 5 days in closed container, measure $c(O_2)$ before and after
- Chemical Oxygen Demand (COD) titrate the sample vs excess $Na_2Cr_2O_7/H^+$; easily oxidized substances consume $Na_2Cr_2O_7$; determine the amount of $Na_2Cr_2O_7$ left over; 1 mol $Na_2Cr_2O_7 \equiv 1.5$ mol O_2
- Total Organic Carbon (TOC) oxidize the organic compounds to CO₂ by combustion; analyze CO₂ produced
- Dissolved Oxygen (DO) often done by titration:

$$Mn^{2+} + 2OH^{-} + \frac{1}{2}O_{2} \longrightarrow MnO_{2}(s) + H_{2}O$$

 $MnO_{2} + 4H^{+} + 2I^{-} \longrightarrow I_{2} + Mn^{2+} + 2H_{2}O$
 $I_{2} + Na_{2}S_{2}O_{3} \longrightarrow Na_{2}S_{4}O_{6} + 2NaI$

CO₂ solubility in water

• More complex than O_2 because $CO_2(aq) \equiv H_2CO_3(aq)$, which can dissociate through acid-base equilibria

$$CO_{2}(g) + H_{2}O(l) \implies H_{2}CO_{3}(aq)$$

$$K_{H} = 3.4 \times 10^{-2} \text{ mol } L^{-1} \text{ atm}^{-1}$$

$$H_{2}CO_{3}(aq) \implies H^{+}(aq) + HCO_{3}^{-}(aq)$$

$$K_{a} = 4.2 \times 10^{-7} \text{ mol } L^{-1}$$

- Note that in carrying out calculations, the concentrations of CO₂(g) and H₂CO₃(aq) do not change, because the atmosphere is an inexhaustible reservoir
- Total "dissolved carbonate" = $\{H_2CO_3(aq) + HCO_3^-(aq) + CO_3^{2-}(aq)\}$: increases with increasing pH

Calculation of the solubility of CO₂ in pure water

- $p(CO_2, g) = 375 \text{ ppmv} \longrightarrow c(CO_2, aq) = 1.3 \times 10^{-5} \text{ mol/L}$
- for $K_a = [H^+][HCO_3^-]/[H_2CO_3] = 4.2 \times 10^{-7} \text{ mol/L } (25^{\circ}\text{C})$

[H⁺][HCO₃⁻] =
$$x^2$$
 = K_a [H₂CO₃]
= $(1.3 \times 10^{-5} \text{ mol/L})(4.2 \times 10^{-7} \text{ mol/L})$
 $x = 2.3 \times 10^{-6} \text{ mol/L}$
pH = 5.63;
total "carbonate" = $\{1.3 \times 10^{-5} + 2.3 \times 10^{-6} \text{ mol/L}\}$
= $1.5 \times 10^{-5} \text{ mol/L}$

• Even completely clean water in equilibrium with atmospheric CO_2 does not have pH = 7!! Keep this thought for discussion of acid rain.

When the pH of the water is fixed by the presence of other solutes:

• total dissolved carbonate increases as pH rises

• Note the speciation of carbonate

Alkalinity of water is a measure of the concentration of all bases in the water, **not** its pH, which is determined largely by the strongest base present: text pp. 140-142

- Alkalinity is measured by titrating the water against standard acid ≡ moles/concentration of H⁺ needed to neutralize the bases
- Phenolphthalein alkalinity is the amount of acid needed to reach the phenolphthalein endpoint (pH 8.5)

remembering that titration is from high to low pH

- Total alkalinity is the amount of acid needed to reach the methyl orange endpoint (pH 4)
- If there are no other bases present (as in *e.g.*, industrial waste water), the phenolphthalein endpoint measures mostly CO_3^{2-} ; the methyl orange endpoint measures $CO_3^{2-} + HCO_3^{-}$

- Two measurements to determine both CO_3^{2-} and HCO_3^{-} :
 - both total and phenolphthalein alkalinity or
 - one of the above plus pH \rightarrow ratio $[CO_3^{2-}]/[HCO_3^{-}]$

Hardness of water is a measure of the concentration of "hardness ions" (mainly Ca²⁺ and Mg²⁺) that form insoluble salts, especially carbonates: text, pp. 142-146.

Analysis of hardness ions:

- titration vs EDTA⁴⁻ using Eriochrome Black T indicator (Ca only)
- atomic absorption spectroscopy

Origin of hardness ions:

dissolution of gypsum

$$CaSO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)$$

• dissolution of limestone rocks: CaCO₃ (limestone); CaCO₃.MgCO₃ (dolomite)

NOT
$$MCO_3(s) \rightleftharpoons M^{2+}(aq) + CO_3^{2-}(aq)$$

BUT $MCO_3(s) + H_2CO_3(aq) \rightleftharpoons M^{2+}(aq) + 2HCO_3^{-}(aq)$

- Note that underground, $p(CO_2)$ is often much greater than 370 ppmv
- In what follows, note the text, footnote 8, p. 143 about K_{sp} calculations!!

$$\begin{split} \text{CaSO}_4 & \qquad \qquad K_{sp} = 4 \times 10^{-5} \; (\text{mol L}^{-1})^2 \\ \text{CaCO}_3 & \qquad \qquad K_{sp} = 6 \times 10^{-9} \; (\text{mol L}^{-1})^2 \\ \text{$^{1}\!\!\!/_{2}$CaCO}_3.\text{MgCO}_3 & \qquad K_{sp} = 5 \times 10^{-7} \; (\text{mol L}^{-1})^2 \end{split}$$

Dissolution of CaCO₃

$$\mathbf{K} =$$

$$\operatorname{CaCO}_{3}(s) \iff \operatorname{Ca}^{2+}(\operatorname{aq}) + \operatorname{CO}_{3}^{2-}(\operatorname{aq}) \qquad \mathbf{K}_{\operatorname{sp}}$$

$$H_{2}\operatorname{CO}_{3}(s) \iff H^{+}(\operatorname{aq}) + \operatorname{HCO}_{3}^{-}(\operatorname{aq}) \qquad \mathbf{K}_{\operatorname{al}}$$

$$H^{+}(\operatorname{aq}) + \operatorname{CO}_{3}^{2-}(\operatorname{aq}) \iff \operatorname{HCO}_{3}^{-}(\operatorname{aq}) \qquad 1/\mathbf{K}_{\operatorname{a2}}$$

Net:
$$CaCO_3(s) + H_2CO_3(aq) \rightleftharpoons Ca^{2+}(aq) + 2HCO_3^{-}(aq)$$

or:
$$CaCO_3(s) + H_2CO_3(aq) \rightleftharpoons Ca(HCO_3)_2(aq)$$

- K for net reaction = $K_{sp} \times K_{a1}/K_{a2} = 5 \times 10^{-5} \text{ (mol L}^{-1})^2$
- when expressed as "ppm of CaCO₃", values up to 300 ppm are obtained in hard water areas

Hard water: contains hardness ions: usually limestone areas *e.g.*, southern Ontario

Soft water: low concentrations of hardness ions: sandstone and granite areas e.g., northern and eastern Ontario

All water must have a **balance of cations and anions**; : hard water is usually well buffered against acidification —> relatively high concentrations of weak bases

Thus alkalinity is a measure of buffering capacity; high alkalinity usually correlates with high hardness

Water Softening: critical application for steam boilers due to deposition of salts

When hard water is heated:

$$Ca(HCO_3)_2 (aq) \rightleftharpoons CaCO_3(s) + H_2CO_3(aq) \longrightarrow CO_2(g)$$

Water softening is the process of removing hardness ions

1. Lime Softening (industrial use only): neutralize HCO₃⁻ with OH⁻

$$Ca(OH)_2 (aq) + Ca(HCO_3)_2 (aq) \rightleftharpoons CaCO_3(s) + 2H_2O$$

2. Ion exchange resins, e.g., Na(A) where (A) = polymeric anion – example of Ca²⁺ removal through cation exchange

$$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{Na}(A)_{\operatorname{res}} \rightleftharpoons 2\operatorname{Na}^{+}(\operatorname{aq}) + \operatorname{Ca}(A_{2})_{\operatorname{res}}$$

Resin regeneration with concentrated brine:

$$2\text{Na}^+(\text{aq}) + \text{Ca}(A_2)_{\text{res}} \rightleftharpoons \text{Ca}^{2+}(\text{aq}) + 2\text{Na}(A)_{\text{res}}$$

3. Deionized water: cation and anion exchangers in series, using H⁺ form of the cation exchanger and OH⁻ form of the anion exchanger – example of CaSO₄

$$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{H}(A)_{\operatorname{res}} \rightleftharpoons 2\operatorname{H}^{+}(\operatorname{aq}) + \operatorname{Ca}(A_{2})_{\operatorname{res}}$$

$$SO_4^{2-}(aq) + 2(C)OH_{res} \rightleftharpoons 2OH^-(aq) + (C_2)SO_{4res}$$

Hence:

$$2H^{+}(aq) + 2OH^{-}(aq) \longrightarrow 2H_{2}O$$

• Regeneration of the resin beds????

Seawater: a solution of high ionic strength. The main environment we will encounter where activities must be used rather than concentrations.

Ion	conc, mol/L	input, Tmol/yr	τ, Myr
Na^+	0.46	9.0	70
K^+	0.010	1.9	7
Mg^{2+} Ca^{2+}	0.054	5.5	10
Ca^{2+}	0.010	12.2	1
$C1^{-}$	0.55	7.2	100
SO_4^{2-}	0.028	3.8	10
HCO_3^-	0.0023	32	0.1
CO_3^{2-}	0.0003	included wit	h HCO ₃

- Ocean water **approximately** in equilibrium with CaCO₃, but $Q_{sp} = [Ca^{2+}][CO_3^{2-}] >> K_{sp}$: text, p. 150
- First reason: $a(Ca^{2+})$ and $a(CO_3^{2-}) < [Ca^{2+}][CO_3^{2-}]$, *i.e.*, $\gamma(Ca^{2+}) \sim 0.26$; $\gamma(CO_3^{2-}) \sim 0.20$
- Second reason: complexation: formation of species such as:

(CaSO₄): 8% of total Ca; (CaHCO₃)⁺: 1% of total Ca

(MgCO₃): 64% of total CO₃; (NaCO₃)⁻: 19% of total CO₃; (CaCO₃): 7% of total CO₃

Irrigation and water quality

- Read text pp. 147-149
- Read article from *The Economist*, link to internet =

http://www.economist.com/displaystory.cfm?story_id=1906914

Properties of Water

• Amounts on Earth: Oceans, $\sim 10^{20}$ mol Rivers and lakes, $\sim 10^{15}$ mol

Freezing point depression

• Solutes depress the freezing point of water

$$\Delta T = K_f \times m$$
 $K_f = \text{molal freezing point depresssion contant,}$
units K kg mol⁻¹
 $m = \text{molal concentration of solute, mol kg}^{-1}$

- The freezing point depression is *independent* of the identity of the solute. For ionic solutes consider all the ions separately, *e.g.*, for NaCl there are *two* solutes to consider, Na⁺ and Cl⁻
- Applications:

road salt trees in winter, fish in polar oceans (laboratory): determining molar mass

Osmosis and Reverse Osmosis

- osmotic pressure $\pi = c \times RT$ c in mol L^{-1} R in L atm mol⁻¹ K^{-1} π in atm
- osmotic pressure independent of the solute identity
- applications
 water rise in trees
 hypertonic and hypotonic solutions; impact on cells
 (laboratory): measuring molar mass of polymers and
 biopolymers
- reverse osmosis: a method of water purification

Osmosis

Reverse Osmosis