Solubility of gases in water: Henry's Law

- concentration dissolved α partial pressure of the gas

$$
\mathrm{K}_{\mathrm{H}}\left(\text { units } \mathrm{mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}\right)=\quad c_{\mathrm{X}} / p_{\mathrm{X}}
$$

Large K_{H} means high solubility; K_{H} always decreases with T; gases less soluble at higher T (all gases, all solvents)

Henry's law constants at 298 K : K_{H} in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~atm}^{-1}$ from Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 1998 p. 341; values do not include subsequent reactions of the dissolved species, such as acid dissociation.

substance	$\mathbf{K}_{\mathbf{H}}$	substance	$\mathbf{K}_{\mathbf{H}}$
O_{2}	1.3×10^{-3}	NO	1.9×10^{-3}
NO_{2}	1.2×10^{-2}	O_{3}	1.13×10^{-2}
$\mathrm{~N}_{2} \mathrm{O}$	2.5×10^{-2}	CO_{2}	3.4×10^{-2}
$\mathrm{H}_{2} \mathrm{~S}$	0.12	SO_{2}	1.23
$\mathrm{CH}_{3} \mathrm{ONO}_{2}$	2.6	$\mathrm{CH}_{3} \mathrm{O}_{2}$	6
OH	25	HNO_{2}	49
NH_{3}	62	$\mathrm{CH}_{3} \mathrm{OH}$	220
$\mathrm{CH}_{3} \mathrm{OOH}$	230	HCl^{2}	730
HO_{2}	2000	$\mathrm{CH}_{3} \mathrm{COOH}$	8800
$\mathrm{H}_{2} \mathrm{O}_{2}$	75,000	HNO_{3}	200,000

Note: Environment Canada quotes K_{H} in the reverse direction (escape from water): units $\mathrm{Pa} \mathrm{m}^{3} \mathrm{~mol}^{-1}$, hence large $\mathrm{K}_{\mathrm{H}} \longrightarrow$ low water solubility.

Solubility of $\mathbf{O}_{\mathbf{2}}$ in water - context is whether water will support aquatic life
$\mathrm{K}_{\mathrm{H}}=1.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$ at equilibrium, at $25^{\circ} \mathrm{C}$ $\longrightarrow c\left(\mathrm{O}_{2}\right)=2.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ $\longrightarrow 8.7 \mathrm{mg} / \mathrm{L}(8.7 \mathrm{ppm})$
Note definition of ppm for solids and solutions (by mass)

- $c\left(\mathrm{O}_{2}\right)<8.7 \mathrm{ppm}:$
- at higher temperatures (thermal pollution)
- if decaying or oxidizable material consumes $\mathrm{O}_{2} \longrightarrow$ concept of biochemical oxygen demand (BOD)
- water is stagnant (reduced air exchange)

Measures of the oxygen status of water

- BOD; incubate with microorganisms for 5 days in closed container, measure $c\left(\mathrm{O}_{2}\right)$ before and after
- Chemical Oxygen Demand (COD) - titrate the sample vs excess $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$; easily oxidized substances consume $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$; determine the amount of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ left over; 1 $\mathrm{mol} \mathrm{Na} \mathrm{Cr}_{2} \mathrm{O}_{7} \equiv 1.5 \mathrm{~mol} \mathrm{O}_{2}$
- Total Organic Carbon (TOC) - oxidize the organic compounds to CO_{2} by combustion; analyze CO_{2} produced
- Dissolved Oxygen (DO) - often done by titration:

$$
\begin{gathered}
\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \longrightarrow \longrightarrow \mathrm{I}_{2}+\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{gathered}
$$

CO_{2} solubility in water

- More complex than O_{2} because $\mathrm{CO}_{2}(\mathrm{aq}) \equiv \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$, which can dissociate through acid-base equilibria $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{H}}=3.4 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}
$$

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}=4.2 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}
$$

- Note that in carrying out calculations, the concentrations of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ do not change, because the atmosphere is an inexhaustible reservoir
- Total "dissolved carbonate" $=\left\{\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\right.$ $\left.\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right\}$: increases with increasing pH

Calculation of the solubility of CO_{2} in pure water

- $p\left(\mathrm{CO}_{2}, \mathrm{~g}\right)=375 \mathrm{ppmv} \longrightarrow c\left(\mathrm{CO}_{2}, \mathrm{aq}\right)=1.3 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
- for $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=4.2 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\left(25^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]=x^{2} } & =\mathrm{K}_{\mathrm{a}}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \\
& =\left(1.3 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)\left(4.2 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right) \\
x & =2.3 \times 10^{-6} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

pH = 5.63;
total "carbonate" $=\left\{1.3 \times 10^{-5}+2.3 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right\}$
$=1.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$

- Even completely clean water in equilibrium with atmospheric CO_{2} does not have $\mathrm{pH}=7$!! Keep this thought for discussion of acid rain.

When the pH of the water is fixed by the presence of other solutes:

- total dissolved carbonate increases as pH rises

- Note the speciation of carbonate

Alkalinity of water is a measure of the concentration of all bases in the water, not its pH , which is determined largely by the strongest base present: text pp. 140-142

- Alkalinity is measured by titrating the water against standard acid \equiv moles/concentration of H^{+}needed to neutralize the bases
- Phenolphthalein alkalinity is the amount of acid needed to reach the phenolphthalein endpoint (pH 8.5) remembering that titration is from high to low $\mathbf{p H}$
- Total alkalinity is the amount of acid needed to reach the methyl orange endpoint (pH 4)
- If there are no other bases present (as in e.g., industrial waste water), the phenolphthalein endpoint measures mostly $\mathrm{CO}_{3}{ }^{2-}$; the methyl orange endpoint measures $\mathrm{CO}_{3}{ }^{2-}+\mathrm{HCO}_{3}{ }^{-}$

- Two measurements to determine both $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{HCO}_{3}{ }^{-}$:
- both total and phenolphthalein alkalinity or
$-\quad$ one of the above plus $\mathrm{pH} \longrightarrow>$ ratio $\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$

Hardness of water is a measure of the concentration of "hardness ions" (mainly Ca^{2+} and Mg^{2+}) that form insoluble salts, especially carbonates: text, pp. 142-146.

Analysis of hardness ions:

- titration vs EDTA ${ }^{4-}$ using Eriochrome Black T indicator (Ca only)
- atomic absorption spectroscopy

Origin of hardness ions:

- dissolution of gypsum

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

- dissolution of limestone rocks: CaCO_{3} (limestone); $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$ (dolomite)

NOT

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

BUT $\mathrm{MCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})$

- Note that underground, $p\left(\mathrm{CO}_{2}\right)$ is often much greater than 370 ppmv
- In what follows, note the text, footnote 8, p. 143 about $\mathrm{K}_{\text {sp }}$ calculations!!
CaSO_{4}
CaCO_{3}
$1 / 2 \mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$

$$
\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-5}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}
$$

$$
\mathrm{K}_{\mathrm{sp}}=6 \times 10^{-9}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}
$$

$$
\mathrm{K}_{\mathrm{sp}}=5 \times 10^{-7}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}
$$

Dissolution of CaCO_{3}

$$
\begin{array}{lll}
& \mathbf{K}= \\
\mathrm{CaCO}_{3}(\mathrm{~s}) & \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{sp}} \\
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{~s}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{a} 1} \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq}) & 1 / \mathrm{K}_{\mathrm{a} 2}
\end{array}
$$

Net: $\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})$
or: $\quad \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})$

- K for net reaction $=\mathrm{K}_{\mathrm{sp}} \times \mathrm{K}_{\mathrm{a} 1} / \mathrm{K}_{\mathrm{a} 2}=5 \times 10^{-5}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$
- when expressed as "ppm of CaCO_{3} ", values up to 300 ppm are obtained in hard water areas

Hard water: contains hardness ions: usually limestone areas e.g., southern Ontario

Soft water: low concentrations of hardness ions: sandstone and granite areas e.g., northern and eastern Ontario

All water must have a balance of cations and anions; \therefore hard water is usually well buffered against acidification $->$ relatively high concentrations of weak bases

Thus alkalinity is a measure of buffering capacity; high alkalinity usually correlates with high hardness

Water Softening: critical application for steam boilers due to deposition of salts

When hard water is heated:

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

Water softening is the process of removing hardness ions

1. Lime Softening (industrial use only): neutralize $\mathrm{HCO}_{3}{ }^{-}$ with OH^{-}
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathbf{s})+2 \mathrm{H}_{2} \mathrm{O}$
2. Ion exchange resins, e.g., $\mathrm{Na}(A)$ where $(A)=$ polymeric anion - example of Ca^{2+} removal through cation exchange

$$
\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Na}(A)_{\mathrm{res}} \rightleftharpoons 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Ca}\left(A_{2}\right)_{\mathrm{res}}
$$

Resin regeneration with concentrated brine:

$$
2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Ca}\left(A_{2}\right)_{\mathrm{res}} \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Na}(A)_{\mathrm{res}}
$$

3. Deionized water: cation and anion exchangers in series, using H^{+}form of the cation exchanger and OH^{-}form of the anion exchanger - example of CaSO_{4}

$$
\begin{aligned}
\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{H}(A)_{\mathrm{res}} & \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Ca}\left(A_{2}\right)_{\mathrm{res}} \\
\mathrm{SO}_{4}^{2-}(\mathrm{aq})+2(C) \mathrm{OH}_{\mathrm{res}} & \rightleftharpoons 2 \mathrm{OH}^{-}(\mathrm{aq})+\left(C_{2}\right) \mathrm{SO}_{4 \mathrm{res}}
\end{aligned}
$$

Hence:

$$
2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

- Regeneration of the resin beds????

Seawater: a solution of high ionic strength. The main environment we will encounter where activities must be used rather than concentrations.

Ion	conc, mol/L	input, Tmol/yr	$\tau, \mathbf{M y r}$
Na^{+}	0.46	9.0	70
$\mathrm{~K}^{+}$	0.010	1.9	7
Mg^{2+}	0.054	5.5	10
Ca^{2+}	0.010	12.2	1
Cl^{-}	0.55	7.2	100
$\mathrm{SO}_{4}{ }^{2-}$	0.028	3.8	10
HCO^{-}	0.0023	32	0.1
$\mathrm{CO}_{3}{ }^{2-}$	0.0003	included with $\mathrm{HCO}_{3}{ }^{-}$	

- Ocean water approximately in equilibrium with CaCO_{3}, but $\mathrm{Q}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \gg \mathrm{K}_{\mathrm{sp}}$: text, p. 150
- First reason: $\mathrm{a}\left(\mathrm{Ca}^{2+}\right)$ and $\mathrm{a}\left(\mathrm{CO}_{3}{ }^{2-}\right)<\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]$, i.e., $\gamma\left(\mathrm{Ca}^{2+}\right) \sim 0.26 ; \gamma\left(\mathrm{CO}_{3}{ }^{2-}\right) \sim 0.20$
- Second reason: complexation: formation of species such as:
$\left(\mathrm{CaSO}_{4}\right): 8 \%$ of total $\mathrm{Ca} ;\left(\mathrm{CaHCO}_{3}\right)^{+}: 1 \%$ of total Ca
$\left(\mathrm{MgCO}_{3}\right): 64 \%$ of total $\mathrm{CO}_{3} ;\left(\mathrm{NaCO}_{3}\right)^{-}: 19 \%$ of total $\mathrm{CO}_{3} ;$ $\left(\mathrm{CaCO}_{3}\right): 7 \%$ of total CO_{3}

Irrigation and water quality

- Read text pp. 147-149
- Read article from The Economist, link to internet =
http://www.economist.com/displaystory.cfm?story_id=1906914

Properties of Water

- Amounts on Earth:

Oceans, $\sim 10^{20} \mathrm{~mol}$ Rivers and lakes, $\sim 10^{15} \mathrm{~mol}$

Freezing point depression

- Solutes depress the freezing point of water
$\Delta \mathrm{T}=K_{f} \times m$
$K_{f}=$ molal freezing point depresssion contant, units $\mathrm{K} \mathrm{kg} \mathrm{mol}^{-1}$
$m=$ molal concentration of solute, $\mathrm{mol} \mathrm{kg}^{-1}$
- The freezing point depression is independent of the identity of the solute. For ionic solutes consider all the ions separately, e.g., for NaCl there are two solutes to consider, Na^{+}and Cl^{-}
- Applications:
road salt
trees in winter, fish in polar oceans
(laboratory): determining molar mass

Osmosis and Reverse Osmosis

- osmotic pressure $\pi=c \times \mathrm{RT} \quad c$ in $\mathrm{mol} \mathrm{L}^{-1}$

R in L atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
π in atm

- osmotic pressure independent of the solute identity
- applications
water rise in trees
hypertonic and hypotonic solutions; impact on cells
(laboratory): measuring molar mass of polymers and biopolymers
- reverse osmosis: a method of water purification

