Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Antonio Francisco Roldán López de Hierro *

Convocatoria de 2009

Las siguientes páginas contienen las soluciones de los ejercicios propuestos para las pruebas de acceso a la Universidad en Andalucía de la asignatura *Matemáticas aplicadas a las Ciencias Sociales II*. Está clasificados por convocatorias y llevan un código como el siguiente: **2009-3-B-2**, que significa **ejercicio 2** de la **opción B** del **modelo 3** de la **convocatoria de 2009**.

Ejercicio 1 (2009-1-A-3) Lena y Adrián son aficionados al tiro con arco. Lena da en el blanco con probabilidad $\frac{7}{11}$, y Adrián con probabilidad $\frac{9}{13}$. Si ambos sucesos son independientes, calcula la probabilidad de los siguientes sucesos:

- (a) [0'6] "Ambos dan en el blanco".
- (b) [0'6] "Sólo Lena da en el blanco".
- (c) [0'8] "Al menos uno da en el blanco".

Solución: Llamemos L al suceso "un tiro al azar de Lena da en el blanco", y lo mismo A respecto de Adrián. El problema nos indica que p(L) = 7/11, p(A) = 9/13 y que los sucesos son independientes.

Apartado (a). Dado que los sucesos son independientes, $p(L \cap A) = p(L) \cdot p(A)$, y así:

$$p\left(\text{``ambos dan en el blanco''}\right) = p\left(L \cap A\right) = p\left(L\right) \cdot p\left(A\right) = \frac{7}{11} \cdot \frac{9}{13} = \frac{63}{143}.$$

La probabilidad de que ambos den en el blanco es de
$$\frac{63}{143}$$
.

^{*}Profesor del I.E.S. Acci de Guadix (Granada) - http://www.ies-acci.com/antonioroldan/index.html

Apartado (b). Si sólo acierta Lena, entonces Adrián debe fallar. Así, la probabilidad de que sólo acierte Lena es:

$$p\left(\text{``s\'olo Lena da en el blanco''}\right) = p\left(L\cap A^C\right) = p\left(L\right) - p\left(L\cap A\right) = \frac{7}{11} - \frac{63}{143} = \frac{28}{143}.$$
 La probabilidad de que s\'olo acierte Lena es de $\frac{28}{143}$.

Apartado (c). El suceso "al menos uno da en el blanco" es $L \cup A$, y así:

$$p$$
 ("al menos uno da en el blanco") = $p\left(L\cup A\right)=p\left(L\right)+p\left(A\right)-p\left(L\cap A\right)=$ = $\frac{7}{11}+\frac{9}{13}-\frac{63}{143}=\frac{127}{143}.$

La probabilidad de que al menos uno dé en el blanco es de $\frac{127}{143}$.

Ejercicio 2 (2009-1-B-3) Una encuesta realizada por un banco muestra que el 60 % de sus clientes tiene un préstamo hipotecario, el 50 % tiene un préstamo personal y el 20 % tiene un préstamo de cada tipo. Se elige, al azar, un cliente de ese banco.

- (a) [1] Calcule la probabilidad de que no tenga ninguno de los dos préstamos.
- (b) [1] Calcule la probabilidad de que tenga un préstamo hipotecario, sabiendo que no tiene un préstamo personal.

Solución: Llamemos H al suceso "elegido un cliente al azar de ese banco, éste posee algún préstamo hipotecario" y llamemos P al suceso similar con un "préstamo personal". Los datos del problema nos indican que p(H) = 0'6, p(P) = 0'5 y $p(H \cap P) = 0'2$. Podemos hacer, entonces, la siguiente tabla de contingencia, que completamos.

	P	P^C	TOTAL			P	P^C	TOTAL
H	0'2		0'6		Н	0'2	0'4	0'6
H^C				\Rightarrow	H^C	0'3	0'1	0'4
TOTAL	0′5		1		TOTAL	0'5	0'5	1

Apartado (a). El hecho de que un cliente, seleccionado al azar, no tenga ningún préstamo hipotecario es $H^C \cap P^C$. Como se observa en la tabla, $p(H^C \cap P^C) = 0'1$.

La probabilidad de que no tenga ninguno de los dos préstamos es 0'1.

Andalucía 2 Antonio Roldán

Apartado (b). La probabilidad de que tenga un préstamo hipotecario, sabiendo que no tiene un préstamo personal, se calcula utilizando la fórmula de la probabilidad condicionada:

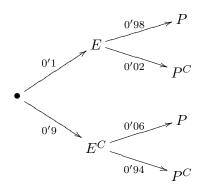
$$p\left(\frac{H}{P^C}\right) = \frac{p(H \cap P^C)}{p(P^C)} = \frac{0'4}{0'5} = \frac{4}{5} = 0'8.$$

La probabilidad de que tenga un préstamo hipotecario, si no tiene un préstamo personal, es 0'8.

Ejercicio 3 (2009-2-A-3, Septiembre) Una enfermedad afecta al 10 % de la población. Una prueba de diagnóstico tiene las siguientes características: si se aplica a una persona con la enfermedad, da positivo en el 98 % de los casos; si se aplica a una persona que no tiene la enfermedad, da positivo en el 6 % de los casos. Se elige una persona, al azar, y se le aplica la prueba.

- (a) [1] ¿Cuál es la probabilidad de que dé positivo?
- (b) [1] Si no da positivo, ¿cuál es la probabilidad de que la persona tenga la enfermedad?

Solución: **Apartado** (a). Llamemos E al suceso "elegido un individuo al azar en la población, éste tiene la enfermedad", y llamemos P al suceso "elegido un individuo al azar en la población, éste da positivo al hacer la prueba de diagnóstico". Como hay un 10% de personas que tienen la enfermedad, sabemos que p(E) = 0'1, y sin la enfermedad habrá un 90%, es decir, $p(E^C) = 1-p(E) = 0'9$. Entre las personas que tienen la enfermedad, la prueba de diagnóstico da positivo en el 98% de los casos, es decir, p(P/E) = 0'98. Igualmente, entre las personas que no tienen la enfermedad, la prueba da positivo en el 6% de los casos, lo que significa que $p(P/E^C) = 0'06$. Con estas verosimilitudes y probabilidades a priori, podemos completar el siguiente diagrama en árbol.



Aplicando entonces el *Teorema de la Proba*bilidad Total, deducimos que la probabilidad de que un individuo, seleccionado al azar, dé positivo en la prueba es:

$$p(P) = p(E) \cdot p\left(\frac{P}{E}\right) + p(E^{C}) \cdot p\left(\frac{P}{E^{C}}\right) =$$

= 0'1 \cdot 0'98 + 0'9 \cdot 0'06 = 0'152.

Andalucía 3 Antonio Roldán

La probabilidad de que la prueba dé resultado positivo es 0'152.

Apartado (b). Por otro lado, aplicando el *Teorema de Bayes* (o bien directamente la definición de probabilidad condicionada), seleccionado un individuo al azar que no ha dado positivo, la probabilidad de que tenga la enfermedad es:

$$p\left(\frac{E}{P^{C}}\right) = \frac{p\left(E \cap P^{C}\right)}{p\left(P^{C}\right)} = \frac{p\left(E\right) \cdot p\left(\frac{P^{C}}{E}\right)}{p\left(E\right) \cdot p\left(\frac{P^{C}}{E}\right) + p\left(E^{C}\right) \cdot p\left(\frac{P^{C}}{E^{C}}\right)} = \frac{0'1 \cdot 0'02}{0'1 \cdot 0'02 + 0'9 \cdot 0'94} = \frac{0'002}{0'848} = \frac{2}{848} = \frac{1}{424} \approx 0'0023585.$$

La probabilidad de que una persona tenga la enfermedad si no ha dado positivo es 1/424 (aproximadamente, un 0'236%).

Ejercicio 4 (2009-2-B-3, Septiembre) En una editorial hay dos máquinas A y B que encuadernan 100 y 900 libros al día, respectivamente. Además, se sabe que la probabilidad de que un libro encuadernado por A tenga algún fallo de encuadernación es del 2 %, y del 10 % si ha sido encuadernado por la máquina B. Se elige, al azar, un libro encuadernado por esa editorial.

- (a) [1] Calcule la probabilidad de que no sea defectuoso.
- (b) [1] Si es defectuoso, halle la probabilidad de haber sido encuadernado por la máquina A.

Se puede resolver este ejercicio con el teorema de la probabilidad total y el teorema de Bayes (como en la opción A). Por variar, vamos a resolverlo con una tabla de contingencia y la regla de Laplace.

Solución: Cada día se encuadernan 1000 libros, de los que 100 son encuadernados por la máquina A y 900 son encuadernados por la máquina B. De los 100 libros que cada día encuaderna la máquina A, el 2 % (o sea, 2 libros) poseen fallos de encuadernación. Igualmente, de los 900 libros que cada día encuaderna la máquina B, el 10 % (o sea, 90 libros) poseen fallos de encuadernación. Completamos la siguiente tabla de contingencia, donde se anota el número de libros de cada clase:

	Máq. A	Máq. B	TOTAL
Con fallos	2	90	
Sin Fallos			
TOTAL	100	900	1000

		Máq. A	Máq. B	TOTAL
	Con fallos	2	90	92
•	Sin Fallos	98	810	908
	TOTAL	100	900	1000

Andalucía 4 Antonio Roldán

 \Rightarrow

Apartado (a). La probabilidad de que, elegido un libro al azar, éste sea defectuoso, es, según la regla de Laplace:

$$p\left(\text{``defectuoso''}\right) = \frac{\text{n\'umero de libros defectuosos}}{\text{n\'umero total de libros}} = \frac{92}{1000} = \frac{23}{250} = 0'092.$$

La probabilidad de que, elegido un libro al azar, éste sea defectuoso, es 23/250, es decir, del 9'2 %.

Apartado (b). La probabilidad de que un libro haya sido encuadernado por la máquina A si es defectuoso es:

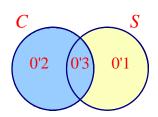
$$p\left(\frac{\text{"máquina A"}}{\text{"defectuoso"}}\right) = \frac{\text{número de libros defectuosos encuadernados en la máquina A}}{\text{número total de libros defectuosos}} = \frac{2}{92} = \frac{1}{46} \approx 0'02174.$$

La probabilidad de que un libro haya sido encuadernado por la máquina A si es defectuoso es 1/46 (aproximadamente, un 2'2 %).

Ejercicio 5 (2009-3-A-3, Junio) Un turista que realiza un crucero tiene un 50 % de probabilidad de visitar Cádiz, un 40 % de visitar Sevilla y un 30 % de visitar ambas ciudades. Calcule la probabilidad de que:

- (a) [0'5] Visite al menos una de las dos ciudades.
- (b) [0'5] Visite únicamente una de las dos ciudades.
- (c) [0'5] Visite Cádiz pero no visite Sevilla.
- (d) [0'5] Visite Sevilla, sabiendo que ha visitado Cádiz.

Solución: Llamemos C y S a los sucesos "elegido/a un/a turista al azar, éste/a visita Cádiz" o "Sevilla", respectivamente. Según los datos del enunciado, p(C) = 0'5, p(S) = 0'4 y $p(C \cap S) = 0'3$. Con estos datos, podemos realizar el siguiente diagrama de Venn:



Andalucía 5 Antonio Roldán

De esta forma, todos los apartados son inmediatos. No obstante, utilizamos algunas fórmulas para justificarlos:

(a)
$$p(C \cup S) = p(C) + p(S) - p(C \cap S) = 0.5 + 0.4 - 0.3 = 0.6$$
.

(b)
$$p$$
 ("una sóla ciudad") = $p(C \setminus S) + p(S \setminus C) = (p(C) - p(C \cap S)) + (p(S) - p(C \cap S)) = (0'5 - 0'3) + (0'4 - 0'3) = 0'2 + 0'1 = 0'3.$

(c)
$$p(C \setminus S) = p(C) - p(C \cap S) = 0'5 - 0'3 = 0'2.$$

(d)
$$p\left(\frac{S}{C}\right) = \frac{p(C \cap S)}{p(C)} = \frac{0'3}{0'5} = \frac{3}{5} = 0'6.$$

(a)
$$p(C \cup S) = 0'6$$
.

(b)
$$p$$
 ("una sóla ciudad") = 0'3.

(c)
$$p(C \setminus S) = 0'2$$

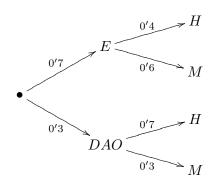
(c)
$$p(C \setminus S) = 0'2$$
. (d) $p(\frac{S}{C}) = 0'6$.

Ejercicio 6 (2009-3-B-3, Junio) En un centro escolar, los alumnos de 2º de Bachillerato pueden cursar, como asignaturas optativas, Estadística o Diseño Asistido por Ordenador (DAO). El 70 % de los alumnos estudia Estadística y el resto DAO. Además, el 60 % de los alumnos que estudia Estadística son mujeres y, de los alumnos que estudian DAO son hombres el 70 %.

- (a) [1] Elegido un alumno al azar, ¿cuál es la probabilidad de que sea hombre?
- (b) [1] Sabiendo que se ha seleccionado una mujer, ¿cuál es la probabilidad de que estudie Estadística?

Solución: Llamemos E y DAO a los sucesos "elegido/a un/a alumno/a al azar, éste/a estudia Estadística" o "Diseño Asistido por Ordenador", respectivamente. De la misma forma, llamemos H y M a los sucesos "elegido/a un/a alumno/a al azar, éste/a resulta ser hombre" o "mujer", respectivamente. El enunciado nos dice que p(E) = 0'7, por lo que p(DAO) = 0'3 ya que hay que elegir obligatoriamente alguna de las dos asignaturas. También sabemos que p(M/E) = 0'6, de donde p(H/E) = 0'4, y además p(H/DAO) = 0'7, de donde p(M/DAO) = 0'3. Con todas

Andalucía 6 Antonio Roldán estas probabilidades construimos el siguiente diagrama en árbol:



Apartado (a). Aplicando el *Teorema de la Probabilidad Total*, deducimos que la probabilidad de que una persona, seleccionada al azar, sea un hombre es:

$$p(H) = p(E) \cdot p\left(\frac{H}{E}\right) + p(DAO) \cdot p\left(\frac{H}{DAO}\right) =$$
$$= 0'7 \cdot 0'4 + 0'3 \cdot 0'7 = 0'49.$$

Apartado (b). Como hay un 49 % de hombres, debe haber un 51 % de mujeres, por lo que p(M) = 0'51. Aplicando la definición de probabilidad condicionada:

$$p\left(\frac{E}{M}\right) = \frac{p\left(E \cap M\right)}{p\left(M\right)} = \frac{p\left(E\right) \cdot p\left(\frac{M}{E}\right)}{p\left(M\right)} = \frac{0'7 \cdot 0'6}{0'51} = \frac{0'42}{0'51} = \frac{42}{51} \approx 0'82353.$$

(a)
$$p(H) = 0'51$$
. (b) $p\left(\frac{E}{M}\right) = \frac{42}{51} \approx 0'82353$.

Ejercicio 7 (2009-4-A-3) Sean A y B dos sucesos de un experimento aleatorio tales que:

$$P(A^{C}) = 0'2$$
, $P(B) = 0'25$, $P(A \cup B) = 0'85$.

- (a) [1'25] ¿Son los sucesos A y B independientes?
- **(b) [0'75]** Calcule $P(A^C/B^C)$.

Solución: **Apartado (a).** Es claro que $p(A) = 1 - p(A^C) = 1 - 0'2 = 0'8$. De aquí, podemos calcular la probabilidad de la intersección:

$$p(A \cap B) = p(A) + p(B) - p(A \cup B) = 0'8 + 0'25 - 0'85 = 0'2.$$

Dado que $p(A \cap B) = 0'2$ y $p(A) \cdot p(B) = 0'8 \cdot 0'25 = 0'2$, ocurre que $p(A \cap B) = p(A) \cdot p(B)$ y esto equivale a decir que:

los sucesos A y B son independientes.

Apartado (b). La probabilidad buscada se calcula aplicando las *leyes de De Morgan* y la propiedad del complemento:

$$p\left(\frac{A^{C}}{B^{C}}\right) = \frac{p\left(A^{C} \cap B^{C}\right)}{p\left(B^{C}\right)} = \frac{p\left((A \cup B)^{C}\right)}{p\left(B^{C}\right)} = \frac{1 - p\left(A \cup B\right)}{1 - p\left(B\right)} = \frac{1 - 0'85}{1 - 0'25} = \frac{0'15}{0'75} = \frac{15}{75} = \frac{1}{5}.$$

$$p\left(\frac{A^{C}}{B^{C}}\right) = \frac{1}{5}.$$

Ejercicio 8 (2009-4-B-3) Un polideportivo dispone de 100 bolas de pádel y 120 bolas de tenis. Se sabe que 65 bolas son nuevas. Además, 75 bolas de pádel son usadas. Por error, todas las bolas se han mezclado.

- (a) [1] Calcule la probabilidad de que si elegimos, al azar, una bola de tenis, ésta sea usada.
- (b) [1] Calcule la probabilidad de que si elegimos, al azar, una bola, sea nueva.

Solución: Con los datos del problema, completamos una tabla de contingencia como la siguiente sobre las diferentes pelotas.

	Nuevas	Usadas	TOTAL	
Pádel		75	100	_
Tenis			120	\Rightarrow
TOTAL	65			

	Nuevas	Usadas	TOTAL
Pádel	25	75	100
Tenis	40	80	120
TOTAL	65	155	220

Apartado (a). La probabilidad de que si elegimos, al azar, una bola de tenis, ésta sea usada, es:

$$p\left(\frac{\text{"usada"}}{\text{"tenis"}}\right) = \frac{\text{número de pelotas de tenis usadas}}{\text{número de pelotas de tenis}} = \frac{80}{120} = \frac{2}{3}.$$

La probabilidad de elegir una pelota usada, si es de tenis, es de $\frac{2}{3}$.

Apartado (b). La probabilidad de que si elegimos, al azar, una bola, ésta sea nueva es:

$$p\left(\text{"nueva"}\right) = \frac{\text{n\'umero de pelotas nuevas}}{\text{n\'umero total de pelotas}} = \frac{65}{220} = \frac{13}{44}.$$

La probabilidad de elegir una pelota nueva es de $\frac{13}{44}$.

Andalucía 8 Antonio Roldán

Ejercicio 9 (2009-5-A-3) Sean A y B dos sucesos tales que P(A) = 0'3, P(B) = 0'4, $P(A \cup B) = 0'65$.

- (a) [0'5] ¿Son incompatibles A y B?
- (b) [0'5] ¿Son independientes A y B?
- (c) [1] Calcule $P(A/B^C)$.

Solución: **Apartado** (a). Para saber si A y B son incompatibles, tenemos que calcular su intersección. Para saber si ésta es vacía o no, calculamos su probabilidad:

$$p(A \cap B) = p(A) + p(B) - p(A \cup B) = 0'3 + 0'4 - 0'65 = 0'05.$$

Como $p(A \cap B) > 0$, los sucesos A y B tienen intersección no vacía y, por ello, no son incompatibles.

Los sucesos A y B no son incompatibles.

Apartado (b). Para saber si A y B son independientes, tenemos que estudiar si $p(A \cap B)$ coincide con $p(A) \cdot p(B)$. Dado que $p(A \cap B) = 0'05$ y $p(A) \cdot p(B) = 0'3 \cdot 0'4 = 0'12$, ocurre que $p(A \cap B) \neq p(A) \cdot p(B)$ y esto equivale a decir que:

los sucesos A y B no son independientes.

Apartado (c). Aplicamos la definición de probabilidad condicionada:

$$p\left(\frac{A}{B^{C}}\right) = \frac{p(A \cap B^{C})}{p(B^{C})} = \frac{p(A) - p(A \cap B)}{1 - p(B)} = \frac{0'3 - 0'05}{1 - 0'4} = \frac{0'25}{0'6} = \frac{5}{12}.$$

$$p\left(\frac{A}{B^{C}}\right) = \frac{5}{12}.$$

Ejercicio 10 (2009-5-B-3) A y B son dos independientes de un mismo experimento aleatorio, tales que:

$$P(A) = 0'4, \quad P(B) = 0'6.$$

- (a) [1] Calcule $P(A \cap B)$ y $P(A \cup B)$.
- **(b)** [1] Calcule P(A/B) y $P(B/A^C)$.

Andalucía 9 Antonio Roldán

Solución: **Apartado (a).** Dado que los sucesos son independientes, es claro que $p(A \cap B) = p(A) \cdot p(B) = 0'4 \cdot 0'6 = 0'24$. Además,

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = 0'4 + 0'6 - 0'24 = 0'76.$$

$$p(A \cap B) = 0'24 \quad \text{y} \quad p(A \cup B) = 0'76.$$

Apartado (b). Se podría razonar que p(A/B) = p(A) = 0'4 ya que los sucesos A y B son independientes, y que $p(B/A^C) = p(B) = 0'6$ ya que los sucesos A^C y B también son independientes. Si no nos damos cuenta de esto, las dos probabilidades se calculan aplicando la definición y alguna propiedad más:

$$p\left(\frac{A}{B}\right) = \frac{p(A \cap B)}{p(B)} = \frac{0'24}{0'6} = 0'4.$$

$$p\left(\frac{B}{A^C}\right) = \frac{p(A^C \cap B)}{p(A^C)} = \frac{p(B) - p(A \cap B)}{1 - p(A)} = \frac{0'6 - 0'24}{1 - 0'4} = \frac{0'36}{0'6} = 0'6.$$

$$p\left(\frac{A}{B}\right) = 0'4 \quad \text{y} \quad p\left(\frac{B}{A^C}\right) = 0'6.$$

Ejercicio 11 (2009-6-A-3) Se consideran dos sucesos A y B, asociados a un espacio muestral, tales que

$$P(A \cup B) = 1$$
, $P(A \cap B) = 0'3$, $P(A/B) = 0'6$.

- (a) [1'5] Halle las probabilidades de los sucesos A y B.
- (b) [0'5] Determina si el suceso B es independiente del suceso A.

Solución: **Apartado** (a). Calculamos la probabilidad de *B* depejándola de la fórmula de la probabilidad condicionada:

$$p\left(\frac{A}{B}\right) = \frac{p\left(A \cap B\right)}{p\left(B\right)} \quad \Rightarrow \quad p\left(B\right) = \frac{p\left(A \cap B\right)}{p\left(\frac{A}{B}\right)} = \frac{0'3}{0'6} = 0'5.$$

Ahora despejamos la probabilidad de A de la fórmula de la probabilidad de la unión:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) \Rightarrow$$

$$\Rightarrow p(A) = p(A \cup B) + p(A \cap B) - p(B) = 1 + 0'3 - 0'5 = 0'8.$$

$$p(A) = 0'8 \quad \text{y} \quad p(B) = 0'5$$

Andalucía 10 Antonio Roldán

Apartado (b). Para saber si A y B son independientes, tenemos que estudiar si $p(A \cap B)$ coincide con $p(A) \cdot p(B)$. Dado que $p(A \cap B) = 0'3$ y $p(A) \cdot p(B) = 0'8 \cdot 0'5 = 0'4$, ocurre que $p(A \cap B) \neq p(A) \cdot p(B)$ y esto equivale a decir que:

los sucesos $A \vee B$ no son independientes.

Ejercicio 12 (2009-6-B-3) El 70 % de los visitantes de un museo son españoles. El 49 % son españoles y mayores de edad. De los que no son españoles, el 40 % son menores de edad.

- (a) [1] Si se escoge, al azar, un visitante de este museo, ¿cuál es la probabilidad de que sea mayor de edad?
- (b) [1] Se ha elegido, aleatoriamente, un visitante de este museo y resulta que es menor de edad. ¿Cuál es la probabilidad de que no sea español?

Solución: Llamemos E al suceso "elegido un visitante al azar de ese museo, éste es español", y llamemos M al suceso "elegido un visitante al azar de ese museo, éste es mayor de edad". Como el 70 % de los visitantes de un museo son españoles, p(E) = 0'7. Dado que el 49 % son españoles y mayores de edad, $p(E \cap M) = 0'49$. De los que no son españoles, el 40 % son menores de edad, y esto significa que $p(M^C/E^C) = 0'4$. Como $p(E^C) = 1 - p(E) = 1 - 0'7 = 0'3$, podemos despejar:

$$p\left(\frac{M^{C}}{E^{C}}\right) = \frac{p\left(E^{C}\cap M^{C}\right)}{p\left(E^{C}\right)} \quad \Rightarrow \quad p\left(E^{C}\cap M^{C}\right) = p\left(E^{C}\right) \cdot p\left(\frac{M^{C}}{E^{C}}\right) = 0'3 \cdot 0'4 = 0'12.$$

Ahora una sencilla tabla de contingencia nos indica muchas probabilidades.

	M	M^C	TOTAL			M	M^C	TOT
E	0'49		0'7		E	0'49	0'21	0'7
E^C		0'12	0'3	$] \Rightarrow $	E^C	0'18	0'12	0'3
TOTAL			1		TOTAL	0'67	0'33	1

Apartado (a). La misma tabla indica que p(M) = 0'67.

La probabilidad de elegir al azar un visitante mayor de edad es 0'67.

Apartado (b). La probabilidad de elegir un visitante que no sea español, sabiendo que es menor de edad, es:

$$p\left(\frac{E^C}{M^C}\right) = \frac{p\left(E^C \cap M^C\right)}{p\left(M^C\right)} = \frac{0'12}{0'33} = \frac{12}{33}.$$

Andalucía 11 Antonio Roldán

La probabilidad de elegir un visitante no español, sabiendo que es menor de edad, es $\frac{12}{33}$.