Solution 2013 Final Exam (1)

Q. 1 (a) The number of modes in an optical fiber, having core and cladding refractive index of 1.48 and 1.46 respectively, is 14331 . If the wavelength of light is $9000^{\circ} \mathrm{A}$, what is the core diameter?

Solution:

$$
\begin{gathered}
M_{n}=\frac{V^{2}}{2} \\
V=\sqrt{2 M_{n}}=\sqrt{2 \times 14331} \\
V=169.298 \\
N . A .=\left[n_{1}^{2}-n_{2}^{2}\right]^{\frac{1}{2}} \\
N . A .=\left[1.48^{2}-1.46^{2}\right]^{\frac{1}{2}}=0.2424
\end{gathered}
$$

Normalized frequency $V=\left[\frac{2 \pi a}{\lambda}\right] \times N . A$.

$$
\begin{gathered}
a=(V)(\lambda) /(2 \pi N . A .) \\
a=\left(169.298 \times 9000 \times 10^{-10}\right) /(2 \pi \times 0.2424) \\
a=100 \times 10^{-6} \mathrm{~m}=100 \mu \mathrm{~m} \\
d=2 \times a=200 \mu \mathrm{~m}
\end{gathered}
$$

b) Explain the important conditions for TIR to exist in fiber.

Total internal reflection takes place under two essential conditions:
1- Refractive index $n_{1}>n_{2}$.
2- Angle of incidence should be greater than critical angle.
Q.2. When a mean optical power is lunched into an 8 km length of fiber is $12 \mu \mathrm{~W}$, the mean optical power at the fiber output is $3 \mu \mathrm{~W}$. Determine 1) Overall signal attenuation in dB .
2) The overall signal attenuation for a 10 km optical link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB .

Solution: Given: $\quad \mathrm{z}=8 \mathrm{~km}$
[14 marks]

$$
\begin{aligned}
& \mathrm{P}(0)=12 \mathrm{uW} \\
& \mathrm{P}(0)=3 \mathrm{uW}
\end{aligned}
$$

1) Overall attenuation is given by,

$$
\begin{gathered}
\alpha=10 \log \left[\frac{P(0)}{P(z)}\right] \\
\alpha=10 \log \left[\frac{12}{3}\right] \\
\alpha=6.02 \mathrm{~dB}
\end{gathered}
$$

Ans ...
2) Overall attenuation for 10 km ,

$$
\begin{array}{ll}
\text { Attenuation per km } & \alpha_{d B}=\frac{6.02}{z}=\frac{6.02}{8} \\
& \alpha_{d B}=0.752 \frac{d B}{\mathrm{~km}}
\end{array}
$$

Attenuation in 10 km link $=0.752 * 10=7.5 \mathrm{~dB}$
In 10 km link there will be 9 splices at 1 km interval. Each splice introducing attenuation of 1 dB .

Total attenuation $=7.5 \mathrm{~dB}+9 \mathrm{~dB}=16.5 \mathrm{~dB}$.
Q.3. (a) Draw the basic block diagram of an optical fiber communication (OFC) system, showing how the message (Text or Video) are processed through the OFC system.
[8 marks]

Block diagram of OFC systems

(b) On an InGaAs photodetector, a pulse of 85 ns emits 6×10^{6} photons at 1300 nm wavelength. Average e-h pairs generated are 5.4×10^{6}. Calculate quantum efficiency of detector.

Solution: No. of photons emitted $=6 \times 10^{6}$
Average e-h pairs generated $=5.4 \times 10^{6}$
The quantum efficiency is given by:

$$
\begin{gathered}
\eta=\frac{\text { No. of e }-\mathrm{h} \text { pairs generated }}{\text { No. of incident photons }} \\
\begin{array}{l}
\eta=\frac{5.4 \times 10^{6}}{6 \times 10^{6}} \\
\eta=0.9=90 \% \quad \text { Ans } \ldots
\end{array} \\
\\
\\
\\
\\
\\
\end{gathered}
$$

Q. 4 (a) A double hetrojunction InGaAsP LED operating at a wavelength of 1310 nm has radiative and non-radiative recombination life times of minority carriers in the active region of a are 30 nsec and 100 nsec respectively. The current injected is 40 mA . Calculate:
i) Bulk recombination life time.
ii) Internal quantum efficiency.
iii) Internal power level.

$$
\begin{aligned}
\lambda=870 \mathrm{~nm}=0.87 & \times 10^{-6} \mathrm{~m} \\
\tau_{r} & =30 \mathrm{~ns} \\
\tau_{n r} & =100 \mathrm{~ns} \\
\mathrm{I} & =40 \mathrm{~mA}=0.04 \mathrm{Amp}
\end{aligned}
$$

i) Bulk recombination life time τ

$$
\begin{aligned}
& \frac{1}{\tau}=\frac{1}{30}+\frac{1}{100}=0.043 \\
& \tau=23.077 \mathrm{n} \mathrm{sec}
\end{aligned}
$$

ii) Internal quantum efficiency $\left(\eta_{\text {int }}\right)$

$$
\eta_{i n t}=\frac{\tau}{\tau_{r}}
$$

iii) Internal power level ($P_{\text {int }}$)

$$
P_{\text {int }}=0.769 \times
$$

$$
P_{\text {int }}=29.145 \mathrm{~mW}
$$

(b) Draw the three key transition processes involved in laser action.

Ans. : 1. Absorption 2. Spontaneous emission 3. Stimulated emission.

And:

Q.5: a) Photons having energy $1.53 \times \mathbf{1 0}^{\mathbf{- 1 9}}$ Joules are incident on a photodiode having responsivity of $\mathbf{0 . 6 5} \mathrm{A} / \mathrm{W}$. If output power is $\mathbf{1 0} \boldsymbol{\mu} \mathrm{W}$. Find the generated photocurrent.

Solution : $\quad \Re=0.65 \mathrm{~A} / \mathrm{W}$

$$
P_{0}=10 \mu \mathrm{~W}
$$

Responsivity is given as -

$$
\begin{aligned}
\Re & =\frac{I_{p}}{P_{0}} \\
I_{p} & =\Re P_{0} \\
I_{p} & =0.65 \times 10 \\
I_{p} & =6.5 \mu \mathrm{~A}
\end{aligned}
$$

... Ans.
(b) Compare LED and LASER diode in a table (write only five points). [10 marks]
\qquad

1. Principle of operation: spontaneous emission stimulated emission
2. Output beam: non - coherent coherent
3. Spectral width: broad spectrum ($20-100 \mathrm{~nm}$) much narrower (1-5 nm)
4. Data rate:
5. Transmission distance smaller
very high
greater
Q. 6 (a) The bandgap energy in a direct bandgap material can be controlled by x and y parameters, related to two expressions:
$E_{g}=1.424+1.266 x+0.266 x^{2}, \quad E_{g}=1.35-0.72 y+0.12 y^{2}$ Assuming an $I n_{0.74} G a_{0.26} A s_{0.57} P_{0.43}$ alloy to be used in LED, find the wavelength emitted by this LED source.

Solution : Comparing the alloy with the quartenary alloy composition.
$\mathrm{In}_{1-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}} \mathrm{As}_{\mathrm{y}} \mathrm{P}_{1-\mathrm{y}}$ it is found that
$\begin{aligned} \mathrm{x} & =0.26 \text { and } \\ \mathrm{y} & =0.57 \\ \text { Using } \quad \mathrm{E}_{\mathrm{g}} & =1.35-0.72 \mathrm{y}+0.12 \mathrm{y}^{2}\end{aligned}$

$$
E_{g}=1.35-(0.72 \times 0.57)+0.12 \times 0.57^{2}
$$

$$
\mathrm{E}_{\mathrm{g}}=0.978 \mathrm{eV}
$$

Now $\quad \begin{aligned} \mathrm{E}_{\mathrm{g}} & =0.978 \mathrm{eV} \\ \lambda & =\frac{1.24}{\mathrm{E}_{\mathrm{g}}}\end{aligned}$

$$
\therefore \quad \lambda=\frac{1.24}{0.978}=1.2671 \mu \mathrm{~m}=1.27 \mu \mathrm{~m}
$$

... Ans.

b) Choose the Correct Answer:

1- The optical fibers are made of:
(a) metallic conductor
(b) plastic doped with metallic impurities
(c) dielectric material
(d) magnetic oxide

2- When V parameter is less than 2.405, then the fiber will support
(a) one mode
(b) two modes
(c) three modes
(d) infinite modes

3- The jacket of an optical fiber enables
(a) to prevent from mechanical abrasions
(b) to prevent interaction with internal atmosphere
(c) to prevent moisture trapping
(d) all of the above

4- Attenuation in an optical fiber is measured by
(a) loss $=-10 \log _{10} P_{o}$
(b) $\operatorname{loss}=10 \log _{10} P_{i}$
(c) loss $=-10 \log _{10} \frac{P_{o}}{P_{i}}$
(d) $l o s s=-10 \log _{10} \frac{P_{i}}{P_{o}}$

5- Spectral width and modulation capabilities in LED and laser diodes are determined by:
d) (a) Device structure
(b) Bias network
e) (c) Output light intensity
(d) both (a) and (b).

