Solution of ODEs using Laplace Transforms

Process Dynamics and Control



Linear ODEs

m For linear ODEs, we can solve without integrating by
using Laplace transforms

F(s) = Lf(t)] = [or f(t)e™*"at

B Integrate out time and transform to Laplace domain

‘;—3{ = ay(t) + bu(t), y(0) =0

Integration
|

Multiplication

Y(s) =G(s)U(s)




Common Transforms
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Useful Laplace Transforms
1. Exponential ft) =e"
Lle™] = / e e tdt = / e~ (D) gy
0 0
B e—(s—I—b)t o0 B 1
B s+b |, s+b
. Jwt —Jwt
2. Cosine f(t) — coswt = € _I_26
Lcoswt] = {/ 6—(s—jw)tdt+/ e—(s—l—jw)tdt}
0 0
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Common Transforms

Useful Laplace Transforms
3. Sine

ejwt _ e—jwt
27

1 o0 | o0 |
L [Sin wt] — 2_ {/ 6—(S—Jw)tdt . / 6—(S—I—Jw)tdt}
J 0 0

11 1w
2 ls—jw s+jw|  s24w?

f(t) =sinwt =




Common Transforms
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Operators

1. Derivative of a function, f () , _df; (tt)

| = swey - [T estte

_ / (et — £(0) = sF(s) — £(0)

2. Integral of a function f ()

e[ [ smar] = [T ([ smar)an= FO




Common Transforms

Operators
3. Delayed function f(t — 7)

0 t<T
g(t)z{ ft—71) t>71

T st °° st
/Oe (O)dt—l—/T et F(t — 1)dr
= e °TF(s)

L [g(t)]



Common Transforms

Input Signals
1. Constant ft)=a
o0 —st X
L]a] 2/ ae~stdt = —2¢ ] _ ¢
0 s g S
2. Ste _J 0 t<O
P F(1) = { 010

E[G]Z/ ae~stdt = —2° ] _ ¢
0 0 S

3. Ramp function

0O t<0O
f@) = {at t>0




Common Transforms

Input Signals
4. Rectangular Pulse

O t<O
ft) = a t <ty

0 t>tw




Laplace Transforms

Final Value Theorem

lim [y(t)] = lim [sY (s)]

t—o0 s—0

Limitations:
y(t) € C1
Iin?) [sY (s)] exists Vs, Re(s) > 0.
S—

Initial Value Theorem

y(0) = lim [sY(s)]

§— 00




Solution of ODEs

We can continue taking Laplace transforms and generate a
catalogue of Laplace domain functions.

The final aim 1s the solution of ordinary differential
equations.

Example
Using Laplace Transform, solve

598 + 4y =2, y(0) = 1

Result

N[
_|_
N —
a
|
G

~

y(t) =
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Solution of ODEs

Cruise Control Example

Friction F01jce of
Engine (u)
D= —1—u— L
mcar mcar

> Taking the Laplace transform of the ODE yields (recalling the Laplace
transform is a linear operator)

sV (s) = 1-U(s) — =2V (s)

mca"r‘ mcar
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Solution of ODEs

m Isolate V(s)

and solve

V(s) = gr=a=U(s)

Mcar

> If the input is kept constant

(o ift<oO
u(t) = { c otherwise

its Laplace transform

> Leading to
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Solution of ODEs

B Solve by inverse Laplace transform: (tables)

C

Vis) = - o(t) = §(1 - e

Mcar

> Solution is obtained by a getting the inverse Laplace transform

from a table
> Alternatively we can use partial fraction expansion to compute

the solution using simple inverse transforms

C

V(s) = s =4+ 2

- S(S+ Mcar

oy
v
s
I
?‘lO
Ny
I
|
SO

B
5—|—b

Mcar

LTUV(s) =L [4] +£7!

— A+ Be™ Frear
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Solution of Linear ODEs

B DC Motor

B System dynamics describes (negligible inductance)

2} b K. K Yy . K
Om + (ﬂ T JmRi) Om = 7,1, Va
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Laplace Transform

m Expressing in terms of angular velocity w(t) = 0(t)

. b KtKe _ Kt
W, + (Jm + JmRa)wm = JnRa la

m a

> Taking Laplace Transforms

sQ(s) + (JI; -+ ijg;) Qs) = Jféa Va(s)

> Solving
K
Qs) _ T B
Va(s) st (3 +75%E)

> Note that this function can be written as

Q(s) _ K
Vo(s)  7s+1
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Laplace Transform

Assume v,(t) = sinwt then the transfer function gives directly

Q(S) — TSI—(|—1 82—u|—)cu2

Cannot invert explicitly, but if we can find Ay, A;, B such that

A]_S—l—AO —I_ B . K w
s24-w?2 7s+1 = T1s+1 s24w?

we can invert using tables.

Need Partial Fraction Expansion to deal with
such functions
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Linear ODEs

We deal with rational functions of the form r(s) = Z 8 where degree of
q(s) > degree of p(s)

q(s)is called the characteristic polynomial of the function 7(5)
The roots of q(s) = 0 are the poles of the function 1(s)

Theorem:

Every polynomial ¢(s) with real coefficients can be factored into the
product of only two types of factors

> powers of linear terms (s 4+ b)" and/or
> powers of irreducible quadratic terms(s? + dys + dg)™
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Partial fraction Expansions

|} | | | | |
1. q(s) has real and distinct factors

q(s) = H?:l(s + b;)

expand as

r(s) = Y0, -2

2. q(s) has real but repeated factor

q(s) = (s +b)"

expanded

rs)=s5t et T o
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Partial Fraction Expansion

Heaviside expansion

For a rational function of the form

Constants are given by

Q; = (S —|—bz>—

@),
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Partial Fraction Expansion

Example
r(s) = 53—|—10582_|—_|—2298—{—2O
The polynomial

q(s) = s 4+ 10s% + 29s + 20

has roots
s=-—-1, s=—4,5s=-5

It can be factored as

q(s) =(s+1)(s+4)(s+5)

By partial fraction expansion

20



Partial Fraction Expansion

T | | | | |
By Heaviside
_ s+2 _ 1 _ s+2
a1 = (84_4)(54_5)}8:_1 — 12 a2 = (s+1)(s+5)
_ s+2 _ 3
a3 = (s+1)(s+4)L:_4 — 1

> 7(5) becomes

_ 1 2 3
T(S) T 12(s+1) + 3(s+4)  4(s+5)

> By inverse laplace

L7 r(s)] = qge + ge7™ — g

[

wIiN
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Partial Fraction Expansion

Heaviside expansion

For a rational function of the form

o Zﬂ o p(5> s 8% . 87"
)= e) TG stb ozt T Gron
Constants are given by oy, = (5 + b)n% o
A (2
QOp—1 — ds (( +b> q S))_ —

o e (er2S)]
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Partial Fraction Expansion

Example
7“(3) = 33—|—9s§ig4s—|—16
The polynomial

q(s) = s+ 9s% + 245 + 16

has roots
s=-—-1, s=—-4,s=—4

It can be factored as

q(s) = (s +1)(s +4)°

By partial fraction expansion

r(s) = SO:L11 T s—|—4 + (s+4)2
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Partial Fraction Expansion

T | | | | | |
By Heaviside
. s+9 1 s+2
o= i) =4 o= ).
_ d 5+2 1 =1
a3 = 7 ((s+1))l_ A _(s+1)2L_ g9
> 7(5) becomes
_ 1 1 2
r(8) = 563D — 5D T 3

> By inverse laplace

et — le—4t o %t€—4t
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Partial Fraction Expansion

3.49(s) has an irreducible quadratic factor

q(s) = (s> +dis + dp)

> Gives a pair of complex conjugates if di < 4dy

s=—% 4+ 1\/d% —4dy

> (Can be factored in two ways

a) T (s)is factored as

r(s) 4 _ 4 B

— s+a+bj s+a—bj
b) oras
T(S) - As+B - As+B
 s24dis+dg  (s+a)?+b?
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Partial Fraction Expansion

|} I I I I I I I = n
Heaviside expansion

For a rational function of the form

r(s) = p(s) _ p(s) 4 B
q(s) (s2+dis+d0) s+a+bj s+a—10j

Constants are given by

= (s+a-+bj pls)

A= (s+a+bj) q(5) | g——_as;
= (s4+a—1bj pls)

A= (s+ bj) q(s) | s=—a+bj
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Partial Fraction Expansion

|} | | |
Example
s+1
T(S) s2+s+1
The polynomial q(s) =s*+s+1
has roots S = _% + @j

It can be factored as

a(s) = (s+ 35— %j) (s + 3+

By partial fraction expansion

- (051

)= T

a2

S—l—%—I-@j

EY

)
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Partial Fraction Expansion

By Heaviside,

2
_ s+1 ] s+1 ]
o 1 ﬁ l_ﬁ‘
(8‘|‘2+ 2]) SZ—%—i—@j (S—I—2 2]) 3:_%—§]
1 3 1 3 .
27 6 J 5 T 76 J
1 V3 1 V3 .
. . 1 V3 1,3,
which yields r(s)=—2-6J 4 3%%
4 ) = o e
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Partial Fraction Expansion

The inverse laplace

Lo ()] = (3 - e Be T 4 (54 ) e dteH Y

Can be re-arranged to

—1 _ it eZTY4em T B ieT W _eT Tl
L1 [r(s)] = e ( T RN T B

V3, V3, . V3 V3

-1 R S eth—|-e_th ﬂthJ—e_TU
L1 [r(s)] = e ( T S P LB
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Partial Fraction Expansion

C— | | | |
Example (s) Sg‘f:;il
The polynomial q(s) =s*+s+1

has roots 3:_%i§j

It can be factored as (a = 3, b= \/7§)
_ A(s+a) Bb
T(S) — (s4a)2+b2 + (s+a)2+4b2

Solving for A and B,
_ A(s+a) Bb _ s+1
r(s) = GTaP+52 T GFa)? 152 = (s+a)? 152
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Partial Fraction Expansion

Equating similar powers of s in,

r(s) = (si(;)ti)w T (s+£g+62 — (s+2J)r21+b2
yields A = 1
Aa+Bb = 1
hence
Bl =% —f
Giving

_ _ (s+a) V3 b
T(S)  (s4+a)?2+40b2 + 3 (s+a)?+b?

Taking the inverse laplace

L71r(s)] = e 3t (cos @t - @ sin @t)
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Partial Fraction Expansions

Algorithm for Solution of ODEs

> Take Laplace Transform of both sides of ODE

> Solve for .
r(s) = 563

> Factor the characteristic polynomial ¢(s)
®» Find the roots (roots or poles function in Matlab)
® Identify factors and multiplicities

> Perform partial fraction expansion

> Inverse Laplace using Tables of Laplace Transforms
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Partial Fraction Expansion

m For a given function
r(s) = p(s)

q(s

m The polynomial ¢(s) has three distinct types of roots
> Real roots
» s=—b yields exponential terms

» s=0 yields constant terms

> Complex roots

®» s=a;£b;J yields exponentially weighted sinusoidal
signals

®» s==xb;J yields pure sinusoidal signal
B A lot of information is obtained from the roots of ¢(s)
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