Solution of ODEs using Laplace Transforms

Process Dynamics and Control

Linear ODEs

- For linear ODEs, we can solve without integrating by using Laplace transforms

$$
F(s)=\mathcal{L}[f(t)]=\int_{0^{+}}^{\infty} f(t) e^{-s t} d t
$$

■ Integrate out time and transform to Laplace domain

$$
\begin{gathered}
\frac{d y}{d t}=a y(t)+b u(t), y(0)=0 \\
\overbrace{\text { Multiplication }}^{\text {Integration }} \\
Y(s)=G(s) U(s)
\end{gathered}
$$

Common Transforms

Useful Laplace Transforms

1. Exponential $\quad f(t)=e^{-b t}$

$$
\begin{aligned}
\mathcal{L}\left[e^{-b t}\right] & =\int_{0}^{\infty} e^{-b t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s+b) t} d t \\
& \left.=-\frac{e^{-(s+b) t}}{s+b}\right]_{0}^{\infty}=\frac{1}{s+b}
\end{aligned}
$$

2. Cosine $f(t)=\cos \omega t=\frac{e^{j \omega t}+e^{-j \omega t}}{2}$

$$
\begin{aligned}
\mathcal{L}[\cos \omega t] & =\frac{1}{2}\left\{\int_{0}^{\infty} e^{-(s-j \omega) t} d t+\int_{0}^{\infty} e^{-(s+j \omega) t} d t\right\} \\
& =\frac{1}{2}\left\{\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right\}=\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

Common Transforms

Useful Laplace Transforms

3. Sine

$$
\begin{aligned}
& f(t)=\sin \omega t=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j} \\
& \mathcal{L}[\sin \omega t]= \frac{1}{2 j}\left\{\int_{0}^{\infty} e^{-(s-j \omega) t} d t-\int_{0}^{\infty} e^{-(s+j \omega) t} d t\right\} \\
&= \frac{1}{2 j}\left\{\frac{1}{s-j \omega}-\frac{1}{s+j \omega}\right\}=\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

Common Transforms

Operators

1. Derivative of a function, $f(t), \frac{d f(t)}{d t}$

$$
\begin{aligned}
\mathcal{L}\left[\frac{d f(t)}{d t}\right] & \left.=f(t) e^{-s t}\right]_{0}^{\infty}-\int_{0}^{\infty}\left(-s f(t) e^{-s t}\right) d t \\
& =s \int_{0}^{\infty} f(t) e^{-s t} d t-f(0)=s F(s)-f(0)
\end{aligned}
$$

2. Integral of a function $f(t)$

$$
\mathcal{L}\left[\int_{0}^{t} f(\tau) d \tau\right]=\int_{0}^{\infty} e^{-s t}\left(\int_{0}^{t} f(\tau) d \tau\right) d t=\frac{F(s)}{s}
$$

Common Transforms

Operators

3. Delayed function $f(t-\tau)$

$$
\begin{aligned}
& g(t)= \begin{cases}0 & t<\tau \\
f(t-\tau) & t \geq \tau\end{cases} \\
& \mathcal{L}[g(t)]=\int_{0}^{\tau} e^{-s t}(0) d t+\int_{\tau}^{\infty} e^{-s t} f(t-\tau) d \tau \\
&= e^{-s \tau} F(s)
\end{aligned}
$$

Common Transforms

Input Signals

1. Constant

$$
f(t)=a
$$

$$
\left.\mathcal{L}[a]=\int_{0}^{\infty} a e^{-s t} d t=-\frac{a e^{-s t}}{s}\right]_{0}^{\infty}=\frac{a}{s}
$$

2. Step

$$
\begin{gathered}
f(t)= \begin{cases}0 & t<0 \\
a & t \geq 0\end{cases} \\
\left.\mathcal{L}[a]=\int_{0}^{\infty} a e^{-s t} d t=-\frac{a e^{-s t}}{s}\right]_{0}^{\infty}=\frac{a}{s}
\end{gathered}
$$

3. Ramp function

$$
\begin{gathered}
f(t)= \begin{cases}0 & t<0 \\
\text { at } & t \geq 0\end{cases} \\
\left.\mathcal{L}[f(t)]=\int_{0}^{\infty} a t e^{-s t} d t=-\frac{a t e^{-s t}}{s}\right]_{0}^{\infty} \frac{a e^{-s t}}{s} d t=\frac{a}{s^{2}}
\end{gathered}
$$

Common Transforms

Input Signals

4. Rectangular Pulse

$$
\begin{gathered}
f(t)= \begin{cases}0 & t<0 \\
a & t \leq t_{w} \\
0 & t \geq t_{w}\end{cases} \\
\mathcal{L}[f(t)]=\int_{0}^{t_{w}} a e^{-s t} d t=\frac{a}{s}\left(1-e^{-t_{w} s}\right)
\end{gathered}
$$

5. Unit impulse $a=\frac{1}{t_{w}}$

$$
\begin{gathered}
\mathcal{L}[\delta(t)]=\lim _{t_{w} \rightarrow 0} \frac{1}{t_{w} s}\left(1-e^{-t_{w} s}\right) \\
\mathcal{L}[\delta(t)]=\lim _{t_{w} \rightarrow 0} \frac{s e^{-s t}}{s}=1
\end{gathered}
$$

Laplace Transforms

Final Value Theorem

$$
\lim _{t \rightarrow \infty}[y(t)]=\lim _{s \rightarrow 0}[s Y(s)]
$$

Limitations:

$$
\begin{aligned}
& y(t) \in C^{1} \\
& \lim _{s \rightarrow 0}[s Y(s)] \text { exists } \forall s, \operatorname{Re}(s) \geq 0
\end{aligned}
$$

Initial Value Theorem

$$
y(0)=\lim _{s \rightarrow \infty}[s Y(s)]
$$

Solution of ODEs

We can continue taking Laplace transforms and generate a catalogue of Laplace domain functions.

The final aim is the solution of ordinary differential equations.

Example
Using Laplace Transform, solve

$$
5 \frac{d y}{d t}+4 y=2, y(0)=1
$$

Result

$$
y(t)=\frac{1}{2}+\frac{1}{2} e^{-\frac{4}{5} t}
$$

Solution of ODEs

Cruise Control Example

$$
\dot{v}=\frac{1}{m_{c a r}} u-\frac{b}{m_{c a r}} v
$$

- Taking the Laplace transform of the ODE yields (recalling the Laplace transform is a linear operator)

$$
s V(s)=\frac{1}{m_{c a r}} U(s)-\frac{b}{m_{c a r}} V(s)
$$

Solution of ODEs

■ Isolate $V(s)$

$$
\left(s+\frac{b}{m_{c a r}}\right) V(s)=\frac{1}{m_{c a r}} U(s)
$$

and solve

$$
V(s)=\frac{\frac{1}{m_{\text {car }}}}{\left(s+\frac{c}{m_{\text {car }}}\right)} U(s)
$$

- If the input is kept constant

$$
u(t)= \begin{cases}0 & \text { if } t<0 \\ c & \text { otherwise }\end{cases}
$$

its Laplace transform

$$
U(s)=\frac{c}{s}
$$

- Leading to

$$
V(s)=\frac{\frac{c}{m_{c a r}}}{s\left(s+\frac{b}{m_{c a r}}\right)}
$$

Solution of ODEs

- Solve by inverse Laplace transform: (tables)

$$
V(s)=\frac{\frac{c}{m_{\text {car }}}}{s\left(s+\frac{b}{m_{c a r}}\right)} \longrightarrow v(t)=\frac{c}{b}\left(1-e^{-\frac{m_{c a r}}{b} t}\right)
$$

- Solution is obtained by a getting the inverse Laplace transform from a table
- Alternatively we can use partial fraction expansion to compute the solution using simple inverse transforms

$$
\begin{aligned}
V(s)=\frac{\frac{c}{m_{c a r}}}{s\left(s+\frac{b}{m_{c a r}}\right)} & =\frac{A}{s}+\frac{B}{s+\frac{b}{m_{c a r}}} \longrightarrow A=\frac{c}{b}, B=-\frac{c}{b} \\
\mathcal{L}^{-1}[V(s)] & =\mathcal{L}^{-1}\left[\frac{A}{s}\right]+\mathcal{L}^{-1}\left[\frac{B}{s+\frac{b}{m_{c a r}}}\right] \\
& =A+B e^{-\frac{b}{m_{c a r}}}
\end{aligned}
$$

Solution of Linear ODEs

- DC Motor

- System dynamics describes (negligible inductance)

$$
\ddot{\theta}_{m}+\left(\frac{b}{J_{m}}+\frac{K_{e} K_{t}}{J_{m} R_{a}}\right) \dot{\theta}_{m}=\frac{K_{t}}{J_{m} R_{a}} v_{a}
$$

Laplace Transform

■ Expressing in terms of angular velocity $\omega(t)=\dot{\theta}(t)$

$$
\dot{\omega}_{m}+\left(\frac{b}{J_{m}}+\frac{K_{t} K_{e}}{J_{m} R_{a}}\right) \omega_{m}=\frac{K_{t}}{J_{m} R_{a}} v_{a}
$$

- Taking Laplace Transforms

$$
s \Omega(s)+\left(\frac{b}{J_{m}}+\frac{K_{e} K_{t}}{J_{m} R_{a}}\right) \Omega(s)=\frac{K_{t}}{J_{m} R_{a}} V_{a}(s)
$$

> Solving

$$
\frac{\Omega(s)}{V_{a}(s)}=\frac{\frac{K_{t}}{J_{m} R_{a}}}{s+\left(\frac{b}{J_{m}}+\frac{K_{e} K_{t}}{J_{m} R_{a}}\right)}
$$

$>$ Note that this function can be written as

$$
\frac{\Omega(s)}{V_{a}(s)}=\frac{K}{\tau s+1}
$$

Laplace Transform

Assume $v_{a}(t)=\sin \omega t$ then the transfer function gives directly

$$
Q(s)=\frac{K}{\tau s+1} \frac{\omega}{s^{2}+\omega^{2}}
$$

Cannot invert explicitly, but if we can find A_{0}, A_{1}, B such that

$$
\frac{A_{1} s+A_{0}}{s^{2}+\omega^{2}}+\frac{B}{\tau s+1}=\frac{K}{\tau s+1} \frac{\omega}{s^{2}+\omega^{2}}
$$

we can invert using tables.

Need Partial Fraction Expansion to deal with such functions

Linear ODEs

We deal with rational functions of the form $r(s)=\frac{p(s)}{q(s)}$ where degree of $q(s)>$ degree of $p(s)$
$q(s)$ is called the characteristic polynomial of the function $r(s)$

The roots of $q(s)=0$ are the poles of the function $r(s)$

Theorem:

Every polynomial $q(s)$ with real coefficients can be factored into the product of only two types of factors
\Rightarrow powers of linear terms $(s+b)^{n}$ and/or

- powers of irreducible quadratic terms $\left(s^{2}+d_{1} s+d_{0}\right)^{m}$

Partial fraction Expansions

1. $q(s)$ has real and distinct factors

$$
q(s)=\prod_{i=1}^{n}\left(s+b_{i}\right)
$$

expand as

$$
r(s)=\sum_{i=1}^{n} \frac{\alpha_{i}}{s+b_{i}}
$$

2. $q(s)$ has real but repeated factor

$$
q(s)=(s+b)^{n}
$$

expanded

$$
r(s)=\frac{\alpha_{1}}{s+b}+\frac{\alpha_{2}}{(s+b)^{2}}+\cdots+\frac{\alpha_{n}}{(s+b)^{n}}
$$

Partial Fraction Expansion

Heaviside expansion

For a rational function of the form

$$
r(s)=\frac{p(s)}{q(s)}=\frac{p(s)}{\prod_{i=1}^{n}\left(s+b_{i}\right)}=\sum_{i=1}^{n} \frac{\alpha_{i}}{s+b_{i}}
$$

Constants are given by

$$
\left.\alpha_{i}=\left(s+b_{i}\right) \frac{p(s)}{q(s)}\right]_{s=-b_{i}}
$$

Partial Fraction Expansion

Example

$$
r(s)=\frac{s+2}{s^{3}+10 s^{2}+29 s+20}
$$

The polynomial

$$
q(s)=s^{3}+10 s^{2}+29 s+20
$$

has roots

$$
s=-1, s=-4, s=-5
$$

It can be factored as

$$
q(s)=(s+1)(s+4)(s+5)
$$

By partial fraction expansion

$$
r(s)=\frac{\alpha_{1}}{s+1}+\frac{\alpha_{2}}{s+4}+\frac{\alpha_{3}}{s+5}
$$

Partial Fraction Expansion

By Heaviside

$$
\begin{gathered}
\left.\left.\alpha_{1}=\frac{s+2}{(s+4)(s+5)}\right]_{s=-1}=\frac{1}{12} \quad \alpha_{2}=\frac{s+2}{(s+1)(s+5)}\right]_{s=-4}=\frac{2}{3} \\
\left.\alpha_{3}=\frac{s+2}{(s+1)(s+4)}\right]_{s=-4}=-\frac{3}{4}
\end{gathered}
$$

$>r(s)$ becomes

$$
r(s)=\frac{1}{12(s+1)}+\frac{2}{3(s+4)}-\frac{3}{4(s+5)}
$$

- By inverse laplace

$$
\mathcal{L}^{-1}[r(s)]=\frac{1}{12} e^{-t}+\frac{2}{3} e^{-4 t}-\frac{3}{4} e^{-5 t}
$$

Partial Fraction Expansion

Heaviside expansion

For a rational function of the form

$$
r(s)=\frac{p(s)}{q(s)}=\frac{p(s)}{(s+b)^{n}}=\frac{\alpha_{1}}{s+b}+\frac{\alpha_{2}}{(s+b)^{2}}+\cdot+\frac{\alpha_{n}}{(s+b)^{n}}
$$

Constants are given by $\left.\quad \alpha_{n}=(s+b)^{n} \frac{p(s)}{q(s)}\right]_{s=-b}$

$$
\begin{gathered}
\left.\alpha_{n-1}=\frac{d}{d s}\left((s+b)^{n} \frac{p(s)}{q(s)}\right)\right]_{s=-b} \\
\vdots \\
\left.\alpha_{1}=\frac{d^{n-1}}{d s^{n-1}}\left((s+b)^{n} \frac{p(s)}{q(s)}\right)\right]_{s=-b}
\end{gathered}
$$

Partial Fraction Expansion

Example

$$
r(s)=\frac{s+2}{s^{3}+9 s^{2}+24 s+16}
$$

The polynomial

$$
q(s)=s^{3}+9 s^{2}+24 s+16
$$

has roots

$$
s=-1, s=-4, s=-4
$$

It can be factored as

$$
q(s)=(s+1)(s+4)^{2}
$$

By partial fraction expansion

$$
r(s)=\frac{\alpha_{1}}{s+1}+\frac{\alpha_{2}}{s+4}+\frac{\alpha_{3}}{(s+4)^{2}}
$$

Partial Fraction Expansion

By Heaviside

$$
\begin{gathered}
\left.\left.\alpha_{1}=\frac{s+2}{(s+4)^{2}}\right]_{s=-1}=\frac{1}{9} \quad \alpha_{3}=\frac{s+2}{(s+1)}\right]_{s=-4}=\frac{2}{3} \\
\left.\left.\alpha_{3}=\frac{d}{d s}\left(\frac{s+2}{(s+1)}\right)\right]_{s=-4}=-\frac{1}{(s+1)^{2}}\right]_{s=-4}=-\frac{1}{9}
\end{gathered}
$$

$>r(s)$ becomes

$$
r(s)=\frac{1}{9(s+1)}-\frac{1}{9(s+4)}+\frac{2}{3(s+4)^{2}}
$$

- By inverse laplace

$$
\mathcal{L}^{-1}[r(s)]=\frac{1}{9} e^{-t}-\frac{1}{9} e^{-4 t}+\frac{2}{3} t e^{-4 t}
$$

Partial Fraction Expansion

3. $q(s)$ has an irreducible quadratic factor

$$
q(s)=\left(s^{2}+d_{1} s+d_{0}\right)
$$

$>$ Gives a pair of complex conjugates if $d_{1}^{2}<4 d_{0}$

$$
s=-\frac{d_{1}}{2} \pm \frac{1}{2} \sqrt{d_{1}^{2}-4 d_{0}}
$$

> Can be factored in two ways
a) $r(s)$ is factored as

$$
r(s)=\frac{A}{s+a+b j}+\frac{B}{s+a-b j}
$$

b) or as

$$
r(s)=\frac{A s+B}{s^{2}+d_{1} s+d_{0}}=\frac{A s+B}{(s+a)^{2}+b^{2}}
$$

Partial Fraction Expansion

Heaviside expansion

For a rational function of the form

$$
r(s)=\frac{p(s)}{q(s)}=\frac{p(s)}{\left(s^{2}+d_{1} s+d 0\right)}=\frac{A}{s+a+b j}+\frac{B}{s+a-b j}
$$

Constants are given by

$$
\begin{aligned}
& \left.A=(s+a+b j) \frac{p(s)}{q(s)}\right]_{s=-a-b j} \\
& \left.A=(s+a-b j) \frac{p(s)}{q(s)}\right]_{s=-a+b j}
\end{aligned}
$$

Partial Fraction Expansion

Example

$$
r(s)=\frac{s+1}{s^{2}+s+1}
$$

The polynomial

$$
q(s)=s^{2}+s+1
$$

has roots

$$
s=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} j
$$

It can be factored as

$$
q(s)=\left(s+\frac{1}{2}-\frac{\sqrt{3}}{2} j\right)\left(s+\frac{1}{2}+\frac{\sqrt{3}}{2} j\right)
$$

By partial fraction expansion

$$
r(s)=\frac{\alpha_{1}}{s+\frac{1}{2}-\frac{\sqrt{3}}{2} j}+\frac{\alpha_{2}}{s+\frac{1}{2}+\frac{\sqrt{3}}{2} j}
$$

Partial Fraction Expansion

By Heaviside,

$$
\begin{array}{rlrl}
\alpha_{1}= & \left.\left(s+\frac{1}{2}-\frac{\sqrt{3}}{2} j\right) \frac{s+1}{s^{2}+s+1}\right]_{s=-\frac{1}{2}+\frac{\sqrt{3}}{2} j} \alpha_{2} & \left.=\left(s+\frac{1}{2}+\frac{\sqrt{3}}{2} j\right) \frac{s+1}{s^{2}+s+1}\right]_{s=-\frac{1}{2}-\frac{\sqrt{3}}{2} j} \\
= & \left.\frac{s+1}{\left(s+\frac{1}{2}+\frac{\sqrt{3}}{2} j\right)}\right]_{s=-\frac{1}{2}+\frac{\sqrt{3}}{2} j} & \left.=\frac{s+1}{\left(s+\frac{1}{2}-\frac{\sqrt{3}}{2} j\right)}\right]_{s=-\frac{1}{2}-\frac{\sqrt{3}}{2} j} & =\frac{1}{2}-\frac{\sqrt{3}}{6} j
\end{array}
$$

which yields

$$
r(s)=\frac{\frac{1}{2}-\frac{\sqrt{3}}{6} j}{s+\frac{1}{2}-\frac{\sqrt{3}}{2} j}+\frac{\frac{1}{2}+\frac{\sqrt{3}}{6} j}{s+\frac{1}{2}+\frac{\sqrt{3}}{2} j}
$$

Taking the inverse laplace

$$
\mathcal{L}^{-1}[r(s)]=\left(\frac{1}{2}-\frac{\sqrt{3}}{6} j\right) e^{-\frac{1}{2} t} e^{\frac{\sqrt{3}}{2} t j}+\left(\frac{1}{2}+\frac{\sqrt{3}}{6} j\right) e^{-\frac{1}{2} t} e^{-\frac{\sqrt{3}}{2} t j}
$$

Partial Fraction Expansion

The inverse laplace

$$
\mathcal{L}^{-1}[r(s)]=\left(\frac{1}{2}-\frac{\sqrt{3}}{6} j\right) e^{-\frac{1}{2} t} e^{\frac{\sqrt{3}}{2} t j}+\left(\frac{1}{2}+\frac{\sqrt{3}}{6} j\right) e^{-\frac{1}{2} t} e^{-\frac{\sqrt{3}}{2} t j}
$$

Can be re-arranged to

$$
\begin{gathered}
\mathcal{L}^{-1}[r(s)]=e^{-\frac{1}{2} t}\left(\frac{e^{\frac{\sqrt{3}}{2} t j}+e^{-\frac{\sqrt{3}}{2} t j}}{2}-\frac{\sqrt{3}}{3} j \frac{e^{\frac{\sqrt{3}}{2} t j}-e^{-\frac{\sqrt{3}}{2} t j}}{2}\right) \\
\mathcal{L}^{-1}[r(s)]=e^{-\frac{1}{2} t}\left(\frac{e^{\frac{\sqrt{3}}{2} t j}+e^{-\frac{\sqrt{3}}{2} t j}}{2}+\frac{\sqrt{3}}{3} \frac{e^{\frac{\sqrt{3}}{2} t j}-e^{-\frac{\sqrt{3}}{2} t j}}{2 j}\right) \\
\mathcal{L}^{-1}[r(s)]=e^{-\frac{1}{2} t}\left(\cos \frac{\sqrt{3}}{2} t+\frac{\sqrt{3}}{3} \sin \frac{\sqrt{3}}{2} t\right)
\end{gathered}
$$

Partial Fraction Expansion

Example

$$
r(s)=\frac{s+1}{s^{2}+s+1}
$$

The polynomial

$$
q(s)=s^{2}+s+1
$$

has roots

$$
s=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} j
$$

It can be factored as ($a=\frac{1}{2}, b=\frac{\sqrt{3}}{2}$)

$$
r(s)=\frac{A(s+a)}{(s+a)^{2}+b^{2}}+\frac{B b}{(s+a)^{2}+b^{2}}
$$

Solving for A and B ,

$$
r(s)=\frac{A(s+a)}{(s+a)^{2}+b^{2}}+\frac{B b}{(s+a)^{2}+b^{2}}=\frac{s+1}{(s+a)^{2}+b^{2}}
$$

Partial Fraction Expansion

Equating similar powers of s in,

$$
r(s)=\frac{A(s+a)}{(s+a)^{2}+b^{2}}+\frac{B b}{(s+a)^{2}+b^{2}}=\frac{s+1}{(s+a)^{2}+b^{2}}
$$

yields

$$
\begin{array}{r}
A=1 \\
A a+B b=1
\end{array}
$$

hence

$$
B=\frac{1-a}{b}=\frac{1}{2} \frac{2}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

Giving

$$
r(s)=\frac{(s+a)}{(s+a)^{2}+b^{2}}+\frac{\sqrt{3}}{3} \frac{b}{(s+a)^{2}+b^{2}}
$$

Taking the inverse laplace

$$
\mathcal{L}^{-1}[r(s)]=e^{-\frac{1}{2} t}\left(\cos \frac{\sqrt{3}}{2} t+\frac{\sqrt{3}}{3} \sin \frac{\sqrt{3}}{2} t\right)
$$

Partial Fraction Expansions

Algorithm for Solution of ODEs

> Take Laplace Transform of both sides of ODE

- Solve for

$$
r(s)=\frac{p(s)}{q(s)}
$$

- Factor the characteristic polynomial $q(s)$
\Rightarrow Find the roots (roots or poles function in Matlab)
\Rightarrow Identify factors and multiplicities
- Perform partial fraction expansion
- Inverse Laplace using Tables of Laplace Transforms

Partial Fraction Expansion

- For a given function

$$
r(s)=\frac{p(s)}{q(s)}
$$

■ The polynomial $q(s)$ has three distinct types of roots

- Real roots
$\Rightarrow s=-b_{i} \quad$ yields exponential terms
$\Rightarrow s=0 \quad$ yields constant terms
$>$ Complex roots
$\Rightarrow s=a_{i} \pm b_{i} j \quad$ yields exponentially weighted sinusoidal signals
$\Rightarrow \quad s= \pm b_{i} j \quad$ yields pure sinusoidal signal
- A lot of information is obtained from the roots of $q(s)$

