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Preface 

The present volume contains all the exercises and their solutions of Lang's' 
Linear Algebra. Solving problems being an essential part of the learning 
process, my goal is to provide those learning and teaching linear algebra with a 
large number of worked out exercises. Lang's textbook covers all the topics in 
linear algebra that are usually taught at the undergraduate level: vector spaces, 
matrices and linear maps including eigenvectors and eigenvalues, determinants, 
diagonalization of symmetric and hermitian maps, unitary maps and matrices, 
triangulation, Jordan canonical form, and convex sets. Therefore this solutions 
manual can be helpful to anyone learning or teaching linear algebra at the college 
level. 

As the understanding of the first chapters is essential to the comprehension 
of the later, more involved chapters, I encourage the reader to work through all of 
the problems of Chapters I, II, III and IV. Often earlier exercises are useful in 
solving later problems. (For example, Exercise 35, §3 of Chapter II shows that 
a strictly upper triangular matrix is nilpotent and this result is then used in 
Exercise 7, §1 of Chapter X.) To make the solutions concise, I have included 
only the necessary arguments; the reader may have to fill in the details to get 
complete proofs. 

Finally, I thank Serge Lang for giving me the opportunity to work on this 
solutions manual, and I also thank my brother Karim and Steve Miller for their 
helpful comments and their support. 

Rami Shakarchi 
Yale, 1996 

I thank Rami Shakarchi very much for having prepared this answer book. 

Serge Lang 
Yale, 1996 
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CHAPTER I 

Vector Spaces 

I, §1 Definitions 

1. Let V be a vector space. Using the properties VS 1 through VS 8, show 
that if c is a number then cO = O. 

SOLUTION. We have cO=c(O+O)=cO+cO, but we also have 
cO = O+cO, hence 

cO+cO= O+cO. 

Adding (-cO) to both sides shows that cO = O. 

2. Let c be a number "# 0, and v an element of V. Prove that if cv = 0, then 
v=O. 

SOLUTION. Exercise 1 implies, O=(l/c)O=(l/c)(cv)=(c/c)v=lv=v. 

3. In the vector space of functions, what is the function satisfying the condi­
tion VS 2? 

SOLUTION. The zero function, namely, f(x) = 0 for all x plays the role 
of the identity. 

4. Let V be a vector space and v, w two elements of V. If v + w = 0, show 
that w = -v. 

SOLUTION. We have -w = -w+O = -w+(v+ w) = v+ w- w = v. 

5. Let V be a vector space, and v, w be two elements of V such that 
v + w = v. Show that w = O. 

SOLUTION. We know that v + 0 = v so v + 0 = v + w. Adding -v to 
both sides shows that 0 = w. 
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2 I. VECTOR SPACES 

6. Let AI' A, be vectors in R". Show that the set of all vectors B in R" 
such that B is perpendicular to both Al and A~ is a subspace. 

SOLUTION. See Exercise 7. 

7. Generalize Exercise 6, and prove: Let AI"'" A, be vectors in Rn. Let W 

be the set of vectors B in R" such that B· Ai = 0 for every i = 1, ... , r. 
Show that W is a subspace of v. 

SOLUTION. The definition of the dot product implies O· Ai = 0 for all i; 
thus 0 E W. If BI and B2 lie in W, then the properties of the inner product 
imply 

for all i; thus W is a subspace of Rn. 

8. Show that the following sets of elements in R2 form subspaces. 
(a) The set of all (x, y) such that x = y. 

(b) The set of all (x, y) such that x - y = o. 
(c) The set of all (x,y) such that x+4y=0. 

SOLUTION. In each case let W be the set in question. 
(a) Since 0 = 0, we have 0 E W. Clearly, XI + x2 = YI + Y2 and cXI = cYI 

whenever (Xl'yJ, (X2 'Y2)EW and cER. 

(b) We have 0-0=0, so OEW. If (XI'YI)' (X2,Y,)EW and cER, 

then 

and 

so W is a subspace. 

(c) Since 0+4xO=0, we have OEW. If (XI'YI)' (X 2,yJEW and 
c E R, then 
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so W is a subspace. 

9. Show that the following sets of elements of R' form subspaces. 

(a) The set of all (x, y, z) such that x + y + z = O. 

(b) The set of all (x, y, z) such that x = y alld 2y = z. 
(c) The set of all (x,y,z) such that x+y=3z. 

SOLUTION. In each case let W be the set in question. 

3 

(a) We have OEW because 0+0+0=0. If (x"Yl'z,), (x",Y",ZJEW, 
then 

so W is a subspace. 

(b) We have 0 = 0 and 2 x 0 = 0, so 0 E W. If (XI' y" z,), (x"' y", zJ E W 
and c is a real number, then 

so W is a subspace. 

(c) Clearly, 0+0=3xO, so OEW. If (x"y"z,), (x",y",Zz)EW and 
c E R, then 

so W is a subspace. 

10. If U, Ware subspaces of a vector space V, show that Un Wand U + W 
are subspaces. 

SOLUTION. (i) Since OEU and OEW, we have OEUnW. If 
vl'v"EUnW, then V"V"EU so V,+V"EU and V"V2 EW, hence 
v, + Vz E W. Thus v, + v" belongs to Un W. Similarly, CV, belongs to 
U and W, so CV, E Un W. Consequently, Un W is a subspace of V. 
(ii) Since 0 belongs to U and W, 0 belongs to U + W. If a, bE U + W, 
then we can write a = u, + w, and b = u" + w", where u; E U and w; E W. 

Since U and Ware subspaces, we see that a + b = (u, + uz ) + (w, + w") and 
ca = CUI + cw, belong to U + W, so U + W is a subspace of V. 

11. Let K be a subfield of (I field L. Show that L is a vector space over K. In 
particular, C and R are vector spaces over Q. 

www.MathSchoolinternational.com


4 I. VECTOR SPACES 

SOLUTION .If x and y belong to L, then since L is a field, x + y is an ele­
ment of L. Moreover, if c E K, then eEL so that ex E L. The element 0 
of VS 2 is simply 0, and in VS 3 we have -x = (-l)x. All the other ax­
ioms are verified at once. 

12. Let K be the set of all numbers which can be written in the form a + b-fi 
where a, b are rational numbers. Show that K is afield. 

SOLUTION. Clearly, K is a subset of the complex numbers. If a + b-fi 
and c + d-fi belong to K, then 

(a + b-fi) + (c + d-fi) = (a + b) + (c + d)-fi 

and 

(a + b-fi). (c+ d-fi) = (ac + 2bd)+(ad + bc)-fi. 

Since Q is a field, we see at once that K is closed under addition and multi­

plication. For the other properties, note that -a - b-fi E K and that if 

a + b-fi = 0, then a = b = 0; so if a + b-fi * 0, we have 

( r;:;;)-I I a b r;:;; a + b-y 2 = =, , -, , -y 2 
a+b-fi a- -2b- a- -2b" 

which belongs to K. We simply multiplied the numerator and denominator 

by a-b-fi. Finally, O=O+o-fi EK and 1=1+0-fi EK. 

13. Let K be the set of all numbers which can be written in the form a + bi 
where a, b are rational numbers. Show that K is afield. 

SOLUTION. We see that if a + bi and c + di belong to K, then 

(a + bi) + (c + di) = (a + b) + (c + d)i 

and 

(a + bi)· (c + di) = (ac - bd) + (ad + bc)i . 

But Q is a field, so K is closed under addition and multiplication. 
Moreover, -a - bi E K, and if a + bi = 0, then a = b = 0; so if a + bi * 0 , 
we get 
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( b .)-1 1 a b. 
a + I = a + bi = a2 + b2 - a2 + b2 I 

5 

which belongs to K. We multiplied the numerator and denominator by the 
conjugate of a + bi. Finally, we have 0 = 0 + Oi and 1 = 1 + Oi, so 0 and 1 
belong to K. 

14. Let c be a rational number> 0, and let y be a real number such that 

y2 = c. Show that the set of all numbers which can be written in the form 
a + by where a, b are rational numbers, is afield. 

SOLUTION. Let K be the set of numbers we are considering. If y is ratio­
nal, then K = Q. Suppose that y is irrational and let a + by E K and 
u + ty E K, then 

( a + by) + ( u + ty) = (a + u) + ( b + t )y 

and 

( a + by) . ( u + ty) = (au + btc) + (at + bu)y . 

Since c is rational and Q is a field, we see that K is closed under addition 
and multiplication. Clearly, -a - by E K. Suppose that a + by "# 0 . 
Since y is irrational, a - by "# 0, so we can divide by a - by , hence 

(a + by t --:--_a_-:-:b....,,:y_--:­
- (a + by )( a - by) 

a b 
-a-2 --cb-2 y. 

Finally, 0 and 1 belong to K because 0 = 0 + Oy and 1 = 1 + Oy . 

I, §2 Bases 

1. Show that the following vectors are linearly independent (over C or R). 

(a) (1,1,1) and (0,1,-2) (b) (1,0) and (1,1) 

(c) (-1, 1, 0) and (0,1,2) (d) (2, -1) and (1,0) 

(e) (1t,0) and (0,1) (f) (1,2) and (1,3) 

(g) (1,1,0), (1,1,1), and (0,1,-1) (h) (0,1,1), (0,2,1), and (1,5,3) 

SOLUTION. (a) If a and b are numbers such that a(1, 1, 1) + b(O, 1, -2) = 0, 
then we have 
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so a = b = O. 

I. VECTOR SPACES 

I a =0 

a+b =0 

a-2b =0 

(b) If a(l, 0)+ b(l,l) = 0, then 

so a=b=O. 

{
a+b =0 

b =0 

(c) If a(-l, I, O)+b(O, I, 2) = 0, then 

so a =b = O. 

I-a =0 

a+b =0 

2b =0 

(d) If a(2,-1)+b(I,0)=0, then 

so a=b=O. 

{
2a+b = 0 

-a =0 

(e) If a(n,O)+b(O,I)=O, then 

so a =b =0. 

{
an = 0 

b=O 

(f)If a(I,2)+b(I,3)=0, then 

{ 
a+b=O 

2a+3b =0. 

The second equation minus twice the first implies b = O. So a = b = 0 . 
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(g) If a(l, I, 0) + b(I, 1, I) + c(O, 1, -I) = 0, then 

{ 
a+b=O 

a+b+c=O 

b-c=O 

The second equation minus the first implies c = O. So a = b = c = O. 

(h) If a(O, I, I) + b(O, 2,1)+ c(l, 5, 3) = 0, then 

{ 
c=O 

a+2b+5c = 0 

a+b+3c =0 

Subtracting the third equation from the second, we see that a = b = c = 0 . 

7 

2. Express the given vector X as a linear combination of the given vectors A, 
B and find the coordinates of X with respect to A, B. 
(a) X=(I,O), A = (l.1), B=(O,I) 

(b) X = (2,1), A = (I, -I), B = (1, I) 
(c) X = (1.1), A=(2,1), B=(-I,O) 
(d) X=(4,3), A=(2,1), B=(-I,O) 

SOLUTION. (a) (1,-1), X=A-B. (b) (t,t), X=tA+fB. 

(c) (1,1), X=A+B. (d) (3,2), X=3A+2B. 

3. Find the coordinates of the vector X with respect to the vectors A, B, C. 
(a) X=(I,O,O), A=(I,I,I), B=(-I,I,O), C=(I,O,-I) 
(b) X=(I,I,l), A=(O,I,-I), B=(l.1,O), C=(l,0,2) 
(c) X=(O,O,I), A =(1,1,1), B=(-I,I,O), C=(I,O,-I) 

SOLUTION. (a) (t,1-,t), X=tA+1-B+tC. 

(b) (1,0,1), X = A+ C. 

(c) (t,f,-f), X=tA-tB-tC. 

4. Let (a, b) and (c, d) be two vectors in the plane. If ad - bc = 0, show 
that they are linearly dependent. If ad - bc *" 0, show that they are linearly 
independent. 
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8 I. VECTOR SPACES 

SOLUTION. (i) Suppose that ad - bc = O. If one of the vectors (a, b) or 

(c, d) is 0, then both vectors are linearly dependent. Suppose both vectors 
are non-zero; then we may assume without loss of generality that c 7= O. 
We contend that a 7= 0 and that 

(a, b) -!: (c, d) = 0 (*) 
c 

Indeed, if a = 0, then bc = 0; so b = 0 and (a, b) = 0 which is a contra­

diction. Then (*) is true because b - adl c = O. 
(ii) Suppose that ad - bc 7= O. Then x( a, b) + y{ c, d) = 0 implies 

{
ax+cy = 0 

bx+dy=O 

Multiplying the first equation by d and subtracting c times the second equa­
tion we get (ad - bc)x = 0; so x = O. Hence cy = 0, and dy = 0, and the 

condition ad - bc 7= 0 implies y = 0, so (a, b) and (c, d) are linearly inde­
pendent. 

5. Consider the vector space of all functions of a variable t. Show that the fol­
lowing pairs of functions are linearly independent. 
(a)l,t (b)t,t2 (c)t,t 4 (d)e',t (e)te',e ll (j)sint,cost 
(g) t,sin t (h) sin t,sin 2t (i) cos t,cos 3t 

SOLUTION. (a) Suppose that a + bt = O. Putting t = 0 and then t = 1, 
we find a = b = 0 . 

(b) Letting t = 1 and then t = -1 in the equation at + bt2 = 0, we see that 
a=b=O. 

(c) Same as in (b). 

(d) Letting t = 0 and then t = 1 in the equation ae' + bt = 0, we get 
a=b=O. 

(e) Let t = 0 and then t = 1 in the equation ate' + be2' = O. 

(f) Let t = 0 and then t = Tt/2 in the equation a cos t + b sin t = 0 . 

(h) Let t = Tt/2 and then t = Tt/4 in the equation a sin t + b sin 2t = O. 

(i) Let t = Tt/6 and then t = 0 in the equation a cos t + b cos 3t = O. 
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6. Consider the vector space off unctions definedfor t > o. Show that the fol­
lowing pairs of functions are linearly independent. 
(a) t,lft (b) e', log t 

SOLUTION. (a) Suppose that at + bit = O. Let t = I and t = 2 so that 
a + b = 0 and 2a + bl2 = O. We conclude at once that a = b = O. 

(b) Suppose that ae' + blog t = O. Putting t = I, we find a = 0, so we see 
that b must also be O. 

7. What are the coordinates of the function 3sin t + 5cos t = f(t) with respect 
to the basis {sin t, cos t} ? 

SOLUTION. (3,5). 

8. Let D be the derivative dldt. Let f(t) be as in Exercise 7. What are the 
coordinates of Df( t) with respect to the basis of Exercise 7? 

SOLUTION. (-5,3), because Df(t) = 3cos t-5sin t. 

9. Let A""" A, be vectors in R n and assume that they are mutually perpen­
dicular (i.e. any two of them are perpendicular), and that none of them is 
equal to O. Prove that they are linearly independent. 

SOLUTION. Suppose that a,A, + a2 A2 + ... +a,A, = O. Then for each i with 
1 :<;; i :<;; r we have 

0= A, . (a,A, + a2 A2 + ... +a,A,) = a,Ai . A, + ... +aiA, . Ai + ... +a,Ai . A, 

=aiAi ·Ai · 

But Ai "# 0, so Ai' Ai > 0 and consequently ai = O. 

10. Let v, w be elements of a vector space and assume that v"# O. If v, ware 
linearly independent, show that there is a number a such that w = av. 

SOLUTION. If w is zero, let a = O. Assume w"# 0; then, since the two 
vectors v and w are linearly dependent, there exist numbers c and d that are 
not both zero such that cv + dw = O. Hence cv = -dw. Since v"# 0, we 
must have d"# O. Let a = -cld so that av = w. 

www.MathSchoolinternational.com


10 I. VECTOR SPACES 

I, §4 Sums and Direct Sums 

1. Let V = R 2 , and let W be the subspace generated by (2, I). Let U be the 
subspace generated by (0, I). Show that V is the direct sum of W and u. If 
u' is the subspace generated by (1, I), show that V is also the direct sum 
of Wand U'. 

SOLUTION. (See also Exercise 3.) 
(i) Let (x, y) E R2. If a = xl2 and b = y - x12, then 

a(2, 1}+ b(O, 1} = (x, y), 

so R2 = W+U. If a.(2,1} = ~(O, 1), then a. = ~ = O. so W ("'\ U= {OJ. We 

conclude that R2 = WED U . 
(ii) If a=x-y and b=2y-x, then a(2,1}+b(1,1}={x,y) so we have 

R2 = W+U'. If a.(2,1}=~(1,1}, then a.=~=0 so W("'\U'={O}, and 

hence R2 = WEDU'. 

2. Let V = K3 for some field K. Let W be the subspace generated by (1,0, O), 
and let U be the subspace generated by (1,1, O) and (0,1, 1). Show that V is 
the direct sum of Wand U. 

SOLUTION. The vector space K3 has dimension 3, so it is sufficient to 
show that the three vectors {(t, 0, O), (1, 1, O), (0, 1, I)} are linearly indepen-

dent. Indeed, if a(l, O~ O} + b(l, 1, O} + c(O, 1, I} = 0, then 

{
a+b =0 

b+c=O 

c=O 

so we must have a = b = c = 0 and hence V = WED U. 

3. Let A, B be two vectors in R2 and assume that neither of them is o. If 
there is no number c such that cA = B, show that A, B form a basis for R2, 
and that R2 is the direct sum of the subs paces generated by A and B. 

SOLUTION. The vector space R2 has dimension 2, so it is sufficient to 
show that A and B are linearly independent. But suppose not; then there ex­
ist numbers a, b that are not 0 such that aA + bB = 0 or, equivalently, 
aA = -bB. The number b cannot be 0 because A;j:. 0, so B = cA where 
c = -alb, which is a contradiction. So {A, B} form a basis for R2. 
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Now let w,~ and WB be the subspaces generated by A and B, respectively. 
Since {A, B} generates RZ, we have R2 = WA + WB ' and the fact that 
{A, B} is a basis implies that any vector v E R2 has a unique expression of 

the form v = aA + bB where a, be R. Thus R2 = WA E9 WB • 

4. Prove the last assertion of the section concerning the dimension of U x W. 
If {up ... , ur } is a basis for U and {wp ••• , W.} is a basis for W, what is a 
basis of U x W? 

SOLUTION. We want to show that the dimension of U x W is r + s. Let 

A, =(u"O) and Bj =(O,wj). We contend that S={A"Bj}J<I<r is a basis 
lS):S;s 

for U x W. If (u, w) belongs to U x W, then there exist numbers 

al' ... ' ar' bl' ... ' b, such that U = !a,u/ and W = !bJwJ. Then 
;=1 J=I 

(U.W)= !aIA, + !bjBj • 
j",1 )=1 

so S generates U x W. Now we show that the vectors in S are linearly in­
dependent. If 

!a;A;+ !bjBj =(0,0). 
;::::1 )=1 

then !a,u; =0 and !bjwj =0 so a l = ... =a, =bl = ... =b, =0. thereby 
1=1 J=I 

proving our contention. Hence dim( U x V) = r + s = dimU + dim V. 
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CHAPTER II 

Matrices 

II, §1 The Space of Matrices 

( 1 2 3) (-I 1. Let A = and B = 
-I 0 2 2 

5 -2) . Find 
2 -I 

A+B, 3B, -2B, A+2B 
2A-B, A-2B, B-A. 

SOLUTION. A+B=(~ ~;). 3B=(~ I: ~} 
-2B=( 2 -10 4), A+2B=(-1 12 -I), 2A-B=( 3 -I 8) 

-4 -4 2 3 4 0 -4 -2 5 ' 

A _ 2B = (3 -8 7), B _ A = (-2 3 -5). 
-5 -4 4 3 2 -3 

2. Let A=(l -1) and B=(-I I). Find A+B, 3B, -2B, A+2B, 
2 2 0 -3 

A-B, B-A. 

SOLUTION. A+B=(~ ~I)' 3B=(~ ~9} -2B=(~ ~2). 

A+2B=(~1 ~} A-B=G -;). B-A=(=~ ~5} 

3. In Exercise 1, find IA and lB. 
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4. In Exercise 2, find 'A and 'B. 

SOLUTION. 'A=( 1 2), 'B=(-I 0) 
-1 2 1 -3' 

5. If A, B are arbitrary m x n matrices, show that 

'(A+B)='A+'B. 

SOLUTION. The matrix A + B is also m x n. Suppose A = (aij ) and 

B = (bij ), then the ii-entry of '(A + B) is aij + bij and the ii-entries of 'A 

and 'B are, respectively, aij and bij' so we have the formula 

'(A + B)='A+'B. 

6. If c is a number show that 

'(cA)=c'A. 

SOLUTION. If A=(aij ) and bji=aij then by definition we have 

'(cA) = (cbji ); so c'A=c(bji)=(cbji)='(cA). 

7. If A = (aij) is a square matrix, then the elements ai' are called the diagonal 

elements. How do the diagonal elements of A and 'A differ? 

SOLUTION. The diagonal elements of A and 'A are the same because if 
i = i, then aij = aji . 

8. Find '(A + B) and 'A+'B in Exercise 2. 

SOLUTION. '(A + B) = (0 2) ='A+'B. ° -I 
9. Find A+'A and B+'B in Exercise 2. 

SOLUTION. A+'A = (~ ~). B+'B = (~2 ~6). 

10. Show that for any square matrix A, the matrix A+'A is symmetric. 
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SOLUTION. If A = (a.), then the ij-entry and ji-entry of the matrix A+'A 

are au + aJI and aii + aii , respectively, so A+'A is symmetric. 

11. Write down the row vectors and column vectors of the matrices A, B in 
Exercise 1. 

SOLUTION. 
Matrix A. 1st row =(12 3), and 2nd row =(-10 2). 

1 st column = ( ~ 1). 2nd column = (~). 3rd column = G)' 
Matrix B. 1st row =(-1 5 -2),and2nd row =(2 2 -1). 

1 st column = (~1). 2nd column = G}3rd column = (=~). 

12. Write down the row vectors and column vectors of the matrices A, B in 
Exercise 2. 

SOLUTION. 
Matrix A. 1st row = (1 -1), and 2nd row = (2 2). 

1 st column = G)' 2nd column = (~1). 
Matrix B. 1 st row = (-1 1), and 2nd row = (0 -3). 

1 st column = (~1). 2nd column = (~3). 

II, §1 The Space of Matrices 

In this section we let Eij be the matrix with all entries 0 ex­
cept the v-entry, which is equal to 1. We call these matrices 
the elementary matrices. 

1. What is the dimension of the space of 2 x 2 matrices? Give a basis for this 
space. 

SOLUTION. The space of 2 x 2 matrices has dimension 4. The matrices 
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clearly form a basis for the space of 2 x 2 matrices. See Exercise 2. 

2. What is the dimension of the space of m X n matrices? Give a basis for 
this space. 

SOLUTION. The space of m x n matrices has dimension mn. The set 

S = {E; }I<'<m is a basis for the space Mat mx,( K). Indeed, if (a,j) is an 
~ l~J$;n 

m X n matrix, then 

so S generates Matmxn(K). The vectors of S are linearly independent be­
cause if 

!fc'jEij =0, 
jod j=! 

then (c ij ) = 0; thus C'j = O. Clearly, S has mn elements 

3. What is the dimension of the space of n X n matrices all of whose compo­
nents are 0 except possibly the diagonal components? 

SOLUTION. The dimension of the space considered is n, and the set 
S = {E.} is a basis. 

II l$;iSn 

4. What is the dimension of the space of n X n matrices which are upper trian­
gular, i. e. of the following type: 

[

all an ... aln 1 
Oa'2 .. · a, .. _n? 

.. ". 

o 0 ann 

SOLUTION. The dimension of the space Wof n x n upper triangular ma­

trices is n( n 2+ 1) , because the set S = { E'j } I<qn is a basis for W. Actually, 

S consists of all elementary matrices that are upper triangular. If (aij) E W, 

then 

(aij) = ~>ijE'j' 
!Si";jSn 

www.MathSchoolinternational.com


16 II. MATRICES 

. " n{n+l) and If £.J c.B = 0, then we must have c .. = 0. The set S has el-
l:5:i:::;j$n Ij IJ IJ 2 

ements. Indeed, when i = I , we have n vectors, namely, E1,1' E1"."" EI.,,' 

When i = 2 then we have n - I vectors, namely. E2.2 • ED"'" E,.". But 

n{n + I) 
n + (n - I) + (n - 2 )+ ... + I = 2 . 

Note: We can compute the cardinal p of S in another way. If we subtract 
the diagonal elements from S we get all of the elements strictly above the 
diagonal. By symmetry we have the same number of elements strictly be­
low the diagonal. so we multiply p - n by 2. Finally, adding the diagonal 

elements we see that 2(p - n) + n = n'. Now we solve for p. 

5. What is the dimension of the space of symmetric 2 x 2 (i.e. 2 x 2 matrices 
A such that A='A)? Exhibit a basis for this space. 

SOLUTION. The space in question has dimension 3, and a basis for this 
space is given by 

E1, +E21 =(0 I). 
,- , I ° 

6. More generally what is the dimension of the space of symmetric n x n ma­
trices? What is a basis for this space? 

SOLUTION. The dimension of the space of symmetric n x n matrices is 

n{ n 2+ I). A basis for this space is {Eij + Eji} l<i<j<n U { Eii } 1<I,n' If k is the 

cardinal of {Eij + Eji } l<i<j<n' then k is also the number of strictly upper trian­

gular elementary matrices. Therefore, arguing as in Exercise 4, we see that 

2k + n = n2 , so that k + n = n{n + I) . 
2 
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7. What is the dimension of the space of diagonal n x n matrices? What is a 
basis for this space? 

SOLUTION. The dimension of the space of diagonal 11 X n matrices IS n 
because a basis for this space is simply {E;; L;,,, . 

8. Let V be a subspace of R2. What are the possible dimensions for V? 

SOLUTION. All the possible dimensions for V are O. I. or 2. Theorem 3.7 
of Chapter I implies that V can have dimension O. I. or 2. An example for 
each case would be 0 for dimension O. a line passing through the origin for 
dimension I. and R 2 itself for dimension 2. 

9. Let V be a subspace of R'. What are the possible dimensions for V? 

SOLUTION. All the possible dimensions for V are O. I. 2. or 3. An exam­
ple for each case would be 0 for dimension O. a line passing through the 
origin for dimension I. a plane passing through the origin for dimension 2. 
and R' itself for dimension 3. 

II, §2 Linear Equations 

1. Let (* *) be a system of homogeneous linear equations in a field K. and as­
sume that m = n. Assume also that the column vectors of coefficients are 
linearly independent. Show that the only solution is the trivial solution. 

SOLUTION. If the vectors A; are linearly independent. then 
x,A'+ ... +x"A" =0 if and only if x, = ... =x" =0. 

2. Let (**) be a system of homogeneous linear equations in a field K. in n 

unknowns. Show that the set of solutions X = (x, ..... x") is a vector space 
over K. 

SOLUTION. Since the system is homogeneous. the vector 0 = (0. O ..... 0) 
is a solution of the system. Because the system is linear. we see that if 
(Xl' .... x.) and ev, ..... y.) are solutions. then (x,+yl' .... x"+y.) and 

(ex, .... , ex.,) are also solutions. 

3. Let A' •.... A" be column vectors of size m. Assume that they have coeffi­
cients in R. and that they are linearly independent over R. Show that they 
are linearly independent over C. 
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SOLUTION. Let cl' ... 'c. be complex numbers such that 
cIAI+ ... +c.A· = O. We can write ck = xk + yki so that the preceding equa­
tion becomes 

But a complex number is zero if and only if its real and imaginary parts are 
0, so writing down the coordinates of each column vector we see that (*) 
implies the two systems xIAI+ ... +x.A·=O and YIAI+ ... +y.A·=O. The 
column vectors are linearly independent over R, so we get CI = ... = c. = o. 

4. Let (**) be a system of homogeneous linear equations with coefficients in 
R. If this system has a non-trivial solution in C, show that it has a non­
trivial solution in R. 

SOLUTION. Suppose that the system only has the trivial solution in R. 
Then we see that the column vectors are linearly independent over R, so 
Exercise 3 implies that the column vectors are linearly independent over C, 
and consequently the system has only the trivial solution in C, which is a 
contradiction. 

II, §3 Multiplication of Matrices 

1. Let I be the unit n X n matrix. Let A be an n X r matrix. What is IA? If 
A is an m X n matrix what is AI? 

SOLUTION. We have IA = AI = A because if 1= (8u)' where 8ij = 1 if 

i = j and 8" = 0 if i #- j and A = (a;-)ISiS" then the lk-entry of IA and AI 'I IJ lSj:Sr 

is a/k. Indeed, t8/jajk = talj8 jk = a/k. 
j=1 j=1 

2. Let 0 be the matrix all whose coordinates are O. Let A be a matrix of a size 
such that the product AO is defined. What is AO? 

SOLUTION. Clearly AO = O. 

3. In each one of the following cases, find (AB)C and A( BC). 

(2 1) (-1 1) (1 4) 
(a) A = 3 1 ' B = 1 0' C = 2 3 
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(b) A=(~ ~IJ. B=[~ ~J CoG] 

(O)A=G ~ ~JB=[~ ~llC{1 ~l 
SOLUTION. 

19 

(a) (AB)C=(=~ ~)G ;)=(: ~} A(BC)=(~ 
(b) (AB)C=C\ ~)(~)=C~l A(BC)=G 

~)C ~1) = (: ~} 

: ~'][JC~l 

4. Let A, B be square matrices of the same size, and assume that AB = BA. 
Show that (A + B)' = A' + 2AB+ B2, and 

using the properties of matrices stated in Theorem 3.1. 

SOLUTION. We have 

(A+ B)(A+B) = (A+ B)A+(A + B)B = A' + BA + AB+ B' 
=A 2 +2AB+B' 

and 

(A+ B)(A - B) = (A+ B)A -(A + B)B = A2 - B2. 

5. Let A=G ~J B=(~ ~J Find ABand BA. 

SOLUTION. Doing the computation we find that 
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AB=(: ~I) and BA=(! ~} 

6. Let C=(~~} Let A. B be as in Exercise 5. Find 

CA. AC. CB and BC. State the general rule including this exercise as a 
special case. 

SOLUTION. Note that C = 7 I. The computation shows that 

CA=AC= and CB=BC= . (7 14) (14 0) 
21 -7 7 7 

The rule is that in general we do not always have AB = BA. 

7, L" X = (I, 0,0) and let A = [; ~ n What is XA? 

SOLUTION. We find that XA=(3 1 5). 

8. Let X = (0.1. 0). and let A be an arbitrary 3 x 3 matrix. How would you 
describe XA? What if X = (0. 0.1)? Generalize to similar statements con­
cerning matrices. and their products with unit vectors. 

SOLUTION. We solve the general case. Consider an n x n matrix, say 

A = (aiJ Let Xk = (0" ...• O. 1, 0 •.... 0) be the row vector with zeros ev­

erywhere except I at the k-entry. Then we see that 

XkA=(O" ...• O.I,O •... ,O) ak) ak2 

ann 

so XkA equals the kth row of A, namely Ak • 

9. Let A, B be the matrices of Exercise 3(a). Verify by computation that 
'(AB)='B'A. Do the same 3(b) and 3(c). Prove the same rule for any two 
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matrices A, B (which can be multiplied). If A, B, C are matrices which can 
be multiplied, show that '(ABC)='C'B'A. 

SOLUTION. (i) For the matrices of Exercise 3(a) we find 

For the matrices of Exercise 3(b) we find 

For the matrices of Exercise 3( c) we find 

[1 2 3][2 3] [13 O} 'B'A = 1 1 1 4 0 = 7 2 '(AB). 

o -1 5 1 -1 1-5 

(ii) In general, suppose that A = (a jj ) is an m x n and that B = (bkl ) is an 

n x p matrix. The rs-entry of the matrix '( AB) is the sr-entry of the matrix 
AB, namely, 

The rs-entry of the product 'B'A is given by 

so '(AB)='B'A. 

(iii) Finally, the formula '(ABC)='C'B'A holds because 

'(ABC)='( (AB)C)='c'(AB)='C'B'A. 

10. Let M be an n x n matrix such that 'M = M. Given two row vectors in n­
space, say A and B define (A, B) to be AM'B. (Identify a 1 x 1 matrix with 
a number.) Show that the conditions of a scalar product are satisfied, ex-
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cept possibly the condition concerning positivity. Give an example of a 
matrix M and vectors A, B such that AM'B is negative (taking n = 2). 

SOLUTION. For all square matrices we have '('A) = A. This result com­

bined with the formula of Exercise 9 and the fact that M='M implies 

AM' B='( BM'A) = BM'A, 

the last equality holding because BM'A is a 1 x 1 matrix. Thus SP 1 holds 
because (A, B) = (B, A). 

For SP 2, note that 

(A, B+ C) = AM'(B+ C) = AM('B+'C) = AM'B+AM'C= (A, B)+(A, C). 

Finally, SP 3 holds because if c is a number, we have 

(cA, B) = cAM' B = c(A, B) and (A, cB) = AM' (cB) = c(A, B). 

Suppose n = 2. Here are two examples which illustrate that positivity need 
not hold: 
(i) If M = 0, then (A, A) = 0 for alIA. 

(ii)If M=G ~) and A=(l 0), then (A,A)=(l o{~)=o. 

11. (a) Let A bethe matdx [~ ~ n Find A'. A'. Generalizeta 4 x 4 mao 

trices. 

(b) Let A be the m<>trix [~ i :J Campute A'. A'. A'. 

SOLUTION. (a) The computations show that 

A'=[~ ~~) and A'=[~ ~ n 
For the general theorem, see Exercise 35. 

(b) We have 
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[1 2 3] [1 3 6] [I 4 10] 
A 2 = 0 1 2 , A 3 = 0 1 3 , and A 4 = 0 1 4 . 

001 001 001 

12. Let X be the indicated column vector, and A the indicated matrix. Find 
AX as a column vector. 

(a) X = [~], A = [~ ~ :] 
1 2 0 -1 

(b) X ~[i} A ~(~ : ~l 

(c) X~[~:} A~(~ ~ ~l 

(d) X~[::J A~(~ ~ ~l 
SOLUTION. 

(aJ m (b) (~) (d) (~) 

13. Let A = (! 1 ~). Find AX for each of the following values of X . 

(a) X~m (b) X~m (c) X~m 

SOLUTION. (a) (!) (c) G)' 

14. Let A ~ [! ~1 n Find AX for each of the valUe< of X given in 

Exercise 13. 
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SOLUTION. (a) m 
15. Let 

x=[] and [

all'" al.j 
A =· . . .. 

amI am4 

What is AX? 

SOLUTION. A computation shows that AX is equal to the second column 
of A. 

16. Let X be a column vector having all its components equal to 0 except the i­
th component which is equal to 1. Let A be an arbitrary matrix, whose size 
is such that we canform the product AX. What is AX? 

SOLUTION. The product AX equals the ith column of A because 

0 

[Q" ] [Q" ... ali .. :"j AX= : 
a2i 

ami ami mn 
ami 

0 

17. Let A = (aij)' i=l, ... ,m and j=l, ... ,n be an mXn matrix. Let 

B=(bj,),j=l, ... ,n and k=l, ... ,s. be an nxs matrix. Let AB=C. 

Show that the k-th column C' can be written C' = blkA 1 + ... +bn, A" . (This 
will be useful in finding the determinant of a product). 

n 

SOLUTION. The p-entry of C' is given by L apij" The p-entry of the 
j=1 

b"api + ... +bn,apn = f. apjbj, ' 
j=1 
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18. Let A be a square matrix. 
(a) If A 2 = 0 show that I - A is invertible. 
(b) If A' = 0 show that I - A is invertible. 

25 

( c) In general, if An = 0 for some positive integer n show that I - A is in­
vertible. 
(d) Suppose that A2 + 2A + I = O. Show that A is invertible. 
(e) Suppose that A 2 - A + I = o. Show that A is invertible. 

SOLUTION. (a), (b) and (c) For all positive integers n we have 

so (I - A)(I + A+ ... +An-l ) = I - An and (I + A+ ... +An-I)(I - A) = I - An. 

Thus I - A is invertible, and its inverse is given by 1+ A+ ... +An-l. 

(d) The result follows from the fact that 

A( -A -21} = (-A -21}A = _A2 - 2A = I. 

(e) It suffices to see that 

( 1 a) B--(Ol bI ). 19. Let a, b be numbers, and let A = Oland What is AB? 

What is A n where n is a positive integer? 

SOLUTION. A simple computation shows that AB = (~ b; a). By in­

duction we prove that An = ( ~ nIa). Clearly the result is true for n = 1. If 

the formula is true for some positive integer n, then we have 

20. Show that the matrix A in Exercise 19 has an inverse. What is this in­
verse? 

www.MathSchoolinternational.com


26 II. MATRICES 

SOLUTION. The matrix in Exercise 19 has an inverse, namely, 

KI =(~ ~a} 

21. Show that if A, Bare n x n matrices which have inverses, then AB has an 
inverse. 

SOLUTION. The inverse of AB is B-1K1 because 

and 

22. Determine all 2 x 2 matrices A such that A 2 = O. 

SOLUTION. Suppose 

( ac db)(ac b) = (a 2 + bc ab + bd), 
d ac + cd cb + d2 

Then we find a2 = d 2 = -bc and b( a + d) = c( a + d) = 0 . (*) 

Case 1. If a = -d , then we see that -bc = a2 • It is a trivial computation 
to verify that the matrices of the form 

where -bc = a2 , are solutions of the equation A 2 = O. 

Case 2. Suppose that a = d and assume that a*-O; otherwise, we are in 
case 1. From (*) we see that both band c are 0, so we must have a = 0 
and therefore we are back in case 1. 

Hence the matrices solution of A 2 = 0 are the matrices of the form 

( a b) where -bc = a2 . 
c -a 

23. Let A = . Show that A2 = . Determine (
COS 8 -sin 8) (COS 28 -sin 28) 
sin 8 cos 8 sin 28 cos 28 

A n by induction for any positive integer n. 
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(
COS n8 -sin n8) 

SOLUTION. Induction proves that An = . . Indeed, the 
smn8 cosn8 

trigonometric formulas 

cos acos b-sin asin b = cos(a+b) 

and 

cosa sinb+sinacosb=sin(a+b) 

imply 

( COS 8 -sin 8)(COS n8 -sin n8) = (COS( n + 1)8 -sin( n + 1 )8). 
sin8 cos8 sinn8 cosn8 sin(n+I)8 cos(n+I)8 

24. Find a 2 x 2 matrix A such that A2 = -/ = . (-I 0) 
o -I 

SOLUTION. From the solution of Exercise 22 we see that we can choose 
a = -d = I, b = 2 , and c = -I. Indeed, 

( 1 2 )( 1 2) (-I 0) 
-I -I -I -I - 0 -I . 

25. Let A be an n x n matrix. Define the trace of A to be the sum of the diag­

onal elements. Thus if A = (a;j)' then tr (A) = ! au' Compute the trace 
i=! 

of the following matrices: 

( 1 7 3] (3 -2 
(a) -I 5 2 (b) 1 4 

2 3 -4 -7 -3 

(-2 1 I] 
(c) 3 4 4 

-5 2 6 

SOLUTION. (a) 2 (b) 4 (c) 8. 

26. Let A, B be the indicated matrices. Show that tr(AB) = tr(BA). 

(a) A = (~ ~l ~], B = ( ~ ~] 
3 0 1 -I 2 1 
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[ I 7 3] 
(b) A = -I 5 2 , 

2 3 -4 
B=[ ~ ~ :] 

-7 -3 2 

SOLUTION. (a) tr{AB) = tr{BA) = 16 (b) tr{AB)=tr{BA)=8. 

27. Prove in general that if A, B are square n x n matrices, then 

tr{AB) = tr{BA). 

SOLUTION. Suppose that A=(aij), B=(bij), AB=(c;j), and BA=(du). 

Then 

k""l k=l p=l 

28. For any square matrix A, show that tr{A) = tr('A). 

SOLUTION. Taking the transpose leaves the diagonal unchanged, so 
tr{A) = tr('A). 

[
I 0 

29. Let A = 0 2 

o 0 
n Find A'. A'. A'. 

SOLUTION. W, find A' = [ ~ 
30. 

o 0] 
2' 0 for k = 2, 3, and 4. 

o 3' 

See Exercise 

30. Let A be a diagonal matrix, with diagonal elements al' ... ' an. What is 
A", A3 , A'joranypositiveintegerk? 

SOLUTION. We prove by induction that 
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[
a: 0 ... 0 J 

A' = ~ ~~ ... ~ . 

o 0 ... a: 
The formula is true when k = I. Suppose that the formula is true for some 
positive integer k; then the rules of multiplication of matrices imply that 

[

a l 

A"'=AA'= ~ 
o ... 0 J[a: 
a2 ••• 0 0 

o an 0 

0 
... 0 J [a:.' 0 

a~ ... 0 0 k+l a2 

. . . . 
0 a: 0 0 

31. Let A = [~ ~ !]. Find A3. 

000 

SOLUTION. We find that A3 = o. 

32. Let A be an invertible n x n matrix. Show that '(A-I) = ('A t . 

SOLUTION. The formula proved in Exercise 9 implies 

'A'(KI)='(KIA)='I = I and '(KI)'A='(AA-I)='I = I, 

so '(A-I)=('At. 

33. Let A be a complex matrix, A = (aij)' and let if = (tlij)' where the bar 

means complex conjugate. Show that '(if) = 'A. 

SOLUTION. The rs-entry of '(if) is the sr-entry of if, namely, tl". The 

rs-entry of 'A is a", so the rs-entry of 'A is tl", thus '(if) = 'A. 

34. Let A be a diagonal matrix with diagonal elements al' ... ' an. If a j '" 0 for 
all i, show that A is invertible. What is its inverse? 

SOLUTION. A brute force computation shows that 
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[
a;! 0 ... 0] 

K! = ~ a~! ... ~ . 
.. . 
o 0 ... a:! 

35. Let A be a strictly upper triangular matrix, i.e. a square matrix (ail) having 

all its components below and on the diagonal equal to O. Prove that if A 
has size (n + 1) x (n + 1) then A' = O. (If you wish, you may do it only in 
case n = 2, 3 and 4. The general case can be done by induction.) 

SOLUTION. The main step of the proof by induction is to show that 

-

0-'00 \.f<. 
o 

o 

o. ~~. c(~) •• - C 1 !<tol Il1I. 

o c 
t(fc.u.)··· CZ'I\ 

·0. 

o : . - , . o 

To prove this result one simply does the computation. Let B be the second 
matrix on the left and C the product AB. Since Bj = 0 for 1 ~ j ~ k -1 , 
we see that the left rectangle of size n x (k -1) of C has zeros everywhere. 
Note that Al . Bk = ~ . Bk+1 = ... = Aj +1 . Bk+} = ... = A,_hl . B n = 0, because the 

first j + I-entries of AI+! are zero and the last n - (J + 1}-entries of Bk+j are 
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zero, so we get an additional subdiagonal of C that has all entries equal to 
zero. This subdiagonal is the diagonal of terms Clk • C2(k+I) ••••• cn- k+ln • 

Clearly. any entry below this subdiagonal is zero. 

0 ~II. qls 
. _. 

a.-
0 0 lIT\. 

Q1.l Cl.%.'1\. 

QC• 
~X1+1.) 

o ... 

Thus AB has the desired form. and the induction shows that An = O. 

36. Let A be a triangular matrix with components I on the diagonal. Let 
N=A-ln • Show that N n+1 =0. Note that A=I+N. Show that A is 

invertible, and that its inverse is (I + N) -I = 1- N + N 2 - ••• +( -I r N n • 

SOLUTION. Exercise 35 implies that N n+1 = O. The formula 

(I - q)( I + q + q2 + ... +qn ) = I _ qn+1 , 

proves that the inverse of A is I - N + ... +( -I r N n • See Exercise 18. 
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37. If N is a square matrix such that N H
' = 0 for some positive integer r. 

show that 1- N is invertible and that its inverse is 1+ N+ ... +N'. 

SOLUTION. Again. distributing shows that 

(I - N)(I + N+ ... +W) = (I + N+ ... +N")(I - N) = 1- W+' = I. 

38. Let A be a triangular matrix: 

o a" a, 
A = "" "" . [

all a'2 .. , a,,, 1 
.. . .. . 

o 0 ann 

Assume that no diagonal element is O. and let 

[
a'-i 0 ... 01 
o a;; 0 B= -" 

o 0 ... a~: 

Show that BA ad AB are triangular matrices with components I on the di­
agonal. 

SOLUTION. We compute the /h row of the product BA. We know that 

Bj = (0... 0 a~1 0 ... 0); 

so if k < j, we have B j • A k = 0 because the last n - k are O. Clearly 

Bj • A j = 1, so the matrix BA is triangular with diagonal entries equal to 1. 

A similar argument shows that AB is triangular with all diagonal entries 
equal to 1. 

39. A square matrix A is said to be nilpotent if A' = 0 for some integer r;?: 1. 
Let A, B be nilpotent matrices. of the same size, and assume AB = BA. 
Show that AB and A + B are nilpotent. 

SOLUTION. Since AB = BA, we can manipulate the matrices A and B like 
numbers; hence 

(AB)' =A'B' =0, 

and we verify at once that the binomial expansion holds, namely, 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 33 

(A + B)" = !(n)AkBn-k, 
k=O k 

where (n)= n! . If r'.5.k'.5.2r, then Ak =0, and if O'.5.k'.5.r, then 
k k!(n-k)! 

2r - k ;::: r; so B~'-k = o. Therefore, 

(A+B)~' =0. 

www.MathSchoolinternational.com


CHAPTER III 

Linear Mappings 

III, §1 Mappings 

1. In Example 3, give Df as a function ofx whenfis the function: 
(a) f(x) = sin x (b) f(x)=e x (c) f(x) = log x 

SOLUTION. (a) (Df)(x)=cosx (b) (Df)(x)=e x (c) (Df)(x)=1/x. 

2. Prove the statement about translations in Example J 3. 

SOLUTION. We have Tu,+u, (v) = V +u1 +u2 = (v+ U2 )+U1 = Tu?u, (v). 
For the second statement, note that 

TuT_u(v) = (v -u) + u = idv(v) = (v + u) - u = T_uTu(v). 

3. In Example 5, give L( X) where X is the vector: 
(a) (1,2,-3) (b) (-1,5,0) (c) (2,1,1) 

SOLUTION. (a) L(X) = 11 (b) L(X) = 13 (c) L(X) = 6. 

4. Let F:R 2 ~R2 be the mapping such that F(t)=(e',t). What is F(I), 

F(O), F(-I)? 

SOLUTION. F(I) = (e, 1), F(O) = (1, 0), and F( -1) = (e- I , -1) = (.;, -1). 

5. Let G:R2 ~ R2 be the mapping such that G(t) = (t, 2t). Let F be as in 
Exercise 4. What is (F+G)(I), (F+G)(2), (F+G)(O)? 

SOLUTION. (F+G)(I)=(e+1,3), (F+G)(2)=(e 2 +2,6), and 

(F + G)(O) = (1, 0). 
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6. Let F be as in Exercise 4. What is (2F)(0), (1tF)(I)? 

SOLUTION. (2F)(0) = (2, 0) and (1tF)(I) = (1te, 1t). 

7. Let A=(I,I,-1,3). Let F:R 4 ~R4 be the mapping such that for any 

vector X = (XI' X2' X 3' x4 ) we have F(X) = X· A + 2. What is the value of 

F(X) when (a) X = (1, 1,0,-1) and (b) X = (2, 3,-1, I)? 

SOLUTION. (a) F(X) = 1 (b) F(X) = 11. 

In Exercises 8 through 12, refer to Example 6. In each case, to prove that the 
image is equal to a certain set S, you must prove that the image is contained in 
S, and also that every element of S is in the image. 

8. Let F: R2 ~ R2 be the mapping defined by F( x, y) = (2x, 3y). Describe 

the image of the points lying on the circle x 2 + l = 1. 

2 2 

SOLUTION. The image of F is the ellipse whose equation is ~ + ~ = 1. 
4 9 

u2 v2 

Indeed, if u = 2x, and v = 3x, and x 2 + l = 1, then -+- = 1 
4 9 

u 2 v2 

Conversely, if - + - = 1, and if we let x = u/2 and y = u/3, then 
4 9 

x 2 +l =1 and F(x,y)=(u,v). 

9. Let F:R2~R2 be the mapping defined by F(x,y)=(xy,y). Describethe 

image under F of the straight line x = 2. 

SOLUTION. The image of F is the line whose equation is y = 2x. 

Indeed, if (2,y) belongs to the line x=2, then F(2,y)=(2y,y) and 

clearly (2y,y) belongs to the line y=2x. Conversely, suppose that 

v=2u; then F(2,v/2)=(v,v/2)=(v,u). 

10. Let F be the mapping defined by F( x, y) = (excos y, eXsin y). Describe the 

image under F of the line x = 1. Describe more generally the image under F 
of a line x = c, where c is a constant. 

SOLUTION. The image of F is the circle centered at (0,0) with radius eC
• 

Indeed, if (c, y) belongs to the line x = c, then F( c, y) = e' ( cos y, sin y). 
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Conversely, suppose that (u. v) belongs to the circle centered at (0.0) with 

radius eC
, then there exists a number y such that 

(u. v) = e'"{cos y. sin y). 

Then F{c.y)=(u.v). 

11. Let F be the mapping defined by F( t. u) = (cos t. sin t. u). Describe geo­
metrically the image of the (t. u) -plane under F. 

SOLUTION. The image of F is the cylinder in R3 of radius 1 with the z­
axis as its major axis. 

Indeed. if F(t.u)=(a.b.c). then we have a2 +b2 =1; so (a.b.c) belongs 
to the circle of radius one centered at the point (0. O. c) and which is in­
scribed in the plane z = c. 

Conversely, suppose that (a.b.c) belongs to the cylinder. Then 

a2 + b 2 = I. so there exists a number t such that a = cos t and b = sin t ; 
then we have F(t. c) = (a. b. c). 

12. Let F be the mapping defined by F{x. y) = (x/3, y/4). What is the image 

under F of the ellipse x 2/9 + x 2 /16 = I ? 

SOLUTION. The image under F of the ellipse is the unit circle. 
Indeed,supposethat u=x/3 and v=y/4; then. since (x,y) belongs to the 

ellipse, we see at once that u2 + v2 = 1 . 
Conversely, suppose that (u. v) belongs to the unit circle. Then we 

have F( 3u, 4 v) = (u, v) and 
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III, §2 Linear Mappings 

1. Determine which of the following mappings F are linear. 

(a) F:R' ~R2 defined by F(x,y,z)=(x,z) 

(b) F: R4 ~ R4 defined by F(X) =-X 

(c) F:R 3 ~ R' defined by F(X) = X +(0, -I, 0) 

(d) F:R' ~R' defined by F(x,y)=(2x+y,y) 

(e) F:R 2 ~R2 defined by F(x,y)=(2x,y-x) 

(f) F:R 2 ~R2 defined by F(x,y)=(y,x) 

(g) F:R2~Rdefinedby F(x,y)=xy 

37 

(h) Let U be an open set of R3 and let V be the vector space of differentiable 
functions on U. Let V' be the vector space of vector fields on U. Then 
grad: V ~ V'is a mapping. Is it linear? (For this part (11) we assume you 
know some calculus.) 

SOLUTION. Only the maps defined in (a), (b), (d), (e), (f), and (h) are lin­
ear. For (h), note that iff is a differentiable function on U, then we define 

gradf = (~f, af, af ). ax ay az 

The linearity of the derivative implies the linearity of grad. 

2. Let T: V ~ W be a linear map from one vector space into another. Show 
that T( 0) = o. 

SOLUTION. In any vector space we have o· v = 0, so 

T(O) = T(O·O) = OT(O) = o. 

3. Let T: V ~ W be a linear map. Let u, v be elements of V, and let 
Tu = w. If Tv = 0, show that T(u + v) is also equal to w. 

SOLUTION. We simply have T(u +v) = T(u)+ T( v) = w + 0 = w. 

4. Let T: V ~ W be a linear map. Let U be the set of elements u E V such 
that T( u) = O. Let w E Wand suppose there is some element Vo E V such 

that T( vo) = w. Show that the set of elements v E V satisfying T( v) = w 

is precisely Vo + U. 
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SOLUTION. If x EVil + U, then there exists a vector U E U such that 
x = Vo +u, so 

T{x} = T( vo)+ T{u} = w. 

Conversely, suppose that T{y) = w. Then 

o = w - w = T(y) - T( vo) = T(y - V 0); 

so y-vo EU thus YEVo+U. 

5. Let T: V ~ W be a linear map. Let v be an element of V. Show that 
T{ -v} = -T{ v}. 

SOLUTION. We have T{-v} = T({-l}v) = {-I}T{v} =-T{v}. 

6. Let V be a vector space, and f: V ~ R, g: V ~ R two linear mappings. 

Let F: V ~ R 2 be the mapping defined by F{ v} = (J{ v), g{ v}). Show that 
F is linear. Generalize. 

SOLUTION. We prove the general result: 

Theorem. Let p be a positive integer, and let V, V' ....• V P be vector spaces 
over a field K. For each 1 ~ j ~ p, let fj: V ~ V j be a linear map. Then 

the map F: V ~ V' X V 2 X ... x V P defined by 

is linear. 

Proof. We have 

F(v, + v2 ) = (I,(v, +v2 ),···,fp(v, + v2 )) = (I,(v,)+ f,(v2 ).···,fp(v,)+ fp(v2 )) 

= (I, (v,), ... ,fp( v,)) + (I,( v2 ).···,fp( v2 )) = F( v,) + F( v2 )· 

and 

so F is linear, thereby proving the theorem. 
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7. Let V, W be two vector spaces, and let F: V -+ W be a linear map. Let U 
be the subset of V consisting of all elements v such that F( v) = O. Prove 
that U is a subspace of v. 

SOLUTION. Exercise 2 implies that 0 E u. If v\, V1 E U, then 

SO VI +V1 E U. If c is a number and v E U, then T(cv) = cT(v) = 0, and 
cv E U whence U is a subspace of V. 

8. Which of the mappings in Exercises 4, 7,8 and 9 of §1 are linear? 

SOLUTION. The map of Exercise 8 is linear, and all the other maps are not 
linear. 

9. Let V be a vector space over R, and let v, WE V. The line passing through 
v and parallel to w is defined to be the set of all elements v + tw with 
t E R. The line segment between v and v + w is defined to be the set of 
all elements v + tw with 0 ~ t ~ 1. Let L: V -+ U be a linear map. Show 
that the image under L of a line segment in V is a line segment in U. 
Between what points? Show that the image of a line under L is either a line 
or a point. 

SOLUTION. The image of the line segment between v and v + w is the line 
segment between L( v) and L( v) + L( w) because 

L(v+tw) = L(v)+tL(w). 

From this expression we also see that the image of a line passing through v 
and parallel to w is a point when L( w) = 0 and a line when L( w) ;:t. o. 

Let V be a vector space, and let vl'v1 be two elements of V which are linearly 
independent. The set of elements of V which can be written in the form 
tl VI + t1 v1 with numbers tl't1 satisfying 0 ~ tl ~ 1 and 0 ~ t1 ~ 1 is called the 
parallelogram spanned by vl'VZO 

10. Let V and W be vector spaces, and let F: V -+ W be a linear map. Let 
vl'v1 be linearly independent elements of V, and assume that F(vl), F(v1) 
are linearly independent. Show that the image under F of the parallelogram 
spanned by VI and Vz is the parallelogram spanned by F(v l ), F(vJ 

SOLUTION. The result is a consequence of the linearity of F, namely, 
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11. Let F be a linear map of R~ into itself such that F(EI ) = (1,1) and 

F( EJ = ( -1.2). Let S be the square whose corners are at (0. 0). (I. 0), 

(1.1) and (0.1). Show that the image of this square under F is a parallelo­
gram. 

SOLUTION. The square is the set of elements of R2 that can be written in 
the form tiEl + t2E~, where 0 $ tl $ I and 0 $ t2 $ I. Then we have 

The vectors (1,1) and (-1,2) are linearly independent because 
I x 2 + I x I "# 0 (see Exercise 4 in §2 of Chapter I), so the image of the 
square under F is the parallelogram spanned by (1, I) and (-1, 2) . 

12. Let A, B be two non-zero vectors in the plane such that there is no constant 
c "# 0 such that B = cA. Let T be a linear mapping of the plane into itself 
such that T( E I ) = A and T( E2) = B. Describe the image under T of the 

rectangle whose comers are (0, 1). (3,0), (0,0), (3,1). 

SOLUTION. Exercise 3 in §4 of Chapter I implies that A and B are linearly 
independent. The rectangle is the set of vectors in R2 that can be written in 
the form tl(3£1)+ t2E2, where 0 $ tl $1 and 0 $ t2 $1. We have 

so the image of the rectangle under T is the parallelogram spanned by 3A 
andB. 

13. Let A, B be two non-zero vectors in the plane such that there is no constant 
c "# 0 such that B = cA. Describe geometrically the set of points tA + uB 

for values oft and u such that 0 $ t $ 5 and 0 $ u $ 2. 

SOLUTION. Let tl = t/5 and t2 = u/2. Then 0 $ tl $ I, 0 $ t2 $ I, and 

Exercise 3 in §4 of Chapter I implies that A and B are linearly independent, 
so the set in question is simply the parallelogram spanned by 5A and 2B. 

14. Let T,,: V ~ V be the translation by a vector u. For which vector u is T. 
a linear map? Proof? 
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SOLUTION. The translation by a vector u is a linear map if and only if 
u = O. Indeed, suppose that T" is a linear map. Then T" (0) = 0, and so 
u = O. Conversely, if u = 0, then T" is the identity, which is linear. 

15. Let V, W be two vector spaces and, F: V ~ W a linear map. Let 
wl"'" wn be elements of W which are linearly independent, and let VI"'" Vn 

be elements of V such that F(v,)=w,for i=l, ... ,n. Show that ~\"",vn 
are linearly independent. 

SOLUTION. Suppose that ajv,+ ... +anvn = O. Then 

therefore, a j = ... = an = 0 . 

16. Let V be a vector space and F: V ~ R a linear map. Let W be the subset 
of V consisting of all elements v such that F( v) = O. Assume that W =f. V 
and let Vo be an element of V which does not lie in W. Show that every el­
ement of V can be written as a sum w + cVo with some w in Wand some 
number c. 

SOLUTION. Let x be an element of V and since T(vo) =f. 0, we let 

c = T(x)/T( vo)' Finally, let w = x - cVo' All we have to do is check that 
w E W. The definition of c implies 

T( w) = T( x - cVo ) = T( x) - cT( vo) = O. 

17. In Exercise 16, show that W is a subspace of V. Let {VI"'" vJ be a basis 

of W. Show that {vo' VI"'" vJ is a basis of V. 

SOLUTION. See Exercise 7 for a proof that W is a subspace. Exercise 16 
shows that the set {vo' vl''''' vJ generates V. Since {Vl"'" vJare linearly 

independent, and Vo ~ Wand the vectors {vo' vl''''' vJ are linearly indepen­

dent, we conclude that {vo' vl"'" vJ is a basis for V. One can give another 

proof. Consider the relation aovo + a j Vj + ... +an vn = O. Take its image un­

der T to find that ao = O. Then the fact that {Vl"'" v J are linearly indepen­
dent concludes the argument. 

18. Let L: R2 ~ R2 be a linear map, having the following effect on the indi­
cated vectors: 
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(a) L{3.1)={1.2) and L{-l,O)={I.I) 
(b) L{4.1)={I.I) and L{I.I)={3.-2} 
(c) L{I.I)={2.1) and L{-I.I)={6.3). 
In each case compute L{I.O). 

SOLUTION. 
(a) L{1,0)={-I.-1) because (I,O)=-{-I.O). 

(b) L{I.0)=(-2/3.1) because (1,0)=+(4.1)-+(1.1). 

(c) L{I.0)={-2.-I) because (I.O)=+(I.I)-+(-I,I). 

19. Let L be as in (a). (b). (c). of Exercise 18. Find L{O.I). 

SOLUTION. 
(a) L{0.1)={4.5) because (0.1)={3.1)+3{-1.0). 

(b) L{O.I) = (.If. -3) because (0.1) = 4{ 4.1) + +(1.1). 

(c) L{0.1)={4.2) because (0.1)=+(1.1)++(-1.1). 

III, §3 The Kernel and Image of a Linear Map 

1. Let A. B be two vectors in R2 forming a basis of R2. Let F: R2 ~ R" 
be a linear map. Show that either F(A). F(B) are linearly independent. or 

the image of F has dimension I. or the image of F is {O}. 

SOLUTION. We have the relation 

2 = dim 1m F + dim Ker F, 

so if F(A) and F(B) are linearly dependent, then dim Ker F;;::: I. and thus 
dim 1m F $; 1. 

2. Let A be a non-zero vector in R2. Let F: R2 ~ W be a linear map such 
that F{A) = O. Show that the image of F is either a straight line or {O}. 

SOLUTION. Since F{tA) = tF(A) = 0, we have dim Ker F;;::: 1. But 

dim R 2 = 2, so dim 1m F is 0 or 1 whence the image of F is either {O} or 
a straight line. 
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3. Determine the dimension of the subspace of R4 consisting of all X E R4 
such that Xl + 2X2 = 0 and X3 -15x4 = o. 

SOLUTION. Let W be the subspace in question. Then dim W = 2. One 
can see that (-2,1,0,0) and (0,0,15,1) form a basis for W. Or we may 

consider the linear map L: R 4 ~ R 2 defined by 

Then Ker L = Wand 1m L = R 2 • 

4. Let L: V ~ W be a linear map. Let w be an element of W. Let Vo be an 

element of V such that L( vo) = w. Show that any solution of the equation 

L(X) = w is of type Vo + u, were u is an element of the kernel of L. 

SOLUTION. See Exercise 4 in §2. 

5. Let V be the vector space of all functions which have derivatives of all or­
ders and let D: V ~ V be the derivative. What is the kernel of D? 

SOLUTION. The kernel of D is the set of all constant functions. 

6. Let D2 be the second derivative (i.e. the iteration of D taken twice). What 
is the kernel of D2? In general, what is the kernel of Dn (n-th derivative)? 

SOLUTION. By integration we see that the kernel of DO is the set of poly­
nomials of degree ~ n - 1. 

7. Let V be again the vector space of functions which have derivatives of all 
orders. Let W be the subspace of V consisting of those functions f such 
that f" + 4 f = 0 and f( 1t) = o. Determine the dimension of W. 

SOLUTION. The space W has dimension 1. We use a trick to prove the 
following theorem which is a special case of a more general theorem on dif­
ferential equations. 

Theorem. Let c be a positive number. Then (cos ct, sin ct) is a basis for 
the solution space of infinitely differentiable functions of the second-order 
differential equation 

Proof. The functions cos ct and sin ct are solutions of (*), and they are 
linearly independent. Let f be an infinitely differentiable function solution 
of (*). Then differentiating the expressions 
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f(t)cos ct-'!' f'(t)sin ct and f(t)sin ct+.!.f'(t)cos ct, 
c c 

and using (*), one finds O. So there exist constants a and b such that 

{
f(t)COS ct - ~ f'(t)sin ct = a 

f(t)sin ct +.!. f'(t)cos ct = b 
c 

Multiplying the first equation by cos ct, the second by sin ct, and then 
adding the resulting equations, we find that f(t)=acosct+bsinct; 
thereby concluding the proof of the theorem. 

Back to the original problem we see that the condition f( 1t) = 0 implies 
that a = 0; so f must be of the form b sin 2t, and therefore W has dimen­
sion I. 

8. Let V be the vector space of all infinitely differentiable function. We write 
the functions asfunction of a variable t. and let D = dldt. Let al' .... am be 
numbers. Let g be an element of V. Describe how the problem of finding a 
solution of the differential equation 

can be interpreted as fitting the abstract situation described in Exercise 6. 

SOLUTION. Let S be the set of solutions of the same equation but with 0 
instead of g. The map 

L:V~V 

dmf 
f~a --+ ... +a()f 

m dtm 

is linear and Ker L = S. So if we have one solution, say fo' of the equa­
tion 

then the general solution of (*) can be written as fo +h, where h lies in S. 
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9. Again let V be the space of all infinitely differentiable junctions, and let 
D: V ~ V be the derivative. 
(a) Let L = D - I where I is the identity mapping. What is the kernel of L? 
(b) Same question if L = D - aI, where a is a number. 

SOLUTION. (a) and (b) We want to solve 

f' -af = O. (*) 

Letfbe a solution of (*). Then 

, 

( f{t)) = f'{t)e'" -af{t)eat 

eat e 2at 

eat (f'{t) - af{t)} 
2 =0. eat 

So there exists a constant c such that f{t) = ceDI. Conversely, any function 

of this fonn solves (*), so Ker L is the space generated by eat. 

10. (a) What is the dimension of the subspace of K' consisting of those vectors 

A=(~, ... ,a.) such that al+ ... +a. =O? 
(b) What is the dimension of the subspace of the space of n x n matrices 

(au ) such that ~I + ... +aM = 0 ? 

[For part (b) look at the next exercise.) 

SOLUTION. (a) The dimension of the space in question is n -1. Consider 
the linear map L: K' ~ K defined by L{ A) = a l + ... +a. . Then clearly 

ImL=K because, given any xeK, then L{x,O, ... ,O)=x. Thus 

dim Ker L = n -1. Note that the set {E/ - E.} is a basis for the space 
IS/S.-I 

in question because a. = -al - ... -a._I. 

(b) The dimension of the space in question is n 2 - 1. Indeed, the linear map 
defined in Exercise II(a) has an image equal to K because, given any x e K, 
the matrix with all entries 0 except all = x has trace equal to x. Since the 

space of square n x n matrices is n2 , the result follows. 

11. Let A = (au) be an n x n matrix. Define the trace of A to be the sum of 

the diagonal elements. 
(a) Show that the trace is a linear map of the space of n X n matrices into 

K. 
(b) If A, Bare n X n matrices, show that tr{AB) = tr{BA). 

(c) If B is invertible show that tr(B-IAB) = tr{A). 
(d) If A, Bare n x n matrices, show that the association 
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(A, B) ~ tr(AB) = (A, B) 

satisfies the three conditions of a scalar product. 

(e) Prove that there are no matrices A, B such that AB- BA = In. 

SOLUTION. (a) If B = (b,j) , then 

tr(A + B) = !(a" + b,,) = !a" + !b" = tr(A) + tr(B). 
;=1 ;=1 ;=1 

and if c is a number, 

tr(cA) = !ca" =c!a" =ctr(A). 
;=1 1=1 

(b) See Exercise 27 in §3 of Chapter II. 

(c) By (b) we have 

(d) The result in (c) implies SP 1. The properties SP 2 and SP 3 are 
verified because of (a). 

(e) Suppose that there exist matrices A and B such that AB- BA = I •. 
Then 

tr(AB- BA) = tr( I.) = n, 

but (a) and (b) imply that 

tr(AB- BA) = tr(AB) -tr(BA) = 0, 

so 0 = n, which is a contradiction. 

12. Let S be the set of symmetric n x n matrices. Show that S is a vector 
space. What is the dimension of S? Exhibit a basis for S, when n = 2 and 
n=3. 

SOLUTION. If a'j = aj, and b'j = bj" then a'j + by = aj, + bj" so the sum of 
two elements of S belongs to S. Clearly, the product of an element of S by 
a scalar is an element of S, and the zero matrix belongs to S, so S is a vec­
tor space. 
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We proved in Exercise 6, §l of Chapter II that the dimension of Sis 
n(n + 1) . 
--'---'-, and we also gave a basIs for the general case. When n = 2, a ba-

2 
sis is given by the three matrices 

When n = 3, a basis is given by the six matrices 

[~ ~ n 
[~ ~ ~l· 
001 

13. Let A be a real symmetric n x n matrix. Show that tr( AA) ~ 0 and if 

A * 0, then tr(AA) > O. 

SOLUTION. The kth diagonal entry of AA is given by the scalar product 
Ak . Ak. But A is symmetric, so Ak='Ak. Hence ckk ~ 0 and ckk = 0 if and 

only if At =0. Therefore, tr( AA) ~ 0 and tr( AA) > 0 whenever A * O. 

14. An n x n matrix is called ske.w-symmetric if 'A = -A. Show that any 
n x n matrix A can be written as a sum A = B + C, where B is symmetric 
and C is skew-symmetric. [Hint: Let B = (A+'A}/2.1 Show that if 
A = B) + C) where B) is symmetric and C) is skew-symmetric, then B = B) 
andC=C). 

SOLUTION. Let 2B = A+'A and 2C = A-'A. The matrix B is symmetric 
because 

'(2B)='(A+'A}='A+'('A}='A + A = 2B, 

and C is skew-symmetric because 

'(2C)='(A-'A}='A-'( 'A) = -(A-'A) = -2C. 
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Note that 2A = (A+'A) + (A-'A) =2B+2C, so A=B+C. Moreover, if 

A = BI + C1, where BI is symmetric and C1 is skew-symmetric, then 
BI - B is symmetric, C - C1 is skew-symmetric, and BI - B = C - C1, so 

Thus 2( BI - B) = O. So we find that B = BI and C = C1 • Therefore we 

have the general result: 

The space of n x n matrices is the direct sum of the space of symmetric 
n x n matrices and the space of n x n skew-symmetric matrices. 

15. Let M be the space of all n x n matrices. Let P: M ~ M be the map 
such that 

P(A) = A+'A. 
2 

(a) Show that P is linear. 
(b) Show that the kernel of P consists of the space of skew-symmetric ma­
trices. 
(c) What is the dimension of the kernel of P? 

SOLUTION. (a) The map P is linear because 

P(A + B) = (A + B~(A + B) = A+'A; B+'B = P(A) + P(B), 

and if c is a scalar, 

P(cA) cA+'(cA) = c A+'A = cP(A). 
2 2 

(b) The equation P(A) = 0 is equivalent to A+'A = 0, which is equivalent 

to 'A =-A. 

(c) If Sym. (K) is the set of symmetric n x n matrices and Sk. (K) is the 
set of skew symmetric matrices, then Exercise 14 implies 

Mat.x• (K) = Sym. (K) EB Sk.(K), 

thus dim Mat.x• (K) = dim Sym. (K) + dim Sk. (K). Exercise 6 in § I of 
Chapter II implies that 
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dim Ker P = n' _ n(n + I) = n(n -I). 
2 2 

16. Let M be the space of all n x n matrices. Let F: M ~ M be the map 
such that 

(a) Show that F is linear. 

F(A) = A-'A. 
2 

(b) Describe the kernel of Fm and determine its dimension. 

SOLUTION. (a) Argue as in Exercise 15 to show that F is linear. 

(b) The kernel of F is the set of symmetric matrices that has dimension 
n(n+ 1) 

2 

17. (a) Let U, W be vector spaces. We let U x W be the set of all pairs (u, w) 

with u E U and WE W. If (up WI)' (u2' w2 ) are such pairs, define their 
sum 

If c is a number, define c( u, w) = (cu, cw). Show that U x W is a vector 
space with these definitions. What is the zero element? 
(b) If U has dimension nand W has dimension m, what is the dimension of 
U x W? Exhibit a basis of U x W in terms of a basis for U and a basis for 
w. 
(c) If U is a subspace of a vector space V, show that the subset of V x V 
consisting of all elements (u, u) with u E U is a subspace. 

SOLUTION. (a) The set U x W is a vector space because U and Ware vec­
tor spaces, and its zero element is 0uxw = ( 0u' Ow), which we write as 

(0,0). 

(b) We have dim UxV=dim U+dim V=n+m. If {up ... ,uJ is a basis 

for U and {WI' •.. ' wm } is a basis for W, then 

is a basis for U x W. 
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(c) Let U' be the set in question. Then (O,O)eU' and if (UI'UJ) and 

(u2,uJ belong to U', then (UJ+U2,uJ+u2)eU' and (cUI'CUJ)EU' be­

cause U is a vector space, whence U' is subspace of V x V. 

18. (To be done after you have done Exercise 17.) Let U, W be subspaces of a 
vector space V. Show that 

dim U + dim W = dim (U + W) + dim (U n W). 

[Hint: Show that the map L: UxW~V given by L(u,w)=u-w isa 
linear map. What is its image? What is its kernel? J 

SOLUTION. We have 

and 

L( CU, cw) = cu - cw = cL( u, w) , 

so the map L is linear. We investigate the image and kernel of L: 

Image of L. Clearly, 1m LeU + Wand, conversely, given U E U and 
uEW,weseethat L(u,-w)=u+w; so 

ImL=U+W. 

Kernel of L. L(u, w) = 0 if and only if u = w, so 

Ker L=UnW. 

Therefore, dim (U x W) = dim (U + W) + dim (U n W) . Conclude the ar­
gument using (b) of Exercise 17. 

III, §4 Composition and Inverse of 
Linear Mappings 

1. Let L: R2 ~ R2 be a linear map such that L:# 0 but L2 = IL = O. Show 
thatthere exists a basis {A,B} ofR2 suchthat L(A)=Band L(B)=O. 
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SOLUTION. By assumption, there exists non-zero vectors A and B such 
that L(A) = B. Then L(B) = L2(A) = 0 and if aA + bB = 0, then 

0= L(aA +bB) = aL(A), 

so a=b=O. 

2. Let dim V> dim W. Let L: V ~ W be a linear map. Show that the ker­
nel of L is not {O}. 

SOLUTION. If dim Ker L = 0, then we have dim V = dim 1m L. But 
dim 1m L ~ dim W, which implies that dim V ~ dim 1m W, so we have a 
contradiction. 

3. Finish the proof of Theorem 4.3. 

SOLUTION. Let G(v)=u, then F(cu)=cF{u)=cv. Compose with G 
and conclude. 

4. Let dim V = dim W. Let L: V ~ W be a linear map whose kernel is 
{ O}. Show that L has an inverse linear map. 

SOLUTION. Theorem 3.2 implies that dim 1m L = dim W, so L is surjec­
tive. Conclude. 

5. Let F, G be invertible linear maps of a vector space V onto itself. Show 
that {FGt = G-1 r 1 • 

SOLUTION. We have {FG)(G-1rl)=F(GG-1 )rl =Fr1 =1, and, simi­

larly, we see that (G-1 r 1 )( FG) = I. 

6. Let L: R2 ~R2 be the linear map defined by L(x,y)=(x+y,x-y). 

Show that L is invertible. 

SOLUTION. If L(x,y)=O, then x=-y and x=y; so KerL={O}. 

7. Let L: R 2 ~ R 2 be the linear map defined by L( x, y) = (2x + y, 3x - 5 y). 
Show that L is invertible. 

SOLUTION. Verify that Ker L = {O}. 

8. Let L: R3 ~ R3 be the linear maps as indicated. Show that L is invertible 
in each case. 
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(a) L(x,y,z)=(x-2y,x+z,x+y+2z) 

(b) L( x, y, z) = (2x - y + z, x + y, 3x + y + z) 

SOLUTION. (a) Since Ker L = {O}, L is invertible. 

(b) Since Ker L = {O}, L is invertible. 

9. (a) Let L: V ~ V be a linear mapping such that L' = O. Show that 1- L 
is invertible. (I is the identity mapping on V.) 
(b) Let L: V ~ V be a linear map such that L2 + 2L + I = O. Show that L 
is invertible. 
(c) Let L: V ~ V be a linear map such that L' = O. Show that 1- L is 
invertible. 

SOLUTION. (a) The inverse of L is 1+ L. 

(b) The inverse of Lis -L-2. 

(c) The inverse of L is 1+ L + L2. 

10. Let V be a vector space. Let P: V ~ V be a linear map such that p 2 = P. 
Show that 

V = Ker P + 1m P and Ker P n 1m P = {O} 

in other words, V is the direct sum of Ker P and 1m P. {Hint: To show 
V is the sum, write an element of V in the form v = v - Pv + Pv.J 

SOLUTION. Since p(v-P(v))=P(v)-P2(v}=O, we see that 

V = Ker P + 1m P. As for the intersection, note that if w lies in the set 
Ker P n 1m P, then there exists a vector v such that P( v} = w, so that 

P(v}=P(w}. But since P(w}=O, we conclude that w=P(v}=O. 
Hence 

V=KerLEBlmL. 

11. Let V be a vector space and P, Q be linear maps of V into itself. Assume 
that they satisfy the following conditions: 
(a) P + Q = I (identity mapping). 
(b) PQ=QP=O. 
( c) p 2 = P and Q2 = Q. 
Show that V is the direct sum of 1m P and 1m Q. 

SOLUTION. In Exercise 12 we prove that 1m P = Ker Q, and in Exercise 
lOwe prove that V = Ker Q EB 1m Q, so the result drops out. 
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12. Notations being as in Exercise I I, show that the image of P is equal to the 
kernelofQ. (Prove the two statements: 

Image of P is contained in kernel of Q. 
Kernel of Q contained in image of P.] 

SOLUTION. If v E 1m P, then there exists w such that P( w) = v. Then 

QP{w) = Q(v), so V E Ker Q. 
Conversely, suppose that vEKerQ. Then v=P(v)+Q(v)=P(v), so 

VE 1m P. 

13. Let T: V ~ V be a linear map such that T2 = I. Let 

P=t(i+T) and Q=t(i-T). 

Prove: 
P + Q = I, p 2 = P, Q2 = Q, PQ=QP=O. 

SOLUTION. We have 
P+Q=I+tT-tT=I 
p 2 =t(i+T)2 =t(i+2T+J)=P 

PQ = t ( I - T2 ) = 0 . 

Similarly, Q2 = Q and QP = O. 

14. Let F: V ~ Wand G: W ~ U be isomorphisms of vector spaces over K. 
Show that GF is invertible, and that (GFt = r'G-' . 

SOLUTION. See Exercise 5. 

15. Let F: V ~ Wand G: W ~ U be isomorphisms of vector spaces over K. 
Show that GF: V ~ U is an isomorphism. 

SOLUTION. See Exercise 14. 

16. Let V, W be two vector spaces over K, of finite dimension n. Show that V 
and Ware isomorphic. 

SOLUTION. Let {v" ... , vJ be a basis for V and {Wl''''' wJ a basis for 
W. Then the mapping L: V ~ W defined by 
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is an isomorphism. 

17. Let A be a linear map of a vector space into itself, and assume that 

(whe re I is the identity map). Show that A -1 exists and is equal to I - A . 
Generalize (cf Exercise 37 of Chapter II. §3) 

SOLUTION. Replace N by A in the answer to Exercise 37 in §3 of Chapter 
II. 

18. Let A, B be linear maps of a vector space into itself Assume that 
AB = BA. Show that 

and 
(A+B)(A-B)=A2_B2 

SOLUTION. We have 

(A + B)(A + B) = A(A+B)+ B(A+ B) = A2 + 2AB+ B2 

and 

(A+B)(A-B)=A(A-B)+B(A-B)=A2 _B2. 

19. Let A, B be linear maps of a vector space into itself. If the kernel of A is 

{O} and the kernel of B is {O}, show that the kernel of AB is {O}. 

SOLUTION. See Exercise 20. 

20. More generally, let A: V ~ Wand B: W ~ U be linear maps. Assume 
that the kernel of A is {O} and the kernel of B is {O}, show that the kernel 
of BA is {O}. 

SOLUTION. Suppose that BA(v) = O. Then A(v) E Ker B, so A(v) = 0, 
thus v = O. 

21. Let A: V ~ Wand B: W ~ U be linear maps. Assume that A is surjec­
tive and that B is surjective. Show that BA is surjective. 

SOLUTION. Given u E U, there exists an element WE W such that 
B( w) = u and there exists an element v E V such that A( v) = w. Then 

BA(v) = u. 
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III, §5 Geometric Applications 

1. Show that the image under a linear map of a convex set is a convex set. 

SOLUTION. Let S be a convex set, and let L be a linear map. Let 
S' = L{ S). Suppose that w,' W 2 E S', and let v,, V2 E S be such that 

L(v j ) = Wj. By definition, the line segment tv, +{I-th, t E [0, I]. is con­

tained in S, thus tw, + (I- t)w2 belongs to S' because 

2. Let S, and S2 be convex sets in V. Show that the intersection S, n S2. 

SOLUTION. Let v, W E S, n S2. Then v and W belong to S" so the line 
segment between v and w is contained in S,. Similarly, this line segment 
is contained in S2' so the line segment between v and w is contained in 
S, nS2 • 

3. Let L: Rn ~ R be a linear map. Let S be the set of all points A in Rn 
such that L{ A) ;:: 0. Show that S is convex. 

SOLUTION. The set R,o is convex. Apply Exercise 6. 

4. Let L: R n ~ R be a linear map and c a number. Show that the set S con­
sisting of all points A in Rn such that L{A) > c is convex. 

SOLUTION. The set (c, 00) is convex. Apply Exercise 6. 

5. Let A be a non-zero vector in R" and c a number. Show that the set of 
points X such that X· A ;;::: c is convex. 

SOLUTION. The set [c, 00) is convex and the map L: R" ~ R, X ~ X· A 
is linear. Apply Exercise 6. 

6. Let L: V ~ W be a linear map. Let S' be a convex set in W. Let S be 
the set of all elements P in V such that L{P) is in S'. Show that S is 
convex. 

SOLUTION. Let P,QES. Then by assumption, tL{P)+{I-t)L{Q)ES' 

whenever tE[O,I). Hence L(tP+{I-t)Q)ES', thus tP+{l-t)QES. 
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7. Show that a parallelogram is convex. 

SOLUTION. Suppose that P = uv + sw and Q = u'v + s'w belong to the 
parallelogram spanned by v and w. Then for t E [0,1] we have 

tP+ (1- t)Q = (tu + (1- t)u')v + (ts + (1- t)s')w. 

But 0::;; tu + (I - t )u' ::;; I and 0::;; ts + (1- t)s'::;; I, so the triangle spanned by 
v and w is convex. Exercise 8 then implies that any parallelogram is con­
vex. 

8. Let S be a convex set in V and let u be an element of V. Let T.: V ~ V 

be the translation by u. Show that the image T. (S) is convex. 

SOLUTION. If p', Q' E T.(S), then there exist P and Q in S such that 

P + u = P' and Q + u = Q'. Then 

tP' + (l-t)Q' = tP+ (l-t)Q+u. 

9. Let S be a convex set in the vector space V and let c be a number. Let cS 
denote the set of all elements cv with v in S. Show that cS is convex. 

SOLUTION. The map L: V ~ V defined by L(v) = cv is linear and 

L( S) = cS, so Exercise 1 concludes the proof. 

10. Let v, w be linearly independent elements of a vector space V. Let . / 

F: V ~ W be a linear map. Assume that F( v), F( w) are linearly depen-
dent. Show that the image under F of the parallelogram spanned by v and w 
is either a point or a line segment. 

SOLUTION. We have L(tJv+ t2W) = tJL(v)+t2L(w). There exist numbers 

a and b that are not both zero such that aL( v) + bL( w) = O. Assume that 

a*-O. We have L( v) = cL( w) and therefore 

Conclude. 
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Linear Maps and Matrices 

IV, §1 Linear Map Associated with a Matrix 

1. In each case, find the vector LA (X). 

SOLUTION. (a) G) (b) (~) (c) (n (d) (~3} 

IV, §2 The Matrix Associated with a 
Linear Map 

1. Find the matrix associated with the following linear maps. 

(a) F: R4 ~R2 given by F('(Xl'X2 ,X3,X4 ))='(Xl'X2 ) (the projection) 

(b) The projection from R4 to R3 

(c) F: R2 ~R2 given by F('(x,y))='(3x,3y) 

(d) F: R n ~Rn given by F(X)=7X 

(e) F: R n ~ Rn given by F(X) =-X 

(j) F: R4 ~R4 given by F('(Xl'X2 ,X3 ,X4 ))='(Xl'X2 ,O,O) 

( 1 0 0 0) SOLUTION. (a) o 1 0 0 
[

1 0 0 0] 
(b) 0 1 0 0 (c) (~ ~) 

001 0 
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2. Find the matrix R( 9) associated with the rotation for each of the following 
values of e. 

(a) rt/2 (b) rt/4 (c) rt (d) -rt (e) -rt/3 (f) rt/6 (g) 5rt/4 

SOLUTION. 

(a) (0 -I) (b) (-fi12 --fi12J (c) (-0' 
, 0 -fi12 -fi12 

(e) ( + .{3/2J (f) (.{3/2 -+ J 
-.{3/2 + + .{3/2 

(-1 0) 
(d) 0 -I 

( ) (--fi12 -fi12 J 
g --fi12 --fi12 . 

3. In general. let 9> O. What is the matrix associated with the rotation by an 
angle -9 (i.e. clockwise rotation by 9)? 

SOLUTION. . (
COS 9 sin 9) 
-sin 9 cos 9 

4. Let X='(I. 2) be a point of the plane. Let F be the rotation through an an­
gle of rt/4. What are the coordinates of F(X) relative to the usual basis 

{E"EJ? 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 59 

SOLUTION. We simply multiply (-fi12 --fi12)(1)_(--fi12). so -fi12 -fi12 2 - 3-fi12 ' 
the coordinates of F( X) with respect to the usual basis are 

( - -fi 12 , 3 -fi 12) . 

5. Same question when X='( -1,3), and F is the rotation through n/2. 

(0 -1)(-1) (-3) SOLUTION. We have I ° 3 = -1 ; so the coordinates of F(X) 

with respect to the usual basis are (-3, -1) . 

6. Let F: Rn ~ R" be a linear map which is invertible. Show that if A is the 
matrix associated with F, then A-I is the matrix associated with the inverse 
of F. 

SOLUTION. The assertion follows from the fact that when we compose 
linear maps we multiply the associated matrices. 

7. Let F be a rotation through an angle 8. Show that for any vector X in R2 

we have IIXII=IIF(X)II (i.e. F preserves norms), where 

II (a, b) II = ,j a2 + b 2 • 

SOLUTION. If X = (x, y), then 

( c~s 8 -sin 8)(X) = (xc~s 8 - ysin 8); 
Sin 8 cos 8 y xsm 8 + ycos 8 

so 

II F( X) 112 = (xcos 8 - ysin 8)2 + (xsin 8 + ycos 8)2 = x 2 + l = II X 112 . 

8. Let c be a number, and let L: Rn ~ Rn be the linear map such that 
L( X) = cx. What is the matrix associated with this linear map? 

SOLUTION. With respect to the usual basis, the desired matrix has the 
form 
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9. Let Fe be rotation by an angle e. If e, <p are numbers, compute the matrix 
of the linear map FeF~ and show that it is the matrix Fe+~' 

SOLUTION. The matrix of FeF~ is given by 

(
COS e -sin e)(cos <p -sin <P) = (cos (e + <p) -sin (e + <P)) 
sin e cos e sin <p cos <p sin (e + <p) cos (e + <p) . 

We use the trigonometric formulas 

cos e cos <p - sin e sin <p = cos (e + <p ) 

and 

cos e sin <p + sin e cos <p = sin (e + <p) . 

10. Let Fe be rotation by an angle e. Show that Fe is invertible, and deter­
mine the matrix associated with F;'. 

SOLUTION. It is clear from Exercise 9 that Fe is invertible and that 
F;' = F_e because Fo = id. So the matrix associated with F;' is 

(
COS e sin e) 
-sin e cos e . 

IV, §3 Bases, Matrices, and Linear Maps 

1. In each of the following cases, find M:' (id). The vector space in each case 
is R3. 

B = {(I, 1, 0), (-1,1,1), (0, 1, 2)} 
(a) 

B' = {( 2, 1, 1), ( 0, 0, 1), ( -1, 1, I)} 
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B = {( 3, 2, 1 ), (0, -2, 5), ( I, I, 2 )} 
(b) 

B' = {( I, I, 0), ( -I, 2, 4 ), (2, -I, I)} 

[ + 0 +j [~ ~ .:J;] 
SOLUTION. (a) ~I ~ ~ (b) ~! ~ . 

~ 3 15 15 .5 

61 

2. Let L: V ~ V be a linear map. Let B = {VI"'" v,,} be a basis of V. 

Suppose that there are numbers c l "'" c, such that L( Vi) = C,Vi for 

i = I, ... , n. What is M::(L)? 

[

CI 

SOW170N. We hove M;(L)= ~ 
~ ... ~j 

o . 
o Cn 

3. For each real number 8, let Fe: R2 ~ R" be the linear map represented by 
the matrix 

( (
COS 8 -sin 8) 

R 8)= . 
sin 8 cos 8 

Show that if 8, 8' are real numbers then, Fe F., = Fe,." (You must use the 
addition formula for sine and cosine.) Also show that F;I = F_ •. 

SOLUTION. See Exercises 9 and 10 in §2. 

4. In general, let 8> O. What is the matrix associated with the rotation by an 
angle -8 (i.e. clockwise rotation by 8)? 

SOLUTION. . (
COS 8 sin 8) 
-sin 8 cos 8 

5. Let X='(1,2) be a point of the plane. Let F be the rotation through an an­

gle of TCJ4. What are the coordinates of F(X) relative to the usual basis 

{EI'EJ? 

SOLUTION. See Exercise 4 in §2. 
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6. Same question when X='( -1,3), and F is the rotation through n12. 

SOLUTION. See Exercise 5 in §2. 

7. In general, let F be the rotation through an angle 8. Let (x,y) be a point 

of the plane in the standard coordinate system. Let (x', y') be the coordi­

nates of the point in the rotates system. Express x', y' in terms of x, y and 
e. 

SOLUTION. Let E; = F( E,) and E; = F( EJ. We have 

so 

Therefore Exercise 4 implies 

(
COS 8 sin e )(x) = (XI) , 
-sin e cos e y y' 

hence x' = x cos e + y sin e and y' = - x sin e + y cos e . 

8. In each of the following cases, let D = dldt be the derivative. We give a 
set of linearly independent functions B. These generate a vector space V, 
and D is a linear map from V into itself. Find the matrix associated with D 
relative to the basis B, B. 
(a) {e',e Z,} 

(b) {I, t} 
(c) {e', te'} 

(d) {1, t, t 2 } 

(e) {1, t, e' , e2' , teZ'} 

(f) {sin t, cos t} 

SOLUTION. 

(a) (~ ~) (b) (~ ~) (e) (~ :) (d) [~ ~ ~) (0) 

o I 000 
00000 

00100 
o 0 021 
o 0 002 
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(0 -I) 
(f) I 0 . 

9. (a) Let N be a square matrix. We sa.v that N is nilpotent if there exists a 
positive integer r such that N' = O. Prove that if N is nilpotent then 
/ - N is invertible. 
(b) State and prove the analogous statementfor linear maps of a vector space 
into itse(f 

SOLUTION. (a) See Exercise 37 in §3 of Chapter II. 

(b) If there exists a positive integer r such that j; = 0, then / - L is invert­
ible and its inverse is given by / + L + L2 + ... + j;-I. The proof consists of 
verifying that 

(/ - L)( / + L + L2 + ... + [;-1 ) = ( / - L)( / + L + L2 + ... + [;-1 ) = / . 

10. Let p" denote the vector space of polynomials of degree ~ n. Then the 
derivative D: p" 4 p" is a linear map of P" into itself. Let / be the iden­
tity mapping. Prove that the following linear maps are invertible: 
(a) /_D2. 
(b) D'" - / for any positive integer m. 
(c) D'" - cI for any number c"* o. 

SOLUTION. For all integers p;:: n + 1 we have D P = 0, and if a is a num­

ber and q a positive integer, then aDq is nilpotent because 

so by Exercise 9 we see that: 

(a) The map / - D2 is invertible. 

(b) The map / - D m is invertible for all positive integers m. 

(b) The map + D m is nilpotent, so + D m - / is invertible and therefore the 
map D'" - cI is invertible for any number c"* o. 

11. Let A be the n x n matrix which is upper triangular, with zeros on the di­
agonal, / just above the diagonal, and zeros elsewhere. 
(a) How would you describe the effect of LA on the standard basis vectors 

{ E 1",. E"} of K" ? 
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(b) Show that An = 0 and An-I = 0 y using the effect of powers of A on 
the basis vectors. 

SOLUTION. (a) We see that AE' = 0 and that if j:::: 2, then AE j = E j - I 

because as we see from the disposition 

0 1 0 0 0 

0 0 

0 

0 0 0 1 

0 0 0 0 0 

only the product of the j -1 row of A with e is not 0 and is in fact I. 

(b) Induction and (a) show that if 1 :::;: p :::;: n, then 

for 1:::;: j :::;: n - p. So letting p = n -1, we see that the matrix An-I is 

0 0 0 

0 0 0 
An-I = 

0 0 0 

0 0 0 0 

so that An = O. 
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CHAPTER V 

Scalar Products 
and Orthogonality 

V, §1 Scalar Products 

1. Let V be a vector space with a scalar product. Show that (0, v) = 0 for all 
v in V. 

SOLUTION. We have (0, v) = (v - v, v) = (v, v) - (v, v) = o. 

2. Assume that the scalar product is positive definite. Let vl"'" v. be non­

zero elements which are mutually perpendicular, that is (Vi' vj ) = 0 if i:F- j. 

Show that they are linearly independent. 

SOLUTION. Suppose that a1vl+ ... +a.v. = 0 for some scalars al' .. ,a •. 
Then 

and, since the scalar product is positive definite, we conclude that aj = O. 

3. Let M be a square n x n matrix which is equal to its transpose. If X, Yare 
column n-vectors, then 'XMY is a 1 x 1 matrix which we ident(fy with a 
number. Show that the map (X, Y)~XMY satisfies the three properties 
SP 1, SP 2, SP 3. Give an example of a 2 x 2 matrix M such that the 
product is not positive definite. 

SOLUTION. This exercise is simply Exercise 10 in §3 of Chapter II. 
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V, §2 Orthogonal Bases, Positive Definite 
Case 

o. What is the dimension of the subspace of R6 perpendicular to the two vec­
tors (I, I, -2, 3, 4, 5) and (0,0, I, I, 0, 7)? 

SOLUTION. The two given vectors are linearly independent, so the answer 
is 4=6-2. 

Remark: In general, the answers to Exercises I, 2, 4, 5, and 6 are not unique. 

1. Find an orthonormal basis for the subspace of R' generated by the follow-
ing vectors: 
(a) (1,1,-1) and (1,0, I) (b) (2, I, I) and (I, 3, -I) 

SOLUTION. (a) Let A=(I,I,-I) and B=(I,O,I); then B·A=O so since 

II A II =.,f3 and II B II = ..J2, we see that one possible answer is 

{~ (I, I, -I), ~ (I, 0, I)}. 

(b) Let A = (2, 1,1) and B = (I, 3, -I). Then B· A = 4 and A·A = 6 so that 

B·A 
B'=B--A=l(-I 7 -5). 

A.A "3 " 

Normalizing our orthogonal set of vectors, we see that one possible answer 
is 

2. Find an orthonormal basis for the subspace of R 4 generated by the follow­
ing vectors: 
(a) (I, 2, I, 0) and (I, 2, 3, I) 
(b) (I, I, 0, 0), (I, -I, 1,1), and (-1,0,2, I) 

SOLUTION. (a) Let A = (I, 2, I, 0) and B = (1, 2, 3, I). Then B· A = 8 and 
A- A = 6, so that 
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B' = B- B·A A = 1.(-1 -2 5 3). 
A.A 3 , " 

Normalizing our orthogonal set of vectors, we see that one possible answer 
is 

{~ (1, 2, 1,0), -k (-1,-2, 5, 3)}. 

(b) Let A=(I,I,O,O), B=(I,-l,l,I), and C=(-1,0,2,1). Note that 

A- B = 0, so B' = B. For C' we find 

C'=C- C·A A- C·B' B'=+(-2 2 31). 
A . A B' . B' ~ '" 

Normalizing our orthogonal set of vectors, we see that one possible answer 
is 

{ II I } .j2p,I,0,0)''2(I,-1,l,l), -ft8(-2,2,3,1) . 

3. In Exercises 3 through 5 we consider the vector space of continuous real 
values functions on the interval [0, 1]. We define the scalar product of two 
such functions f, g by the rule 

I 

(j,g) = f f(t)g(t)dt. 
o 

Using standard properties of the integral, verify that this is a scalar product. 

SOLUTION. Since f(t)g(t) = g(t)f(t), SP 1 holds. For SP 2 and SP 
3, we have 

1 lIt 

f f(g + h) dt = f fg + jh dt = f fg dt + f jh dt 
o () 0 0 

and 

I I I 

f (cf)g dt = c f fg dt = f f(cg) dt. 
o 0 0 

4. Let V be the subspace of functions generated by the two functions f, g such 
that f(t) = t and g(t) = t 3• Find an orthonormal basis for V. 
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SOLUTION. Since (J, g) = V4 and (J, f) = V3, we see that 

g = g - (J, g) f = t 2 - '0 t . 
(J,f) 

Since II g II = 1/ .J8O, we see that one solution is 

{..[jt, .J8O(t2 - 'ot)}. 

5. Let V be the subspace of junctions generated by the three junctions 1, t, t 2 

(where 1 is the constant junction). Find an orthonormal basis for v. 

SOLUTION. Name the three functions f, g, and h, respectively. Then we 
have 

and 

g=g- (J,g) f=t-t 
(J,f) 

Ii = h- (h,f) f - (h,g) g = t 2 -t+~. 
(J, f) (g, g) 6 

Normalizing our orthogonal set of vectors, we see that one possible answer 
is 

6. Find an orthonormal basis for the subspace of C3 generated by the follow­
ing vectors: 
(a) (1, i, 0) and (1,1,1)' (b) (l,-I,-i) and (i,1,2) 

SOLUTION. (a) Let A = (1, i, 0) and B = (1, 1, 1). Then (B, A) = 1- i and 
(A,A)=2, so 

B'=B- (B,A) A=t(l+i 1-i 2). 
(A, A) " 

Therefore a solution is 
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{ ~ (1. i. 0). Js (I + i.l- i. 2)}. 

(b) Let A = (I.-I. i) and B = (i. I. 2). 

(A.A)=3, so 

Then (B. A) = -I + 3i and 

B'=B- (B.A) A=l.(1 2+3i 3-i). 
(A. A) ). , 

Hence a solution is given by 

{.1(I.-I.i). ~ (1.2+3i.3-n}. 

7. (a) Let V be the vector space of all n x n matrices over R. and define the 
scalar product of two matrices A. B by (A. B) = tr( AB) where tr is the trace 
(sum of the diagonal elements). Show that this is a scalar product. 

(b) If A is a real symmetric matrix. show that tr(M) ~ O. and tr(M) > 0 
if Ai:- O. Thus the trace defines a positive definite scalar product on the 
space of real symmetric matrices. 

(c) Let V be the vector space of real n x n symmetric matrices. What is 
dim V? What is the dimension of the subspace W consisting of those ma­
trices A such that tr( A) = O? What is the dimension of the orthogonal 
complement W~ relative to the positive definite scalar product ofpart (b)? 

SOLUTION. (a) In Exercise 27 in §3 of Chapter 2, we had tr(AB) = tr(BA) 

so the property SP 1 is verified. Furthermore, tr(A+B)=tr(A)+tr(B) 

and tr( cA) = ctr( A); hence SP 2 and SP 3 follow at once. 
We contend that this scalar product is non-degenerate. Let EkP be the 

matrix with all entries 0 except the kp-entry, which is equal to I. Then if 

A = (aij) and (A. B) = 0 for all B. we must have (A. Ekp) = 0 for all 

0::;; k. p::;; n. But tr( AEkP ) = apk ' Indeed, suppose AEkP = (cij)' then if 

m i:- p, we have 

and 

n 

cmm = L,am,b,.. =0, 
r=l 
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, 
c =~a b =a PI' ~prrp pk-

r-=I 

Conclude. 

(b) See Exercise 13 in § 3 of Chapter III. 

(c) (i) In Exercise 6, §I of Chapter II, we saw that the dimension of the 

f . .. n(n+l) 
space 0 symmetrIc n x n matrIces IS . 

2 

(ii) We contend that dim W= n(n+l) -1. Consider the linear map 
2 

L: V ~ R defined by L(A) = tr(A). Clearly, the image of L is all of R, 
so the result drops out. 
(iii) Since dim W + dim W~ = dim V, we have dim W~ = I. 

8. Notation as in Exercise 7, describe the orthogonal complement of the sub­
space of diagonal matrices. What is the dimension of this orthogonal com­
plement? 

SOLUTION. The dimension of the subspace D of diagonal matrices is n; 
see Exercise 7 in § I of Chapter II. 

Description of D~. If B = (bij ) E D~ , then, given any A = (aij ) ED, we 

have 

" 
(A. B) = tr(AB) = La"bkk = O. 

k=l 

Taking the scalar product with the diagonal elementary matrices we see that 

B=(bij)ED~ if and only if b,,=O for all I~k~n. Since 

dim D + dim D~ = dim V, we conclude that dim D~ = n( n - 1) . Of course 
2 

we see that a basis for D is given by {Eij + Eji Li<j" . 

9. Let V be a finite dimensional space over R, with a positive definite scalar 
product. Let {v1' ••• ' V m} be a set of elements of V, or norm J and mutually 

perpendicular (i.e. (Vi' vJ = 0 if i *" j). Assume that for every v E V we 

have 

i=l 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 71 

Show that {V,. ... , V m} is basis for V. 

SOLUTION. The set of vectors is orthogonal, so {V,. ... , V m} are linearly 

independent. It suffices to show that this set generates V. Given v, let 

w = f(v, v,)v,. Then 
;::;1 

(v - w, v- w) = II V 112 -2(v, w)+(w, w), 

but (w,w)= f(v,vY =(v,w)=llvW, so (v-w,v-w)=O, proving that 
;=1 

m 

V = I, (v, v,)v,. 
i=l 

10. Let V be a finite dimensional vector space over R, with a positive definite 
scalar product. Prove the parallelogram law, for any elements u, w E V 

II u + v II' + II u - v II' = 2(11 u II' + II v II' ). 

SOLUTION. The left side of the expression is equal to 

(u + v, u + v) + (u - v, u - v) = 2(u, u) + 2(v, v) = 2(11 u II' + II v II')· 

V, §3 Applications to Linear Equations; 
The Rank 

1. Find the rank of the following matrices 

(b)(~l! =~) (c) G ! ~1) 

('I (~ ~5) en [~I ~ ~] 
° 0] 1 2 

8 -7 

-3 ] 

+ 
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SOLUTION. (a) 2 (b) 2 (c) 2 (d) 1 (e) 2 (f) 3 (g) 3 (h) 2. 

2. Let A, B be two matrices which can be multiplied. Show that 

rank of AB ~ rank of A, and also rank of AB ~ rank of B. 

SOLUTION. Let LA and Ln be the linear maps associated to A and B, re­
spectively. 
(i) Then 

K'~Km~KP. 
LII LA 

If Y E 1m (LALB ), then there exists x E K' such that LA (LIl{X)) = y. Hence 

y E 1m (LA)' and thus 1m (LALH) c 1m (LA)' so rankAB ~ rankA. 
(ii) Now consider 

Here LA is the restriction of LA to 1m (L8). Since 

we conclude that rank AB ~ rank B. 

3. Let A be a triangular matrix 

[

all al2 . . . aI, 1 
o an a2, 

.. . .. . 
o 0 ann 

Assume that none of the diagonal elements is equal to O. What is the rank 
of A? 

SOLUTION. If we let xlA I + x2A 2 + ... + x,A' = 0, then we get a system of 
the form 
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x1a 11 + x2a12 + ... + x"_la,,,_, + x"a,,, = 0 

x2a22+ ... +X,,_,a21"_1 + x"a2" = 0 

x a =0. 
" "" 

Since a"" i:- 0, we see from the last equation that x" = O. Since a,,_ll,,_1 i:- 0, 
we see from the second to last equation that X,,_I = O. By induction we see 
that x, = x 2 = ... = x" = 0; thus rank A = n. 

In Exercises 4 and 5 we let S be the space of solutions of the 
system of linear equations. Note that the solutions to these 
exercises are not unique, so we give only one possible an­
swer. 

4. Find the dimension of the space of solutions of the following systems of 
equations. Also find a basis for this space of solutions. 

2x+ )I-Z =0 
(a) . 

y+z=O 

4x+7y-1tZ =0 
(c) 

2x- y+z = 0 

(b) x-y+z=O 

X+y+z=O 

(d) x - y = 0 

y+z=O 

SOLUTION. (a) The rank of (~ ; ~1) is 2, so dim S = 1. A solution is 

(1,1, -1), which is therefore also a basis for S. 

(b) The rank of (1 -1 1) is 1, so dim S = 2. Two linearly independent so­

lutions are {( 1,1, 0), (0,1, I)}, which therefore form a basis for S. 

(c) Since (4,7,-1t) and (2,-1,1) are linearly independent, dimS=1. The 
first equation minus twice the second equals 

9y-(1t+2)z=0, 

so if we let z = 9, we see that (T - t,1t + 2,9) is a solution of the original 
system; so this vector forms a basis for S. 
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(d) The rank of 

[l -\ ~ 1 
is equal to 3, so the space of solutions of the system is reduced to the single 
element {O}. 

s. What is the dimension of the space of solutions of the following systems of 
linear equations ? 

2x-3y+z =0 
(a) 

x+y-z=O 

(c) 

2x-3y+z =0 

x+y-z=O 

3x+4y = 0 

5x+ y+z = 0 

2x+7v =0 (b) . 
x-2y+z =0 

x+v+z=O 
(d) . 

2x+2y+2z =0 

SOLUTION. (a) The rank of the matrix (~ -3 ~l) is 2, so dim S= I. 

(b) The rank of (~ :2 ~) is 2, so dim S = I. 

(c) Let 

The first row added to the third equals the fourth row, so we find that the 
rank of the matrix A is 3. Hence dim S = 0, and therefore S = {O}. 

(d) Note that the second equation is twice the first, so we have to solve 

x+y+z=O. 

Therefore dim S = 2 . 
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6. Let A be a non-zero vector in n-space. Let P be a point in n-space. What 
is the dimension of the set of solutions of the equation X· A = p. A ? 

SOLUTION. Let S, be the set of solutions of X· A = p. A (*) and let S" 
be the set of solution of X· A = 0 (**). By Exercise 7 we know that if we 

have a solution Xo to (*), then S, = Xo + S", Since X = P solves (*) and 
the dimension of S .. is n - I, we see that dim S, = n - I . 

7. Let AX = B be a system of linear equations, where A is an m X n matrix X 
is an n-vector, and B is an m-vector. Assume that there is one solution 
X = Xu' Show that every solution is of the form Xu + Y, where Y is a so­
lution of the homogeneous system AY = 0, and conversely any vector of 
the form Xo + Y is a solution. 

SOLUTION. Suppose XI is a solution of AX I = B. Then 

A( XI - Xu) = 0, and we can write XI = Xo + (XI - Xo). Conversely, sup­
pose X2 = Xu + Y, where AY = O. Then 

V, §4 Bilinear Maps and Matrices 

1. Let A be an n x n matrix and assume that A is symmetric, i.e. A='A. Let 
gA: K" x K" ~ K be its associated bilinear map. Show that 

for all X, Y E K", and thus that gA is a scalar product, i.e. it satisfies con­
ditions SP 1, SP 2, and SP 3. 

SOLUTION. Since A='A, we have 

gA (X, Y)='XAy='('YAX)='YAX = gA(Y' X). 

See Exercise lOin § 3 of Chapter II. 

2. Conversely assume that A is an n x n matrix such that 

for all X. Y. Show that A is symmetric. 
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SOLUTION. We know that g(Ek,EP}='EkAEP =akp ' The assumption 

therefore implies that A is symmetric. 

3. Show that the bilinear maps of K" x Km into K form a vector space. More 
generally, let Bil(U x V, W) be the set of all bilinear forms of U x V into 

W. Show that Bil(U x V, W) is a vector space. 

SOLUTION. Let f, g E Bil( U x V, W). Then we have 

(J + g)( u, v + v') = f( u, v + v') + g( u, v + v') 

= f( u, v) + f( u, v') + g( u, v) + g( u, v') 

= (J + g)( u, v) + (J + g)( u, v'), 

so (J + g) is linear with respect to the second variable. Similar arguments 

show that (J + g) and cf are bilinear. Thus Bil(U x V, W) is a vector 

space. 

4. Show that the association A ~ gA is an isomorphism between the space of 

m x n matrices, and the space of bilinear maps of K m x K n into K. 

SOLUTION. Let 

'II: Mat mxn (K) 4 Bil( Kffl x K", K) 

A~gA 

Theorem 4.1. implies that 'II is surjective and injective, so all we have to 
prove is the linearity of",. This result is a simple consequence of the mul­
tiplicative properties of matrices, namely, 

gA+B(X, Y)='X(A + B)Y = ('XA+'XB)Y='XAY+'XBY = gA (X, Y)+ gil (X, Y), 

so ",(A + B) = "'( A) + "'( B) and 

gCA(X, Y)='X(cA)Y =c'XAY = cgA (X, Y); 

thus "'( cA) = c"'( A), thereby proving the assertion. 

5. Write out in full in terms of coordinates the expression for when A is the 
following matrix, and X, Y are vectors of the corresponding dimension. 
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C -3) (a) 4 I (b) (_~ ~J 

~) [' 2 -'] (-5 (c) 1t (d) -3 I 4 

2 5 -I 

(e) [~ 21] (j) [-/ 

2 ;'] I I -t 
5 7 -I ° 

SOLUTION. In this exercise one can either redo the computation or use the 
formula given in the text. 

(d) 'XAY = 

(e) 'XAY = 

6. Let 

and define g(X, Y)='XCY. Find two vectors X, Y E R' such that 

g(X, Y) 7= g(Y, X). 

SOLUTION. Let 'X=(I,O,O) and 'Y=(O,I,O). Then g(X,Y)=2 and 

g(Y, X) =-1. 
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V, §5 General Orthogonal Bases 

1. Find orthogonal bases of the subspace of R' generated by the indicated vec­
tors A, B, with respect to the indicated scalar product, written X· Y. 
(a) A = (I, 1,1), B = (I, -I, 2) 

X· Y = X1Y1 + 2x2yZ + x,Y3 

(b) A=(1,-1,4), B=(-I,1,3) 
X· Y = X1Y1 - 3XZY2 + X1Y3 + Y1X3 -x3YZ-xzY3 

SOLUTION. (a) We have B·A = 1-2+2 = I and A·A =4, so 

B' = B- B·A A = +(3,-5,7). 
A-A 

Therefore, a possible solution is {(I, I, I), (3, -5, 7)}. 

(b) We already have B· A = O. 

2. Find an orthogonal base for the space C Z over C, if the scalar product is 
given by X· Y = X1Y1 - iX2Yl - iX1Y2 - 2xZY2 ' 

SOLUTION. Let A=(I,O) and B=(O,I). Then A·A=I and B·A=-i, 
so 

B'=B- B·A A=(i I). 
A-A ' 

Therefore, {( I, 0), (i, I)} is an orthogonal base for the space C 2 over C. 

3. Same question as in Exercise 2, if the scalar product is given by 

SOLUTION. Let A and B be as in Exercise 2. Then A· A = 4 and 
B·A=I, so 

B' = B- B·A A = 1.(-1 4). 
A.A 4 , 

Therefore, {(I,O),(-1,4)} is an orthogonal base forthe space C 2 over C. 
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V, §6 The Dual Space and Scalar Products 

1. Let A, B be two linearly independent vectors in R". What is the dimension 
of the space perpendicular to both A and B? 

SOLUTION. If "perpendicular" refers to a non-degenerate scalar product, 
then Theorem 6.4 implies that the space perpendicular to both A and B has 
dimension n - 2 . 

2. Let A, B be two linearly independent vectors in C". What is the dimension 
of the subspace of C" perpendicular to both A and B? (Perpendicularity 
refers to the ordinary dot product of vectors in C".) 

SOLUTION. The dimension of the space perpendicular to both A and B is 
n-2. 

3. Let W be the subspace of C generated by the vector (1, i, 0). Find a basis 
of W.L in C (with respect to the ordinary dot product of vectors). 

SOLUTION. The vectors A = (1, -i, 0) and B = (0, 0, 1) are linearly inde­

pendent and perpendicular to (1, i, 0). Since W.L has dimension 2, we con­

clude that {A, B} is a basis for W.L. 

4. Let V be a vector space of finite dimension n over the field K. Let <p be a 
functional on V, and assume that <p::;:. O. What is the dimension of the ker­
nel of <p? Proof? 

SOLUTION. We contend that dim Ker <p = n -1. The map <p: V ~ K is 

linear, and since <p::;:' 0, there exists a vector v such that <p( v) ::;:. O. Given 

xEK, we let Vx =x(<p(v)tv, so that 

<p( vx ) = x( <p( v) t <p( v) = x. 

Therefore, dim 1m <p = 1 which proves our contention. 

5. Let V be a vector space of finite dimension n over the field K. Let"" <p 
be two non-zero functionals on V. Assume that there is no element c E K, 
c ::;:. 0 such that 'II = c<p. Show that (Ker <p) n (Ker 'II) has dimension 
n-2. 

SOLUTION. Fix a basis {v!' ... , vJ for V, and let A and B be the unique el­

ements of V such that 
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'V{v) = A· X. and <p{v) = B· X. for all v in V, 

where. is the usual dot product and X. the coordinates of v. Then the facts 
that 'V, <p *- 0 and there is no constant c such that 'V = c<p show that A and 
B are linearly independent. If W is the subspace generated by A and B, then 

(Ker<p) n (Ker'V) = W~. 

So we see that dim (Ker <p) n (Ker 'V) = n - 2. 

6. Let V be a vector space of finite dimension over the field K. Let V" be the 
dual space of V'. Show that each element v E V gives rise to an element 
A. in V" and that the map v ~ A. gives an isomorphism of V with V". 

SOLUTION. Fix an element v in V. Then for <p' E V' the map 

<p' ~ <p' (v) is linear and is therefore an element of V" which we denote by 

A,. The map «1>: V ~ V" defined by «1>{ v) = A •. is linear. Indeed, 

so «1>( v, + V 2) = «1>( v, ) + «1>( v 2)' and, similarly, we find that <I> { cv) = c<l>{ v) . 

Since dim V = dim V' = dim V" , all we have to show is that 
Ker <I> = {O}. Suppose <I>{ v) = O. Then for all <p' E V' we have 

<p' ( v) = O. Selecting a basis for Vand considering the coordinate functions, 

one sees that we must have v = O. Therefore, v ~ A, gives an isomor­

phism of V with V". 

7. Let V be a finite dimensional vector space over the field K, with a non-de­
generate scalar product. Let W be a subspace. Show that WE = W. 

SOLUTION. Theorem 6.4 implies 

dim W+dim W~ = dim V and dim W~ +dim WH = dim V; 

therefore, dim WH = dim W. It is now sufficient to prove that W is a sub­
space of W H • If v E W, then for all w E W~ we have (v. w) = 0; so by 
definition v E WE, consequently W = WE. 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 81 

V, §7 Quadratic Forms 

1. Let V be a finite dimensional vector space over the field K. Let f: V ~ K 
be a function, and assume that the function g defined by 

g{ v, w) = f{ v + w) - f{ v) - f{ w) 

is bilinear. Assume that f{ av) = a2 f{ v) for all v E V and a E K. Show 
that f is a quadratic form, and determine a bilinear form from which it 
comes. Show that this bilinear form is unique. 

SOLUTION. We have 

g{ v, v) = f{2v) - 2f{ v) = 4f{ v) - 2f{ v) = 2f{ v). 

So let g = g/2. Then g is bilinear and the quadratic form it determines is! 

Suppose thatf is also the quadratic form determined by a bilinear form go. 
Then by the formulas given in the text we see that 

go {v, w) = t[f{v+ w)- f{v)- f{w)] = g{v, w), 

so g is uniquely determined. 

2. What is the associated matrix of the quadratic form f{ X) = x 2 - 3xy + 4 i 
if 'X=(x,y,z)? 

SOLUTION. [~ -t n 
3. Let xl' x2' x3' x 4 be the coordinates of a vector X, and Yl' Yz' Y3' Y4 the 

coordinates of a vector Y. Express in terms of these coordinates the bilinear 
form associated with the following quadratic forms. 
(a) X1X2 (b) x1x3 +x: (c) 2X1X2 -X3X4 (d) x~ -5X2X3 +X: 

SOLUTION. First we give the matrix associated with the quadratic form, 
and then we give the expression of the symmetric bilinear map: 
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[
0 + 0 0] -\- 0 0 0 

(a) C = ~ 0 0 0 ' 

o 0 0 0 

[

0 0 

o 0 
(b) C= -\- 0 

-
o 0 

[

0 1 

1 0 
(c) C= o 0 

o 0 

-~t -:t J so that g( X. Y) = x,y, + x,y, - h,y, - t x,y,. 

[

1 0 

o 0 
(d) C = 0 --t 

o 0 

~t ~ J so that g( X. Y) = x,y, - h,y, - tx,y, + x,y,. 

4. Show that if fl is the quadratic form of the bilinear form gl' and f2 the 
quadratic form of the bilinear from g2' then fl + f2 is the quadratic form of 
the bilinear form gl + g2' 

SOLUTION. We have 

(II + f2)(v) = fl(v)+ f2(v) =gl(v, v)+ g2(V, v) = (gl + g2)(V, v). 

V, §S Sylvester's Theorem 

1. Determine the index of nUllity and index of positivity for each product de­
termined by the following symmetric matrices, on R2. 

(b) C ~) ( 1 -3) 
(c) -3 2 
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SOLUTION. (a) An orthogonal basis is given by A = (1,0) and 

B = (-2, I). Then we have 

(A, A) = I and (B, B) = -5, 

so the index of nullity of the form is 0, and the index of positivity of the 
scalar product is I. 

(b) An orthogonal basis is given by A=(I,O) and B=(-I,I). Then we 
have 

(A, A) = 1 and (B, B) = 0 

so the index of nullity of the form is I, and the index of positivity of the 
scalar product is I. 

(c) An orthogonal basis is given by A = (I, 0) and B = (3, I). Then 

(A,A)=I and (B,B)=-7, 

so the index of nullity of the form is 0, and the index of positivity of the 
scalar product is I. 

2. Let V be a finite dimensional vector space over R, and let (, ) be a scalar 

product on V. Show that V admits a direct sum decomposition 

where Vo is defined as in Theorem 6.1, and where the product is positive 
definite on V+ and negative definite on V-. Show that the dimensions of 
the spaces V+, V- are the same in all such decompositions. 

SOLUTION. Let {v" ... , vn } be an orthogonal basis for V indexed such that 

(v;, v;) > 0 if 1:5 i :5 r 
(v;,v)<O if r+l:5i:5s 
(vpv)=O if s+l:5i:5n. 

Let V+ be the space generated by {VI' ... ' v,} and V- the space generated by 

{v'+I' ... ' vJ. By Theorem 8.1, we know that {v,+1' ... , vJ is a basis for 

Vo. Hence 
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The dimension of V+ is equal to the index of positivity of the product, and 
the dimension of V- is equal to the index of negativity of the product. 

We contend that the product is positive definite on V+. Let ci = < Vi' Vi)' 

and suppose that V = XIVI+ ... +x,v" Then 

and = ° if and only if V = O. Similarly, prove that the product is negative 
definite on V-. 

3. Let V be a vector space over R of 2 x 2 real symmetric matrices. 

(a) Given a symmetric matrix A = (: ;) show that (x, y, z) are the coordi­

nates of A with respect to some basis of the vector space of all 2 x 2 real 
symmetric matrices. Which basis? 

(b) Let f(A) = xz - yy = xz - y". If we view (x, y, z) as the coordinates of 

A then we see thatfis a quadratic form on V. Note that f(A) is the deter­
minant of A. 

Let W be the subspace of V consisting of all A such that tr(A) = 0. 

Show that for A E W and A:#; 0 we have f( A) < 0. This means that the 
quadratic form is negative definite on W 

SOLUTION. (a) Consider the standard basis for the space of 2 x 2 symmet­
ric matrices, namely, 

EI =(~ ~} 
Then A = xE1 + yE2 + zE, . 

Eo = (0 I), and E, = (0 0). 
- I 0' ° I 

(b) Since tr(A) = 0, we have x = -z, and thus xz = -Z2 ~ 0, so 

If f(A) = 0, then clearly A = 0, so the quadratic form is negative definite. 
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Determinants 

VI, §2 Existence of Determinants 

1. Let c be a number and let A be a 3 X 3 matrix. Show that 

SOLUTION. See Exercise 2. 

2. Let c be a number and let A be a n X n matrix. Show that 

D(cA) = cnD(A). 

SOLUTION. Let AI, ... , An be the columns of A. Then 

D(cA) = D(cAI, ... , cAn). 

The properties of the determinant imply that 

D(cA) = cD(AI, cA2 , CAl, ... , cAn) 

= C2 D(AI, A2 , CAl, cA4 , ••• , cAn) 

hence D(cA) = cnD(A). 

VI, §3 Additional Properties of Determinants 

1. Compute the following determinants. 
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2 I 2 

(a) 0 3 -I 

4 

VI. DETERMINANTS 

3 -I 5 2 4 3 

(b) -I 2 I (e) -I 3 0 

-2 4 3 0 2 

-I 5 3 3 I 2 

(e) 4 0 0 (f) 4 5 I 

2 7 8 -I 2 -3 

SOLUTION. 

I 2 -I 

(d) 0 
o 2 7 

(a) -20 (b) 5 (c) 4 (d) 5 (e) -76 (f) -14. 

2. Compute the following determinants. 

I -2 4 -I 1 2 0 
31 4-92 o 3 o 3 2 

(a) 
2 -I 0 

(b) o 4 2 

3 1 5 7 

(e) 2 5 5 (d) 4 -9 2 

8 7 7 3 0 
3 I 2 5 

4 -I I 

(e) 2 0 0 

5 7 

2 -1 4 

(i) 3 1 5. 

2 3 

SOLUTION. 

200 

(f) 0 

857 

4 0 0 

(g) 0 1 0 

o 0 27 

500 

(h) 0 3 0 

009 

(a)-18 (b) 45 (c) 0 (d) 0 (e) 24 (f) 14 

(h) 135 (i) 10. 

3. In general what is the determinant of a diagonal matrix? 

SOLUTION. Expanding according to the first row, we see that 

o 

o =a11 

o ... 0 ann 

an 0... 0 
o 

(g) 108 
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'

cos e -sin e ,. 
4. Compute the determinant . 

sm e cos e 

SOLUTION. We have 

'

cos e -sin e , ' , = cos-e + sin-e = I. 
sin e cos e 

5. (a) Let xI' xZ' x, be numbers. Show that 

XI x~ 

x2 x~ = (xz - XI )( x, - XI )( x, - xJ 
x, x: 

(b) If Xl .... ' x. are numbers, then show by induction that 

.-1 
XI 

.-1 

X2 =II(xj-x,), 
i<j 

87 

the symbol on the right meaning that it is the product of all terms Xj - Xi 
with i < j and i, j integers from J to n. This determinant is called the 
Vandermonde determinant V.' To do the induction easily. multiply each 
column by XI and subtract it from the next column on the right, starting 
from the right-hand side. You willfind that 

V = (x - X ) ... (x - X )V n n t 2 1 II-I" 

SOLUTION. (a) Expanding according to the first row, we get 

so 

www.MathSchoolinternational.com


88 VI. DETERMINANTS 

(b) The result is true when n = 3 [cf. (a)], and also when n = 2 because 

II XII =(X2 -x,), 
I x 2 

Proceeding as in the hint, we get 

0 0 0 

(X2 -x,) ,-, ( ) Xl Xl-X, X;-2 (Xl - X, ) 

V, = (X,-x ,) ,-3 ( ) X, X, - X, X;-2 (Xl - X, ) 

(X -X) 
" I 

Xn-3(X -X) 
II n 1 X:-2(X, -X,) 

Expanding according to the first row, we get 

V =(X -x )···(x -x)V II n 1 2 I n-l 

and by induction we suppose that Vn_ 1 = II (Xj - Xi)' so the result drops 
lS:i<j'O:;n 

out. 

6. Find the determinant of the following matrices. 

(al [~ 
2 '] [-I 5 

2:] [2 -6 9] [-7 98 54] 
] ~ (b) ~ 4 (c) 0 1 4 (d) 0 2 46 

0 0 008 o 0 -1 

~] [ 
5 2 

31 [-5 
0 0 

~J [I 4 ~] if) [~ 
0 

2 7 ~ (h):9 
2 0 

(e) 0 0 2 (g) 
0 4 4 o 0 8 79 54 
0 0 5 96 2 3 

(0 Let A be a triangular n x n matrix, say a matrix such that all compo­
nents below the diagonal are equal to O. What is D( A) ? 

SOLUTION. 
(a) 3 (b) -24 (c) 16 (d) 14 (e) 0 (f) 8 (g) 40 

(h) -10. 

(i) Expanding according to the first column, we get 
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a" an ... alII 

Det(A) = all 
0 

an_In 

0 0 ann 

therefore, we see that Det( A) = alla" ... an" . 

7. If a(t), b(t), c(t), d(t) are functions oft, one canform the determinant 

I 
a(t) b(t) I 
c(t) d(t) 

just as with numbers. Write out in full the determinant 

I sin t cos t I 
-cos t sin t . 

SOLUTION. Using a trigonometric identity, we get 

I sin t cos t I ' , . =sin-t+cos-t=l. 
-cos t SIn t 

8. Write out in full the determinant It + 1 t -1 I. 
t 2t+5 

It+l t-l I SOLUTION. = (t + 1)(2t + 5)- t(t -1) = t 2 + 8t+ 5. 
t 2t+5 

89 

9. Let f(t), g(t) be two function having derivatives of all orders. Let <p(t) be 
the function obtained by taking the determinant 

I f(t) g(t)1 
<p(t) = f'(t) g'(t)" 

Show that 

, I f(t) g(t) I 
<p (t) = f"(t) g"(t)" 

SOLUTION. Since <p = fg' - f'g, we have 
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cp' = f'g' + fg" - f''g - f'g' = fg" - f''g = 1;', :' I· 

I b (t) Ct(t)1 
10. Let A(t) = b:(t) cz(t) be a 2 x 2 matrix of differentiable junctions. Let 

B(t) and c(t) be its column vectors. Let cp(t) = Det(A(t)). Show that 

cp'(t) = D( B'(t), C(t)) + D(B(t), C'(t)). 

SOLUTION. Brute force shows that 

and that 

So cp'(t) = D(B'(t), C(t)) + D(B(t), C'(t)). 

11. Let <XI"'" <X. be distinct numbers ;I!: O. Show that the junctions 

are linearly independent over the complex numbers. [Hint: Suppose we 
have a linear relation cteu" + ... +c.eu" with constants ci valid for all t. If 
not all C1 are 0, without loss of generality, we may assume that none of 
them is O. Differentiate the above relation n -1 times. You get a system 
of linear equations. The determinant of its coefficients must be zero. 
(Why?) Get a contradiction from this. J 

SOLUTION. Differentiating n -1 times and setting t = 0 in each equation, 
we see that the system 

{ 

Xt+ ... +x. =0 

xt<Xt+ ... +x.<X. =0 

xt<x;-t+ ... +x.<x;-t =0 

has a nontrivial solution, namely, (Cl"'" c.). Therefore, the column vec­

tors must be linearly dependent and hence the determinant 
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1 1 

must be O. But since <Xl' ••• , <X. are distinct, we see at once that the 
Vandermonde determinant is non-zero. We get a contradiction because the 
determinant of a matrix is equal to the determinant of its transpose. 

VI, §4 Cramer's Rule 

1. Solve the following systems of linear equations. 

3x+y-z =0 

(a) x+y+z =0 

y-z=1 

4x+ y+z+w = 1 

x - y + 2z - 3w = 0 
(c) 

2x+y+3z+5w =0 

x+y-z-w =2 

SOLUTION. 
(a) x=1-, y=t, z=1-

(c) x=it, y=i, z=t, w==it 

2x-y+z =1 

(b) x+3y-2z =0 

4x-3y+z = 2 

x+2y-3z+5w =0 
2x+y-4z-w =1 

(d) 
x+y+z+w =0 

-x-y-z+w =4 

(b) x=i, y=rr, z=ir 

(d) x=¥, y=~, z=lIr, w=2. 

VI, §5 Triangulation of a Matrix by Column 
Operations 

1. (a) Let 1::; r, s ::; n and r *- s. Let J rs be the n X n matrix whose rs-compo­
nent is 1 and all other components are O. Let E" = 1 + J". Show that 

D(E,J = 1. 
(b) Let A be an n x n matrix. What is the effect of multiplying E"A? of 
multiplying AE,,? 

SOLUTiON. (a) We see that adding the s row of I to the r row of I we get 
the matrix E" ' so D(E,,) = D(I) = 1. 
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S-(Q~ 

-i 0 0 
o 

-'- 1-1..,.---+ "-",,,ow 

" I,·· o 
o-:L 

(b) When mUltiplying E"A, we add the s row of A to the r row of A, leav­
ing the other rows of A unchanged. When multiplying AE" , we add the r 
column to the s column of A, leaving the other columns of A unchanged. 

2. In the proof of Theorem 5.3, we used the fact that if A is a triangular ma­
trix, then the column vectors are linearly independent if and only if all the 
diagonal elements are "* O. Give the details of the proof of this fact. 

SOLUTION. (i) Suppose that all the diagonal elements are "* O. We want 
to solve 

{ 

xlbll =0 

x l b21 + x2b22 = 0 

xlbnbl+",+xnb .. = 0 

From the first equation we get XI = 0 . From the second equation we get 
x 2 = O. Therefore we see that we must have Xl = x2 = ... = xn = 0; so the 
column vectors are linearly independent. 

(ii) Conversely, suppose that the column vectors are linearly independent 
and suppose that some diagonal element is O. Then, since the row rank of 
the matrix is equal to the column rank, we see that if bll = 0 or b"n = 0, 
then we get a contradiction. Suppose that k is the smallest integer such that 
bkk = 0 and 1< k < n. We contend that the system 

{ 

xlbll =0 

x l b21 + x2b22 = 0 

xlbnbl + ... + x,b,n = 0 

has a nontrivial solution. From (i) we see that we must have 
Xl = x 2 = ... = Xk_1 = O. Therefore we are left with the system 
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I X,bkk=O 

xA .. + x, A .... , , : 0 

xkb"k + ... + x"b"" - O. 

Deleting the first equation we see that the truncated system has one more 
unknown than it has of equations and therefore has a nontrivial solution. 
We then get a contradiction that proves the statement. 

VI, §6 Permutations 

In Exercise 1 we note L,j' the transposition that inter­
changes i and j. In each case, we can either write the 
permutation as a product of transposition or we can com­
pute the determinants. We carry out both methods in (a) 
and (d). 

1. Determine the sign of the following permutations. 

[ 1 2 3
1
] 

(a) 2 3 

(d) [~ ~ ~ :] 

[ 1 2 3 4] 
(g) 4 2 1 3 

(b) [~ 

(e) G 
(h) [~ 

(c) [~ ~ n 
[

I 2 3 

(f) 324 

[
I 2 3 

(i) 2 4 

SOLUTION. (a) Product of transpositions. We see at once that 

so a = LI~L2" and therefore £(a) = (_1)2 = 1. 

Determinants. By definition, 

But D( £1, £2, £3) = I, and expanding according to the first row we get 
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001 

D( E2, E), E') = 1 0 0 = 1 x I ~ ~ I = 1. 

010 

Thus £(0") = 1. 

(b) £(0") = 1 because 0" = 1:~;1:2)' 

(c) £(0")=-1 because 0"=1:])' 

(d) Product of transpositions. We see at once that 

so 0" = 1:~~1:2)' and therefore £(0") = (_1)2 = 1. 

Determinants. By definition, 

But D( E' , E2, E), E4 ) = 1, and expanding according to the first row we get 

0 0 1 0 
0 0 

D(E2, E), E', E') = 
1 0 0 0 

=lx 0 1 0 =1. 
0 1 0 0 

0 0 
0 0 0 

Thus £(0") = 1. 

(e) £(0") = 1 because 0" = 1:'21:34' 

(g) £(0") = 1 because 1:'40" = 1:3" 

2. In each of the cases of Exercise 1, write the inverse of the permutation. 
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SOLUTION. 

[I 2 ~] (b) a-I =G 
2 

~] (c) a-I =[~ 2 n (a) a-I = 3 
3 2 

(d) a-I = G 2 3 :] (e) a-I = [~ 2 3 ;] (f) a-I = [~ 2 3 ;] 2 4 2 

(g) a-I = G 2 3 

~] (h) a-I = G 
2 3 ;] (i) a-I = G 2 3 

;J 2 4 4 4 

3. Show that the number of odd permutations of {I, ... , n} for n ~ 2 is equal to 
the number of even permutations. (Hint: Let 't be a transposition. Show 
that the map a ~ 'ta establishes an injective and surjective map between 
the even and odd pemlutations.j 

SOLUTION. Any permutation can be written as a product of transposition; 
so if a is an even permutation, then we can write a = 't1't2 ••• 't" where s is 
even. Thus 'ta is odd, so f: a ~ 'ta is a map between the even and odd 
permutations of J,. 

Given an odd permutation a' = 't1't2 ••• 't p where p is odd, we see that 

a = 't't I 't 2 ... 't p is even and that 

f( a) = 't 2 't 't ... 't = 't 't ... 't = a' 
1 2 P I 2 P , 

so f is surjective. 
If f(a l )=f(a2 ), then 'tal ='ta 2 , so composing with 't we get 

a I = a 2 , and therefore f is injective. 

VI, §7 Expansion Formula and Uniqueness 
of Determinants 

1. Show that when n = 3, the expansion of Theorem 7.2 is the six-term ex­
pression given in §2. 

SOLUTION. The six permutations of J, into J, are given by 

[1 2 3] 
a l = 1 2 3 [1 2 3] 

a 2 = 1 3 2 [1 2 3] 
a, = 2 3 1 
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[I 2 3] 
a. = 2 I 3 [1 2 3] 

as = 3 I 2 
a = [I 2 3] 

6 3 2 1 ' 

where f(a1)=f(a,)=f(a,)=1 and f(aJ=f(a.}=f(a6 ) =-1. So the 
sum in Theorem 7.2 can be expressed as 

6 

D'(A)= Lf(a)aoI1).1 ···aol ,).3 =Lf(a;)ao.11).1 ···ao,(3).3' 
cr j=1 

thus 

Expanding according to the first row, we see that the determinant of A is 
given by 

Therefore D'(A) = D(A). 

2. Go through the proof of Lemma 7.1 to verify that you did not use all the 
properties of the determinants in the proof You used only the first two 
properties. Thus let F be any multilinear, alternating function. As in 

n 

Lemma 7.1, let Ai = Lb;jXj for j = too., n. Then 
i=l 

F(Al,oo., A") = Lf(a)boI1).1 ... bo(n).J(X1, 00., xn). 
o 

Why can you conclude that if B is the matrix (b;j)' then 

F(Al ,00', A") = D(B)F(X1,00., xn)? 

SOLUTION. In Lemma 7.1 we use the linearity property with respect to 
each column, and the fact that if two columns are equal, then the determi­
nant is 0; so we used only properties I and 2, which are the properties of 
any alternating multilinear function. We also used the fact that 

In order to apply Lemma 7.1 to any alternating multilinear function F, we 
must show that F(XO(ll, 00., xo(nl ) = f(a)F(Xl,oo., xn). But this is obvious 
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because any permutation is a product of transpositions, and each transposi­
tion changes the sign of F. Hence 

F(A',oo.,A")= Lf(cr)ba(l).' ... bal")"F(X',oo.,X"). 
a 

Since D(B) = Lf(cr)ba(l)" 00 bal",.n' we see that 
a 

3. Let F: R" x .. ·R" ~ R be a function ofn variables, each of which ranges 
over R". Assume that F is linear in each variable, and that if 
A' ,00', A" E R" and if there exists a pair of integers r, s with 1:5: r, s:5: n 

such that r =t:. s and A' = A' then F(A',oo., An) = O. Let Bi (i = 1,00', n) be 

vectors and cij numbers such that Ai = "ICijB'. 
i=1 

(a) If F(B',00.,B")=-3 and det(cij ) = 5, what is F(A',oo.,A")? Justify 

your answer by citing appropriate theorems, or proving it. 
(b) If F( E', 00., En) = 2 (where E', 00., En are the standard unit vectors), and 

if F( A' ,00', A") = 10, what is D( A', 00., A")? Again give reasons for your 

answer. 

SOLUTION. (a) The function F is multilinear and alternating, so we can 
apply the formula of Exercise 2, namely, 

F( A' , ... , A") = det( C)F( B', ... , Bn), 

(b) Let N = "I aijBi. Then the matrix (aij) is the matrix whose columns 
j,:=1 

are A', ... , A"; therefore, by Exercise 2 we get 

F(A' , ... , An) = det( aij )F(E' , ... , E"). 
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VI, §8 Inverse of a Matrix 

1. Find the inverses of the matrices in Exercise 1. §3. 

SOLUTION. 

[' 
-I 

~] 
(b) [~ 

1l 

~] 
(0) [! 1 

~] (a) ~ 
w 5 5 '2 

.l -I 19 -s + 1-10 TO "5 "5 

t -I ..=l -2 1 -I -1 1-10 10 'T 

(d) [~ 
-16 

*] (e) [; 

-:\-

~] [ " -1 

*] "5 IT 'T 

1. -1 7 

(f) ~;: + -5 
5 "5 38 19 It· 

1- 1- -17 fq t -11 
5 19 76 H 14 

2. Using the fact that if A. B are two n x n matrices then 

Det(AB} = Det(A}Det(B} 

prove that a matrix A such that Det( A} = 0 does not have an inverse. 

SOLUTION. Suppose that A has an inverse. Then 

1 = Det( 1) = Det( AA -1) = Det( A }Det( A -1), 

but Det( A} = 0, so we get a contradiction. 

3. Write down explicitly the inverses of the 2 x 2 matrices: 

(3 -1) 
(a) 1 4 (-2 1) 

(b) 1 1 

SOLUTION. (a) (: :) 
13 13 

(-1 1) 
(b) : : 

(c) A direct computation or the formula given in the text shows that the in-

verse of (: ;) is 

1 (d -b) 
ad-bc -c a . 
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4. If A is an n x n matrix whose determinant is * 0, and B is a given vector in 
n-space, show that the system of linear equations AX = B has a unique so­
lution. If B = 0, this solution is X = O. 

SOLUTION. The equation AX = B is equivalent to 

The determinant of A is non-zero, so the n column vectors A I , ... , A· are 
linearly independent. The result follows because {A \ ... , A·} is a basis for 
the n-space. 

VI, §9 The Rank of a Matrix and 
Subdeterminants 

Compute the ranks of the following matrices. 

1. G 
"3 5 ~) -1 2 

SOLUTION. 2. 

[~ 
5 1 

~J 2. -1 1 

4 2 

SOLUTION. 2. 

[~ 
5 1 

~J 3. -1 1 

9 3 

SOLUTION. 2. 

[; 
5 1 

~J 4. -1 1 

1 2 

SOLUTION. 3. 

[~1 
1 6 

~] s. 1 2 

-1 2 5 
2 1 0 

SOLUTION. 4. 
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[
2 16 6J 
3 1 -I 

6. 5 2 7 5 

-2 4 3 2 

SOLUTION. 3. 

[
2 6 6] 
3 -I 

7. 5 2 7 5 

8 3 8 4 

SOLUTION. 2. 

[
3 1 -I] 

8. -2 4 3 2 
-I 9 7 3 

7 4 2 1 

SOLUTION. 3. 
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Symmetric, Hermitian, and 
Unitary Operators 

VII, §1 Symmetric Operators 

1. (a) A matrix A is called skew-symmetric if 'A = -A. Show that any matrix 
M can be expressed as a sum of a symmetric matrix and a skew-symmetric 
matrix one, and that the latter expression is uniquely determined. [Hint: 
Let A = +(M+'M).J 
(b) Prove that if A is skew-symmetric. then A 2 is symmetric. 
(c) Let A be skew-symmetric. Show that Det( A) is 0 if A is an n x 11 ma­
trix and 11 is odd. 

SOLUTION. (a) See Exercise 14, §3 of Chapter III. 

(b) Since 

'(A2 )='A'A = (-A)( -A) = A2, 

the matrix A 2 is symmetric. 

(c) We know from Exercise 2, §2 of Chapter VI, that 

Det( -A) = (-1)" Det(A) = -Det(A). 

But Det( A) = Det('A) = Det( - A), so Det( A) = - Det( A), whence we con­

clude that Det(A) = O. 

2. Let A be an invertible symmetric matrix. Show that A -I is symmetric. 

SOLUTION. We know that AA-1 = I and 'I = I, so 

I='(AA -I ~'( A -I )'A='( A -I)A. 
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The inverse of a matrix is uniquely determined, so '(A -\ ) = A -\; therefore, 

A -\ is symmetric. 

3. Show that a triangular symmetric matrix is diagonal. 

SOLUTION. We may assume without loss of generality that A is upper tri­
angular. Then the transpose of A is lower triangular, and since, we must 
have A='A, we see at once that A must be diagonal. 

4. Show that the diagonal elements of a skew-symmetric matrix are equal to O. 

SOLUTION. The condition 'A = -A implies a" = -akk for all 1::; k::; n, so 
the diagonal elements of A are zero. 

5. Let V be a finite dimensional vector space over the field K. with a non-de­
generate scalar product. Let vo' Wo be elements of V. Let A: V ~ V be 

the linear map such that A( v) = (vo• v)wo• Describe 'A. 

SOLUTION. We have 

so 'A(w)=(wo.w)vo' 

6. Let V be the vector space over R of polynomials of degree ::; 5. Let the 
scalar product be defined as usual by 

\ 

(J.g) = ff(t)dt. 
o 

Describe the transpose of the derivative D with respect to this scalar product. 

SOLUTION. Consider the basis {I, t. t 2 , t', t4. (5} for the space of polyno­

mials of degree ::; 5. Then the matrix A associated with the given scalar 
product is 

1- \ t 1 1. 
3 ., 6 

t \ \ \ t \ 
3 '4 ., '7 

+ t .1 \ + t A= 
5 '6 

t 1. t .1 t 1. 
5 7 9 

t t \ \ \ \ 
7' "8 '9 10 

1. \ t \ ..L \ 
6 7' '9 \0 IT 
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We then have (X. y)='XAY. The matrix associated with D is given by 

0 1 0 0 0 0 

0 0 2 0 0 0 

0 0 0 3 0 0 
D= 

0 0 0 0 4 0 

0 0 0 0 0 5 

0 0 0 0 0 0 

Then we see that 

(DX. Y)='(DX)AY='X'DAY='XA(KI'DA)Y; 

so the transpose of the differential operator D is described by the matrix 
A -I' DA with respect to the chosen basis. 

7. Let V be a finite dimensional space over the field K. with a non-degenerate 
scalar product. Let A: V ~ V be a linear map. Show that the image of 'A 
is the orthogonal space to the kernel of A. 

SOLUTION. First we show that Im('A)" = Ker(A). If x E Ker(A) and 

w' E Im( 'A), where 'A( w) = w' , then 

(x. w') = (x.'A( w) = (A(x). w) = 0, 

so X E Im('A r. Conversely, suppose x E 1m ('A )"; then for all v E V we 

have 

0= (x.'A( v) = (A(x). v). 

But the scalar product is non-degenerate, hence A(x) = 0, which proves the 
assertion. Then Exercise 7, §6 of Chapter V, implies 

Im( 'A) = Ker(A)~. 

8. Let V be a finite dimensional space over R. with a positive definite scalar 
product. Let P: V ~ V be a linear map such that PP = P. Assume that 
'PP =P'P show that P='P. 

SOLUTION. We have 
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('P{ v ),'P{ v» = (v.P'P{ v» = (v,' PP{ v» = (P{ v). P{ v», 

so we see that Ker{P) = Ker( 'p) and 

(P{ V )-'P{ v). P( v)-'P( v» = 2[ (P( v). P( v» - (P{ v }'P( v»]. 

Exercise 10, §4 of Chapter IV, implies that V=Im(P)EBKer(P), so we 

can write v = P(x)+w, where WE Ker(P) = Ker('P). Then 

(P( v). P( v» = (P(x). P(x» 
and 

(P( v}'P( v» = (P(x}'PP(x» = (P(x). P(x». 

The scalar product is positive definite, so P( v) =' P( v). 

9. A square n x n real symmetric matrix A is said to be positive definite if 
'XAX> 0 for all X::i= O. If A. B are symmetric (of the same size) we define 
A < B to mean that B - A is positive definite. Show that if A < Band 
B < C then A < C. 

SOLUTION. We have 

'X(C-A)X='X(C-B+B-A)X='X(C-B)X+'X(B-A)X, 

so the result drops out. 

10. Let V be a finite dimensional vector space over R with a positive definite 
scalar product ( .). An operator A of V is said to be semipositive if 

(Av. v) <?: 0 for all v E V. v::i= O. Suppose that V = W + W-'- is the direct 
sum of a subspace Wand its orthogonal complement. Let P be the projec­
tion on W. and assume that W::i= {O}. Show that P is symmetric and semi­
positive. 

SOLUTION. The operator P is symmetric. For i = 1, 2 write 
Vi =Wi+Wi-'-' where WiE Wand Wil. E Wl.. Then 

and 

so P is symmetric. 
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The operator P is semipositive. If v = w + w~. where w E Wand 
w~ E W~. then 

(P{ v), v) = (w, w + w ~ ) = (w, w) ~ 0 . 

11. Let the notation be as in Exercise 10. Let c be a real number, and let A be 
the operator such that A v = cw if we can write v = w + w' with w E Wand 
w' E W~. Show that A is symmetric. 

SOLUTION. For i = 1,2 we write Vi = Wi + w;. where Wi E Wand 
w; E W~. Then 

and 

Thus A is symmetric. 

12. Let the notation be as in Exercise 10. Let P be again the projection on W. 

Show that there is a symmetric operator A such that A 2 = 1 + P. 

SOLUTION. If 1'= w+ w'. where WE Wand w' E W~. we define 

A{v) = {iw+ w'. 
Then 

A2{V) = A( {iw+ WI) = 2w + w' = I{v) + P{v). 

With the notation being the one of Exercise 11, we see that 

and 

so A is symmetric. 

13. Let A be a real symmetric matrix. Show that there exists a real number c 
so that A + cI is positive. 

SOLUTION. We have 
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'XAX = ~>ijx;Xj ~ L -I a;jll x k l2 

j,j i,j 

for some k, so if we choose c > L 1 aij I, then A + cI is positive because 
i,i 

'X(A +cI)X='XAX + c(x;+ ... +x;). 

14. Let V be a finite dimensional vector space over the field K, with a non-de­

generate scalar product ( ,). If A: V ~ V is a linear map such that 

(Av, Aw) = (v, w) 

for all v, WE V, show that Det(A) = ±1. 

SOLUTION. Fix w. Then for all v in V we have 

(v, w) = (Av, Aw) = (v,'AAw). 

Thus 

(v, w-'AAw) = 0, 

so 'AA = I because the scalar product in non-degenerate. Therefore, 

1= Det(I) = Det('AA) = Det('A)Det(A), 

but Det('A) = Det( A), so we conclude that Det( A) = ±l. In the general 

case we also have A'A = AA' = I (where A' is the transpose of the opera­
tor). If] represents the scalar product, then (Av, w) = (v, A'w) so that 

A'] = ]A' where A' is the transpose matrix of A. Hence 

Det(A') = Det(A'), 

which implies that Det( A' r = 1. 

15. Let A, B be symmetric matrices of the same size over the field K. Show 
that AB is symmetric if and only if AB = BA. 

SOLUTION. Since 

'(AB)='B'A = BA, 
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we see that AB is symmetric if and only if AB = BA . 

VII, §2 Hermitian Operators 

1. Let A be an invertible hermitian matrix. Show that A-I is hermitian. 

SOLUTION. The matrix A-I is hermitian because 

2. Show that the analogue of Theorem 2.4 when V is a finite dimensional 
space over R is false. In other words, it may happen that Av is perpendic­
ular to all v E V without A being the zero map! 

SOLUTION. A suitable rotation maps a vector into a vector orthogonal to 
it. 

3. Show that the analogue of Theorem 2.4 when V is a finite dimensional 
space over R is true if we assume in addition that A is symmetric. 

SOLUTION. The polarization identity is also true in a finite dimensional 
vector space over R, so 

(Aw, v) + (Av, w) = 0 

for all v, w E V. But A is symmetric, so 

2(Av,w)=O. 

Conclude. 

4. Which of the following matrices are hermitian? 

( 2 i) 
(a) -i 5 (1 + i 2) 

(b) 2 5i 

SOLUTION. The matrices of (a) and (c) are hermitian because 'A = A. 

5. Show that the diagonal elements of a hermitian matrix are real. 
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SOLUTION. The diagonal elements verify akJ. = akJ., so they must be real. 

6. Show that a triangular hermitian matrix is diagonal. 

SOLUTION. The conjugate transpose of a lower (resp. upper) triangular ma­
trix is an upper (resp. lower) triangular matrix. The result follows. 

7. Let A, B be hermitian matrices (of the same size). Show that A+B is 
hermitian. If AB = BA, show that AB is hermitian. 

SOLUTION. The matrix A + B is hermitian because 

'(A+B)='A+'B=A +B =A+B. 

Under the assumption that AB = BA, the matrix AB is hermitian because 

'(AB)='B'A = BA = BA = AB. 

8. Let V be a finite dimensional vector space over C. with a positive definite 
hermitian product. Let A: V ~ V be a hermitian operator. Show that 
1+ iA and 1- iA are invertible. [Hint: If v::t; O. show that 
II (I +iA)v"::t; O.) 

SOLUTION. We contend that Ker(l + iA) = {O}. We have 

«(I + iA)v. (I + iA)v) = (v. v) + (v. iAv) + (iAv. v) + (iAv. iAv) 
= (v, v) - i(v, Av) + i(v, Av) + (Av. Av) 
=(v,v)+(Av.Av). 

Since the product is positive definite, our contention is proved. Theorem 
3.3 of Chapter III guarantees that 1+ iA is invertible. The same argument 
shows that 1- iA is invertible. 

9. Let A be a hermitian matrix. Show that 'A and A are hermitian. If A is 
invertible, show that A -1 is hermitian. 

SOLUTION. The matrix 'A is hermitian because 

'('A)='(A) = 'A. 

The matrix A is hermitian because 

'(A)='('A) = A = A. 
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See Exercise I for the proofthat K' is hermitian. 

10. Let V be a finite dimensional space over C, with a positive definite hermi­
tianform ( ,). Let A: V ~ V be a linear map. Show that the following 
conditions are equivalent: 
(i) We have AA' = A'A. 

(ii)Forall VEV, IIAvll=IIA'vll(where Ilvll=~(v,v)). 
(iii) We can write A = B+iC, where B, Care hennitian, and BC = CB. 

SOLUTION. 
(i) implies (ii). Indeed, 

II Av 112= (Av, Av) = (v, A' Av) = (v, AA'v) = (AA'v, v) 

= (A'v, A'v) = (A'v, A'v) = II A'v 11 2 • 

(ii) implies (i). The assumption implies 

(Av, Av) = (A 'v, A'v) 
=> (A'Av, v) = (AA'v, v) 
=> «(A'A - AA')v, v) = 0, 

so Theorem 2.4 implies that A and A' commute. 

(iii) implies (i). Since A' = B' - iC' = B - iC and BC = CB, we 
have 

and 

A' A = (B - iC)( B + iC) = B2 + C 2 • 

(i) implies (iii). Let B=t(A+A') and C=t(A-A'). Then we 
have B+ iC = A and 

2(Bv, w) = (Av, w) +(w, A'v) = (v, A'w)+(v, Aw) = 2(v, Bv), 

so B is hermitian. A similar argument shows that C is hermitian. Finally, 
Band C commute because A and A' commute. Indeed, 

4iBC= (A2 -AA'+A'A -A'A') 

and 
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4iCB = (A' +AAo -AoA -AoAo). 

11. Let A be a non-zero hermitian matrix. Show that tr(AAo) > O. 

VII, §3 Unitary Operators 

1. (a) Let V be a finite dimensional space over R. with a positive definite 
scalar product. Let {Vi ..... vJ and {Wl' ...• wJ be orthonormal bases. Let 
A: V ---7 V be an operator of V such that AVi = Wi' Show that A is real 
unitary. 
(b) State and prove the analogue result in the complex case. 

SOLUTION. (a) If x = LaYi and y = Lbiv" then 
i j 

(x. y) = Laibi 
i 

and 

(Ax. Ay) = (LaiAv" LbiAv) = Laibi , 
j ; j 

whence A is real unitary. 

(b) We prove Theorem 3.4 in the complex case. Using the notation of part 
(a) we see that 

(x. y) = La))" 

and 

(Ax. Ay) = (La,Av,. LbiAv) = La);;, 
i j i 

so A is complex unitary. 
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2. Let V be as in Exercise 1. Let {VI' ... ' V.} be an orthonormal basis of V. 

Let A be a unitary operator of V. Show that {Avl' ... ' Av.} is an orthonor­
mal basis. 

SOLUTION. For all i::F- j we have 

and 

so {A vI' ... , A v.} is an orthonormal basis of V. 

3. Let A be real unitary matrix. 
(a) Show that 'A is unitary. 
(b) Show that KI exists and is unitary. 
(c) If B is real unitary, show that AB is unitary, and that B-1 AB is unitary. 

SOLUTION. (a) The matrix 'A is real unitary because 

'('A) = A = ('At. 

(b) Since (Av, Av) = (v, v), we see that Ker{A} = {O}; so the matrix KI 
exists and is real unitary because 

(c) The matrix AB is real unitary because 

'(AB)='B'A = B-IKI = (ABt. 

The matrix B-1 AB is real unitary because 

4. Let A be complex unitary matrix. 
(a) Show that 'A is unitary. 
(b) Show that A -I exists and is unitary. 
(c) If B is complex unitary, show that AB is unitary, and that B-IAB is uni­
tary. 
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SOLUTION. (a) (b) and (c) The arguments are the same as in Exercise 3 ex­
cept for the complex conjugate matrix. We work out (c), 

5. (a) Let V be a finite dimensional space over R, with a positive definite 

scalar product, and let {VI"'" v,,} = Band {WI"'" w,,} = B' be orthonormal 

bases of V. Show that the matrix M::,(id) is real unitary. [Hint: Use 

(Wi' w; ) = 1 and (W;, Wi ) = 0 if i '* j, as well as the expression 

W = " a .. v. for some a E R.J 
I £... IJJ I} 

(b) Let F: V---7V be such that F(v;}=wJorall i. Show that M::,(F) is 
unitary. 

SOLUTION. (a) We can write v; = Iapwj . Then M;,(id) = (a;j) = A. We 
j=1 

contend that 'M = I. If 'M = (c;j ), then 

But 

thereby proving our contention, 

(b) We simply have 

6. Show that the absolute value of the determinant of a real unitary matrix is 
equal to I. Conclude that if A is real unitary, then Det(A) = 1 or -1. 

SOLUTION. Since 'M=I and Det('AA) = Det('A)Det(A) = [Det(A)f, 

the assertion drops out. 

7. If A is a complex square matrix, show that Det(A) = Det(A). Conclude 

that the absolute value of the determinant of a complex unitary matrix is 
equal to I. 
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SOLUTION. The fact that Det(X) = Det{A} follows from the formula for 

the determinant and the properties of the conjugate of a complex number, 
namely, the conjugate of a sum is the sum of the conjugates and the conju­
gate of a product is the product of the conjugates. As a consequence we 
have 

Det( 'X) = Det{ A} , 

so if 'XA = I, then 

1 = Det{A} Det{A} = I Det{A} 12 . 

8. Let A be a diagonal real unitary matrix. Show that the diagonal elements of 
A are equal to I or -1. 

SOLUTION. All of the diagonal elements are :t; 0, and the inverse matrix is 
given by 

[

a1-
1 ~, ••• 01 

A-1 _ 0 a2 : 

- : 0 . 

o 0 a:1 

But A='A and 'A = A-I so a. = a~l. Therefore, the diagonal elements of A 
1 1 

are equal to 1 or -1. 

9. Let A be a diagonal complex matrix. Show that each diagonal element has 
absolute value 1, and hence is of type e'TI, with e real. 

SOLUTION. The same argument as in Exercise 8 shows that iij = a;', so 

lal = 1. 

The following exercises describe various properties of real unitary maps of the 
plane R2. 

10. Let V be a 2-dimensional vector space over R with a positive definite scalar 
product, and let A be a real unitary map of V into itself. Let {Vl' v2 } and 

{Wl'W2 } be orthonormal bases of V such that AV,=w,for i=1,2. Leta. 
b, c, d be real numbers such that 

WI = aV l +bv2 

w2 = cV1 +dv2 
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SOLUTION. Since (wl'w l )=(w2 ,w2 )=I, we immediately have that 

a2 +b2 =c2 +d2 =I,and (W I ,W2)=O implies ac+bd=O. Onecanei­

ther see geometrically that a2 = d2 and c2 = b2 by noting that the vectors 
(a, b) and (c, d) are perpendicular and that they both have norm one, 

or one can do the algebra. For instance, if b and c are both non-zero then 
alb = -dlc and 

11. Show that the determinant ad - bc is equal to 1 or -1. (Show that its 
square is 1.) 

SOLUTION. Squaring the desired quantity we get 

(ad - bC)2 = a2d 2 - 2acbd + b 2c2 = a4 + 2a2c2 + c4 

= (a 2 + c2 f = (a 2 + b2 )2 = I. 

12. Define a rotation of V to be a real unitary map A of V whose determinant 
is 1. Show that the matrix of A relative to an orthogonal basis of V is of 
type 

for some real numbers a, b such that a2 + b2 = 1. Also prove the converse, 
that any linear map of V into itself represented by such a matrix on an or-
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thonormal basis is unitary. and has determinant I. Using calculus. one can 
then conclude that there exist a number 9 such that a = cos 9 and 
b = sin 9. 

SOLUTION. Let {VI' vJ be an orthogonal basis for V. Let w; = Av; and 

WI = aVI +bv" 
w" = cVI +dv2 • 

The matrix representing V in the chosen basis is 

Then, since (Av;o Av) = (v;, v), we have 

(a 2 -I)(vp vl )+b2 (V2 • v2 ) = 0 

c2 (v p vl )+(d2 -1)(v2 • vJ = o. 

But dwl-bw" = (ad-bc)vI =vp so 

thus (*) implies a" = d 2 and b 2 = c". Moreover, 

so ac and bd are of opposite signs and therefore the matrix of A has the de­
sired form. 

Conversely, suppose that A is of the form described in the problem. 
Let {VI' v2 } be the orthonormal basis, and let v = cV1 + dv2 • Then 

so that 

(Av.Av) = (ca - bd)" +(cb+da)" = c2 +d2 = (v. v). 

Hence A is unitary. 

13. Show that there exists a complex unitary matrix U such that if 
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A = (COS e -sin e) 
sin e cos e 

then V-IAV = B. 

and 

..f2 72 (Ii) SOLVTION. Let Vo = ; -.:.. . Then det Vo = I d V -I = ..f2 ..f2 'V-(
I -i} 

an 0 ~ I 0 

72 ..f2 ..f2 ..f2 

so Vo is complex unitary and one verifies that 

Let V = V~I and conclude. 

14. Let V = C be viewed as a vector space of dimension 2 over R. Let 
a E C, and let La.: C ~ C be the map Z f-+'az. Show that La is an R­
linear map of V into itself. For which complex numbers a is La a unitary 
map with respect to the scalar product (z, w) = Re(zw)? What is the matrix 
of La with respect to the basis {l, i} of Cover R? 

SOLVTION. We have 

and 

LJ cz) = a(cz) = caz = cLa (z). 

We contend that La is unitary if and only if I a I = 1. This result is obvious 

form the fact that 

Let a = a + ib. Then 

so the matrix of La. with respect to the basis {l, i} is 

www.MathSchoolinternational.com


CHAPTER VIII 

Eigenvectors and 
Eigenvalues 

VIII, §1 Eigenvectors and Eigenvalues 

1. Let a E K and a*-O. Prove that the eigenvectors of the matrix 

generate a i-dimensional space, and give a basis for this space. 

SOLUTiON. The equation 

is equivalent to the system 

{
x+ay = Ax 

y =AY 

If y*-O, then A = I but we get a contradiction with the first equation, so 
assume that y = O. Then we are left with x = Ax. So the eigenvectors of 

the matrix generate the I-dimensional space V = {( x, 0), x E K}. A basis 

for this space is given by the column vector (~). 
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2. Prove that the eigenvectors of the matrix (~ ~) generate a 2-dimensional 

space and give a basis for this space. What are the eigenvalues of this ma­
trix? 

SOLUTION. We solve 

So we have 

{2X= Ax 
2y = A.y 

therefore, the only eigenvalue ofthe matrix is A. = 2. The vectors (1, 0) and 

(0,1) are eigenvectors of the matrix, and they are linearly independent. 

3. Let A be a diagonal matrix with diagonal elements aII' ••• ' ann. What is the 
dimension of the space generated by the eigenvectors of A? Exhibit a basis 
for this space, and give the eigenvalues. 

SOLUTION. Since AEi = ajjEi , the eigenvectors generate an n-dimensional 

space, and the eigenvalue of the eigenvector Ei is ajj . 

4. Let A = (aij) be an n x n matrix such that for each i = 1, ... , n we have 

!aij = O. Show that 0 is an eigenvalue of A. 
i~l 

SOLUTION. We have 

[:: ... J}(n 
So if Xl is the column vector with all ones, we have AXI = OXl; so 0 is an 
eigenvalue of A. 

s. (a) Show that if e E R, then the matrix 

(
COS e sin e ) A= 
sin e -cos e 
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always has an eigenvector in R 2, and in fact that there exists a vector VI 

such that AVI = VI' [Hint: Let the first component of VI be 

sin e 
x= 

I-cos e 

if cos e *" 1. Then solve for y, What if cos e = I ?J 
(b) Let v2 be a vector of R2 perpendicular to the vector VI found in (a). 
Show that AV2 = -v2' Define this to mean that A is a reflection. 

SOLUTION. (a) Case 1. If cos e *" I, consider the equation 

(
COS e sin e)( sin e 1 [ sin e 1 
sin e -cos e 1-~os e = 1- ~os e ' 

or, equivalently, 

{

COS esin e . e sin e 
..:....:..:......:..:=..:.. + ysm = ---
I - cos e 1 - cos e 

sin 2e 
---=.:::::.......::..- - ycos e = y. 
I-cos e 

Solving for y we see from the second equation that y = 1. Conversely, one 
verifies at once that if 

[ 
sin e 1 

VI = 1- c10s e ' 

then AVI = VI. 

Case 2. If cose=I, then sine=O; so VI =(~) solves the equation 

Av=v. 

(b) Case 1. If cos e *" I, then a vector perpendicular to VI is 

Then the first component of A w is 
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8 sin 28 1- cos e 1 
-cos + = = 

I-cose I-cose ' 

and the second component of Aw is 

-sin e _ cos e sin e = _ sin 8 , 
1 - cos e 1 - cos e 

so Aw = -w, and therefore any multiple v2 ofw verifies AV2 = -v2 • 

Case 2. If cos e = 1, then 

so any multiple v2 of (~) verifies AV2 =-v2 • 

6. Let 

R(e) = (c~s e -sin e) 
SIll 8 cos e 

be the matrix of a rotation. Show that R(e) does not have any real eigen­
values unless R(e) = ±I. [It will be easier to do this exercise after you 
have read the next section.] 

SOLUTION. We set the characteristic polynomial PR(9) equal to 0, namely, 

Det(Al - R(e)) = 0. 

We find 

The discriminant of this equation is 4( cos2e -1), so the matrix R(e) has a 

real eigenvalue (1 or -1) if and only if cos 8 = ±I, which is equivalent to 
R(e) = ±I. 

7. Let V be a finite dim·ensional vector space. Let A, B be linear maps of V 
into itself. Assume that AB = BA. Show that if v is an eigenvector of A, 
with eigenvalue A., then Bv is an eigenvector of A, with eigenvalue A. also 
if Bv c:I= 0. 
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SOLUTION. We have 

A(Bv) = B(Av) = B(AV) = ABv. 

VIII, §2 The Characteristic Polynomial 

1. Let A be a diagonal matrix with diagonal elements at' ... , an' 
(a) What is the characteristic polynomial of A? 
( b) What are its eigenvalues? 

SOLUTION. (a) The characteristic polynomial of A is 

PA(t) = (t- a,)(t -a2 )" .(t -an)' 

(b) The eigenvalues are at' az"'" an . 

2. Let A be a triangular matrix 

[

all 0 ... 0] 
a;, a;2 ... ~ . 

anI an2 ann 
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What is the characteristic polynomial of A, and what are its eigenvalues? 

SOLUTION. Expanding according to the first row in each subdeterminant 
we find that the characteristic polynomial of A is 

so the eigenvalues are all' a22 , .. ·, ann' 

In the following two exercises, find the characteristic polynomial, eigenval­
ues, and bases for the eigenspaces of the following matrices. 

3. (a) G ~) 
SOLUTION. 
(a) Since 

(b) (~l ~) (-2 -7) 
(c) 1 2 (d) G ;} 

PA (t) = (t -1)(t - 2) - 6 = t 2 - 3t - 4, 
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the eigenvalues are 4 and -1. We solve 

{ 
x+2y=Ax 

3x+ 2y = A.y. 

Setting A. = -1 and fixing y = 1, we find that XI = ( ~ I) is a basis for V_I' 

Setting A. = 4 and fixing y = t, we find that X2 = ( ~) is a basis for V4 • 

(b) Since 

PA(t) = t(t-3)+2 = t 2 -3t+2, 

the eigenvalues are 1 and 2. We solve 

{
3X+2Y =Ax 

-x = A.y. 

Setting A. = 1 and fixing y = 1, we find that XI = ( ~ I) is a basis for VI' 

Setting A. = 2 and fixing y = t, we find that X2 = ( ~1) is a basis for V2 • 

(c) Since 

PA (t) = (t + 2)( t - 2) + 7 = t 2 + 3, 

the eigenvalues are i..J3 and -i..J3. We solve 

{
-2X -7y = Ax 

x+2y = A.y. 

Setting A. = i..J3 and fixing y = 1, we find that XI = ( -2 ~ i..J3) is a basis 

for Vi,j3' 

Setting A. = -i..J3 and fixing y = 1, we find that X2 = (-2 ~ i..J3) is a ba­

sis for V_i,j3' 
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(d) Since 
PA (t)=(t-l)(t-3)-8=t 2 -4t-5, 

the eigenvalues are 5 and -1. We solve 

{ x+4y = Ax 

2x+3y=Ay. 
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Setting A = 5 and fixing y = 1, we find that XI = C) is a basis for Vs . 

Setting A = -1 and fixing y = 1, we find that X2 = ( ~2) is a basis for V_I. 

4. (a) [_~ 0 ~] 
-2 0 1 

[1 -3 3] 
(b) 3 -5 3 

6 -6 4 

[3 1 1] 
(c) 2 4 2 

1 1 3 

(d) [; ~ ~1]. 
-1 1 4 

SOLUTION. 
(a) The characteristic polynomial is given by 

PA (t) = (t - 4)(t _1)2 + 2(t-l) = (t-l)[t 2 - 5t+ 6], 

so the eigenvalues are 1,2, and 3. We have 

j4X+Z = Ax 

-2x+ Y = Ay 

-2x+z = Az. 

Setting A ~ I. we find that X, ~ (!) is a basis for V,. 

Setting A= 2. we find that X, ~ [ ~~] is a basis for V,. 
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Setting l. ~ 3. we find that X, ~ [ ~:) is a basis for V,. 

(b) The characteristic polynomial is 

so the eigenvalues are - 2 and 4. The equation AX = AX is equivalent to 

{ 
x-3y+3z=Ax 
3x-5y+3z = AY 

6x-6y+ 4z = Az. 

When A = -2 the system is equivalent to the equation x - y + z, so a basis 
for V_2 is given by the two column vectors 

When l. ~ 4 we see that a basis for V, is given by [n 
(c) The characteristic polynomial is 

so the eigenvalues are 2 and 6. The equation AX = AX is equivalent to 

{ 
3x+y+z= Ax 

2x + 4 Y + 2z = AY 

x + Y + 3z = Az. 

When A = 2 the above system is equivalent to x + y + z = 0, so a basis for 
V2 is given by the two vectors 
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UJ and [D 
When ). = 6 we find that x = z and y = 2x. so a basis ferr V. is [n 
(d) The characteristic polynomial is 

so the eigenvalues are 1 and 3. The equation AX = AX is equivalent to 

{
X+2Y +2Z = Ax 
x+2y-z = AY 

-x+y+4z=A.z 
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When A = 3 the above system is equivalent to - x + y + z = 0, so a basis 
for V3 is given by the two vectors 

m and [JJ 
When A = 1 the system implies that y = -z and x = 2z, so a basis for VI 

is 
given by the vector 

5. Find the eigenvalues and eigenvectors of the following matrices. Show that 
the eigenvectors form a i-dimensional space. 

(2 -1) (1 1) (2 0) 
(a) 1 0 (b) 0 1 (c) 1 2 (d) . (2 -3) 

1 -1 

SOLUTION. 
(a) The characteristic polynomial is 
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so the only eigenvalue is 1. The equation AX = X is equivalent to 

{
2X- Y =x 

x =Y. 

so the space generated by the eigenvectors is V = {( x, y) such that x = y}. 

A basis for this space is C)' so V has dimension 1. 

(b) The characteristic polynomial is 

so the only eigenvalue is 1. The equation AX = X is equivalent to 

{
x+ y =x 

y =y, 

so the space generated by the eigenvectors is the space generated by (~). 

(c) The characteristic polynomial is 

so the only eigenvalue is 2. The equation AX = 2X is equivalent to 

{ 
2x = 2x 

x+2y=2y, 

so the space generated by the eigenvectors is the space generated by (~} 

(d) The characteristic polynomial is 

so the eigenvalues are 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 

A = l+i..J3 and A = 1-i..J3 
1 2 2 2· 

The equation AX = U is equivalent to 

{2X-3Y = Ax 
x- y = Ay 

¢:::> {-3Y =(A-2)X 
x =(A+1)y. 

Now we let y = 1 and find that two linearly independent eigenvectors are 
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6. Find the eigenvalues and eigenvectors of the following matrices. Show that 
the eigenvectors form a I-dimensional space. 

(a) [~ ~ ~] (b) [~ ~ ~]. 
001 001 

SOLUTION. 
(a) The characteristic polynomial is 

so the only eigenvalue is 1. The equation AX = X is equivalent to 

lx+ y+z = x 

y+z=y 
z =z. 

(b) The characteristic polynomial is 

so the only eigenvalue is 1. The equation AX = X is equivalent to 
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{
X+Y =x 

y+z=y 

z =z. 

so y = , = 0, and therefore a basis for the eigenspace is [n 
7. Find the eigenvalues and a basis for the eigenspaces of the following matri­

ces. 

(a) [~ ~ r ~J 
1 000 

[
-1 0 1) 

(b) -1 3 0 . 

-4 13 -1 

SOLUTION. 
(a) The characteristic polynomial is 

so the eigenvalues of the matrix are Al = 1, A2 = -1, A3 = i, and A4 = -i. 
The following eigenvectors are a basis for the associated eigenspace: 

X(A,)=[j} X(A,) =[ iJ X(A,) = LJ Md X(A,) = [~:l 
(b) The characteristic polynomial is 

whose unique real root is Al = 2. The two other roots are complex, which 

we call A2 and A3, and they are distinct because they are conjugates. The 

equation Av = AV is equivalent to the system 

I -X+Z=Ax 

-x+3y =AY 

-4x+13y-z =Az. 
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When l. = 2, a basid", V, is X(l.,) = [:J 
When A = A2 or A = A3 , then the above system is equivalent to 

{ 

Z =(A+I)x 

-x =(A-3)y 

-4x+13y =(A+I)z, 

so the following eigenvectors form a basis for the associated eigenspace: 
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8. Find the eigenvalues and a basis for the eigenspaces for the following matri-
ces. 

(a) G ;) (b) G ~2) (c) (~2 ~) 

[-I 2 2] 
(d) 2 2 2 

-3 -6 -6 

(3 2 I] 
(e) 0 1 2 

o 1 -1 

[-I 4 -2] 
(f) -3 4 0 . 

-3 1 3 

SOLUTION. (a) The characteristic polynomial is 

so the eigenvalues are Al = 7 and A2 = -2. Then the equation AX = AX is 
equivalent to 

{
2X+4Y = Ax 
5x+3y = Ay. 

So if we put x=4,we see that a basis for V)., is X(A I )=(:). 
Putting x = I, we find that a basis for VA, is X( A2 ) = ( ~ 1). 
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(b) The characteristic polynomial is 

so the eigenvalues are Al = 2 and 11.2 = -3. Then the equation AX = AX is 
equivalent to 

{ 
X+2y=Ax 

2x-2y = Ay. 

So if we put y=l,weseethatabasisfor V)., is X(AI)=G} 

Putting x = 1, we see that a basis for V). is X(A2 ) = ( 1 ). , -2 

(c) The characteristic polynomial is 

so the eigenvalues are Al = 3 + 2i and 11.2 = 3 - 2i . Then the equation 

AX = AX is equivalent to 

{ 3X+2Y =Ax ¢::> {2Y =(A-3)X 
-2x+3y = AY 2x = (3-A)y, 

When x = 1, we see that bases for V)., and V).,, respectively, are given by 

(d) The characteristic polynomial is 

so the eigenvalues are Al = 0, 11.2 = -2, and 11.3 = -3. Then Ax = Ax is 
equivalent to 

j-X+2Y +2Z=Ax 

2x + 2 Y + 2z = AY 

-3x-6y-6z=A.z 

{ 
2y+2z=(A+I)x 

¢::> 2x+2z=(A-2)y 

-3x - 6y = (A + 6)z. 
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When A = 0, the first and second equations imply that x = 0, so a basis for 
Vl., is 

X(A,)=(~J 
When A = -2, the first and second equations that imply z = 0; so if we put 
y = 1, we see that a basis for the eigenspace Vl., is 

X(A,) = (7J 
When 1..= -3, the first and second equations imply that y = 0; so if we put 
x = 1 we find that a basis for Vl., is 

X(A')=(~J 
(e) The characteristic polynomial is 

so the eigenvalues are AI = 3, 1..2 = -fj, and 1..3 = --f3. The equation 

AX = AX is equivalent to 

{
3X + 2 y + z = Ax 

y+2z =AY 

y-z=A.z 

{
2Y+Z = (A-3}x 

¢::> 2z = (A -l}y 

Y = (1..+ 1}z. 

So when A= 3, we ,md that y =, = 0; so a basis for V, is (H 
When 1..=1..2 or 1..= 1..3, we set z = 1, so that bases for Vl., and VA, are re­

spectively, given by 
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2(1.,2 +1)+1 

1.,2 -3 
1.,2 +1 

1 

(1) The characteristic polynomial is 

and 

2(1.,3 + 1)+ 1 

1.,3 -3 
1.,3 +1 

1 

2--./3 

1+-./3 
= --./3+1 

1 

P A (t) = t3 - 6t2 + lIt - 6 = (t - 1)( t - 2)( t - 3) , 

so the eigenvalues are 1.,1 = 1, 1.,2 = 2 ,and 1.,3 = 3. The equation AX = AX 
is equivalent to 

{
-X+4Y-2Z =A.x 

-3x+4y =I..y 

-3x+y+3z =J..z. 

When A = I, we find that x = y and z = y;so a \)as;s fo, V" is (:} 

When). = 2, we find that Z = Y and 3x = 2y; so a basis fo< V, is [H 

When ). = 3, we find that y = 3x and 4x = z; so a basis fo, V, is [!} 
9. Let V be an n-dimensional vector space and assume that the characteristic 

polynomial of a linear map A: V ~ V has n distinct roots. Show that V 
has a basis consisting of eigenvectors. 

SOLUTION. Each root of the characteristic polynomial is an eigenvalue 
which has a non-zero eigenvector. The n eigenvectors associated to the 
eigenvalues are linearly independent because the eigenvalues are distinct so 
these eigenvectors form a basis for V. 

10. Let A be a square matrix. Show that the eigenvalues of 'A are the same as 
those of A. 
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SOLUTION. The transpose of AI - A is AI-'A. Since the detenninant of a 
matrix is equal to the detenninant of its transpose, we conclude that the 
eigenvalues of 'A are the same as those of A. 

11. Let A be an invertible matrix. If A is an eigenvalue of A show that A::F 0 
and that A.-I is an eigenvalue of A-I. 

SOLUTION. If 1.= 0, then for some non-zero vector v we would 
have Av = 0, which is impossible because A is invertible. Therefore, A::F ° 
and we have 

hence A-I is an eigenvalue of A-I. 

12. Let V be the space over R generated by the two functions sin t and cos t. 
Does the derivative (viewed as a linear map of V into itself) have any non­
zero eigenvectors in V? If so, which? 

SOLUTION. The matrix of the derivative with respect to {sin t, cos t} is 

(0 -1) 
1 ° ' 

so the characteristic polynomial, which is PD(t) = t 2 + 1, has no real root. 
Therefore, the derivative does not have a non-zero eigenvector. One could 
also proceed directly from the definition. Let v = acos t + bsin t. Then 
Dv = AV implies 

{
-a =Ab 

b =t.a. 

So (1.2 + l)a = 0, which implies that a = b = 0; so we see that D does not 

have a non-zero eigenvector in V. 

13. Let D denote the derivative which we view as a linear map on the space of 
differentiable functions. Let k be an integer ::F O. Show that the functions 
sin kx and cos kx are eigenvectors for D2. What are the eigenvalues? 

SOLUTION. We see that the eigenvalue is - e because 

D( sin kx) = kcos kx so D2 (sin kx) = -esin kx 

and similarly, D2( cos kx) = -ecos kx. 
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14. Let A: V ~ V be a linear map of V into itself, and let {v!' ... , v.} be a ba­
sis of V consisting of eigenvectors having distinct eigenvalues C!' ... , cn ' 

Show that any eigenvector v of A in V is a scalar multiple of some Vi' 

SOLUTION. We assume v:t:. O. Then we can write v = !aivi , where not 
;=1 

all ai are zero. Then Av = "'v implies 

!aicivi = !MiVi ; 
j=l ;=1 

so 

! ai (ci - '" )Vi = O. 
;=1 

Since not all ai are zero, we see that ck = '" for some k. Since all ci are 
distinct, we must have ai = 0 for all i:t:. k, proving that v is some scalar 
multiple of vk • 

15. Let A, B be square matrices of the same size. Show that the eigenvalues of 
AB are the same as the eigenvalues of BA. 

SOLUTION. We contend that the eigenvalues of BA are also the eigenval­
ues of AB. Suppose that for some non-zero vector X we have 

Case 1. If '" = 0, then BA is not invertible. Hence Det(BA) = 0, which 
implies that Det(B) = 0 or Det(A) = O. Therefore, AB is not invertible; 
so for some non-zero vector Y we have ABY = 0, proving that 0 is an 
eigenvalue of AB. 

Case 2. Assume"':t:. O. Then (*) implies, A(BAX) = A(A.X}; so 

(AB)(AX) = "'(AX). 

The vector AX is non-zero; otherwise, from (*) we see that '" = 0, which 
is a contradiction. So '" is an eigenvalue of AB, and this proves our con­
tention. 

By symmetry we conclude that the eigenvalues of AB are the same as the 
eigenvalues of BA. 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 135 

VIII, §3 Eigenvalues and Eigenvectors of 
Symmetric Matrices 

1. Find the eigenvalues of the following matrices, and the maximum value of 
the associated quadratic form on the circle. 

(2 -1) (1 1) 
(a) -1 2 (b) 1 0 . 

SOLUTION. 
(a) The characteristic polynomial is 

PA (t)=t 2 -4t+3, 

so the eigenvalues are 1 and 3. The maximum of the associated quadratic 
form on the unit circle is 3. 

(b) The characteristic polynomial is 

PA (t)=t 2 -t-I, 

so the eigenvalues are 

1 + {5 and 1-{5 . 
2 2 

The maximum of the associated quadratic form on the unit circle is the 
largest of these eigenvalues. 

2. Same question, except find the maximum on the unit sphere. 

(a) [~1 ~1 ~11 (b) [~I ~1 ~11. 
o -1 1 0 -1 2 

SOLUTION. 
(a) The characteristic polynomial is 

PA (t) = t 3 - 4t2 + 3t = t(t -1)(t - 3), 

so the eigenvalues are 0, 1 and 3. Hence the maximum of the associated 
quadratic form on the unit sphere is 3. 
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(b) The characteristic polynomial is 

PA (t) = t' - 6t2 + lOt - 4 = (t - 2}(t2 - 4t + 2), 

so the eigenvalues are 

2, 2+.fi and 2-.fi, 

and the maximum of the associated quadratic form on the unit sphere is 

2+.fi. 

3. Find the maximum and minimum of the function 

f( x, y) = 3x2 + 5xy - 4 y2 

on the unit circle. 

SOLUTION. The given function is the quadratic form associated with the 
matrix 

( 3 1-) 
f -4 . 

The characteristic polynomial of this matrix is 

so the eigenvalues are 

-1 +-.fi4 
2 

-1- -.fi4 
and 2 . 

Thus the maximum off on the unit circle is the largest eigenvalue, and the 
minimum off on the unit circle is the smallest eigenvalue. 

VIII, §4 Diagonalization of a Symmetric 
Linear Map 

1. Suppose that A is a diagonal n x n matrix. For any X E Rn. what is 
'XAX in terms of the coordinates of X and the diagonal elements of A? 

SOLUTION. If A.I' .... A.n are the diagonal elements of the matrix A, then 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 137 

2. Let 

A=l~~' ~] 
o 0 An 

be a diagonal matrix with AI;;:: 0, ... , An;;:: O. Show that there exists an 
n x n matrix B such that B2 = A. 

SOLUTION. Squaring the matrix 

B=[~ k ~ I : 0 ' 

o 0 F. 
we find that B2 = A. 

3. Let V be a finite dimensional vector space with a positive definite scalar 
product. Let A: V ~ V be a symmetric linear map. We say that A is 
positive definite if (Av, v) > 0 for all v E V and v"# O. Prove: 
(a) If A is positive definite, then all eigenvalues are> o. 
(b) If A is positive definite, then there exists a symmetric linear map B such 
that B2 = A and BA = AB. What are the eigenvalues of B? [Hint: Use a 
basis of V consisting of eigenvectors.} 

SOLUTION. (a) Let A be an eigenvalue for A and v a non-zero eigenvector 

for A with II v II = 1. Then 

1..= (A.V, v) = (Av, v) > O. 

(b) Let {v!' ... , vn } be an orthonormal basis of V of eigenvectors of A with 

respective eigenvalues A!, ... ' A.. Then the matrix of A with respect to this 
basis is 
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[
AI 0 ... 01 
o 1..2 : 

AM = . 
: 0 

o 0 An 

As in Exercise 2, consider the linear map B: V ~ V whose matrix with re­
spect to {v!' ... , vn } is 

[
-F: 0 ... 

B= 0 {i:; 
M • 

o 0 1] 
Then clearly we have B! = AM and BMAM = AMBM, and the eigenvalues of B 

are -F:, ... , F.. We contend that B is symmetric. If v = L a,v, and 

w = Lbjvj , then 

(Bv, w) = !a,b,.Jf; = (v, Bw), 
&=1 

which proves our contention and concludes the exercise. 

4. We say that A is semipositive definite if (Av, v};;:: 0 for all v E V. 
Prove the analogue of (a), (b) of Exercise 3 when A is only assumed semi­
positive. Thus the eigenvalues are all ;;:: 0, and there exists a symmetric 
linear map B such that B2 = A. 

SOLUTION. The proof is exactly the same as in Exercise 3, with;;:: signs 
instead of >. 

s. Assume that A is symmetric positive definite. Show that A 2 and A -I are 
symmetric positive definite. 

SOLUTION. The map A is invertible because the assumptions imply that 
KerA={O}. For A2 wehave 

and 

(A 2v, v) = (Av, Av) > 0 
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whenever v * 0; so A2 is symmetric and positive definite. 
For A -I we have 

(A-IV, w) = (A-IV, AA-Iw) = (AA-Iv, A-Iw) = (v, A-Iw) 

and 

whenever v * O. 

6. Let A: R n ~ R n be an invertible linear map. 
(i) Show that 'AA is symmetric positive definite. 
(ii) By Exercise 3b, there is a symmetric positive definite B such that 
B2='AA. Let U = AB-I. Show that U is unitary. 
(iii) Show that A = UB. 

SOLUTION. (i) The map 'AA is symmetric because 

('AAv, w) = (Av, Aw) = (v,'AAw), 

and if v * 0, then A v * 0; so 

('AAv, v) = (Av, Av) > 0, 

thus 'AA is positive definite. 

(ii) We have U-I = BKI and BB='AA, so 

(iii) UB=AB-IB=A. 

7. Let B be symmetric positive definite and also unitary. Show that B = I. 

SOLUTION. We have B='B and 'B = B-1, so B = B-1 • Considering a ba­
sis of eigenvectors of B, and looking at the matrices of B and its inverse 
with respect to this basis, we find that 
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where AI''''' An are the eigenvalues ofthe basis vectors. Since Ai> 0, we 

see that Ai = 1; so B = I. 

8. Prove that a symmetric real matrix A is positive definite if and only if there 
exists a non-singular matrix N such that A='NN. [Hint: Use Theorem 4.4, 
and write 'UAU as the square of a diagonal matrix, say B2. Let 
N=UB-I.j 

SOLUTION. Once direction was proved in Exercise 6 (i). Suppose that A 
is symmetric positive definite. Then 'UAU is positive definite because U is 
invertible and 

'X'UAUX='(UX)A(UX) > 0. 

So there exists an invertible diagonal matrix B such that B2='UAU. Let 
N=B'U; then 

'NN =U'BB'U = UB2'U = A. 

9. Find an orthogonal basis of R2 consisting of eigenvectors of the given ma­
trix. 

(a) G ~) (-1 1) 
(b) 1 2 (c) (~ ~) 

(d) G ~) (1 -1) 
(e) -1 1 (2 -3). 

if) -3 1 

SOLUTION. (a) The characteristic polynomial is 

PA(t) = (t-l)(t- 2)-9 = t2 - 3t -7, 

so the eigenvalues are Al = (3 + .ffi) /2 and 1.2 = (3 - .ffi) /2. The equa­

tion AX = AX is equivalent to 

{ 
3y = (A-l)x 

3x = (A-2)y, 

so an orthogonal basis of eigenvectors for R2 is given by 

(b) The characteristic polynomial is 
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so the eigenvalues are 1..1 = (1 + .[13)/2 and 1..2 = (1- .[13)/2. The equa­

tion AX = AX is equivalent to 

{ Y=(A.+l)X 
x=(A.-2)y, 

so an orthogonal basis of eigenvectors for R 2 is given by the two vectors 

(c) The characteristic polynomial is 

so the only eigenvalue is 2. Therefore, an orthogonal basis of eigenvectors 
for R2 is given by 

(~) and (~} 
(d) The characteristic polynomial is 

PA(t) = t(t-2), 

so the eigenvalues are 0 and 2. The equation AX = AX is equivalent to 

{ Y=(A.-l)X 
x=(A.-l)Y' 

so an orthogonal basis of eigenvector for R2 is given by the two vectors 

(e) The characteristic polynomial is 
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so the eigenvalues are 0 and 2. The equation AX = AX is equivalent to 

{ -y=(A-l)X 
-x=(A-l)y, 

so an orthogonal basis of eigenvector for R2 is given by the two vectors 

(t) The characteristic polynomial is 

so the eigenvalues are Al = ( 3 + .ffi) /2 and A2 = (3 - .ffi) /2. The equa­

tion AX = AX is equivalent to 

{
-3Y = (A-2)x 
-3x = (A -l)y, 

so an orthogonal basis of eigenvectors for R2 is given by 

10. Let A be a symmetric 2 x 2 real matrix. Show that if the eigenvalues of A 
are distinct, then their eigenvectors form an orthogonal basis of R 2 • 

SOLUTION. The eigenvectors of the distinct eigenvalues are linearly inde­
pendent and therefore form a basis for R2. By Exercise 14, §2, and the 
Spectral Theorem we conclude at once that this basis is orthogonal. 

11. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A: V --+ V be a symmetric linear map. 
Let vI' v2 be eigenvectors of A with eigenvalues AI' A2 respectively. If 
Al '* A2, show that VI is perpendicular to v2 • 

SOLUTION. We have 
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12. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A: V ~ V be a symmetric linear map. If 
A has only one eigenvalue, show that every orthogonal basis of V consists 
of eigenvectors of A. 

SOLUTION. By the Spectral Theorem, there exists an orthonormal basis 
{v" ... , vn } of eigenvectors of A. Then, given any vector w, we can write 

w = L,aivi . Hence 

where A is the unique eigenvalue of A. Conclude. 

13. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A: V ~ V be a symmetric linear map. 
Let dimV = n and assume that there are n distinct eigenvalues of A. Show 
that their eigenvectors form an orthogonal basis of v. 

SOLUTION. The eigenvectors are linearly independent, so we must show 
that Vi is perpendicular to Vj whenever i"# j. This result was proved in 

Exercise 11. 

14. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A: V ~ V be a symmetric linear map. If 
the kernel of A is {O}, then no eigenvalue of A is equal to 0, and con­
versely. 

SOLUTION. If Ker A = {O}, there exists no non-zero vector v such that 
Av = 0; hence 0 is not an eigenvalue. Conversely, if the kernel of A were 
not 0, then A would have a non-zero vector v such that A v = 0; hence A 
has 0 as an eigenvalue. 

15. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A: V ~ V be a symmetric linear map. 
Prove that the following conditions on A imply each other. 
(a) All eigenvalues are > O. 
(b) For all elements VEV, V"#O, we have (Av,v»O. 

If the map A satisfies these conditions, it is said to be positive definite. 
Thus the second condition, in terms of coordinate vectors and the ordinary 
scalar product in Rn reads: 

For all vectors X E Rn, X"# 0, we have 'XAX > O. 
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SOLUTION. (b) implies (a) was proved in Exercise 3. We now prove that 
(a) implies (b). We can find an orthonormal basis {VI' ... , v"} of eigenvec-

tors of A. So if we write v = L ai Vi ' then 

(Av, v) = (LaiA,vi, Laivi) = ~)'ia~. 
i=l 

So (Av, v) > 0 whenever v:#: 0. 

16. Determine which of the following matrices are positive definite. 

(a) G ~) (b) (~1 ~1) (c) G ~) 

(d) [~ ~ ~l (e) [~1 ~1 ~l. 
3 1 1 0 1 2 

SOLUTION. The matrices of (c) and (e) are positive definite. The matrices 
of (a), (b), and (d) are not positive definite. 

17. Prove that the following conditions concerning a real symmetric matrix are 
equivalent. A matrix satisfying these conditions is called negative defi­
nite. 
(a) All eigenvalues of A are < O. 
(b) For all vectors XER", X:#: 0, we have 'XAX<O. 

SOLUTION. Consider the linear map associated to the matrix and the ordi­
nary inner product. Then the argument runs as in Exercise 15. 

18. Let A be an n x n non-singular real symmetric matrix. Prove the follow­
ing statements 
(a) If A is an eigenvalue of A, then A:#: O. 
(b) If A is an eigenvalue of A, then A-I is an eigenvalue of A"I. 
(c) The matrices A and A -I have the same set of eigenvectors. 

SOLUTION. 
(a) Since A is invertible, Ker A = {O}; so A:#: O. 

(c) In (b) we see that an eigenvector for A is an eigenvector for A"I. 
Conversely, if A"lv = kv, then k-Iv = Av; so an eigenvector for A"I is also 
an eigenvector for A. 
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19. Let A be a symmetric positive definite real matrix. Show that A -I exists 
and is positive definite. 

SOLUTION. See Exercise 5. 

20. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product). Let A and B be two symmetric operators of V 
such that AB = BA. Show that there exists an orthogonal basis of V which 
consists of eigenvectors for both A and B. [Hint: If A is an eigenvalue of 
A, and Vic consists of all v E V such that Av = Av. Show that BVIc is con­
tained in Vic' This reduces the problem to the case when A = AI .] 

SOLUTION. If v E Vic' then we have BAv = ABv; so ABv = ABv, and thus 
Bv E Vic' So Vic has an orthogonal basis consisting of eigenvectors of B. 
These vectors are also eigenvectors for A. 

Now choose a basis {v" ... , vJ for V consisting of eigenvectors of A, 

and let 1..1"'" Ak be the distinct eigenvalues of these basis vectors (cf. 

Exercise 21). Then we can find an orthogonal basis for Vic, that consists of 

eigenvectors for both A and B. Taking the union of all the bases for 
VA" ... , Vic,' we see that we get an orthogonal basis for V which consists of 

eigenvectors of A and B. 

21. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product), and let A: V ~ V be a symmetric operator. 
Let 1..1"'" A, be the distinct eigenvalues of A. If A is an eigenvalue of A, 

let VA(A) consist of the set of all VEV such that Av=Av. 
(a) Show that VA (A) is a subspace of V, and that A maps VA (A) into itself. 
We call VA (A) the eigenspace of A belonging to A. 
(b) Show that V is the direct sum of the space V = VA, (A) EEl··· EEl VA, (A). 

(c) Let AI' 1..2 be two distinct eigenvalues. Show that VA, is orthogonal to 

VA,' 

SOLUTION. 
(a) Clearly, 0 E VA (A). If vl'v2 E VA (A), then 

and if c is a scalar, 

A(cv) = cAv = A.cV, 

so VA (A) is a subspace of V. If v E VA (A), then we have 
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AAv=A(AV)=Mv, 

whence A maps VA (A) into itself. 

(b) By the Spectral Theorem, V has a orthonormal basis of eigenvectors of 
A, so V=VA,+ ... +VI.,' Suppose that v=v,+ ... +v, and v=w,+ ... +w" 

where Vi' Wi EVA,' If ui = Vi - Wi' then 

But the ui's have distinct eigenvalues, so we must have ui = 0 for all i. 

(c) See Exercise 11. 

22. If PI' P2 are two symmetric positive definite real matrices (of the same 
size) and t, u are positive real numbers, show that tP, + uPz is symmetric 
positive definite. 

SOLUTION. The matrix tPI + uP2 is symmetric because 

The sum tPI + uPz is positive definite because 

whenever X:;:. O. 

23. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product), and let A: V ~ V be a symmetric operator. 
Let AI"'" A, be the distinct eigenvalues of A. Show that 

(A - AJ)··· (A - A,I) = O. 

SOLUTION. Let {v" ... , v.} be an orthonormal basis of V consisting of 

eigenvectors of A. The map L = (A-AJ) ... (A -A,I) is linear, and for all 

i we have 

Lv, =0, 

because one of the factors is zero. 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 147 

24. Let V be as in §4 (i.e. a vector space of dimension n over R, with a posi­
tive definite scalar product), and let A: V ~ V be a symmetric operator. A 
subspace W of V is said to be invariant or stable under A if Aw E W for 
all w E W, i. e. AWe W. Prove that if A has no invariant subspaces other 
than 0 and V, then A = ')J for some number A. [Hint: Show first that A 
has only one eigenvalue.] 

SOLUTION. Suppose that A has two distinct eigenvalues Al and 1.2 • 

Then dim VA, ;;::: 1, dim VA, ;;::: 1, and both VA, and VA, are stable under A, so 

we must have VA, = VA, = V. But VA, n VA, = {o}, so we get a contradic­

tion. Therefore, A has a unique eigenvalue, say A. By the Spectral 
Theorem, V has a basis {Vl' ... ' vn } of eigenvectors of A . If v = 2,a;v;, 
then 

Av= La;Av; =A2,a;vi =Av, 

whence A = ')J as was to be shown. 

25. (For those who have read Sylvester's theorem.) Let A: V ~ V be a sym­
metric linear map. Referring back to Sylvester's theorem, show that the in­
dex of nullity of the form (v, w) ~(Av, w) is equal to the dimension of the 
kernel of A. Show that the index of positivity is equal to the number of 
eigenvectors in a spectral basis having a positive eigenvalue. 

SOLUTION. Using the notation of Theorem 8.1 of Chapter V, we contend 
that Vo = Ker A. Suppose v E Vo; then for all w E V we have 

0= (v, w) = (Av, w), 

so Av = O. Clearly, if v E Ker A, then (v, w) = 0 for all WE V. So the 

index of nullity of the form ( , ) is equal to the dimension of the kernel of 
A. 

Let {Vl' ... ' v.} be a spectral basis. Then 

(Vi' v; ) = (Avp v) = A; (Vi' v;) ; 

so (Vi' v; ) > 0 if and only if Ai > o. Conclude. 
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VIII, §5 The Hermitian Case 

Throughout these exercises, we assume that V is a finite dimensional vector 
space over C, with a positive definite scalar product. Also we assume 
dim V>O. 
Let A: V ~ V be a hermitian operator. We define A to be positive definite 
if 

(Av,v»O for all veV, v~O. 

Also, we define A to be semipositive or semidefinite if 

(Av,v)2::0 for all veV. 

1. (a) If A is positive definite then all eigenvalues are > O. 
(b) If A is positive definite, then there exists a hermitian linear map B such 
that B2 = A and BA = AB. What are the eigenvalues of B? {Hint: See 
Exercise 3 of §4.J 

SOLUTION. (a) Let 'A be an eigenvalue of A and v a corresponding non­
zero eigenvector. Then 

0< (Av, v) = 'A(v, v), 

so 'A> O. 

(b) Choose a spectral basis {Vl''''' V n} of eigenvectors of A, and let B be the 
hermitian linear map defined by the matrix 

[
A 0 ... 

B = 0 .ft:: 
M . 

o 0 1] 
with respect to the basis. Then B2 = A and AB = BA. The eigenvalues of 
B are the square roots of the eigenvalues of A. 

2. Prove the analogues of (a) and (b) in Exercise 1 when A is only assumed to 
be semidefinite. 

SOLUTION. Replace the sign > by 2:: in the solution of Exercise 1. 

www.MathSchoolinternational.com


ANSWERS TO EXERCISES 149 

3. Assume that A is hermitian positive definite. Show that A2 and KI are 
hermitian positive definite. 

SOLUTION. The kernel of A is {O}, so A is invertible. The rest of the 
proof is the same as the solution to Exercise 5 of §4. 

4. Let A: V ~ V be an arbitrary invertible operator. Show that there exists a 
complex unitary operator U and a hermitian positive definite operator P such 
that A = UP. [Hint: Let P be a hermitian positive definite operator such 
that p 2 = A'A. Let U = AP-I. Show that U is unitary.} 

SOLUTION. Proceed as in Exercise 6 of §4. The map A'A is hermitian 
and positive definite. So by Exercise 1 (b) there exists a hermitian positive 
definite operator P such that p 2 = A' A. Let U = AP-I. Then U is unitary 
because 

PP=A'A 

and P-IA' = (p-I r A'; so we see that U-I = U'. Clearly, A = UP. 

S. Let A be a non-singular complex matrix. Show that A is hermitian 
positive definite if and only if there exists a non-singular matrix N such that 
A=N'N. 

SOLUTION. Replace 'N by N' in Exercise 8 of §4. 

6. Show that the matrix 

(Ii) A= 
-i 1 

is semipositive, and find a square root. 

SOLUTION. The characteristic polynomial is 

so the eigenvalues are 0 and 2. Hence the matrix is semipositive. The 
equation AX = AX is equivalent to 

{ 
x+iy=Ax 

-ix+ y = "'Y, 
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so an eigenvector for ° is WI = ( ~i) and an eigenvector for 2 is w2 = (~). 

Let U = , then U-I = - and (-i i) 1 (i 1) 
1 1 2 -i 1 

so 

U-IAU = (0 0). ° 2 ' 

U(O ° )U- I = {2 (1 i) ° {2 2 -i 1 

is a square root for A. Note that A is not unitary because the basis was not 
orthonormal. 

7. Find a unitary matrix U such that U· A U is diagonal, when A is equal to: 

( 2 1 + i) 
(a) 1-i 1 ( 1 i) 

(b) -i 1 

SOLUTION. The characteristic polynomial is 

so the eigenvalues are 0 and 3. The equation AX = AX is equivalent to 

{
2X+(1+ i)y = Ax 
(1-i)x+ y = Ay, 

so an orthogonal basis is given by the two vectors 

( 1 ) (1 + i) 
WI = i -1 and w 2 = 1 . 

Dividing by the norm of each vector, we see that an orthonormal basis is 
given by the vectors 

d _ ((1 + i)/{3) 
an Vo - / M • 

• 1 '\13 
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( 1/ -J3 (1 + i)/-J3) 
So U = 1/ r;:;3 solves the problem. 

(i -I)/-J3 v:> 

(b) The characteristic polynomial is 

so the eigenvalues are 0 and 2. The equation AX = 'AX is equivalent to 

{ x+iy=A.x 
-ix+ y = A.y, 

so orthogonal eigenvectors are given by WI = (~i) and 

thonormal basis of eigenvectors is given by 

(-i/...[2) (i/...[2) 
VI = 1/...[2 and V2 = 1/...[2 . 

. (-i/...[2 i/...[2) 
The matrIx U = 1/...[2 1/...[2 solves the problem. 

W =(i). an or-
2 l' 

8. Let A: V ~ V be a hermitian operator. Show that there exists 
semi positive operators PI' P2 such that A = PI - P2 • 

SOLUTION. Select a spectral basis for A and let its matrix representation 
with respect to this basis be 

After a reordering we may assume that 1..1' ... ' A.T are positive, A.T+I' ... ' A., are 

negative, and that A.<+I' ... ,A.n are o. Then consider the linear maps PI and 
P2 whose matrices, with respect to the spectral basis are 
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[
AI 0 ... ~J [0 0 ... ~J o A,. 0 -ANI . 

PI = and P2 = ~' 
: 0 : -/\" 0 

0 ... 00 0 00 

respectively. Then both operators are semipositive and A = PI - P2 • 

9. An operator A: V ~ V is said to be normal if AA' = A'A. 
(a) Let A, B be normal operators such that AB = BA. Show that AB is 
normal. 
(b) If A is normal state and prove a spectral theorem for A. [Hint for the 
proof' Find a common eigenvector for A and A'.J 

SOLUTION. (a) By part (b) and Exercise 20, §4, we see that we can find a 
basis for V consisting of eigenvectors of A, B, A', and B'. The matrix 
representations of these four operators with respect to the chosen basis are 
diagonal, so we see at once that AB is normal. 

(b) Spectral Theorem for Normal Operators. Let A: V ~ V be a 
normal operator. Then V has an orthogonal basis consisting of eigenvectors 
of A. 

Proof Let A be a eigenvalue of A with non-zero eigenvector v. We con­

tend that v is an eigenvector for A' with eigenvalue ~. Expanding the ex­

pression (A' v - ~v, A'v - ~v), we find 

The first term of (*) is equal to 

(A'v, A'v) = (AA'v, v) = (v, A'Av) = (Av, Av) = 1 A 12 (v, v). 

The second term of (*) is equal to 

(A'v, ~v) = (AV, A'v) = (AAv, v) = 1 A 12 (v, v). 

The third term of (*) is also equal to 1 A 12 (v, v), so we see that 

(A'v - AV, A'v- AV) = 0, 

which proves our contention. 
Let E). be the space generated by v. In order to proceed as in the proof 

of the Spectral Theorem for symmetric operators, we must show that both 
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E). and E/" are A-invariant and A' -invariant. Clearly, E). is A-invariant 

and A' -invariant because v is an eigenvector for both A and A'. We prove 

E/ is A-invariant. Let wEE)..L and u E E).. Then 

(Aw, u) = (w, A'u) = A(W, u) = 0, 

E)..L is A' -invariant. Let WE EA.L and u E EA. Then 

(A'w, u) = (Au, w) = ~(w, u) = 0, 

whence A' (E). .L ) c E)..L . The proof then proceeds as in the Spectral 

Theorem. 

10. Show that the complex matrix 

is normal, but is not hermitian and is not unitary. 

SOLUTION. If A is the given matrix, then 

A' = (-i i) 
i -i' 

so we verify at once that 

(2 -2) AA' =A'A= . 
-2 2 

The matrix A is not hermitian because A '" A' , and A is not unitary because 
A'A",/ . 
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Polynomials and Matrices 

IX, §2 Polynomials of Matrices and 
Linear Maps 

( 1 41). 1. Compute f(A} when f(t} = t3 - 2t + 1 and A = ~ 

(6 13) 
SOLUTION. f{A} = 26 71 . 

2. Let A be a symmetric matrix, and let f be a polynomial with real coeffi­
cients. Show that f{A) is symmetric. 

SOLUTION. We work out the complex case in Exercise 3. In the real case, 
delete the complex conjugate bars. 

3. Let A be a hermitian matrix, and let f be a polynomial with real 
coefficients. Show that f{A} is hermitian. 

SOLUTION. We use induction to prove that the powers of a hermitian ma­
trix are hermitian. Clearly the assertion is true when n = 1. If An-I is 
hermitian, then 

-,-,-
An = AAn-I='A An-I= An. 

Since the sum of hermitian matrices is hermitian, and the identity matrix is 
hermitian, we see that f(A} is hermitian. 

4. Let A, B be n x n matrices in a field K, and assume that B is invertible. 
Show that 

for all positive integers n. 
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SOLUTION. Induction. The statement is true when n = 1. Suppose the 
statement is true for an integer n; then we have 

which ends the proof. 

5. Let f E K[t]. Let A, B be as in Exercise 4. Show that 

SOLUTION. Write f{t) = a.tn + ... +ao ' where an :f:. o. Then Exercise 4 im­
plies 

But 1= B-1IB; hence 
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Triangulation of Matrices and 
Linear Maps 

X, §1 Existence of Triangulation 

1. Let A be an upper triangular matrix: 

r
ail al2 •• , a ln ] 

o a" ... a2n 
A = -- . .. . .. . 

o 0 .,. ann 

Viewing A as a linear map. what are the eigenvalues of A 2. A 3 in general 
A' where r is an integer :2: 1 ? 

SOLUTION. Induction shows that A' is of the form 

Expanding according to the first column the determinant of t1 - A' we see 
that the characteristic polynomial of A' is 

P (t) = (t - a' ) ... (t - a' ) 
A' 11 nn ' 

so the eigenvalues of A' are a;p .... a~". 

2. Let A be a square matrix. We say that A is nilpotent if there exists an in­
teger r:2: 1 such that A' = O. Show that is A is nilpotent. then all eigen­
values of A are O. 
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SOLUTION. Let A be an eigenvalue of A, and let v be a non-zero eigenvec­
tor corresponding to A. Then we have Av = AV, and by induction 
A nv = AnV for all positive integer n. So 

O=A'v=A'v, 

thus A = O. Note that one could also use Corollary 1.4, Exercise 4, §2 of 
Chapter IX, and Exercise I to get another proof. 

3. Let V be a finite dimensional space over the complex numbers. and let 
A: V ~ V be a linear map. Assume that all the eigenvalues of A are equal 
to O. Show that A is nilpotent. 

SOLUTION. Select a basis such that the matrix of A with respect to this 
basis is upper triangular, namely, 

A = [a~1 ::: ... ::: 1 
M. • • . . 

o 0 ann 

The numbers all' .... ann are eigenvalues of A, so all = ... = ann = 0; thus 
AM is strictly upper triangular. See Exercise 35, §3 of Chapter II, and con­
clude. 

4. Using fans, give a proof that the inverse of an invertible triangular matrix is 
also triangular. In fact, if V is a finite dimensional vector space, if 
A: V ~ V is a linear map that is invertible. and if {VI"'" Vn} is a fan for 

A, show that it is also a fan for A -I. 

SOLUTION. It is sufficient to show that Vi is KI-invariant. We contend 

that A(Vi) = Vi' Consider the restriction of A, A: Vi ~ Vi' Then, since 

Ker A = {OJ, Theorem 3.3 of Chapter III implies that A(Vi) = Vj. 

Therefore A -I (Vj) = Vi' which proves that Vi is A -I-invariant. 

5. Let A be a square matrix of complex numbers such that A' = I for some 
positive integer r. If a. is an eigenvalue of A show that a.' = 1. 

SOLUTION. The argument of Exercise 2 implies that if a. is an eigenvalue 
and v a corresponding non-zero eigenvector, then 

v=lv=A'v=o.'v; 

so a.' = 1. 
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6. Find a fan basis for the linear maps of C2 represented by the matrices 

(1 1) (1 i) (1 2) (a) 1 1 (b) 1 i (c) i i 

SOLUTION. (a) Clearly, the vector (~1) is an eigenvector corresponding 

to the eigenvalue O. Let VI be the space generated by this vector. Then 

{V!, C2 } is a fan for the given linear map. 

(b) By inspection we see that (~1) is an eigenvector corresponding to the 

eigenvalue O. Then, if VI is the space generated by this vector, the set 

{VI' C2 } is a fan for the linear map. 

(c) The characteristic polynomial is 

P{t}=t2 -{I+i}t-i, 

so the eigenvalues are 

A = _(1_+ i----'-*_+_..J3.....:...) 
I 2 

(I + i)(I-..J3) 
and A2 = 2 . 

The equation AX = AX is equivalent to 

{2Y = (A-l)x 
ix = (A -i)y, 

so a non-zero eigenvector is VI = (A
I

2_1). If VI the space generated by this 

vector, then {VI' C 2 } is a fan for the linear map. 

7. Prove that an operator A: V ~ V on a finite dimensional vector space over 
C can be written as a sum A = D+ N, where Dis diagonalizable and N is 
nilpotent. 

SOLUTION. Select a fan for A and then select a fan basis 'E. The matrix of 
A with respect to 'E is upper triangular: 
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... :::] 
o a •• 

Let 

[
all 0 ... 0] [0 a l2 ••• al.] 

o a22 : 0 0 : 
DM = and NM = , 

: 0 : an_In 
o 0 ann 0 0 0 

and let D and N be the linear maps whose respective matrices with respect to 
'l3 are DM and N M. See Exercise 35, §3 of Chapter II, and conclude. 

X, §3 Diagonalization of Unitary Maps 

1. Let A be a complex unitary matrix. Show that each eigenvalue of A can be 
written eiO with some real e. 

SOLUTION. Consider the linear map associated with the matrix and let 
(, ) be the standard hermitian product. Then, if ').. is an eigenvalue and v a 
non-zero eigenvector, we have 

(v, v) = (Av, Av) = U(v, v) = I ')..I(v, v}, 

because A is unitary. Thus 1')..1 = 1. Another proof consists of using 

Corollary 3.2 and Exercise 9, §3 of Chapter VII. 

2. Let A be a complex unitary matrix. Show that there exists a diagonal ma­
trix B and a complex unitary matrix U such that A = U-I BU. 

SOLUTION. By Corollary 3.2 there exists a unitary matrix 0 such that 

B = O-IAO is diagonal. Let U = 0-1 ; then U is unitary and A = U-IBU. 
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Polynomials and Primary 
Decomposition 

XI, §1 The Euclidean Algorithm 

1. In each of the following cases. write f = qg + r with deg r < deg g. 
(a)f(t)=t 2 -2t+1. g(t)=t-1 
(b) f(t)=t 3 +t-1. g(t)=t2 +1 
(c) f(t)=t 3 +t. g(t)=t 
(d)f(t)=t 3 -1. g(t)=t-1 

SOLUTION. 
(a) f(t)=(t-1)g(t). (b) f(t) = tg(t)-1. 

(c) f(t)=(t 2 +1)g(t). (d) f(t) = (t' + t + l)g(t). 

2. If f( t) has integer coefficients. and if g( t) has integer coefficients and lead­
ing coefficient I. show that when we express f = qg + r with 
deg r < deg g. the polynomials q and r also have integer coefficients. 

SOLUTION. Use induction and proceed as in Theorem 1.1. By assumption. 
bm = 1. so anb~1 is an integer; thus anb~ltn-m + ql and r have integer coef­
ficients. 

3. Using the intermediate value theorem of calculus. show that every polyno­
mial of odd degree over the real numbers has a root in the real numbers. 

SOLUTION. Suppose that p(t) = a/' + ... +a". where an :;t: 0 and n is odd. 
We may assume that an > 0 because a is a root for p if and only if a is a 
root for - p. Then for t:;t: 0 we have 
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p(t)=aJ"(l+ a"_1 + ... +~J, 
a.t ant" 

and so lim p(t) = 00 and lim p(t) = -00. The intermediate value theorem 
l.....,."" t--)-oo 

implies that p has a real root. 

4. Let f(t) = t"+ ... +ao be a polynomial with complex coefficients, of degree 

n, and let a be a root. Show that I a I:::; n· max, 1 a, I. [Hint: Write 

-a" = a"_la"-1 + ... +ao' If I a I > n· max, 1 a, I, divide by a" and take the ab­
solute value, together with a simple estimate to get a contradiction.] 

SOLUTION. If I a I:::; 1, there is no problem. Assume I a I > 1; then we can 

divide 

by a" so that 

Taking absolute values and using the triangle inequality and our assumption 

that I a I > 1, we get 

If I a I> n· max,l a,l, then 

1 1 
1 <-+ ... +-= 1, 

n n 

which is a contradiction. 

XI, §2 Greatest Common Divisor 

1. Show t" -1 that is divisible by t -1. 

SOLUTION. t" -1 = (1+ ... +t"-1 )(t -1). 

2. Show that t4 + 4 can be factored as a product of polynomials of degree 2 
with integer coefficients. 
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SOLUTION. t4 + 4 = (t 2 + 2t+ 2)(t 2 - 2t+ 2). 

3. If n is odd, find the quotient of tn + I by t + 1. 

SOLUTION. tn + I = (tn~1 - tn~2 + ... -t + l)(t + 1). 

4. Let A be an n x n matrix over the field K, and let 1 be the set of all poly~ 
nomials f(t) in K[t] such that f(A)=O. Show that 1 is an ideal. 

SOLUTION. If fo is the zero polynomial, then fo(A) = 01 = 0; so 
fo E 1. If f, gEl , then 

(J + g)(A) = f(A)+ g(A) = 0, 

so f + gEl. Finally, if E K[t], then 

(gf)(A) = g(A)j(A) = 0, 

so gf E 1, thereby proving that 1 is an ideal. 

XI, §3 Unique Factorization 

1. Let f be a polynomial of degree 2 over a field K. Show that either f is irre~ 
ducible over K, or f has a factorization into linear factors over K. 

SOLUTION. Iffis not irreducible, then we can write 

f=gh, 

where 0 < deg g < 2 and 0 < deg h < 2, so deg h = deg g = 1 , which proves 
the assertion. 

2. Let f be a polynomial of degree 3 over a field K. Iff is not irreducible over 
K, show that f has a root in K. 

SOLUTION. If f is not irreducible, we can write f = gh, where 
0<degg<3 and 0<degh<3. Since degg+degh=degf=3, we see 
that g or h has degree I, and therefore fhas a root in K. 
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3. Let f(t) be an irreducible polynomial with leading coefficient J over the 
real numbers. Assume degf = 2. Show that f(t) can be written in the 
form 

f(t)=(t-a)2+b 2 

with some a, bE Rand b * O. Conversely, prove that any such polyno­
mial is irreducible over R. 

SOLUTION. Write f(t)= t2 -2at+d. Iff had a root, thenfwould not be 
irreducible, so fhas no root and therefore 

Completing the square, we can write 

Let b = ..J d 2 - a2 ,and conclude. 

Conversely, assume that f( t) = (t - a)2 + b2 and b * O. Iff were irre­
ducible, then f could be written as a product of linear factors, and therefore f 
would have a root. But since f( t) = 0 implies 

( ) 2 2 t-a =-b, 

we get a contradiction. 

4. Let f be a polynomial with complex coefficients, say 

Define its complex conjugate 

by taking the complex conjugate of each coefficient. Show that iff, g are 
in C[ t], then 

(J + g) = J + g, (Jg) = jg, 

and if ~ E C, then (~f) = ~J. 
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SOLUTION. We may assume that degf ~ deg g, so that we can write 

g(t) = I3ntn+ ... +l3o. 

Then we have 

(J + g)(t) = (an + I3Jtn+ ... +ao + 130 = (an + K)tn+ ... +ao + ~o 
=j(t)+g(t). 

If g( t) = 13 mtm + ... +130' where we assumed m ~ n, then 

k 

where ck = L aj~k_j • 

i=O 

Finally, if 13 E C, then 

(l3f)(t) = (l3aJtn+ ... +l3ao = ~a.tn+ ... +~ao = ~j(t). 

5. Let f( t) be a polynomial with real coefficients. Let a be a root of f, 
which is complex but not real. Show that a is also a root off. 

SOLUTION. Write f(t) = antn + ... +ao• Then f( a) = 0 implies 

O=ana"+ ... +ao• 

Taking the complex conjugate of the above expression and noting that 
0=0, we get 

so f(a) = O. 

6. Terminology being as in Exercise 5, show that the multiplicity of a in f is 
the same as that of a. 

SOLUTION. Let m be the multiplicity of a inf, and let p(t)=(t-a). 
Then we can write 

where g( a) =F O. Hence 
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Suppose that g(a) == O. Then g( a) == 0, which is a contradiction, so the 
multiplicity of a in f is also m. 

7. Let A be an n x n matrix in a field K. Let J be the set of polynomials f in 
K[t] such that f( A) == O. Show that J is an ideal. The monic generator of 

J is called the minimal polynomial of A over K. A similar definition is 
made if A is a linear map of a finite dimensional vector space into itself. 

SOLUTION. See Exercise 4, §2. 

8. Let V be a finite dimensional vector space over K. Let A: V ~ V be a lin­
ear map. Let f be its minimal polynomial. If A can be diagonalized (i. e. if 
there exists a basis of V consisting of eigenvectors of A), show that the 
minimal polynomial is equal to the product 

(t-aJ··(t-a,), 

where aI' ... , a, are the distinct eigenvalues of A. 

SOLUTION. Let Il(t) == (t - a l )··· (t - a,). Then Il(A) == 0, so 11 E J, 

where J is the ideal of all polynomials of K[ t] such that f( A) == O. We 
assert that 11 is a generator for J. Let f E J; then we can write 

A == BDB-l , where D is diagonal and the diagonal elements of D are eigen­
values of A. If f(t) == ~>ntn , then 

So ~>nDn == 0, hence al, ... ,a, are roots off This implies that 11 is the 
monic generator for J. 

9. Show that the following polynomials have no multiple roots in C. 
(a)t4+t (b)t 5 -5t+l 
( c) any polynomial t 2 + bt + c if b, c are numbers such that b2 - 4c is not 
O. 

SOLUTION. (a) Let p(t) == t4 + t, and suppose that a is a root of p. Then 
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But p'(t)=4t3 +1. Therefore if a=O, then p'(a)=I; and if a 3 =-I, 

then p'(a) =-3, so a has multiplicity 1. 

(b) Let p(t)=tS -5t+1. Then p'(t)=5(t4 -1). Assume that a is a root 

ofpandthat p'(a)=O. So a 4 =1 and thus 

p( a) = t - 5t + 1 = 1-4t . 

Since p( a) = 0, we get a contradiction. So a has multiplicity 1. 

(c) Let p( t) = t 2 + bt + c. The theory of quadratic equations shows that if 
b 2 - 4c #:- 0, then p has two distinct roots. The same result can be proved 
with the technique used in (a) and (b). The only root of p' is -bj2, which 
is not a root for p because 

10. Show that the polynomial tn -1 has no multiple roots in C. Can you de­
termine all the roots and give its factorization into factors of degree 1 ? 

, 
SOLUTION. Since (t n -1) = ntn- I , we see at once that the roots of t n -1 

are not roots of its derivative, so the roots of t n -1 have multiplicity 1. If 
z = reiO , then 

So we must have r = 1 and n8 = 21tk for some integer k. Thus the n roots 
are 

{

' ,2n ,20(n_I)} {.2 .. } ,- ,-- ,-
I.en, ... ,e n = en . 

OSkSn-l 

,2 .. 

If we write a. = e'7 , then 

n-I 
t n -1=(t-ao)···(t-an_1 )= TI(t-a.) . 

• =0 

11. Let f, g be polynomials in K[t], and assume that they are relatively prime. 
Show that one can find polynomials fl' gl such that 
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is equal to J. 

SOLUTION. The polynomial 1 is the greatest common divisor of f and g, 
so 1 belongs to the ideal generated by f and g. Then there exist polynomials 
fl and gl such that 

12. Let fl' f2' f3 be polynomials in K[t] and assume that they generate the 
unit ideal. Show that one can find polynomials fij in K[t] such that the 

determinant 

fl f2 f3 

f21 f22 f23 

f31 f32 f33 

is equal to J. 

SOLUTION. Let d be the greatest common divisor of fl and f2. Then we 
can find polynomials gl and g2 such that gJI + gJ2 = d. The greatest 
common divisor of d and f3 is 1, so there exist polynomials g3 and g4 
such that g3d + gJ3 = 1. Then the determinant 

fl f2 f3 

-g2 gl 0 

-(JJd)g4 -(Jjd)g4 g3 

is equal to one. 

13. Let ex be a complex number. and let J be the set of all polynomials f(t) 

in K[ t] such that f( ex) = o. Show that J is an ideal. Assume that J is not 
the zero ideal. Show that the monic generator of J is irreducible. 

SOLUTION. Modifying the proof of Exercise 7, we see that J is an ideal. 
Moreover, the monic generator g of J is of smallest degree, so if g is re­
ducible we find that there exists a polynomial f if degree less than the one of 
g and such that f( ex) = o. This is a contradiction. 

14. Let f, g be two polynomials, written in the form 
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and 

where iv' jv are integers;::: 0, and Pl"'" p, are distinctirreducible polyno­
mials. 

(a) Show that the greatest common divisor off and g can be expressed as a 
product p;' ... P:' where kl , •.. , k, are integers ;::: 0. Express kv in terms of 

iv and jv' 
(b) Define the least common mUltiple of polynomials, and express the least 
common multiple off and g as a product PI" ... P:' with integers kv;::: 0. 
Express kv in terms of iv and jv' 

SOLUTION. (a) Let kv = inf ((, jv)' and let h = p~ ... P:-. Then clearly h 

divides f and g; and if q divides f and g, then there exist polynomials ~I and 

~2 such that 

p;' ... p~ = ~Iq 

pt ... p;' = ~2q· 

The unique factorization theorem implies that q must divide h. 

(b) Definition. We say that h is the least common multiple of f and g if 
h is a multiple off and of g. Furthermore, if p a multiple off and g, then p 
is a multiple of h. 

Let kv = sup (iv' jv )fl' and let h = p~ ... P:-' Then h is a multiple of f and 

g. Let q be a multiple off and g. Then there exist polynomials ~I and ~2 
such that 

q=~lpi ... p; 

q = ~2P{' ... p;' . 

The unique factorization theorem implies that q is a multiple of h. 

15. Give the greatest common divisor and least common multiple of the 
following polynomials: 
(a) (t - 2)\t - 3)'(t - i) and (t -1)(t - 2)(t - 3)3 
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SOLUTION. We use Exercise 14: 
(a) g.c.d=(t-2)(t-3)' and l.c.m=(t-2)3(t-3)4(t-i)(t-I). 

(b) We have 

(t 2 + 1)( t2 - 1) = (t - i)( t + i}( t - I}( t + I} 

and 

(t+ int' -I) = (t + i}3(t -1}(t _e27rif3 )(t - e47rif3 ); 

so 

g.c.d = (t + i)(t -I) 

and 

l.c.m = (t + ;)3(t - i}(t -1}(t + 1}(t - e2•if3 )(t _ e47ri/3 ). 

XI, §4 Application to the Decomposition of 
a Vector Space 

1. In Theorem 4.1 show that the image of fl(A) = kernel of f2(A). 

SOLUTION. Assume that v E Imfl(A}. Then there exists w such that 

fl (A}w = v. Therefore, 

and so v E Ker f2 (A). Conversely, suppose that v E Ker f2 (A) . Then (*) 
of Theorem 4.1 implies that 

thus v E Imfl(A}. 
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2. Let A: V ~ V be an operator and V finite dimensional. Suppose that 
A 3 = A. Show that V is the direct sum 

where Vo = Ker A, V1 is the (+l)-eigenspace of A, and V_1 is the (-J) 

eigenspace of A. 

SOLUTION. Let f(t)=t 3 -t, fo(t)=t, fl(t)=t-l, and f_l(t)=t+l, 
so that 

We have f(A) = 0, and f o' f1' and f-l are relatively prime. Therefore if 

Vo = Kerfo(A), V1 = Kerfl(A), and V_1 = Kerf_l(A), then 

But V1 is the space of all v such that Av = v, so V1 is the (+l)-eigenspace 
of A and, similarly, V_1 is the (-1 )-eigenspace of A . 

3. Let A: V ~ V be an operator and V finite dimensional. Suppose that the 
characteristic polynomial of A has the factorization 

PA (t) = (t - (Xl)··· (t - (Xn)' 

where (Xp •.• , (Xn are distinct elements of the field K. Show that V has a ba­
sis consisting of eigenvectors for A. 

SOLUTION. The theorem of Hamilton-Cayley guarantees that PA (A) = 0, 
so we can write 

V=V Efl···EflV =EBV 
I "i=t I' 

where Vi = Ker (A - (Xi). So Vi is the (Xi-eigenspace of A. Conclude. 

XI, §5 Schur's Lemma 

1. Let V be a finite dimensional vector space over the field K, and let S be the 
set of all linear maps of V into itself. Show that V is a simple S-space. 
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SOLUTION. Let W be a proper subspace of V, and let {WI' ... ' W.} be a ba­

sis for V such that {w" ... , wk } is a basis for W. Then the map whose ma­

trix is 

lL ~J 
with respect to {WI' ... ' W.} maps w, onto wn. But wn (i!: W; conclude. 

2. Let V = R2, let S consist of the matrix (~ ~) viewed as linear map of V 

into itself. Here, a is afixed non-zero real number. Determine all S-invari­
ant subspaces of v. 

SOLUTION. All non-proper subspaces of R2 have dimension one. 
Suppose that W has dimension one and let {w,} be a basis for W. Then 
W is S- invariant if and only if given a non-zero real number a there exists a 
number A such that Ta (w, ) = AW" where Ta is the linear map associated 
with the matrix. We can write w, = xe, + ye2 so that 

Since Ta (w,) = AW, ' we must have 

x+ay = Ax 

y = Ay· 

If y is non-zero, then A = 1; so ay = 0, which is impossible. Therefore we 
must have y = o. Then W is the subspace generated by e" and one verifies 
at once that W is S-invariant. 

3. Let V be a vector space over the field K, and let {v" ... , v.} be a basis of v. 
For each permutation cr of {1, ... , n} let Aa: V --7 V be the linear map such 
that 

(a) Show that for any permutation cr, 't we have 
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A"A, = A.,.. 

and A.t = I. 
(b) Show that the subspace generated by v = VI + ... +v. is an invariant sub­
space for the set S. consisting of all A". 
( c) Show that the element v of part (b) is an eigenvector for each A". What 
is the eigenvalue of A" belonging to v? 
(d) Let n = 2 and let (J be a permutation which is not the identity. Show 
that VI - V2 generates a I -dimensional subspace which is invariant under A". 
Show that VI - v2 is an eigenvector of A". What is the eigenvalue? 

SOLUTION. (a) For each basis vector we have 

A"A,(v,) = A"v.(,) = V"'(i) = A",vi 

and 

thus A"A. = A", and Aid = I. 

(b) Let W be the subspace generated by v and let w E W. Then there exists 
a number (l such that w = (lV, so 

But (J is a bijection of {l, ... , n}, so we see that A" w = (lv = w, thus prov­
ing that W is A" -invariant. 

(c) Putting (l = 1 in (b), we see that A" v = v. 

(d) By assumption, v = VI - v2 '# 0 so the space W generated by v is I-di­
mensional. We have 

so W is A" -invariant and v is an eigenvector of A" with eigenvalue -1. 

4. Let V be a vector space over the field K, and let A: V ~ V be an operator. 
Assume that A' = I for some integer r ~ 1. Let T = 1+ A+ ... +A,-I. Let 
Vo be an element of V. Show that the space generated by Tvo is an invari­
ant subspace of A, and that Tvo is an eigenvector of A. If Tho '# 0, what is 
the eigenvalue? 
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SOLUTION. Let Tv" = w". Then 

so the space generated by Tvo is A-invariant. If Tvo is non-zero, then it is 
an eigenvector of A with eigenvalue one. 

5. Let V be a vector space over the field K, and let S be a set of operators of 
V. Let U, W be S-invariant subspaces of V. Show that U + Wand 
U n Ware S-invariant subspaces. 

SOLUTION. If v belongs to U + W, then we can write v = u + w, where u 
and w lie in U and W, respectively. Then if A E S, we have 

Av= Au+Aw. 

But Au and Aw belong to U and W, respectively, so U + W is S-invari­
ant. 

If v belongs to U n W, and if A E S, then A v also belongs to U and 
W; so Un W is S-invariant. 

XI, §6 The Jordan Normal Form 

In the following exercises, we let V be a finite dimensional vector space over the 
complex numbers, and we let A: V ~ V be an operator. 

1. Show that A can be written in the form A = D + N, where D is a diagonal­
izable operator, N is a nilpotent operator, and DN = ND. 

SOLUTION. In a Jordan basis for V with respect to A split the matrix of A 
as a sum AM = DM + N M' where 

0 IO!:':1 O' I 0 
~:: 

0 
~ t{ -=-

t'\ rg] ~ 0 O· [iJ] o . I 
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Let D and N be the maps whose matrix representations with respect to the 
Jordan basis are DM and N M' respectively. The D is diagonalizable and N is 
nilpotent. Moreover, DN = ND. 

2. Assume that V is cyclic. Show that the subspace of V generated by the 
eigenvectors of A is one dimensional. 

SOLUTION. Let w be an eigenvector of A. Then w has eigenvalue ex and, 

since {v, (A -al}v, ... , (A - alr l v} is a basis for V, we can write 

0= (A - aI}w = ao(A - aI}v+ ... +a,_2(A - alr l v, 

which implies that ao = ... = a,_2 = 0 and therefore (A - alr l v is a basis for 
the subspace of V generated by eigenvectors of A. 

3. Assume that V is cyclic. Let f be a polynomial. What are the eigenvalues 
of f(A) in terms of those of A? Same question when V is not assumed 
cyclic. 

SOLUTION. Choose a Jordan basis for V with respect to A, and let M be 
the matrix of A with respect to this basis. Then the matrix of f( A} with 

respect to the Jordan basis is f( M}, which is upper triangular. If Aii is the 

ith diagonal entry of M, then the ith diagonal entry of f(M} is f(AiJ 

Hence the eigenvalues of f(A} are f(A), where A is an eigenvalue of A. 
Since V is the direct sum of cyclic subspaces, the answer is the same when 
V is not assumed cyclic. 

4. If A is nilpotent and not 0, show that A is not diagonalizable. 

SOLUTION. Suppose that A is diagonalizable. Then there exists a basis of 
eigenvectors of A. Since A is not 0, not all eigenvalues are zero. So there 
exists a non-zero number A and a non-zero vector v such that Av = Av. So 

A'v = A:v, 

which shows that A'v is never zero, which is a contradiction. 

5. Let PA be the characteristic polynomial of A, and write it as a product 
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, 
.PA{t)= TI(t-a,r, 

;=1 

where a l , ... , a, are distinct. Let f be a polynomial. Express the character­
istic polynomial Pf{A) as a product offactors of degree 1. 

SOLUTION. Exercise 3 implies at once that PJ(A){t) = IT(t- f(a,)r. 
;=\ 
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Convex Sets 

XII, §4 The Krein-Milman Theorem 

1. Let A be a vector in R n. Let F: R n ~ R n be the translation 

F(X)=X+A. 

Show that if S is convex in Rn, then F(S) is also convex. 

SOLUTION. Let P and Q be two points of F(S), and let Po = P - A and 
Qo = Q - A. Then Po, Qo E S, so the line segment 

with 0:::; t:::; 1 belongs to S. Thus tPo+(I-t)Qo+A belongs to F(S), but 

tPo +(1- t)Qo + A = t(P- A)+ (1- t)(Q- A)+ A = tP+(I-t)Q, 

so F( S) is convex. 

2. Let c be a number> 0, and let P be a point in Rn. Let S be the set of 

points X such that II X - P II < c. Show that S is convex. Similarly, show 

that the set of points X such that II X - P II :::; c is convex. 

SOLUTION. By Exercise I we see that it is sufficient to prove the assertion 
when P = O. Suppose that II X II < c and II y II < c. Then, if 0:::; t :::; I, we 
have 

II tX + (1- t)Y II :::; til X II + (1- t )11 Y II < tc + (1- t)c = c, 

so S is conxex. The set of points such that II X II:::; c is the closure of S, so 
it is also convex. 
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3. Sketch the convex closure of the following sets of points. 
(a) (1,2), (1,-1), (1,3), (-1,1) 
(b) (-1,2), (2,3), (-1,-1), (1,0) 

SOLUTION. (a) 

l-I,I) 

(b) 

177 

4. Let L: R" ~ R" be an invertible linear map. Let S be convex in R" and P 
an extreme point of S. Show that L(P) is an extreme point of L(S). Is 
the assertion still true if L is not invertible? 

SOLUTION. Suppose that L(P) is not an extreme point of L(S). Then 

there exist points Q" Qe of L( S) such that Q, "# Qe and such that 

for some number 0 < to < I. So 

which implies that there exist points PI' Pe E S with P, "# P2 and such that 

which is a contradiction. The assertion need not hold if L is not invertible. 
Indeed, consider in R 2 the map L( x, y) = (x, 0) . Let S be the set of all 
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(x. y) such that y 2:: 1 x I. Then S is convex and the origin is an extreme 

point of S, but L(O) is not an extreme point of L(S). 

5. Prove that the intersection of a finite number of closed half spaces in Rn 
can have only afinite number of extreme points. 

SOLUTION. We may assume that the closed half-spaces are described by 

The intersection of convex sets is convex, and the intersection of closed sets 
is closed. Let S be the intersection of the m closed half-spaces. We assume 
that S is nonempty, so an extreme point of S must be a boundary point of 
S. Suppose that 

The theory of linear equations shows that the dimension of the space solu­
tion of the first k linear equations is at least n - k and is equal to n - k 
when UI ••••• Uk are linearly independent. If n - k > 0, continuity implies 

that there exists a non-zero vector V such that X + tV solves (*) for all t in 

some interval [-0.0] where 0> 0 is small. Thus X is not an extreme 
point. So we must have that the dimension of the space of solutions of the 
linear equation is 0, thus reduced to a unique point. So we see that Scan 
have only a finite number of extreme points. 

6. Let B be a column vector in R n. and A an n x n matrix. Show that the set 
of solutions of the linear equations AX = B is a convex set in R n. 

SOLUTION. We may view the matrix A as a linear map A: Rn ~ Rn. 
Then, since B is convex, the set of X such that AX = B is also convex. 
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Complex Numbers 

1. Express the following complex numbers in the form x + iy, where x, yare 
real numbers. 
(a) (-1+3ir' 
(c) (l+i)i(2-i) 
(e) (7+ni)(n+i) 

(g) (-[2 +i)(n+3i) 

SOLUTION. 
-1 3 

(a) ---i 
10 10 

(h) -8-6i. 

(b) 2 

(f) -2n + in 

(b) (l+i)(I-i)(c) 
(d) (i -1)(2 - i) 
(f) (2i + 1 )ni 

(h) (i + 1)( i - 2)( i + 3). 

(c)-1+3i (d)-1+3i 

2. Express the following complex numbers in the form x + iy, where x, yare 
real numbers. 

(a) (1 + i)-I (b) _1_. 
3+1 

(c) 2 + ~ 
2 -I 

(d) _1_ 
2-i 

(e) l~i i 2i (h) _1_. (f) -1 -. (g)~ 
1 +1 -I -1+1 

SOLUTION. 

(a) !_!i (b) ~-J..-i ( ) 3 4. (d) ~+!i c -+-1 
2 2 10 10 5 5 5 5 

(f) 1 1. -1 3 -1 1 
(e) 1- i -+-1 (g) -+-i (h) ---i. 

2 2 5 5 2 2 

3. Let a be a complex number -:;:. O. What is the absolute value of a/a? 
What is a? 
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SOLUTION. Let a = a + ib. Then 

a a + ib a2 - b' + 2abi -=--=---::---::--a a-ib a 2 +b2 

so 

lal 2 = (a 2 _b2 )'+4a2b2 =(a2 +b 2
)2 =1. 

a a~ + b ~ a~ + b~ ~ - (" 2)' (" )' 

Moreover, 

ex = a - ib = a + ib = a . 

4. Let a, ~ be two complex numbers. Show that a~ = ai3 and that 

SOLUTION. Suppose that a = a + ib and ~ = c + id. Then 

ai3 = (a - ib)(c - id) = ac - bd - i(ad + bc) = a~. 

and 

a + i3 = a - ib + c - id = a + c - i( b + d) = a + ~ . 

5. Show that la~I=lall~l. 

SOLUTION. If a = a + ib and ~ = c + id, then 

6. Define addition of n-tuples of complex numbers componentwise, and multi­
plication of n tuples of complex numbers by complex numbers component­
wise also. If A=(a" ... ,a.) and B=(~" ... '~n) are n-tuples of complex 

numbers, define their product (A, B) to be 

(note the complex conjugation!). Prove the following rules 
HP 1. (A,B)=(B,A). 
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HP 2. (A,B+C)=(A,B)+(A,C). 
HP 3. If a is a complex number, then 

(<lA, B) = a(A, B) and (A, aB) = a(A, B). 

HP 4. If A=O then (A,A)=O,andotherwise (A,A»O. 

SOLUTION. 
HP 1. (B, A) = /3,a, + ... +/3nan = p,<X, + ... +Pn<Xn = (A, B). 

HP 2. If C=(y" ... ,y.), then 
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(A, B+ C) = a,(/3, + y,)+ ... +an(/3n + y.) = aJ, +a,y,+ ... +anPn +an Yn 

= (A, B) + (A, C). 

HP 3. We have 

and, similarly, (A, aB) = a(A, B). 

HP 4. Clearly (A, A) = 0 whenever A = O. Suppose that (A, A) = O. 
Then 

O=(A,A) =laJ +···+laJ, 

so lajl=o forallj,andthus A=O. 

7. We assume that you know about the functions sine and cosine, and their ad­
dition formulas. Let 9 be a real number. 
(a) Define ei9 =cos9+isin9. Show that if 9, and 92 are real numbers, 
then 

Show that any complex number of absolute value 1 can be written in the 
form eit for some real number t. 
(b) Show that any complex number can be written in the form rei9 for 
some real numbers r, 9 with r ~ O. 

(c) If z, = r,e i9, and Zz = rzei9, with real r" r2 ~ 0 and real 9" 92 , show 
that 

www.MathSchoolinternational.com


182 APP. COMPLEX NUMBERS 

(d) Ifz is a complex number, and n an integer> 0, show that there exists a 
complex number w such that wn = z. If z *-° show that there exists n dis­
tinct such complex numbers w. [Hint: If z = rei9 , consider first rVn e,9/n.} 

SOLUTION. (a) The addition formulas 

cos( 81 + 82 ) = cos 81cos 82 - sin 81sin 82 

sin( 81 + 8 2 ) = cos 81sin 82 + sin 81cos 82 

imply at once that 

Let <X = a + ib with 1 <X 1 = 1. Then we must have a2 + b 2 = 1, so there ex­

ists a number t such that a = cos t and b = sin t; therefore <X = e" . 

(b) If z = 0, then let r = 0. If z *- 0, let r = 1 z 1 and note that z/I z 1 has 
absolute value 1. 

(c) We have 

(d)If'z=O, let w=O. Now assume that z*-O. Since Iz/lzll=l,wecan 

write z = re i9 , where r;::: 0. We write w = sei~, where s;::: 0, so the equa­
tion w n = z becomes 

sn ein~ = re i9 . 

Taking absolute values we see that sn = rand ei9 = ein~ implies 
n<p = 8 + 2kTt for some integer k. Thus the n distinct roots of the equation 

wn = z are 

8. Assuming that the complex numbers are algebraically closed, prove that ev­
ery irreducible polynomial over the real numbers has degree I or 2. [ Hint: 
Split the polynomial over the complex numbers and pair off complex con­
jugate roots.) 
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SOLUTION. Let P be a polynomial of R[t]. In C[t], if a is a root of P, 
then a: is also a root of P. Since C is algebraically closed, we can factor P 
in C[ t] in irreducible polynomials, namely, polynomials of degree 1; thus 

P(t) = an tI (t - a k ), 

k=1 

where an is the leading coefficient of P and al' .... an are the roots in C of 
P. Let YI' .... Y p be the real roots of P. The number of complex roots is 

even, so we can pair each root with its conjugate. Therefore, we let 

PI' .... P" ~1"'" ~s be the complex roots of P. Then we can write 

P(t) = ann: (t - Yk)n: (t -P j )(t - ~j)' 
k=l j=l 

But (t-Pj)(t-~j)=t2-(Pj+~j)t+lpl and Pj +13j is real, so we see 

that if a polynomial over R is irreducible, then it has degree 1 or 2. 
For an example of an irreducible polynomial of degree 2, consider 

t 2 + l. 
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