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Preface

The present volume contains all the exercises and their solutions of Lang's'
Linear Algebra. Solving problems being an essential part of the learning
process, my goal is to provide those learning and teaching linear algebra with a
large number of worked out exercises. Lang's textbook covers all the topics in
linear algebra that are usually taught at the undergraduate level: vector spaces,
matrices and linear maps including eigenvectors and eigenvalues, determinants,
diagonalization of symmetric and hermitian maps, unitary maps and matrices,
triangulation, Jordan canonical form, and convex sets. Therefore this solutions
manual can be helpful to anyone learning or teaching linear algebra at the college
level.

As the understanding of the first chapters is essential to the comprehension
of the later, more involved chapters, I encourage the reader to work through all of
the problems of Chapters I, II, III and IV. Often earlier exercises are useful in
solving later problems. (For example, Exercise 35, §3 of Chapter II shows that
a strictly upper triangular matrix is nilpotent and this result is then used in
Exercise 7, §1 of Chapter X.) To make the solutions concise, I have included
only the necessary arguments; the reader may have to fill in the details to get
complete proofs.

Finally, I thank Serge Lang for giving me the opportunity to work on this
solutions manual, and I also thank my brother Karim and Steve Miller for their
helpful comments and their support.

Rami Shakarchi
Yale, 1996

I thank Rami Shakarchi very much for having prepared this answer book.

Serge Lang
Yale, 1996
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CHAPTER |

Vector Spaces

I, §1 Definitions

1. Let V be a vector space. Using the properties VS 1 through VS 8, show
that if ¢ is a number then cO = 0.

SOLUTION. We have cO=c(0O+0)=cO+cO, but we also have
cO =0+ 0, hence

cO+cO=0+cO0.
Adding (—cO) to both sides shows that cO=0.

2. Let ¢ be a number #0, and v an element of V. Prove that if cv =0, then
v=0.

SOLUTION. Exercise 1 implies, O=(1/c)0=(1/c)(cv)=(c/c)v=1v=v.

3. In the vector space of functions, what is the function satisfying the condi-
tion VS 2?

SOLUTION. The zero function, namely, f(x)=0 for all x plays the role
of the identity.

4. Let V be a vector space and v, w two elements of V. If v+w =0, show
that w=—v.

SOLUTION. We have —-w=—-w+O0=-w+(v+w)=v+w-—w=v.

5. Let V be a vector space, and v, w be two elements of V such that
v+w=v. Show that w=0.

SOLUTION. We know that v+O=v so v+O=v+w. Adding —v to
both sides shows that O =w. '
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2 I. VECTOR SPACES

6. Let A, A, be vectors in R'. Show that the set of all vectors B in R’
such that B is perpendicular to both A, and A, is a subspace.

SOLUTION. See Exercise 7.

7. Generalize Exercise 6, and prove: Let A,..., A be vectors in R". Let W
be the set of vectors B in R" such that B-A =0 for every i=1,...,r.
Show that W is a subspace of V.

SOLUTION. The definition of the dot product implies O-A, =0 for all i;
thus O e W.If B, and B, lie in W, then the properties of the inner product

imply
A-(B+B)=A-B+A-B,=0+0=0 and A -(cB)=c(A-B)=0
for all i; thus W is a subspace of R".

8. Show that the following sets of elements in R’ form subspaces.
(a) The set of all (x, y) such that x=y.
(b) The set of all (x,y) such that x—y=0.
(c) The set of all (x,y) such that x+ 4y =0.

SOLUTION. In each case let W be the set in question.

(a) Since 0=0, we have Oe W. Clearly, x,+x, =y, +y, and cx, =cy,
whenever (x,,y,), (x,,y,)€W and ceR.

(b) We have 0-0=0, so OeW. If (x,y) (x.y,)eW and ceR,
then

(% +x:) = (3 +9,) = (x = 3)+ (%, = y,) =0
and
ex, —cy, =c(x, ~y)=0,
so W is a subspace.

(c) Since 0+4x0=0, we have OeW. If (x,y) (x,y)eW and
ceR, then

(x1+x2)+4(y1+y2)=(x1 +4y])+(x2 +4y2)=O and cx, +4cy, =0,
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ANSWERS TO EXERCISES 3

so W is a subspace.

9. Show that the following sets of elements of R form subspaces.
(a) The set of all (x,y,z) such that x+y+z=0.

(b) The set of all (x,y,z) such that x =y and 2y = z.
(c) The set of all (x, y, z) such that x+y=3z.

SOLUTION. 1In each case let W be the set in question.
(a) We have O e W because 0+0+0=0. If (x,y.z) (x.y.2)eW,
then

X, +X,+y,+y,+z,+2,=0 and cx, +cy +cz, =0
so W is a subspace.

(b) Wehave 0=0 and 2x0=0, so OeW. If (x,,y,.z,) (x, v..2,)eW
and c is a real number, then

X, +x, =y, +y,, 2(_vI +yz) =z,+2,, cx =cy, 2y =cz,
so W is a subspace.

(c) Clearly, 0+0=3x0, so OeW. If (x,y.z) (x.y.2,)eW and
ceR, then

x,+x,+y,+y,=3(z,+2,) and cx, +cy, =3cz,
so W is a subspace.

10. If U, W are subspaces of a vector space V, show that UNW and U+ W
are subspaces.

SOLUTION. (i) Since OeU and OeW, we have OeUnW. If
v,v,eUNW, then v,v,eU so v +v,elU and v,v,eW, hence
v,+v, e W. Thus v, +v, belongs to UnW. Similarly, cv, belongs to
Uand W, so cv, e UnW. Consequently, UNW is a subspace of V.

(ii) Since O belongs to U and W, O belongsto U+W. If abeU+W,
then we can write a=u, +w, and b=u, +w,, where u, €U and w, e W.
Since U and W are subspaces, we see that a+b = (u, +u,)+(w, +w,) and
ca=cu, +cw, belong to U+ W, so U+W is a subspace of V.

11. Let K be a subfield of a field L. Show that L is a vector space over K. In
particular, C and R are vector spaces over Q.
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I. VECTOR SPACES

SOLUTION .If x and y belong to L, then since L is a field, x+ y is an ele-

ment of L. Moreover, if ¢ € K, then ¢ e L so that cx € L. The element O
of VS 2 is simply 0, and in VS 3 we have —x =(-1)x. All the other ax-

ioms are verified at once.

12. Let K be the set of all numbers which can be written in the form a+b\2

13.

where a, b are rational numbers. Show that K is a field.

SOLUTION. Clearly, K is a subset of the complex numbers. If a+b\2
and c+d«/§ belong to K, then

(a+6V2)+(c+dV2)=(a+b)+(c+d)W2
and
(a+b\[§)-(f+dﬁ)=(ac+2bd)+(ad+bc)\[i.

Since Q is a field, we see at once that K is closed under addition and multi-
plication. For the other properties, note that —a-b\2 €K and that if
a+b\2=0,then a=b=0;s0if a+by2 #0, we have

-1 1 a b
a+b\2) = =— R 2
( ) a+b\J2  a =20 & -2b°

which belongs to K. We simply multiplied the numerator and denominator
by a—b+2. Finally, 0=0+0+v2 €K and 1=1+0v2 e K.

Let K be the set of all numbers which can be written in the form a+ bi
where a, b are rational numbers. Show that K is a field.

SOLUTION. We see that if a+bi and ¢+ di belong to K, then
(a+bi)+(c+di)=(a+b)+(c+d)i
and
(a+bi)-(c+di)=(ac—bd)+(ad +bc)i.
But Q is a field, so K is closed under addition and multiplication.

Moreover, —a—bie K,and if a+bi=0,then a=b=0;s0if a+bi#0,
we get
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1  a : b ;
a+bi a+b* a*+b’

(a+bi)" =

which belongs to K. We multiplied the numerator and denominator by the
conjugate of a+ bi. Finally, we have 0=0+0i and 1=1+0i,s00and 1
belong to K.

14. Let ¢ be a rational number >0, and let ¥ be a real number such that
Y? =c. Show that the set of all numbers which can be written in the form
a+ by where a, b are rational numbers, is a field.

SOLUTION. Let K be the set of numbers we are considering. If y is ratio-
nal, then K=Q. Suppose that 7y is irrational and let a+by € K and
u+ty e K, then

(a+by)+(u+ry)=(a+u)+(b+1)y

(a+by)-(u+ty)=(au+btc)+(at + bu)y.

Since c is rational and Q is a field, we see that K is closed under addition
and multiplication. Clearly, —a—bye€ K. Suppose that a+by#0.

Since v is irrational, a—by # 0, so we can divide by a — by, hence

a-by a b

a+by)a-by) a—cb’ TF-ar

(a+b7)_ =(

Finally, O and 1 belong to K because 0=0+0Y and 1=1+0y.

|, §2 Bases
1. Show that the following vectors are linearly independent (over C or R).
(a) (L1,1) and (0,1,-2) (b) (1,0) and (1,1)
(c) (-1,1,0) and (0,1,2) (@) (2,-1) and (1,0)
(e) (m,0) and (0,1)  (1,2) and (1,3)
(g) (1,1,0), (1,1,1), and (0,1,-1) (h) (0,1,1), (0,2,1), and (1,5,3)

SOLUTION. (a) If a and b are numbers such that a(1,1,1)+5(0,1,-2) =0,
then we have
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a=0
a+b=0
a-2b=0

so a=b=0.
(b) If a(1,0)+5b(1,1)= O, then

a+b=0
b=0

so a=b=0.
©) If a(-1,1,0)+ b(0,1,2) = O, then

-a=0
a+b=0
2b=0

so a=b=0.
(@ If a(2,-1)+b(1,0) = O, then

{2a+b =0

-a=0
so a=b=0.

(@ If a(n,0)+5(0,1)= O, then

arn =0
b=0
so a=b=0.

() If a(1,2)+b(1,3) =0, then

a+b=0
2a+3b =0.

The second equation minus twice the first implies b=0. So a=b=0.
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ANSWERS TO EXERCISES 7
(@ If a(1,1,0)+b(1,1,1)+¢(0,1,—-1) = O, then

a+b=0
a+b+c=0
b-c=0

The second equation minus the first implies ¢c=0. So a=b=c=0.
(h) If a(0,1,1)+b(0,2,1)+¢(1,5,3) = O, then

c=0
a+2b+5¢=0
a+b+3c=0

Subtracting the third equation from the second, we see that a=b=c=0.

2. Express the given vector X as a linear combination of the given vectors A,

B and find the coordinates of X with respect to A, B.
(@) X=(1,0), A=(1,1), B=(0,1)

(b) X=(2,1), A=(1,-1), B=(1,1)

(c) X=(1,1), A=(2,1), B=(-1,0)

(d) X=(4,3), A=(2,1), B=(-1,0)

SOLUTION. (a) (1,-1), X=A-B. (b) (3,4), X=1+A+4$B.

© (1,1), X=A+B. @ (3.2), X=3A+2B.

3. Find the coordinates of the vector X with respect to the vectors A, B, C.

4.

(@ X=(1,0,0), A=(1,1,1), B=(-1,1,0), C=(1,0,-1)
(b) X=(1,1,1), A=(0,1,-1), B=(1,1,0), C=(1,0,2)
(c) X=(0,0,1), A=(1,1,1), B=(-1,1,0), C=(1,0,-1)

SOLUTION. (a) (3,5.%), X=3A+3B+3iC.

() (1,0,1), X=A+C.

© (3.4.%), X=4A-4{B-1C.

Let (a,b) and (c,d) be two vectors in the plane. If ad—bc=0, show

that they are linearly dependent. If ad —bc # 0, show that they are linearly
independent.
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8 I. VECTOR SPACES

SOLUTION. (i) Suppose that ad —bc =0. If one of the vectors (a,b) or
(c,d) is O, then both vectors are linearly dependent. Suppose both vectors

are non-zero; then we may assume without loss of generality that ¢ #0.
We contend that a # 0 and that

(ab)==(cd)=0  (+)

Indeed, if a=0, then bc=0; so b=0 and (a,b)=0 which is a contra-
diction. Then (*) is true because b—ad/c=0.
(ii) Suppose that ad —bc #0. Then x(a,b)+ y(c,d)=0 implies

ax+cy=0
bx+dy=0

Multiplying the first equation by d and subtracting c times the second equa-
tion we get (ad —bc)x=0; so x=0. Hence cy=0, and dy =0, and the
condition ad —bc # 0 implies y =0, so (a,b) and (c, d) are linearly inde-
pendent.

S. Consider the vector space of all functions of a variable t. Show that the fol-
lowing pairs of functions are linearly independent.
(@) 1,t (b) t,t* (c) t,t* (d) €',t (e) te',e” (f) sint, cost
(g) t,sint (h) sint,sin 2t (i) cost,cos 3t

SOLUTION. (a) Suppose that a+bt=0. Putting t=0 and then t=1,
we find a=b=0.

(b) Letting ¢ =1 and then ¢=-1 in the equation at+ bt* =0, we see that
a=b=0.

(c) Same as in (b).

(d) Letting t=0 and then z=1 in the equation ae'+bt=0, we get
a=b=0.

(e) Let t =0 and then ¢ =1 in the equation ate' + be* =0.
(f) Let t =0 and then ¢ =7/2 in the equation acos t+bsint=0.
(h) Let ¢ =m/2 and then ¢ = /4 in the equation asin ¢+ bsin 2t =0.

(i) Let t =71/6 and then ¢ =0 in the equation acos ¢+ bcos 3t =0.
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6. Consider the vector space of functions defined for t > 0. Show that the fol-

lowing pairs of functions are linearly independent.
(a) 1,1/t (b) €' logt

SOLUTION. (a) Suppose that at+b/t=0. Let t=1 and t=2 so that
a+b=0 and 2a+b/2=0. We conclude at once that a=b=0.

(b) Suppose that ae' +blogt=0. Putting t=1, we find a=0, so we see
that b must also be 0.

7. What are the coordinates of the function 3sin t + 5cos t = f(t) with respect

to the basis {sint,cost}?

SOLUTION. (3,5).

8. Let D be the derivative d/dt. Let f(t) be as in Exercise 7. What are the

9.

coordinates of Df(t) with respect to the basis of Exercise 77
SOLUTION. (-5,3), because Df(t)=3cost—5sint.

Let A,,...,A, be vectors in R" and assume that they are mutually perpen-

dicular (i.e. any two of them are perpendicular), and that none of them is
equal to O. Prove that they are linearly independent.

SOLUTION. Suppose that a A, +a,A,+...+a,A =0. Then for each i with
1<i<r we have

0=A-(aA +aA+.+aA)=aA A+.+aA -A+.+aA A
=aA A.

But A #0, so A -A, >0 and consequently a, =0.

10. Let v, w be elements of a vector space and assume that v# O. If v, w are

linearly independent, show that there is a number a such that w = av.

SOLUTION. 1If wis zero, let a=0. Assume w # O; then, since the two
vectors v and w are linearly dependent, there exist numbers ¢ and d that are
not both zero such that cv+dw =0. Hence cv=—dw. Since v#O0, we
must have d #0. Let a=—c/d so that av=w.
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I, §4 Sums and Direct Sums

1. Let V=R’ and let W be the subspace generated by (2,1). Let U be the
subspace generated by (0,1). Show that V is the direct sum of W and U. If
U’ is the subspace generated by (1,1), show that V is also the direct sum
of Wand U’.

SOLUTION. (See also Exercise 3.)
(i) Let (x,y)eR’. If a=x/2 and b=y—x/2, then

a(2,1)+5(0,1) = (x,y),

so R*=W+U. If 02,1)=P(0,1), then =B=0. soWnU={0}. We
conclude that R*=W@®U.

(i) If a=x—y and b=2y—x, then a(2,1)+5(1,1)=(x,y) so we have
R:=W+U’. If 0(2,1)=B(L1), then a=B=0 so WAU’={0}, and
hence R* =W U’.

2. Let V=K for some field K. Let W be the subspace generated by (1,0,0),

and let U be the subspace generated by (1,1,0) and (0,1,1). Show that V is
the direct sum of W and U.

SOLUTION. The vector space K> has dimension 3, so it is sufficient to
show that the three vectors {(l, 0,0),(1,1,0),(0,1, 1)} are linearly indepen-
dent. Indeed, if a(1,0,0)+b(1,1,0)+¢(0,1,1) = O, then

a+b=0
b+c=0
c=0

so we must have a=b=c=0 andhence V=We@U.

3. Let A, B be two vectors in R* and assume that neither of them is O. If
there is no number c such that cA = B, show that A, B form a basis for R?,
and that R* is the direct sum of the subspaces generated by A and B.

SOLUTION. The vector space R* has dimension 2, so it is sufficient to
show that A and B are linearly independent. But suppose not; then there ex-
ist numbers a, b that are not O such that aA+bB =0 or, equivalently,
aA =-bB. The number b cannot be 0 because A # O, so B=cA where
¢ =-a/b, which is a contradiction. So {A, B} form a basis for R’.
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Now let W, and W, be the subspaces generated by A and B, respectively.
Since {A, B} generates R?>, we have R’=W,+W,, and the fact that
{A, B} is a basis implies that any vector v € R has a unique expression of
the form v =aA +bB where a,beR. Thus R* =W, ®W,.

4. Prove the last assertion of the section concerning the dimension of UX W.
If {u,,...,u,} is a basis for U and {w,,...,w,} is a basis for W, what is a
basis of Ux W ?

SOLUTION. We want to show that the dimension of UXW is r+s. Let
A= (u,, 0) and B, = (0, w,). We contend that S = {A‘, B, }:sis, is a basis
SjsSs

for UxW. If (u,w) belongs to UXxW, then there exist numbers

a,...,a,b,..., b, such that u=2a,.u,and w=2bjwj. Then

i=1 j=1

(u,w)= zaiA_. +Y.bB,,

s
i=1 Jj=1

so S generates U X W. Now we show that the vectors in S are linearly in-
dependent. If

Y aa+3 b8 =(00),

i=1 j=1

=b, =...=b, =0, thereby

r

then Zaiui =0 and ijwj =0 s0 g, =..=a
i=1 j=1
proving our contention. Hence dim(U X V) =r+s =dimU +dimV.
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CHAPTER I

Matrices

Il, §1 The Space of Matrices

1 2 3 -1 5 =2
1. Let A= and B= . Find
-1 0 2 2 2 -1

A+B, 3B, —2B, A+2B
2A-B, A-2B, B-A.

071 -3 15 -6
SOLUTION. A+B= , 3B= ,
1 21 6 6 -3

2 -10 4 -1 12 -1 3 -1 8
2B= , A+2B= , 2A-B= ,
-4 -4 2 3 4 0 -4 25
3 -8 7 -2 3 -5
A-2B= , B—A= )
-5 -4 4 3 2 -3
1 -1 -1 1
2. Let A= and B= . Find A+B, 3B, —2B, A+2B,
2 2 0 -3

A-B, B-A.

00 -3 3 2 =2
SOLUTION. A+B= , 3B= , —2B= ,
2 -1 0 -9 0 6
-1 1 2 -2 -2 2
A+2B= , A-B= , B—-A= )
2 4 25 -2 -5

3. In Exercise 1, find 'A and 'B.

1 -1 -1 2
SOLUTION. 'A=|2 0|, '‘B=|5 2
3 2 -2 -1
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4. In Exercise 2, find 'A and 'B.

1 2 -1 0
SOLUTION. ‘A= , '‘B= .
-1 2 1 -3

5. If A, B are arbitrary m X n matrices, show that
‘(A+ B)='A+B.

SOLUTION. The matrix A+ B is also mXxn. Suppose A=(au) and
B=(b,.j), then the ji-entry of ‘(A+ B) is a,+b, and the ji-entries of ‘A

and ‘B are, respectively, a, and b,, so we have the formula

ij [/
‘(A+ B)='A+'B.
6. If c is a number show that
(cA)=c'A.

SOLUTION. 1f A=(a,) and b,=a, then by definition we have
(cA)= (cbj,.); so c'A= c(bﬁ) = (cbﬂ }=’(CA).

7. If A= (al.j) is a square matrix, then the elements a, are called the diagonal

elements. How do the diagonal elements of A and 'A differ?

SOLUTION. The diagonal elements of A and ‘A are the same because if
i=j,then a;=a, .

8. Find ‘(A+ B) and '‘A+'B in Exercise 2.
0 2
SOLUTION. (A+B)=|, " |=A+B.
9. Find A+'A and B+'B in Exercise 2.
21 -2 1
SOLUTION. A+'A= , B+B= .
1 4 1 -6

10. Show that for any square matrix A, the matrix A+'A is symmetric.
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SOLUTION. If A= (aij), then the ij-entry and ji-entry of the matrix A+'A

are a, +a, and a, +a,, respectively, so A+'A is symmetric.

11. Write down the row vectors and column vectors of the matrices A, B in
Exercise 1.

SOLUTION.
Matrix A. 15t row =(1 2 3),and2Mrow =(-1 0 2).

1 2 3
15t column = ( 1], 20d colymn = (O)’ 3rd column = (2)

Matrix B. 15t row =(-1 5 —2),and2Mrow =(2 2 -1).

-1 5 -2
15t column = ( 2 J, 2nd column = ( 2),3“1 column =[ 1].

12. Write down the row vectors and column vectors of the matrices A, B in
Exercise 2.

SOLUTION.
Matrix A. 15t row =(1 —1),and 2Mrow =(2 2).

1 -1
15t column = , 2nd coluymn = .
2 2

Matrix B. 15t row =(-1 1), and ond o =(0 -3).

-1 1
15t column = , 20d column = .
0 -3

Il, §1 The Space of Matrices

In this section we let E, be the matrix with all entries 0 ex-

cept the ij-entry, which is equal to 1. We call these matrices
the elementary matrices.

1. What is the dimension of the space of 2 X2 matrices? Give a basis for this
space.

SOLUTION. The space of 2 X2 matrices has dimension 4. The matrices

E

10 01 00 00
w=lo o) B2=loof Eu=|1 o) E2=|01
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clearly form a basis for the space of 2x2 matrices. See Exercise 2.

2. What is the dimension of the space of mxn matrices? Give a basis for
this space.

SOLUTION. The space of mxn matrices has dimension mn. The set
S={EU}|S,-S," is a basis for the space Mat, (K). Indeed, if (a,./.) is an

1<j<n

m X n matrix, then

so S generates Mat
cause if

(K). The vectors of S are linearly independent be-

mxn

n

zm:c,.jE,./ =0,

Jj=1 i=1
then (CU) = 0; thus c; = 0. Clearly, S has mn elements

3. What is the dimension of the space of nxn matrices all of whose compo-
nents are 0 except possibly the diagonal components?

SOLUTION. The dimension of the space considered is n, and the set
S={E,}, . isabasis.

4. What is the dimension of the space of nxn matrices which are upper trian-
gular, i.e. of the following type:

a, 4, ... q,
0 a, .. a, ,

n °
0 0 .. a

SOLUTION. The dimension of the space W of nXxn upper triangular ma-

. . +1 . .
trices is 2('12_), because the set S = {EU} is a basis for W. Actually,

I<i<j<n
S consists of all elementary matrices that are upper triangular. If (alj) ew,
then

(aif) = Z%Eq ]

I<isjsn
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n(n+1)

and if ZCJE = 0, then we must have ¢, = 0. The set S has el-

ij
1sigjsn

ements. Indeed, when i =1, we have n vectors, namely, E , E ,,.... E,,.
When i =2 then we have n~—1 vectors, namely, E,,, E,,,..., E,,. But

2n

n+(n-1)+(n-z)+...+1=@.

Note: We can compute the cardinal p of S in another way. If we subtract

the diagonal elements from S we get all of the elements strictly above the
diagonal. By symmetry we have the same number of elements strictly be-
low the diagonal, so we multiply p—n by 2. Finally, adding the diagonal

elements we see that2(p—n)+n=n’. Now we solve for p.

5. What is the dimension of the space of symmetric 2 X2 (i.e. 2X?2 matrices
A such that A='A)? Exhibit a basis for this space.

SOLUTION. The space in question has dimension 3, and a basis for this
space is given by

10 01 00
E1|= p E12+E21= . E,
' 00 ' ' 10 ~{0 1

6. More generally what is the dimension of the space of symmetric nXn ma-
trices? What is a basis for this space?

SOLUTION. The dimension of the space of symmetric nXn matrices is
n(n+1) . . . .
———. A basis for this space is {E,.j +E..}m<ﬁn U{Eﬁ}msﬂ. If k is the

Ji

cardinal of {E,j + Eﬁ}u<-<-< , then £ is also the number of strictly upper trian-

gular elementary matrices. Therefore, arguing as in Exercise 4, we see that

+
2k +n=n?, so that kan="ntD)
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7. What is the dimension of the space of diagonal nxn matrices? What is a
basis for this space?

SOLUTION. The dimension of the space of diagonal nXxn matrices is n
because a basis for this space is simply {E, }

Iisn *
8. Let V be a subspace of R*. What are the possible dimensions for V?

SOLUTION. All the possible dimensions for V are 0, 1, or 2. Theorem 3.7
of Chapter I implies that V can have dimension O, 1, or 2. An example for
each case would be O for dimension 0, a line passing through the origin for
dimension 1, and R’ itself for dimension 2.

9. Let V be a subspace of R*. What are the possible dimensions for V?

SOLUTION. All the possible dimensions for V are 0, 1, 2, or 3. An exam-
ple for each case would be O for dimension 0, a line passing through the
origin for dimension 1, a plane passing through the origin for dimension 2,
and R’ itself for dimension 3.

Il, §2 Linear Equations

1. Let (**) be a system of homogeneous linear equations in a field K, and as-

sume that m = n. Assume also that the column vectors of coefficients are
linearly independent. Show that the only solution is the trivial solution.

SOLUTION. 1If the vectors A’ are linearly independent, then
x,A'+...+x A" =0 if and only if x, =..=x, =0.

2. Let (**) be a system of homogeneous linear equations in a field K, in n
unknowns. Show that the set of solutions X = (x,,..., xﬂ) is a vector space
over K.

SOLUTION. Since the system is homogeneous, the vector 0-=(0,0,...,0)
is a solution of the system. Because the system is linear, we see that if
(x,,....x,) and (y,...,y,) are solutions, then (x,+y,...x,+y,) and

(cx,,...,cx,) are also solutions.

3. Let A',..., A" be column vectors of size m. Assume that they have coeffi-
cients in R, and that they are linearly independent over R. Show that they
are linearly independent over C.
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SOLUTION. Let c,....c, be complex numbers such that
c,A'+...4+c,A" = 0. We can write ¢, = x, + y,i so that the preceding equa-
tion becomes

XA+ +x,A" +i(yA'+.. +y,A") =0 (%)

But a complex number is zero if and only if its real and imaginary parts are
0, so writing down the coordinates of each column vector we see that (*)

implies the two systems x,A'+...+x,A" =0 and y,A'+..+y,A"=0. The
column vectors are linearly independent over R, so we get ¢, =...=c, =0.

4. Let (**) be a system of homogeneous linear equations with coefficients in

R. If this system has a non-trivial solution in C, show that it has a non-
trivial solution in R.

SOLUTION. Suppose that the system only has the trivial solution in R.
Then we see that the column vectors are linearly independent over R, so
Exercise 3 implies that the column vectors are linearly independent over C,

and consequently the system has only the trivial solution in C, which is a
contradiction.

Il, §3 Multiplication of Matrices

1. Let I be the unit nxXn matrix. Let A be an nXr matrix. What is IA? If
A is an m X n matrix what is AI?

SOLUTION. We have IA= Al = A because if 1=(8,), where 8, =1 if
i=jand §,=0if i#jand A=(a, )1 then the lk-entry of IA and Al
Sjsr

n n
is a,. Indeed, ZSUajk = Za,}ﬁjk =a,.
= =

2. Let O be the matrix all whose coordinates are 0. Let A be a matrix of a size
such that the product AO is defined. What is AO?

SOLUTION. Clearly AO=0.

3. In each one of the following cases, find (AB)C and A(BC).

W20 g 1) o(t
@A=31) '10)’ 23
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213 oel2 o] e[y
(b) A= . B=|2 0|, C=
31 2 3
3 1
110 12
204 1
(c)A=( ),B=21—1,C= 3
30 -1
315 -1 4
SOLUTION.
e 232 a2
@ (AB)C=(_, 3y 3)7\4 1) =311 4
4
. (AB)C_(I 3)(1)_(10) A(BC)_(Zl—ljz
( i )\3) e ) 31 2
0
2
AB)C_1371 AL
© ( “lo 2 =5 11 -18)
14
43
41 33 37
A(BC)=( ]6 =( j
0 -1 11 -18
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27
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4. Let A, B be square matrices of the same size, and assume that AB = BA.

B

Show that (A+ B) = A’ +2AB+ B, and

(A+B)(A-B)=A’-PB,

using the properties of matrices stated in Theorem 3.1.

SOLUTION. We have

(A+B)(A+B)=(A+B)A+(A+B)B=A’+BA+AB+ B’

and

S. Let A=(

1 2 20
, B=
3 -1 1

=A’+2AB+ B’
(A+B)A-B)=(A+B)A-(A+B)B=A’-B.

]). Find ABand BA.

SOLUTION. Doing the computation we find that
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4 2 2 4
AB= and BA= .
5 -1 4 1

70
6. Let Cz(o 7). Let A, B be as in Exercise 5. Find
CA, AC, CB and BC. State the general rule including this exercise as a
special case.

SOLUTION. Note that C=71. The computation shows that

7 14 14 0
CA=AC= and CB=BC= .
21 =7 717

The rule is that in general we do not always have AB= BA.

315
7. Let X=(1,0,0)andlet A=[2 0 1|. Whatis XA?
117

SOLUTION. We find that XA=(3 1 5).

8. Ler X=(0,1,0), and let A be an arbitrary 3x3 matrix. How would you
describe XA? What if X =(0,0,1)? Generalize to similar statements con-
cerning matrices, and their products with unit vectors.

SOLUTION. We solve the general case. Consider an nXxn matrix, say
A= (a ) Let X, =(0,....,0,1,0,...,0) be the row vector with zeros ev-
erywhere except 1 at the k-entry. Then we see that

i

all aln
X,A=(0,,...,0,10,..,0) a, a, a, |=(a, a, .. a,)
a a

s0 X,A equals the kh row of A, namely A, .

9. Let A, B be the matrices of Exercise 3(a). Verify by computation that
(AB)='B'A. Do the same 3(b) and 3(c). Prove the same rule for any two
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matrices A, B (which can be multiplied). If A, B, C are matrices which can
be multiplied, show that '(ABC)='C'B'A.

SOLUTION. (i) For the matrices of Exercise 3(a) we find

T SR

For the matrices of Exercise 3(b) we find

3
123 111y,
‘BA = I |= (AB).
10 -1 o B

For the matrices of Exercise 3(c) we find

2
1

-1

1 2 3)\2 3 13 0
‘BA=|1 1 1|4 0 |=|7 2 E(AB)
0 -1 SA1 -1 -5

(ii) In general, suppose that A =(aij) is an mxn and that B=(b,) is an

nx p matrix. The rs-entry of the matrix '(AB) is the sr-entry of the matrix
AB, namely,

n

2 a.u'bfr :

j=1

The rs-entry of the product ‘B'A is given by

(b, ... b)) : [=3.b,a,.
so (ABE='BA.
(iii) Finally, the formula '(ABC)='C'B'A holds because
(ABC)=((AB)C)='C'(AB}='C'B'A.
10. Let M be an nxn matrix such that ‘M = M . Given two row vectors in n-

space, say A and B define (A, B) to be AM'B. (Identify a 1x1 matrix with
a number.) Show that the conditions of a scalar product are satisfied , ex-
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cept possibly the condition concerning positivity. Give an example of a
matrix M and vectors A, B such that AM'B is negative (taking n=2).

SOLUTION. For all square matrices we have '( ’A) = A. This result com-
bined with the formula of Exercise 9 and the fact that M="M implies

AM'B='(BM'A) = BM'A,

the last equality holding because BM'A is a 1x1 matrix. Thus SP 1 holds
because (A, B) =(B, A).

For SP 2, note that
(A, B+C)=AM'(B+C)=AM('B+'C) = AM'B+ AM'C=(A, B)+(A, C).
Finally, SP 3 holds because if ¢ is a number, we have
{cA, BY=cAM'B=c{A, B) and (A,cB)=AM'(cB)=c(A, B).
Suppose n=2. Here are two examples which illustrate that positivity need

not hold:
(1) If M =0, then (A, A)=0 for all A.

. 01 0

Gi)If M = (1 O) and A=(1 0), then (A, A)=(1 0)(1) =0.
011

(a) Let A be the matrix |0 0 1|. Find A*, A>. Generalize to 4x4 ma-
000

trices.
111

(b) Let A be the matrix |0 1 1|. Compute A*, A®, A*.
001

SOLUTION. (a) The computations show that

001 000
A*=[{0 0 0| and A’=|0 0 O]
000 000

For the general theorem, see Exercise 35.

(b) We have
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12. Let X be the indicated column vector, and A the indicated matrix. Find
AX as a column vector.

3 1 0 1
(@) X={2| A=|2 0 1
1 2 0 -1
1
(b) X=[1| A= 215
T o
0
- Bl 0o
(@ X=1x%} 4=150 0
'x3
0 xe % L (000
@X=\x%) A=) 4 9
x3
SOLUTION.
4
3 X, 0
(@ |7 (b) © (@ .
1 0 X,
5
213
13. Let A= 415/ Find AX for each of the following values of X .
1 0 0
(a) X=|0 (b)) X=|1 (c) X=|0
0 1 1
SOLUTION. ( 2 (b) 4 ( ;
. (a) 4 6 C) s
3 75
14. Let A=|1 -1 4|. Find AX for each of the values of X given in
2 1 8
Exercise 13.
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3 12 5
SOLUTION. (a) | 1 b {3 (©)
2 9 8
15. Let
0
1 all al-l
X = and A=| : :
0
O aml am.t
What is AX?

SOLUTION. A computation shows that AX is equal to the second column
of A.

16. Let X be a column vector having all its components equal to 0 except the i-
th component which is equal to 1. Let A be an arbitrary matrix, whose size
is such that we can form the product AX. What is AX?

SOLUTION. The product AX equals the ith column of A because

0
li
all ali aln
ali
AX = - 1=
a, ... a, .. a,):
0 arm

17. Let Az(a ) i=1....mand j=1,..,n be an mxn matrix. Let
B=(bjk),j=1,...,n and k=1,..,s, be an nxs matrix. Let AB=C.

Show that the k-th column C* can be written C* =b,A'+...+b, A". (This
will be useful in finding the determinant of a product).

SOLUTION. The p-entry of C* is given by Zam.bjk. The p-entry of the
j=1

sum b, A'+...+b, A" is

n
b.a,+..+b,a, = Zambﬂ( ,
j=1
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so C*=b,A'+...+b,A", as was to be shown.

18. Let A be a square matrix.

19.

20.

(a) If A> = O show that 1 - A is invertible.

(b) If A* = O show that I—- A is invertible.

(c) In general, if A" = O for some positive integer n show that I — A is in-
vertible.

(d) Suppose that A* +2A+1=0. Show that A is invertible.

(e) Suppose that A — A+1=0. Show that A is invertible.

SOLUTION. (a), (b) and (c) For all positive integers n we have

(I=A)I+A+ A+ +A"" )=+ A+ A+ +A7 —A—.—A" - A",

s0 (I-A)I+A+..+A"")=1-A" and ([+A+..+A")I-A)=1-A".
Thus 7 - A is invertible, and its inverse is given by [+ A+...+A"".

(d) The result follows from the fact that
A(-A-20)=(-A-21)A=-A"-2A=]1.
(e) It suffices to see that

A-A+1)=(-A*+1)A=-A"+A=1.

1 1 b
Let a, b be numbers, and let A= [O C;) and B= (O 1). What is AB?

What is A" where n is a positive integer?

1 b+a
SOLUTION. A simple computation shows that AB = (0 i ) By in-

1 na
duction we prove that A" = (0 . ) Clearly the result is true for n=1. If

the formula is true for some positive integer n, then we have

AP AL = ATA = 1 na\(1 a (1 (n+1)a
[ 0 S N 0 T A S T

Show that the matrix A in Exercise 19 has an inverse. What is this in-
verse?
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SOLUTION. The matrix in Exercise 19 has an inverse, namely,
A = 1 —a
o 1)

21. Show that if A, B are nxn matrices which have inverses, then AB has an
inverse.

SOLUTION. The inverse of AB is B™'A™ because

(AB)YB'A")=A(BB')A" =AA" =1

(B'A")(AB)=B"'(A"A)B=B"'B=1.
22. Determine all 2x?2 matrices A such that A* = O.

SOLUTION. Suppose

a b\(a b\ (a'+bc ab+bd

¢c d\c d) \ac+cd cb+d’)
Then we find @’ =d* =—bc and b(a+d)=c(a+d)=0. (*)

Case 1. If a=—d, then we see that —bc =a*. It is a trivial computation
to verify that the matrices of the form

a b
c —a
where —bc = a*, are solutions of the equation A’ = 0.

Case 2. Suppose that a=d and assume that a # 0; otherwise, we are in
case 1. From (*) we see that both b and ¢ are 0, so we must have a=0
and therefore we are back in case 1.

Hence the matrices solution of A’ =0 are the matrices of the form

a b R
( ] where —bc =a".
c —a

cosO -—sin6 cos20 —sin26

23. Let A=
° [ sin20 cos26

) . Show that A* =
sin® cos0

). Determine

A" by induction for any positive integer n.
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. cosn® —sinn
SOLUTION. Induction proves that A" =

. Indeed, the
sinn® cosnG)

trigonometric formulas
cos acos b—sinasin b =cos(a+b)
and

cos a sinb +sin acos b =sin(a+ b)
imply
[cos 6 —sin GJ[COS n® —sin 116) [cos(n +1)0 —sin(n+ 1)6)

sin® cos® )\sinn® cosnd ) sin(n+1)0 cos(n+1)0

5 -1 0
24. Find a 2 x?2 matrix A such that A> = -1 = o 1)

SOLUTION. From the solution of Exercise 22 we see that we can choose
a=—-d=1, b=2,and ¢ =-1. Indeed,

) Gy i)

25. Let A be an nxn matrix. Define the trace of A to be the sum of the diag-
onal elements. Thus if A= (a,.j), then tr (A)= Za“. Compute the trace
i=1

of the following matrices:

1 7 3 3 -2 4 -2 11
(@|-15 2 b)) 1 4 1 (c)| 3 4 4
2 34 -7 -3 3 =526

SOLUTION. (a)2 (b)4 (c) 8.

26. Let A, B be the indicated matrices. Show that tr(AB) = tr(BA).

1 -11 312
(a) A=|2 4 1|, B=|1 10
3 01 -1 21
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1 7 3 3 -2 4
() A=|-15 2| B=|1 4 1
2 3 4 -7 =3 2

SOLUTION. (a) tr(AB)=tr(BA)=16 (b) tr(AB)=tr(BA)=8.
27. Prove in general that if A, B are square nXn matrices, then
tr(AB) = tr(BA).

SOLUTION. Suppose that A=(a,), B=(b,), AB=(c,), and BA=(d,).
Then

28. For any square matrix A, show that tr(A)=tr('A).

SOLUTION. Taking the transpose leaves the diagonal unchanged, so
tr(A) = tr(‘A).

1 00
29.Let A=|0 2 0| Find A*, A®, A*.
003
1 0 O
SOLUTION. We find A*=[0 2 0 | for k=2, 3, and 4. See Exercise
00 3

30.

30. Let A be a diagonal matrix, with diagonal elements a,,...,a,. What is
A*, A’, A* for any positive integer k?

SOLUTION. We prove by induction that
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a .. 0
A= 0 ai ... 0
0 0 .. a

n

The formula is true when k =1. Suppose that the formula is true for some
positive integer k; then the rules of multiplication of matrices imply that

a 0 ... 0Ya 0 .. 0) (a" 0 .. O

1 1

A = Adt = 0a .. 000 a ..0| |0 & .. 0

016
31.Let A=|0 0 4| Find A®.
000

SOLUTION. We find that A’ = 0.
32. Let A be an invertible nxn matrix. Show that '(A™)=('A)".
SOLUTION. The formula proved in Exercise 9 implies
‘A(A"E(ATARET=1 and (A')A=(AA"REI=1,
so '(A™)=("A)".
33. Let A be a complex matrix, A=(a,), and let A =(a,), where the bar

means complex conjugate. Show that ‘(Z ) ='A.

SOLUTION. The rs-entry of I(Z) is the sr-entry of A, namely, @,. The

sr

rs-entry of ‘A is a_, so the rs-entry of ‘A is @, thus X(Z)=§.

sr?

34. Let A be a diagonal matrix with diagonal elements a,,...,a,. If a, #0 for
all i, show that A is invertible. What is its inverse?

SOLUTION. A brute force computation shows that
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a' 0 0
4 0 g 0
0 0 a;'

35. Let A be a strictly upper triangular matrix, i.e. a square matrix (aq) having

all its components below and on the diagonal equal to 0. Prove that if A
has size (n+1)X(n+1) then A" =0. (If you wish, you may do it only in
case n=2,3 and 4. The general case can be done by induction.)

SOLUTION. The main step of the proof by induction is to show that

©--0 .\\3'& L\a@n \5‘"‘

‘ G \’x (&ev) oo o .
A -

\\_‘ .
_ n)m
Re
O .« e e O
O DA
O C:l(f«-l) v C

O Im
c
‘ ey Cpp

\C::-k\lm
(@)

®) $

o

)l

To prove this result one simply does the computation. Let B be the second
matrix on the left and C the product AB. Since B’ =0 for 1<j<k-1,
we see that the left rectangle of size nx(k —1) of C has zeros everywhere.
Note that A,-B* =A,-B*"' =..=A, -B* =..=A

j+1 - nk+l B" =0, because the
first j+1-entries of A,,, are zero and the last n—(j+1)-entries of B*/ are
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zero, so we get an additional subdiagonal of C that has all entries equal to

zero. This subdiagonal is the diagonal of terms c,, ¢y, s Coporn

Clearly, any entry below this subdiagonal is zero.

o q' 2 ql a3 ' e OTM
o 0,
23 Un
. q<3'“)(1+1) E
Q(Il—ﬂm
0o e @)

®) ‘e ‘Dtﬁ bl(kﬁ-ﬁ,) .. bl

m

3 z

: @Nry)
\\; ey

O

Peow O

Thus AB has the desired form, and the induction shows that A" = O.

36. Let A be a triangular matrix with components 1 on the diagonal. Let
N=A-1,. Show that N*' =0. Note that A=1+N. Show that A is
invertible, and that its inverse is (I+N)" =1-N+N>—..+(=1)"N".

SOLUTION. Exercise 35 implies that N™' = 0. The formula
(1 —q)(l +q+q2+...+q") =1-g"",

proves that the inverse of A is I — N+...+(=1)"N". See Exercise 18.
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If N is a square matrix such that N™*' =0 for some positive integer r,
show that I — N is invertible and that its inverse is 1+ N+...+N".

SOLUTION. Again, distributing shows that

(I-N)I+N+.+N")=(I+N+.+N")I-N)=I-N""=1.

38. Let A be a triangular matrix:

a' 0 ... 0
0 a 0

B= =
0 O a’

Show that BA ad AB are triangular matrices with components 1 on the di-
agonal.

SOLUTION. We compute the jth row of the product BA. We know that

B=(0 .. 04 0 ..0)

J

so if k<j, we have B -A"=0 because the last n—k are 0. Clearly
B - A’ =1, so the matrix BA is triangular with diagonal entries equal to 1.

A similar argument shows that AB is triangular with all diagonal entries
equal to 1.

39. A square matrix A is said to be nilpotent if A" = O for some integer r > 1.

Let A, B be nilpotent matrices, of the same size, and assume AB= BA.
Show that AB and A+ B are nilpotent.

SOLUTION. Since AB= BA, we can manipulate the matrices A and B like
numbers; hence

(AB) =A'B’ =0,

and we verify at once that the binomial expansion holds, namely,
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(A+B) = X(ZJA‘B”“,

k=0

n 1

where | |=—2% If r<k<2r, then A*=0, and if 0<k <r, then
k) Ki(n-k)!

2r—k=r;so B'™* = 0. Therefore,

(A+B)" =0.
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CHAPTER Il

Linear Mappings

lll, §1 Mappings

1. In Example 3, give Df as a function of x when f is the function:
(a) f(x)=sinx (b) f(x)=¢" (c) f(x)=logx

SOLUTION. (a) (Df)(x)=cosx (b) (Df)(x)=¢" (c) (Df)(x)=1/x.
2. Prove the statement about translations in Example 13.

SOLUTION. We have T, (v)=v+u +u, =(v+u,)+u, =TT, (v).
For the second statement, note that

TT (v)=(v-u)+u=id, (v)=(v+u)-u=T,T, (v).

3. In Example 5, give L(X) where X is the vector:
@ (1,2,-3)  (b) (-1,50)  (c) (2,1,1)

SOLUTION. (a) L(X)=11 (b) L(X)=13 (c) L(X)=6.

4. Let F:R’ >R’ be the mapping such that F(t)=(e',t). What is F(1),
F(0), F(-1)?

SOLUTION. F(1) = (e,1), F(0)=(1,0),and F(=1)=(e",~1)=(%,-1).

5. Let G:R* — R’ be the mapping such that G(t)=(t,2t). Let F be as in
Exercise 4. What is (F+G)(1), (F+G)(2), (F+G)(0)?

SOLUTION. (F+G)(1)=(e+13), (F+G)(2)=(e’+2,6), and
(F+G)(0)=(1,0).
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6. Let F be as in Exercise 4. What is (2F)(0), (nF)(1)?
SOLUTION. (2F)(0)=(2,0) and (nF)(1) =(me, 7).

7. Let A=(1,1,-1,3). Let F:R* —>R" be the mapping such that for any
vector X =(x,,x,,x,,x,) we have F(X)=X-A+2. What is the value of
F(X) when (a) X=(1,1,0,-1) and (b) X=(2,3,-1,1)?

SOLUTION. (a) F(X)=1 (b) F(X)=11.

In Exercises 8 through 12, refer to Example 6. In each case, to prove that the
image is equal to a certain set S, you must prove that the image is contained in
S, and also that every element of S is in the image.

8. Let F:R* =R’ be the mapping defined by F(x,y)=(2x,3y). Describe
the image of the points lying on the circle x* +y* =1.

2 2
v

SOLUTION. The image of F is the ellipse whose equation is MT+ ry =1.
W v
Indeed, if u=2x, and v=3x, and x*+y>=1, then T+—9—=1

2 2
Conversely, if MT+K9_=1’ and if we let x=u/2 and y=u/3, then

x*+y’ =1and F(x,y)=(uv).

9. Let F:R®— R* be the mapping defined by F(x,y)=(xy,y). Describe the
image under F of the straight line x =2.

SOLUTION. The image of F is the line whose equation is y =2x.

Indeed, if (2,y) belongs to the line x=2, then F(2,y)=(2y,y) and
clearly (2y,y) belongs to the line y=2x. Conversely, suppose that
v=2u; then F(2,v/2)=(v,v/2)=(v,u).

10. Let F be the mapping defined by F(x, y)= (e‘cos y, e’sin y). Describe the

image under F of the line x =1. Describe more generally the image under F
of a line x =c, where c is a constant.

SOLUTION. The image of F is the circle centered at (0,0) with radius e°.
Indeed, if (c, y) belongs to the line x=c, then F(c,y)=e(cosy,siny).
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Conversely, suppose that (, v) belongs to the circle centered at (0,0) with
radius e‘, then there exists a number y such that

(u,v)=e(cos y,siny).
Then F(c,y)=(uv).

11. Let F be the mapping defined by F(t,u)=/(cos t,sint,u). Describe geo-
metrically the image of the (t, u)-plane under F.

SOLUTION. The image of F is the cylinder in R® of radius 1 with the z-

axis as its major axis.
z

Vo

2
’X/&
Indeed, if F(t,u)=(a,b,c), then we have a’ +b° =1; so (a,b,c) belongs
to the circle of radius one centered at the point (0,0,¢) and which is in-

scribed in the plane z =c.
Conversely, suppose that (a,b,c) belongs to the cylinder. Then

a’ +b* =1, so there exists a number ¢ such that a=cos¢ and b=sint;
then we have F(t,c)=(a,b,c).

12. Let F be the mapping defined by F(x,y)=(x/3,y/4). What is the image
under F of the ellipse x*[9+x*[16=1?

SOLUTION. The image under F of the ellipse is the unit circle.
Indeed, suppose that u = x/3 and v = y/4; then, since (x,y) belongs to the

ellipse, we see at once that u*> +v* =1.
Conversely, suppose that (u,v) belongs to the unit circle. Then we

have F(3u,4v)=(u,v) and
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lll, §2 Linear Mappings

1. Determine which of the following mappings F are linear.

(a) F:R* — R’ defined by F(x,y,z)=(x,z)

(b) F:R* — R* defined by F(X)=-

(c) F:R® = R’ defined by F(X)=X+(0,-1,0)

(d) F:R* = R’ defined by F(x,y)=(2x+y.y)

(e) F:R* = R’ defined by F(x,y)=(2x,y—x)

(f) F:R* = R’ defined by F(x,y)=(y, x)

(g) F:R*> = R defined by F(x,y)=xy

(h) Let U be an open set of R* and let V be the vector space of differentiable
functions on U. Let V’ be the vector space of vector fields on U. Then
grad: V — V'’ is a mapping. Is it linear? (For this part (h) we assume you
know some calculus.)

SOLUTION. Only the maps defined in (a), (b), (d), (e), (f), and (h) are lin-
ear. For (h), note that if fis a differentiable function on U, then we define

9 ad
grad f = (a—i g—j; a—{)

The linearity of the derivative implies the linearity of grad.

2. Let T:V — W be a linear map from one vector space into another. Show

4.

that T(0) = 0.
SOLUTION. In any vector space we have 0-v=_0, so
T(0)=T(0-0)=0T(0)=0.

Let T:V —W be a linear map. Let u, v be elements of V, and let
Tu=w. If Tv=_0, show that T(u+v) is also equal to w.

SOLUTION. We simply have T(u+v)=T(u)+T(v)=w+O0=w.

Let T: V— W be a linear map. Let U be the set of elements ueV such
that T(u)=0. Let we W and suppose there is some element v, € V such

that T(v,)=w. Show that the set of elements v €V satisfying T(v)=w
is precisely v, +U.
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SOLUTION. If xev,+U, then there exists a vector u €U such that
x=v,+u, so

T(x)=T(v,)+T(u)=w.
Conversely, suppose that 7(y)=w. Then
0= ww=T(s)~T(n) = T(s 1)
so y—v, €U thus yevy, +U.

5. Let T:V — W be a linear map. Let v be an element of V. Show that
T(-v)=-=T(v).

SOLUTION. We have T(-v)=T((-1)v)=(-1)T(v) =-T(v).

6. Let V be a vector space, and f: V— R, g V— R two linear mappings.
Let F:V — R’ be the mapping defined by F(v)=(f(v), g(v)). Show that
F is linear. Generalize.

SOLUTION. We prove the general result:

Theorem. Let p be a positive integer, and let V,V',..., V" be vector spaces
overafield K. Foreach 1<j<p,let f:V— V’ be a linear map. Then

themap F: V— V'xV?x---x V" defined by

FO)=(£,(0). £,(v)
is linear.

Proof. We have

F(v1 +v2)=(f,(vI +v2),...,fp(v1 +vz))=(f,(v,)+fl(vz),...,fp(v,)+fp(v2))

F(ev)= (f,(cv),..., fp(cv)) = (cf, v),..., cf”(v)) = c(f,(v),..., f,,(v)) =cF(v)

so F is linear, thereby proving the theorem.

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 39

7. Let V, W be two vector spaces, and let F: V — W be a linear map. Let U
be the subset of V consisting of all elements v such that F(v)=0. Prove
that U is a subspace of V.

SOLUTION. Exercise 2 implies that OeU. If v,,v, € U, then
T(v1 +v2)= T(v,)+T(v2)= o,

so v,+v,eU. Ifc is a number and veU, then T(cv)=cT(v)=0, and
cv € U whence U is a subspace of V.

8. Which of the mappings in Exercises 4, 7, 8 and 9 of §1 are linear?

SOLUTION. The map of Exercise 8 is linear, and all the other maps are not
linear.

9. Let V be a vector space over R, and let v,w € V. The line passing through
v and parallel to w is defined to be the set of all elements v+tw with
t € R. The line segment between v and v+w is defined to be the set of
all elements v+tw with 0<t<1. Let L: V—> U be a linear map. Show
that the image under L of a line segment in V is a line segment in U.
Between what points?. Show that the image of a line under L is either a line
or a point.

SOLUTION. The image of the line segment between v and v+ w is the line
segment between L(v) and L(v)+ L(w) because

L(v+tw)=L(v)+tL(w).

From this expression we also see that the image of a line passing through v
and parallel to w is a point when L(w)= O and a line when L(w) # O.

Let V be a vector space, and let v,,v, be two elements of V which are linearly

independent. The set of elements of V which can be written in the form
Ly, +t,v, with numbers t,t, satisfying 0<t, <1 and 0<t, <1 is called the
parallelogram spanned by v,, v,.

10. Let V and W be vector spaces, and let F: V— W be a linear map. Let
v,, v, be linearly independent elements of V, and assume that F (vl ), F| (vz)
are linearly independent. Show that the image under F of the parallelogram
spanned by v, and v, is the parallelogram spanned by F! (v,), F (v2 )

SOLUTION. The result is a consequence of the linearity of F, namely,
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F(ty, +tv,)=1,F(v,)+1,F(v,).

Let F be a linear map of R’ into itself such that F(E,)=(1,1) and
F(E,)=(=12). Let S be the square whose corners are at (0,0), (1,0),

(1,1) and (0,1). Show that the image of this square under F is a parallelo-
gram.

SOLUTION. The square is the set of elements of R* that can be written in
the form t,E, +t,E,, where 0<t, <1 and 0<¢, <1. Then we have

F(tE +LE,)=1(1,1)+1,(-12).
The vectors (1,1) and (-1,2) are linearly independent because

Ix2+1x1#0 (see Exercise 4 in §2 of Chapter I), so the image of the
square under F is the parallelogram spanned by (1,1) and (-1,2).

12. Let A, B be two non-zero vectors in the plane such that there is no constant

13.

14.

¢ # 0 such that B=cA. Let T be a linear mapping of the plane into itself
such that T(E,)= A and T(E,)=B. Describe the image under T of the

rectangle whose comers are (0,1), (3,0), (0,0), (3,1).

SOLUTION. Exercise 3 in §4 of Chapter I implies that A and B are linearly
independent. The rectangle is the set of vectors in R* that can be written in
the form #,(3E,)+1,E,, where 0<1, <1and 0<t, <1. We have

T(1,(3E)+LE ) =1,(3A)+1,B,

so the image of the rectangle under T is the parallelogram spanned by 3A
and B.

Let A, B be two non-zero vectors in the plane such that there is no constant
¢ # 0 such that B=cA. Describe geometrically the set of points tA+uB
for values of t and u such that 0<t<5 and 0<u<2.

SOLUTION. Let t, =t/5and t, =u/2. Then 0<t <1, 0<t,<1,and
rA+uB=1,(5A)+1,(2B).

Exercise 3 in §4 of Chapter I implies that A and B are linearly independent,
so the set in question is simply the parallelogram spanned by 5A and 2B.

Let T,:V —V be the translation by a vector u. For which vector uis T,
a linear map? Proof?
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SOLUTION. The translation by a vector u is a linear map if and only if
u=0. Indeed, suppose that T, is a linear map. Then T,(0)=0, and so

u=0. Conversely, if u=0, then T, is the identity, which is linear.

15. Let V, W be two vector spaces and, F:V — W a linear map. Let
w,,...,w, be elements of W which are linearly independent, and let v,,...,v

be elements of V such that F(v,.) =w, for i=1,...,n. Show that v,,...,v
are linearly independent.

SOLUTION. Suppose that a,v,+...+a,v, = 0. Then

0= T(a,v,+...+anvn) =aw+..+aw

n’n?

therefore, g, =...=a, =0.

n

16. Let V be a vector space and F: V — R a linear map. Let W be the subset
of V consisting of all elements v such that F(v)= 0. Assume that W #V
and let v, be an element of V which does not lie in W. Show that every el-
ement of V can be written as a sum w+cv, with some w in W and some
number c.

SOLUTION. Let x be an element of V and since T(v(,);tO, we let

¢ =T(x)/T(v,). Finally, let w=x—cv,. All we have to do is check that
w € W. The definition of ¢ implies

T(w)=T(x—cv,)=T(x)-cT(v,)=0.

17. In Exercise 16, show that W is a subspace of V. Let {v,...., v,} be a basis
of W. Show that {v(,, Voo vn} is a basis of V.

SOLUTION. See Exercise 7 for a proof that W is a subspace. Exercise 16
shows that the set {v,,v,....,v,} generates V. Since {v,..., v, }are linearly

independent, and v, ¢ W and the vectors {vo, Viseros vn} are linearly indepen-
dent, we conclude that {vo, Voo V,.} is a basis for V. One can give another
proof. Consider the relation a,v, +a,v,+...+a,v, =0. Take its image un-
der T to find that a, = 0. Then the fact that {v,,..., vn}are linearly indepen-
dent concludes the argument.

18. Let L: R*> = R’ be a linear map, having the following effect on the indi-
cated vectors:
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(a) L(3,1)=(1,2) and L(-1,0)=(1,1)

(b) L(4,1)=(1,1) and L(1,1)=(3,-2)

(c) L(1,1)=(2,1) and L(-1,1)=(6,3).
1

-1,
In each case compute L(1,0).

SOLUTION.

(@ L(1,0)=(-1,-1) because (1,0)=—-(-1,0).

(b) L(1,0)=(=2/3,1) because (1,0)=1+(4,1)—+(1,1).

(©) L(1,0)=(-2,-1) because (1,0)=4(1,1)-%(-1,1).
19. Let L be as in (a), (b), (c), of Exercise 18. Find L(0,1).

SOLUTION.
(@) L(0,1)=(4,5) because (0,1)=(3,1)+3(-1,0).

(b) L(0,1) = (¥, -3) because (0,1)=3(4,1)+4(1,1).

(c) L(0,1)=(4,2) because (0,1)=%(1,1)++(=11).

lll, §3 The Kernel and Image of a Linear Map

1. Let A, B be two vectors in R’ forming a basis of R>. Let F: R* > R"
be a linear map. Show that either F(A), F(B) are linearly independent, or
the image of F has dimension 1, or the image of F is {O}.

SOLUTION. We have the relation
2 =dimIm F + dim Ker F,

so if F(A) and F(B) are linearly dependent, then dim Ker F >1, and thus
dimIm F<1.

2. Let A be a non-zero vector in R*. Let F: R* = W be a linear map such
that F(A)= 0. Show that the image of F is either a straight line or {O}.

SOLUTION. Since F(tA)=tF(A)=0, we have dimKer F>1. But
dim R* =2, so dim Im F is O or 1 whence the image of F is either {O} or
a straight line.
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3. Determine the dimension of the subspace of R* consisting of all X eR*
such that x,+2x, =0 and x,-15x,=0.

SOLUTION. Let W be the subspace in question. Then dim W=2. One
can see that (—2,1,0,0) and (0,0,15,1) form a basis for W. Or we may

consider the linear map L: R* — R? defined by
L(x,, Xy, X5, x‘) = (x1 +2x,, X, — 15x4).

Then Ker L=W and Im L =R>.

4. Let L: V— W be a linear map. Let w be an element of W. Let v, be an
element of V such that L(vo) =w. Show that any solution of the equation
L(X)=w is of type v, +u, were u is an element of the kernel of L.

SOLUTION. See Exercise 4 in §2.

5. Let V be the vector space of all functions which have derivatives of all or-
ders and let D: V — V be the derivative. What is the kernel of D?

SOLUTION. The kernel of D is the set of all constant functions.

6. Let D? be the second derivative (i.e. the iteration of D taken twice). What
is the kernel of D*? In general, what is the kernel of D" (n-th derivative)?

SOLUTION. By integration we see that the kernel of D" is the set of poly-
nomials of degree <n-—1.

7. Let V be again the vector space of functions which have derivatives of all
orders. Let W be the subspace of V consisting of those functions f such
that f”+4f=0and f(r)=0. Determine the dimension of W.

SOLUTION. The space W has dimension 1. We use a trick to prove the
following theorem which is a special case of a more general theorem on dif-
ferential equations.

Theorem. Let ¢ be a positive number. Then (cos ct,sin ct) is a basis for

the solution space of infinitely differentiable functions of the second-order
differential equation

fr+ctf=0. (*)
Proof. The functions cos ct and sin ct are solutions of (*), and they are

linearly independent. Let f be an infinitely differentiable function solution
of (*). Then differentiating the expressions
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f(#)cos ct —lf’(t)sin ct and f(¢)sin ct +lf’(t)cos ct,
C C

and using (*), one finds 0. So there exist constants a and b such that

f(t)cos ct - lf’(t)sin ct=a
C

F(t)sin ct + lf’(t)cos ct=b
c

Multiplying the first equation by cos ct, the second by sin ¢z, and then
adding the resulting equations, we find that f(¢)=acos ct+bsinct;
thereby concluding the proof of the theorem.

Back to the original problem we see that the condition f(m)=0 implies
that a=0; so f must be of the form bsin 2¢, and therefore W has dimen-
sion 1.

8. Let V be the vector space of all infinitely differentiable function. We write
the functions as function of a variable t, and let D =d/dt. Let a,,...,a, be

numbers. Let g be an element of V. Describe how the problem of finding a
solution of the differential equation

m m-1
m d f + am—l d f
dt” dr”

a +..ta,f=g

can be interpreted as fitting the abstract situation described in Exercise 6.

SOLUTION. Let S be the set of solutions of the same equation but with 0
instead of g. The map

L: Vo>V
da"f
dat”

f—a, +..+a,f

is linear and Ker L=S. So if we have one solution, say f,, of the equa-
tion

a, s
ar”

+..+a,f=g (¥

then the general solution of (*) can be written as f, + h, where A lies in S.
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9. Again let V be the space of all infinitely differentiable functions, and let

D: V >V be the derivative.
(a) Let L =D — I where I is the identity mapping. What is the kernel of L?
(b) Same question if L= D —al, where a is a number.

SOLUTION. (a) and (b) We want to solve
f'=af =0. (¥
Let f be a solution of (*). Then
(f(t)] _Fe e _ e (FO-ar@) _

e e2nr e2m

So there exists a constant ¢ such that f(¢)=ce”. Conversely, any function
of this form solves (*), so Ker L is the space generated by e”.

10. (a) What is the dimension of the subspace of K" consisting of those vectors

11.

A =(a1,...,a,,) such that a,+...+a, =0?

(b) What is the dimension of the subspace of the space of nXn matrices
(a‘.j)such that a,+...+a,=07?

[For part (b) look at the next exercise.]

SOLUTION. (a) The dimension of the space in question is n—1. Consider
the linear map L: K" — K defined by L(A)=a,+...+a,. Then clearly

ImL=K because, given any x€K, then L(x0,...,0)=x. Thus
dim Ker L =n—1. Note that the set {E )~ E"}lsjs;.—l is a basis for the space
in question because a, =—-a,—...—a, .

(b) The dimension of the space in question is n* —1. Indeed, the linear map
defined in Exercise 11(a) has an image equal to K because, given any x € K,
the matrix with all entries 0 except a,, = x has trace equal to x. Since the

space of square nX n matrices is n’, the result follows.

Let A =(a,}.) be an nxXn matrix. Define the trace of A to be the sum of

the diagonal elements.

(a) Show that the trace is a linear map of the space of n X n matrices into
K.

(b) If A, B are nxn matrices, show that tr(AB) = tr(BA).

(c) If B is invertible show that tr(B™AB) = tr(A).

(d) If A, B are n X nmatrices, show that the association
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(A, B)—>tr(AB) = (A, B)
satisfies the three conditions of a scalar product.

(e) Prove that there are no matrices A, B such that AB—BA=1,.

SOLUTION. (a) If B=(b,), then

tr(A+B)= Y (a,+b,)= Y a,+ Yb, = tr(4) +u(B).

i=1 i=l i=1

and if ¢ is a number,

tr(cA) = ca, =cY, a, =ctr(A).
=1 i=1

(b) See Exercise 27 in §3 of Chapter II.
(c) By (b) we have
tr(B"'AB) =tr(B"'(AB))=tr((AB)B™') = tr(ABB™') = tr(A).

(d) The result in (c) implies SP 1. The properties SP 2 and SP 3 are
verified because of (a).

(e) Suppose that there exist matrices A and B such that AB—BA=1,.
Then

tr(AB-BA)=tr(I,)=n,
but (a) and (b) imply that
tr(AB— BA) = tr(AB) —tr(BA) = 0,
so 0 =n, which is a contradiction.

Let S be the set of symmetric nXxn matrices. Show that S is a vector
space. What is the dimension of S? Exhibit a basis for S, when n=2 and
n=3.

SOLUTION. If a, =a, and b, =b so the sum of

ji?

then a, +b, =a, +b,,
two elements of S belongs to S. Clearly, the product of an element of S by
a scalar is an element of S, and the zero matrix belongs to S, so S is a vec-

tor space.
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We proved in Exercise 6, §1 of Chapter II that the dimension of S is
+1
n(L—), and we also gave a basis for the general case. When n=2, a ba-

sis is given by the three matrices

(o} o) (o00)

When n =3, a basis is given by the six matrices

S = O O O O

S O ©O O O© =
- o O O = O

S O © © © O
S O O = O O

S O © = O O

S O = O = O
S O O O O =
S © © © © O

13. Let A be a real symmetric nxn matrix. Show that tr(AA)20 and if
A # O, then tr(AA)>0.

SOLUTION. The kth diagonal entry of AA is given by the scalar product
A, - A*. But A is symmetric, so A,="A*. Hence ¢, 20 and c, =0 if and
only if A, =0. Therefore, tr(AA)>0 and tr(AA) >0 whenever A # O.

14. An nxn matrix is called skew-symmetric if 'A=—A. Show that any
nXn matrix A can be written as a sum A= B+ C, where B is symmetric

and Cis skew-symmetric. [Hint: Let B=(A+‘A)/2.] Show that if
A =B +C, where B, is symmetric and C, is skew-symmetric, then B= B,
and C=C,.

SOLUTION. Let 2B= A+'A and 2C = A—'A. The matrix B is symmetric
because

'(2B)='(A+'A)='A+(‘A)='A+ A=2B,
and C is skew-symmetric because

'(20)=(A-'A)="A-('A) = —(A—'A) = -2C.
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Note that 24 = (A+'A)+(A—'A)=2B+2C, so A=B+C. Moreover, if
A=B +C,, where B is symmetric and C, is skew-symmetric, then

B, — B is symmetric, C—C, is skew-symmetric, and B, —B=C-C,, so

(B, -BE(B,-BE(C-C)=C,~-C=B-B,.
Thus 2(B,—B)=0. So we find that B=B, and C=C,. Therefore we
have the general result:

The space of nxXn matrices is the direct sum of the space of symmetric
n X n matrices and the space of nxXn skew-symmetric matrices.

Let M be the space of all nxn matrices. Let P. M — M be the map
such that

P(A) = A;A.

(a) Show that P is linear.

(b) Show that the kernel of P consists of the space of skew-symmetric ma-
trices.

(c) What is the dimension of the kernel of P?

SOLUTION. (a) The map P is linear because

A+BW'(A+B) A+A+B+B _
2 2 B

P(A+B)=( P(A)+ P(B),

and if c is a scalar,

_cA+'(cA) _ A+A
2 2

P(cA) cP(A).

(b) The equation P(A)= 0 is equivalent to A+'A = O, which is equivalent
to 'A=-A.

(c)If Sym, (K) is the set of symmetric nxn matrices and Sk,(K) is the
set of skew symmetric matrices, then Exercise 14 implies

Mat,, (K)=Sym,(K)® Sk (K),

thus dim Mat,_ (K)=dim Sym (K)+dim Sk, (K). Exercise 6 in §1 of
Chapter II implies that
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n(n+1) _ n(n—1)

dimKerP=n" - .
2 2
16. Let M be the space of all nxn matrices. Let F: M — M be the map
such that
A-'A
F(A)=222
()=

(a) Show that F is linear.
(b) Describe the kernel of Fm and determine its dimension.

SOLUTION. (a) Argue as in Exercise 15 to show that F is linear.

(b) The kernel of F is the set of symmetric matrices that has dimension
n(n+1)
-

17. (a) Let U, W be vector spaces. We let UXW be the set of all pairs (u, w)

with uelU and weW. If (u,, w, ) (uz, wz) are such pairs, define their
sum

(s, w, )+ (uy, w, ) = (t, + 1y, w, +w,).

If ¢ is a number, define c(u, w)=(cu,cw). Show that UxW is a vector

space with these definitions. What is the zero element?

(b) If U has dimension n and W has dimension m, what is the dimension of
U xW ? Exhibit a basis of U X W in terms of a basis for U and a basis for
w.

(c) If U is a subspace of a vector space V, show that the subset of VXV
consisting of all elements (u,u) with u e U is a subspace.

SOLUTION. (a) The set U x W is a vector space because U and W are vec-
tor spaces, and its zero element is O, =(0U,0W), which we write as

(0.0).

(b) We have dim UxV =dimU+dimV=n+m. If {ul ,,,,, u,} is a basis
for U and {w,,..., wm} is a basis for W, then

is a basis for UX W .
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(c) Let U’ be the set in question. Then (0,0)eU’ and if (u,u4,) and
(u,u,) belong to U’, then (u, +u,u,+u,)eU’ and (cu,cu,)eU’ be-
cause U is a vector space, whence U’ is subspace of VxV.

18. (To be done after you have done Exercise 17.) Let U, W be subspaces of a
vector space V. Show that

dim U +dim W =dim (U + W) +dim (U W).
[Hint: Show that the map L: UXW —V given by L(u,w)=u-w is a
linear map. What is its image? What is its kernel? |
SOLUTION. We have

L(uI +u,,w, +w2)=ul tu,—w, —-w, =L(u1,w1)+L(u3,w2)

L(cu,cw)=cu—cw =cL(u,w),
so the map L is linear. We investigate the image and kernel of L:

Image of L. Clearly, ImLc U+ W and, conversely, given ueU and
ueW, we see that L(u,—w)=u+w; so

ImL=U+W.
Kernel of L. L(u,w)=0 ifand only if u=w, so
Ker L=UnNnW.

Therefore, dim (U x W) =dim (U + W)+dim (U "W). Conclude the ar-
gument using (b) of Exercise 17.

lll, §4 Composition and Inverse of
Linear Mappings

1. Let L: R* > R’ be a linear map such that L# O but ' = LL=0. Show
that there exists a basis {A, B} of R’ such that L(A)= B and L(B)=0.
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SOLUTION. By assumption, there exists non-zero vectors A and B such
that L(A)=B. Then L(B)=L(A)=0 andif aA+bB=0, then

O=L(aA+bB)=alL(A),
so a=b=0.

2. Let dmV>dimW. Let L: V— W be a linear map. Show that the ker-
nel of L is not {O}.
SOLUTION. If dim Ker L=0, then we have dimV=dimImL. But
dim Im L < dim W, which implies that dim V <dim Im W, so we have a

contradiction.

3. Finish the proof of Theorem 4.3.

SOLUTION. Let G(v)=u, then F(cu)=cF(u)=cv. Compose with G
and conclude.

4. Let dimV=dimW. Let L: V— W be a linear map whose kernel is
{O}. Show that L has an inverse linear map.

SOLUTION. Theorem 3.2 implies that dim Im L =dim W, so L is surjec-
tive. Conclude.

5. Let F, G be invertible linear maps of a vector space V onto itself. Show
that (FG)' =G 'F.

SOLUTION. We have (FG)(G™'F"')=F(GG™")F™" = FF" =1, and, simi-
larly, we see that (G™'F™')(FG)=1.

6. Let L:R* >R’ be the linear map defined by L(x,y)=(x+y x—y).
Show that L is invertible.

SOLUTION. If L(x,y)=0, then x=~y and x=y; so Ker L={0}.

7. Let L: R> > R’ be the linear map defined by L(x,y)=(2x+y,3x-5y).
Show that L is invertible.

SOLUTION. Verify that Ker L = {0}.

8. Let L: R® > R’ be the linear maps as indicated. Show that L is invertible
in each case.
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(@) L(x,y,2)=(x=2y, x+ 2, x+y+22)
(b) L(x,y,2)=(2x—y+z,x+y.3x+y+2)

SOLUTION. (a) Since Ker L ={0}, L is invertible.
(b) Since Ker L ={0}, L is invertible.

9. (a) Let L: V>V bea linear mapping such that L’ = 0. Show that 1— L
is invertible. (I is the identity mapping on V.)
(b) Let L: V>V bea linear map such that I’ +2L+1=0. Show that L
is invertible.
(c)Let L: V>V be a linear map such that L' = 0. Show that I-L is
invertible.

SOLUTION. (a) The inverse of Lis I+ L.
(b) The inverse of Lis —L —2.
(c) The inverse of Lis I+ L+ L".

10. Let V be a vector space. Let P: V —V be a linear map such that P* = P.
Show that

V=KerP+ImP and KerPnImP={0}

in other words, V is the direct sum of Ker P and Im P. [Hint: To show
V is the sum, write an element of V in the form v=v— Pv+ Pv.]

SOLUTION. Since P(v-P(v))=P(v)-P(v)=0, we see that
V=Ker P+Im P. As for the intersection, note that if w lies in the set
Ker PN Im P, then there exists a vector v such that P(v)= w, so that
P(v)= P(w). But since P(w)=0, we conclude that w=P(v)=0.
Hence

V=KerL®ImL.

11. Let V be a vector space and P, Q be linear maps of V into itself. Assume
that they satisfy the following conditions:
(a) P+ Q=1 (identity mapping).
(b) PQ=QP=0.
(¢) P=Pand Q°=Q.
Show that V is the direct sum of Im P and Im Q.

SOLUTION. In Exercise 12 we prove that Im P = Ker Q, and in Exercise
10 we prove that V = Ker Q ® Im Q, so the result drops out.
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12. Notations being as in Exercise 11, show that the image of P is equal to the

13.

14.

15.

16.

kernel of Q. [Prove the two statements:

Image of P is contained in kernel of Q.
Kernel of Q contained in image of P.]

SOLUTION. If velm P, then there exists w such that P(w)=v. Then

OP(w)=Q(v), so ve Ker Q.
Conversely, suppose that ve Ker Q. Then v =P(v)+Q(v) = P(v), so
velmP.

Let T: V—V bea linear map such that T> = 1. Let
P=%(I+T) and Q=%(I-T).

Prove:
P+Q=1, P'=P, Q*=0Q, PO=0QP=0.

SOLUTION. We have

Similarly, Q> =Q and QP =0.

Let F: V> Wand G: W — U be isomorphisms of vector spaces over K.
Show that GF is invertible, and that (GF)" = F"'G"™'.

SOLUTION. See Exercise 5.

Let F: V> Wand G: W — U be isomorphisms of vector spaces over K.
Show that GF: V — U is an isomorphism.

SOLUTION. See Exercise 14.

Let V, W be two vector spaces over K, of finite dimension n. Show that V
and W are isomorphic.

SOLUTION. Let {v,....,v,} be a basis for V and {w,,...,w,} a basis for
W. Then the mapping L: V — W defined by

L(a,v, +..+ayv, ) =aw+..taw,
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is an isomorphism.

17. Let A be a linear map of a vector space into itself, and assume that

18.

19.

20.

21.

A’-A+I=0

(where I is the identity map). Show that A™' exists and is equal to I—A.
Generalize (cf. Exercise 37 of Chapter I, §3)

SOLUTION. Replace N by A in the answer to Exercise 37 in §3 of Chapter
IL

Let A, B be linear maps of a vector space into itself. Assume that
AB = BA. Show that

(A+B)' =A*+2AB+B’
and
(A+B)(A-B)=A’-B

SOLUTION. We have

(A+B)(A+B)=A(A+B)+B(A+B)= A’ +2AB+ B’

(A+B)(A-B)=A(A-B)+B(A-B)=A’-B".

Let A, B be linear maps of a vector space into itself. If the kernel of A is
{O} and the kernel of B is {O}, show that the kernel of AB is {O}.

SOLUTION. See Exercise 20.

More generally, let A:V—> W and B: W > U be linear maps. Assume
that the kernel of A is {O} and the kernel of B is {O}, show that the kernel
of BA is {0}.

SOLUTION. Suppose that BA(v)=0. Then A(v)eKerB, so A(v)=0,
thus v=0.

Let A: V—= W and B: W— U be linear maps. Assume that A is surjec-
tive and that B is surjective. Show that BA is surjective.

SOLUTION. Given ueU, there exists an element we W such that
B(w)=u and there exists an element ve V such that A(v)=w. Then

BA(v)=u.
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lll, §5 Geometric Applications

1. Show that the image under a linear map of a convex set is a convex set.

SOLUTION. Let S be a convex set, and let L be a linear map. Let
S’=L(S). Suppose that w,w,eS’, and let v,,v, €S be such that

L(v,)=w,. By definition, the line segment tv, +(1—1)v,, 1€[0,1], is con-
tained in S, thus tw, + (1 —1)w, belongs to S’ because
tw, +(1—-t)w, = L(tv, +(1-1)v,).

2. Let S, and S, be convex sets in V. Show that the intersection S, NS,.

SOLUTION. Let v,we S, S,. Then v and W belong to S,, so the line
segment between v and w is contained in S,. Similarly, this line segment
is contained in S,, so the line segment between v and w is contained in
$nNS,.

3. Let L: R" > R be a linear map. Let S be the set of all points A in R"
such that L(A)20. Show that S is convex.

SOLUTION. The set R, is convex. Apply Exercise 6.

4. Let L: R" - R be a linear map and ¢ a number. Show that the set S con-
sisting of all points A in R" such that L(A)> ¢ is convex.

SOLUTION. The set (c,~) is convex. Apply Exercise 6.

5. Let A be a non-zero vector in R" and ¢ a number. Show that the set of
points X such that X-A = c is convex.

SOLUTION. The set [c, ) is convex and themap L: R" - R, X—> X-A
is linear. Apply Exercise 6.

6. Let L: V—> W bea linear map. Let S’ be a convex set in W. Let S be
the set of all elements P in V such that L(P) is in S’. Show that S is
convex.

SOLUTION. Let P,QeS. Then by assumption, tL(P)+(1-t)L(Q)€ S’
whenever 1 €[0,1]. Hence L(tP+(1-1)Q)€eS’, thus tP+(1-1)Q€S.
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7. Show that a parallelogram is convex.

SOLUTION. Suppose that P=uv+sw and Q=u'v+s'w belong to the
parallelogram spanned by v and w. Then for 1 €[0,1] we have

tP+(1-1)Q = (tu+(1—1)u' v+ (ts +(1-1)s")w.

But 0<m+(1—t)u’ <1 and 0 <ts+(1—1)s” < 1, so the triangle spanned by

v and w is convex. Exercise 8 then implies that any parallelogram is con-
VEXx.

8. Let S be a convex set in V and let u be an element of V. Let T,: V>V
be the translation by u. Show that the image T,

u

(8) is convex.

SOLUTION. If P’,Q’eT,(S), then there exist P and Q in S such that
P+u=P and Q+u=Q’. Then

tP’+(1-1)Q" =tP+(1-1)Q +u.

9. Let S be a convex set in the vector space V and let ¢ be a number. Let cS
denote the set of all elements cv with v in S. Show that cS is convex.

SOLUTION. The map L: V —V defined by L(v)=cv is linear and
L(S) = cS, so Exercise 1 concludes the proof.

10. Let v, w be linearly independent elements of a vector space V. Let
F: V> W be a linear map. Assume that F(v), F(w) are linearly depen-

dent. Show that the image under F of the parallelogram spanned by v and w
is either a point or a line segment.

SOLUTION. We have L(t,v+t,w)=1L(v)+1,L(w). There exist numbers
a and b that are not both zero such that aL(v)+ bL(w)=0. Assume that
a#0. Wehave L(v)=cL(w) and therefore

L(tv+1,w)=(ct, +1,)L(w).

Conclude.
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Linear Maps and Matrices

IV, §1 Linear Map Associated with a Matrix

1. In each case, find the vector L,(X).

was( ) x=2) was(s e
oarfi Nae(l)  @a-3 %)

sovurion @ 3] o (0] @ (7] @ (5

IV, §2 The Matrix Associated with a
Linear Map

(9]

1. Find the matrix associated with the following linear maps.
(a) F: R* > R® given by F(l(xl,xz,xs, x4))=l(xl, xz) (the projection)
(b) The projection from R* to R*
(c) F: R*> - R’ given by F(‘(x, y))='(3x, 3y)
(d) F: R" > R" given by F(X)=7X
(e) F: R" > R" given by F(X)=
(f) F: R* = R* given by F('(x Xy, Xy, X, ) x,,%,,0,0)

1000

1000 30
SOLUTION. (a) ®[0100]| ()
0100 03
0010
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1000

70 ...0 -10 ... 0
(d) 71 (e) -1 (f)OIOO
= e) 1= .
0000O0

0 07 0 0 -1
0000O0

2. Find the matrix R(0) associated with the rotation for each of the following
values of 0.

@mn/2 (b)w/4 (c)m  (d-n (e)-m/3 () I/6 (g) Sm/4
SOLUTION.

0 -1 V22 =22 -1 0 -1 0
(a)(l oj ®) (ﬁ/z ﬁ/z] (C)(o —1) (d)[o —J
of * «E/z) ® [\/5/2 . j © [~\/§/2 V2/2

32 4 REE T \-V2/2 2/2)

v

S TV

~T/3

3. In general, let 6>0. What is the matrix associated with the rotation by an
angle —0 (i.e. clockwise rotation by 0)?

cos© sin6
SOLUTION. .

—sin® cos O

4. Let X='(1,2) be a point of the plane. Let F be the rotation through an an-
gle of /4. What are the coordinates of F(X) relative to the usual basis
{E.E}?
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SOLUTION. We simply multiply [gg ‘Jgézj(;jz[;ggj 50

the coordinates of F(X) with respect to the usual basis are

(-+2/2,342/2).

5. Same question when X='(-1,3), and F is the rotation through m/2.

1 0ON3 -1
with respect to the usual basis are (=3,-1).

0 -1)\-1 -3
SOLUTION. We have [ )( )=( ); so the coordinates of F(X)

6. Let F: R" — R" be a linear map which is invertible. Show that if A is the
matrix associated with F, then A™' is the matrix associated with the inverse
of F.

SOLUTION. The assertion follows from the fact that when we compose
linear maps we multiply the associated matrices.

7. Let F be a rotation through an angle 8. Show that for any vector X in R’
we have || X||=|| F(X) " (i.e. F preserves norms), where

[ (a.0)|=Va" +2°.
SOLUTION. If X = (x, y), then
(cos 0 —sin Oj(x] _ [xcos 0 — ysin O)‘
sin® cos® |y xsin 0+ ycos 6 )’
$0

| F(X)|" = (xcos 6 — ysin 8)" + (xsin 8+ ycos 8)° = x* +y* =| X"

8. Let ¢ be a number, and let L: R" —> R" be the linear map such that
L(X)=cX. What is the matrix associated with this linear map?

SOLUTION. With respect to the usual basis, the desired matrix has the
form
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c 0 ... 0
0 :
=cl.
0
0..0

9. Let F, be rotation by an angle 8. If 0,¢ are numbers, compute the matrix
of the linear map F.F, and show that it is the matrix F,_.

SOLUTION. The matrix of F,F_ is given by

(cose —sin GJ(COS(p —sin q)]=(cos (6+¢) —sin (e+<p)}

sin@ cos® )\sing cos@ sin (8+¢) cos (6+0)
We use the trigonometric formulas

cos Ocos @ —sin Bsin ¢ = cos (0+¢)

cos Osin @ +sin Bcos @ =sin (0+¢).

10. Let F, be rotation by an angle ©. Show that F, is invertible, and deter-
mine the matrix associated with F,'.

SOLUTION. 1t is clear from Exercise 9 that F, is invertible and that
F,'=F ,because F, =id. So the matrix associated with F,' is

cos® sin0
(—sine cos 9)'
IV, §3 Bases, Matrices, and Linear Maps

1. In each of the following cases, find M} (id). The vector space in each case
is R*.
B={(1,1,0),(-1,1,1),(0,1,2)}
(a)
B ={(2,1,1).(0,0,1), (-1, 1, 1)}
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, B={(3.2.1).(0,-2,5).(1,1,2)}
®) B’ ={(1.1,0),(~1,2,4),(2,.-1,1)}

$ 04 L
SOLUTION. (a) | -1 0 1| () |& & 3
23

1 2 71
T 1 &

b

whs

2. Let L:V—>YV be a linear map. Let B={vI ..... v"} be a basis of V.

Suppose that there are numbers c,,...,c, such that L(v,.)=c,vi for
i=1...,n. Whatis M}(L)?

¢ 0 .. 0

. 0 c :

SOLUTION. We have M. (L)= } 0
0 .. 0

3. For each real number 0, let F,: R* — R® be the linear map represented by

the matrix
cos O —sin O
R(B)=| | .
sin® cos©

Show that if ©, O are real numbers then, F,F, = F,

oo (You must use the

addition formula for sine and cosine.) Also show that F,' = F .

SOLUTION. See Exercises 9 and 10 in §2.

4. In general, let ©>0. What is the matrix associated with the rotation by an
angle -0 (i.e. clockwise rotation by 0)?

cos® sin©
SOLUTION. .

—sin©® cos O

5. Let X='(1,2) be a point of the plane. Let F be the rotation through an an-
gle of m/4. What are the coordinates of F(X) relative to the usual basis

{E.E}?

SOLUTION. See Exercise 4 in §2.
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6. Same question when X='(—1,3), and F is the rotation through /2.
SOLUTION. See Exercise 5 in §2.

7. In general, let F be the rotation through an angle ©. Let (x,y) be a point
of the plane in the standard coordinate system. Let (x’,y’) be the coordi-

nates of the point in the rotates system. Express x’, y’ in terms of x, y and
0.

SOLUTION. Let E/=F(E,) and E!=F(E,). We have

xE, + yE, = x’E/+y'E},
SO
F(xE,+yE,)=F"(XE{+y'E])=x"E, +Y'E,.

Therefore Exercise 4 implies

cos® sin@)x) x’
—sin® cosON\y) \y)
hence x” = xcos 0+ ysin 0 and y’ =—xsin 6+ ycos 0.

8. In each of the following cases, let D= d/dt be the derivative. We give a

set of linearly independent functions B. These generate a vector space V,
and D is a linear map from V into itself. Find the matrix associated with D
relative to the basis B, B.

(a) {e‘,ez'}

(b) {11}

(c) {e’,te’}

@ {117}

(e) {l, t, e’,ez’,tel'}
(f) {sin,cos t}

SOLUTION.
01000
010 00000
10 bOI(”(dooz 00100
(a)02 ()00 C)O1 ) (e
000 00021
00002

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 63

¢ 0 -1
o(03)

9. (a) Let N be a square matrix. We say that N is nilpotent if there exists a

10.

11.

positive integer r such that N" = 0. Prove that if N is nilpotent then
I— N is invertible.

(b) State and prove the analogous statement for linear maps of a vector space
into itself.

SOLUTION. (a) See Exercise 37 in §3 of Chapter II.

(b) If there exists a positive integer r such that L' = O, then [ —L is invert-
ible and its inverse is given by I+ L+ L’+...+L™". The proof consists of
verifying that

(I-L)I+L+L+. +L")=(I-LYI+L+L+.+L")=1.

Let P, denote the vector space of polynomials of degree <n. Then the
derivative D: P, — P, is a linear map of P, into itself. Let I be the iden-

tity mapping. Prove that the following linear maps are invertible:
(a) I-D".

(b) D" — 1 for any positive integer n.

(c) D" —cl for any number c #0.

SOLUTION. For all integers p>n+1 we have D" =0, and if a is a num-
ber and g a positive integer, then aD? is nilpotent because

(aD”)Hl =qa"' (D"+l ),, =0,
so by Exercise 9 we see that:
(a) The map I— D’ is invertible.
(b) The map I — D" is invertible for all positive integers m.

(b) The map +D" is nilpotent, so +D" —1 is invertible and therefore the
map D" —cl is invertible for any number ¢ # 0.

Let A be the nXxn matrix which is upper triangular, with zeros on the di-
agonal, 1 just above the diagonal, and zeros elsewhere.
(a) How would you describe the effect of L, on the standard basis vectors

{E'.,..E"} of K"?
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(b) Show that A" =0 and A" =0 y using the effect of powers of A on
the basis vectors.

SOLUTION. (a) We see that AE' = O and that if j>2, then AE’ =E"
because as we see from the disposition

010 ..0 0

only the product of the j—1 row of A with E’ is not 0 and is in fact 1.
(b) Induction and (a) show thatif 1< p <n, then
A’E'=A’E*=..=A"E"=0 and A"E" =F’

for 1<j<n—p. Soletting p=n-1, we see that the matrix A" is

00.. 01

00. 0
A" = :

00. 0

000 0

so that A" = 0.
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CHAPTER V

Scalar Products
and Orthogonality

V, §1 Scalar Products

1. Let V be a vector space with a scalar product. Show that (O,v) =0 for all
vin V.

SOLUTION. We have (O,v)=(v—v,v)=(v,v)=(v,v)=0.

2. Assume that the scalar product is positive definite. Let v,,...,v, be non-
zero elements which are mutually perpendicular, that is (vi, v/.> =0if i#].
Show that they are linearly independent.

SOLUTION. Suppose that a,v,+...+a,v, = O for some scalars a,,..,a,.
Then

0=(v,av,+..+ayv,)=av,v)+.+alv,v)+a v, v,)=a(v,v,),

nn J

and, since the scalar product is positive definite, we conclude that a, = 0.

3. Let M be a square nxn matrix which is equal to its transpose. If X, Y are
column n-vectors, then 'XMY is a 1Xx1 matrix which we identify with a
number. Show that the map (X,Y)—>XMY satisfies the three properties

SP 1, SP 2, SP 3. Give an example of a 2X2 matrix M such that the
product is not positive definite.

SOLUTION. This exercise is simply Exercise 10 in §3 of Chapter II.
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V, §2 Orthogonal Bases, Positive Definite
Case

0. What is the dimension of the subspace of R° perpendicular to the two vec-
tors (1,1,-2,3,4,5) and (0,0,1,1,0,7)?

SOLUTION. The two given vectors are linearly independent, so the answer
is 4=6-2.

Remark: In general, the answers to Exercises 1, 2, 4, 5, and 6 are not unique.
1. Find an orthonormal basis for the subspace of R* generated by the follow-
ing vectors:

(@) (1,1,-1) and (1,0,1) (b) (2,1,1) and (1,3,-1)

SOLUTION. (a) Let A=(1,1,-1) and B=(1,0,1); then B-A =0 so since
| A||=+3 and || B||=+/2, we see that one possible answer is

1

{7_3-(1,1,-1),—\/%(1, 0,1)}.

(b)Let A=(2,1,1) and B=(1,3,—1). Then B-A=4 and A-A =6 so that

B-A
B '=B-——A=%(-17-5).
DA p=4(-17,-9)

Normalizing our orthogonal set of vectors, we see that one possible answer
is

{%(2, L 1),%(-1, 7, -5)}.

2. Find an orthonormal basis for the subspace of R* generated by the follow-
ing vectors:
(@) (1,2,1,0) and (1,2,3,1)
() (1,1,0,0), (1,-1,1,1), and (-1,0,2,1)

SOLUTION. (a) Let A=(1,2,1,0) and B=(1,2,3,1). Then B-A=8 and
A-A =6, so that
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B'=B_MA=%(—],—2,5,3)-
A-A

Normalizing our orthogonal set of vectors, we see that one possible answer
is

1 1
{—\/?(1, 2,1,0), 7—3—5(—1, -2,5, 3)}-

(b) Let A=(1,1,0,0), B=(1,-1,1,1), and C=(-1,0,2,1). Note that
A-B=0,s0 B’=B. For C’ we find
C-A CB

C'=C-—=A- B =4(-2,2,31).
A-A" BB

Normalizing our orthogonal set of vectors, we see that one possible answer
is

1 1 1
{—E(I, 1,0,0), (111, 1),ﬁ(—2, 2,3, 1)}.

3. In Exercises 3 through 5 we consider the vector space of continuous real
values functions on the interval [0,1]. We define the scalar product of two
such functions f, g by the rule

(7.8)= | F)e(t)dr.

Using standard properties of the integral, verify that this is a scalar product.

SOLUTION. Since f(t)g(t)=g(¢)f(¢), SP 1 holds. For SP 2 and SP
3, we have

Jl.f(g+h)dt=jfg+fhdt=jfgdt+jfhdt

j(Cf )g dt = Cj fedt= j flcg) dt.

0

4. Let V be the subspace of functions generated by the two functions f, g such
that f(t)=t and g(t)=1t’. Find an orthonormal basis for V.
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SOLUTION. Since (f,g)=1/4 and (f, f)=1/3, we see that

g':g (f g) tl

T

Since " g " = 1/ J§6 , we see that one solution is

{\/gt, \/80(r* -3 t)} )

5. Let V be the subspace of functions generated by the three functions 1, t, t*
(where 1 is the constant function). Find an orthonormal basis for V.

SOLUTION. Name the three functions f, g, and h, respectively. Then we

have
s__ LS8
g=8- (ff>f t—%
and
- (hf), (hg)._ .,
h=h--2llyp 200l5_p i1
TR T S

Normalizing our orthogonal set of vectors, we see that one possible answer
is

{LV12(e-4), V180 (2 -1 + 1)}

6. Find an orthonormal basis for the subspace of C* generated by the follow-
ing vectors: ,
(@) (1,i,0) and (1,1,1) (b) (1,-1,-i) and (,1,2)

SOLUTION. (a) Let A=(1,i,0) and B=(1,1,1). Then (B,A)=1-i and
(A,A)=2, s0

_{BA)

B=B-ia

——A=4(1+i1-i2).

Therefore a solution is
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{_\/‘?(1, i,O),—J-g—(l+i,1—i,2)}.

(b) Let A=(1,-1,i) and B=(i1,2). Then (B,A)=-1+3i and
(A,A)=3, s0

B’:B—MA =4(1,2+3i,3-1i).
(A A)
Hence a solution is given by

1

{%(1, i) (124303~ i)}.

7. (a) Let V be the vector space of all nxnmatrices over R, and define the

scalar product of two matrices A, B by (A, B) = tr(AB) where tr is the trace
(sum of the diagonal elements). Show that this is a scalar product.

(b) If A is a real symmetric matrix, show that tr(AA)20, and tr(AA)>0

if A# O. Thus the trace defines a positive definite scalar product on the
space of real symmetric matrices.

(c) Let V be the vector space of real nxn symmetric matrices. What is
dim V ? What is the dimension of the subspace W consisting of those ma-
trices A such that tr(A)=02? What is the dimension of the orthogonal

complement W* relative to the positive definite scalar product of part (b)?

SOLUTION. (a) In Exercise 27 in §3 of Chapter 2, we had tr(AB) = tr(BA)
so the property SP 1 is verified. Furthermore, tr(A+ B)=tr(A)+tr(B)
and tr(cA) = ctr(A); hence SP 2 and SP 3 follow at once.

We contend that this scalar product is non-degenerate. Let E,, be the
matrix with all entries O except the kp-entry, which is equal to 1. Then if
A=(a‘.j) and (A,B)=0 for all B, we must have (A E, )=0 for all

0<k p<n. But tr(AEkp) =a,. Indeed, suppose AE, = (CJ) then if
m# p, we have
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n
Cpn = Zawbm = aﬁk "
r=1

Conclude.
(b) See Exercise 13 in §3 of Chapter III.

(c) (i) In Exercise 6, §1 of Chapter II, we saw that the dimension of the

. .. n(n+l1)
space of symmetric nX n matrices is —

n(n+1)

(ii) We contend that dim W = —1. Consider the linear map

L: V— R defined by L(A)=tr(A). Clearly, the image of L is all of R,
so the result drops out.
(iii) Since dim W +dim W* = dim V, we have dim W* =1.

8. Notation as in Exercise 7, describe the orthogonal complement of the sub-

space of diagonal matrices. What is the dimension of this orthogonal com-
plement?

SOLUTION. The dimension of the subspace D of diagonal matrices is n;
see Exercise 7 in §1 of Chapter II.

Description of D'.IfB= (b/) e D*, then, given any A= (a,.j) eD, we
have

(A, By=u(AB)=Y a,b, =0.
k=1

Taking the scalar product with the diagonal elementary matrices we see that
B=(b,)eD* if and only if b,=0 for all 1<k<n. Since

n(n-1)
2

dim D + dim D* =dim V, we conclude that dim D* = . Of course

we see that a basis for D is given by {E, + Eﬁ}. .
<i<j<n

9. Let V be a finite dimensional space over R, with a positive definite scalar
product. Let {v,,..., vm} be a set of elements of V, or norm 1 and mutually

perpendicular (i.e. (v‘., vj> =0 if i#j). Assume that for every veV we
have

Iv]

2 - 2
Yy
i

=1
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Show that {v,,..., v, { is basis for V.

SOLUTION. The set of vectors is orthogonal, so {v,,..., vm} are linearly
independent. It suffices to show that this set generates V. Given v, let

w= i(v, v,)v,. Then
(v=wyv-w)=|v || —2(v, w)+{w, w),

but {(w, w)= i(v, v =, w)y=|v[, so (¢v=w,v—w)=0, proving that
i=1

v=i(v, vV,

10. Let V be a finite dimensional vector space over R, with a positive definite
scalar product. Prove the parallelogram law, for any elements u, w €V

“HIVIF)-

SOLUTION. The left side of the expression is equal to

v +Ju=vI =2(]u

(u+v,u+v)+(u—-v,u—v)=2(u,u)+2(v,v)=2(||u||2 +||v||)

V, §3 Applications to Linear Equations;
The Rank

1. Find the rank of the following matrices

(213 , (122 12 7
@172 0 ®l3 4 s @1y 4 -
1 2 -3
101
ol 23 2 0 2 s
@4 5 12| @lo s (ﬂo(”
0 0 0
1 2 -3
2 0 0
@51 2 |23
£ 4 8 -12|
3 8 -7
1 -1 5
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SOLUTION. (a)2 ()2 (©)2 @1 2 H3 (@3 (h?2
2. Let A, B be two matrices which can be multiplied. Show that
rank of AB < rank of A, and also rank of AB < rank of B.

SOLUTION. Let L, and L, be the linear maps associated to A and B, re-
spectively.
(i) Then

K"—— K" ——K".

If yeIm (L,L,), then there exists x € K" such that L,(L,(x))=y. Hence

yeIm(L,), and thus Im (L,L,) =Im (L,), so rank AB<rank A.
(ii) Now consider

K"——Im (L,)——K".
Here L, is the restriction of L, to Im (L,). Since
dim Im (I:A) <dimIm(L,) and Im (L,L,)=Im (I:A),

we conclude that rank AB < rank B.

3. Let A be a triangular matrix

Assume that none of the diagonal elements is equal to 0. What is the rank
of A?

SOLUTION. If we let x,A' + x,A’+...+x,A" = O, then we get a system of
the form
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x,a, +x,a,+..+x,_a, +xa,6=0
X,ap ... X, 4, +X,a, =0
‘xn—lan~lln—l + ’xnan-ln = 0

x,a, =0.

Since a,, # 0, we see from the last equation that x, =0. Since a,_,_, #0,
we see from the second to last equation that x,_, =0. By induction we see
that x, =x, =..=x,=0; thus rank A=n.

In Exercises 4 and 5 we let S be the space of solutions of the
system of linear equations. Note that the solutions to these
exercises are not unique, so we give only one possible an-
swer.

4. Find the dimension of the space of solutions of the following systems of
equations. Also find a basis for this space of solutions.

2x+y—-2=0

b) x-y+z=0

@ o (b) x=y+2
+y+z=0
( 4x+T7y—mz=0 dx Y 0
©) 2x-y+z=0 @ xmy=
y+tz=

21 -1
SOLUTION. (a) The rank of (0 11 j is 2, so dimS=1. A solution is

(1,1,-1), which is therefore also a basis for S.

(b) The rank of (I —1 1) is 1, so dim $=2. Two linearly independent so-
lutions are {(1,1,0),(0,1,1)}, which therefore form a basis for S.

(c) Since (4,7,-x) and (2,—1,1) are linearly independent, dim S =1. The
first equation minus twice the second equals

9y—(n+2)z=0,

so if we let z=9, we see that ($—%,T+2,9) is a solution of the original
system; so this vector forms a basis for S.
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(d) The rank of

11 1

1 -10

01 1

is equal to 3, so the space of solutions of the system is reduced to the single
element {O}.

5. What is the dimension of the space of solutions of the following systems of

linear equations?
2x-3y+z=0 2x+7y =0
(a) (b)
x+y-z=0 x=2y+z=0
2x-3y+z=0
x+y-z=0 x+y+z=0
(c) (d)
3x+4y =0 2x+2y+2z=0

Sx+y+z=0

2 -3
SOLUTION. (a) The rank of the matrix (]

1
1] is 2, so dimS=1.

2 0
(b) The rank of (1 ) is 2, s0 dimS=1.

-2 1
(c) Let

-3 1
-1

2
11
4=13 4 0
51 1

The first row added to the third equals the fourth row, so we find that the

rank of the matrix A is 3. Hence dim S =0, and therefore S ={0}.

(d) Note that the second equation is twice the first, so we have to solve
x+y+2z=0.

Therefore dim S=2.

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 75

6. Let A be a non-zero vector in n-space. Let P be a point in n-space. What
is the dimension of the set of solutions of the equation X-A=P-A?

SOLUTION. Let S. be the set of solutions of X-A=P-A (*) and let S,
be the set of solution of X-A=0 (**). By Exercise 7 we know that if we
have a solution X, to (*), then S, = X, +S... Since X = P solves (*) and
the dimension of S is n—1, we see that dim S, =n—1.

7. Let AX = B be a system of linear equations, where A is an m Xn matrix X

is an n-vector, and B is an m-vector. Assume that there is one solution
X =X,. Show that every solution is of the form X,+Y, where Y is a so-
lution of the homogeneous system AY =0, and conversely any vector of
the form X, +Y is a solution.

SOLUTION. Suppose X, is a solution of AX =B. Then
A(X,-X,)=0, and we can write X, =X, +(X, -X,). Conversely, sup-
pose X, =X,+Y,where AY=0. Then

AX, = A(X,)+A(Y)=B.

V, §4 Bilinear Maps and Matrices

1. Let A be an nxn matrix and assume that A is symmetric, i.e. A='A. Let
g.: K" xK" — K be its associated bilinear map. Show that

g,(X.Y)=g,(Y,X)

forall X, Y e K", and thus that g, is a scalar product, i.e. it satisfies con-
ditions SP 1, SP 2, and SP 3.

SOLUTION. Since A='A, we have
g.(X, YEXAY="YAX='YAX = g, (Y. X).

See Exercise 10 in §3 of Chapter II.

2. Conversely assume that A is an nXn matrix such that

8.(X.Y)=g,(¥.X)

for all X, Y. Show that A is symmetric.
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SOLUTION. We know that g(E",E”):'EkAE” =a,. The assumption
therefore implies that A is symmetric.

3. Show that the bilinear maps of K" x K™ into K form a vector space. More
generally, let Bil(U x V, W) be the set of all bilinear forms of UXV into
W. Show that Bil(U xV, W) is a vector space.

SOLUTION. Let f,geBil(UxV,W). Then we have

(f+e)uv+v)=fluv+v)+g(uv+v)
= fu,v)+ f(uv')+g(u,v)+ g(u v’)
(f+8)uv)+(f+g)uv),

so (f+g) is linear with respect to the second variable. Similar arguments

show that (f+g) and cf are bilinear. Thus Bil(UxV, W) is a vector
space.

4. Show that the association A —> g, is an isomorphism between the space of
m X n matrices, and the space of bilinear maps of K" x K" into K.

SOLUTION. Let

y: Mat,, (K)— Bil(K" x K", K)
A—g,

Theorem 4.1. implies that  is surjective and injective, so all we have to
prove is the linearity of y. This result is a simple consequence of the mul-
tiplicative properties of matrices, namely,
8..,(XY)=X(A+B)Y = (‘XA+‘XB)Y=‘XAY+‘XBY =g,(X.Y)+g,(X.Y),
so Y(A+ B)=y(A)+y(B) and
8.4(X,Y)="X(cA)Y =c'XAY =cg,(X,Y);
thus y(cA)=cy(A), thereby proving the assertion.

5. Write out in full in terms of coordinates the expression for when A is the
following matrix, and X, Y are vectors of the corresponding dimension.
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| -3 nER
@la ()(—25

1 2 -1
-5 2
(c) (d|-31 4
n 7
2 5 -1
-4 2 1 -1 2 -5
(e)| 3 11 hl|1 5 4
2 57 -1 0 3

SOLUTION. In this exercise one can either redo the computation or use the
formula given in the text.

(a) 'XAY =2x,y, = 3x,y, +4x,y, + x,y,.
(b) 'XAY =4xy, +x,y, —2x,y, + 5x,,.
(©) 'XAY ==5x,y, +2x,y, + T x,y, + 7x,y,.

(d) 'XAY =
Xy, +2xy, —x,y, +=3x,y, + x,y, +4x,y, + 2x,y, + 5x,y, — X;y,.
(e) 'XAY =
—4x,y, +2x,y, + Xy, + 35, + x,y, + Xy, + 2x,y, + 5x,y, + Tx,y,.
(f) 'XAY =3 x,y, +2x,y, = 5x,y, + X,, + 3 x,y, + 4x,y, — x,y, + 3x,y,.

Let

and define g(X,Y)='XCY. Find two vectors X, Y € R such that
g(X.Y)# g(Y, X).

SOLUTION. Let ‘X =(1,0,0) and 'Y =(0,1,0). Then g(X,Y)=2 and
g(¥, X)=-1.
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V, §5 General Orthogonal Bases

1. Find orthogonal bases of the subspace of R* generated by the indicated vec-
tors A, B, with respect to the indicated scalar product, written X-Y.
(@ A=(1,1,1), B=(1,-1,2)
X-Y=xy+2xy,+xy,
(b) A=(1,-1,4), B=(-1,1,3)
X-Y=xy =3x,y, txy, +y,X, = X,y,— X, ),

SOLUTION. (a) We have B-A=1-2+2=1and A-A=4, so

B’ =B-——A=1(3-57).
A +( )

Therefore, a possible solution is {(1,1,1),(3,-5,7)}.
(b) We already have B-A =0.

2. Find an orthogonal base for the space C* over C, if the scalar product is
given by X Y =xy —ix,y, —ix;y, —2Xx,y,.

SOLUTION. Let A=(1,0) and B=(0,1). Then A-A=1 and B-A=—i,
SO

p=8-2A4_(v).
A-A

Therefore, {(1,0),(i,1)} is an orthogonal base for the space C* over C.
3. Same question as in Exercise 2, if the scalar product is given by
X-Y=xy,+xy +4xy,.

SOLUTION. Let A and B be as in Exercise 2. Then A-A=4 and
B-A=1, so

B-A
B'=B-—""A=1(-14).
iA=L

Therefore, {(1,0),(~1,4)} is an orthogonal base for the space C* over C.

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 79

V, §6 The Dual Space and Scalar Products

1. Let A, B be two linearly independent vectors in R". What is the dimension
of the space perpendicular to both A and B?

SOLUTION. If "perpendicular” refers to a non-degenerate scalar product,
then Theorem 6.4 implies that the space perpendicular to both A and B has
dimension n—-2.

2. Let A, B be two linearly independent vectors in C". What is the dimension
of the subspace of C" perpendicular to both A and B? (Perpendicularity
refers to the ordinary dot product of vectors in C".)

SOLUTION. The dimension of the space perpendicular to both A and B is
n-2.

3. Let W be the subspace of C* generated by the vector (1,i,0). Find a basis
of W* in C* (with respect to the ordinary dot product of vectors).

SOLUTION. The vectors A=(1,—i,0) and B=(0,0,1) are linearly inde-
pendent and perpendicular to (1,i,0). Since W* has dimension 2, we con-
clude that {A, B} is a basis for W*.

4. Let V be a vector space of finite dimension n over the field K. Let ¢ be a
functional on V, and assume that @ # 0. What is the dimension of the ker-
nel of @ ? Proof?

SOLUTION. We contend that dim Ker@=n—1. The map ¢: V- K is
linear, and since @ # 0, there exists a vector v such that ¢(v)#0. Given

xek,welet v, = x(¢(v))"v, so that
-1
o(v,)=x(o(v)) o(v)=x.
Therefore, dim Im @ =1 which proves our contention.

5. Let V be a vector space of finite dimension n over the field K. Let y, ¢
be two non-zero functionals on V. Assume that there is no element c € K,
c#0 such that y=c@. Show that (Ker@)n(Kery) has dimension
n-2.

SOLUTION. Fix a basis {v,,...,v,} for V, and let A and B be the unique el-
ements of V such that
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y(v)=A-X, and ¢(v)=B-X forallvinV,

where . is the usual dot product and X, the coordinates of v. Then the facts
that y, @ # 0 and there is no constant ¢ such that y = c¢@ show that A and
B are linearly independent. If W is the subspace generated by A and B, then

(Ker@)n (Kery)=Ww*.
So we see that dim (Ker @) N (Kery)=n-2.

6. Let V be a vector space of finite dimension over the field K. Let V™ be the
dual space of V'. Show that each element v eV gives rise to an element
A, in V and that the map v — A gives an isomorphism of V with V™.

SOLUTION. Fix an element v in V. Then for ¢ €V’ the map
@ — @'(v) is linear and is therefore an element of V™ which we denote by
A,. The map ®: V — V™ defined by ®(v)=A, is linear. Indeed,

A (@) =0 (v, +v,) =" () +9 () =1, (¢)+1, (¢7),

s0 ®(v, +v,)=®(v,)+D(v,), and, similarly, we find that ®(cv) = cP(v).
Since dim V =dim V' =dim V™, all we have to show is that
Ker®={0}. Suppose ®(v)=0. Then for all @ eV' we have

¢ (v)=0. Selecting a basis for V and considering the coordinate functions,
one sees that we must have v=0. Therefore, v— A, gives an isomor-
phism of V with V™.

7. Let V be a finite dimensional vector space over the field K, with a non-de-
generate scalar product. Let W be a subspace. Show that W = W.

SOLUTION. Theorem 6.4 implies
dim W+dim W' =dimV and dim W* +dim W** =dim V;

therefore, dim W** =dim W. It is now sufficient to prove that W is a sub-
space of W**. If ve W, then for all we W* we have (v,w)=0; so by
definition v e W*, consequently W = W+**,
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V, §7 Quadratic Forms

1. Let V be a finite dimensional vector space over the field K. Let f: V— K
be a function, and assume that the function g defined by

g(v.w)=f(v+w)=f(v)=f(w)
is bilinear. Assume that f(av)=a’f(v) forall veV and ae K. Show

that f is a quadratic form, and determine a bilinear form from which it
comes. Show that this bilinear form is unique.

SOLUTION. We have
gvv)=f(2v)=2f(v)=4f(v)-2f(v)=2f(v).

So let g=g/2. Then g is bilinear and the quadratic form it determines is f.

Suppose that f is also the quadratic form determined by a bilinear form g, .
Then by the formulas given in the text we see that

& (vw)=[f(v+w)= f(v)= f(w)]=&(v.w),
so g is uniquely determined.

2. What is the associated matrix of the quadratic form f(X)=x"-3xy+4y’
if 'X=(x,y2)?

o

SOLUTION.

O s
oS O O

4
0
3. Let x, x,, x,, x, be the coordinates of a vector X, and y,, y,, y,, y, the

coordinates of a vector Y. Express in terms of these coordinates the bilinear
form associated with the following quadratic forms.

(a) x,x, (b) x,x,+x; (c) 2xx,—x,x, (d) x] —5x,x,+x,

SOLUTION. First we give the matrix associated with the quadratic form,
and then we give the expression of the symmetric bilinear map:
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0100
+1 000 | l
(@) C= 0000 so that g(X,Y)=1x,y, ++x,y,.
0000
00+ 0
0000 |
(b) C=| | 000l that g(X,Y)=4xy, +4xy +x,y,.
0001
01 0 O
100 0 1 1
(c) C= 00 0 —1| ° that g(X,Y)=xy, +x,y, =+ x,y, —+x,y,.
2
00 -+ 0
1 0 0 O
00 -10 o
d C= 0 -5 0 ol %° that g(X,Y)=xy, —3x,y, —3x,y, + x,y,.
0 0 01

4. Show that if f, is the quadratic form of the bilinear form g,, and f, the
quadratic form of the bilinear from g,, then f,+ f, is the quadratic form of
the bilinear form g +g,.

SOLUTION. We have

(fi+ £)0) = £,(0)+ £,(v) =8 (v.v) + 8,(v.v) = (8, + & ) (v V).

V, §8 Sylvester's Theorem

1. Determine the index of nullity and index of positivity for each product de-
termined by the following symmetric matrices, on R’.

12 (1] 13
(@ 2—1] i @1 2)
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SOLUTION. (a) An orthogonal basis is given by A=(1,0) and
B=(-2,1). Then we have

(A,Ay=1 and (B,B)=-5,

so the index of nullity of the form is O, and the index of positivity of the
scalar product is 1.

(b) An orthogonal basis is given by A=(1,0) and B=(-1,1). Then we
have

(A,A)=1 and (B, B)=0

so the index of nullity of the form is 1, and the index of positivity of the
scalar product is 1.

(c) An orthogonal basis is given by A=(1,0) and B=(3,1). Then
(A,A)=1 and (B B)=-7,

so the index of nullity of the form is 0, and the index of positivity of the
scalar product is 1.

2. Let V be a finite dimensional vector space over R, and let () be a scalar
product on V. Show that V admits a direct sum decomposition

V=V ev- ev,

where V, is defined as in Theorem 6.1, and where the product is positive

definite on V* and negative definite on V~. Show that the dimensions of
the spaces V*, V™ are the same in all such decompositions.

SOLUTION. Let {v,,..., vn} be an orthogonal basis for V indexed such that

(v,v)>0 if 1<i<r
(v,v)y<0 if r+1<i<s
(v,v)=0 if s+1<i<n.

Let V" be the space generated by {vl,..., v,} and V- the space generated by

{v......v,}. By Theorem 8.1, we know that {v_,...,v,} is a basis for
V,. Hence

V=Vev ev,.
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The dimension of V" is equal to the index of positivity of the product, and
the dimension of V™ is equal to the index of negativity of the product.

We contend that the product is positive definite on V*. Let ¢, =(v,,v,),
and suppose that v = x v, +...+x,v,. Then

W)=+ Xy, X v+ X0, ) = Xic . +x0c, 20

ror?

and =0 if and only if v=0. Similarly, prove that the product is negative
definite on V~.

3. Let V be a vector space over R of 2x2 real symmetric matrices.
. Xy .
(a) Given a symmetric matrix A = [ j show that (x,y, z) are the coordi-
y Z

nates of A with respect to some basis of the vector space of all 2 X2 real
symmetric matrices. Which basis?

(b) Let f(A)=xz—yy=xz—y*. If we view (x,y,2) as the coordinates of
A then we see that f is a quadratic form on V. Note that f(A) is the deter-

minant of A.
Let W be the subspace of V consisting of all A such that tr(A)=0.

Show that for A€ W and A# O we have f(A)<O0. This means that the
quadratic form is negative definite on W.

SOLUTION. (a) Consider the standard basis for the space of 2 X2 symmet-
ric matrices, namely,

10 01 00
E = , E = , and E, = .
00 7 l1 0 *Tlo 1

Then A =xE +yE, +zE,.
(b) Since tr(A) =0, we have x=—z, and thus xz=-z><0, so
fA)=xz-y* =" +y7) <0.

If f(A)=0, then clearly A =0, so the quadratic form is negative definite.
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CHAPTER VI

Determinants

VI, §2 Existence of Determinants

1. Let ¢ be a number and let A be a 3 X3 matrix. Show that
D(cA)=c’D(A).
SOLUTION. See Exercise 2.

2. Let c be a number and let A be a nXn matrix. Show that
D(cA) = c"D(A).
SOLUTION. Let A',..., A" be the columns of A. Then
D(cA)=D(cA',...,cA").
The properties of the determinant imply that

D(cA)=cD(A',cA’,cA’,...,cA")
=czD(A‘,AZ,cA’,(:ff1 ..... cA")

=c"D(A', A%, A’ A*,... A"),

hence D(cA) = c"D(A).

VI, §3 Additional Properties of Determinants

1. Compute the following determinants.
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21 2
03 -1
41 1

(a) (b)

-153
4 00
2 78

(e) 0y

SOLUTION.
(a-20 @®mS5

VI. DETERMINANTS

3 ~-15
-1 2 1
-2 4 3

31 2
4 5 1
-12 3

(c)4

2. Compute the following determinants.

| 4
0 3
@l 211 o
3 5

(e) |2

0]

(i) |3

SOLUTION.
(@) —18  (b)45

(h) 135 () 10.

(b)

-1
0

200
110
8 57

©o0

— N W =

2 43 12 -1
(¢)|-1 3 0| (&) |01

0 21 02 7
@5 € =76 () -14.
20
- 311 4 -9 2
| (@ [25 5] @492

8 77 310

57

400 500
(g) |01 0| () |030

0 0 27 0009
@0 24 (H14

3. In general what is the determinant of a diagonal matrix?

SOLUTION. Expanding according to the first row, we see that

a, 0 0
0 :

0 =..=a,aq,
0 ... 0a
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i cos 6 —sin 6
4. Compute the determinant

sin® cos0

SOLUTION. We have

cos O —sin 6 ) L
. =cos’0+sin"0=1.
sin@® cos©

S. (a) Let x,, x,, x, be numbers. Show that

2

=

1 X
I x, x
1 X

= o=
1]
—_
ks
=
~—
—_
B
=
~—
—_
=
|
Ra
~

3

(b) If x,...., x, are numbers, then show by induction that

the symbol on the right meaning that it is the product of all terms x, — x,
with i< j and i, j integers from 1 to n. This determinant is called the
Vandermonde determinant V,. To do the induction easily, multiply each
column by x, and subtract it from the next column on the right, starting
from the right-hand side. You will find that

v, =(xn -)c,)~--(x2 —x,)V

n-1°

SOLUTION. (a) Expanding according to the first row, we get

2
I x x 5 5
2 X, X, 1 xz 1] x2
D=|1 x, x|= =X S|+ x
5 . X 1 x; 1 x
1 x, x,

SO
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(b) The result is true when n =3 [cf. (a)], and also when n =2 because

1 x
|
Proceeding as in the hint, we get
1 0 0 0
I(x,=x) oo X370 (x,=x) x37(x,—x,)
V=l (xn-x) .. x7(xn-x) x7(x,-x)
F(x,=x) oo x7(x,=x,) x7(x,—x,)

Expanding according to the first row, we get

v, =(x" —)c,)---()c2 —x,)VH

and by induction we suppose that V _ = H(x ; —xl.), so the result drops

I<i<jgn

out.

6. Find the determinant of the following matrices.

1 25 -1 5 20 2 69 =7 98 54
(@01 7| (b) |0 4 8| (c){0 1 4| ()| 0 2 46
003 0 06 0 0 8 0 0 -1
1523 S5 000
1 46 4 00
@lo o1 59 0 0276 h7200
) 7 ® looail ™ ouyol
008 79 54 1
0005 9% 2 3 1

(i) Let A be a triangular n X n matrix, say a matrix such that all compo-
nents below the diagonal are equal to 0. What is D(A)?

SOLUTION.
@3 (b) 24 (c) 16 (d) 14 ©0 H8 (g) 40

(h) -10.

(i) Expanding according to the first column, we get
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Ay, Gy ... Gy,
Det(A)=a ;
) " . an—ln
0 ... 0 a

nn

therefore, we see that Det(A) =q,,a,,--a

nn *

. If a(r), b(r), c(t), d(t) are functions of t, one can form the determinant

a(t) b(r)
c(r) d(r)

just as with numbers. Write out in full the determinant

sint cost

—cost sint

SOLUTION. Using a trigonometric identity, we get

sint cost . ,
=sin“t+cost=1.

—cost sint

t+1 -1

. Write out in full the determinant
2t+5

t+1 t-1
2t+5

SOLUTION.

}:(t+lx2t+5)—t0—4)=t2+8t+5.

. Let f(1), g(t) be two function having derivatives of all orders. Let @(t) be
the function obtained by taking the determinant

ONT
A R
Show that
L )
YO o o]

SOLUTION. Since ¢ = fg’— f'g, we have
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10. Let A(r)=

11.

VI. DETERMINANTS

f g

O =fe'+fe"—fe-f¥=12"-f%= |

b(1) «(1)
by(t) (1)

B(t) and C(t) be its column vectors. Let ¢(t) =Det(A(t)). Show that

be a 2x2 matrix of differentiable functions. Let

¢’(t) =D(B'(r), C(¢))+D(B(z), C'(2))-
SOLUTION. Brute force shows that
o’ =b/c, + b,c; —bjc, — b,c],
and that

D(B’,C)=b|c, - bjc,, D(B,C’)=bi;—-b,c,.

So ¢’(t)=D(B'(t), C(t))+ D(B(z), C'(t)).
Let a.,,...,0., be distinct numbers #0. Show that the functions

a @,

e™,...,e

are linearly independent over the complex numbers. [Hint: Suppose we
have a linear relation c,e™ +...+c,e™ with constants c, valid for all t. If
not all c, are 0, without loss of generality, we may assume that none of

them is 0. Differentiate the above relation n—1 times. You get a system
of linear equations. The determinant of its coefficients must be zero.
(Why?) Get a contradiction from this.]

SOLUTION. Differentiating n—1 times and setting ¢ =0 in each equation,
we see that the system

x+..+x, =0
x0+..+x,0, =0

x o L +x 00 =0

has a nontrivial solution, namely, (c,...,c,). Therefore, the column vec-
tors must be linearly dependent and hence the determinant
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1 1 1
al (xl au
ot ot oot

must be 0. But since o,,...,0, are distinct, we see at once that the

Vandermonde determinant is non-zero. We get a contradiction because the
determinant of a matrix is equal to the determinant of its transpose.

VI, §4 Cramer's Rule

1. Solve the following systems of linear equations.

3x+y—-2z=0 2x—-y+z=1
(@) x+y+z=0 (b) x+3y—-2z=0
y—z=1 4x-3y+z=2
dx+y+z+w=1 x+2y-3z+5w =0
x-y+2z-3w=0 2x+y—4z—-w=1
(c) (@) =
2x+y+3z+5w=0 x+y+z+w=0
x+y—-z—-w=2 -x—-y—-z+w=4
SOLUTION.
(@ x=3,y=%2z=% ®) x=4%,y=%4 2=%

© x=3# y=% 2=, w=% @ x=4, y=3, z=4, w=2.

VI, §5 Triangulation of a Matrix by Column
Operations

1. (a) Let 1<r,s<nand r#s. Let J_bethe nXn matrix whose rs-compo-
nent is 1 and all other components are 0. Let E_=1+J_. Show that

D(E,)=1.
(b) Let A be an nxn matrix . What is the effect of multiplying E A? of
multiplying AE, ?

SOLUTION. (a) We see that adding the s row of I to the r row of I we get
the matrix E, , so D(E,)=D(I)=1.
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S- column

40|+ O
)
E, =
— 13— A-ow
o) .

(b) When multiplying £ _A, we add the s row of A to the r row of A, leav-
ing the other rows of A unchanged. When multiplying AE , we add the r

rs?

column to the s column of A, leaving the other columns of A unchanged.

2. In the proof of Theorem 5.3, we used the fact that if A is a triangular ma-
trix, then the column vectors are linearly independent if and only if all the
diagonal elements are # 0. Give the details of the proof of this fact.

SOLUTION. (i) Suppose that all the diagonal elements are # 0. We want
to solve

xb, =0
xb, +x,b,, =0

xb,+.+xb, =0

nbl
From the first equation we get x, =0. From the second equation we get
x, =0. Therefore we see that we must have x, =x, =..=x, =0; so the
column vectors are linearly independent.

(ii) Conversely, suppose that the column vectors are linearly independent
and suppose that some diagonal element is 0. Then, since the row rank of
the matrix is equal to the column rank, we see that if b, =0 or b, =0,

nn

then we get a contradiction. Suppose that « is the smallest integer such that
b, =0and 1<k <n. We contend that the system

xlbll =0

xb,, +x,b, =0

xb

17 nb1

+..+xb =0

has a nontrivial solution. From (i) we see that we must have
x, =x, =..=x,_, =0. Therefore we are left with the system
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xb, =0

‘xkbkdk + ‘XI\+]bA+IL+I = 0

xb,+..+xb =0.

nk

Deleting the first equation we see that the truncated system has one more
unknown than it has of equations and therefore has a nontrivial solution.
We then get a contradiction that proves the statement.

VI, §6 Permutations

In Exercise 1 we note 7, , the transposition that inter-

changes i and j. In each case, we can either write the
permutation as a product of transposition or we can com-
pute the determinants. We carry out both methods in (a)
and (d).

1. Determine the sign of the following permutations.

123 123 123
@5 3 1] ””[3 1 2} (C)[sz J

1234 1234 1234
(d)_2314} “”[2143} (ﬂ[3241]

1234 1234 1234
®14 21 3] ”“[3 I 42] (’)[2413]'

SOLUTION. (a) Product of transpositions. We see at once that
'C]zc = T:a;
$0 O =1T,1,,, and therefore &(c)=(-1)" =1.

Determinants. By definition,

_ D(E*,E’,E")

But D(E', E*, E*) =1, and expanding according to the first row we get
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0
D(E*,E"E')=|1
0

- O O

S O =
I
X

Thus g(c)=1.

(b) €(c) =1 because G =T,,T,,.

(c) &(0) =—1 because 6="1,,.

(d) Product of transpositions. We see at once that

T,0 =Ty,

2

S0 G =T,1,,, and therefore €(c)=(-1)" =1.

Determinants. By definition,

D(E*,E',E'.E*)
e(0)=———— -
D(E'.E’,E,E*)
But D(E',E*, E’, E*) = 1, and expanding according to the first row we get

100
=1x|0 1 0|=1.
001

0

0
D(E’,E',E'.E*)= |
0

o O o =
- o o O

0
1
0
0
Thus &(c)=1.

(e) €(0) =1 because © =1T,1,,.

(f) €(c) =1 because 1,,06 =1T,,.

(2) €(0) =1 because 1,06 =T,,.

(h) €(0) =-1 because T,,7,,06 = T,,.

(i) €(o)=-1 because 1,,7,,6=1,,.

2. In each of the cases of Exercise 1, write the inverse of the permutation.
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SOLUTION.

L1 23 ot ! 23 L 123
@o =315 ® e =1, 5 ©0"=\3 5

Do=|l 234 L 1234 L1234
@Dom=l3 1,54 @ =, 43 PO =4, 3

(g) o=

3. Show that the number of odd permutations of {1,...,n} for n22 is equal to

the number of even permutations. [Hint: Let T be a transposition. Show
that the map © — 10 establishes an injective and surjective map between
the even and odd permutations. |

SOLUTION. Any permutation can be written as a product of transposition;
so if © is an even permutation, then we can write 6 =1,T, --- T, where s is

even. Thus 76 is odd, so f: 6 — 16 is a map between the even and odd
permutations of J,.

Given an odd permutation 6" =1,7,---T, where p is odd, we see that
06 =1T,1T, - T, is even and that

fle)=71t1,--1,=11,---1, =0,

so f is surjective.
If f(o,)=f(c,), then 10, =10,, so composing with T we get
©, = 0,, and therefore fis injective.

VI, §7 Expansion Formula and Uniqueness
of Determinants

1. Show that when n=3, the expansion of Theorem 7.2 is the six-term ex-
pression given in §2.

SOLUTION. The six permutations of J, into J, are given by
123 123 123
C, = c, = c, =
123 132 231
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123 23 23
%=1y 1 3 %=l3 1 2 % =l3 21|

where ¢(c,)=¢(c,)=¢(0,)=1 and &(c,)=¢(c,)
sum in Theorem 7.2 can be expressed as

]
om
—_
Q

EN
~—
Il
|
%]
=]
-
=
(¢

6
D'(A)=Z€(G Ay """ Ao3 28 c(nl" s 330
i=1

c

thus
4 —_
D’(A) = a,,a,a,, — a,,0,0,, + 4,,4,,4,, — 0,,0,,0y; + 0,005, — 0y 0,0,

Expanding according to the first row, we see that the determinant of A is
given by

D(A) = all(azza.n - aszazz.) - all(aZIa33 =0y, ) ta, (azlazz - azlazz) .

Therefore D’(A) = D(A).

2. Go through the proof of Lemma 7.1 to verify that you did not use all the

properties of the determinants in the proof. You used only the first two
properties. Thus let F be any multilinear, alternating function. As in

Lemma 7.1, let A’ =2b‘.jX" for j=1,...,n. Then

i=1

F(A',....A")=Y e(o)b,,, b, F(X'....X").

o)1 o(n)n

Why can you conclude that if B is the matrix (b,.j ) then

SOLUTION. In Lemma 7.1 we use the linearity property with respect to
each column, and the fact that if two columns are equal, then the determi-
nant is 0; so we used only properties 1 and 2, which are the properties of
any alternating multilinear function. We also used the fact that

D(x*",....X*")=¢(c)D(X",.... X").

In order to apply Lemma 7.1 to any alternating multilinear function F, we
must show that F(X°",..., X*”)=¢(c)F(X",..., X"). But this is obvious

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 97

because any permutation is a product of transpositions, and each transposi-
tion changes the sign of F. Hence

F(A',...,A") =Y e(0)b,,, - by, F(X',.... X").

o

Since D(B)= Y &(o)b,,, b

[

, we see that

o(n)n
o

F(A',..,A")=D(B)F(X'...., X").

3. Let F:R"X---R" — R be a function of n variables, each of which ranges
over R". Assume that F is linear in each variable, and that if
A',...,A" eR" and if there exists a pair of integers r, s with 1<r,s<n
suchthat r#s and A" = A* then F(A',...,A")=0. Let B (i=1,...,n) be

vectors and c, numbers such that A’ = Zc,.jB" .

(@) If F(B',...,B")=-3 and det(c,)=5, what is F(A'...,A")? Justify
your answer by citing appropriate theorems, or proving it.
(b) If F(E',..., E") =2 (where E',..., E" are the standard unit vectors), and

if F(A',...,A")=10, what is D(A',...,A")? Again give reasons for your

answer.

SOLUTION. (a) The function F is multilinear and alternating, so we can
apply the formula of Exercise 2, namely,

F(A',...,A")=det(C)F(B',..., B"),

where C=(C ) Hence F(A',...,A")=-15.

i

(b) Let A’ = Za,.jE". Then the matrix (a,,j) is the matrix whose columns
i=1

are A',..., A"; therefore, by Exercise 2 we get
F(A',...,A")=det(a,)F(E",..., E").

But det(a,)=D(A',...,A"), so D(A',...,A")=5.
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VI, §8 Inverse of a Matrix

1. Find the inverses of the matrices in Exercise 1, §3.

SOLUTION.
1 R R 2 3 zu 3 1 =2
5 2 20 s 5 5 4+ 2 4
@+ % % |+ 2 =2 ©+ + 2
W 0 -2 1 4 -1 %
13 0+ 0 B4 %
@0 3 2 @+ % # |+ + %

2. Using the fact that if A, B are two n X n matrices then
Det(AB) = Det(A)Det(B)
prove that a matrix A such that Det(A) =0 does not have an inverse.
SOLUTION. Suppose that A has an inverse. Then
1=Det(/) = Det(AA™ )= Det(A)Det(A™),
but Det(A) =0, so we get a contradiction.

3. Write down explicitly the inverses of the 2 X2 matrices:
3 -1 " -2 1 a b
@1 4 AR © ¢ 4
3

) o)
3

1
(c) A direct computation or the formula given in the text shows that the in-

(a b) )
verse of is
c d

Lo
fo -
b;'_.

SOLUTION. (a) (

wlto

13

=)
bl

1 d -b
ad—bc\—c a )
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4. If A is an nXxn matrix whose determinant is # 0, and B is a given vector in
n-space, show that the system of linear equations AX = B has a unique so-
lution. If B= 0, this solution is X=0.

SOLUTION. The equation AX = B is equivalent to

xA'+...+x A" =B.

The determinant of A is non-zero, so the n column vectors A',..., A" are
linearly independent. The result follows because {A‘,...,A"} is a basis for
the n-space.

VI, §9 The Rank of a Matrix and
Subdeterminants

Compute the ranks of the following matrices.

1
1) SOLUTION. 2.

4
1 SOLUTION. 2.
5

wn N W = BN
" :
N = = N W

W
—_
N

3. |2 -111 SOLUTION. 2.

4. |2 -1 11 SOLUTION. 3.

-11
11
-12
21

SOLUTION. 4.

S L N
— A W W
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2 16 6
311 -1
6. SOLUTION. 3.
5275

-2 43 2

216 6
311 -1
7. SOLUTION. 2.
5275

8 38 4

311 -1
-2 4 3 2
8. SOLUTION. 3.
-1 97 3

7 42 1
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CHAPTER VI

Symmetric, Hermitian, and
Unitary Operators

VIl, §1 Symmetric Operators

1. (a) A matrix A is called skew-symmetric if 'A=—A. Show that any matrix
M can be expressed as a sum of a symmetric matrix and a skew-symmetric
matrix one, and that the latter expression is uniquely determined. [Hint:

Let A=4+(M+M).]

(b) Prove that if A is skew-symmetric, then A’ is symmetric.

(c) Let A be skew-symmetric. Show that Det(A) is 0 if A is an nxn ma-
trix and n is odd.

SOLUTION. (a) See Exercise 14, §3 of Chapter III.
(b) Since
(A)='A'A=(-A)(-A)= A",
the matrix A* is symmetric.
(c) We know from Exercise 2, §2 of Chapter VI, that
Det(—A) =(-1)"Det(A) =-Det(A).

But Det(A) = Det('A) =Det(~A), so Det(A)=—Det(A), whence we con-
clude that Det(A)=0.

2. Let A be an invertible symmetric matrix. Show that A™' is symmetric.
SOLUTION. We know that AA”" =7 and I=1, so

I=(AATE(AT)A=(AT)A.
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The inverse of a matrix is uniquely determined, so '(A")= A™"; therefore,
A”' is symmetric.

3. Show that a triangular symmetric matrix is diagonal.
SOLUTION. We may assume without loss of generality that A is upper tri-
angular. Then the transpose of A is lower triangular, and since, we must

have A='A, we see at once that A must be diagonal.

4. Show that the diagonal elements of a skew-symmetric matrix are equal to 0.

SOLUTION. The condition ‘A =—A implies a, =—a, forall 1<k<n, so
the diagonal elements of A are zero.

5. Let V be a finite dimensional vector space over the field K, with a non-de-
generate scalar product. Let v,, w, be elements of V. Let A:V—V be

the linear map such that A(v) = <v0, v>w‘,. Describe 'A.
SOLUTION. We have

(A(W) w) = (v, YW, w) = (v, (wy, w)v, ),
s0 ‘A(w) = (w,, w)v,.

6. Let V be the vector space over R of polynomials of degree <5. Let the
scalar product be defined as usual by

(r.8)= jf(t) dt.

Describe the transpose of the derivative D with respect to this scalar product.

SOLUTION. Consider the basis {1,7,¢*,1',1*,} for the space of polyno-

mials of degree <5. Then the matrix A associated with the given scalar
product is

e
- = s

- =

7Y SN
- vl

- o=
- <= o

o= g e e~ <= o

Y
|
oo

www.MathSchoolinternational.com


www.MathSchoolinternational.com

ANSWERS TO EXERCISES 103

We then have (X, Y)='XAY. The matrix associated with D is given by

010000
002000
000300
D= .
000040
000O00O0S5
00000O00O0

Then we see that
(DX, Y)='(DX)AY='X'DAY='XA(A"'DA)Y;

so the transpose of the differential operator D is described by the matrix
AT""DA with respect to the chosen basis.

7. Let V be a finite dimensional space over the field K, with a non-degenerate

scalar product. Let A: V —V be a linear map. Show that the image of ‘A
is the orthogonal space to the kernel of A.

SOLUTION. First we show that Im(‘A)" =Ker(A). If xeKer(A) and
w’ € Im(‘A), where ‘A(w)=w’, then

(x,w’) = (x'A(w)) = (A(x), w) =0,

so xeIm(‘A)". Conversely, suppose x € Im(‘A)’; then for all veV we
have

0=(x'A(v)) =(A(x).v).

But the scalar product is non-degenerate, hence A(x)= O, which proves the
assertion. Then Exercise 7, §6 of Chapter V, implies

Im(‘A) = Ker(A)".
8. Let V be a finite dimensional space over R, with a positive definite scalar
product. Let P: V—V be a linear map such that PP =P. Assume that

‘PP =P'P show that P='P.

SOLUTION. We have
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(P(v),'P(v)) = (v,P'P(v)) = (v'PP(v)) =(P(v), P(v)).
so we see that Ker(P)=Ker('P) and
(P(v}="P(v), P(v}-'P(v)) = 2[{P(v), P(v)) = (P(v)'P(v)}].
Exercise 10, §4 of Chapter IV, implies that V = Im(P)@® Ker(P), so we
can write v = P(x)+w, where w € Ker(P) = Ker('P). Then
(P(v), P(v))=(P(x), P(x))
(P(v)'P(v)) = (P(x)'PP(x)) = (P(x), P(x)).
The scalar product is positive definite, so P(v)='P(v).

9. A square nxn real symmetric matrix A is said to be positive definite if

‘XAX >0 forall X# 0. IfA, B are symmetric (of the same size) we define
A < B to mean that B— A is positive definite. Show that if A< B and
B<Cthen A<C.

SOLUTION. We have
‘X(C-A)X='X(C-B+B-A)X='X(C- B)X+'X(B- A)X,
so the result drops out.

10. Let V be a finite dimensional vector space over R with a positive definite
scalar product (, ). An operator A of V is said to be semipositive if
(Av,v)20 forall veV, v#0. Suppose that V=W + W~ is the direct

sum of a subspace W and its orthogonal complement. Let P be the projec-
tion on W, and assume that W #{O}. Show that P is symmetric and semi-

positive.

SOLUTION. The operator P is symmetric. For i=12 write
v, =w +w,", where w,e W and w;' e W*. Then

<P(v1)’v2>=<wwwz+W;>=<W|vwz>

vy, P(v, )y = (w, +wi, w,) =(w,, w,),

so P is symmetric.
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The operator P is semipositive. If v=w+w"', where we W and
w* € W*, then

(P(v),v)=(w,w+w")=(w,w)20.

11. Let the notation be as in Exercise 10. Let c be a real number, and let A be
the operator such that Av = cw if we can write v=w+w’ with we W and
w’ e W*. Show that A is symmetric.

SOLUTION. For i=1,2 we write v,=w,+w;, where w,eW and
w/ e W*. Then

(A(v,) v,y =(ew,, w, +wy) = c{w,, w,)

(v, A(v, )y = (w, + W], cw,) = c(w,, w,).

Thus A is symmetric.

12. Let the notation be as in Exercise 10. Let P be again the projection on W.
Show that there is a symmetric operator A such that A* =1+ P.

SOLUTION. If v=w+w’, where we W and w’ € W*, we define

A(V)=2w+w’.
Then
A*(v)= A(\/Ew+ w') =2w+w’ =I(v)+ P(v).

With the notation being the one of Exercise 11, we see that
(A(v,)v,) = (N2w, + W), w, + w]) = V2(w,, w,) +(w], w])
and
(v],A(vz)) =(w, +w,, \/sz +w))= \E(W,, w,)+{w,, w;),

s0 A is symmetric.

13. Let A be a real symmetric matrix. Show that there exists a real number c
so that A+cl is positive.

SOLUTION. We have
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2
¢ —
XAX =3 axx 2 Z‘| aii" x|
ij ij
for some &, so if we choose ¢ > ZI aUI, then A +cl is positive because
ij

‘X(A+cl)X="XAX +c(x] +...+x]).

14. Let V be a finite dimensional vector space over the field K, with a non-de-
generate scalar product (, ). If A:V >V isa linear map such that

(Av, Aw) = (v, w)
forall v, weV, show that Det(A)=%l.
SOLUTION. Fix w. Then for all v in V we have

(v, w)=(Av, Aw) = (v,'AAw).

Thus

(v, w—"AAW) =0,
so ‘AA =1 because the scalar product in non-degenerate. Therefore,

1= Det(I) = Det(‘AA) = Det('A)Det(A),

but Det(‘A)=Det(A), so we conclude that Det(A)=+1. In the general

case we also have A"A = AA" =1 (where A’ is the transpose of the opera-
tor). If J represents the scalar product, then (Av, w)=(v,A'w) so that

A'J =JA" where A’ is the transpose matrix of A. Hence
Det(A') =Det(A’),
which implies that Det(A’)" =1.

15. Let A, B be symmetric matrices of the same size over the field K. Show
that AB is symmetric if and only if AB= BA.

SOLUTION. Since

'(AB)='B'A=BA,
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we see that AB is symmetric if and only if AB= BA.

Vil, §2 Hermitian Operators

1. Let A be an invertible hermitian matrix. Show that A™' is hermitian.

SOLUTION. The matrix A™' is hermitian because

(a7)=(a)" =(a) =(a").
2. Show that the analogue of Theorem 2.4 when V is a finite dimensional
space over R is false. In other words, it may happen that Av is perpendic-

ular to all v eV without A being the zero map!

SOLUTION. A suitable rotation maps a vector into a vector orthogonal to
it.

3. Show that the analogue of Theorem 2.4 when V is a finite dimensional
space over R is true if we assume in addition <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>