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This book provides solutions to nearly of the exercises and
problems in Mathematics for Physical Chemistry, fourth
edition, by Robert G. Mortimer. This edition is a revision
of a third edition published by Elsevier/Academic Press in
2005. Some of exercises and problems are carried over from
earlier editions, but some have been modified, and some
new ones have been added. I am pleased to acknowledge
the cooperation and help of Linda Versteeg-Buschman, Beth
Campbell, Jill Cetel, and their collaborators at Elsevier. It is
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also a pleasure to acknowledge the assistance of all those
who helped with all editions of the book for which this is
the solutions manual, and especially to thank my wife, Ann,
for her patience, love, and forbearance.

There are certain errors in the solutions in this manual, and
I would appreciate learning of them through the publisher.

Robert G. Mortimer
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Problem Solving and Numerical

Mathematics

EXERCISES
2 4 3

Exercise 1.1. Take a few fractions, such as Z.,50r 5 and
represent them as decimal numbers, finding either all of the
nonzero digits or the repeating pattern of digits.

% = 0.66666666 - - -

4

5 = 04444444 .

3

= = 0428571428571 -

Exercise 1.2. Express the following in terms of SI base
units. The electron volt (eV), a unit of energy, equals
1.6022 x 10713 J.

1.6022 x 10719 ]

a. (13.6 eV)( Tev
e

) =2.17896 x 10197
~2.18x 107187

. {5280 ft 12 in 0.0254m
b. (24.17 mi) - -
1 mi 1 ft 1in

=3.890 x 10* m

5280 ft 12 0.0254
c. (55mih~!) , n - m
1 mi 1ft 1 in

Ih =2459ms ' ~25ms!
3600s) 0o ms T ems

I m 10'2 ps
d. (7.53 -
( fmps )<109nm>< Is >

=753x 103 ms™!

Exercise 1.3. Convert the following numbers to scientific
notation:

a. 0.00000234 = 2,34 x 10~°
b. 32.150 = 3.2150 x 10!
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Exercise 1.4. Round the following numbers to three
significant digits

a. 123456789123 ~ 123,000,000,000
b. 46.45 ~ 46.4

Exercise 1.5. Find the pressure P of a gas obeying the
ideal gas equation

PV =nRT

if the volume Vis 0.200 m?, the temperature 7'is 298.15 K
and the amount of gas n is 1.000 mol. Take the smallest
and largest value of each variable and verify your number
of significant digits. Note that since you are dividing by
V the smallest value of the quotient will correspond to the
largest value of V.

nRT
P =
%
(1.000 mol)(8.3145 J K~ ! mol~1)(298.15 K)
N 0.200 m3
= 12395 m™> = 12395 N m 2 ~ 1.24 x 10* Pa
p _ nRT
max — V
_(1.0005 mol)(8.3145 J K~ mol1)(298.155 K)
N 0.1995 m3
= 1.243 x 10* Pa
nRT
Pmm - V
(09995 mol)(8.3145 J K~! mol!)(298.145 K)
- 0.2005 m3

= 1.236 x 10* Pa

el
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Exercise 1.6. Calculate the following to the proper
numbers of significant digits.

a. 17.13 4+ 14.6751 4+ 3.123 4 7.654 — 8.123 = 34.359
~ 34.36
b. 1n (0.000123)

In (0.0001235) = —8.99927
In (0.0001225) = —9.00740

The answer should have three significant digits:

In (0.000123) = —9.00

PROBLEMS

1. Find the number of inches in 1.000 meter.

(1.000 m) (

1in
0.0254 m

2. Find the number of meters in 1.000 mile and the
number of miles in 1.000 km, using the definition of
the inch.

. {5280 ft 12 in 0.0254 m
(1.000 mi) - -
1 mi 1 ft 1 in
= 1609 m
1000 m 1in 1 ft
(1.000 km) -
1 km 0.0254 m 12 in

1 mi 0.6214
X = U.
5280 ft

3. Find the speed of light in miles per second.

i 1 fi
(299792458 m s~ ) - :
0.0254 m 12 in

s (M) _ 186282.397 mis~!
5280 it

4. Find the speed of light in miles per hour.

1i 1 ft
(299792458 m s~ 1) n :
0.0254 m 12 in

1 mi 3600 s
= 16629 mi h~!
x (5280ﬂ)( o > 670616629 mi

5. A furlong is exactly one-eighth of a mile and a
fortnight is exactly 2 weeks. Find the speed of light
in furlongs per fortnight, using the correct number of
significant digits.

1 L in 1 ft
(299792458 m s~ ) (0.0254 m) <12 in)
1 mi 8 furlongs
x (5280 ft) ( I mi )
3600 s\ (24 h 14d
x ( lh ) ( 1d > (lfortnight)

= 1.80261750 x 10'? furlongs fortnight ™!

) =39.37in
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6. The distance by road from Memphis, Tennessee
to Nashville, Tennessee is 206 miles. Express this
distance in meters and in kilometers.

. (5380 ft 12 in 0.0254 m
(206 mi) - :
1 mi 1 ft 1in

=332 x 10° m =332 km

7. A U. S. gallon is defined as 231.00 cubic inches.
a. Find the number of liters in 1.000 gallon.

231.00 in? 0.0254 m\> /10001
(1 gal) .
1 gal 1 in 1 m3

=3.7851

b. The volume of 1.0000 mol of an ideal gas
at 0.00 °C (273.15 K) and 1.000 atm is
22.414 liters. Express this volume in gallons and
in cubic feet.

1
(22.414 1) in
1000 0.0254 m3
( 1 gal )
231.00 in®
m? lin  \°
(22.414 1)
10001/ \ 0.0254 m3

1fe\? 3
X - = 0.79154 ft
12 in

9212 gal

8. Inthe USA, footraces were once measured in yards and
at one time, a time of 10.00 seconds for this distance
was thought to be unattainable. The best runners now
run 100 m in 10 seconds or less. Express 100.0 m in
yards. If a runner runs 100.0 m in 10.00 s, find his
time for 100 yards, assuming a constant speed.

1 in 1yd
(100.0 m) - =109.4 m
0.0254 m 36 in

100.0 yd
(10.00 s) [ ——<
109.4 m

) =09.144 s

9. Find the average length of a century in seconds and in
minutes. Use the rule that a year ending in 00 is not a
leap year unless the year is divisible by 400, in which
case it is a leap year. Therefore, in four centuries there
will be 97 leap years. Find the number of minutes in a
microcentury.
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Number of days in 400 years
= (365 d)(400 y) + 97 d = 146097 d

Average number of days in a century
146097 d

=36524.25d

24 h 60 min
1 century = (36524.25d) ( —

1d 1h

= 5.259492 x 10’ min
1 t
(5.259492 % 107 min) comuty
1 x 10° microcenturies

= 52.59492 min

60
(52.59492 min) <—S
1 min

> = 3155.695 s

10. A light year is the distance traveled by light in one
year.

a. Express this distance in meters and in kilometers.
Use the average length of a year as described in
the previous problem. How many significant digits
can be given?

60
(299792458 m s_l)( 5 )
1 min

x(5.259492 x 10° min)
= (9.46055060 x 10" m)

(9.46055060 x 1015 m) [ 0
1000 m

= 9.4605506 x 10'? km
~ 9.460551 x 10'2 km

Since the number of significant digits in the
number of days in an average century is seven,
we round to seven significant digits.

b. Express a light year in miles.

1i 1 ft
(9.460551 x 10'5 m) n :
0.0254 m 12 in

1 mi
X
5280 ft

) = 5.878514 x 10'? mi

11. The Rankine temperature scale is defined so that the
Rankine degree is the same size as the Fahrenheit
degree, and absolute zero is 0 °R, the same as 0 K.

a. Find the Rankine temperature at 0.00 °C.

14.

o

9 °F
0.00 °C < (273.15 K) (5 K) =491.67 °R

13.

b. Find the Rankine temperature at 0.00 °F.

273.15 K - 18.00 K = 255.15 K

9 °F
(255.15 K)( ) = 459.27 °R
5K

12. The volume of a sphere is given by

V=—-nr

where V is the volume and r is the radius. If a certain
sphere has a radius given as 0.005250 m, find its
volume, specifying it with the correct number of digits.
Calculate the smallest and largest volumes that the
sphere might have with the given information and
check your first answer for the volume.

4 3 4 3
V= 77 = V= §n(o.ooszso m)
= 6.061 x 1077 m?
4 3 -7 3
Vinin = 571(0.005245 m)’ =6.044 x 107" m
4 3 -7 3
Vinax = g”(0~005255 m)® =6.079 x 107" m
V =6.06 x 107" m?

The rule of thumb gives four significant digits, but the
calculation shows that only three significant digits can
be specified and that the last digit can be wrong by
one.

The volume of a right circular cylinder is given by

V = nrh,

where r is the radius and % is the height. If a right
circular cylinder has a radius given as 0.134 m and a
height given as 0.318 m, find its volume, specifying
it with the correct number of digits. Calculate the
smallest and largest volumes that the cylinder might
have with the given information and check your first
answer for the volume.

V = 7(0.134 m)*>(0.318 m) = 0.0179 m>
Vinin = 7(0.1335 m)%(0.3175 m) = 0.01778 m>
7(0.1345 m)?(0.3185 m) = 0.0181 m?

Vmax

The value of an angle is given as 31°. Find the measure
of the angle in radians. Find the smallest and largest
values that its sine and cosine might have and specify
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the sine and cosine to the appropriate number of digits. V =10.001,and T = 298.15 K. Convert your answer
to atmospheres and torr.
27 rad
(31°)< — ) — 0.54 rad CRT
- T2
sin (30.5°) = 0.5075 Vm—b V3
sin (31.5°) = 0.5225 _ (8.3145 T K~ mol~1)(298.15 K)
sin (31°) = 0.51 ~ 7.3110% 102 m3 mol~! — 4.267 x 10~5 m3 mol !

0.3640 Pa m® mol 2

cos (30.5°) = 0.86163 _
(7.3110 x 102 m3 mol—1)2

cos (31.5°) = 0.85264

31°) = 0.86 p— KT __ 4
cos (31°) = 0. A Vr%
15. Some elementary chemistry textbooks give . (8.3145 J K~ mol~1)(298.15 K)
the value of R, the ideal gas constant, as T 73110x 102 m3 mol~ ' = 4.267x 10~3 m3 mol~!
0.0821 1 atm K~! mol~!. 0.3640 Pa m® mol—2

(7.3110 x 10-2 m3 mol )2

a. Using the SI value, 8.3145 J K~ mol™!, obtain 4 3
=3.3927 x 10" I m "~ — 68.1 Pa

the value in 1 atm K~! mol™! to five significant

digits. =3.3927 x 10" Pa — 68.1 Pa = 3.386 Pa
(3.3859 P )( Laum ) 0.33416 at
1 Pam? 1 at . D\ 5 ) =V atm
(83145 T K~ mol™!) [ — 2 atm 101325 Pa
17 101325 Pa

( 1000 1 The prediction of the ideal gas equation is

W) = 0.082058 1 atm K~ ! mol™!

(83145 J K~! mol1)(298.15 K)
B 7.3110 x 10—2 m3 mol™!
3.3907 x 10* T m™> = 3.3907 x 10* Pa

b. Calculate the pressure in atmospheres and in
N m~2 (Pa) of a sample of an ideal gas with n =
0.13678 mol, V = 10.000 1 and 7" = 298.15 K.

17. The specific heat capacity (specific heat) of a substance
__nRT is crudely defined as the amount of heat required to
Ty raise the temperature of unit mass of the substance by

(0.13678 mol)(0.082058 1 atm K—! mol~1)(298.15 K) 1 degree Celsius (1 °C). The specific heat capacity of
= water is 4.18 J °C~! g~!. Find the rise in temperature

1.000 1
— 0.33464 atm if 100.0 J of heat is transferred to 1.000 kg of water.
P:”’;T AT — 100.0 J < 1 ke )
@, oc~l g=1)(1. 1000
~(0.13678 mol)(8.3145 J K~! mol~!)(298.15 K) 540;29105 g~1)(1.000 kg) g
B 10.000 x 10~3 m? o
=3.3907 x 10 J m™* = 3.3907 x 10* Nm™? 18. The volume of a cone is given by
=3.3907 x 10* Pa .
V = —nr’h
16. The van der Waals equation of state gives better 3
accuracy than the ideal gas equation of state. It is where £ is the height of the cone and r is the radius
of its base. Find the volume of a cone if its radius is
<P + %) (Vm — b) = RT given as 0.443 m and its height is given as 0.542 m.
m
13 1 2 3
where a and b are parameters that have different V= 37 h = 37 (0.443 m)7(0.542 m) = 0.111 m
values for different gases and where V, =
V/n, the molar volume. For carbon dioxide, 19. The volume of a sphere is equal to %nr3 where ris the
a=03640 Pa m® mol ™2, b = 4267 x radius of the sphere. Assume that the earth is spherical
1073 m?® mol~!. Calculate the pressure of carbon with a radius of 3958.89 miles. (This is the radius of

dioxide in pascals, assuming that n = 0.13678 mol, a sphere with the same volume as the earth, which
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Problem Solving and Numerical Mathematics

is flattened at the poles by about 30 miles.) Find the
volume of the earth in cubic miles and in cubic meters.
Use a value of 7 with at least six digits and give the
correct number of significant digits in your answer.

21.

4
V=—-nr=
3

= 2.59508 x 10'! mi?
3 3
(2.59508 x 10! mi%) (5230 ft) (12 m)

4 .
777(3958.89 mi)’

1 mi 1 ft
<0.0254 m
X —

3
, ) = 1.08168 x 10*! m’
1in
Using the radius of the earth in the previous problem
and the fact that the surface of the earth is about 70%
covered by water, estimate the area of all of the bodies
of water on the earth. The area of a sphere is equal to
four times the area of a great circle, or 4 r?, where r
is the radius of the sphere.

A ~ (0.7)47r? = (0.7)47(3958.89 mi)?
= 1.4 x 10% mi®

We give two significant digits since the use of 1 as
a single digit would specify a possible error of about
50%. It is a fairly common practice to give an extra
digit when the last significant digit is 1.

The hectare is a unit of land area defined to equal
exactly 10,000 square meters, and the acre is a unit
of land area defined so that 640 acres equals exactly
one square mile. Find the number of square meters in
1.000 acre, and find the number of acres equivalent to
1.000 hectare.

280 f)2\ /12 in\>
1.000acre=<(5 80 )>< 1n>

640 1ft

(0.0254 m
X —_—

2
: ) = 4047 m?
1in

10000 m?
1.000 hectare = (1.000 hectare) { ——
1 hectare

1 acre

X | ———= ) =2.471 acre
(4047 m2>
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Mathematical Functions

EXERCISES 0.1 = 1/10

Exercise 2.1. Enter a formula into cell D2 that will log (0.1) = —log (10) = —1
compute the mean of the numbers in cells A2, B2, and C2.
0.01

1/100
= (A2+4+ B2+ C2)/3 /

Exercise 2.2. Construct a graph representing the function log (0.01) = —log (100) = —2
y(x) =x% —2x% +3x +4 2.1) 0.001 = 1/1000

Use Excel or Mathematica or some other software to log (0.001) = —log (1000) = —3
construct your graph.

Here is the graph, constructed with Excel: 0.0001 = 1/10000

log (0.001) = —log (10000) = —4

sa ] Exercise 2.4. Using a calculator or a spreadsheet, evaluate
) ____/ the quantity (1+ %)” for several integral values of n ranging
-B -p -1 from 1 to 1,000,000. Notice how the value approaches the
e value of e as n increases and determine the value of n needed
7 28 to provide four significant digits.
Vi 20 Here is a table of values

/ : K (1+1/n)" R

76 1 2
2 2.25
Exercise 2.3. Generate the negative logarithms in the short s 5 18832
table of common logarithms.
10 2.59374246
100 2.704813829
X y=logp  x y =l0go ) 1000 2716923932
1 0 0.1 -1 10000 2.718145927
10 1 0.01 -2 100000 2.718268237
100 2 0.001 -3 Q)OOOOO 2.71 828046y
1000 3 0.0001 —4

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00026-4
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To twelve significant digits, the value of e is
2.71828182846. The value for n = 1000000 is accurate
to six significant digits. Four significant digits are obtained
with n = 10000.

Exercise 2.5. Without using a calculator or a table of
logarithms, find the following:

a. In (100.000) = In (10) log, (100.000)
= (2.30258509 - - -)(2.0000) = 4.60517

b. In (0.0010000) = In (10) log,, (0.0010000)
= (2.30258509 - - -)(—3.0000) = —6.90776

In (e)
= =0.43429. ..
In(10)  2.30258509- - -

c. log)p (e) =

Exercise 2.6. For a positive value of b find an expression
in terms of b for the change in x required for the function
¢b* to double in size.

x4+ Ax)
fe ebx

In(2)  0.69315 -
b b

b(x+Ax)
— ¢ — ebe

Ax =

Exercise 2.7. A reactant in a first-order chemical reaction
without back reaction has a concentration governed by the
same formula as radioactive decay,

[Al; = [Alpe ™™,

where [A]o is the concentration at time ¢ = 0, [A]; is the
concentration at time #, and k is a function of temperature
called the rate constant. If k = 0.123 s~ ! find the time
required for the concentration to drop to 21.0% of its initial
value.

(1) <[A]o> < 1 ) (100.0)
= — 11’1 = ln
k [A]: 0.123 5! 21.0

=12.7s

Exercise 2.8. Using a calculator, find the value of the
cosine of 15.5° and the value of the cosine of 375.5°.
Display as many digits as your calculator is able to display.
Check to see if your calculator produces any round-off error
in the last digit. Choose another pair of angles that differ by
360° and repeat the calculation. Set your calculator to use
angles measured in radians. Find the value of sin (0.3000).
Find the value of sin (0.3000 + 2m). See if there is any
round-off error in the last digit.

cos (15.5°) = 0.96363045321
cos (375.5°) = 0.96363045321
sin (0.3000) = 0.29552020666
sin (0.3000 4 277) = sin (6.58318530718)
= 0.29552020666

Mathematics for Physical Chemistry

There is no round-off error to 11 digits in the calculator
that was used.

Exercise 2.9. Using a calculator and displaying as many
digits as possible, find the values of the sine and cosine of
49.500°. Square the two values and add the results. See if
there is any round-off error in your calculator.

sin (49.500°) = 0.7604059656

cos (49.500°) = 0.64944804833
(0.7604059656)2 + (0.64944804833)2 = 1.00000000000

Exercise 2.10. Construct an accurate graph of sin (x) and
tan (x) on the same graph for values of x from 0 to 0.4 rad
and find the maximum value of x for which the two functions
differ by less than 1%.

0.45

04 e

1

0.35

Z

0.25

0.2

0.15

0.1

0.05

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04

The two functions differ by less than 1% at 0.14 rad.
Notice that at 0.4 rad, sin (x) < x < tan (x) and that the
three quantities differ by less than 10%.

Exercise 2.11. For an angle that is nearly as large as /2,
find an approximate equality similar to Eq. (2.36) involving
(r/2) — o, cos (o), and cot («).

Construct a right triangle with angle with the angle
(r/2) — a, where « is small. The triangle is tall, with a
small value of x (the horizontal leg) and a larger value of y
(the vertical leg). Let r be the hypotenuse, which is nearly
equal to y.

cos ((1/2) — a) = ;

cot((w/2) — a) = )}—‘ ~ %. The measure of the angle

in radians is equal to the arc length subtending the angle
« divided by r and is very nearly equal to x /r. Therefore

cos((r/2) —a) ® a
cot((m/2) —a) ~ «
cos ((/2) —a) =~ cot ((/2) — «)

Exercise 2.12. Sketch graphs of the arcsine function, the
arccosine function, and the arctangent function. Include
only the principal values.
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Here are accurate graphs:

Inverse Sine

1 £

3
+

0.5

Py

0.5

1.5

=
2

Inverse Cosine

35

A 3

o s
\‘

5
2

L4
n

D

-1 -0.5 0 05 1

Inverse Tangent
3

-5
X /#
V4

N

Exercise 2.13. Make a graph of tanh (x) and coth (x) on
the same graph for values of x ranging from 0.1 to 3.0.

11

=
(=]

. LA

. L1

, L1

s 4

o |}

Y

N AN
N

0 L= |

Exercise 2.14. Determine the number of significant digits
in sin (95.5°).

We calculate sin (95.45°) and sin (95.45°). Using a
calculator that displays 8 digits, we obtain

sin (95.45°%) = 0.99547946

sin (95.55°) = 0.99531218

We report the sine of 95.5° as 0.9954, specifying four
significant digits, although the argument of the sine was
given with three significant digits. We have followed the
common policy of reporting a digit as significant if it might
be incorrect by one unit.

Exercise 2.15. Sketch rough graphs of the following
functions. Verify your graphs using Excel or Mathematica.

a. ¢/ sin (x). Following is a graph representing each
of the factors and their product:

LS

SAVA!

A
A,

-15

A

/
i
U

=
i

|
| %]

b. sin? (x) = [sin (x)]?
Following is a graph representing sin (x) and sin® (x).

15

T AN N

W < N

-0.5 \

-15

PROBLEMS

1. The following is a set of data for the vapor pressure
of ethanol taken by a physical chemistry student.
Plot these points by hand on graph paper, with the
temperature on the horizontal axis (the abscissa) and



the vapor pressure on the vertical axis (the ordinate).
Decide if there are any bad data points. Draw a smooth
curve nearly through the points, disregarding any bad
points. Use Excel to construct another graph and notice
how much work the spreadsheet saves you.

K‘I’emperature/"C Vapor pressure/torm

25.00 55.9
30.00 70.0
35.00 97.0
40.00 117.5
45.00 154.1
50.00 190.7
241.9

Q.oo

Here is a graph constructed with Excel:

-/

300

250

Mathematics for Physical Chemistry

a function of the reciprocal of the Kelvin temperature.
Why might this graph be more useful than the graph
in the previous problem?

0.00308 0.0031 0.00315 0.0032 aooxs 0.0033 oocs3s 0.0034

This graph might be more useful than the first graph
because the function is nearly linear. However, the
third data point still lies off the curve. Here is a graph
with that data point omitted.

/»
200

,»//

150

100

50 1

The third data point might be suspect. Here is a
graph omitting that data point:

300

250

/’
200

Q""/

50

2. Using the data from the previous problem, construct a
graph of the natural logarithm of the vapor pressure as

0.003

0.00305 00031 0.00315 0.0032 000325 00033 0.00335 0.0034

Thermodynamic theory implies that it should be nearly
linear if there were no experimental error.

. A reactant in a first-order chemical reaction without

back reaction has a concentration governed by the
same formula as radioactive decay,

[Al, = [Alpe ™™,

where [A]p is the concentration at time t = 0, [A],
is the concentration at time ¢, and k is a function
of temperature called the rate constant. If £ =
0.232 s~! at 298.15 K find the time required for the
concentration to drop to 33.3% of its initial value at a
constant temperature of 298.15 K.

 _n ([Alo/1Al:) _Ind/0333) o4
p 02325

Find the value of each of the hyperbolic trigonometric
functions for x = 0 and x = /2. Compare
these values with the values of the ordinary (circular)
trigonometric functions for the same values of the
independent variable.
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Here are two table of values:

x sinh(x) cosh(x) tanh(x) csch(x) sech(x) coth(x)

0 O 1 0 oo 1 oo
/2 2.3013 2.5092 0.91715 0.43454 0.39854 1.09033

X sin(x) cos(x) tan(x) csc(x) sec(x) cot(x)

0 0 1 0 [e'¢) 0 [e's]
/2 1 0 00 1 0 0

5. Express the following with the correct number of
significant digits. Use the arguments in radians:

a. tan (0.600)

tan (0.600) = 0.684137
tan (0.5995) = 0.683403
tan (0.60005) = 0.684210

We report tan (0.600) = 0.684. If a digit is
probably incorrect by 1, we still treat it as
significant.

b. sin (0.100)

sin (0.100) = 0.099833
sin (0.1005) = 0.100331
sin (0.0995) = 0.099336

We report sin (0.100) = 0.100.
c. cosh (12.0)

cosh (12.0) = 81377
cosh (12.05) = 85550
cosh (11.95) = 77409

We report cosh (12.0) = 8 x 10*. There is only
one significant digit.
d. sinh (10.0)

sinh (10.0) = 11013
sinh (10.01) = 11578
sinh (9.995) = 10476

We report sinh (10.0) = 11000 = 1.1 x 10*

6. Sketch rough graphs of the following functions. Verify
your graphs using Excel or Mathematica:

a. x?¢~*/% Following is a graph of the two factors
and their product.
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c. (1 — x)e™™ Following is a graph showing each
factor and their product.
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d. xe™™ Following is a graph showing the two
factors and their product.
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7. Tell where each of the following functions is
discontinuous. Specify the type of discontinuity:
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a. tan (x) Infinite discontinuities at x =
x =3n/2,x =57/2,---

b. csc(x) Infinite discontinuities at x = 0, x = 7,
X = 27-[, e

¢. |x| Continuous everywhere, although there is a
sharp change of direction at x = 0.

/2,

8. Tell where each of the following functions is

discontinuous. Specify the type of discontinuity:

a. cot (x) Infinite discontinuities at x = 0,x = 7,
X = 27-[, e

b. sec (x) Infinite discontinuities at x =
x =37/2,x =57/2,---

c. In(x—1) Infinitediscontinuity atx = 1, function
not defined for x < 1.

/2,

. If the two ends of a completely flexible chain (one

that requires no force to bend it) are suspended at the
same height near the surface of the earth, the curve
representing the shape of the chain is called a catenary.
It can be shown! that the catenary is represented by

y = acosh (;—C)

where
T
a=—

8p
and where p is the mass per unit length, g is the
acceleration due to gravity, and 7 is the tension force
on the chain. The variable x is equal to zero at the center
of the chain. Construct a graph of this function such
that the distance between the two points of support is
10.0 m and the mass per unit length is 0.500 kg m~",
and the tension force is 50.0 N.

T 0k 2

“= = 00 kg m s —10.20 m
gp  (9.80 m? s72)(0.500 kg m~1)

y = (10.20 m) cosh (x/10.20 m)

1G. Polya, Mathematical Methods in Science, The Mathematical Associa-
tion of America, 1977, pp. 178ff.

10.

11.

12.

13.

Mathematics for Physical Chemistry

For this graph, we have plotted y — 11.4538 such that
this quantity vanishes at the ends of the chain.
For the chain in the previous problem, find the force
necessary so that the center of the chain is no more
than 0.500 m lower than the ends of the chain.

By trial and error, we found that the center of the
chain is 0.499 m below the ends when ¢ = 25.5 m.
This corresponds to

T = gpa = (9.80 m s~2)(0.500 kg m~")(25.5 m)
= 125N
Construct a graph of the two functions: 2 cosh (x) and

¢* for values of x from O to 3. At what minimum value
of x do the two functions differ by less than 1%?

25

20

15
/ s 2 cOSh (X}
10 / pix)

, =

] 0.5 1 15 2 2.5 3

By inspection in a column of values of the
difference, the two functions differ by less than 1%
atx = 2.4.

Verify the trigonometric identity
sin (x 4+ y) = sin (x) cos (y) + cos (x) sin (y)

for the angles x = 1.00000 rad, y = 2.00000 rad.
Use as many digits as your calculator will display and
check for round-off error.

sin (3.00000) = 0.14112000806
sin (1.00000) cos (2.00000) + cos (1.00000)
x sin (2.00000) = 0.14112000806
There was no round-off error in the calculator that was

used.
Verify the trigonometric identity

cos(2x)=1-— 2 sin? (x)
for x = 0.50000 rad. Use as many digits as your
calculator will display and check for round-off error.
cos (1.00000) = 0.54030230587
1 — 2sin? (0.50000) = 1 — 0.45969769413
= 0.54030230587

There was no round-off error to 11 significant digits
in the calculator that was used.
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EXERCISES

Exercise 3.1. Write the following expression in a simpler
form:
(4 2x0)7 — xi(x —2)F + 1247

B
6x3 + 12x4

x2(x% 4 4x +4) — x>(x% —4x +4) + 1244
6x3 + 12x%

x4 43 F4x? — x4 — 4k 120
6x3 4+ 12x4

12x* 4+8x%  12x4+8 6x+4
6x3 4+ 12x*  12x+6  6x+3

Exercise 3.2. Manipulate the van der Waals equation into
an expression for P in terms of 7 and Vy,. Since the pressure
is independent of the size of the system (it is an intensive
variable), thermodynamic theory implies that it can depend
on only two independent intensive variables.

(P+i>(vm—b) — RT

Va
Pt o KT
VZ " Vn—b
RT a
T Vm-b V2

Exercise 3.3. a. Find x and y if p = 6.00 and ¢ = /6
radians

x = (6.00) cos (7r/6) = (6.00)(0.866025) = 5.20

y = psin(¢) = (6.00)(0.500) = 3.00

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00027-6
© 2013 Elsevier Inc. All rights reserved.

b. Find p and ¢ if x = 5.00 and y = 10.00.

x24+y2=+125.0=11.18
arctan (y/x) = arctan (2.00) = 1.107 rad
= 63.43°

p:
¢

Exercise 3.4. Find the spherical polar coordinates of the
point whose Cartesian coordinates are (2.00, 3.00, 4.00).

r = /(2.00)2 + (3.00)2 — (4.00)2 = +/29.00 = 5.39
3.00
= t —_— = V. 27 = . °©
¢ = arctan <2.00> 0.98279 rad = 56.3

4.00
6 = arccos | —— | = 0.733 rad = 42.0°
5.39

Exercise 3.5. Find the Cartesian coordinates of the point
whose cylindrical polar coordinates are p = 25.00,¢ =
60.0°, z = 17.50

x = pcos(¢) = 25.00cos (60.0°)

25.00 x 0.500 = 12.50

y = psin (¢) = 25.00sin (60.0°)
= 25.00 x 0.86603 = 21.65

z = 17.50

Exercise 3.6. Find the cylindrical polar coordinates of the
point whose Cartesian coordinates are (—2.000,—2.000,
3.000).

V(=2.00)2 + (—2.00)2 =2.828

p =

—2.00 o
¢ = arctan 20 = 0.7854 rad = 45.0
z = 3.000

el3
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Exercise 3.7. Find the cylindrical polar coordinates of
the point whose spherical polar coordinates are » = 3.00,
6 =30.00°, ¢ = 45.00°.

z = rcos (0) = (3.00) cos (30.00°) = 3.00 x 0.86603
= 2.60

p = rsin(0) = (3.00) sin (30.00°) = (3.00)(0.500)
= 1.50

¢ = 45.00°

Exercise 3.8. Simplify the expression
4+61)(3+2i)+4i
4+61)3+2i)+4i =124+ 18 +8i — 12 +4i =30i

Exercise 3.9. Express the following complex numbers in
the form re'?:

a. 7z = 4.00 + 4.00;

r = 4/32.00 = 5.66
4.00

¢ = arctan | —— ) = 0.785
4.00

7 = 4.00 + 4.00i = 5.66¢"78%
b. z =—1.00

Z:—l:ern

Exercise 3.10. Express the following complex numbers in
the form x + iy

a. 7 =3e"/?
x =rcos(p)=3cos(w/2) =3 x0=0
y =rsin(¢) =3sin(7/2) =3 x1=3
7 =3i

b. z = &37i/2

x =rcos(¢p) =cos(3n/2) =0
y = rsin(¢) =sin(3r/2) = —1

7= —i
Exercise 3.11. Find the complex conjugates of
a. A= (x+iy)?—4e
A = x2 4 2ixy + y* — 4™
A* = x? = 2ixy + y? — 4o
= (x —iy)? —4e™™™Y
Otherwise by changing the sign in front of every i:

A* = (x —iy)? —4e™™

Mathematics for Physical Chemistry

b. B = (3+7i) — (7i)>
B*=03-7) = (=7)>=3B-7i)° - 7)?

Exercise 3.12. Write a complex number in the form x +iy
and show that the product of the number with its complex
conjugate is real and nonnegative

(x4 iy)(x —iy) = x> +ixy —ixy + y* = x* + y?

The square of a real number is real and nonnegative, and x
and y are real.

Exercise 3.13. If z = (3.00 4 2.00i)?, find R(z), I (2), 7,
and ¢.

7 =9.00+ 6.00i —4.00 = 5.00 4 6.00:

R(z) = 5.00
I1(z) = 6.00
r = +/25.00 + 36.00 = 7.781
¢ = arctan (6.00/5.00) = 0.876 rad = 50.2°

Exercise 3.14. Find the square roots of z = 4.00 + 4.00i.
Sketch an Argand diagram and locate the roots on it.

7 =re?
r = +/32.00 =5.657
¢ = arctan (1.00) = 0.785398 rad = 45.00°

5.657¢03927i
V= { 5,657 exp [(0.7853298+2n) i] — J5.6573-534i

To sketch the Argand diagram, we require the real and
imaginary parts. For the first possibility

JZ = v/5.657(cos (22.50%)) + i sin (22.50°)
= /5.657(0.92388 + i (0.38268)
= 2.1973 + 0.91019i

For the second possibility

JZ = v/3.657(cos (202.50°)) + i sin (202.50°)
— /5.657(—0.92388 + i (—0.38268)
= —2.1973 — 0.91019i

Exercise 3.15. Find the four fourth roots of —1.

1= em’ eSm, 657117 e7m

Veri = omil4 Imi/4 Suifd Tni/4
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Exercise 3.16. Estimate the number of house painters in
Chicago.

The 2010 census lists a population of 2,695,598 for the
city of Chicago, excluding surrounding areas. Assume that
about 20% of Chicagoans live in single-family houses or
duplexes that would need exterior painting. With an average
family size of four persons for house-dwellers, this would
give about 135,000 houses. Each house would be painted
about once in six or eight years, giving roughly 20,000
house-painting jobs per year. A crew of two painters might
paint a house in one week, so that a crew of two painters
could paint about 50 houses in a year. This gives about 400
two-painter crews, or 800 house painters in Chicago.

PROBLEMS

1. Manipulate the van der Waals equation into a cubic
equation in V. That is, make a polynomial with terms
proportional to powers of Vp, up to VI% on one side of
the equation.

<P+%>(Vm—b):RT

m
Multiply by V2

(PV2+a)(Vim—b) = RTV?
PV3 +aVy —bPVZ —ab = RTV
PV2 —(b+ RT)V: +aVyn —ab = 0

2. Find the value of the expression

32442 —6(7T+]— 173 + (V3T=1—1])°
(1+29)% = (| =71+ 692 + V12 + ] 4]

32442 —6(7] —17)3 + (VZT=T—=1])°
(42 = (=T + 602 + /T2 4]
3(6)2 — 6(24)° + (J%f

54— (223)2+ 416
72 -82944 4216  —82656
T 625—49729+4  —49100

= 1.683

3. A Boy Scout finds a tall tree while hiking and wants to
estimate its height. He walks away from the tree and
finds that when he is 45 m from the tree, he must look
upward at an angle of 32° to look at the top of the tree.
His eye is 1.40 m from the ground, which is perfectly
level. How tall is the tree?

h

(45 m)tan (32°) + 1.40 m =28.1 m+ 1.40 m
=295m~30m

10.

The zero in 30 m is significant, which we indicated
with a bar over it.

. The equation x2+ y2 + 72 = ¢% where ¢ is a constant,

represents a surface in three dimensions. Express the
equation in spherical polar coordinates. What is the
shape of the surface?

2yl =rt=¢t

This represents a sphere with radius c.

. Express the equation y = b, where b is a constant, in

plane polar coordinates.
y = psin(@) =b

b
= @ = bcsc (@)

. Express the equation y = mx + b, where m and b are

constants, in plane polar coordinates.

o sin (¢p) = mpcos (¢p) + b
ptan(¢) = mp + bsec(¢)
pltan (¢) —m] = bsec(¢)
b sec (¢)
[tan (¢) — m]
Find the values of the plane polar coordinates that
correspond to x = 3.00, y = 4.00.

p = +9.00 4+ 16.00 = 5.00

4.00 o
¢ = arctan | —— ) = 53.1° = 0.927 rad
3.00

p:

. Find the values of the Cartesian coordinates that

correspond to r = 5.00, 8 = 45.0°, ¢ = 135.0°.

. A surface is represented in cylindrical polar

coordinates by the equation z = p%. Describe the
shape of the surface. This equation represents a
paraboloid of revolution, produced by revolving a
parabola around the z axis.

The solutions to the Schrodinger equation for the
electron in a hydrogen atom have three quantum
numbers associated with them, called n, [, and m, and
these solutions are denoted by vy,

a. The 119 function is given by
1 N2 r
= — —e7"/2% cos (0
v = e <a0> ao’ @

where ag = 0.529 x 107!9 m is called the Bohr
radius. Write this function in terms of Cartesian
coordinates.

cos(f) =z

1 1\*?
Y210 = Wi (%)
(X2 +y2 +Z2)1/2
2ag

Z
X — exp
ap



b. The 111 function is given by

1 1N\ r :
Yo11 = m (%) a—oe"/zao sin (0)e'?

Write an expression for the magnitude of the 1]

function.
1/2 1 1\*?
Wl = Wanyd '/ = Wi (a)
x L7120 in (9) (e!® e~ 1#)1/2
ao

1N
= (=) Lerragne
8/ (ao) aoe ©®

¢. The yrp11 functionis sometimes called ¥, 1. Write
expressions for the real and imaginary parts of
the function, which are proportional to the related
functions called 2, and ¥y

R(Wa1) = = (Va1 + ¥31,)

11N
_ _ L, /2[1() 4 9
Wi <a0> aoe sin (0)

X <%> (e +e7)

3/2
_ (i) P
8/ \ao ao
X sin (@) cos (¢)

| =

1 *
I(Y211) = > (V211 — ¥311)

11N\
—_ _ 5 /2(1() : 9
Wi (llo) aoe sin (0)

x (%) (€' — )

3/2
_ 1 (i) / Le—r/Zao
8/ \ao ao
X sin (0) sin (¢)

11. Find the complex conjugate of the quantity
e2:00i 4 3im

= ¢>0% _ 3 = cos (2.00)
+isin (2.00) — 3

(¥ 4 36/7)* = cos (2.00) — i sin (2.00) — 3
— p~200i _3

62.001 + 37

Mathematics for Physical Chemistry

12. Find the sum of 4.00¢3-%% and 5.00¢200:

4.00¢>%% = (4.00)[cos (3.00) + i sin (3.00)]
= (4.00)( — 0.98999 + 0.14112i)
= —3.95997 + 0.56448i

5.00%%% = (5.00) x * * *[cos (2.00] + i sin (2.00)
= (5.00)( — 0.41615 + 0.90930i)
= —2.08075 + 4.54650i

4.00e> %% 4 5.00%0%
= —6.0445.11i

13. Find the difference 3.00e™ — 2.00e27: .
3.00e™ —2.00e¥™ = —3.00 — 2.00 = 5.00
14. Find the three cube roots of z = 3.000 + 4.000:.

r = +/9.000 + 16.000 = 5.000

¢ = arctan (4.000/3.000) = 0.92730 rad
5.000¢i% = 5.000¢0-92730i

5.000e27+9) — 5 000721048

5.000e@7+9) — 5.000¢!3-49367

1 .71060'30910i
1/3 _ 1.7102-40349i

1.7 1064497891'
15. Find the four fourth roots of 3.000:.

3.000e7™1/2
3.000e77/2
3.000£°7/2
3.000¢!371/2

V/3.000e™/8 = 1.316¢™/8
V/3.000e°7/8 = 1.316¢7m/%
4 omi/8 _ i /8

3.000e 1.316e

V/3.000e'371/8 = 1.316¢!371/8

16. Find the real and imaginary parts of

z=(3.00 4+ i) + (6.00 + 5.00i)?

3.000i =

J3.000i =

Find z*.
(3.00 +i)> = (3.00 4 )(9.00 + 6.00i — 1)
= 27.00 + 18.00i — 3.00 + 9.00i
—6.00 — i = 18.00 + 26.00i
36.00 + 60.00i — 25.00
= 11.00 + 60.00i
(3.00 4 i) + (6.00 + 5.00i)>
= 29.00 + 86.00i
Z* = 29.00 — 86.00i

(6.00 + 5.00i)?
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17.

18.

34+2i\2
Ifz = <4+5i> , find R(z), I(z), r, and ¢.

., 4-5i 4-5i
S T
342 [(4—5i -
4450 :< 41 )(3+2’)
12 [/—154+8\ 10
=H+(T)’+H
2 7
T4 4

22 7i\? 22\?2
G2 - G
2x22x7)\ . 5\2
_( an? >’+(H)

= 0.43378 — 0.18322i

R(z) = 0.43378
1(z) = —0.18322

ro= \/(0.43378)2 + (0.18322)%2 = 0.47079
—0.18322
¢ = arctan | ———
< 0.43378

= —0.39965

) = arctan ( — 0.42238)

The principal value of the arctangent is in the fourth
quadrant, equal to —0.39965 rad. Since ¢ ranges from
0 to 277, we subtract 0.39965 from 2 to get

¢ = 5.8835 rad

Obtain the famous formulas

i$ —i$ .
cos (9) = - = R()
el —e7i? ;
sin (¢) = ——-—— = 1(e'?)
l

If z = ¢!% The real part is obtained from

z+zt e

2 2

and the imaginary part is obtained from

1o * et _ it
I fr— pr—
@ == 2

in agreement with the formula ¢'¢ = cos(¢) +

i sin ()

19.

20.

21.

22,

el7

Estimate the number of grains of sand on the beaches
of the major continents of the earth. Exclude islands
and inland bodies of water.

Assume that the earth has seven continents with an
average radius of 2000 km. Since the coastlines are
somewhat irregular, assume that each continent has a
coastline of roughly 10000 km = 1 x 10’ m for a
total coastline of 7 x 107 m. Assume that the average
stretch of coastline has sand roughly 5 m deep and
50 m wide. This gives a total volume of beach sand
of 1.75 x 10'% m3. Assume that the average grain of
sane is roughly 0.3 mm in diameter, so that each cubic
millimeter contains roughly 30 grains of sand. This is
equivalent to 3 x 10'° grains per cubic meter, so that
we have roughly 5 x 10%° grains of sand. If we were to
include islands and inland bodies of water, we would
likely have a number of grains of sand nearly equal to
Avogadro’s constant.

A gas has a molar volume of 20 liters. Estimate the
average distance between nearest-neighbor molecules.

Assume that each molecule is found in a cube such
that 20 liters is divided into a number of cubes equal to

Avogadro’s constant:

1 m3
(20D 10001
— 7 3107w’

volume of a cube =
6 x 1023

The length of the side of the cube is roughly the average
distance between molecules:

1/3
average distance = (3 x 10726 m3) =3x 10 m

= 30A

This is a reasonable value, since it is roughly ten times
as large as a molecular diameter.
Estimate the number of blades of grass in a lawn with
an area of 1000 square meters.

Assume approximately 10 blades per square
centimeter.

100 cm
1m

2
number = (10 cm_2)< ) (1000 m?)

=1x10®

Since in its early history the earth was too hot for
liquid water to exist on it, it has been hypothesized
that all of the water on the earth came from collisions
of comets with the earth. Assume an average diameter
for the head of a comet and assume that it is completely
composed of water ice. Estimate the volume of water
on the earth and estimate how many comets would
have collided with the earth to supply this much water.



Assume that an average comet has a spherical
nucleus 50 miles (80 kilometers) in radius. This
corresponds to a volume

4
V(comet) = 57r(8 x 10* m)® =2 x 10 m?

The radius of the earth is roughly 6.4 x 10° m, so its
surface area is

A =47(6.4 x 10°m)®> =5.1 x 10" m?

Mathematics for Physical Chemistry

Roughly 70% of the earth’s surface is covered by
water. Assume an average depth of 1.0 kilometer for
all bodies of water.

V(water) = (0.70)(5.1 x 10'* m?)(1000 m)

=3.6x 10" m?
3.6 x 1017 m3
Number of comets ~ 20X Y M ~ 200
2 x 1015 m3
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EXERCISES b. Find the components and the magnitude of 2.00A — B.

Exercise 4.1. Draw vector diagrams and convince your- 2.00A — B = i(4.00 + 1.00)+j(—6.00 + 4.00)
self that the two schemes presented for the construction of i(5.00)-+j(—2.00)

D = A — B give the same result.
[2.00A — B| = +/25.00 4+ 4.00 = 5.385

c. Find A - B.

Exercise 4.2. Find A — B if A = (2.50,1.50) and
B = (1.00,—7.50)

A-B = (2.00)(—-1.00 —3.00)(4.00) = —14.00
A — B = (1.50,9.00) = 1.50i + 9.00j (2-00)¢ )+ ( (.00

d. Find the angle between A and B.
Exercise 4.3. Let|A| = 4.00,|B| = 2.00, and let the angle

o . A-B —14.00

between them equal 45.0°. Find A - B. cos (o) = _ — _0.94176
AB (3.606)(4.123)

A - B = (4.00)(2.00) cos (45°) = 8.00 x 0.70711 = 5.66. o = arccos (—0.94176) = 2.799 rad = 160.3°
Exercise44. If A = (3.000i — (4.00)j and B = Exercise4.6. Find the magnitude of the vector
(1.00)i + (2.00)j. A = (—3.00, 4.00, —5.00).

a. Draw a vector diagram of the two vectors. A = +/9.00 +16.00 +25.00 = +/50.00 = 7.07

b. Find A - B and (2.00A) - (3.00B). ) )
Exercise 4.7. a. Find the Cartesian components of the

A-B = 3.00 x 1.00 position vector whose spherical polar coordinates are
=2. =90°, ¢ = 0°. Call thi A.
(—4.00)(2.00) = —5.00 r 00, 6 = 90°, ¢ = 0°. Call this vector
(2A) - 3B) = 6(—5.00) = —30.00 x = 2.00
y = 0.00
Exercise 4.5. If A = 2.00i — 3.00j and B = —1.00i + z = reos(©) =0.00
A = (2.00)i

4.00;

b. Find the scalar product of the vector A from part a

. Find |A| and |B]|. .
a d|Afand [B] and the vector B whose Cartesian components are

A = A = /400 + 9.00 = 3.606 (1.00, 2.00, 3.00).
IB| = B =+/1.00 + 16.00 = 4.123 A-B=200404+0=200

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00028-8
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c. Find the angle between these two vectors. We must first

find the magnitude of B.
IB| = B = +/1.00 + 4.00 + 9.00
= V/14.00 = 3.742
cos (@) = i = 0.26726
(2.00)(3.742)
o = arccos (0.26726) = 74.5° = 1.300 rad

Exercise 4.8. From the definition, show that

AxB:—&wa

This result follows immediately from the screw-thread
rule or the right-hand rule, since reversing the order of the
factors reverses the roles of the thumb and the index finger.

Exercise 4.9. Show that the vector C is perpendicular to B.
We do this by showing that B - C = 0.

B-C = B.C, + B,C, + B.C,
=—14+2—-1=0.

Exercise 4.10. The magnitude of the earth’s magnetic
field ranges from 0.25 to 0.65 G (gauss). Assume that the
average magnitude is equal to 0.45 G, which is equivalent to
0.000045 T. Find the magnitude of the force on the electron
in the previous example due to the earth’s magnetic field,
assuming that the velocity is perpendicular to the magnetic
field.

IF|=F = (1.602 x 10717 C)
% (1.000 x 10° m s~1)(0.000045 T)
=7210x 100" Asms ' kgs2 A~!
=7210x 107" kgms™2=7.210x 107N

Exercise 4.11. A boy is swinging a weight around his
head on a rope. Assume that the weight has a mass of
0.650 kg, that the rope plus the effective length of the boy’s
arm has a length of 1.45 m and that the weight makes
a complete circuit in 1.34s. Find the magnitude of the
angular momentum, excluding the mass of the rope and that
of the boy’s arm. If the mass is moving counterclockwise
in a horizontal circle, what is the direction of the angular
momentum?

27(1.45 m)
T T 134s

L = mvr = (0.650 kg)(6.80 m s~ 1)
x(1.45 m) = 6.41 kg m? s~!

= 6.80ms™!

Mathematics for Physical Chemistry

By the right-hand rule, the angular momentum is vertically
upward.

PROBLEMS

1. Find A — B if A = 2.00i 4+ 3.00j and B = 1.00i +
3.00j — 1.00k.

A —B = —1.00i + 2.00k.

2. An object of mass m = 10.0 kg near the surface
of the earth has a horizontal force of 98.0 N acting
on it in the eastward direction in addition to the
gravitational force. Find the vector sum of the two
forces (the resultant force). Let the gravitational force
be denoted by W and the eastward force be denoted by
F = (98.0 N)i. Denote the resultant force by R.

R = F+ W = (98.0 N)i — mgk
= (98.0 N)i — (10.0 kg)(9.80 m s 2)k
= (98.0 N)i — (98.0 kg m s’k
= (98.0 N)i — (98.0 N)k

The direction of this force is 45° from the vertical in
the eastward direction.
3. Find A -Bif A = (0,2) and B = (2,0).

A-B=0+0=0

4. Find |A| if A = 3.00i +4.00j — 5.00k.

|A| = +/9.00 + 16.00 + 25.00 = 7.07

5. Find A - Bif A = (1.00)i + (2.00)j + (3.00)k and
B = (1.00)i + (3.00)j — (2.00)k.

A-B=1.00+6.00—-6.00=1.00

6. Find A - B if A =
(2.00,2.00,2.00).

(1.00,1.00,1.00) and B =

A-B =2.00+4+2.0042.00 =6.00

7. Find A x B if A =
(2.00,1.00,0.00).

(0.00,1.00,2.00) and B =

AxB=AxB=i(A,B, — A.B,)

+§(A.B, — A, B,) + k(A By — A,B,)
i(0.00 — 2.00) + j(4.00 — 0.00)
+Kk(0.00 — 2.00)

= —2.00i + 4.00j — 2.00k

8. Find A x Bif A = (1,1,1) and B = (2,2,2).

AxB=0
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9. Findthe angle between A and Bif A = 1.00{+4-2.00+
1.00k and B = 1.00i — 1.00k.

A-B=1.00+0-2.00=—1.00
A = +/1.00 + 4.00 + 1.00 = +/6.00 = 2.4495
B = +/1.00 + 1.00 = +/2.00 = 1.4142

~1.00
= _0.28868
(2.4495)(1.4142)

a = arccos (—0.28868) = 107° = 1.86 rad

cos (@) =

10. Findthe angle between A and Bif A = 3.00i+2.00; +
1.00k and B = 1.00i 4+ 2.00;j + 3.00%.

A -B = 3.00 + 4.00 + 3.00 = 10.00
A = +/9.00 + 4.00 + 1.00 = v/14.00 = 3.7417
B = +/1.00 + 4.00 + 9.00 = +/14.00 = 3.7417

10.
_ 1000 51409
(3.7417)(3.7417)

o = arccos (0.71429) = 44.4° = 0.775 rad

cos (o) =

11. A spherical object falling in a fluid has three forces
acting on it: (1) The gravitational force, whose
magnitude is Fy = mg, where m is the mass of the
object and g is the acceleration due to gravity, equal to
9.80 m s~ 2; (2) The buoyant force, whose magnitude
is F, = mgg, where my is the mass of the displaced
fluid, and whose direction is upward; (3) The frictional
force, which is given by Fy = —6mnrv, where r
is the radius of the object, v its velocity, and 1 the
coefficient of viscosity of the fluid. This formula for
the frictional forces applies only if the flow around
the object is laminar (flow in layers). The object is
falling at a constant speed in glycerol, which has a
viscosity of 1490 kg m~! s~!. The object has a mass
of 0.00381 kg, has a radius of 0.00432 m, a mass of
0.00381 kg, and displaces a mass of fluid equal to
0.000337 kg. Find the speed of the object. Assume
that the object has attained a steady speed, so that the
net force vanishes.

Fyioal = 0= —(0.00381 kg)(9.80 m s~2)
+(0.000337 kg)(9.80 m s~2)
+67(1490 kg m~! s71)(0.00432 m)v

|—(0.00381 kg)(9.80 m s~2)+(0.000337 kg) (9.80 m s~2)|
V=
| 67 (1490 kg m—! s—1)(0.00432 m) |

=0.18ms!
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12. An object has a force on it given by F = (4.75 N)i +
(7.00 N)j + (3.50 N)k.

a. Find the magnitude of the force.

F = /(475 N)2 + (7.00 N)2 + (3.50 N)2
= /838125 =915N

b. Find the projection of the force in the x-y plane.
That is, find the vector in the x-y plane whose
head is reached from the head of the force vector
by moving in a direction perpendicular to the x-y
plane.

Fprojection = (4.75 N)i + (7.00 N)j

13. An object of mass 12.000 kg is moving in the x
direction. It has a gravitational force acting on it equal
to —mgk, where m is the mass of the object and g is
the acceleration due to gravity, equal to 9.80 m s~ .
There is a frictional force equal to (0.240 N)i. What
is the magnitude and direction of the resultant force

(the vector sum of the forces on the object)?

Fiot = —(12.000 kg)(9.80 m s~ 1)k + (0.240 N)i
= —(117.60 N)k + (0.240 N)i
Fiol = V(117.6 N)2 + (0240 N)2 = 118 N

The angle between this vector and the negative z axis is

o = arctan ( 0> =0.117° = 0.00294 rad

117.6

14. The potential energy of a magnetic dipole in a
magnetic field is given by the scalar product

V=—-un-B,

where B is the magnetic induction (magnetic field) and
1 is the magnetic dipole. Make a graph of W‘Tm asa
function of the angle between w and B for values of
the angle from 0° to 180°.

Vv
———— = —cos (a)
|lIB
Here is the graph
1 /_
0.5 /
0
45 €0 135 130
-05
//
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15. According to the Bohr theory of the hydrogen atom,
the electron in the atom moves around the nucleus in
one of various circular orbits with radius r = agn?
where ag is a distance equal to 0.529 x 10710 m,
called the Bohr radius and n is a positive integer.
The mass of the electron is 9.109 x 1073! kg.
According to the theory, L = nh/2m, where h
is Planck’s constant, equal to 6.626 x 10734 J .
Find the speed of the electron for n = 1 and
forn = 2.

Since the orbit is circular, the position vector and the
velocity are perpendicular to each other, and L = muvr.

Mathematics for Physical Chemistry

Forn =1:

L (6.626 x 10734 J s)
T omr o 2m7(9.109 x 10731 kg)(0.529 x 10~10 m)
=2.188 x 10° ms™!

Forn =2

L 2(6.626 x 10734 Js)
omr o 2m(9.109 x 10731 kg)22(0.529 x 10~10 m)
1.094 x 10° m s~!

Notice that the speed for n = 1 is nearly 1% of the
speed of light.
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\Chapter 5)

Problem Solving and the Solution
of Algebraic Equations

EXERCISES

Exercise 5.1. Show by substitution that the quadratic
formula provides the roots to a quadratic equation.
For simplicity. we assume thata = 1.

2
(—b:l:«/b2 —4c> +b (—b:l:«/lﬂ —4c> N
—_— —_— C
2 2

b2 bJD2 —4c N b2 —4c b2

“a2 T2 s 4
bvb? — 4c
iT+C=0

Exercise 5.2. For hydrocyanic acid (HCN), K; = 4.9 x
10710 at 25 °C. Find [H*] if 0.1000 mol of hydrocyanic
acid is dissolved in enough water to make 1.000 1. Assume
that activity coefficients are equal to unity and neglect
hydrogen ions from water.

—Ka /K2 4 0.4000K,

2

—4.9x 10710+ \/(4.9 x 10-10)2 4 (0.4000) (4.9 x 10~10)

2

=7.00%x107% or —7.00x107

Ht] = [A71=7.00 x 107® mol I"!.

The neglect of hydrogen ions from water is acceptable, since
neutral water provides 1 x 10~7 mol 1=! of hydrogen ions,
and will provide even less in the presence of the acid.

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00029-X
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Exercise 5.3. Carry out the algebraic manipulations to
obtain the cubic equation in Eq. (5.9).

K, = xy
Ka
y=-—
X

where we let y = [A™]/c®. Since the ionization of water
and the ionization of the acid both produce hydrogen ions,

[HA] ¢

= — — (x —
c° c’ ( y)
X|[x——
X
Ka:—
: K
Lyl
c® X
c K
Ka[——x+—wi| = x2 — Ky,
c® X

Multiply this equation by x and collect the terms:

cK
X3+ Kax? — <

a+KW>x—KaKW:0
CO

Exercise 5.4. Solve for the hydrogen ion concentration
in a solution of acetic acid with stoichiometric molarity
equal to 0.00100 mol 17!, Use the method of successive
approximations.

For the first approximation
2= (1.754 x 10—5) (0.00100 — x)
~ (1.754 x 1072)(0.00100) = 1.754 x 1078

x A~ /1754 x 1078 = 1.324 x 1074
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For the next approximation

K2 = (1.754 x 10—5) (0.00100 — 1.324 x 104

~ (1.754 x 10—5) (8.676 x 1074
1.5217 x 1078

V1.5217 x 10-8 = 1.236 x 10~*

For the third approximation

%

X

x2 = (1.754 x 107°)(0.00100 — 1.236 x 10™%)
~ (1.754 x 107°)(8.7664 x 10~
= 1.5376 x 1078

x A~ /15376 x 1078 = 1.24 x 1074

[H'] = 1.24 x 107* mol 17!

Since the second and third approximations yielded nearly
the same answer, we stop at this point.

Exercise 5.5. Verify the prediction of the ideal gas
equation of state given in the previous example.

V. RT

n P

(8.3145 T K~! mol™') (298.15 K)
1.01325 x 10° Pa

2.447 x 1073 m? mol ™!

Vm =

Exercise 5.6. Substitute the value of the molar volume
obtained in the previous example and the given temperature
into the Dieterici equation of state to calculate the pressure.
Compare the calculated pressure with 10.00 atm =
1.01325 x 10° Pa, to check the validity of the linearization
approximation used in the example.

ped/VmRT (v 4y — RT
RTe—a/VmRT

P =
(Vm = b)

e—a/VmRT _ exp |:7 ( (0-468 Pa m® mol*z) :|

230 x 1073 m3 mol 1) (8.3145 T K1 mol~1) (298.15K)
-2
= (~8208x107% _ g 9p1p
RTe—a/VinRT
(Vm = b)
(83145 7K~ mol~1) (298.15 K) (0.9212)

(230 x 10~3 m3 mol~! — 4.63 x 10~5 m3 morl)

1.013328 x 10° Pa

which compares with 1.01325 x 10° Pa.

Exercise 5.7. Find approximately the smallest positive
root of the equation

tan (x) —x = 0.

Mathematics for Physical Chemistry

Since tan (x) is larger than x in the entire range from x = 0
to x = m, we look at the range from x = 7 to x = 2.
By trial and error we find that the root is near 4.49. The
following graph of tan (x) — x shows that the root is near
x = 4.491.

0.2
0.15
0.1 //
0.05 = L
0
4475 448 4.4s5 4. 19/ 4435 4fs 4505
-0.05 g

Exercise 5.8. Using a graphical procedure, find the most
positive real root of the quartic equation:

x* — 4.500x — 3.800x% — 17.100x + 20.000 = 0

The curve representing this function crosses the x axis in
only two places. This indicates that two of the four roots
are complex numbers. Chemists are not usually interested
in complex roots to equations.

A preliminary graph indicates a root near x = 0.9 and
one near x = 5.5. The following graph indicates that the
root is near x = 5.608. To five significant digits, the correct
answer is x = 5.6079.

3
25 W

) v 4
15 /
1 /

0.5

0
516 S.EO/ 5.6

-0.5 /,

-1

r

=

5.415 5.p2 5.425

-15

Exercise 5.9. Use the method of trial and error to find the
two positive roots of the equation

e* —3.000x =0

to five significant digits. Begin by making a graph of the
function to find the approximate locations of the roots.

A rough graph indicates a root near x = 0.6 and a root
x = 1.5. By trial and error, values of 0.61906 and 1.5123
were found.
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Exercise 5.10. Use Excel to find the real root of the
equation
x> +5.000x —42.00 = 0

The result is that x = 3.9529.

Exercise 5.11.
following:

Write Mathematica expressions for the

a. The complex conjugate of (10)e2657

10 Exp[—2.635 1]
b. In (100!) — (1001n (100) — 100)
Log[100!] — (100 Log[100] — 100]
¢. The complex conjugate of (1 4 2i)>>
(1+2072.5

Exercise 5.12.
reaction:

In the study of the rate of the chemical

aA + bB — products
the quotient occurs:

1
([AJo — ax)([Blo — bx)

where [A]p and [B]g are the initial concentrations of A
and B, a and b are the stoichiometric coefficients of these
reactants, and x is a variable specifying the extent to which
the reaction has occurred. Write a Mathematica statement
to decompose the denominator into partial fractions.

In[1] : = Clear[x]
Apart [1/((A — a™x) (B — b*x))]

Exercise 5.13. Verify the real solutions in the preceding
example by substituting them into the equation.
The equation is

f)=x* =53 +4x* —3x +2=0
By calculation

£(0.802307) = 8.3 x 107/
£(4.18885) = 0.000182

By trial and error, these roots are correct to the number of
significant digits given.

Exercise 5.14. Use the NSolve statement in Mathematica
to find the numerical values of the roots of the equation

x3 +5.000x — 42.00 = 0
The result is

3.00
—1.500 + 3.4278i
—1.500 — 3.4278i

X =

e25

Use the Find Root statement to find the real root of the same
equation.
The result is

x = 3.00

Exercise 5.15. Solve the simultaneous equations by the
method of substitution:

x2—2xy—x:0
x+y=0

We replace y in the first equation by —x:
X242 —x=3x2—-x=0
This equation can be factored
xBx—-1)=0

This has the two solutions:

0
X = 1
3
The first solution set is
x=0, y=0

Exercise 5.16. Solve the set of equations

3x +2y =40
2x —y =10

We multiply the second equation by 2 and add it to the
first equation

7x = 60
60
X = —
7

We substitute this into the second equation

120
= _y=10
e
120 50
y=-——10=">
7 7

Substitute these values into the second equation to check

our work;

120 50 70
e 10
77 7
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Exercise 5.17. Determine whether the set of equations has
a nontrivial solution, and find the solution if it exists:

S5x+12y =0
15x +36y = 0.

We multiply the first equation by 3, which makes it
identical with the second equation. There is a nontrivial
solution that gives y as a function of x. From the first
equation

5x
=—— =-0.4167
YT *

Exercise 5.18. Use Mathematica to solve the simultane-
ous equations

2x +3y =13
x—4y = —-10
The result is
y =

PROBLEMS

1. Solve the quadratic equations:
a.

2 =3x+2=0
x—2)x—1) =0

1
X =
E

2-1=0
x—Dx+1) =0

|
o

x2+x+2

—1+J/1-38 liﬁi
B —_—
2 27 2

0.500 + 1.323i
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2. Solve the following equations by factoring:

a.
B 4xl—x—-1=0
By carrying out a long division, we find that
x — 11is a factor and the other factor is x2 +2x + 1,
so that the factors are
P4xt—x—1= (x — 1)()c—i—1)2
The roots are
1
x=41 —1
—1
b.
*—1=0

This is factored as follows:

o1 =w+DE?=1)
=x+Dx-Dx+DEx-1)

The roots are
x=-—i,i,—1,1

3. Rewrite  the factored  quadratic  equation
x — x)Dx — x2) = 0 in the form
x - (x1 + x2)x + x1x2 = 0. Apply the quadratic
formula to this version and show that the roots are
x = x1 and x = xp.

X1 4 x2 £/ (01 +x2)? — 4xixo
2

X1 +x2 £ x12 + 2x12X% —i—x% —4dx1x2
2

X1 -l—xz:I:,/xl2 — 2X12X +x§

2
xXp+xE (g —x2) {x1 if 4 is chosen

2 xp if — is chosen

4. The pH is defined for our present purposes as
pH = —log;o ((H"1c®)
Find the pH of a solution formed from 0.0500 mol of
NH3 and enough water to make 1.000 I of solution.

The ionization that occurs is

NH3 + H,O < NHj + OH™
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The equilibrium expression in terms of molar
concentrations is

(INHJ ]c®)([OH™]/c°)
x(H20)([NH3]c°)

__ (INH;1/c*)([OH"]/¢%)

- (INH3]/c°)

where x (H,O) represents the mole fraction of water,
which is customarily used instead of its molar
concentration. Since the mole fraction of the solvent
in a dilute solution is nearly equal to unity, we can
use the approximate version of the equation. The base
ionization constant of NHj3, denoted by Ky, equals
1.80 x 107 at 25 °C.

Ky =

5 x?
180x 1077 = ——
x 0.0500 — x
where we assume that OH™ ions from water can be
neglected and where we let x = ([NHZ{] /c®) =
([OH™]/c®)

x2 = (1.80 x 107°)(0.0500 — x)
x2 ~ (1.80 x 1072)(0.0500) = 9.00 x 10=’
~ 949 x 1074

2 (1.80 x 10—5) (0.0500 —9.49 x 10—4)

= 8.83 x 10~/
x ~ 9.40 x 107*

o=

We stop the iteration at this point.

pOH = — log (9.40 x 10—4) —3.03
pH = 14.00 — 3.03 = 10.97

5. The acid ionization constant of chloroacetic acid is
equal to 1.40 x 1073 at 25 °C. Assume that activity
coefficients are equal to unity and find the hydrogen
ion concentration at the following stoichiometric
molarities.

a. 0.100 mol 17!

x2 x2
140 X 107 = G0 =% ™ 5,100

x & [(1.40 x 1073) (0.100)] "
= 0.0118

x ~ [(1.40 x 107%) (0.100 — 0.0118)]"*
= 0.0111

x & [(1.40 x 1073) (0.100 — 0.0111)]"/*
= 00112

[H'] = 0.011 mol 1™

e27

b. 0.0100 mol 17!

X2 )C2
= 0.0100—x  0.0100
x A [(1.40 x 1072)(0.0100)]'/?
= 0.00374
x A [(1.40 x 1073)(0.0100

—0.00374)]'/?

1.40 x 1073

= 0.00296
x A [(1.40 x 1073)(0.0100
—0.00296)]'/?
= 0.00314
x ~ [(1.40 x 1073)(0.0100
—0.00314)]'/?
= 0.00310
[HT] = 0.0031 mol 17!

6. Find the real roots of the following equations by

graphing:

x3—x2+x—1:0

r T T J
-0.5 1 15 2 25

2

The only real rootis x = 1.
b.

e —0.500x =0

0.06
0.04 \

0.02 \

T T r T T . |
ofs 0.8 0.82 084 \o.ss 09 0.92

-0.02 \

-0.04

-0.06

To four digits, the root is x = 0.8527.
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sin (x)/x —0.75 =0.

0.3
- \

01 \
0ls \5 2ls

-0.1

-0.2

-0.3

-0.4

To four digits, the root is at x = 1.2755

7. Make a properly labeled graph of the function y(x) =
In (x) 4 cos (x) for values of x from O to 27

Graph of In(x) + cos(x)

25 e

15

, /
0.5 Vi
L

!

St OO e

1 2
-0.5

b. Repeat part a using Mathematica.

8. When expressed in terms of “reduced variables” the
van der Waals equation of state is

pa 3\ (vo L) 8%
vzt 3) 03
b _ 8T 3
T W

a. Using Excel, construct a graph containing three
curves of P; as a function of V;: for the range
0.4 < V; < 2:one for T, = 0.6, one for 7, = 1,
and one for 7, = 1.4.

In this graph, Series 1 represents 7, = 0.6,
Series 2 represents 7, = 1, and Series 3 represents
T, =14.

Lé
14

12

0.8
0.6
0.4
0.2

-0.2

-0.4

10.
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4 0j8 112 116
Reduced Volume

———(eries] wsssmSeries? ss=Series3

b. Repeat part a using Mathematica.

. Using a graphical method, find the two positive roots

of the following equation.
e¢* —3.000x = 0.

The following graph indicates a root near x = 0. 6 and
one near x = 1.5.

N
ojs \ 1js b

Sl

By trial and error, the roots are at x = 0.61906 and
x =1.5123
The following data were taken for the thermal
decomposition of N>O3:

t/s 0 184 426 867 1877
[N2O31/mol 171 2.33 2.08 1.67 1.36 0.72

Using Excel, make three graphs: one with In ([N2O3])
as a function of ¢, one with 1 /[N,O3] as a function of 7,
and one with 1/ [N,03]? as a function of ¢. Determine
which graph is most nearly linear. If the first graph
is most nearly linear, the reaction is first order; if
the second graph is most nearly linear, the reaction
is second order, and if the third graph is most nearly
linear, the reaction is third order.
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0.8 P

0.4 M

In(c) TN

0.2

20p0
-0.2

4

-0.4

t/sec

16

14

\

1.2

1/c 08
0.6

04

0.2

0 500 1000 1500 2000
tfsec

25
2
1 /

. =
e

0 500 1000 1500 2000
t/sec

1/c-squared

0

Because of experimental error, it is a little difficult to
tell, but it appears that the plot of In(c) is more nearly
linear, so the reaction is apparently first order.

11. Write an Excel worksheet that will convert a list of
distance measurements in meters to miles, feet, and
inches. If the length in meters is typed into a cell in
column A, let the corresponding length in miles appear
on the same line in column B, the length in feet in
column C, and the length in inches in column C. Here
is the result:

meters miles feet inches

1 0.000621371 3.28084 39.37007874
2 0.001242742 6.56168 78.74015748
5 0.003106855 16.4042 196.8503937

10 00.00621371 32.8084 393.7007874
100 0.0621371 328.084 3937.007874

12. The van der Waals equation of state is
2
n<a
<P + W) (V —nb) =nRT

where a and b are temperature-independent parame-
ters that have different values for each gas. For carbon
dioxide

a = 0.3640 Pa m® mol >

b = 4.267 x 107> m® mol ™!

a. Write the van der Waals equation of state as a cubic
equation in V.

n2a n3ab
PV + Vv Pnb —

Multiply by V2

PV3 4+ n2aV — PnbV? —nlab = nRTV?
PV? — (Pnb+nRT)V? +naV —n*ab = 0

b. Use the NSolve statement in Mathematica to find
the volume of 1.000 mol of carbon dioxide at P =
1.000 bar (100000 Pa) and T = 298.15 K. Notice
that two of the three roots are complex, and must be
ignored. Compare your result with the prediction
of the ideal gas equation of state.

(100000 Pa) V3
— [(100000 Pa)(4.267 x 105 m?)

4 (8.3145 K~ 1)(298.15 K)] V2

+(0.3640 Pa m®)V
— (0.3640 Pam®)(4.267 x 107> m?) = 0

All terms have the same units, so temporarily omit
the units and divide by 100000.

V3 —0.02483V2 + .00000364V
-155x 10719 =90
V =2.4683 x 1072 m’

From the ideal gas equation

nRT
V —
P
~(1.000 mol)(8.3145 T K~! mol~!)(298.15 K)
- 100000 Pa
=2789 x 1072 m3

c. Use the Find Root statement in Mathematica to
find the real root in part b. The result is:

V =2.4683 x 1072 m>
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d. Repeat part b for P = 10.000 bar (1.0000 x
109 Pa) and T = 298.15 K. Compare your result
with the prediction of the ideal gas equation of
state.

(1000000 Pa)V?
— [(1000000 Pa)(4.267 x 107> m?)
+ (8.3145 1 K~ 1)(298.15 K)]V?
+ (0.3640 Pa m®)V — (0.3640 Pa m%)
x (4267 x 1077 m¥) =0

All terms have the same units, so temporarily omit
the units and divide by 1000000.

V3 —0.0025216V? + .000000364V
—155x 107" =0

The real root is
V =2.3708 x 1073 m?

From the ideal gas equation

nRT
P
~(1.000 mol)(8.3145 J K~ mol~1)(298.15 K)
- 1000000 Pa
=2.789 x 1073 m>

VvV —

13. An approximate equation for the ionization of a weak
acid, including consideration of the hydrogen ions
from water is

[H1/c® = /Kac/c® + Ky,

where c is the gross acid concentration. This equation
is based on the assumption that the concentration
of unionized acid is approximately equal to the
gross acid concentration. Consider a solution of
HCN (hydrocyanic acid) with stoichiometric acid
concentration equal to 1.00 x 107> mol 17!, K, =
4.0 x 10710 for HCN. At this temperature, Ky =
1.00 x 10714,

a. Calculate [H] using this equation.

[H*]/c®

= V(4.0 x 10-10)(1.00 x 10-5) + 1.00 x 10~ 14
=1.18x 1077~ 1.2 x 107’

Roughly 20% greater than the value in pure water.
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b. Calculate [H"]/c° using Eq. (5.9).
X34 (4.0 x 10719) x?
~ [(1:00 x 107) (4.0 x 107) + 1.00
X107 x = (4.0 x 1071) (1,00 x 1074) =0
4 (40 x 10715) 2
—(1.00 x 107" x —4.0x 107 =0
The solution is

—4.0 x 10711
x =1 -9.9980 x 1078
1.0002 x 1077

We reject the negative roots and take [HT]/c® =
1.0002 x 1077, barely more than the value in pure
water.

14. Find the smallest positive root of the equation.
sinh (x) — x2—x=0.

A graph indicates a root near x = 3.4. By trial and
error, the root is found at x = 3.9925.

15. Solve the cubic equation by trial and error, factoring,
or by using Mathematica or Excel:

P 4x?—4x—4=0
This equation can be factored:
x+Dx—-2)x+2)=0

The solution is:
-2
x=3 —1
2

16. Find the real root of the equation
xr—e =0

The solution is:
x =0.70347

17. Find the root of the equation
x —2.00sin(x) =0
By trial and error, the solution is

x = 1.8955
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18.

19.

20.

21.

Find two positive roots of the equation
In (x) — 0.200x =0

A graph indicates roots near x = 1.3 and x = 13. The
roots are
) 1.2959

X =
12.713

Find the real roots of the equation
x? —2.00 — cos (x) =0

A graph indicates roots near x = #1.4. By trial and
error, the roots are

x = £1.4546

In the theory of blackbody radiation, the following
equation
x=51—-e)

needs to be solved to find the wavelength of maximum
spectral radiant emittance. The variable x is

B hc
)\manBT

where Amax is the wavelength of maximum spectral
radiant emittance, / is Planck’s constant, c is the speed
of light, kg is Boltzmann’s constant, and 7 is the
absolute temperature. Solve the equation numerically
for a value of x. Find the value of A ,x for T = 5800 K.
In what region of the electromagnetic spectrum does
this value lie?

A graph indicates a root near x = 4.96. By trial
and error, the solution is

x =4.965

he
xkgT
(6.6260755 x 1073% 1 )(2.99792458 x 108 m s~ 1)
- (4.965)(1.3806568 x 10—23] K—1)(5800 K)
= 4.996 x 10~/ m = 499.6 nm

Amax =

This lies in the blue-green region of the visible
spectrum.

Solve the simultaneous equations by hand, using the
method of substitution:

x4+ x+ 3y =15
3x +4y = 18
Use Mathematica to check your result. Since the first

equation is a quadratic equation, there will be two
solution sets.

e31

18 — 3x
4
Substitute this into the first equation

183
x2+x+3< x):lS

y:

4

9 54

2

1—2 =15

X +( 4>x+4
x> —125x +135 =15
x2—1.25x—150 = 0
4x2 —5x—6=0

5+ /25 +96
X = ———
8
_ 5+4/121
a 8
5411 23
X = — =
8 _-
4

Check the x = —3/4 value:

()G

Forx =2
186,
4
Forx = —-3/4
_ 18 —29/4 _ 18 +42.25 50605

Check this

2 - é + 3(5.0625) = 15

16 4

22. Stirling’s approximation for In (N!) is
1
In (N!) ~ Eln(2nN) +NInh(N)—-N

Determine the validity of this approximation and
of the less accurate version
In(N!)* NIn(N) — N

for several values of Nupto N = 100. Use a calculator,
Excel, or Mathematica. Here are a few values

3In@7N) +N Nln(N)—N\
In(N) =N

N In(N)

5 4.787491743
10 15.10441257
50 148.477767
100 363.7393756

4.770847051
15.09608201
148.4761003
363.7385422

3.047189562
13.02585093
145.6011503

360.5170186 /
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23. The Dieterici equation of state is
Pe/"mRT (Vo —b) = RT,

where P is the pressure, 7 is the temperature, Vi, is
the molar volume, and R is the ideal gas constant.
The constant parameters a and b have different
values for different gases. For carbon dioxide, a =
0.468 Pa m® mol=2, b = 4.63 x 107> m> mol~!.
Without linearization, find the molar volume of carbon
dioxide if T = 298.15 K and P = 10.000 atm =
1.01325 x 10° Pa. Use Mathematica, Excel, or trial
and error.

(1.01325 x 10° Pa)
0.468 Pa m® mol 2
P (Vm(8.3145 JK ' mol=1)(298.15 K))
X (Vin — 4.63 x 107> m® mol™!)
= (8.3145 J K~ mol~1)(298.15 K)

Divide this equation by (1.01325 x 10° Pa) and
ignore the units

0.468 Pa m® mol 2
xp ( Vi (8.3145 J K~! mol~")(298.15 K)
X (Vin —4.63 x 107> m® mol™")
(8.3145J K1 mol~")(298.15 K)
- (1.01325 x 105 Pa)
<0.00018879
Xp\ ———

- ) (Vin — 4.63 x 1075) — 0.00244655 = 0
m

Using trial and error with various values of Vy,, we seek
a value so that this quantity vanishes. The result was
Vi = 0.0023001 m® mol ™"

Compare this with the ideal gas value:

RT (831451 K~ 'mol")(298.15 K)
P (1.01325 x 106 Pa)
= 0.002447 m® mol ™!

Vi =

24. Determine which, if any, of the following sets of
equations are inconsistent or linearly dependent. Draw
a graph for each set of equations, showing both
equations. Find the solution for any set that has a
unique solution.

a.

x+3y=4
2x + 6y =8

These equations are linearly dependent, since the
second equation is equal to twice the first equation
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3x1 +4x, =10
dx; —2x2 =6

Try the method of substitution. From the second
equation
x=8—-2y

Substitute this into the first equation

28 —2y) + 4y = 24
0=28

The equations are inconsistent

3x1 +4x, =10
dx; —2x2, =6

Solve the second equation for x, and substitute
the result into the first equation:

Xp = 2x; —3
3x1+4(2x1 —3) =10

11lx; = 22
x; =2
6+4x; = 10
x =1

25. Solve the set of equations using Mathematica or by
hand with the method of substitution:

x2—2xy+y2=0
2x+3y =5

To solve by hand we first solve the quadratic equation
for y in terms of x. The equation can be factored into
two identical factors:

x2—2xy+y2=(x—y)2=0
Both roots of the equation are equal:
y=x
We substitute this into the second equation

2x4+3y =5x =5

x =1
The final solution is

X 1

y =1
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Since the two roots of the quadratic equal were equal
to each other, this is the only solution.
Alternate solution: Solve the second equation for y

_5—2x
3

5-2 5 2x\°
x? —2x N (2-2) =o
3 3 3

y

Multiply by 9/25
x*—2x+1=0

This equation can be factored to give two identical
factors, leading to two equal roots:

x—-1?=0
x =1

This gives
243y =S5
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Differential Calculus

EXERCISES

Exercise 6.1. Using graph paper plot the curve represent-
ing y = sin (x) for values of x lying between O and /2
radians. Using a ruler, draw the tangent line at x = /4.
By drawing a right triangle on your graph and measuring
its sides, find the slope of the tangent line.

Your graph should look like this:

14

. )
4

0.2

0

0 05 1 15 2
The slope of the tangent line should be equal to ‘/TE
0.70717 - - -

Exercise 6.2. Decide where the following functions are
differentiable.

a.
1

1 —x

This function has an infinite discontinuity at x = 1 and
is not differentiable at that point. It is differentiable
everywhere else.

y:

y=x+2J/x
This function has a term, x, that is differentiable
everywhere, and a term 2./x, that is differentiable only
for x < 0.
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y = tan (x)

This function is differentiable exceptatx = 7/2,37/2,
Sm/2,...

Exercise 6.3. The exponential function can be represented
by the following power series

1
3!
where the ellipsis (---) indicates that additional terms
follow. The notation n! stands for n factorial, which is
defined to equal n(n — 1)(n — 2)---(3)(2)(1) for any
positive integral value of n and to equal 1 for n = 0. Derive
the expression for the derivative of ¢’ from this series.

1 1
ebx:1+bx+5b2x2+ b3x3+~--+—'b"x”--~
! n!

d 1, , 1
a(1+bx+5bx +3

1 1 1
=b+2 (—b2x> +3 (7b3x2> +4n <—b”x”_l> e
2! 3! n!

1 1 1
:b(l—|—bx+—bzxz—i——b3x3+-~~+—b"x"~~~)
2! 3! n!

1
b3x3+v-~+—b"x"-~->
n!

— bebx

Exercise 6.4. Draw rough graphs of several functions from
Table 6.1. Below each graph, on the same sheet of paper,
make a rough graph of the derivative of the same function.

Solution not given here.

Exercise 6.5. Assume that y = 3.00x> — 4.00x + 10.00.
If x =4.000 and Ax = 0.500, Find the value of Ay using
Eq. (6.2). Find the correct value of Ay

dx
% (24.00 — 4.00)(0.500) = 10.00

d
Ay ~ <—y) Ax = (6.00x — 4.00)(0.500)
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Now we compute the correct value of Ay:

¥(4.500) = (3.00)(4.500%) — (4.00)(4.500) + 10.00

= 52.75
y(4.000) = (3.00)(4.000%) — (4.00)(4.000) + 10.00
= 42.00
Ay = y(4.500) — y(4.00) = 52.75 — 42.00
= 10.75

Our approximation was wrong by about 7.5%.

Exercise 6.6. Find the following derivatives. All letters
stand for constants except for the dependent and
independent variables indicated.

d
a. Ey’ where y = (ax? + bx +¢)3/2

di(ax2+bx+c)—3/2 _ 3 < 2ax + b )
x

2 \ (ax2 + bx 4+ ¢)~5/2
dln (P
b. n( ),Wheresze_Q/T
dT
In(P) = ln(k)—%
dIn (P) _ _d(Q/T) . 2
dr dr 12

dy
. ——, wh = bx?
c i where y = a cos (bx~)

d
oo (bx?) = —asin (bx>)(3bx?)
X

= —3abx” sin (bx>)

Exercise 6.7. Carry out Newton’s method by hand to find
the smallest positive root of the equation

1.000x% — 5.000x + 1.000 = 0
df
dx

A graph indicates a root near x = 0.200. we take xo =
0.2000.

= 2.000x — 5.000

o = o L0
P (k)
£(0.2000) = 0.04000 — (5.000)(0.200) + 1.000
= 0.04000
£1(0.2000) = (2.000)(0.2000) — 5.000 = —4.600
0.04000
x1 = 0.2000— —— = 0.2000-+0.008696 = 0.208696

)
ARIESY;

X2 = X1
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£(0.208696) = 0.043554 — (5.000)(0.208696)
+1.000 = 0.000074
£1(0.208696) = 2(0.208696) — 5.000 = —4.58261

0.000074
4.58261

We discontinue iteration at the point, since the second
approximation does not differ significantly from the first
approximation. This is the correct value of the root to five
significant digits.

x2 = 0.208696 + = 0.20871

Exercise 6.8. Find the second and third derivatives of
the following functions. Treat all symbols except for the
specified independent variable as constants.

a. y=y(x) =ax"

j—i} = anx""!
g = an(n — DHx"?
% =an(n — (n —2)x"3
b. y = y(x) = ae?*
jx—y = abe®
% = ab*e"*a
By _

Exercise 6.9. Find the curvature of the function y =
cos(x)atx =0andatx = /2.

d
d—y = —sin (x)
X
dzy
dx_2 = —COS ()C)
d?y/dx? —cos (x)
K = 32 . 213/2
L dy [1+4 (sin (x))?]
dx
atx =0
-1
K = m = —
atx =m/2.
0

Exercise 6.10. For the interval —10 < x < 10, find the
maximum and minimum values of

y = —1.000x> + 3.000x2 — 3.000x + 8.000
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We take the first derivative:

dy
dx
= —3.000(x? — 2.000x + 1.000)

= —3.000(x — 1.000)> =0 ifx =1

= —3.000x2 + 6.000x — 3.000

We test the second derivative to see if we have a relative
maximum, a relative minimum, or an inflection point:
d? y
dx2

—6.000x + 6.000
0if x = 1.000

The point x = 1.000 is an inflection point. The possible
maximum and minimum values are at the ends of the
interval

Ymax = Y(—10.000) = 1538
Ymin = y(10.000) = —522

The maximumis atx = —10 and the minimum s atx = 10.

Exercise 6.11. Find the inflection points for the function
y = sin (x). The inflection points occur at points where the
second derivative vanishes.

d

é = cos (x)

d2

dx_)zj = —sin (x)

d?y

2 = Owhenx = +0, + 7, &+ 27, £ 37, ...

Exercise 6.12. Decide which of the following limits exist
and find the values of those that do exist.

a. lim, . /2[x tan (x)] This limit does not exist, since
tan (x) diverges at x = 77/2.

b. lim,_,¢[In (x)]. This limit does not exist, since In (x)
diverges at x = 0.

Exercise 6.13. Find the value of the limit:

. |:tan (x)]
lim
x—0 X

We apply 1I’Hopital’s rule.

. [tan(x) . [dtan (x)dx o [sec? (x)
lim = lim | ———— [ = lim
x—=>0 X x—>0 dx/dx x—=>0 1

1
=lim|——|=1
x—0 | cos? (x)

Exercise 6.14. Investigate the limit

lim (x™"e")
X—> 00
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for any finite value of n.

e.X e.X
lim (x"e%) = lim (—) = lim ( )
X— 00 x—o00 \ x" X—00 nxn—l
Additional applications of I’Hdpital’s rule give decreasing
powers of x in the denominator times n(n — 1)(n —2) - - -,

until we reach a denominator equal to the derivative of a
constant, which is equal to zero. The limit does not exist.

Exercise 6.15. Find the limit

lim | )
am [)

We apply I’Hopital’s rule.

. In (x) : 1/x
R T

R ERE ) 1
= Jim/ [7} = [Jim, [ﬁ} =0

Exercise 6.16. Find the limit

i Nhv
oo \ gk —

We apply Hopital’s rule

i Nhv
oo \ vk —

o vgrgo Lehv/kBT vingo ehv/kBT -
kgT

Notice that this is the same as the limit taken as 7 — 0.

PROBLEMS
1. The sine and cosine functions are represented by the
two series
2 X X
sin (x) =x—§+§—%+--~
x2 x* X
cos (x) = 1—E+I—a+-'-
Differentiate each series to show that
dsi
sin (x) — cos (1)
dx
and
dcos (x) in ()
—— = —sin(x
dx
The derivative of the first series is
dsin (x) ] 2x2 5x* yx®
dv 3! 5! 7!
_ 1 x2 x* X
TR TR I
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The derivative of the second series is

dcos(x)  2x 4x3  6x
dx 2 41 6!

Il

[
—

|

|

+

| %

[

| %

+
~—

. The natural logarithm of 1 + x is represented by the

series
In (1 + x) 2er_x
n X)=x——+———--.
2 3 4
(valid for x> <landx = 1).
Use the identity
din(x) 1
dx  x

to find a series to represent 1/(1 + x).

dx T l4x  dx 2+3 4
=l-x4+x2—x3+..

dIn (1 + x) 1 d< X2 3y )
X —

. Use the definition of the derivative to derive the

formula
dy

A Jdx ' Cdx

where y and z are both functions of x.
d(yz)

= lim
dx xX2— x|

d(yz) _ dz

y(x2)z(x2) — y(x1)z(xy)
X2 — X1

‘Work backwards from the desired result:

z(x2) — z(x1)
X2 — X1
Zy(xz) = y(x1)
X2 — X1

y(x2)z(x2) — y(x2)z(x1)

X2 — X1
ZY(Xz)Z(M) —y(x)z(xr)

X2 — X1

y— 4z— = lim
X

X2—>X]

+ lim

X2—> X1

= lim

X2—> X1

+ lim

X2—>X]

Two terms cancel:

dz n dy i
—_— — = 11um
ydx de Xo—> X1

y(x2)z(x2) — y(x1)z(x1)
X2 — X1

. The number of atoms of a radioactive substance at time

tis given by
N(t) = Noe "7,

where N, is the initial number of atoms and t is
the relaxation time. For 1*C, T = 8320 y. Calculate
the fraction of an initial sample of '#C that remains
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after 15.00 years, using Equation (6.10). Calculate the
correct fraction and compare it with your first answer.

dN N,
(—) At =.— 27T AL
dr T

¢%(15.00y)’

AN

%

AN
No 8320y
= 0.001803
Fraction remaining ~ 1.000000 — 0.001202
= 0.998197

—15.00
Fraction remaining = .e~"/" = exp
8320

= 0.998199

. Find the first and second derivatives of the following

functions

a. P = P(Vm) = RT (1/Vm+ B/VZ+C/V])
where R, B, and C are constants

dp
S8 Rr (—1/\/131 —2B/V3 - 3C/V;§)
dVim

ep 3 4 5
& Rr (2/\/1;1 +6B/VA 4 12C/Vm>
av2

b. G =G(x) =G°+ RTxIn(x) + RT(1 —x)In
(1 — x), where G°, R, and T are constants

dG
dx

dZG—RT ! + RT !
dx2 X 1—x

c. y=yx)=aln (x1/3)

24

= RT[1+1In(x)]4+ RT[-1 —In(1l — x)]

. Find the first and second derivatives of the following

functions:

a. y = y(x) =3x>In(x)

d
Y 3x2 492k
dx
d2
dx—ﬁ — 15x + 18xInx
b. y=yx)=1/(c —x?)
dy 2x
dx — (c—x2)2
d?y 2 2x
7 4
dx?2 (c — x2)2 +4x (c — x2)3
2 8x2

(c —x?)? * (c —x?)3
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ey = y(x) = ce @Y where a, b, and ¢ are

constants
d
d—y = ce 4 gp sin (bx)]
x
d2
d—z = ce 4G 4p? cos (bx)]
X

+ ce—4cos (bx) [ab sin (bx)]2

7. Find the first and second derivatives of the following
functions.

e ()
(@) (=
() (5
+<xi2> (( +x)2> i
(5)(5)
()

b. f = f() = ce"””z/(z”) where m, ¢, k, and T
are constants

af _ e~/ (2KT) <2mv>

)0
) (@) ()
() ()

dy
dx

Il
o

[\

I
)

—+

dv 2kT

— _ce—mV?/(2KT) (@)
kT

2
LS _ i (122
kT

dv?
_ co— MV /QKT) (ﬂ)
kT

8. Find the first and second derivatives of the following
functions.

a. y = 3sin® (2x) = 3sin (2x)?2

D 12 sin 2x) cos 20)

_— = Sin X ) COS 2X

dx

d2

&) 24cos?2x — 24sin? 2x
dxz

b. y =ap+ax +arx?+a3x3 +asx*+asx’, where
aop, aj, and so on, are constants

dy
dx
d? y
dx?

ay + 2arx + 3a3x2 + 4a4x3 + 5a5x4

= 2ar + 6azx + 12a4x2 + 20(15)63

() 20 ()
(1+x)2 x )\ +x)3
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C. y =acos (e_bx), where a and b are constants

d

A ab sin (e P)e ™t

d2
dx_); = —ab*e " sin (e™*?)

—ab*e > (cos (e7*bY)

9. Find the second and third derivatives of the following
functions. Treat all symbols except for the specified
independent variable as constants.

a. Ums = Urms(T) = v R%
dums (1) (3RT\ 7'/
ar — \2 M

A2 Vems 1\ /1\ (3RT\*?
7 =) () (57)
1\ /3RT\*?
--(3) (57)
d3vpms 1\ /3\ /3RT\ >/
= () ) G
3\ (3RT\ /2
- () (57)
b. P=P(V)=ﬂ—ﬁ
(V—nb)y V2
dP nRT an?
W W TV
dzp _ nRT 6an2
dv2 — T(V —nb)3 y4
EP o MRT 40
av3 (V = nb)* V5

10. Find the following derivatives and evaluate them at the
points indicated.

a. (dy/dx)y=o if y = sin (bx), where b is a constant

d
2 = beos (bx)
X

dy . .
<a>x:0 =bcos(0)=b

b. (df/dt);—o if f = Ae X, where A and k are
constants

df

dr

df
<E>t=0

—Ake ™kt

—Ake® = —Ak



11. Find the following derivatives and evaluate them at the
points indicated.

a. (dy/dx),—1, if y = (ax® + bx? + cx + 1)~1/2,
where a, b, and ¢ are constants

d -1
o(== (ax3 +bx® +cx + 1)73/2
dx 2

x (3ax’ + 2bx + c)

dy —1 —3/2
v - (== b =3/
(&), = (3)@roresn

(3a +2b+¢)
b. (d®y/dx?)c—o, if y = ae™?*, where a and b are
constants.
jx—y = —abe ™t
%  apebr

d2
(&),
dx x=0

12. Find the following derivatives

d
2) , where y = ax?
dx

, 7z = sin (bx)

d d
% = a[ax2 sin (bx)]
= abx? cos (bx) + 2ax sin (bx)

nRT an?

dpP
b. —,where P = —— — —
dv (V —nb) V2

dpP nRT an?

- = 42
dv (V — nb)? + V3

dn b B 2 he?
c. W where n = —AS(ehc/AkT —y
dn

d
— —27h 2)\‘—5 he/ kT 1 -1
m dk[ mhe (e )]

— _1Onhc2)\’76(ehc/)»k'r o 1)71
_ 27ThC2)\,_5(€hc/)LkT _ 1)—2

 ehe/MhT [ _ he
A2kT

107 hc? 2w h2c3 e/ AT

T T A6(eheIKT 1) T JTKT (ehe/RT — )2
13. Find a formula for the curvature of the function

nRT an?

P =y v

Mathematics for Physical Chemistry

where n, R, a, b, and T are constants

d?y/dx?
K =
[1+4 (dy/dx)?]3/2
dpP . nRT +2an2
dv = (V —nb)? y3
d2p nRT an?
- =2 _6—
dv? (V —nb)3 V4
RT 2
2 vn b)3 _6%
K — (V —nb)

nRT an? SRe
I+ | ———m +2—
( (V—nb? " "3 )
14. The volume of a cube is given by

V =V(a) =a3,

where a is the length of a side. Estimate the percent
error in the volume if a 1.00% error is made in
measuring the length, using the formula

AV v A
~|— | Aa.
da

Check the accuracy of this estimate by comparing
V(a) and V (1.01a).

AV 1 (dV
T x— (=) Aa
v vV \da

1(3 HA 1(3 HA
— a a = — a a
\% a’l

&

= 389 60300
a
V(1.0100) — V(1.000)  (1.0100)3 — 1.0000
vV (1.000) 1.00000
= 0.030301

15. Draw a rough graph of the function

x|

y=yx)=e¢

Your graph of the function should look like this:

12
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Is the function differentiable at x = 0? Draw a rough
graph of the derivative of the function.

d_y_ —eFif x>0
dx er if x<0

The function is not differentiable at x = 0. Your graph
of the derivative should look like this:

/

16. Draw a rough graph of the function

y = y(x) = sin (|x])
_ {sin(—x) if x <0

sin(x) if x <0

Your graph should look like this:

15

é\ 5/7'
\/

Is the function differentiable at x = 0? The function
is not differentiable at x = 0. Draw a rough graph
of the derivative of the function. The derivative of the
function is

dy ) —cos(—x) = —cos(x) ifx <0

dx | cos (x) ifx <0

Your graph of the derivative should look like this:

17.

18.

19.

Draw a rough graph of the function

y = y@) = cos (|x])

Is the function differentiable at x = 07? Since the

cosine function is an even function
cos (|x|) = cos (x)

The function is differentiable at all points. Draw a
rough graph of the derivative of the function, your
graph of the function should look like a graph of the
cosine function:

Seriesl

Show that the function ¥ = ¥ (x) =
satisfies the equation

A sin (kx)

d>y 5
oz =K
if A and k are constants.
d
aw = Ak cos (kx)
&y .
7 = — Ak sin (kx) = —k>y

Show that the function ¥ (x) = cos (kx) satisfies the
equation

d*y 5
— Tk
dx? v
if A and k are constants.
d
aw = —ksin (kx)
d?y

47 = —k?cos (kx) = —k>yr
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20. Draw rough graphs of the third and fourth derivatives

21.

22,

of the function whose graph is given in Fig. 6.6.

The mean molar Gibbs energy of a mixture of two
enantiomorphs (optical isomers of the same substance)
is given at a constant temperature 7 by

Gy = Gm(x)
= G° + RTxIn(x) + RT(1 —x)In (1 — x)

where x is the mole fraction of one of them. G,, is
a constant, R is the ideal gas constant, and T is the
constant temperature. What is the concentration of
each enantiomorph when G has its minimum value?
What is the maximum value of G in the interval
0<x<1?

dG,,
o RT[1+In(x)]4+ RT[—1 —1In(1 — x)]

This derivative vanishes when

I1+In(x)—1—In(1—x) =0
In(x) —In(l —x) =0

X
ln( ):O
1—x

X
=1
1—x
x=1-—x
1
X = -
2

The minimum occurs at x = 1/2. There is no
relative maximum. To find the maximum, consider the
endpoints of the interval:

Gn(0) =G, +RT lim [x In (x)]
X—>
Apply I’Hopital’s rule

. In(x) . 1/x
lim = lim
x—0 xfl x—0 —1/x2

=lim (x) =0
x—0

The same value occurs at x = 1, since 1 — x plays
the same role in the function as does x. The maximum
value of the function is

Gu(0) = Gu() =G,
A rancher wants to enclose a rectangular part of a
large pasture so that 1.000 km? is enclosed with the

minimum amount of fence.

a. Find the dimensions of the rectangle that he should
choose. The area is

A=xy

Mathematics for Physical Chemistry

but A is fixed at 1.000 km?, so that y = A/x. The
perimeter of the area is

2A
p=2x+2y=2x+ —
X

To minimize the perimeter, we find

d 2A
P _r_ 2
dx x2
2=A

x = ~/A = 1.000 km = 1000 m

The area is a square.

b. The rancher now decides that the fenced area must
lie along a road and finds that the fence costs
$20.00 per meter along the road and $10.00 per
meter along the other edges. Find the dimensions
of the rectangle that would minimize the cost of
the fence. The cost of the fence is

¢ = ($20.00)x + (10004
X
de _ $20.00 — —($10'SO)A
dx X
x? = (10004 _ 0.025A
($20.00)2

x = 0.1581v/A = 0.1581(1000 m) = 158 m

The area has 158 m along the road, and 6325 m
in the other direction.

23. The sum of two nonnegative numbers is 100. Find their

values if their product plus twice the square of the first
is to be a maximum. We denote the first number by x
and let

f = x(100 — x) + 2x>
df

= 100 — 2x + 4x = 100 + 2x
dx

At an extremum

0 =100+ 2x
This corresponds to x = —50. Since we specified that
the numbers are nonzero, we inspect the ends of the

region.

f0) =0
£(100) = 20000

The maximum corresponds to x = 100.
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24. A cylindrical tank in a chemical factory is to contain
2.000 m? of a corrosive liquid. Because of the cost of
the material, it is desirable to minimize the area of the
tank. Find the optimum radius and height and find the
resulting area. We let the radius be rand the height be /.

V = 7r?h = 2.000 m>
2.000 m3

h = 5

or

A = 27xrt +27rh

1% 2V
= 2mr? 4 27r (—2) =2t + =~
Tr r
To minimize A we let
dA 2V
E = 4nr — r_2 =0
2V V. 1.000 m?
Pl o o 03183 md
4 27
r = (0.3183 m>)!/? = 0.6828 m
2.000 m3
h = M 1366m

~ 7(0.6828 m)?
A = 27(0.6828 m)> + 27(0.6828 m)(1.366 m)

= 2.929 m’ 4 5.860 m> = 8.790 m*
V = 7r’h = 7(0.6828 m)>(1.366 m) = 2.000 m>

25. Find the following limits.
a. lim,_ oo[In (x)/x2] Apply I’'Hopital’s rule:

li)rrolo[ln(x)/x2]= lim [ﬁ] =0

—o0 | 2x

b. lim,_3[(x3 — 27)/(x2 — 9)] Apply 1’Hopital’s
rule:
o[ =27 o [3x?
lim | ———— = lim | —
x—3 (x2—9) x—3| 2x
! [3x]
lim [ —
x—=3| 2
, 1
c. limy_ oo |:x In (1 +x):|
. 1
lim [x 1n< )] =
X—>00 14+x

9
2

|
T_.
g3

=
—_ N
~ | =
P o

=

—

. [—1n(1+x)}
= lim
xX—>00 1/x
Apply I’Hopital’s rule:
) —In(1+x) . —1/(1 +x)
lim [ ——— | = lim | ———
x—00 1/x x—00 —1/x2

. [ x2 ]
= lim
x—oo| 1 4+x

This diverges and the limit does not exist.
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26. Find the following limits.

In (14-x)
sin (x)

. [ln(l—i—X)} . [1/(1+x)}
Iim [——|= lim | ——— | =1
x—0t | sin (x) x—0+ [ cos(x)

b. lim, _, o+ [sin (x) In (x)]

a. lim, o+ [ ] Apply I’Hopital’s rule:

o : In (x)
lim [sin(x)In (x)] = lim | ———
x—0F x—0+ | 1/sin (x)
Apply I’Hopital’s rule:

. [ In (x) ]
lim | ————
x—0+ [ 1/sin (x)

. |: 1/x :|
= lim —
x—0+ | —[1/sin” (x)] cos (x)
. — sin? (x)
= lim | ———
x—0t | xcos(x)
Apply I’Hopital’s rule again
. — sin? (x)
lim [ ———
x—0+ [ x cos (x)
. |: —2sin (x) cos (x) i|
= lim
x—0t

cos (x) — x sin (x)

27. Find the following limits

a. limy_ o0 (6% /o).
—x2
lim (e . ) = lim (e X+ =0

b. lim,_o[x2/(1 — cos (2x))]. Apply 1'Hépital’s
rule twice:

. x2
lim | ———
x—0 |: 1 — cos (2x):|

. 2x . 2 1
=lm|—|=1lm|—| ==
x—0 [ 2sin (2x) x—0| 4cos (2x) 2

c¢. lim,_, ;[sin (x)/sin (3x/2)]. Apply I’Hopital’s
rule

sin (x) cos (x)

lim [—i| im |:—i| :%
x—7 | sin (3x/2) | x—=r | 3cos3x)/2 3

28. Find the maximum and minimum values of the
function

y=x3—4x2—10x
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in the interval —5 < x < 5. b. Draw a rough graph of 2. For a rough graph,
we omit the constant factor and let r /ag = u. We
dy _ 3x2 -8 1 raph the function
Frl x=—8x —10 grap

_ _ —u/2
A relative extremum corresponds to f=Q2—-we

32— 8% —10 =0 your graph should look like this:
8§+ 464+ 120 8+13.56 -
X = = 5
6 6
4 2
Y 06— 3.594
3 —0.927 15
L\
¥(3.594) = —41.18 N
\
y(=0.927) = 5.036 =
y(=5) = =175 0
i
¥(5) = 25
The minimum is at x = —5, and the maximum is at
x = —0.927. c. Locate the maxima and minima of 1#22&-
29. If a hydrogen atom is in a 2s state, the probability of 3 5
finding the electron at a distance r from the nucleus lﬂzz _ 1 (L) <L) (2 _r ) )
is proportional to 4711’21p22X where ¥ represents the P 427 \327 ) \ag ao

orbital (wave function): .
To locate the extrema, we omit the constant factor

1 1 3/2 r r/2a 2
;= J— 2 - — - 0’
v2s 427 (llo) ( ao) ¢ 4 [(2 — L) e_’/“o]

dr ap
where ag is a constant known as the Bohr radius,
equal t0 0.529 x 10710 m. — i 4— 4_’" + ~ o—"/a0
dr ap  ab
a. Locate the maxima and minima of ;. To find
the extrema, we omit the constant factor: — <_ i + z) e~"/a0
ap  a}

i _ *r/2a0:| 2
dr [(2 ao>e +<4—4—r+r—2>e_’/“° <_—1):0

ao a ao
) ) () |
a0 a0 a0 Cancel the exponential term:
We cancel the exponential factor, which is the 4 o 4 a4 g2
same in all terms: -y ) =0
1 | aop aé aop a(2) a8
_ r —
(—) + <2 - —) (—) =0 4 2r 4 4r r?
ap ap 2ag ___|__2__+_2__=0
2 r ap ay 4o ag ag
“aot 2 0 8 e 2 ;

At the relative extremum
Let u = r/ag. and multiply by ag
r = 4aop
. L . W —6u+8=(x—-2)(x—4)=0

This is a relative minimum, since the function is

negative at this point. The function approaches The relative extrema occur at x = 3 and x = 4.
zero as r becomes large, so the maximum is The first is a relative minimum, where f = 0,
atr = 0. and the second is a relative maximum.
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d.

04
0.35
0.3
0.25
0.2
0.15
01
0.05

0

€.

Draw a rough graph of wzzs. For a rough graph,
we plot

fw)=Q2—u)e™

\

\
\
\ -—"""'-.._‘_*_-_

[

0 1 2 3 4 s & 7 8

Locate the maxima and minima of 47r2y3,.
3 2
Iz
4.2 \ 327 ap ap
3 22
- 1 <L) o) r/ao
3242w \ag ag

To locate the relative extrema, we omit the
constant factor

df
dr

4nr2w225

We cancel the exponential factor
2r? 2r 2\ [ 1
4r - — 2 —— ) —2r — — — =0
ap ap ap ao

1202 43 452 43 r
8r — + —S |-\ —= + = = 0
4 @ 4y 4

ao
Divide by ay, replace r /ap by u and collect terms:

8u — 16u> +8u® —u* =0
We multiply by —1
u(—8 + 16u — 8u’ + 143) =0

One root is u = 0. The roots from the cubic factor

are
0.76393

u=12
5.2361

The two minima are at » = 0 and at r = 2qag, and
the maximum is at = 5.236 lag

30.
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f. Draw a rough graph of 4nr21ﬁ22§. For our rough
graph, we plot

f=Qu—u*?e"

18

1.6
14

0.6

0.4

0.2

The probability that a molecule in a gas will have a
speed v is proportional to the function

m 3/2 » —mv?
—4
(@) ”(2nkBT) v eXp(szT)

where m is the mass of the molecule, kg is Boltzmann’s
constant, and 7'is the temperature on the Kelvin scale.
The most probable speed is the speed for which this
function is at a maximum. Find the expression for the
most probable speed and find its value for nitrogen
molecules at 7 = 298 K. Remember to use the mass
of a molecule, not the mass of a mole. To find the
maximum, we ignore the constant factor:

—mv?
2kgT
2
5 —mv —2mv
Y=o
Fumerp ( 2k T ) < 2k T )
we cancel the exponential factor and denote the most
—muvp

probable speed by v,
2 —
2vp+vp< ™ ) =0

mv>
2—-—£)| =
vp[ (kBT 0
2kgT
v, = -

M 0.028014 kg mol™!
Nav ~ 6.0221367 x 1023 mol~!
4.652 x 10726 kg

dg
S _9
I vexp
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where M is the molar mass and Ny is Avogadro’s
constant:

v, = /2mkgT

2(1.3806568 x 1023 J K~1)(298.15 K) 1"/
[ (4.652 x 1026 kg) }
= 4207 ms™!

For a rough graph, we omit a constant factor and plot
the function

where u = v/v,.

04

0.3 /
- / \
0.2 N
|/ LY
/ N
\_*

0 05 1 15 2 25 3

0.05

0

According to the Planck theory of black-body
radiation, the radiant spectral emittance is given by
the formula

() = 2 he?
n=n) = 33 (ehe/ksT — 1)

where X is the wavelength of the radiation, A is
Planck’s constant, kg is Boltzmann’s constant, c is the
speed of light, and T is the temperature on the Kelvin
scale. Treat T as a constant and find an equation that
gives the wavelength of maximum emittance.

dn 2 -
5 = 2mhe )[m

. 1 ohe/MksT —he
)LS(ehc/}»kBT _ 1)2 szBT

At the maximum, this derivative vanishes. We place
both terms in the square brackets over a common
denominator and set this factor equal to zero.

—5(e"MBT 1) 4 "I (e /okpT)

)Lé(ehc/AkBT _ 1)2 0

We set the numerator equal to zero
—5("/KT _ 1) 4 /BT (e )2k T) = 0
We let x = he/AkpT so that

S5 =1 +e'x=0

32.
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We divide by e*
S50 —-eH+x=0

This equation is solved numerically to give x = 4.965

he B he
kgTx ~ 4.965kgT

)Vmax =

The thermodynamic energy of a collection of N
harmonic oscillators (approximate representations of
molecular vibrations) is given by

Nhv
U= ot —1
a. Draw a rough sketch of the thermodynamic
energy as a function of 7. Here is an accurate
graph. For this graph, we omit the constant Nhv
and plot the variable u = kg7 /hv.

18

1.6

1.2 “/
05 -

0.4

45 ~

b. The heat capacity of this system is given by

v

C=—.
dr

Show that the heat capacity is given by

hv 2 hv/ksT
C = Nkp <_kBT> —(ehv/kBT — 1)2.
C— dU - d Nhv
T AT T dT [ ehviksT —

B —Nhv hv/keT —hv
- (ehv/kBT _ 1)2 kBT2

Vi hy \ 2 ehv/ksT
- B kpT (ehv/kBT _ 1)2

c¢. Find the limit of the heat capacity as T — 0 and
as T — oo. Note that the limit as T — oo is the
same as the limit v — 0.

o \2  ohv/keT
lim C = 1li Nkg| — | 77—
750 T (kBT> (ehv/ksT — 1)2



CHAPTER | 6 Differential Calculus

In this limit, the 1 in the denominator becomes
negligible.

hy \ 2 ev/ksT
Iim C = li Nkg| — | —————
e Rl R (kBT) (e /ksT — 1)2
B hy \2  ehv/keT
= jim, | Nke (kB_T) (TRTy
o 'Nk w2 1
=M B\ kg7 ) ehv/ksT
i v\? hv/ksgT
= li Nkg | — —hv/ks
Tlino B <kBT) ¢
thvz e—hv/kBT
= Iim | ——— [ =0
kg T—0 T2
lim C = lim C
T—o00 v—0
hv 2 e/ksT
= Jlim | Nks <kBT) (kT — 1)2
no\2 V2ehv/ksT
= Nkp <kB ) vlf}) [(ehv/kBT _ 1)2}
h\? v2
= “ V Ym -
Nk <kBT) v [(ehv/kBT - 1)2]
Asv — 0
eh”/kBT—1—>1+—v—1—>h—v
kgT kgT

ho\? V2
e <kBT> " [(e’W/kBT - 1)2]

h 2 V2
= Nk —_— i _—
5 (kBT> Vo0 [mv/anz}

Apply I’'Hopital’s rule

v2
v—0 | (eh/ksT —1)2

2v
V20 [(e’w/kBT - l)eh"/"BT(—hv/kBT)}

Nig (" ’ li ! Nk
= —_— 1im —_— =
B\is7 ) v=0| (h/kpT)? B

d. Draw a rough graph of C as a function of 7. For
the rough graph, we use the variable u = kg7 /hv
and plot C/Nkg.

1/u

CooNkg (L) —4"
B2 ) e )2

33.

34.
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1.2

1

0.8
4
0.6 /

o
‘7

-0.2

Heat capacity

0ls 1is 25

u
The limit of Cas T — oo is Nkg

Draw a rough graph of the function

_ tan (x)

X

in the interval —7 < x < m. Use I’Hopital’s rule to
evaluate the function at x = 0. Here is an accurate
graph. The function diverges at x = —mn/2 and
x = /2 so we plot only from 1.5to 1.5. Atx =0

tan (x) — im sec? (x) _ sec? (0) _

x—0 1 1

lim 1

x—0 X

\ _. /
\ q /

-“"“"--___ I

-15 -1 -05 0 0.5 1 15

Find the relative maxima and minima of the function
f(x) = x> 4 3.00x> — 2.00x for all real values of x.
d
47 _ 3 0042 +6.00x —2.00 =0
dx
—6.00 4 4/36.00 + 24.00
X =
6.00
B —6.00 & 4/60.00 ] 0.291
N 6.00 | —2.291
The second derivative is
df
) = 6.00x + 6.00
At x = 0.291 the second derivative is positive, so
this represents a relative minimum. At x = —2.291

the second derivative is negative, so this represents a
relative maximum.
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35. The van der Waals equation of state is
n’a
P+W (V —nb) =nRT

When the temperature of a given gas is equal to
its critical temperature, the gas has a state at which
the pressure as a function of V at constant 7 and n
exhibits an inflection point at which dP/dV = 0 and
d?>P/dV? = 0. This inflection point corresponds to the
critical point of the gas. Write P as a function of 7, V,
and nand write expressions for dP /dV and d*>P /dV 2,
treating 7 and n as constants. Set these two expressions
equal to zero and solve the simultaneous equations to
find an expression for the pressure at the critical point.

nRT n2a
V—nb V2
dpP nRT 2n%a

dv —  (V —nb)? TS

= 0 at the critical point (6.1)
d&*P  2nRT N 6n’a
dv2 — (V —nb)3 V4
= 0 at the critical point (6.2)
Solve Eq. (6.1) for T:
2n%a(V, — nb)?
= M (6.3)

nR VC3

Substitute this expression into Eq. (6.2):

0— 2nR 2n%a(V — nb)? n 6n’a
- (V —nb)3 nRV3 V4

4n2q 6n%a
T T
0= —#—}—iwhenV:VC
(V—-nb)y V
V. = 3nb

Substitute this into Eq. (6.3)

_ 2n2a(2nb)? _ 8a
7 nRQ7n3b3) ~ 27Rb

P — nRT, n2a . 8nRa n2a
" Ve—nb V2 27Rb(2nb) 9Inb?
4a a a

2762 9p2 2712

36. Carry out Newton’s method to find the smallest
positive root of the equation

5.000x —e* =0
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Do the calculation by hand, and verify your result by
use of Excel. A graph indicates a root near x = 0.300.
we take xo = 0.300.

_ fo)
S (x0)
£(0.3) = 1.500 — ¢*3%° = 0.15014

X1 = Xo

£(0.300) = 5.000 — 1.34986 = 3.65014

0.15014

= 0300 — ———

A 3.65014

— 0.300 — 0.04113 = 0.2589

_ f(x1)
X2 = X1 — o
f(x1)

£(0.2589) = 1.29434 — 00258
1.29434 — 1.29546 = —0.001130
£(0.2589) = 5.00 — &>

= 5.000 — 1.2956 = 3.70454

_ a5 _ 0001130
2= 3.70454
— 0.2589 + 0.00359 = 0.26245
f(x2)
X3 = Xp —
f(x2)

£(0.26245) = 1.31226 — 2624
1.31226 — 1.30011 = 0.01215

£/(0.26245) = 5.00 — ¢0-26245
= 5.000 — 1.30011 = 3.69989
0.01215
x3 = 0.26245 —
3.69989

= 0.2589 4 0.00359 = 0.25917

We discontinue iteration at this point. The root is
actually at x = 0.25917 to five significant digits.
Notice that the approximations oscillate around the
correct value.

37. Solve the following equations by hand, using
Newton’s method. Verify your results using Excel or
Mathematica:

a. ¢ — 0.3000x = 0. A rough graph indicates a

root near x = 1. We take xo = 1.000

f = e —0.3000x
f = —e ¥ —0.3000
S
S (x0)
£(1.000) = ¢~ 199 _0.3000 = 0.06788

X1 = X0

£/(1.000) = —e10% _ 03000 = —1.205
0.06788
x1 = 1.000 — ——
—1.205

1.000 + 0.0563 = 1.0563
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S
Sf(x1)
£(1.0563) = ¢~ 1033 _ (0.3000)(1.0563)
= 0.3477 — 0.3169 = 0.03082
£/(1.0563) = —e~ 10963 _ (0.3000)(1.0563)
= —0.3477 — 0.3169 = —0.6646

X2 = X|

0.03082
x2 = 1.0563 — 0.6646
= 1.0563 4 0.0464 = 1.10271
X = xr f(x2)
J(x2)

£(1.10271) = ¢ 19271 _ (0.3000)(1.10271)

= 0.33197 — 0.33081 = 0.001155
F£/(1.10271) = —e~ 1993 — (0.3000)(1.0563)

= —0.33197 — 0.33081 = —0.66278

0.001155
x3 = 1.10271 — ————— =1.1045
—0.66278
To five significant digits, this is the correct answer.
b. sin (x)/x — 0.7500 = 0. A graph indicates a root
near x = 1.25. We take xo = 1.25.

sin (x)/x — 0.7500
cos (x)  sin (x)
. 2

f =

X X

X1

£(1.25)
£(1.25)

X1

X2

£(1.2759)

£(1.2759)

X1

S o)
1'(x0)

sin (1.25)
o 0.7500 = 0.009188
1.25

cos(x)  sin(x)
X x?2

0.25226 — 0.60735 = —0.35509

.0091

125 — 0.009188

—0.35509

1.25 4+ 0.02587 = 1.2759

)
S (x1)

sin (1.2759) — 0.7500
1.2759

—0.00006335

cos (x)  sin(x)

X1

x  x2
0.2278 — 0.58878 = —0.35997
—0.00006335

1.2759 —
—0.35997
1.2759 — 0.000259 = 1.2756

We stop iterating at this point. The correct answer
to five significant digits is x = 1.2757



Integral Calculus

EXERCISES

Exercise 7.1. Find the maximum height for the particle in
the preceding example.
We find the time of the maximum height by setting the
first derivative of z(¢) equal to zero:
dz

o= 0.00ms ' =1000ms™' — (9.80 ms %)t =0

The time at which the maximum height is reached is

_10.00ms™!

= 980ms2 0%

The position at this time is

2
= 5.204 m

Exercise 7.2. Find the function whose derivative is

—(10.00)e—390x and whose value at x = 0.00 is 10.00.
The antiderivative of the given function is

F(x) = (2.00)e %" 4 ¢

where C is a constant.

F(0.00) = 10.00 = (2.00)e"° + C
C = 10.00 — 2.00 = 8.00
F(x) = (2.00)e>%* 4 8.00

Exercise 7.3. Evaluate the definite integral

1
/ e dx.
0

The antiderivative function is F = e* so that the definite
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integral is

1
/ Fdx = |y =e' — ¥ =271828-.. — 1
0
= 1.71828- .-

Exercise 7.4. Find the area bounded by the curve

representing y = x>, the positive x axis, and the line
x = 3.000.

3.000 1 3.000
area = / dx = —x?2 = —(9.000 — 0.000)
0.000 2 o.000

= 4.500

Exercise 7.5. Find the approximate value of the integral

1
2
/ e ¥ dx
0

by making a graph of the integrand function and measuring
an area.

We do not display the graph, but the correct value of the
integral is 0.74682.

Exercise 7.6. Draw a rough graph of f(x) = xe™ and
satisfy yourself that this is an odd function. Identify the
area in this graph that is equal to the following integral and

satisfy yourself that the integral vanishes:

4 2
/ xe ¥ dx =0.
4
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The area to the right of the origin is positive, and the area
to the left of the origin is negative, and the two areas have
the same magnitude.

Exercise 7.7. Draw arough graph of f(x) = e Satisfy
yourself that this is an even function. Identify the area in
the graph that is equal to the definite integral

3
1 =/ e dx
-3

and satisfy yourself that this integral is equal to twice the

integral
3 2
]2=/ e dx.
0

Here is the graph. The area to the left of the origin is
equal to the area to the right of the origin. The value of the
integrals are/; = 1.4936 and I, = 0.7468.

L2
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b. Draw a rough graph of the product v and satisfy
yourself that the integral of this product from x = 0
to x = a vanishes. Here is graph of the two functions
and their product:

Lj \
/// Y ™~
. 042 ol \06 048

. :1 \:h //

e

Exercise 7.8. a. By drawing rough graphs, satisfy
yourself that ¥; is even about the center of the box.
That is, Y1 (x) = ¥1(a — x). Satisfy yourself that ¢
is odd about the center of box.

For the purpose of the graphs, we let a = 1. Here
is a graph for

-15

Exercise 7.9. Using a table of indefinite integrals, find the
definite integral.

3.000
/ cosh (2x)dx
0.000
3.000 1 6.000
/ cosh 2x)dx = —/ cosh (y)dy
0.000 2 Jo.000
1 6.000
— —sinh(y) — —[sinh (6.000) — sinh (0.000)]
2 0.000 2
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—6.0()0]

1
= 5 sinh (6.000) = 4[ 6.000 _ =100.8

Exercise 7.10. Determine whether each of the following
improper integrals converges, and if so, determine its value:

a. fol (%) dx

L
Z)dx = lim1 =0
/0<x) by bl_r)I}) n (x)|, + 0o

This integral diverges since the integrand tends strongly
toward infinity as x approaches x = 0.

b Jo (v ) ax

o 1 . b

This integral diverges since the integrand approaches
zero too slowly as x becomes large.

Exercise 7.11. Evaluate the integral

/2
/ @ cos (9)do
0
without using a table of integrals. We let

y = sin (0)
dy = cos (#)dd

/2 O=m/2 y=1
f M@ cos (6)do = / e’ dy = / e dy
0 0 0

=elp=e—1=17183

Exercise 7.12. Evaluate the integral

T
/ x2 sin (x)dx
0

without using a table. You will have to apply partial
integration twice. For the first integration, we let u(x) = x
and sin (x)dx = dv

[\S]

du = 2xdx

v = —cos (x)

b T
f x2 sin (x)dx = —x2cos @)y + 2/ x cos (x)dx
0 0

For the second integration, we let u(x) = x and

cos (x)dx = dv

du = dx

v = sin (x)

e53

T b
/ x cos (x)dx = xsin (x)[§ —/ sin (x)dx
0 0
=0+cos(x)|g =—2

T
f x?sin (x)dx = —x?cos (X)[F +2 x (—2)
0

=724

Exercise 7.13. Solve the simultaneous equations to obtain
the result of the previous example.

Al+A, =6
Al +2A, = =30
Subtract the first equation from the second equation:
Ay = —36
Substitute this into the first equation
A —36=6
A =42

Exercise 7.14. Use Mathematica to verify the partial
fractions in the above example.

Solution not given.

Exercise 7.15. Show that the expressions for G and H
are correct. Verify your result using Mathematica if it is
available. Substitute the expressions for G and H into the
equation

1
([AJo — ax)([Blo — bx)

1 1
B ([A]o - ax) ([B]o - b[A]o/a>
(=) (e
[B]o —bx ) \[Alp — a[Blo/b
= (. ><“B°‘b’”>< )
[Alo — ax [Blo — bx a[Blo — b[Alo
<“”°‘“"> ) G St
[Blo — bx [A]o —ax ) \b[Alp —a[Blo’
_ > ([Blo — bx) a
- ( [Alo — ax ( [Blo — bx ) (a[B]o — b[A]o>

~(imno=ie) (n =) (arm =)
[Blo — bx ) \[Alo —ax / \ (a[Blo — b[A]o)

_ a([Blo — bx) — b([A]p — ax)
([Blo — bx)([Alo — ax)(a[Blo — b[Alo)
B a|Blo — abx — b[A]y + abx
~ ([Blo — bx)([Alp — ax)(a[Blo — b[Alo)
1
~ ([Blo — bx)([Alp — ax)




e54

Exercise 7.16. Using the trapezoidal approximation, eval-
uate the following integral, using five panels.

2.00
/ cosh (x)dx
1.00

We apply the definition of the hyperbolic cosine

1
cosh (x) = E(ex +e™)

2.00 e1-00
/ S dx ~ < +el.20+el.400
1

2.00
e
+el.600+el.800+ 5 )

(0.200) = 4.686

2.00 o—1.00
/ o dx A < 1120 | ,—1.400
1

00 2
1.600 s00 , €%
4o 1000 4 o= 1800 T)
x(0.200) = 0.2333
2.00 4.6866 + 0.2333
/ cosh (x)dy & 0800+ 0-2355 ) 6o
1.00 2

The correct value is 2.4517
Exercise 7.17. Apply Simpson’s rule to the integral
20.00
f x? dx
10.00
using two panels. Since the integrand curve is a parabola,
your result should be exactly correct.

fmo 5 (fo+4f1+ f)Ax
x“dx ~
1

0.00 3
1
= 3(10.002 + 4(15.00) 4 20.00%)(5.00) = 2333.3

This is correct to five significant digits.

Exercise 7.18. Using Simpson’s rule, calculate the integral
from x = 0.00 to x = 1.20 for the following values of the
integrand.

x 000 0.20 0.40 0.60 0.80 1.00 1.20
f(x) 1.000 1.041 1.174 1.433 1.896 2.718 4.220

1.20

0.00
+2(1.896) + 4(2.718) + 4.200)](0.20) ~ 2.142

Exercise 7.19. Write Mathematica entries to obtain the
following integrals:

1
fx)dx ~ g[l.OOO +4(1.041) + 2(1.174 + 4(1.433)

Mathematics for Physical Chemistry

a. [ cos’® (x)dx
b. [} e dx

The correct values are

a.

/0053( )d 3s'n + : sin 3
x)dx = - sinx + — sin 3x
4 12

2
/ S dx = 2.4917 x 107
1

PROBLEMS

1. Find the indefinite integral without using a table:

a. [xIn(x)dx

ux) = x
du/dx =1
In (x) = dv/dx

v=xIn(x)—x

/xln (x)dx = x(xIn(x) — x)
—/(xln(x)—x)dx—i—C

Z/xln(x)dx = x(xln(x)—x)+/xdx+C
2
= len(x)—xz—i—x—
2
2

_ 2 _x
= x“In(x) 5
2
/xln (x)dx = (%) x21n (x) — xZ
b. [ xsin? (x)dx

/xsin2 (x)dx = %/x[l — cos (2x)]dx

1 1
—fxdx——/xcos(Zx)dx
2 2

1
zx sin (2x)

/ x cos (2x)dx

1
—= in (2x)d
2/sm()c))c

1 1
Ex sin (2x) + I sin (2x)

1
/xsin2 (x)dx = —x?

1
il Zx sin (2x)

1
~3 cos (2x)
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2. Find the indefinite integrals without using a table:

1
fx(xfa)d‘x
1 A B
_ = — 4
x(x —a) X XxX—a
1 = A(x —a)+ Bx
1 = Ba ifx=a
1
B = —
a
1 =—-Aa ifx=0
1
A= ——
a
1 _ 1 1
x(x—a)  ax alx—a)

=
~~
=
| L
Q
N
o
=
I

1 1
— —dx—l—/—dx
ax a(x —a)

1 1
——Inkx)+-In(x —a)
a a

3. Evaluate the definite integrals, using a table of
indefinite integrals

2.000 In (3x)
a [iooo —x o dx

2

20m@Ey) 1 )
/1 dx = E[ln (3x)]

.00 X 1

= %{[m (6.000)]% — [In (3.000)]}% = 1.0017

5.000
b. fOAOOO 4% dx.

5.000

5.000 4x
/ 4 dr =
0

000 In (4) |o.000
1

_ m <454000 _ 40.000>

1
= ——(1024.0 — 1.000)
1.38629

= 7379
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4. Evaluate the definite integral: fozn sin? (x)dx

/2n i (Odx — x sin (2x)
0 2 4

5. Evaluate the definite integral: f24 x]n;(x)dx

2

0

4 4
/2 xIn (x)dx = In(In (|(x)])]5 = In (In (4)))

—In(In2))
= In (1.38629) — In (0.69315)
= 0.32663 + 0.36651 = 0.69314

6. Evaluate the definite integral: fon/ % sin (x) cos (x)dx

sin? (x) /2

2

—1(1 0)—1
2 )

/2
/ sin (x) cos (x)dx =
0

0

7. Evaluate the definite integral: f 110 x In (x)dx

10 x2 x2
/1 x In (x)dx (? In (x) — Z)

10

1

501n (10) 0,1
= n — —
4 4
99
= 501n(10) — -~ = 90.38

8. Evaluate the definite integral: fon/ 2 sin (x) cos? (x)dx.

Let u = cos (x),du = — sin (x)dx
7/2 0
/ sin (x) cos® (x)dx = —/ u® du
0 1
1 4% 1
= — —[,{3 = —
3], 3

9. Evaluate the definite integral: [ /2 x sin (x2)

dx = 4 — S cos 272 [xsin (x2)dx = —3 cosx2.
/2 ) 1 /4
/ x sin (x?)dx = —/ sin (u)du
0 2Jo
1 n2/4
= — —cos (u)
2 0

! ( 2/4)+1 l( 078121)+1
= —=cos(m —=—=(—0. =

2 2 2 2
= 0.89061
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10. Evaluate the definite integral:
fonﬂ x sin (x2) cos (x2)dx = % — é cos %rﬂ

/2
/ x sin (x2) cos (x?)dx
0

1 72/4
= 5/ sin (u) cos (u)du
0

1 72 /4
= —/ sin (2u)du
0

4
A 2\ 1
. :—gcos<—2>+§

1 1
= —§(0.22058) + i 0.9743

1
=— 3 cos (2u)

11. Find the following area by computing the values of a
definite integral: The area bounded by the straight line
y = 2x + 3, the x axis, the line x = 1, and the line
x=4.

4
area =/ (2x 4+ 3)dx = (162‘1‘3)C)|‘1¥
1
=16+12—-1-3=24

12. Find the following area by computing the values of
a definite integral: The area bounded by the parabola
y = 4 — x? and the x axis. You will have to find the
limits of integration. The integrand vanishes whenx =
—2 or x = 2 so these are the limits.

2 1 2
area:/ (4—xYdx = <4x——x3>
-2 3 72
8 -8
=8—=-—(—-8+ —
3 (=8 + 3
:16—1—6:2:10.667
3 3

13. Determine whether each of the following improper
integrals converges, and if so, determine its value:

a. [o° Ldx
1] 1 |*
/0 x—3dx =—52 . =0+ oo (diverges)
b fi)oo e dx

0
/ et dx = ex|(lOO =1 (converges)

—00

14. Determine whether the following improper integrals
converge. Evaluate the convergent integrals.

oo (1
a. [| (}7) dx converges

/00 1 dr — 1
o \x2 =T
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b. |, 171/ % tan (x)dx. diverges

/2
/ tan (x)dx = — In[cos (x)I]IT/2
1

= — lim In[cos (x) + In[cos (1)] = —o0
x—>m/2

15. Determine whether the following improper integrals
converge. Evaluate the convergent integrals

X = —00

1
& Jo i S
b. floo (%) dx = o0

16. Determine whether the following improper inte-
grals converge. Evaluate the convergent integrals
Jo tan (x)dx

a. [ tan (x)dx

b. [ G) dx

17. Determine whether the following improper integrals
converge. Evaluate the convergent integrals.

a. fooo sin (x)dx diverges, The integrand continues to
oscillate as x increases,

2
b. f:é/z tan (x)dx

/2 u
/ tan (x)dx = lim In (] cos (u)])
—/2 u—m/2 u

= lim [In(cos (1)) —In(cos(u))] =0

u—>m/2

Since the cosine is an even function, the two terms
are canceled before taking the limit, so that the
result vanishes.

18. Approximate the integral

[o)e]
)
/exdx
0

using Simpson’s rule. You will have to take a finite
upper limit, choosing a value large enough so that the
error caused by using the wrong limit is negligible.
The correctanswer is /7 /2 = 0.886226926 - - -. With
an upper limit of 4.00 and Ax = 0.100 the result
was 0.886226912, which is correct to seven significant
digits.
19. Using Simpson’s rule, evaluate erf(2):

2

2 2.000
erf(2) = ﬁ/o e ! dt
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Compare your answer with the correct value from a
more extended table than the table in Appendix G,
er f(2.000) = 0.995322265. With Ax = 0.0500, the
result from Simpson’s rule was 0.997100808. With
Ax = 0.100, the result from Simpson’s rule was
0.99541241.

20. Find the integral: f sin[x(x + 1)](2x + 1)dx. Letu =
22 4 x;du = 3x + Ddx

/sin[x(x + D]2x + 1)dx = /sin (u)du
= —cos (u) = —cos (x> + x)

21. Find the integral:

/xln (xz)dx = %/ln (u)du

1 1 1
= E[u In(u) —u] = Elen (xz) — Exz
22. When a gas expands reversibly, the work that it does
on its surroundings is given by the integral

1%
Wsurr =/ Pdv,
Vi

1

where V| is the initial volume, V, the final volume,
and P the pressure of the gas. Certain nonideal gases
are described by the van der Waals equation of state,

n2a
P+W (V —nb) =nRT
where Vis the volume, 7 is the amount of gas in moles,
T is the temperature on the Kelvin scale, and a and b

are constants. R is usually taken to be the ideal gas
constant, 8.3145 J K~ ! mol~ 1.

a. Obtain a formula for the work done on the
surroundings if 1.000 mol of such a gas expands
reversibly at constant temperature from a volume
V, to a volume V5.

nRT nZa
V—-nb V2

V2 V2 nRT n’a
Wsyrr = PdV = v 5 2 dv
V \% V —nb %

1 1

RTIn Vo —nb o 1 1
n —_— na\ ———
V1 —nb V2 V1
b. If 7 =298.15 K,V; = 1.00 1(1.000 x 1073 m?),
and V> = 100.0 1 = 0.100 m?3, find the value of

the work done for 1.000 mol of CO,, which has
a = 0.3640 Pa m® mol™2, and b = 4.267 x

e57

107> m? mol~!. The ideal gas constant, R =
8.3145 T K~ mol~ .

Wurr = (1.000 mol)(8.3145 J K~! mol™1)
x(298.15 K)

. 0.100 m3 — 4.267 x 1075 m3
"1 0.00100 m? —4.267 x 105 m>

+(0.3640 Pa m®)

1 1
% _
<0.100 m3  0.00100 m3>
= 11523 J — 360 Pam®
= 115237 -360J = 11163 J

c. Calculate the work done in the process of part b if
the gas is assumed to be ideal.

V2 V2 uRT
Weurr = PdV = av
% i V

1 1

V2
nRT In| —=
Vi

(1.000 mol)(8.3145 T K~ mol™")
0.100 m3
0.00100 m3

x(298.15 K) ln<
—11416J

23. The entropy change to bring a sample from 0 K

(absolute zero) to a given state is called the absolute
entropy of the sample in that state.

T/
C
Sm(T’)=/ Pom g
y T

where S,,(T’) is the absolute molar entropy at
temperature 7’,Cp ,, is the molar heat capacity at
constant pressure, and 7 is the absolute temperature.
Using Simpson’s rule, calculate the absolute entropy
of 1.000 mol of solid silver at 270 K. For the region
0 K to 30 K, use the approximate relation

Cp = aT3,

where a is a constant that you can evaluate from the
value of Cp at 30 K. For the region 30 K to 270 K,
use the following data:!

1 Meads. Forsythe, and Giaque, J. Am. Chem. Soc. 63, 1902 (1941).

)



ﬁ/K Cp/) KT mol_1\

Cp/JK "mol™" T/K
30 4.77 170 23.61
50 11.65 190 24.09
70 1633 210 24.42
90  19.13 230 24.73
110 20.96 250 25.03
130 22.13 270 25.31

22.97

\z y

We divide the integral into two parts, one from# = 0 K
to T = 30 K, and one from 30 K to 270 K.

_ 4771K mol™!

0K =177 x 1074

30K CP 30 K a
S, (30 K) :/ ’de=/ —dT
0 T 0 T
1 a 1
= gﬁ = §CP.m(3O K)
=159TK ! mol™!

24.

25.
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Su(270K) = 1.59J K~ ! mol~!

270 K C
+/ P.,m dT
30k T

The second integral is evaluated using Simpson’s rule.
The result is of this integration is 38.397 J K~ mol~!
so that

Su(270K) = 1.59 T K~ mol™! +38.40 J K~ ! mol~!
=39.99J K~ ! mol™!

Use Simpson’s rule with at least 10 panels to evaluate
the following definite integrals. Use Mathematica to
check your results. foz =3 dx Using Simpson’s rule
with 20 panels, the result was 0.61917. The correct
value is 0.61916.

Use Simpson’s rule with at least 4 panels to evaluate
the following definite integral. Use Mathematica to

check your results.
3
/ e dx
1

With 20 panels, the result was 1444.2. The correct
value is 1443.1.
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Differential Calculus with Several
Independent Variables

EXERCISES

Exercise 8.1. The volume of a right circular cylinder is
given by
V =nr’h,

where r is the radius and i the height. Calculate the
percentage error in the volume if the radius and the
height are measured and a 1.00% error is made in each
measurement in the same direction. Use the formula for the
differential, and also direct substitution into the formula for
the volume, and compare the two answers.

aV aV
(—) Ar + <—> Ah
3!’ h ah r

2rhAr 4 wr? Ah
AV 2mxrhAr  wr?Ah 2Ar | Ah

vV arh 7r2h  r h
2(0.0100) + 0.0100 = 0.0300

AV

%

X

The estimated percent error is 3%. We find the actual
percent error:

Vo — Vi 7r2(1.0100)24(1.0100)  7r2h
Vi ar2h 7r2h
= (1.0100)> — 1 = 1.03030 — 1 = .03030

percent error = 3.03%

Exercise 8.2. Complete the following equations.

oH JoH
a | — =|—= +?
oT ) p , T )y
<8H> _(8H> +(8H> (8V)
oT Pn or V.n v t,n or Pn
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(@), - (),
ou Xy ou/
(81) <82> <8z> (8w)
_ - = + [ — -
ou/, ., o/, ow/, \ou/,

c. Apply the equation of part b if z = z(x,y,u) =

cos (x) +y/uand w = y/u.
g2y Y
u).,  u

z(x,u,w) = cos(x) +w

d
(5),, ="
ow o

w(x,y,u) = —cos (x) +z

(&), ().,

ou Xy ou Xy u?
) (v —1(-3) = 9z
dw ), \ou), wr) \ou/), |

Exercise 8.3. Show that the reciprocal identity is satisfied
by (0z/dx) and (9z/9z), if

X
z = sin (—) and x =y sin™! (z) = y arcsin (z).
y

From the table of derivatives
< 0z ) 1 <x )
P = —cos| —
xJy oy y
<8x> 1 y y
JE— — y = =
9z / V1 =22 \/1 _ gin? (;_c) cos( )
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where we have used the identity
sin’ (o) + cos? () =1

Exercise 8.4. Show by differentiation that (32z/9ydx) =
(022/0x9y) if
z = " sin (x).

92 G] :
ayazx = 5[)}3” sin (x) + " cos (x)]
0
= a{e"y[y sin (x) + cos (x)]}
= "[xysin (x) + x cos (x)] + €*¥ sin (x)]
8° ]
8x8zy = axe"y sin (x)

= " sin (x) + xye™ sin (x) + xe™ cos (x)

= "[xysin (x) + x cos (x)] + ¢ sin (x)]

Exercise 8.5. Using the mnemonic device, write three
additional Maxwell relations.

(5),. = (5)

apP S.n N V.n
<8S) B (8V)
P T,n or Pn
9S\ _ (oP
V), \oT )y,

Exercise 8.6. For the function y = x2/z, show that the
cycle rule is valid.

Iy  2x
ox /, oz
<8_x) _ (8[(yz)1/2]) _ ly1/2z—1/2
9z / 0z y 2
<8z> B x2
0y /)y ¥?
0 0 2 1
) (52),(5). - (5) (3 )
2 \dz/,\dy/, z 2

(5) =,
X|——= || =————=
)2 37232

e e
3232

dy
X

1

Exercise 8.7. Show that if z = ax? + bu sin (y) and x =
uvy then the chain rule is valid.

Mathematics for Physical Chemistry

2(u,v,y) = a(uvy)® + busin (y)
(5)
Y ) uw

z(u,v,x) = ax’ + bu sin <i>
uv

<8z> bu X
— = 2ax + — cos (—)
ax /, uv uv
()
— = uv
Y /) uw
(81) (8x> |: bu X
— — = |2ax + — cos (—) uv
0x /, » \0Y /. uv uv

= 2auvx + bu cos (y)

2au2v2y + bu cos (y)

= 2au2v2y + bu cos (y)

Exercise 8.8. Determine whether the following differen-
tial is exact:

du = 2ax + byz)dx + (bxy)dy

a2 by?
(M) — by
ay .

a(bxy) B
( ax )y = by

The differential is not exact.

Exercise 8.9. Show that the following is not an exact
differential du = (2y)dx + (x)dy 4+ cos (z)dz.

(a(zy)> _,
ay x_

(5)
) =1
X y

There is no need to test the other two relations.

Exercise 8.10. The thermodynamic energy of a mona-
tomic ideal gas is given by

3nRT
U =
2

Find the partial derivatives and write the expression for dU
using 7, V, and n as independent variables. Show that your
differential is exact.

oU . 3nR
T )y, 2
U

_— =0
(8V>Zn

oU _ 3RT
on V,n_ 2
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3R 3RT
dU = (”—> dT + (0)dV + (T) dn

2
92U

=0
avarT ),

Exercise 8.11. Show that the differential

2
X
+—i|dy
y

is inexact, and that y/x is an integrating factor.

xIn (x)

(1+x)dx+[

9
—(14+x)=0
ay

9 1 2 1 1
_|:x n(x)+x_] _ n(x)+_
dx y y y

The new differential is
y(1+x)
X

2
+ %0
y

dx + [In (x) + x]dy
(X n y) dx + [In () + x]dy
X

0 +1 —l~|-1
8y< )

1
—[1n(x)+x] = —+1
0x X

Exercise 8.12. Evaluate D at the point (0,0) for the
function of the previous example and establish that the point
is a local maximum.

<8f) = —2xe_x2_y2

2
<8 T) = 2o Cape Y (~ o)
y

(4x% —2)e~ Y

) = —Zye”CLy2 =0
) 2

g4

— Y L 2ye7x27y2( —2y)

< ‘

(8

Differential Calculus with Several Independent Variables

= (4y? —2)e™*

82
f = —2ye "
dxady

At (0,0)

z_yz( —2x) = 4)cye_xz_y2

D=(=-2(-2-
82
(5%), -
7y
Since D > 0 and (82f/8x2)y < 0, we have a local
maximum.

Exercise 8.13.
function

a. Find the local minimum in the

flx,y) =x*+y* +2x

At a relative extremum

<%>y =2x+2
2
(52), -2
(), =
(5,
2
(Sax;y> =0

At the extremum

2x+2 =0
2y =0

This corresponds to x = —1,y = 0.

AV EE 2f\° B
= (a?) <W>_<axay> =2@-0=4

This point, (— 1,0), corresponds to a local minimum.
The value of the function at this point is

f(=1,00=(=1D>+2(= 1) =—1

b. Find the constrained minimum subject to the
constraint
x+y=0.

On the constraint, x = —y. Substitute the con-
straint into the function. Call the constrained function

g(x,y).

gx,y) =x2+ (—x)*+2x =2x% 4+ 2x
g

— =4x+2

ax
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At the constrained relative minimum
x=-=1/2, y=1/2

The value of the function at this point is

11 1
f=1/21/) =+ =20/ = —3

c¢. Find the constrained minimum using the method of
Lagrange.
The constraint can be written

gx,y)=x+y=0
so that
u(x,y) = X2+ y2 +2x + Alx +y)

The equations to be solved are

9
<—“> — 2 +24A1=0
0x y

9
<—"‘> =2y4+1=0
ay /

Solve the second equation for A:
A= -2y
Substitute this into the first equation:

2x+2-2y=0

We know from the constraint that y = —x so that
4x+2=0
1
X = —=
2
1
)

The value of the function is

¥ 11y 1 n 1 | = 1
2°2) 4 4 2
Exercise 8.14. Find the minimum of the previous example

without using the method of Lagrange. We eliminate y and
z from the equation by using the constraints:

f=x>+144=x>+5

The minimum is found by differentiating:

0
—f =2x=0
0x
The solution is
x=0, y=1, z=2

Mathematics for Physical Chemistry

Exercise 8.15. Find the gradient of the function

g(x,y.2) = ax® + ye*,

where a and b are constants.

9 9 9
V=i )4 (28 )4k (28 = i3ax?+je’ +kbye*
dy dy 9z

Exercise 8.16. The average distance from the center of the
sun to the center of the earth is 1.495 x 10! m. The mass
of the earth is 5.983 x 10%* kg, and the mass of the sun
is greater than the mass of the earth by a factor of 332958.
Find the magnitude of the force exerted on the earth by the
sun and the magnitude of the force exerted on the sun by
the earth.

The magnitude of the force on the earth due to the sun
is the same as the magnitude of the force on the sun due to
the earth:

r 1
F = Gmsme% = Gmsme—z
r r

(6.673x 1071 m3 s72 kg~ 1)(5.983 x 1024 kg)%(332958)

(1.495 x 1011 m)2
3.558 x 1022 kg m? s 72 = 3.558 x 10?2 J

Exercise 8.17. Find V - r if
r =ix +jy + kz.
ox dy 9z
Vir=|— — — =3
(ax> i (ay> i <8z>
Exercise 8.18. Find V x r where
r =ix +jy + kz.
Explain your result.
.(dz 0 .[(0x 0z ad ax
e I T {
dy 0z az  ox ox  dy

=0

Vxr

The interpretation of this result is that the vector r has no
rotational component.

Exercise 8.19. Find the Laplacian of the function

f=exp(x®>+y24+7%) = e

V2f = (sze)ﬂ) et 4 (iZyeyz) e
ax ay

+ (ikeZQ) e"zey2
9z

= (2e"2 + 4xzexz)e>’zeZ2 + (26y2 + 4y2ey2)exzez2
+ (2@Zz + 4zzezz)e)‘2e~"2
= [6+4(x>+y* + zz)]e’czeyzeZ2
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Exercise 8.20. Show that V x Vf = 0 if f is a differ-
entiable scalar function of x,y, and z.

Of of L af
Vf=i—+j—+k—
f lax +‘]8y + 0z

32 32 32 32
Vfo:i—f——f +j f_o
dydz  0z0z dzdx  0x0z
32 32
K A N W
dxdy  dyox

This vanishes because each term vanishes by the Euler
reciprocity relation.

Exercise 8.21.  a. Find the / factors for cylindrical polar

coordinates.
h =1
/’l¢, = p
h, =1

b. Find the expression for the gradient of a function of
cylindrical polar coordinates, f = f(p,¢,z).

af  1af af
Vi=e, 4,2t 1k
F=eog, T 55 TR,

c. Find the gradient of the function

f=e P sin (g

Ve W% gin (¢)

e [—_zzpe“’”*)/”z sin <¢>}
a
1

+ep—e DI cos (9)
o

2
+k [——ie‘”’”*”“z sin <¢>}

a
—2p . 1
=e, 2 sin (¢) | + e¢; cos (¢)
+k [—2—2 sin (¢>)} e~ (i a?
a
Exercise 8.22. Write the formula for the divergence of a

vector function F expressed in terms of cylindrical polar
coordinates. Note that e, is the same as k.

1[0 0 d
V.- F=—|—(F —(F, —(F,
p [ap( o)+ 5 (F) + 5 zp)}
Exercise 8.23. Write the expression for the Laplacian of

. 2
the function e™"

2
1 a [ ,0e 1a [, T
-9 - o)
r2 or (r ar ) r2 dr |:r ( r)r2e i|

)
Ve =

e63
2 0 2
=g
2 2
= S =2y = St - De”’
r r
1 )
=2 <2 — ﬁ) e r
PROBLEMS
1. A certain nonideal gas is described by the equation of
state Py B
_'m =1 + _2
RT Vi

where T is the temperature on the Kelvin scale, Vi, is
the molar volume, P is the pressure, and R is the gas
constant. For this gas, the second virial coefficient By
is given as a function of 7 by

By =[—1.00 x 107* — (2.148 x 107°)

xe(1956 K)/T1m3 o1
Find (9P /3 Vm)7 and (3P /3T)y, and an expression
for dP.

»_ RT RTB
"~V vz

(8P> _ RT 2RTB
T

Vim v ov3
9P R RBy RT (dB,
R = — + 5 + —5 | =
0T )y~ Vm V2 V2 \dT
R+ BB | needtermh
= — — need term nere
Vi V32

RT 2RTB, RT (dB
dP = [——2— 2+—(—2)}dT
vz V3 vz \dr

LB RB
Vi V2 "

2. For a certain system, the thermodynamic energy U is
given as a function of S, V, and n by

U=UGS,V.n) = Kn3v23253nR,

where S is the entropy, V is the volume, n is the
number of moles, K is a constant, and R is the ideal
gas constant.

a. According to thermodynamic theory,
T = (@U/0S)v,,. Find an expression for
AU /38)v,n.
T — (ﬂ) _ Kn5/3V72/3e2S/3nRi
S Sy, 3nR

2U

~ 3nR



From this we can deduce
U 3 RT
= -n
2

which is the relation for a monatomic ideal gas
with constant heat capacity

. According to thermodynamic theory, the pressure

P= — (0U/9V)s,. Find an expression for
@U/V)s.,.
P =— (8_U> — an5/3V—5/3€2S/3nR
ovV/)s, 3
2U nRT
T3 v

which is the relation for an ideal gas.

. According to thermodynamic theory, the chemical

potential © = —(dU /dn)s,y. Find an expression
for (U /an)s.v.

. <3U> _ éKn2/3V—5/3eZS/3nR
sv 3

on

— KnS/3y—2/3,25/3nR ( 28 )

3n2R
_sU 28U
" 3n 3n’R
5 TS U PV TS G
n n n n n

where G is the Gibbs energy.

d. Find dU in terms of dS, dV, and dn.

2U 2U
dU = | —)dS— [ — | dV
3nR 3V

n 5U 25U d
= )dn
3n  3n2R

= TdS—PdV + udn

3. Find (df/0x)y, and (df/0y), for each of the

following functions, where a, b, and ¢ are constants.

a. f =axyln(y)

ayln (y)

(5),
().

axIn(y) +ax

b. f = csin (x2y)

ccos (x2y) 2xy)

(5),
(),

ccos (xzy)(xz)
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4. Find (0f/dx)y, and (df/dy), for each of the
following functions, where a, b, and ¢ are constants.

a. f=@+y/lc+x)

xX+y

(ﬂ) __y

dx y_ (c+x) (c+x)?
(), = e

ay x_ (c+x)

b. f = (ax +by)~?

af —2a
<§>y " (ax + by)?

af —2b
(5) ~ (ax + by)

5. Find (0 f/0x)y, , and (3 f/0dy), for each of the
following functions, where a, b, and ¢ are constants.

a. f = acos? (bxy)

(
(

o
ax
o
ay

),
).

= —2acos (bxy)a sin (bxy)(by)

= —2acos (bxy)a sin (bxy)(bx)

b. f =aexp—b(x>+y?)

0

(f

0x
0

(f

dy

) = aexp(— b(x%+ y*)(— 2bx)

) = aexp (— b(x* + y»)(—2by)

6. Find (3 f/0x?)y,(8%f/3x0y),(d* f/dydx), and
(8% f/8y?), for each of the following functions, where
a, b, and ¢ are constants.

a. f=@x+y~?

<ﬂ> _ o,
ax /), (x+y)3
<32_f> el
x2),  (x+y?
( 2 f ) 6 1
dydx (x +y)*
<ﬂ> _ o,
dy /. (x+y)3
<32_f> _e Ll
w2),  (x+y?

( 3 f ) 1
-6
dxdy (x + y)*
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b. f = cos(xy)

()
dx y
82

2
<8 f ) = —xycos (xy) — sin (xy)
dyodx

(5)

ay /,
2

(%) =—xzcos(xy)

a2f>

<8x8y

7. Find (3% f/0x?),,(d? f/dxdy), (3% f/dydx), and

(8% f/8y?), for each of the following functions, where
a, b, and c are constants.

—ysin (xy)

—Xx sin (xy)

Xy cos (xy) — sin (xy)

a. f — e(axz-i-byz)
ify _
(50), -
(32_f _
8x2>y N
(53¢)
aydx
(%
W),
2 f
2 f
<3x3y)
b. f =In(bx?+cy?)
AN 1
<5>y = oo
9% f 1
<a?>y ~ (X2 +cy2)(2b)

1
- 2bx)?
(bx? + cy?)? (2bx)

2 f 1
(ayax) = T oxT 1 oy 0 ey)
af\ 1
<$> = o) Y
2

AN 2 e
<W> =@ T mrey

e(”x2+by2)(2ax)
e(ax2+by2)(2a) + e(axz—i-byz) (2ax)2

— @) (24x) (2by)

— e(ax2+by2)(2by)
— e(ax2+by2)(2b)+e(ax2+by2)(2by)2

— @’ +by?) (2ax)(2by)

e65

1
= o ad 20)

2
©(bx2 + cy2)2 (Zey)

(82f>—— (2bx)(2cy)
axdy)  (bx2 4 cy?)? ey

8. Find (3% f/0x?)y, (82f/3x3y), (3%f/dydx), and
(8% f/8y?), for each of the following functions, where
a, b, and ¢ are constants

a. f = (_xz + yz)fl
LA R
(ﬁ)y - (x2+y2)2(2x)
S = 2 2 2
(W)y - m(h) Sl reaners
3 f ’
<8y8x) - (x2 + y2)3 (2x)(2y)
af
(5),
AN > .
(), = @’ - Gy

2 f 2
<3x3y) T 2123 (2x)(2y)

b. f =sin (xy)
(ap—
y

1
T

0x

82
(a—;;) = —y*sin (xy)
82

y
F\ o
<3y8x) = cos (xy) — xy sin (xy)

7N
ST
~

ﬂ) = xcos(xy)
2
(%) = —x’sin (xy)

(75) - /
= cos (xy) — xy sin (xy)

9. Test each of the following differentials for exactness.
a. du = sec? (xy)dx + tan (xy)dy
a
d—[sec2 (xy)] = 2sec (xy)sec (xy)tan (xy)(x)
y
= 2x sec? (xy) tan (xy)

sec? (xy)(y)

%[tan (xy)]

The differential is not exact.



b. du = ysin (xy)dx + x sin (xy)dy
a . .
@[y sin (xy)] = sin (xy) + xy cos (xy)
a . .
d—[x sin (xy)] = sin (xy) + xy cos (xy)
by

The differential is exact.

10. Test each of the following differentials for exactness.

a. du = 1_5—x2d)c — tan~! (x)dy
a y 1
dy \14+x2)  14x2
0 tan=" () 1
—tan" " (x) =
dx 14 x2

The differential is exact.
b. du = (x% +2x + Ddx + (y2 + 5y + 4)dy.

0 2
—(x"+2x+1) =0
dy

P
—O 5y +4 =0
dx

The differential is exact.

11. Test each of the following differentials for exactness.

a. du = xydx +xydy

a(xy)
dy

a0xy) _
dx

The differential is not exact.
b. du = ye®™ dx + xe™Y dy.

ad
d_(yeaxy) — XY +axyeaxy
y

_(xeaxy) — eaxy +axyeax)r
dx

The differential is exact.

12. If u = RT In (aT Vn) find du in terms of d7, dV, and
dn, where R and a are constants.

du

Rln(aTVn) + RT(V)dT
n(a n aTVnan

+

RT (aTn)dV + RT (aTV)d
aln a n
aTVn aTVn

9 9 9
P ar+ () av+ () an
T ), o), on )y
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13. Complete the formula
a5 _ a5 4o
av Pn B av T,n .
a8
dV+<—) dT
| oT V.n
<BS) B <BS> <3V>
av Pn v T, n av Pn
+(8$) (8T
oT Von oV /)p,
_(85) +(BS> (BT)
av T,n or V.n av Pn
14. Find the location of the minimum in the function

f=f@y)=x*—x—y+y?

considering all real values of x and y. What is the value
of the function at the minimum?

d
I:a(x2—x—y+y2)i| 2x —1

y

9 2 2
a(x —x—y+y)| =-1+2y

X

2x—1=0 ifx=1/2
—1+2y =0 ify=1/2

Test to see that this is a relative minimum:

82 2 2_
|:dx_2(x —x—y+y)| =2

Il
Y

82 2 2-
[W(X —x—=y+y9)

9 2 2]
x*=x—=y+y)| =0
|:dxdy 1.

D=4

The test shows that we have a local minimum. The
value of the function at the minimum is

1 1 1 1 1

fA212) =5 -3 —5+7=—3

15. Find the minimum in the function of the previous
problem subject to the constraint x + y = 2. Do this
by substitution and by the method of undetermined
multipliers. On the constraint

y=2—x
f=x2—x—Q-x)+2—-x)?
X2 =244 —4x +x°
=2x% —4x 42
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16.

df
— = 4x — 4 = 0 at the minimum
dx *

x = 1 at the minimum

y = 2 —x = 1 at the minimum

Now use Lagrange’s method. The constraint can be
written

gx,y)=x+y—-2=0
u(x,y) =x> —x —y+y* +rlx +y—2)

The equations to be solved are

9
(-”) = 2x—144=0
0x y

9
(-“) = 142y+2=0
ay /.

Solve the second equation for A:
A=1-2y
Substitute this into the first equation:
2x—1+1-2y=0
We know from the constraint that y = 2 — x so that

2x—141-22-x)=0

4x —4 =0
x =1
y=1

Find the location of the maximum in the function
f=f@xy)=x"—6x+8y+y’

considering the region 0 < x < 2and 0 < y < 2.
What is the value of the function at the maximum?

ot

=2x—06
0x
0
—f =842y
dy
The relative extremum is at x = 3, y = —4, which

is outside our region. The value of the function at this
point is:

f3,—4)=9-18-32416=-25

Test to see if this is a maximum or a minimum:

82
5,
dx2
82
5,
dy?

82

f 0
dydy
D=2Q2-0=4

17.

e67

This is a local minimum. The maximum must be on
the boundary of the region. On the boundary given by
x=0

0,y = 8y +y*
df(o,
£@0,y) — 842y
dy

This vanishes at y = —4, which is outside our region.
Check the endpoints of this part of the boundary:
f©0,00 =0
£(0,2) = 20

On the boundary given by y =0

f(x,0) = x2 — 6x
df
dx

This vanishes at x = 3, which is outside our region.
Check the endpoints of the part of the boundary

=2x—06

f2.0)=4—12=-8

On the boundary given by x = 2

fQ2,y) = =848y +y?
df2,y)
i R
y

This vanishes at y = 4, which is outside our region.
Test the endpoint of this part of the boundary that we
have not already tested:

f22)=4—12+16+4=12

We have tested the four corners of our region and have
found the maximum at (0,2). Check the final side of
our region

f(x,2) = x> —6x +20
df(x,2)
dx

This vanishes at x = 3, which is outside our region.
The maximum of our function is (0,2) and is equal
to 20.

Find the maximum in the function of the previous
problem subject to the constraint x + y = 2.

=2x—6

f(x,y) =x* —6x + 8y +y?
We replace y by 2 — x:
fx) =x2—6x—8Q2—x)+ (2 —x)?
=x2—6x —1648x +2 — 2x + x> =2x>—14

df _

4
dx *
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18.

19.

20.

This vanishes at x = 0, corresponding to (0,2), which
is on the boundary of our region. This constrained
maximum must be at (0,2) or at (2,0). The value of
the function at (0,2) is 20 and the value at (0,2) is 20.
This is the same as the unconstrained maximum.
Neglecting the attractions of all other celestial bodies,
the gravitational potential energy of the earth and the
sun is given by

Ve _ Gmgm, ’

r

where G is the universal gravitational constant, equal
t0 6.673 x 10711 m3 s72 kg_l, m; is the mass of the
sun, m, is the mass of the earth, and r is the distance
from the center of the sun to the center of the earth.
Find an expression for the force on the earth due to
the sun using spherical polar coordinates. Compare
your result with that using Cartesian coordinates in
the example in the chapter.

Fe—v (_M) _ e <_Gm_m>
r ar r

Gmgm,
= —e
r r2

F =

This agrees with the result of the example.
Find an expression for the gradient of the function

f(x,y,z) = cos (xy)sin (z)
Vf = —iysin(xy)sin(z) + jx sin (xy) sin ()
+ k cos (xy) cos (z)

Find an expression for the divergence of the function

F = isin® (x) + jsin® (y) + ksin? (z)
V. F = 2sin (x) cos (x) + 2 sin (y) cos (y)
+2sin (z) cos (z)
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21. Find an expression for the Laplacian of the function

f = r?sin (9) cos (¢)

V2= = 1o (ﬂaa_rrz sin (@) cos (¢)>

T r29r

+ 2 i 6)-2 2 sin (6) cos (9)
sin 9) 96 sin 89r sin cos (¢

1 2, .
+m37¢2r SIH(Q)COS(¢)
_ 2sin (0)2cos (¢)i(r3)

r

ar
r2cos(¢) 9 .
m £[Sln (9) Cos (9)]
r2 .
— m sin (6) cos (¢)

6(sin () cos (¢))

cos(@) 5,
S0 6) [cos” () — sin” (8)]

1 .
— m sin (0) cos (¢)

cos? (0) cos (¢)
sin (@)
cos (¢)
sin (0)
cos? )
sin (0)  sin (0)

= 6sin (0) cos (¢) +

— sin (0) cos (¢) —

[6 sin (0) + i| cos (¢)
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Integral Calculus with Several
Independent Variables

EXERCISES

Exercise 9.1. Show that the differential in the preceding
example is exact.
The differential is
dF = 2x +3y)dx + 3x +4y)dy

We apply the test based on the Euler reciprocity theorem:
0
—2x+3y) =3
ay
0
—QBx+4y) =3
ax

Exercise 9.2. a. Show that the following differential is
exact:

dz = (ye™)dx + (xe*)dy
0 X Xy Xy
—(ye") = " +xye™
dy
a X Xy Xy
—(xe™) = " + xye™?

ax

b. Calculate the line integral [ . dz on the line segment
from (0,0) to (2,2). On this line segment, y = x and

X =y.
2 2 2 2
/dz = / (xe* )dx +/ (ye? )dy
c 0 0
2 2
= Zf (xe* )dx
0

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00033-1
© 2013 Elsevier Inc. All rights reserved.

We let u = x?; du = 2x dx
2 ) 4

2/ (xex)dx:/ (@)du =e* — e =e* — 1
0 0

c. Calculate the line integral | . dz on the path going from
(0,0) to (0,2) and then to (2,2) (a rectangular path).

On the first leg:

2
/dz = / (0)e”)dx +0=0
c 0

On the second leg

2
/dz:O—}—/ (2)e¥ dy
c 0

Welet w = 2y;dw = 2dy

2 4
/ (2)62ydy=/ eV dw=e"—1
0 0

Exercise 9.3. Carry out the two line integral of du = dx +
x dy from (0,0) to (x1,y1):

a. On the rectangular path from (0,0) to (0,y;) and then
to (x1,¥1);

On the first leg

Y1
/dz:0+/ 0dy =0
c 0

On the second leg:

X1
/dz:/ dx +0=x;
c 0

e69
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The line integral is

/(dx—i—xdy) =X

c

b. On the rectangular path from (0,0) to (x1,0) and then
to (x1,y1)-

On the first leg

X1
/dz:/ dx +0 = x
c 0

On the second leg:

Vi
/dz=0+/ x1dy = x1y1
c 0

The line integral is

/(dx +xdy) =x1 +x1)1
C

The two line integrals do not agree, because the differential
is not exact.

Exercise 9.4. Carry out the line integral of the previous
example, du = yzdx + xzdy + xydgz, on the path from
(0,0,0) to (3,0,0) and then from (3,0,0) to (3,3,0) and then
from (3,3,0) to (3,3,3).

On the first leg

y=0, z=0

3
/du:/ (0)dx +0+ 0
c 0

On the second leg

x=3, z=0
3
/du:/ O)dy +0
c 0
On the third leg
x=3, y=3

3
/du:/ (9)dz =27
c 0

The line integral on the specified path is
/(yzdx +xzdy +xydz) =040+ 27 =27
c

The function with this exact differential is u = xyz + C
where C is a constant, and the line integral is equal to

2(3,3,3) — z(0,0,0) =274+ C-0—-C =27

Mathematics for Physical Chemistry

Exercise 9.5. A two-phase system contains both liquid
and gaseous water, so its equilibrium pressure is determined
by the temperature. Calculate the cyclic integral of dwyey
for the following process: The volume of the system is
changed from 10.00 1t0 20.00 1 at a constant temperature of
25.00 °C, at which the pressure is 24.756 torr. The system
is then heated to a temperature of 100.0 °C at constant
volume of 20.00 1. The system is then compressed to a
volume of 10.00 1 at a temperature of 100.0 °C, at which
the pressure is 760.0 torr. The system is then cooled from
100.0 °C to a temperature of 25.00 °C at a constant volume
of 10.00 1. Remember to use consistent units.

On the first leg

/dwrevz—/PdV=—P/dV=—PAV
c c c

101325 Pa>

760 torr
3

= —(23.756 torr) <

I m

) = -31.761]

On the second leg

/ dwey =0
C

On the third leg

/dwre\,:—/ PdV =—-PAV
c c

101325 P 1md
—(760.0 torn) [ ——=> %) (1000 1) [ —2
760.0 torr 10001

=1013]J

On the fourth leg

/ dwey =0
C

Wrey = fdwrev =—-31.76 14+ 1013 =9811]J

The cyclic integral does not vanish because the differential
is not exact.

Exercise 9.6. The thermodynamic energy of a monatomic
ideal gas is temperature-independent, so that dU = 0 in an
isothermal process (one in which the temperature does not
change). Evaluate wyey and grey for the isothermal reversible
expansion of 1.000 mol of a monatomic ideal gas from a
volume of 15.50 1 to a volume of 24.40 1 at a constant
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temperature of 298.15 K.

AU =qg+w

Vs 1
Wrey = —/ PdV = —nRT/ —dV
c \%

Vi
—nRT In (E)
Vi

—(1.000 mol)(8.3145 J K~' mol™1)

x(298.15 K) In (ﬂ)
15.50 1
= —11257
Grev = 11257

The negative sign of w indicates that the system did work
on its surroundings, and the positive sign of ¢ indicates that
heat was transferred to the system.

Exercise 9.7. Evaluate the double integral

4 pm
/ / x sin? (y)dy dx.
2 JO

We integrate the dy integral and then the dx integral. We
use the formula for the indefinite integral over y:

4 pm
//xsinz(y)dydx
2 Jo
4 in (2 T 4
:/x X—Sm( Y) dx:/xzdx
P 2 4 0 b 2

24
16 4
, " 2\2 72

T X
2 2

Exercise 9.8. Find the volume of the solid object shown in

Fig.9.3. The top of the object corresponds to f = 5.00—x —

v, the bottom of the object is the x-y plane, the trapezoidal

face is the x-f plane, and the large triangular face is the y-f

plane. The small triangular face corresponds to x = 3.00.

3.00 p5.00—x
V= / / (5.00 —x — y)dydx
0 0

The first integration is

5.00—x
/ (5.00 — x — y)dy
0

5.00—x
= (5.00y —xy = »*/2)|

e71

25.00 — 10.00x + x2

=5.00(5.00 — x) — 5.00x — >

x2
= 12.50 — 5.00x + 5

3.00 W)
V= / (12.50 —5.00x + 7) dx = 12.50x
0

50002 3P

+x
2 6

0

27.00
=37.5-22.50+ 5 = 19.5

Exercise 9.9. Find the value of the constant A so that the
following integral equals unity.

o0 o
A/ / e_xz_yzdy dx.
—0Q0 v —00

The integral can be factored

o o0 ) )
A/ / e TV dydx
—00 J —00
o0 o

= Af e dx/ e dy
—00 —00

The integrals can be looked up in a table of definite integrals

o0 2 o0 2
/ e " dx=2/ eV dx =1

—00 0
o o0 ) 2
/ / e TV dydx = Anr =1
—00 J —00
1

v

A
A
Exercise 9.10. Use a double integral to find the volume of
a cone of height / and radius a at the base. If the cone is
standing with its point upward and with its base centered at

the origin, the equation giving the height of the surface of
the cone as a function of p is

f:h(l—S).

a 2
V=h// (1—3)pd¢dp
0 JO a
a 2
=2nh/ <p—'0—>,0dp
0 a

2 3 a 2 2 hZ
p29 ] (AN | R PR R P
2 3a )|

2 3 3
Exercise 9.11. Find the Jacobian for the transformation
from Cartesian to cylindrical polar coordinates. Without
resorting to a determinant, we find the expression for the
element of volume in cylindrical polar coordinates:

dV = element of volume = p d¢ dp dz.
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The Jacobian is 2. Perform the line integral
d(x,y,2) p
d(p,¢,2) / du :/ (ydx+xdy)
Exercise 9.12. Evaluate the triple integral in cylindrical ¢ ¢
polar coordinates: on the curve represented by
3.00 p4.00 P27
1= / / / zp> cos? (¢)d¢ dp dz y= x2
0 0 0
The integral can be factored: from (0,0) to (2,4).
2 ) 4.00 3 3.00
1 Z/ cos (¢)d¢/ P dﬂ/ zdz /du = / (x? dx + y'/2dy)
0 0 0 C C
The ¢ integral can be looked up in a table of indefinite 2 By 4 12
integrals: - /(; x7dx + /0 y/tdy
2 . 27 392 3274
2
f cos? (¢)d = (9 LN "”) . _ [X_] + [y_]
0 2 4 0 3 1 3/2 g
4.00 44.00 8 8
p = — _— =
/ pldp =52 =640 3715 8
0 4 0
3.00 22 3 900 Note that du is exact, so that
0 0 u=xy

I =450 x 64.0 x 7 = 2887 =905
the line integral is equal to
PROBLEMS u(2,4) —u(0,0) = 8

1. Perform the line integral 3. Perform the line integral

fdu=/ (x%y dx + xy* dy), 1 |
c c /du:/ <—dx+—dy>
C Cc \X y

a. on the line segment from (0,0) to (2,2). On this
path, x =y, so on the curve represented by

2 2 4 2 y4 2
/du/x3dx+/ yidy = —| + = y=x
c Jo 0 400 4o
16 16 From (1,1) to (2,2).
4 4 2 2
b. on the path from (0,0) to (2,0) and then from (2,0) /du = / ;dx—i—/ ;dy
c 1 1

to (2,2). On the first leg of this path, y = 0 and ) s
dy = 0, so both terms of the integral vanish on [In ()17 + [In (M1
this leg. On the second leg, x = 2 and dx = 0. =2[In(2) —In(1)] =2In(2)

2 y3
fdu=0+/ 2y?dy=2=| =
c 0 3p 3

The two results do not agree, so the differential is
not exact. Test for exactness:

2
_ 16 Note that du is exact, so that

u =In(xy)

the line integral is equal to

0 2 2
[5@ y)L -7 u(2,2) —u(1,1) = In (2%) — 21n (2) = 1.38629
9
[a(xyz)} =y 4. Find the function whose differential is
)7

The differential is not exact. df = cos (x) cos (y)dx — sin (x) sin (y)dy



CHAPTER | 9 Integral Calculus with Several Independent Variables e73

and whose value at x = 0, y = 0 is 0. Test for 6. Find the function whose exact differential is
exactness
5 df = cos(x)sin (y) sin (z)dx
5[005 (x)cos (y)] = —cos (x)sin (y) + sin (x) cos (y) sin (z)dy
) + sin (x) sin (y) cos (z)dz
8_[_ sin (x) sin (y)] = — cos (x) sin (y)
X
and whose value at (0,0,0) is 0. Since the differential

We integrate on a rectangular path from (0,0) to (x1,0) is exact,
and then from (x1,0) to (x1,y1). On the firstleg, y = 0
and dy = 0. On the second leg, x = x; and dx = 0. F(x1,y1,21) — £(0,0,0)

Since the differential is exact,

= / [cos (x) sin (y) sin (z)dx
C

Fery) = £0.0) + sin (x) cos (y) sin (z)dy

= /C[cos (x) cos (y)dx — sin (x) sin (y)dy] + sin (x) sin (y) cos (z)dz]
x) "o '
= f cos (x)(1)dx — / sin (x1) sin (y)dy where C represents any path from (0,0,0) to
_0 Y ) 0 i (x1,y1,21). We choose the rectangular path from
= sin(0)fy’ + sin (x1) cos ()l (0,0,0) to (x1,0,0) and then to (x1,y;,0) and then to
= sin (x1) + sin (x1) cos (y1) — sin (x1) (x1,v1,21). Onthe firstleg, y = 0,z = 0,dy = 0,dz =
= sin (x1) cos (y1) 0. On the second leg, x = x1,z = 0,dx =0,dz =0.

£(x,y) = sin (x) cos (¥) On the third leg, x = x1,y = y;,dx = 0,dy = 0.

S. Find the function f(x,y) whose differential is / df = f(x1,y1,z21) — £(0,0,0)
c

df = (x +y) 'dx + (x + y)"'dy

X1 X1
/ cos (x)(0)dx —i—/ sin (x1)(0)dx
0 0
and which has the value f(1,1) = 0. Do this by 2
performing a line integral on a rectangular path from + sin (x1) sin (y1) / cos (z)dz
(1,1) to (x1,y;) where x; > 0 and y; > 0. Since the . . . 0
differential isy exact g = sin (x1) sin (y1) sin (z1) — 0

sin (x) sin (y) sin (z)

f(x,y.2)

Sy — f(,1)
= / ((x + y)_ldx + (x + y)_ldy)
C

Find the area of the circle of radius a given by

p=a
We choose the path from (1,1) to (1,x;) and from

(1,x1) to (x1,y1). On the first leg, x = 1 and dy = 0.

by doing the double integral
On the second leg, x = x; anddx =0

a 2
f(<x+y>—‘dx+<x+y>‘1dy) /f 1pde dp.
c 0o Jo
X1 1 1 1 a 2w a
=/ dx—i—/ dy A=/ / lpdqbdp:Zn/ pdp
o x+1 1 X1ty o Jo 0
=In(x+ DI+ In@x + Iy’ P\,
=2n [ — =Tra
=In(x;+1)—In@)+In(x;+y)—In(x +1) 2 /1o

X1, — f(1,1) =1In(x; + —In(2

Fey) = fAD (1 +1) @ 7. Find the moment of inertia of a uniform disk of radius

Since f(1,1) = 0 the function is 0.500m and a mass per unit area of 25.00 g m?. The
moment of inertia, is defined by

flx,y) =In(x+y) —In(2)

R r2m
_ 2 _ 2
where we drop the subscripts on x and y. I= // m(p)p”dA = /(; /0 m(p)p”pd¢dp



where m (p) is the mass per unit area and R is the radius
of the disk.

o, (_lke
I = (25.00 g m™2)
1000 g

0.500 m p27 5
X / / p-pdpdp
0 0

0.500 m
= (0.02500 kg m~2)(27) fo 03 dp

4
= (0.15708 kg m™2) <m )

4
= 0.002454 kg m*

The mass of the disk is

2
//m(p)dA // m(p)p d¢ dp

R?
— 2em(p) / pdp = 2mm(p) S

M

5. [ (0.500 m)?
= 27(0.02500 kg m?) | ————

2
= 0.01963 kg

The standard formula from an elementary physics
book is

1 1
I = EMR2 = 5(0.01963 kg)(0.500 m)?
= 0.002454 kg m?

. A flywheel of radius R has a distribution of mass given
by
m(p) =ap +b,

where p is the distance from the center, @ and b are
constants, and m(p) is the mass per unit area as a
function of p. The flywheel has a circular hole in the
center with radius r. Find an expression for the moment
of inertia, defined by

R 2
I =//m<p)p2dA=/0 /0 m(p)p*pdedp,

R 27
I = f /0 (ap + b)o*p dd dp
i
R 2
_ / / (ap* + bpY)dp dp
r 0
R
R b
:27r/ (a,o4+b,o3)d,o=27r ﬂ+i
; 4 3|

_ > aR5+bR4 5 ar5+br4
T Ty T3 S

10.

11.

Mathematics for Physical Chemistry

. Find an expression for the moment of inertia of a

hollow sphere of radius a, a thickness Aa, and a
uniform mass per unit volume of m. Evaluate your
expression if a = 0.500 m, Aa = 0.112 mm,
m = 3515 kg m—3.

a+Aa T 2
/ / / mr?r? sin (6)d¢ d6 d
a 0 0

a+Aa T
ro=2 f f mr2r? sin (9)d6 dr
a 0

1 =

a+Aa
= (2)271/ mr* dr
a
(a+ Aa) &
=4mm| ——— — —
5 5

Expanding the polynomial
(a+ Aa)’ =a + 5a*Aa + 10a> Ad® + 10a>Ad®
+5aAd* + Ad®

If Aa is small, so that we can ignore Aa? compare
with Aa,

(a + Aa)5 —a’ ~5a*Aa
I ~ 4wma’Aa
We apply this approximation

I ~ 47(3515 kg m>)(0.500 m)*(0.112 mm)
1m 5
Derive the formula for the volume of a sphere by

integrating over the interior of a sphere of radius a
with a surface given by r = a

a T 2
/// r2 sin (6)d¢ d dr
0 0 0
a T
27 / / 2 sin (6)d0 dr
0 0

= 2 /u r? dr[cos (1) — cos (0)]
0

a 3 4
= 47{/ r2dr =4x “ = _7nd’
0 3 3

Derive the formula for the volume of a right circular
cylinder of radius a and height /.

h pra 2
/ / [ pdpdpdz
0 0 0
h a
= an / pdpdz
0 0
h a
= 271/ / pdpdz
0 0
h 2
271/ dz <a_> = na*h
0 2

Vv

V =
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12.

13.

14.

Find the volume of a cup obtained by rotating the
parabola
z = 4.00p>

around the z axis and cutting off the top of the
paraboloid of revolution at z = 4.00.

1.00 ,4.00 2
/ / / pdpdzdp
4.00p%2 JO

Since the limits of the z integration depend on p, the
Z integration must be done before the p integration.
Note that p = 1.00 when z = 1.00 on the parabola.

1.00 ,4.00
V = Zn/ /
4.00p2

1.00
=27 f pdp(4.00 — 4.00p?)
0

pdzdp

1.00 1.00
= 8.00m f pdp — 8.00m / 03 dp
0 0

1. 1.
= 8.007 10y 8.00m 1.00
2 4

= 2.00r = 6.28

Find the volume of a right circular cylinder of radius
a = 4.00 with a paraboloid of revolution scooped out
of the top of it such that the top surface is given by

z =10.00 + 1.00p02

and the bottom surface is given by z = 0.00.

2.00 10.00+1.00p>
/ / / pdpdzdp
0.0

The limit on p is obtained from the fact that p = 2.00
when the parabola intersects with the cylinder.

2.00 10.00+1.00p2
27 / / pdzdp
0.0

2.00
271/ 0 dp[10.00 + 1.00p%]
0

4.00 8
20.00r (T) + 2.007 <§>

16.00
— 40.007 + T 1424

Vv

Find the volume of a solid with vertical walls such
that its base is a square in the x — y plane defined by
0 < x <2.00and 0 < x < 2.00 and its top is defined
by the plane z = 20.00 4+ x + y.

200 2.00 £20.00+x+y
/ / / dzdxdy
0 0 0

2.00 2.00
/ / (20.00 + x + y)dx dy
0 0

Vv

15.

16.

e75

The z integration must be done first, since its limits
depend on x and y. We do the x integration next,
followed by the y integration:

2.00 2
1% f ((20.00)(2.00)+ (2‘20) +2.00y> dy
0

4.00
(42.00)(2.00)) +2.00 (T) = 88.00

Find the volume of a solid produced by scooping out
the interior of a circular cylinder of radius 10.00 cm
and height 12.00 cm so that the inner surface conforms
to z = 2.00 cm + (0.01000 cm—2) p3.

10.00 cm  p27
/0 /0

x [2.00 cm + (0.01000 Cm_2),o3] pdpde

2
= / d¢
0
10.00 cm

[2.00 cm , <0.01000 cm—2) 5]
x Pt ————)»r
2 5 0.00

= (27) [100.0 cm® + (0.00200 cm™2)

V =

% (1.00 x 10° cmS)]
= 1885 cm’

Find the moment of inertia of a ring with radius
10.00 cm, width 0.25 cm and a mass of 0.100 kg

/ / m(p)p? dA

10.00 cm 2
= /9 /0 m(p)p*pdp dp

75 cm

10.00 cm 3
= 2m /9 m(p)p” dp

.75 cm

10.00 cm 3
~ 2mm(p) p~dp
9.75 cm

10.00 cm

4
27m(p) [’)—}
4 9.75 cm

- w [(10.00 em)* — (9.75 cm)4]

_ nm(P) (983.12 cm*) = (1512.9 em*)m(p)

where have factored m (o) out of the integral since the
width is small. We now need to find a value for m(p).
The mass of the ring is given by

10.00 cm
M = 277/ m(p)p dp
9

.75 cm
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17.

Since 0.25 cm is quite small compared with 10.00 cm,
we factor m(p) out of the integral

10.00 cm
M =2mmip) | p*dp
. cm
2
_ Zmmp) [(10.00 cm)? — (9.75 cm)z]
0.100 kg = (rm(p)) [100.0 cm’ — 95.0625 cm2]
= 15.512 cm?m(p)
0 0.100 kg
m = —
P = 15512 cm?

6.4468 x 1073 kg cm 2

I = (1512.9 cm®)m(p)

— (1512.9 cm®) (6.4468 x 1073 kg cm_z)

1 2
— 9.753 kg cm? | ——=
100 cm

= 9.753 x 10~* kg m?

From an elementary physics textbook, the formula for
a thin ring is

I = MR? = (0.100 kg)(0.0100 m)?

1.00 x 10~ kg m?

Find the moment of inertia of a flat rectangular plate
with dimensions 0.500 m by 0.400 m around an axis
through the center of the plate and perpendicular to it.
Assume that the plate has a mass M = 2.000 kg and
that the mass is uniformly distributed.

0.250 m
=
—0.250 m

where we let m be the mass per unit area.

0.200 m
m(x? + yz)dx dy
—0.200 m

2.000 kg

m=———= =10.00 kg m*
0.200 m?
0.250 m 0.200 m

I = mx? dx dy +1
—0.250 m /—0.200 m
0.250 m 0.200 m

= my2 dx dy

—0.250 m /—0.200 m

18.
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0.200 m
= (0.500 m) mx? dx
—0.200 m
0.250 m
+(0.400 m) / my? dy
—0.250 m

1
= (0.500 m) Zm[* 1958

0.400 1 370250m
+0. m)gm [y :|—0.250m

2
= (0.500 m)gm(o.zoo m)?
2 3
+(0.400 m) Zm (0.250 m)
2 5 5
= (0.500 m)>(10.00 kg m™*)(0.00800 m"*)

2
+(0.400 m) 2 (10.00 kg m~2)(0.015625 m?)

= 0.02667 kg m? + 0.04167 kg m?
= 0.06833 kg m?

From an elementary physics textbook

1
[ = —M(a*+b?
5 (a®+07)

where a and b are the dimensions of the plate. From
this formula

1
| = (E) (2.000 kg) [(0.400 m)? + (0.500 m)z]
= 0.06833 kg m?

Find the volume of a circular cylinder of radius
0.1000 m centered on the z axis, with a bottom surface
given by the x — y plane and a top surface given by
z = 0.1000 m + 0.500y.

0.100m p27
/ / zpdg dp
0 0

0.100 m p27
f / (0.1000 m + 0.500y)p dp dp
0 0

0.100 m p27
/ f [0.1000 m
0 0

+0.500 mp sin (¢)] p d¢ dp
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0.100m p2r 0.100 m>
= / / [0.1000 m]p d¢p dp = 27[0.1000 m] [%]
0 0
+ / / [0.500 msin (#)1p dgs dp +0.500 m) / pdpl— cos ()27
0 0 0
0-100m — 7(0.00100 m*) + 0 = 0.003142 m’

27[0.1000 m] / pdp
0

0.100m 27 Note that this is the same as the volume of a cylinder

+(0.500 m) / / [sin (¢p)]p dop dp with height 0.100 m.

0 0
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EXERCISES

Exercise 10.1. Show that in the series of Eq. (10.4) any
term of the series is equal to the sum of all the terms
following it. ( Hint: Factor a factor out of all of the following
terms so that they will equal this factor times the original
series, whose value is now known.)

Let the given term be denoted by
1
term = —
2}1

The following terms are

1 1 1 1
2n+1+2n+2 2n+3+2n+4+”'
S
o oontl 2 4 8 2n

2 1
:2n+l:2_n

Exercise 10.2. Consider the series

1 1 1 1
S:l—l—i—l—?—i-z“r""‘rn—z"‘”'
which is known to be convergent and to equal

726/ = 1.64993 - - .. Using Eq. (10.5) as an approximation,
determine which partial sum approximates the series to

a. 1%
1% of 1.64993 is equal to 0.016449. The n = 8 term is
equal to 0.015625, so we need the partial sum Sg, which
is equal to 1.2574- - -. The series is slowly convergent
and Sy is equal to 1.5274, so this approximation does
not work very well.
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b. 0.001%.
0.001% of 1.64993 is equal to 0.00016449. The
n = 79 term is equal to 0.0001602, so we need the
partial sum S79. However, this partial sum is equal to
1.6324, so again this approximation does not work very
well.

Exercise 10.3. Find the value of the infinite series

> @1
n=0

Determine how well this series is approximated by S», Ss,
and Sio.

This is a geometric series, so the sum is

1

§=-—— =3.25889...
1—1n(2)

The partial sums are

RY)
Ss

14+1In(2) =1.693---
1+4In2)+In)?+1In 2> +mn@2)*
2.73746 - -

S10 = 3.175461
Sy = 3.256755 - -

Exercise 10.4. Evaluate the first 20 partial sums of the
harmonic series.

e79
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Here are the first 20 partial sums, obtained with Excel:

[ 1 \
1.5
1.833333333
2.083333333
2.283333333
2.45
2.592857143
2.717857143
2.828968254
2.928968254
3.019877345
3.103210678
3.180133755
3.251562327
3.318228993
3.380728993
3.439552523
3.495108078
3.547739657

\ 3.597739657 /

Exercise 10.5. Show that the geometric series converges
ifr? < 1.
If r is positive, we apply the ratio test:

. an+1
lim

n—oo  qay

If ¥2 < 1 and if r is positive, then r < 1, so the series
converges. If r is negative, apply the alternating series test.
Each term is smaller than the previous term and approaches
zero as you go further into the series, so the series converges.

Exercise 10.6. Test the following series for convergence.

1
22
n=1

Apply the ratio test:

Y+ n’
r=1lm ———=1Ilm | —= | =1
n— 00 1/n2 n—oo \ (n + 1)2

The ratio test fails. We apply the integral text:

fmld— 1
lxzx_ X

The integral converges, so the series converges.

o0

=1

1
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Exercise 10.7. Show that the Maclaurin series for e* is
1 1 1 1
x _ L R R R S ST
e TR TR TR TR

Every derivative of e” is equal to e*

a1
ST T T

Exercise 10.8. Find the Maclaurin series for In (1 + x).
You can save some work by using the result of the previous
example.

The series is

1n(1+x):a0+a1x+a2x2+...

ap =1In(l) =0
df 1 B
dx x:O_ 1+xx:0_

The second derivative is

d? 1
e
x=0 (1 + x) =0
The derivatives follow a pattern:
d? — 1! _
dx” x=1 (1 +‘x)n x=0

1 dnf B (— 1)n—1
P (@)m =

The series is

(MY e (B (Y e (1) s
In(14+x) =x <2>x +(3>x (4>x —i—(S)x +

Exercise 10.9. Find the Taylor series for In (x), expanding
about x = 2, and show that the radius of convergence for
this series is equal to 2, so that the series can represent the
function in the region 0 < x < 4.

The first term is determined by letting x = 2 in which
case all of the terms except for ag vanish:

ap =1n (2)

The first derivative of In (x) is 1/x, which equals 1/2 at
x = 2. The second derivative is —1/x2, which equals —1/4
at x = 2. The third derivative is 2!/x>, which equals 1/4 at
x = 1. The derivatives follow a regular pattern,

<dnf> _ (_l)n_l(n—l)! 1 (n—1!
x=2 X

=(=D

x=2

1 dnf _ (_l)nfl
n! \ dx" le_ n2n

dxn n 2}1

so that
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and
1 ), |1 3
In(x)=InR)+x—-2)—=(x—2)"4+ —(x —2)
) ) 8 24
—a(x —2)" + -

The function is not analytic at x = 0, so the series is
not valid at x = 0. For positive values of x the series is
alternating, so we apply the alternating series test:

(x =2)"(— 1!
n2n

th = ap(x =2)" =

. 0 iflx —2|<20r0<x <4
lim |7,| = .
11— 00 oo ifjlx —2| >2o0rx > 4.

Exercise 10.10. Find the series for 1/(1 — x), expanding
about x = 0. What is the interval of convergence?
1

2
=ap+tayx +ax”+---
1+x 0 ! 2

ag =1
d 1 1
a) = — | —— = ——2 = —1
dx \1+x /|, (I +x) | =
1 d 1 2 1
a) = — — |\ —= e —— —
20 dx \ (14 x)2 o 2! +x)3 =0
The pattern continues:
ap = (=1)"
=1—x4+x2—x+x =+
1+x
Since the function is not analytic at x = —1, the interval of

convergence is —1 < x < 1

Exercise 10.11. Find the relationship between the
coefficients A3 and B3.
We begin with the virial equation of state

_RT

RTB, RTB;
=

P J——
R

We write the pressure virial equation of state:

AP A3P?

_RT n
Vin Vin

P=—+
Vi

We replace P and P2 in this equation with the expression
from the virial equation of state:

RT A2<RT RTB, RTB; )
Pp—_—_ 4+ 4+ ...

+ —+ +
Vi Vi \ Vi | V2 V3

+A3 RT N RT B, N RT B; N 2+
Vin \ Vi V2 V3

We use the expression for the square of a power series from
Eq. (5) of Appendix C, part 2:

RT N RTB, RTB; 2
Vi V2 V3

( m>2 ( m)( m2> (1m>4
v V. V2 V.
(im>2 ( 2L2 2) (L1m>4
r131

RT A, (RT RTB, RTB;
P = — + — —— + 2 3 tee
Vo Vin \ Vi V2 v3
+A3 RT 2+2 R2T2B, o 1\*
Vo \\ Vi v3 Vin
RT RTA, RTA,B, As [(RT\?
_l,_ e — — J,- 3 3 —— -
Vin V2 v3 Vi \ Vin
_RT N RTB, RTB; A3R’T?
A V2 V3 V3

where we have replaced A, by B>. We now equation
coefficients of equal powers of (1/ Vm)2 in the two series
for P:
RTB; = RT B3 + A3R*T?
A3 = By — RTB?
Exercise 10.12. Determine how large X, can be before

the truncation of Eq. (10.28) that was used in Eq. (10.16)
is inaccurate by more than 1%.

1
—In(X;) =—1In(l _X2)=X2—§X%+...

If the second term is smaller than 1% of the first term
(which was the only one used in the approximation) the
approximation should be adequate. By trial and error, we
find that if X, = 0.019, the second term is equal to
0.0095 = 0.95% of the first term.

Exercise 10.13. From the Maclaurin series for In (1 + x)

In (1 4+ x) =x—lx2+lx3+~-~
2 3
find the Taylor series for 1/(1 + x), using the fact that
din(l+0)] 1
dx S l4x’
For what values of x is your series valid?

1 d 1 1
:—(x——x2+—x3~'>

=l-x4x?—x3+x -+

which is the series already obtained for 1/(1 + x) in an
earlier example. The series is invalid if x > 1.
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Exercise 10.14. Find the formulas for the coefficients in a
Taylor series that expands the function f(x,y) around the
pointx = a,y = b.

fx,y) = ago + ao(x —a) +aop1(y —b) +a(x —a)
(v = b) + azi(x —a)*(y — b) + ain(x — a)
=07+

apo = f(a,b)

()
awn = \ -
ay /.
()
apr = o
ay xla,b
2 f
a =
aydx ab

1 8n+mf
fmn = nlm! (amyB”x)

PROBLEMS

1. Test the following series for convergence.

x=a,b=y

a,b

D (=D =1/,

n=0
We apply the alternating series test:

. . n—1 . n
limy, s o0 |1n| =1imp— 00 3 =lim; oo <_2)
n n

1
= lim;— o (—) =0
n

The series is convergent.
2. Test the following series for convergence.

> (=1)"n/n).

n=0

Note: n! = n(n — 1)(n — 2)---(2)(1) for positive
integral values of n, and 0! = 1. We apply the
alternating series test:

n 1
lim |f,] = lim (—) = fim (—— ) =0
n—00 n—oo0 \n! n—oo \ (n — 1)!
The series is convergent.
3. Test the following series for convergence.

o
> ().
n=0
Try the ratio test
. ap+1 . n! )
r = lim = lim = lim =
n—o0o  q, n—oo (n+ 1)! n—oon + 1

The series converges.
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4. Find the Maclaurin series for cos (x).

ag = cos(0) =1

d
ap = —cos(x)] =—sin(0) =0
dx 0
. 1 d . 1 0) —
a2——iasln()€)0——icos()——i

There is a repeating pattern. All of the odd-number
coefficients vanish, and the even-number coefficients
alternate between 1/n! and —1/n!.

2

X | R
COS(X)—l—E-i-Ix - 4.

. Find the Taylor series for cos (x), expanding about

x =m/2.

cos(x)=ap+a(x —m/2)+ar(x — 71/2)2 + .-
ap = cos (71/2) =0

1 d I .
ay = ﬁa[cos ()] " =5 sin (x) " =—1
1 d 1
ar = ——|[cos (x)] = ——cos (x) =0
2! dx )2 2! )2
_1d 1 .
ay = —ga[cos (.X)] o = ; sSin (x) 2 = 5

There is a pattern, with all even-numbered coefficients
vanishing and odd-numbered coefficients alternating
between 1/n! and —1/n!.

1 1 3
cos (x) = —F(x —1/2) + y(x —7/2)

! 5
_§(x_n/2) 4.

. By use of the Maclaurin series already obtained in this

chapter, prove the identity e’* = cos (x) + i sin (x).

: 1 1 1
ix . - N2 - N\3
et =1+ —l!zx + —2!(zx) + 3 (ix)

1.
+4—!(tx)
i 1 5 0
BRRRTRRETIC T
1o 4
- xr 1 s 1 &
cos(x)+lsm(x)=1_§+mx _ax
1
; 3 5
+ +l<x—§x +§x
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i 1 5, i 5
__1+EX_E(X) —z(x)

a. Show that no Maclaurin series
fx) =ao+aix +apx*+ -

can be formed to represent the function f(x) =
J/x. Why is this? The function is not analytic at
x = 0. Its derivative is equal to 1/x, which is
infinite at x = 0.

b. Find the first few coefficients of the Maclaurin
series for the function

f(x)=+1+x.

Vi+x =(1 +x)1/2 =a0+a1x+a2x2+~~

ag=+1-0=1
alzﬁa(l-f—X) .
11 1
ST Rt
() (5) a0+
w=(5)(5)a+0
22)\2) ax o
1 1
I R V. 1
gt =
11
_ 19y _3)2
T
1/3\ 1 1
=—| -] —(1 =5/2 = —
4(2) TR T
a4—§ma(l+x) .
375\ 1 5
—_2(Z)Za ]
8 2) 0 =g
x  x2 X3 5x*
Ifx=l4--—" 4 4.

7. Find the coefficients of the first few terms of the Taylor
series

. T T2
sin (x) = ap + ai (x—z)—i-az(x—z) +--

e83

where x is measured in radians. What is the radius of
convergence of the series?

1
ap = sin(w/4) = — = 0.717107
V2
1 ) 1
ay = —cos(x = —
It /4 \/z
1 . ) 1
ap = — —sin(x =——
2! /4 21/2
1 ) 1
az = — cos(x = ——
3! 74 3!\/§
The coefficients form a regular pattern:
1
a, = —(=D"
" ni\2

. 1 1 T 1 T\2
sin = -5 = —= (1= 3)+ 55 (- )

T3 n T\
) e e s ()

Since the function is analytic everywhere, the radius
of convergence is infinite.

. Find the coefficients of the first few terms of the

Maclaurin series
sinh (x) = ag + ax +a2x2 + .-

What is the radius of convergence of the series?

sinh (x) = [ex - e_x]

N = N =

1 )C2 )C3
xS

x2 X3
(1 -5 )]

The function is analytic everywhere, so the radius of
convergence is infinite.

I
=
+

2|
+

|
+

|
+

. The sine of /4 radians (45°) is ~/2/2 =

0.70710678 . . .. How many terms in the series

X ox X

Sll’l(x):x—y_k?_?_‘_

must be taken to achieve 1% accuracy at x = /47

T — 0.785398
T =0

3
X — % = 0.785398 — 0.080746 = 0.704653
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10

11

12

This is accurate to about 0.4%, so only two terms are
needed.

The cosine of 30° (7/6) radians is equal to V3/2 =
0.866025 - - -. How many terms in the series

2 x4 x6

cos(x):l—a—i-z—a-l—

must be taken to achieve 0.1% accuracy x = 7 /6?

2

1— % — 1 —0.137078 = 0.8629

This is accurate to about 0.4%.

x2 4

1—- §+% =1-0.1370784-0.003132 = 0.866154

This is accurate to about 0.003%. Three terms must be
included.

Estimate the largest value of x that allows e to be
approximated to 1% accuracy by the following partial
sum

e* ~1+x.

Here is a table of values:

- v )

x difference 1+x X

e 0.20000 1.20000 1.221402758 1.78

e 0.19000 1.19000 1.209249598 1.62

e (.18000 1.18000 1.197217363 1.46

e 0.17000 1.17000 1.185304851 1.31

e 0.15000 1.15000 1.161834243 1.03

e 0.14000 1.14000 1.150273799 0.90

e 0.14500 1.14500 1.156039570 0.96

o 0.14777 1.14777 1.159246239 0.9999
e By trial and error, 1% accuracy is obtained

with x < 0.14777.

A= -/

Estimate the largest value of x that allows e to be
approximated to 0.01% accuracy by the following
partial sum
2
X
X A~ ~
e ~1+x+ TR

13.
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Here is a table of values, calculated with Excel:

ﬁ % differencm

1+x eX

0.1000 1.1050000 1.105170918 0.015467699
0.2000 1.2200000 1.221402758 0.114980177
0.0900 1.0940500 1.094174284 0.011359966
0.0800 1.0832000 1.083287068 0.008038005
0.0850 1.0886125 1.088717067 0.009605502
0.0860 1.0896980 1.089806328 0.009941131
0.0870 1.0907845 1.090896680 0.010284315
0.0869 1.0906758 1.090787596 0.010249655
0.0868 1.0905671 1.090678522 0.010215070
0.0865 1.0902411 1.090351368 0.010111774
0.0864 1.0901325 1.090242338 0.010077494
0.0863 1.0900238 1.090133319 0.010043289
0.0862 1.0899152 1.090024311 0.010009161
0.0861 1.0898066 1.089915314 0.009975108
By trial and error, 0.01% accuracy is obtained

Qith X < 0.0861. /

Find two different Taylor series to represent the
function

1
fx) = -

X
such that one series is

f@ =ao+aix — D) +axx— D>+
and the other is
F(x) =bo+bi(x —2) +b3(x —2)> +---

Show that b, = a, /2" for any value of n. Find the
interval of convergence for each series (the ratio test
may be used). Which series must you use in the vicinity
of x = 3?7 Why? Find the Taylor series in powers of
(x — 10) that represents the function In (x).

1
;=ao+a1(x—1>+az(x—1>2+---

ao—l—l
1
a]=—i =—1
x2|,
1 /2
w=5 (%)) =
1 /6
w= ()], =

The coefficients follow a regular pattern so that
n 1 2
ap=(—1) )—Czl—(x—l)+(x—l)

—x =D+ =D+
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The function is not analytic at x = 0, so the interval
of convergence is 0 < x < 2

1
;=bo+b1(x—2)+b2(x—2)2+---

11
b = - = —
0= 3272

1 1

2

2
b2: —3
o ] 1
7T T , 16

The coefficients follow a regular pattern so that

1 a
by=(=1D'"5 =2
L] 1( 1>+1< 1)?
x 2 1™ g

R LA |
16 32

The function is not analytic at x = 0, so the interval
of convergence is 0 < x < 4. The second series must
be used for x = 3, since this value of x is outside the
region of convergence of the first series.

14. Find the Taylor series in powers of (x — 5) that
represents the function In (x).

1 d
In(x) =In(5) + —'aln (x) .
! In
+ ;d p (x)
d 1 1
— In (x) = — = -
dx x=5 Xlx=5 5
The derivatives follow a regular pattern:
(dnf _ (_])nfl(”_l)!
dx” x=1 x" x=5
(=D — 1)
= 5—}1
R I N Vi
an = =
nls" n5"
In () = In @)+ gx—gox’ b oo’ - et
n n S 3
* 750" 3750 T 2500

15. Using the Maclaurm series for e*, show that the
derivative of ¢* is equal to e*.

x2 x3 x4
ex=1+x+—+§+—+
d . O+1+2x+3x +4x+
—e e —_— —_— —_—
dx 200 31 4
2 3
X X
=l4+x+++- et

21 3!

e85

16. Find the Maclaurin series that represents cosh (x).
What is its radius of convergence?

h B x 1 ] x2 X3
cos (x)——(e+ )— ~|—x—|—5+§
x4 { x2 X3
+E +--+1=x+ 230
4
+4' + - )
2 4
X X
= — (2422 4027 ...
2( + 2! + 4! + )
x2  x* xf
=1+ bl + — + o + -
Apply the ratio test:
i il _ x*/(2n)!
r = 1my e 7 = 1My — o0 m
i x2(2n —2)!
=lim, 00 —————
T e
I x
= lim,, - _——
" 2n)2n — 1)

The series converges for any finite value of x.
17. Find the Taylor series for sin (x), expanding around
/2.

sin (x) = ag + a1(x — 7/2) + ar(x — 7/2)?
+az(x —7/2)° +

ap = sin (71/2) =1

n

a, = i sin (x) o
df
o cos (x)
aj = cos (n/2) =0
d2
KJ; = —sin(x)
1 . 1
a) = 5 sin (n/Z) =~
d3
dx_]; = —cos (x)
1
a3 = —3; cos (7/2) =0
d4—
K{: = sin (x)

[
as = 4—!s1n (r/2) = 2
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18.

19.

20.

There is a pattern. Only even values of n occur,and
signs alternate.

g ] 2, -
sin(x) = 1 = 5 =7/2)" + 7 (x = 7/2)

1 6
—a(x —m/2)° +

Find the interval of convergence for the series for
sin (x).
1 3 1 5 1 7
sm(x)—x—gx +§x —ﬁx + .-
Apply the alternating series test. Each term is smaller
than the previous term if x is finite and if you go far
enough into the series. The series converges for all
finite values of x.
Find the interval of convergence for the series for
cos (x).

x2 x*t «x®

COS(X)_1_§+Z_E+
Apply the alternating series test. Each term is smaller
than the previous term if x is finite and if you go far
enough into the series. The series converges for all
finite values of x.
Prove the following fact about power series: If two
power series in the same independent variable are
equal to each other for all values of the independent
variable, then any coefficient in one series is equal to
the corresponding coefficient of the other series.

ao+a1x+a2x2+a3x3 cee

Since this equality is valid for all values of x, it is value
forx =0:
ap = by

Since all derivatives are assume to exist, take the first
derivative:

ap +2a2x~|—3a3x2+--- = by —|—2b2x+3b3x2+~-~
This must be valid for x = 0
a; = b
Take the second derivative
2ay + 6azx + - -- = 2by + 6b3x + - - -
This must be valid for x = 0

ar» = by

Continue with more derivatives, setting each derivative
equal toits value for x = 0. The result s that, for every
value of n > O:

a, = b,

= bo+b1x+byx*4b3x>+- -
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21. Using the Maclaurin series, show that

X1
/e‘vdxzexxlze’”—l
0
0
3 4
X X
o= [ (1 AL A dx
/Oex <+x+ +3'+4'+ )
2 o x]
B ( +7+(3)2'+<4>3!+”'>o
e +x3+x4+ —1
S TR TR

=e1 -1

22. Using the Maclaurin series, show that

X1 1
= —sin (axy)
a

X1 1
/ cos (ax)dx = — sin (x)
0 a

0

X1
/ cos (ax)dx
0

I (aJC)2 (ax)*  (ax)®
/0 <1 T T e "

a4x5 (16)67
- < (3)2' 54 (16! +) .
1
a
l

..)dx

Cl3x3 a5x5 Cl7x7
R T I TR

= —sin (axy)

23. Find the first few terms of the two-variable Maclaurin
series representing the function

fx.y) =sin(x +y)

f(0,0) =sin(0) =0

af _ _
— = cos(x + y)pog=1
ox y ’
0,0
ad
<B_f> = cos(x + y)po =1
Y/ x 0,0
3?2 f )
= —sin(x +y)lgo =1
82f> .
— = —sin(x + y)|po =0
(8x2 0.0
3 f
(T ——
> f
<8y8x2> 0,0 =~ (eoset y))}o,o -
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3f

<8y28x> 0,0 = (oot Y>)|o,o =
*f ,

(5807 )|, = G+ oy =0
f

(W) . = (COS (.X' +y))|0’0 =1

There is a pattern. If n 4+ m is even, the derivative
vanishes. If n +m is odd, the derivative has magnitude
1 with alternating signs.

. 1
sin(x+y)=x+y— ﬁ(xzy + xy%)
I 23 3.2 L 43 3.4
—i-ﬁ(x v +x7y )—ﬁ(x Y A+xTy )+
24. Find the first few terms of the two-variable Taylor

series:

oo o0

In(y) =YY amnlx — D"y — )"

m=0n=0

1, =In(1)=0

<8_> I R R

ox /, 00 Wl Xl

(ﬂ) I I Y R
0y / 0,0 XYl Y

e87

2f B 1 o
3y )11 B 2
3 1
G TR
dx3 1,1 y?

There is a pattern: All of the mixed derivatives vanish.
af _(9"f
ax" )4 — \axn

The series is

1,1

=2
1,1

=—(=1"(n—1)

1,1

1
In (xy) = 1+1—(x—1)—(y—l)+§[(x—1)2
1
—1)?1- =
+(@ —D7] 3
This is the same as the sum of the two series
1 2, 1 3
Inx) =xx—-1D—-—=x—-D"+=-(x—-1)
2 3
1
_Z(x_1)4_|_...
1 2
In(x) =@G-1- E(y—l)
lo--to-nts
3 y 4 y
This could have been deduced from the fact that

In (xy) = In (x) +1In (y)
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Functional Series and Integral Transforms

EXERCISES

Exercise 11.1. Using trigonometric identities, show that
the basis functions in the series in Eq. (11.1) are periodic
with period 2L.

We need to show for arbitrary n that

; |:nn(x2— 2L)] — sin (me>

and

|:nn(x+2L)] (nnx)
cos| ——— | =cos (—
L L

From a trigonometric identity

. [ nr(x +2L) ni(x)
sin| —— [ = sin cos[2nr]
L L
nw(x) ] .
+ cos sin (2ni)
L
. [nn(x)]
= sin
L
This result follows from the facts that
cos[2nm] =1
sin (2nw) = 0
Similarly,
nm(x +2L) nw(x)
0S| ——— = | = cos cos[2n]
L L
. nmro) |
+ sin sin (2n1)
|:nn(x)i|
= cos
L

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00035-5
© 2013 Elsevier Inc. All rights reserved.

Exercise 11.2. Sketch a rough graph of the product

cos (Z*) sin (Z*) from 0 to 27 and convince yourself that
its integral from —L to L vanishes. For purposes of the

graph, we let u = x /L, so that we plot from —m to 7.

Here is an accurate graph showing the sine, the cosine,
and the product. It is apparent that the negative area of the
product cancels the positive area.

D@

— Nl ss——CO5{U) s sin{u}cos(u}

Exercise 11.3. Show that Eq. (11.15) is correct.

/_LL £(x)sin <m2x>dx _ nian f_;os(%)

By orthogonality, all of the integrals vanish except the
integral with two sines and m = n. This integral equals L.
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/_if(x)sin(%)dx = b, L

1 L . /nmXx
b, = Z/_Lf(x)sm(T)dx

Exercise 11.4. Show that the a,, coefficients for the series
representing the function in the previous example all vanish.

1 L 2

Integrate by parts: Letu = x, du = dx, dv = (dv/dx)dx =
cos (nwx/L)dx, v = (L/nm)sin (nwx/L)

/udv:uv—/vdu

L
/Lxcos (%) dx = x <%) sin (nwx/L) »
L L . /nmXx
— <E) [L sin (T) dx
(5 ) oms
— | [n7 sin (n)
nmw

—nm sin ( — nw)]
L nmwx
() s ()
L
=0+ (—) [cos (nr)
nmw

—cos(—nm)] =0

L

L

—L

Exercise 11.5. Find the Fourier cosine series for the even
function
for— L <x < L.

Jx) = |x|

Sketch a graph of the periodic function that is represented
by the series. This is an even function, so the b coefficients
vanish.

0
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L .
= <—) [nm sin (nw) — nw
nw

L
sin (0)] + (%) (cos (WTX)

0

=0+ <i> [cos (nm) — cos (0)]
nw

L
<—> [(— D" —1]
nw

L L ;
x| =5+;<E>[(_1) ) —1]

(nnx>
X COS | ——
L

Exercise 11.6. Derive the orthogonality relation expressed

above.
/L (imnx * (innx)
exp exp dx
_L L L
/L [ (mnx) . (mrrx)]
= cos — i sin
_L L L
nmwx . /NTX
[cos (—) + i sin (—)] dx
L L
/L mmx nwTx
= cos ( ) cos (—) dx
L L L
L
. . /muXx nmwx
—1 X sin ( ) cos (—) dx
/4 L L
L
mmwx\ . (NTX
—l—i/ cos( )sm (—) dx
_L L L
L mmx\ . /nmx
+/ sin ( ) sin (—) dx
_L L L

=08mnL —i x04+ix0+48,,L =26,,L

We have looked up the integrals in the table of definite
integrals.

Exercise 11.7. Construct a graph with the function f from
the previous example and ¢ v/1 on the same graph. Leta =
1 for your graph. Comment on how well the partial sum
with one term approximates the function.

f= x% — x ~ —0.258012 sin (x)

Here is the graph, constructed with Excel:
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Exercise 11.8. Find the Fourier transform of the function

f(x) = e I Since this is an even function, you can use
the one-sided cosine transform.

Fk) = \/g/ooo e cos (kx)dx

This integral is found in the table of definite integrals:

F(k)—\/T/OO ~* cos (kx)d —\/7 !
Vil e cos (kx)dx =/~

Exercise 11.9. Repeat the calculation of the previous
example with @ = 0.500 s~!, » = 5.00 s~' Show that
a narrower line width occurs.

The Fourier transform is:

Fw) 2 2abw
w) = ——

V7 [a? + (b — w)?][a? + (b + w)?]
Flw) = 2 (5.00 s o

V7 [0.250 572 4 (5.00 s~ — )2][0.250 =2 + (5.00 s~ + w)?]

Here is the graph of the transform, ignoring a constant

factor:
09

08

0.7

06

[
N [ ]\
[ A

0.1

I
0 1 2 3 4 5 € 7 8 9 10

0

Exercise 11.10. Find the Laplace transform of the function
f(t) = %" where a is a constant.

o0 o0
F(s) = / e dr = / @91 gy
0 0

1 o0
— e(a—x)t
a—=Ss

0

Ifa—s <0,

1 1
F)=—0-1=—

as shown in Table 11.1. If a — s > 0, the integral diverges
and the Laplace transform is not defined.

Exercise 11.11. Derive the version of Eq. (11.49) for
n = 2. Apply the derivative theorem to the first derivative

,C{dzf/dtz} — E{f(Z)} — Sﬁ{f(l)} _ f(l)(O)
sIsC{fY = £/ O] = P 0)
= S2L{f) - sf'©) — DO

Exercise 11.12. Find the Laplace transform of the function
@) =t"e".

where n is an integer.

[e'9) ']
F(S) — / tne(a—s)tdt :/ l‘ne_bt
0 0

1 /OO n g n! n!
_— u e u = =
pn+l 0 pn+l (s — a)ﬂ+1

dr =

where b = s — a and where u = bt and where we have
used Eq. (1) of Appendix F.

Exercise 11.13. Find the inverse Laplace transform of

1
s(s2 4+ k2)°

We recognize k/(s> + k?) as the Laplace transform of
cos (kt), so that
1 kt
_r cos (kt)
52+ k2 k

From the integral theorem

1 [t 1 .
E{E/O cos(ku)du}:ﬁ{ﬁsm(kt)}

_lﬁ{cos(kt)}_ 1

s k T oks(s?2 +k2)
1 . 1

L{;Sln(kl)}—m

-1 1 _1 .

L {—s(s2+k2)}_k51n(kt)
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PROBLEMS
1. Find the Fourier series that represents the square wave
A() = —Ag T <t<0
Ag O0<r<T,

where A is a constant and 7'is the period. Make graphs
of the first two partial sums. This is an odd function,
so we will have a sine series:

a, =0

b, = 4 = Ao
P P

[ () ()

_ Ao d Ay (T
=7 <n7‘r>/nﬂ sin (u) u+?(E>

nm
X / sin (u)du
0
Ag

Ay

= —J[cos(0) —cos(—nm)] — —
ni nmw
x[cos (nmr) — cos (0)]
2A0 2A0

= ——[cos (0)—cos (nm)] =—[1 — (=D"]
nw nmw

o0

A0 =Y %[1 — (= D)"]sin <"Tm>

n=1

4A¢0 . Tt n 4A¢0 . 3t 4
= —sin| — —sin [ —
b4 T 3 T

where we have let u = nwt/T and dt = (T /nm)du
and have used the fact that the cosine is an even
function. Here is a graph that shows the first term (the
first partial sum), the second term, and the sum of these
two terms (the second partial sum):

HI/AAN
/NN e
+\/4 W
\U W/

U&)U

wesUm of first two terms

For the graph, we have let Ag equal unity.
2. Find the Fourier series to represent the function
—1 if—L<x<-=L/2
f)= 1 if—L/)2<x<LJ2
-1 ifL/2<x<L

Mathematics for Physical Chemistry

Construct a graph showing the first three terms of
the series and the third partial sum. This is an even
function, so the Fourier series will be a cosine series.

—L)2
ap = / fx)dx = — (— 1dx

2L 2 2
1 L 1 —L/2
an =7 _Lf(x)cos(—)dx=zf_L (—1)
nwx 1 [L2
X COS (—)dx —/ (1) cos (—) dx
L LJ_rp
1 L
X — (—1)cos(w)dx
L2
nwx Lu
U = s du =—dxx——dx——du
L nmw

1 L —mr/2
a, = —<—> |:/ (—1)cos (u)du
L \nm _n

nw/2 nmw
+/ (1) cos (u)du—i—/ (— 1) cos (u)dui|

—nm/2 nmw/2

= (L) [— sin <_nn)+sin (— nmw)+sin (ﬂ)
niw 2 2
—sin (_—nn) — sin (n7) + sin (E)}
2 2

We use the fact the sine is an odd function:

ap = (%) [sin (n2 ) + 0 + sin (n2 ) + sin <n27r>
—o+sin ()] = ()[4 (5)]
sin (nmr/2) follows the pattern 0,1,0, — 1,0,1,0, —

1, ... so that the even values of n produce vanishing
terms. The Fourier series is

The following graph shows the first three terms and the
third partial sums. For this graph, we have let L = 1.
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DA
¥ N AGAS NN
./ /

-

e {irst term ssssmsecond term sssssthird term ssss=third partial sum

Note that we have the typical overshoot at the
discontinuity in the function.
. Find the Fourier series to represent the function

—lx/Ll  _
A(r) = e L<t<L
0 elsewhere

Your series will be periodic and will represent the
function only in the region —L < t < L. Since the
function is even, the series will be a cosine series.

1 (L 1 [L
ap = —/ fx)dx = —/ e/ dx
2L ), L Jo

L
- e—x/L‘O — (e = ==e
= 0.6321206
1 (L I (me)d
= — cos [ —
a, ), X 2 X

a, =

(2 exp (—u/nm)
_<E> (l)2+1

nmw

X [<_—1) cos (u) + sin (u)]:|
niw o

where we have used Eq. (50) of Appendix E.

2 exp (—1) 1
= (i) [m (7)o

nmw

+ sin (nn)]

Gl

nmw

-<_—1> cos (0)
|\ nm

+ sin (0)}

4.
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:(ef)g_:)l () - (_”"”

nmw

> -
@i )

nmw

_< 2 >-(—1)”+1e_1+1i|
=\ 2.2 2
L G
1 -4
P <—2> = 2| 2 0.1258445
T ;4‘1

1 —e 41
a = <_2> = —oanssn
4 - +1

_ [ 2
f(x)=(1—eL>+;<m>

(—Drtle=l — 1 nTx
x | ——————— | cos (—)
G 10

nmw

2 —e 11 TX
= 0.6321206 +<—> ———|cos ([ —
2 |: (%)2 +1 j| ( L )

+(2)[ | }COS<2M>+
) 2nx
) L) +1 L
X
— 0.6321206 + 0.1258445 cos (T)

+0.1115872cos 2mx) + - -+

For purposes of a graph, we let L = 1. The following
graph shows the function and the third partial sum. It
appears that a larger partial sum would be needed for
adequate accuracy.

1.2

0

0 0.1 02 0.3 0.4 05 06 07 08 09 1

Find the one-sided Fourier cosine transform of the
function f(x) = xe™ .

2 o
Fk) = — / xe ¥ cos (kx)dx
( V2 Jo (
a2 _ k2
T @+ k)2
where have used Eq. (41) of Appendix F.
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S. Find the one-sided Fourier sine transform of the These integrals are the same as for the transform
function f(x) = “—. of e™
kxo) 2 1 j sin (k
, - Fl) = cos( Xx0) 2 e_kz/4 n i sin (kxq)
Fk) = —— / sin (kx) Vim V2 Vi
27 Jo * x—2 1 Jre_kz/ 4
[2 J
dx =,/ — arctan (%) ) 22
T .. —k? /4
= cos (kxg) + i sin (k
Zﬁ[ (kxg) + i (kxp)]e
where have used Eq. (33) of Appendix F. b ik k2
6. Find the Fourier transform of the function exp[—(x — ) JT e e

x0)%] where a and b are constants. ) ) ) )
7. Find the one-sided Fourier sine transform of the

function ae™%*

F(k) = f expl—(x — x0)?]e "+ dx.
N Fk) = \/j / * sin (kx)dx

a
2
Letu =x —x9, x =u+ xg = b2 e
+

where we have used Eq. (26) of Appendix F.
8. Find the one-sided Fourier cosine transform of the
function a/(b2 +12).

cos(a)t) 2 T o_

F(k) = e~ gmikutx0) g

=1
r/

¢ cos [k(u + xp)]dx

¢~ sin [k(u + x0)]dx

\/ 2 aw
= — /—e
= —— / ¢ cos (ku) cos (kxo)dx “hV2
v 27{ _OOOO where we have used Eq. (14) of Appendix F.
— = e sin (ku) sin (kxg)dx 9. fuiggﬁglllef(zz(;-sid;:;i_fz())clzlrier sine transform of the
A/ —00 = .
i > 2
+ e " sin (ku) cos (kxg)dx 5 [0
V21 J o Fk) =,/ — / xe= @ sin (kx)dx
i o0 2 .
i oz S (orsin o) — \/7 m«/_ —k?/(4a?) _ _kﬁefk2/<4a2)
- PR
frd M > efuz Ccos (kM)dx 4a 4a
V2 PSS where we have used Eq. (42) of Appendix F.
sin (xo) [ _ - 10. Show that L{z cos (at)} = (s> — a*) /(s> + a*)?.
- N e " sin (ku)dx
T 00 . S2 _ a2
+i COS (kxo) /‘OO 7142 . (k )dx /O\ te st COS (at)dt = m
_— e " sin (ku
.. o where we have used Eq. (41) of Appendix F.
i sin (xq) 2 .
T e " cos (ku)dx 11. Find the Laplace transform of cos” (at).
T —00
00 2 2
2
/ e % cos? (ax)dx = %
The integrals with sin (x) vanish since the integrands 0 s(s7 + 2a%)

are odd functions: where we have used Eq. (43) of Appendix F

12. Find the Laplace transform of sin? (at).

F cos (kxg) /‘X’ 2 (ki) + i sin (kxg) )
= — e " cos (ku —_— o0
2r ) V2w / e sin? (ax)dx = _
0 s(s2 +2a?)

oo
X / e cos (ku)dx )
—c0 where we have used Eq. (44) of Appendix F.
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13. Use the derivative theorem to derive the Laplace
transform of cos (at) from the Laplace transform of

sin (at).
d sin (ax)
——— =acos (ax)
dx
r d . —-r
3 sin (at)t = L{acos (at)}

= sL{sin (at)} — sin (0)
as

52 + 02
s

E{COS (at)} m

14. Find the inverse Laplace transform of 1/ (s2—a?). We
recognize this as

1 1 s 1
S = R = ;L‘{cosh (at)}

From the integral theorem

t
L {f cosh (au)du} = %E{cosh (at)}
0

1 s . !
L {—s(sz—az)} _/0 cosh (ay)dy

t

1 1
= —sinh (au)| = — sinh (at)
a a

0

in agreement with Table 11.1.

e95
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Differential Equations

EXERCISES

Exercise 12.1. An object falling in a vacuum near the
surface of the earth experiences a gravitational force in the
z direction given by

F,=—mg

where g is called the acceleration due to gravity, and is equal
t0 9.80 m s~2. This corresponds to a constant acceleration

a; = —§

Find the expression for the position of the particle as a
function of time. Find the position of the particle at time
t = 1.00 s if its initial position is z(0) = 10.00 m and its
initial velocity is v, (0) = 0.00 m s~!

A |
vz () —v:(0) = /0 az(ndt = —/0 gdr = —gn

v (1) = —gn

15 %) 1 2
2z(t2) —z(0) = / v (t)dty = —/ gndn = —ngz
0 0

L,
z2(tr) = z(0) — ngz

1
2(10.00 s) = 10.00 m — (§> (9.80 m s2)(1.00 s)>

10.L00m —4.90m =5.10m

Exercise 12.2. Find the general solution to the differential
equation

d?y dy
— —=3—=4+2y=0
o a7
Substitution of the trial solution y = e** gives the
equation
A2t —3pe™ +2eM =0

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00036-7
© 2013 Elsevier Inc. All rights reserved.

Division by e** gives the characteristic equation.
A=31+2=0

This quadratic equation can be factored:
A=DAr-=2)=0

The solutions to this equation are

A=1, A=2.

The general solution to the differential equation is

y(x) = cre’ + cre™

Exercise 12.3. Show that the function of Eq. (12.21)
satisfies Eq. (12.9).

z = by cos (wt) + by sin (wt)

d
a—i = —wb sin (wt) + wb; cos (wt)
8_2Z — —w?bi cos (wt) — w*by sin (wt)
arr ! ?
d*z 2 ;
meog = —o'm [b1 cos (wt) + by sin (w1)]

Exercise 12.4. The frequency of vibration of the H>
molecule is 1.3194 x 10'* s~!. Find the value of the force

constant.
(1.0078 gmol™ )2 /' 1kg
/’LNAU - 1
2(1.0078 g mol~") \ 1000 g
= 5.039 x 10~* kg mol™!
5.039 x 10~* kg mol ™!
= X SO 367 x 102 ke

6.02214 x 1023 mol !

k= Qv = [27(1.3194 x 10 s~ H]?
(8.367 x 1072 kg) = 575.1 Nm™!
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Exercise 12.5. According to quantum mechanics, the
energy of a harmonic oscillator is quantized. That is, it can
take on only one of a certain set of values, given by

1
E=h —
v<v+2)

where £ is Planck’s constant, equal to 6.62608 x 10734) s,
v is the frequency and v is a quantum number, which can
equal 0,1,2, ... The frequency of oscillation of a hydrogen
molecule is 1.319 x 104 s~! If a classical harmonic
oscillator having this frequency happens to have an energy
equal to the v = 1 quantum energy, find this energy. What
is the maximum value that its kinetic energy can have in this
state? What is the maximum value that its potential energy
can have? What is the value of the kinetic energy when the
potential energy has its maximum value?

E =hv(3) = 3(6.62608x 1073 T 5)(1.319x 10'* s~ 1)
=1311x107"7

This is the maximum value of the kinetic energy and also the
maximum value of the potential energy. When the potential
energy is equal to this value, the kinetic energy vanishes.

Exercise 12.6. Show that *!” does satisfy the differential

equation.
dz ' d’z
= kr=m (==
TR dr?

—eneM —keMt = mage!

Divide by ¢!’ and substitute the expression for A1 into the
equation

2 _ 4k
N (¢/m) /m

AT 2 B
3 2
c (;/m) —4dk/m
=m| —— 4+
2m 2
2 &y (g/m)’ —dk/m )
om 2 h
. <i>2 /@ /m)? — 4k jm
- 2m 2m
1
+5 ((g“/m)z —4k/m):|
2 (e m >
So—k=m (2—) +7 [(g“/m) —4k/m]
SRS
otk
;2
= % —

Mathematics for Physical Chemistry

Exercise 12.7. If z(0) = zo and if v,(0) = 0, express the
constants b and b, in terms of z.

2(t) = [bi cos (wt) + by sin (wt)] e~ ¢1/>"

2(0) = b1 =20

() = [bl cos (wt) + by sin (a)t)] (2__§> —t/2m
m

+ [—b1wsin (wr) + byw cos (w) ] e 5t/2m

v(0) = by <%> + brw =0

big _ b

by =

2mw  2mw

Exercise 12.8. Substitute this trial solution into Eg.
(12.39), using the condition of Eq. (12.40), and show that
the equation is satisfied.

The trial solution is

2(1) =t

We substitute the trial solution into this equation and show
that it is a valid equation.

dz e d’z
“a T
—¢ [e)" + Me)"] —kte™ = m [)»e“ + reM + )»zte)"]

Divide by me*!

—£[1+tk]—£t:2k+tk2
m m

Replace k/m by (¢ /2m)?

2
Sty <i> t=2xn+122
m 2m

¢ ¢\’ . 2
——R42tA] == | t=2141Ar
m 2m
Let¢/2m =u

Wt 424200 u+20+ 1A% =0
A2+ Qiu+2)r+u’t+2u =0

Exercise 12.9. Locate the time at which z attains its
maximum value and find the maximum value. The
maximum occurs where dz/dr = 0.

cze“ + cztkem =0
Divide by e*!

1.00ms™ '+ (1.00m s ) (=1.00s Hr =0
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At the maximum
t=1.00s

2(1.00s) = (1.00 ms™ 1) [(1.00 s~ H(r =1.00 s)]

exp [—(1.00 st = 1.00 s)]
= (1.00 m)e~ "% = 0.3679 m

Exercise 12.10. If z.(z) is a general solution to the
complementary equation and z , (¢) is a particular solution to
the inhomogeneous equation, show that z. 4z, is a solution
to the inhomogeneous equation of Eq. (12.1).

Since z. satisfies the complementary equation

a3 Zc
dr3

dzzc
dr?

dze
[ —E + () —= + fl(l)d_zt -0

Since z, satisfies the inhomogeneous equation
d’z, d’z, dz,
t)——= 1)—F t)— =gt
BOZF+ LOZF + h—E = 50)

Add these two equations

d3 d?
f3(t)@(zc +zp)+ fZ(t)@(Zc +2,)

d
+f1(t)a(zc +2zp) = g()

Exercise 12.11. Find an expression for the initial velocity.

dz d . Fy .
v (1) = P |:b2 sin (wt) + —m(a)2 — 2 sin (at)i|
= bywcos (wt) + & cos (at)
m(w? — a?)

Foo
v:(0) = bhow + 0

m(w? — a?)

Exercise 12.12. In a second-order chemical reaction
involving one reactant and having no back reaction,

de
—— =k
dr
Solve this differential equation by separation of variables.
Do a definite integration from ¢t = 0 tot = 17.

1
——dc =kdt
2
c) q 1 1 t
_/ _zdc:—— :k/ dr = kt;
c0) ¢ c(t1) (o) 0
1 1
= + kt
) ci)

Exercise 12.13. Solve the equation (4x+y)dx+x dy = 0.
Check for exactness

d
— =1
dy(x+y)
]d()—l
X) =

The Pfaffian form is the differential of a function f =
fx.y)

X1 Y1

f&xy) — f(xo,50) = / x1dy

X0

(4x + yo)dx + /
Yo

- [2x2 + yox]‘:) + x1y13,
2x7 4 yox1 — 2x5 — YoXo + x1y1 — X1y0 =0
2x7 — 2x¢ — yoxo + x1y1 =0
We regard xg and yq as constants
2x12 +x1y1+k=0
We drop the subscripts and solve for y as a function of x.
xy = —k— 2x2

y=—-———2x
x

This is a solution, but an additional condition would be
required to evaluate k. Verify that this is a solution:
d k
_r_,
dx  x2

From the original equation

d 4 1 k
dx X X X X

k k
At 42=— -2
5 t2=5

Exercise 12.14. Show that 1/y? is an integrating factors
for the equation in the previous example and show that it
leads to the same solution.

After multiplication by 1/y? the Pfaffian form is

I
—dv — Sdy =0
vy

This is an exact differential of a function f = f(x,y), since

Fumq 1
ay 1o 2

Fewﬁq 1
y

ox y2



fxy1) — f(xo0,¥0)

I
—
S =
=] -

o

oy

|
o~
< —

|><

ol =

o
<

I

= — — — — — — =0
Yo Yo Y Yo
=0y
X0 X

We regard xp and yg as constants, so that

y_ _y
X Xp

where k is a constant. We solve for y in terms of x to obtain
the same solution as in the example:

y =kx

Exercise 12.15. A certain violin string has a mass per unit
length of 20.00 mg cm™! and a length of 55.0 cm. Find the
tension force necessary to make it produce a fundamental
tone of A above middle C (440 oscillations per second =
440 s~! = 440 Hz).

nc (n) T\ '/?
V= — = _— —_—
2L 2L P

<2Lv)2
p —
n
1k 100
(20.00 mg cm™) £ ‘n
10° mg Im

(2(0.550 m) (440 s_1)>2
1

=468.5kgms?
~ 469 N

Exercise 12.16. Find the speed of propagation of a
traveling wave in an infinite string with the same mass per
unit length and the same tension force as the violin string
in the previous exercise.

T _ 469 N 10° mg \ 1'/2
o — [ \20.00 mg cm~! 1'kg

=4843 ms~! ~ 4840 m s~

CcC =

Exercise 12.17. Obtain the solution of Eq. (12.1) in the
case of critical damping, using Laplace transforms.
The equation is

Mathematics for Physical Chemistry

From the example in Chapter 11 we have the Laplace
transform

Z(1)(())
(2 +a)? + w?
az(0) + z(V(0)
(s +a)?+w?’

z(0)(s + 2a)

- (s +a)? + w?
z(0)(s +a)

- (s +a)? + w?

where

k
2 _ 2
2m m

so that

z0(0) + az(0)

7 z(0)(s +a)
(s +a)?

(s +a)?

From Table 11.1 we have

From the shifting theorem
L{e " f()} = F(s+a)
so that

zM(0) + az(0) ot

_ —at
) = 2O + T

Except for the symbols for the constants, this is the same
as the solution in the text.

Exercise 12.18. The differential equation for a second-
order chemical reaction without back reaction is

d_c = —kc?,

dr
where c is the concentration of the single reactant and k
is the rate constant. Set up an Excel spreadsheet to carry
out Euler’s method for this differential equation. Carry out
the calculation for the initial concentration 1.000 mol 17},
k = 1.000 1 mol~!s~! for a time of 2.000 s and for At =
0.100 s. Compare your result with the correct answer.

Here are the numbers from the spreadsheet
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/ time/s concentration/mol |~ \

0.0 1

0.1 0.9

0.2 0.819

0.3 0.7519239
0.4 0.695384945
0.5 0.647028923
0.6 0.60516428
0.7 0.568541899
0.8 0.53621791
0.9 0.507464946
1.0 0.481712878
1.1 0.458508149
1.2 0.437485176
1.3 0.418345849
1.4 0.400844524
1.5 0.38477689
1.6 0.369971565
1.7 0.356283669
1.8 0.343589864
1.9 0.331784464

K 2.0 0.320776371 J

The result of the spreadsheet calculation is

c(t) ~ 0.3208 mol 17!

Solving the differential equation by separation of variables:

dc
— = —kdt

C
1|€® 1 1

c

c(0) _%4— (1)

1 1

— = ———— 1+ (1.0001mol~" s71) (2.000 s

c(t)  1.000 moll™! ( )( )
= 3.000 1 mol ™!

c(t) = 0.3333 mol 1!

PROBLEMS

1. An object moves through a fluid in the x direction. The
only force acting on the object is a frictional force that
is proportional to the negative of the velocity:

dx
Fy=—Cvy=—¢ (E)

Write the equation of motion of the object. Find the
general solution to this equation, and obtain the par-
ticular solution that applies if x(0) = 0 and v,(0) =
vo = constant. Construct a graph of the position as a
function of time. The equation of motion is

d?x _ ¢ dx
a2 )= m\ar

The trial solution is

X :e)»t
¢

)\.26)”/‘ — __)\'e)ml
m

The characteristic equation is

x2+ix=o
m

0
iy
m

The general solution is

(=)
x=cyt+cexp|——
m

The velocity is

o E)on(-)
e

The solution is

mug
0 =——
¢
The initial position is
x0)=0=c+e
nmuvg
] = —
¢

The particular solution is

e ()
x=—|1—exp|——
¢ m

For the graph, we let mvy/¢ = 1,{/m = 1.



x{t)

2.

12

1

i

: /-
0.6 5
0.4
0.2

0

0 0.5 1 15 2 25 3 3.5 4
t/1second
A particle moves along the z axis. It is acted upon by

a constant gravitational force equal to —kmg , where
k is the unit vector in the z direction. It is also acted
on by a frictional force given by

d
F; = —k¢ <d—j>

where ¢ is a constant called a “friction constant.” Find
the equation of motion and obtain a general solution.
Find the particular solution for the case that z(0) = 0
and v, (0) = 0. Construct a graph of z as a function
of time for this case. The equation of motion is

d2z+§ dz _
a2 Tm\a) T8

d?z n dz b
—_ a _— —
dr? dt

L

where

a =

b=g

This is a linear inhomogeneous equation. The
complementary equation is

d?z ¢ (dz
a2 (=) =0
dr? +m (dt)

The trial solution to the complementary equation is
z=e
The characteristic equation is

2ila=o
m

This equation has the solution

=1

The solution to the complementary equation is

¢t
Z=1c]+ crexp —Z

S
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To find a particular solution, we apply the variation
of parameters method. From Table 12.1, the
recommended trial solution for a constant inhomo-
geneous term is a constant, A.

d’A L(dA)
a2 “Tm\ar )T 8

This won’t work, since the left-hand side of the

equation vanishes. We try the next trial solution

7= Ao+ At
substitution into the inhomogeneous equation gives

O+£A1 = -8
m

4 = M8
¢

Our solution is now

mgt gt
z=Ap+c1— —+cexp|——
¢ m

m\> Cam m
_ e t+C —¢t/m
(z) T (c)g >

The velocity is

where the constants would be evaluated to
suit a specific case. We consider the case that
z(0) = 0,v(0) = 0. From the velocity condition

v0) = -2 ¢, (5> -
¢ m
()
C = ¢ 8
mgt m\? ct
z=A0+ ——+<—> gexp(——)
¢ ¢ m

From the position condition
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-10 M

z(t) -

-25 \

-30

\\
-20

We construct a graph, assuming for convenience that
m/¢ = 1.
0

U3 s

TN

. .

N

N

t/1 second

Notice that the graph is nearly linear toward the
end of the graph, when the particle would have nearly
reached its terminal velocity.

. An object sliding on a solid surface experiences a

frictional force that is constant and in the opposite
direction to the velocity if the particle is moving, and is
zero it is not moving. Find the position of the particle as
afunction of time if it moves only in the x direction and
the initial position is x (0) = 0 and the initial velocity
is vx(0) = vp = constant. Proceed as though the
constant force were present at all times and then cut the
solution off at the point at which the velocity vanishes.
That is, just say that the particle is fixed after this time.
Construct a graph of x as a function of time for the case
that vg = 10.00 m s~!. The equation of motion is

d%x _ Fy
2~ m
Except for the symbols used, this is the same as

the equation of motion for a free-falling object. The
solution is

v = v(0) = fy a:0dr = — [ (%) ar
(2

15}
x(t2) — x(0) =/0 v(t)dr

5}
[ (-
0
n
=v(0)p — /
0

= v 2_2<m

|3
v
-~
o

For the case that x(0) = 0,

x(t) = —% <%) 1?

x(t)

4.

The time at which the velocity vanishes is given by

0 il

= Vo — (;) Istop
nuvo

tstop = TO

For a graph, we assume that
vo = 10.00 m s~'; m = 1.000 kg; Fo = 5.00 N

mvy  (1.000 kg) (10.00 m s~!)
Fy 5.00 kg m s—2

For this case

x=(10.00ms "y —1 (M)

=2.00s

Istop =

1.000 kg
2 =(10.00 m s™') 1 — (2.500 m s~2)12

[
o

: _...-F"""—f
8 /
7 //
6 /
5 /
P

4
3 /
2 /
4
0

0 0.5 1 1.5 2

t/1 second

A harmonic oscillator has a mass m = 0.300 kg and
a force constant k = 155 N m~!.

a. Find the period and the frequency of oscillation.

m 0.300 kg \'/?
=2r /= =2 ——"5) =0276
TN ”(155Nm—1> °

1 1

T 0276

b. Find the value of the friction constant ¢ necessary
to produce critical damping with this oscillator.
Find the value of the constant A. For critical
damping

¢\ k
(ﬁ) T m
|k
2m,| — =2~ km
m

2[(155 N m™") (0.300 kg)]1/2

=3.62s"!

13.6 kg s~!



For critical damping

13.6 kg s~
)\,z—iz— gS

= -2275""
2m 2(0.300 kg)

c. Construct a graph of the position of the oscillator
as a function of ¢ for the initial conditions
z(0) = 0,v,(0) = 0.100 m s~ .

2(t) = (c1 + cat)e
For these conditions

C1=0

v = 2™ + cathe’ = cr(1 + 1th)e!
v(0) = ¢, =0.100 m s~

z=(0.100 m s~ ") (r) exp[—(22.7 s~ 1)¢]

0.0018

0.0016

0.0014 / A\
0.0012 \
\

0.001

z(t)/1m
0.0008

0.0006 \
0.0004 \

0.0002

0 0.1 0.2 0.3 04 0.5
t/1 second

5. A less than critically damped harmonic oscillator
has a mass m = 0.3000 kg, a force constant
k = 9800 N m~' and a friction constant
¢ =1.000kgs!.

a. Find the circular frequency of oscillation w and
compare it with the frequency that would occur if
there were no damping.

_ [k (i)
@ = m_ 2m

2 1/2
| 98.00Nm™! 1.000 kg s~!
| 0.3000 kg 2 (0.3000 kg)
= 18.00 5"

Without damping

K [98.00Nm~'7"?
_ B2 g 76!
Y=V [ 0.3000 kg ] )
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b. Find the time required for the real exponential
factor in the solution to drop to one-half of its
valueatr =0.

e—;‘t/Zm _ 1
2
¢t
2 1n(0.5000) = In (2.000)
2m
| _ 2mIn2.000)
¢
2(0.300 kg) In (2.000
_ 2 g)In2000) _ o 1so
1.000 kg s—!

6. A forced harmonic oscillator with a circular frequency
w = 6.283 s~ (frequency v = 1.000 s~! is exposed
to an external force Fy sin («t) with circular frequency
o = 7.540 s~! such that in the solution of Eq. (12.5)
becomes

2(t) = sin (@f) + 0.100sin (@r)
— sin [(6.283 s*l)t]

+ (0.100) sin [(7.540 s_l)t]

Using Excel or Mathematica, make a graph of z()
for a time period of at least 20 s . Here is a graph
constructed with Excel:

0.1
0.08
0.06
0.04
0.02

-0.02

-0.04

- |

-0.1

7. A forced harmonic oscillator with mass m = 0.200 kg

and a circular frequency w = 6.283 s~! (frequency
v = 1.000 s~') is exposed to an external force
Foexp (—at) witha = 0.7540 s~! . Find the solution
to its equation of motion. Construct a graph of the
motion for several values of Fy. The solution to the
complementary equation is

zZe = by cos (wt) + by sin (wt)

Table 12.1 gives the trial particular solution

Zp — Ae—at

We need to substitute this into the differential equation

d>z  k d?z

Foexp (—at)
2 0 €Xp

= —_— a)Z
dr? m
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7t)

Adle ™ 4+ w?Ae™ = Foe™™!
m

Divide by e™%',
F{
Ad? + oA =2
m

Solve for A

T m@a? + o?)

The solution to the differential equation is

—b (0} ((()Z)+b2 i ( t) A A<
COS sin (w +

For our first graph, we take the case that by = 1.000 m,
by =0, and Fyp = 10.000 N
cos [(6.283)¢]
(10.000 N) exp [(0.7540 s~ 1)z ]
(0.300 kg) [(0.7540 s7hH?2 +(6.283 s—l)z]
cos[(6.283)¢] + 0.8324 exp[—(0.7540)¢]

Z

\

T W A
Anaiwawiwiwie
SV

-15
t/1 second

Other graphs will be similar.

. A tank contains a solution that is rapidly stirred, so

that it remains uniform at all times. A solution of the
same solute is flowing into the tank at a fixed rate of
flow, and an overflow pipe allows solution from the
tank to flow out at the same rate. If the solution flowing
in has a fixed concentration that is different from the
initial concentration in the tank, write and solve the
differential equation that governs the number of moles
of solute in the tank. The inlet pipe allows A moles per
hour to flow in and the overflow pipe allows Bn moles
per hour to flow out, where A and B are constants and
n is the number of moles of solute in the tank. Find the
values of A and B that correspond to a volume in the
tank of 100.0 1, an input of 1.000 1 h~! of a solution
with 1.000 mol I™!, and an output of 1.000 1 h=! of
the solution in the tank. Find the concentration in the
tank after 4.00 h, if the initial concentration is zero.

— =A—Bn
dr

This is an inhomogeneous
complementary equation is

equation. The

dn.

Bn.=0
a P
nC=Ce_B’

where C is a constant. The particular solution from
Table 12.1 is

np,=K
where K is a constant.
dK
— =0=A—- BK
dr
A
K = —
B

The general solution is

A
—Cce Bt L 2
n e + B
Atr=0,n=0
A
C=-=
B
A
)= —(1 — —Bt
n(t) B( e ")
The molar concentration is
n
C =
100.0 1
1.0001h~!
Bn = (1.0001h™ e = ——
100.0 1
= (0.0100 h™Yn
B = 0.0100 h™!
A = 1.000 mol h™!
A 1.000 mol h~!
ni) = =1—eBy=—"—" "
@ B( ) 0.0100 h~!

[1 — exp (—0.0100 h*lt)]
— (100.0 mol) [1 — exp (—0.0100 h_lt)]
Att=4.00h

n(4.00 h) = (100.0 mol) [1 — exp (—0.0400)]
= 3.92 mol

9. An nth-order chemical reaction with one reactant

obeys the differential equation

d
& —kc"
dr



where ¢ is the concentration of the reactant and k
is a constant. Solve this differential equation by
separation of variables. If the initial concentration
is co moles per liter, find an expression for the time
required for half of the reactant to react.

c(t) 1 1
/ —dc = —k/ dr
c0 " 0

c(t)

1 1 o
n—1 c¢+1 c(0) - !
1 1
- — kt

(n—1D @)™ (n—1) c(0)r+!

1 1

= — Dkt

T~ e T

For half of the original amount to react

on-l1 1
O T eyt~ (T D
-l
W = (n— l)kfl/z
=l
hyy =

(n — Dkc(0)n+1

10. Find the solution to the differential equation

d®y dy
— — = —2y=¢"
&2 a7
This is an inhomogeneous equation. The

complementary equation is

With the trial solution y = ¢**. The characteristic
equation for this differential equation is

AM—a—2=0=(x—-2(x+1
This has the solution

A={2
—1

Ve = cre® —cre ™

From Table 12.1, a particular solution is

yp — Aeax

d

D ae
dx

d2
Yp — aZAeotx

dx?
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d?y. d
d)cy2c B % =2y = a’Ae™ —aAe™ —2Ae% = ¢
Divide by e**
Al@®>—a—2) = &
ex(l—a)
A= ———
at—a-2
this can be a correct equation only if a — 1.
1
A=——
2
The solution is
y= c1e* — cre ™ — le"
2

11. Test the following equations for exactness, and solve
the exact equations:

a. (2 +xy+ yHdr + (4x% —2xy +3y»)dy =0
d » 2
— T+ xy+y7) =x+2y
dy

d 2 2
a(4x —2xy+3y°) =8x —y

Not exact
b.
ye*dx +e*dy =0
d X X
ay yet = e
d X X
ot =¢
This is exact. the Pfaffian form is the differential
of a function, f = f(x,y). Do a line integral as
in the example
X2 y2
/df:O:/ y1exdx+/ e“2dy
c X1 Y1
=yi(e? —e")+e2(y2—y) =0
= yi(=e') +e2(y2)
We regard x; and y; as constants, and drop the
subscripts on x3 and y;
ye* =C
y = Ce*
where C is a constant
c.

[2xy — cos (x)]dx + (x> — )dy = 0
dy  2xy—cos(x)
dx x2—1
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d
—[2xy —cos (x)] = 2x
dy

d 2
—x =1 =2x
dy

This is exact. the Pfaffian form is the differential
of a function, f = f(x,y). Do a line integral as in
the example

/df =0= /Xz[zxy1 — cos (x)]dx +/y2 (x3 — Ddy
c X1 y

1
=y (x% - xlz) — sin (xp) 4+ sin (x1) + (x% -1
(2 —y1)
= yi(—x}) — sin (x2) + sin (x1) + (& — D ()

We regard xjand yjas constants, and drop the
subscripts on x7 and y;

yx?—=1)—sin(x)=C

where C is a constant.

. C + sin (x)
Tox2-1

12. Use Mathematica to solve the differential equation

symbolically

d .
& +ycos(x) —e SN =0
dx

The solution is

X

_ — sin (x)
y=Ce + esin (x)

where C is constant.

13. Use Mathematica to obtain a numerical solution to
the differential equation in the previous problem for
the range 0 < x < 10 and for the initial condition
y(0) = 1. Evaluate the interpolating function for
several values of x and make a plot of the interpolating
function for the range 0 < x < 10.

sin (x)

dy _
— 4+ ycos(x) =e
dx

% + ycos (x) = e~ sin(¥)
y(0) =1

Here are the values for integer values of x fromx = 0
tox =10
1.0

0.86215
1.2084
3.4735
10.657
15.653
9.2565
4.1473
3.3463
6.6225
| 18.952

Here is a graph of the values

14. Solve the differential equation:

d2

Jﬁ — 4y =265 + sin (x)
This is an inhomogeneous
complementary equation is

equation and the

dzyc
dx2

—4y.=0

Take the trial solution of the complementary equation:

Ye = e

The solution of the complementary equation is

2 -2
Ve =cre” + e



To seek a particular solution, since we have two terms
in the inhomogeneous term, we try

yp = Ae® + Bcos (x) + C sin (x)

d d
d;; = ﬁ [Aae™ — Bsin (x) + C cos (x)]

= Ad*e™ — Bcos (x) — C sin (x)
Aa*e™ — Bcos (x) — Csin (x) — 4
[Ae™ + B cos (x) + Csin (x)] = 2¢** + sin (x)
—5Aa%e™ — 5B cos (x) — 5C sin (x) = 2¢>* + sin (x)
This be a valid equation only ifa =3 and B =0

9Ae>* — 4Ae>* — Csin (x) — 4C sin (x)
= 2¢%* + sin (x)
5A¢> — 5Csin (x) = 2¢>* + sin (x)
42
5
c-_1
5

The solution is

2
y = c1e® + e 4+ 23 — —sinx
5 5
2 1
= c1e® +cre + §e3x ~3 sin x

15. Radioactive nuclei decay according to the same
differential equation that governs first-order chemical
reactions. In living matter, the isotope '4C is
continually replaced as it decays, but it decays without
replacement beginning with the death of the organism.
The half-life of the isotope (the time required for half
of an initial sample to decay) is 5730 years. If a sample
of charcoal from an archaeological specimen exhibits
1.27 disintegrations of '*C per gram of carbon per
minute and wood recently taken from a living tree
exhibits 15.3 disintegrations of '*C per gram of
carbon per minute, estimate the age of the charcoal.

N(t) = N(0)e ¥
1

—kt1/22 =In(1/2=—-In(2)
In (2) In (2)
np | 5739y
The rate of disintegrations is proportional to the
number of atoms present:

— e—ktl/z

k = =1210x 1074 y~!

N .

N@O 12T 0830 = H

NO) 153

—kt = In (0.0830)
—1n (0.0830
= n( ) 206 x 10%
1210 x 104 y-1
— 20600 y
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16. A pendulum of length L oscillates in a vertical
plane. Assuming that the mass of the pendulum is all
concentrated at the end of the pendulum, show that it
obeys the differential equation

d2
L (59) = csne

where g is the acceleration due to gravity and ¢ is
the angle between the pendulum and the vertical.
This equation cannot be solved exactly. For small
oscillations such that

sin (@) ~ ¢

find the solution to the equation. What is the period
of the motion? What is the frequency? Find the value
of L such that the period equals 2.000 s.

d’¢ g
_2 — __¢
dt L

The real solution to this equation is

¢ = c1 sin (@t) ~+ ¢ sin (\/%t)

The circular frequency is

8
0= |-
L
and the frequency is
_ /s
27V L
The period is
1 L
T=—-—=2m |—
v 8

To have a period of 2.000 s

L= (i)z _ 980ms) (2205’
—8\r) T 21
=0.9930 m

17. Use Mathematica to obtain a numerical solution to the
pendulum equation in the previous problem without
approximation for the case that L = 1.000 m with
the initial conditions ¢ (0) = 0.350 rad (about 20°)
and d¢/dt = 0. Evaluate the solution for r = 0.500 s,
1.000 s, and 1.500 s. Make a graph of your solution
for 0 < ¢ < 4.00 s. Repeat your solution for ¢ (0) =
0.050 rad (about 2.9°) and d¢/dr = 0. Determine
the period and the frequency from your graphs.
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How do they compare with the solution from the
previous problem?

2
T p—

dr?
d*¢ .
i —9.80sin (¢)
¢(0) = 0.350

¢" = —9.80sin (¢)

#'(0) =0
¢ (0) = 0.350
0.5 6.1493 x 1073
ol 1 | = —0.34979
1.5 —0.01844
o0 ] [ 0.35
0.25 0.24996
0.5 6.1493 x 1073
0.75 —0.24122
1 —0.34979
1.25 —0.25839
1.5 —0.01844
175 | 0.23219
¢ 2 | 0.34914
2.25 0.2665
2.5 3.0708 x 1072
2.75 —0.22286
3 —0.34808
3.25 —0.27429
3.5 —4.2938 x 1072
| 3.75 | 0.21326
P n?
MY VAR I
" // \ i
0
i 05\ XS 25& ?!é
\\ // \\ //
T = 7

From the graph, the period appears to be about
2.1 s. From the method of the pervious problem

L 1.000 m \'/?
T=2n|—=2n| —— =2.007s
g 9.80 m s—2

For the second case

¢” = —9.80sin (¢)
¢'(0) =0
¢(0) = 0.050

Here are the values for plotting:

0 i 0.05
0.25 3.5459 x 1072
0.5 2.8968 x 104
0.75 —3.5048 x 1072
1.00 —4.9997 x 1072
1.25 —3.5865 x 1072
1.50 —8.6900 x 10~*
15 | | —8.6900 x 1074
¢ 175 | | 3.4632x 1072
2.00 4.9987 x 1072
2.25 3.6266 x 1072
2.50 1.4482 x 1073
2.75 —3.4212 x 1072
3.00 —4.9970 x 1072
3.25 —3.6662 x 1072
| 35 | [ —2.0272 x 1073 |
y 005
0.025T
* 0 1.2 ] 3.75 5
£0.025T

The period appears again to be near 2.1 s.

18. Obtain the solution for Eq. (12.4) for the forced
harmonic oscillator using Laplace transforms.

d?z + k d?z 4 o? Fy sin (at)
—_ . w [
dr? mZ dr? ‘ m
F{ o
2 1) 2, __ 10
Z —s5z(0) — 0 Z=————
s s2(0) —z227(0) + w o S
2 2 Fo « 1)
Z(s"+t o) = —F5—> +s2000+27(0)
m s+«



Fo o 52(0) +z1(0)
zZ = —
m (s2 + a?)(s2 + w?) 52+ w?
R o s20) 2O
T om (24 a2+ w?) 24w’ 24 a?

Take the terms separately

Fo o
m (s2 4+ a?)(s2 + w?)

From the SWP software, this is Laplace transform of

(\/(; sin tx/c?

Fy o

m \/07\/a7(0t2 — w?)
—\/c?sin t@)

_Rl_1

o ma)(a)z—(xz)

[ sin () — o sin (w1)]

For the next term
52(0)
S2 + k

m

is Laplace transform of
z(0) cos (wt)
For the final term
zD (0)
s2 4+ w?
is Laplace transform of
L W
—2z47(0) sin (wt)
1)
The result is
z = 2(0) cos (wt) + 22D (0) sin (wr)
Fo 1
;Ogm [a) sin (at) — asin (Ll)t)]
The case in the chapter was that z(0) = 0, so that
1 Fy 1l 1
= —DO)sin(w) + 22— — —
2=t ()Sln(w)+mw(a)2—a2)
[wsin (ar) — asin (01)]

1 F 1
_ | 2. o_ -
o |:a)Z O+ m (a)2—a2):|

sin wt) + sin (at)

Fo
m (w? — a?)
19. An object of mass m is subjected to an oscillating

force in the x direction given by Fj sin (bt) where Fy
and b are constants. Find the solution to the equation
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of motion of the particle. Find the particular solution
for the case that x(0) = 0 and dx/dr =0 atr = 0.

d’x dv :
md7 = I’)’la = Fpa sin (bt)

Fo .
— = —ssin (bt)
m

t

Fo [T .
v(t) =v(0) + — / sin (bt)dt
m

0

FO t
=v(0) — — bt
v(0) o cos (br1)l

=v(0) — :—:1 [cos (bty) — 1]

n Fy Fy
x(t1) = x(0) —l—/ [U(O) — —cos (bt) + —] dt
0 bm bm

n

Fy . Fo
x(0) +v(0)t; — ——ssin (bt)| +—11
b%m bm

0

Fo . Fo
x(0) +v(O)t) — = —sin (b)) + —1
b*m bm

x(1)

0) 0) ﬂ t ﬂ in (bt)
X —|—|:v +bmi| _bzm sin

For the case that x(0) = 0 and dx/df =0 atr = 0.

=20 gion=21 - Lanon
= —t— ——sin = — |7 — —sin
= T m bm |' T b°

20. An object of mass m is subjected to a gradually
increasing force given by a(l — e~?") where a and
b are constants. Solve the equation of motion of the
particle. Find the particular solution for the case that
x(0)=0and dx/dt =0att =0.

d%x dv Fo(l 7b,)
Mm— =m— = —e
dr? dr 0
dv FO —b
= - 1
dr m( e

v(11)

151
v(0) + @/ (1 — e Pdr = v(0)
m Jo
1

Fo |
J— t —
+bm|: tpe

0

F, 1 1
v(0) + —2 |:t1 T —]
bm

b b
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t

1 FO n
x(t1) = x(0) +/ v(0)dr + —/
0 bm Jo

1, 1
t — — — | dt
[ T5e b]
= (0) + v (O)1

& ﬁ — ie_bt — i
bm |2 b2 b

= x(0) + v(0),

Fo g 1 _, t
S et -2
T om [2 € )%

In the case that x(0) = 0 and dx/df =0 atr = 0.

2
I

Fy | f
H=-C |0 Ly
x(0) bm[Z 2 )%
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EXERCISES
Exercise 13.1. Find the eigenfunctions and eigenvalues of
d
the operator id—, where i = +/—1.
X
df
rraatid

Separate the variables:

dr af a
_— = — = — = —1d
dx f i
In(f) = —iax +C
f _eCe iax Ae—lax
df

— = —iaAe '™ = —iaf

The single eigenfunction is Ae™** and the eigenvalue is
—ia. Since no boundary conditions were specified, the

constants A and a can take on any values.

Exercise 13.2. Find the operator equal to the operator
d2
product @x

d? d [ df df df df
&ef df
PRI, B
dx2 + dx

The operator equation is

@ d2+2d
a2 T e T
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(Chapter 13)

and Group Theory

d2
Exercise 13.3. Find the commutator [x2, d_2]'
X

PP P
P51 = = 5 ()
df d df
2 2
— — L _ |2 7
dx? dx(xf+ dx>
d*f df d?f
2 2
= 2L _of_ox=L _
AR A dx?
df
= —2f —2x-—=
! xdx

Exercise 13.4. If A =x+d—,ﬁndf4\3
X
A3 = x—l—i x—i—i X+ — d
N dx dx dx
L4 d N d N d d?
=|x Pt —xt+x—
dx dx dx dx

e ed d2+d +d2
= e e e
N d d N a3
dx dx = dx3
Exercise 13.5. Find an expression for B2if B = x(d/dx)
andﬁndAzflff:bx
d df
B f = =
/ ( > /= dx( dx)
df = d&f df | Ld*f
_x<dx +xdx2> Yo T ae
d d
B*(bx*) = (xaf—i- zdx];)bx“
= 4bx* + x> (4)(3)bx* = 16bx*

el13
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Exercise 13.6. Show that the solution in the previous
example satisfies the original equation.

d?y _dy
—2 32 42y=0
o2 a7
d? d
K] (clezx + czex) — 3a (clezx + czex)

+2 (clezx + czex)
= 4c1e® + et — 3 (2C1€2x + czex>
+2 (clez" + cze") =0

Exercise 13.7. Find the eigenfunction of the Hamiltonian
operator for motion in the x direction if V(x) = Ey =
constant.

2m 0x
3%y 2m )
=—— (E—E = —
952 W ( 0) v Ky
where we let
@ =2 B~ By

If E > E the real solution is
Yreal = €1 8in (kx) + ¢ cos (kx)

In order for 4] to be an eigenfunction, either ¢y or ¢ has
to vanish. Another version of the solution is

I/fcomplex = b1 + bye "

In order for ¥reomplex to be an eigenfunction, either by or by
has to vanish.

Exercise 13.8. Show that the operator for the momentum
in Eq. (13.19) is hermitian.
We integrate by parts

h (> .d h h (% dx*
—,/ X*—I/fdxz - X*¢|i°oo— / X Ydx
—00

i dx i z__oodx
h [ dy*
== Ly
—oo dx

The other side of the equation is, after taking the complex
conjugate of the operator

h [ dy*
—7/ X i

i J_ s dx

which is the same expression.

Exercise 13.9. Write an equation similar to Eq. (13.20) for
the 6, operator whose symmetry element is the y-z plane.

Gu(yz)(X1,¥1,21) = (= X1,Y1,21)
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Exercise 13.10. Find Ca()(1,2, — 3).
Crn(1,2, —=3) = (=1, -2, —3)
Exercise 13.11. Find S(;)(3,4,5).
$25)(3,4,5) = (= 3. — 4, — 5)

Exercise 13.12. List the symmetry elements of a uniform
cube centered at the origin with its faces perpendicular to
the coordinate axes.

The inversion center at the origin.

Three C4 axes coinciding with the coordinate axes.

Four C3 axes passing through opposite corners of the cube.
Four S¢ axes coinciding with the C3 axes.

Six C; axes connecting the midpoints of opposite edges.
Three mirror planes in the coordinate planes.

Six mirror planes passing through opposite edges.

Exercise 13.13. List the symmetry elements for

a. HyO (bent)
lzv(TZ(z)’(fxz’(ryz

b. CO; (linear)
Evivahscoo(z)voOC21Uhvooav

Exercise 13.14. Find TWQPX where i is the inversion
operator. Show that v, is an eigenfunction of the
inversion operator, and find its eigenvalue.

2ay

?wsz = T{x exp |:

2+ 2 + )2
2ag

= —xexp |: = —WZPX

The eigenvalue is equal to —1.

Exercise 13.15. The potential energy of two charges Q;
and Q5 in a vacuum is

0102

h 47T60r12

where r1> is the distance between the charges and &g
is a constant called the permittivity of a vacuum, equal
to 8.854187817 x 107!2 Fm~! = 8.854187817 x
10-12 C>N~'m~2. The potential energy of a hydrogen
molecules is given by

82 62 62 62
o 47T€()I‘AB B 47160)’1,4 B 47‘[60}’13 B 47T€0r2A
62 62
_47T60r23 4megryn

where A and B represent the nuclei and 1 and 2 represent
the electrons, and where the two indexes indicate the
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two particles whose interparticle distance is denoted. If a 123 0 2 2
hydrogen molecule is placed so that the origin is midway A=1456 B=| -3 1 2
between the two nuclei and the nuclei are on the z axis, show 7809 1 -2 _3
that the inversion operator 7 and the reflection operator 6,
do not change the potential energy if applied to the electrons 10 1
but not to the nuclei. xC=1|03 -2
We use the fact that the origin is midway between the 27 -7
nuclei. Under the inversion operation, electron 1 is now the r 0 2 2 10 1
same distance from nucleus A as it was originally from BC —
nucleus B, and the same is true of electron 2. Under the 6y, =312 03 -2
operation, the same is true. The potential energy function | 1 23 27 -7
is unchanged under each of these operations. T4 20 —18
Exercise 13.16. Find the product - b7 -1
| —5 =27 26
[123][ 4 20 —18
1 02 0 2 ABC) = | 456 1 17 —-19
0-111p31=]-2 789 || -5 -27 26
001 1 1 -
-9 =27 22
=|1-9 3 -11
Exercise 13.17. Find the two matrix products | -9 33 -4
1230 2 2 -3 -2 -3
] AB = — = —
Teo) |1 2a] |54 s
321 2 2 -1 and 2 2 -1 L e -
1 —-12 -21 -1 -2 -1 -1 -3 -2-3 10 1
1 231 ABC=| -9 1 0 03 -2
x| 3 21 | —15 4 3 27 -7
=12 [—9 —27 22
=|1-9 3 -11
The left factor in one product is equal to the right factor | -9 33 -4
in the other product, and vice versa. Are the two products
equal to each other?
(123 02 2 10 1
1 23 1 32 —110 -3 456 -3 1 2 [(+]03=-2
321 22—-1=1]5143 | 789 1 -2 -3 27 -1
1 —-12 —21—1: :—53 1 4 25 _07
1 3 2 1 23 12 6 10 = | 7 58 —48
2 2 —1 321 |=|7 9 6 |. 10 91 —69
—2—1-1|[1-12 —6 —5 =9 -
- - 123 0o 2 2 123 10 1
456 -3 1 2 |+]456 03 -2
The two products are not equal to each other. 7809 1 -2 -3 7809 27 _7
[ 3 23 7 27 —24 4 25 —27
Exercise 13.18. Show that the properties of Eqs. (13.45) —9 L 0 g+ 1657 —48 1 =1 7 58 —48
and (13.46) are obeyed by the particular matrices L —15 4 3 25 87 =72 10 91 —69
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Exercise 13.19. Show by explicit matrix multiplication Exercise 13.23. Expand the fo]]owing determinant by

that minors:
1000 || air a2 a3 ai4 ail apz aiz a4 32 0
0100 || axn ax as as | _ | a21 a21 a3 aq1 7_15|=3 —15)_ 5|73
0010 az| as| asj a4 az| az| asp a4 23 4 3 4 24
0001 aq) a41 asp a4 aq) a4 asy a4 — 34— 15)—2(28 — 10) = —93
:Each element is produces as a single term since the other
terms in the same contain a factor zero. Exercise 13.24. a. Find the value of the determinant
Exercise 13.20. Show that AA™' = EandthatA~'A=E 34 5
for th tri f th di le.
or the matrices of the preceding example 21 6| =47
Mathematica and other software packages can find a 3 -5 10

matrix product with a single command. Using the Scientific

Work Place software b. Interchange the first and second columns and find the

— value of the resulting determinant.

3 1 1
(210 41 2 41 100 435
AATT =121 -5 L =5 |=]010 1 26 |=-47
012 1 1 3 001 =5310
3 ) 14 2 4 c. Replace the second column by the sum of the first
- and second columns and find the value of the resulting
4 2 4 2101 100 determinant.
_ 1 1
AT'A = -5 L5 || 121]|=]010 [
012 001 3.1 6\=47
3 - —2-510
L 4 2 4

d. Replace the second column by the first, thus making
two identical columns, and find the value of the
resulting determinant.

Exercise 13.21. Use Mathematica or another software
package to verify the inverse found in the preceding
example. Using the Scientific Work Place software

3 11 335
510! 4 2 4 226[=0
121 _ 1 ! 1 3310
2
012 1 1 3 Exercise 13.25. Obtain the inverse of the following matrix
2 7 1 by hand. Then use Mathematica to verify your answer.
Exercise 13.22. Find the inverse of the matrix
- -1
A= 304 —| 1 0 -1
34 120 319
Using the Scientific Work Place software, B - 2 4 4
C el T g 130|203 100
. 12 304 10 -1 1_-1p10
A= =13 1
34 S 1 31 9
L 120 = - —= 001
2 2 - -L2 4 4
Check this
1211 21 10 Exercise 13.26. Obtain the multiplication table for the C»,
34 3 1= 01 point group and show that it satisfies the conditions to be a
-L2 2 group.
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Think of the H> O molecule, which possesses all of the
symmetry operators in this group. Place the molecule in
the y — z plane with the rotation axis on the z axis. Note
that in this group, each element is its own inverse. For the
other operators, one inspects the action of the right-most
operator, followed by the action of the left-most operator.
If the result is ambiguous, you need to use the fact that a
reflection changes a right-handed system to a left-handed
system while the rotation does not. For example, Gy (yz)
followed by 0 (x;) exchanges the hydrogens, but changes
the handedness of a coordinate system, so the result is the
same as Oy (xz)-

E C, Ov(yz) Ov(xz)
E G Gu(yz) Gv(xz)
G E Gy(xz) Gu(yz)
Gv(yz) Gv(xz) E G
av(xz) av(xz) 62 /E\

These operators form a group because (1) each product
is a member of the group; (2) the group does include the
identity operator; (3) because each of the members is its
own inverse; and (4) multiplication is associative.

Exercise 13.27.

a. Find the matrix equivalent to 62 (2).

/

X = —X
y =y
/
7 =z
-1 00
Cx(z)< 0 =10
0 0 1

b. Find the matrix equivalent to §3 (2).

1
x" = cos (2w /3)x —sin 2w /3)y = —zx

- (%ﬁ) y

y' = sin (2w /3)x + cos 27 /3)y = (%\@) X — %y
7 =z
—1/2 =/3/2 0
S < | V3/2 =172 0
0 0 1

c. Find the matrix equivalent to 67,.

X = X
y o=y
/
= —z
100
Gh<>01 0
00 —1

Exercise 13.28. By transcribing Table 13.1 with appropri-
ate changes in symbols, generate the multiplication table for

the matrices in Eq. (13.65).

E AB
EEAB
AABE
B BEA
CCDF
DDDF
FFCD

Exercise 13.29.

CDF
CDF
FCD
DFC
E A B
CEA
A B E

Verify several of the entries in the

multiplication table by matrix multiplication of the matrices

in Eq. (13.65).

[ —1/2 =320
AB = | /3/2 —1/2 0
0 0 1
(100
=|010|=E
(001
[ —1/2 =320
AD = | V3/2 —1/2 0
0 0 1
-1 1
- 230
2 2‘/_
N
2 2
L0 0 1
[ 12 V320
CD = | V32 -120
0 0 1
- 11
—~ —=V30
2 2‘/_
L
2 2
L0 0 1

—1/2 /3720

—V3/2 =1/2 0

0 0 1

12 —V3/20

—V3/2 =1/2 0

0 0 1

12 =320

—V3/2 =1/2 0

0 0 1
=A



Exercise 13.30. Show by matrix multiplication that two
matrices with a 2 by 2 block and two 1 by 1 blocks produce
another matrix with a 2 by 2 block and two 1 by 1 blocks
when multiplied together.

ab00 ap0o0 ac +by af+bs5 0 0
cd0O0 y 800 | |cau+dy cB+ds 0 0O
00e0||lO00c0 | 0 0 e 0
0007]L000¢ 0 0 0 f¢

Exercise 13.31. Pick a few pairs of 2 by 2 submatrices
from Eq. (13.65) and show that they multiply in the same
way as the 3 by 3 matrices.

12 =32 -2 V32| Jio
V32 -2 || =V32-1/2] |01
) -1 1 T
12 3| 12 —vael | T2 2V?
V32 12| V32 -2 || L g 1
B L2 2
) 11 -
—1/2 =/3/2 12 =32 |_| 2 Eﬁ
| V3/2 —1)2 —V3/2 =172 | 1z 1
2 2 A

Exercise 13.32. Show that the 1 by 1 matrices (scalars) in
Eq. (13.67) obey the same multiplication table as does the
group of symmetry operators.

Since the elements E <> 1 63 < 1 6% <~ 1,
the product of any two of these will yield +1. Since
64 <> —1 6p < —1 6, <> —1,the product of any two of
these will yield 1. The product of any of the first three with
any of the second three will yield —1. the multiplication

table is
/ E 63 6% &a 3b &c
E 1 1 1 -1 -1 -1
C3 1 1 1 —1 —1 —1
o 1 1 -1 -1 -1
6a | —1 -1 —1 1 1 1
6p | —1 -1 -1 1 1 1
Q —1 —1 —1 1 1 y

PROBLEMS

1. Find the following commutators, where D, = d/dx:
a. [é‘; sin (x)];

d _d _df
[a,sm (x)] f = a[sm (x) f] — sin (x)a

Mathematics for Physical Chemistry

= cos (x) f + sin (x)%
. df
—sin (x)— =cos (x) f
dx

o]
—, sin (x) | = cos (x)
dx

d? d
—,X | = 2_
dx? dx
2. Find the following commutators, where D, = d/dx:

a. [21122’ 2];
dzf

d2 2 2
@’x f_ d 2![ f] de

d d d?
= — 2xf+x2—f x2 !
dx dx df?
df df | Ldf
&2 f
2L
df?
d
=4x—f+2f
dx
2, d
@,x =4.Xa+2

b. [(?—jz,g(x)].

d? d? d?
[@,g(@} f= [g(X)f(X)] - g(X) f
_df df _f
—dx[gdx+fdx] ()

d’f dfdg dfdg
dx2 dx dx dx dx
d2
+g(x) dxf glx )—f
d*f df dg

= 2—
82 T Y dx dx

d? - d? s dg\ d
—_—, X — —_ —_— JE—
dx? & gdx2 dx ) dx

=875
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3. The components of the angular momentum correspond

to the quantum mechanical operators:

N A Y
= = U G B y = T X,
= U T %y v G T Y

h( 0 8)
LZZT X— —yV— 1.
i ay ax

These operators do not commute with each other. Find
the commutator [ Ly, Ly].

)

[,

3 af 8 of 8 of

Ty s Y Ty
B 8f+ d of

o af 0 df
8z18y Bzyaz

ozox oz a2 T ayox

Pf 0f 0
X -2y +z

dyo0z 0x0z 0x0y

3 f af azf}

__hz[yzaz_f of f L f

+z

+Zy8_z2 - xa — Xz 920y

We can now apply Euler’s reciprocity relation to cancel
all of the terms but two:

[Zx,iy] f = —h? [yﬂ —xﬁ]

0z ay
0 ] ~
= K2 |:xa—f — ya—fi| =ihL,
y Z

. The Hamiltonian operator for a one-dimensional
harmonic oscillator moving in the x direction is

g__P d2+kx2
T 2mdx2 2

Findzthe value of the constant a such that the function
e~ is an eigenfunction of the Hamiltonian operator
and find the eigenvalue E. The quantity k is the force

constant, m is the mass of the oscillating panicle, and

h is Planck’s constant divided by 27 .

h2 dZe—ax2 kXZe—axz
Tom A 2

= —h—zi (—2axef‘”‘2>

2m dx
kx2e—ax" e
2
2
= —zh— (—2a67“x2 + 4a2x2e7‘”2>
m
kx2e—ax _ ge—ar’
2

Divide by e~

h? 5 o kx?
=——(C2a+4ax)+ —=E
2m 2

The coefficients of x on the two sides of the equation
must be equal:
h? kx?
2 4a2y = B
2m 2
2 _ mk
T
v mk
2h
The constant terms on the two sides of the equation
must be equal:
_ h*fa  n? holk 1

E = mk)'? === =—hv
m 2mh 2V m 2

where v is the frequency of the classical oscillator.

. In quantum mechanics, the expectation value of a

mechanical quantity is given by

_[vAyda
[y dx

where A is the operator for the mechanical quantity
and 1 is the wave function for the state of the system.
The integrals are over all permitted values of the
coordinates of the system. The expectation value is
defined as the prediction of the mean of a large number
of measurements of the mechanical quantity, given that
the system is in the state corresponding to ¥ prior to
each measurement.

For a particle moving in the x direction only and
confined to aregion on the x axis fromx = Otox = a,
the integrals are single integrals from O to a and p, is
given by (h/i)d/dx. The normalized wave function is

U= gsin (E)

a a

(A)



Normalization means that the integral in the
denominator of the expectation value expression is
equal to unity.

a. Show that this wave function is normalized. We
letu =nmx/a

2[4 2
—/ sinz(ﬂ)dx:—2
a Jo a aim Jo
2 sin (2x) " B
w2 4 B
b. Find the expectation value of x.
2 (% . /mx L /TTX
(x) = — sin (—)xsm (—) dx
a Jo a a
2 a
= —/ x sin® <JT_X) dx
a Jo a
2 2 (T
== <£> / u sin’ (u) du
a \mw 0

_ 2a x2  xsin(2x) cos(2x) "
72| 4 4 8

_Za 72 1+1 _a
T ox2l 4 8 8| 2

c. The operator corresponding to p, is ('li) ad;

g
sin® (u) du

Find the expectation value of p,.

o = (5)2 [Fsin (ZF) sin ()

= %z ’ sin (n_x> cos (E) dx

ia a )y a a

2hra [T .
= ——— sin (u) cos (u)du
iaam Jy
20 si T
_ '_sm (u) —0
ia 2 |,

d. Find the expectation value of p2.

w2 =122 ["sn () & in ()

_ hzg (g)z (£) /0 " sin? (u)du

a |2 4
0
B 0 2m [n]_hznZ_ h?
a2l a2 4a?

6.

10.

11.
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If A is the operator corresponding to the mechanical
quantity A and ¢, is an eigenfunction of A, such that

A\(pn = ay Py

show that the expectation value of A is equal to a,, if
the state of the system corresponds to ¢,,. See Problem
5 for the formula for the expectation value.

fd);’;;{(ﬁn dx . fd):an(bn dx
[idndx [ @rg,dx
dp f¢;¢n dx

S i dx

(A) =

an

. If x is an ordinary variable, the Maclaurin series for

1/(1 —x) is
1

=142+t
1—x

If X is some operator, show that the series
1+ X+ X2+ X3+ X4+
is the inverse of the operator 1 — X.
(1—)?)(1+)?+)?2+)?3+)?4+~-~)
=1+ X+ X+ X+ X+
(XX ) =1

. Find the result of each operation on the given point

(represented by Cartesian coordinates):

a. i(2.4.6)= (-2 -4, —6)
b' C2(y)(171,1) = (_ 1711 - 1)

. Find the result of each operation on the given point

(represented by Cartesian coordinates):

~ 11
. C 1,1,1) = [—=,=+3.1
a A3(z)( ) (2 Zx/_ )
b. Su(1L1LD) = (1, —1,—1)

Find the result of each operation on the given point
(represented by Cartesian coordinates):

a. Coyion(1,1,1) = Ca(x)i(— 1, — 1,1)
=G0, - =(1,-1,-1

Find the result of each operation on the given point
(represented by Cartesian coordinates):

a. Coryi(1,1,1) = Coy(— 1, — 1, — 1)
=, —1,-1
b. iCoy(1.1,1) =i(—= 1, — 1,1) = (1,1, — 1)



CHAPTER | 13 Operators, Matrices, and Group Theory

12. Find the 3 by 3 matrix that is equivalent in its action
to each of the symmetry operators:

a. 3\2(2)
= —x
y =-y
7=z
-1 0 O
()« 0 -1 0
0 0 -1
b. Ca(x)
x' =x
!/
y ==y
7 =—z
1 0 O
$2(z) <> 0-1 0
00 —1

13. Find the 3 by 3 matrix that is equivalent in its action
to each of the symmetry operators:

a. 6g(x): Leto = /8 <> 45°

/

X =x
1
" = cos(a)y +sin(a)z = —=(y + 2)
y y \/E Y
1
7 = sin(@)y +cos (@)z = —(y + 2)
y ﬁ Y
1 0 0
=~ 0 ! 0
Cg(x) < = 2
1
00 —
V2
b. Se(x): Leta = /3 < 60°
3
x' = cos (a)x — sin (@)y = 3%~ %_y

3 1
y = sin(a)x + cos (w)y = £x + -y

2 2
/
Z = —Z.
1 3
LV
R 2 2
G o V3 1
2 2
0 0 -1

14. Give the function that results if the given symmetry
operator operates on the given function for each of the
following:

a. 64(z)x2 =y?
b. 6px cos(x/y) = xcos(x/y)

15. Give the function that results if the given symmetry
operator operates on the given function for each of the
following:

a. 2\(x+y+z2)=(—x—y+22)
b. S4y(x+y+2)=x+z—y

16. Find the matrix products. Use Mathematica to check
your result.

[0o12][123 20 16 7
a. [432||681|=]364021
(761|743 50 66 30
[ 6 3 2 —1 4 7 —6 -8
b | 743 2 3 68 —6
132 -2 2 3 -3 4
6 7-1-3]|-14 2 3

38 26 —20 —61

12 =56 69 50

19 —13 8§ —24

46 —15 17 —103

17. Find the matrix products. Use Mathematica to check
your result.

1 2 3 1 2 3
i 03 —4 03 —4
a [3214] =
L 1 -2 1 1-21
31 0 31 0
12 3 17
03 —4 2 3
b. B 3=
1 -2 1 3 -1
|31 0 9
r 14-7 3
63 —1
C. 25 8 =2
74 -2
L 36-9 1
1933 -911
936 1 11
18. Show that (AB)C = A(BC) for the matrices:
01 2 314
A=|31-4 B=|-201
231 321



03 1
C=|-423

31 -2

(01 2 314 4 4 3
AB=|31-4||=201]=|-5-509

(23 1 321 3 4 12

[ 4 4 3 03 1
AB)C=|-5-509 || —-42 3

| 3 412 31 -2

[ —7 23 10

= | 47 —16 —38

20 29 -9

[ 3 14 03 1
BC=|-—201||-423

321 31 -2

8 15 —2

=| 3 —5_4

| 514 7

(01 2 8 15 —2
ABC) = |31 —4 3 =5 —4

(23 1 514 7

7 23 10

= | 47 —16 —38

20 29 -9

19. Show that A(B + C) = AB + AC for the example
matrices in the previous problem.
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4 4 3
=|-5-509
|3 412
(01 2
31 —4
231
[ 2 4
=| 16 7 14
913 9

4 4 3
~5-59
|3 412
2 4 —1 6 8 2

+|{-16 7 14 | =] =21 2 23
-9 13 9 —6 17 21

031
—-42 3
3 1-=-2

AC =

AB +AC =

20. Test the following matrices for singularity. Find
the inverses of any that are nonsingular. Multiply the
original matrix by its inverse to check your work.
Use Mathematica to check your work.

[ 3 14 03 1
B+C=|-201]|+|-42 3
321 31 -2
[ 3 4 5 ]
=| 62 4
| 6 31|
(01 2 ][ 3 45
AB+C)=[31-4||—-62 4
(231 || 6 3-1
[ 6 8 2
=|-212 23
| —6 17 21
(01 2 3 14
AB=|[31-4||=201
(231 321

012
a. | 345
678
012
345(=0
678
Singular
68 1
b. |73 2
46 -9
68 1
73 2 | =364
46 -9
Not singular
1 3 3 1
s 17 | F % A
73 2 = | 361 "T82 364
46 -9 15 1 19
182 91 182
Check:
3 3 1
68 1 7218 1;9 285 B 100
73 2 364 132 e | T 010
46 -9 15 1 19 001
182 91 182
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21. Test the following matrices for singularity. Find the
inverses of any that are nonsingular. Multiply the
original matrix by its inverse to check your work. Use
Mathematica to check your work.

3 2-1
a. | —46 3
7 2 -1
3 2-1
—46 3 |=48
7 2 -1
Not singular
1 0 1
—1 - -
321 4 4
46 3 17 1 5
48 12 48
72 -1 25 1 13
24 6 24
1 1
i 1% 3 100
2 —1
34 6 3 71 Sl 010
48 12 48 |
L 7 2 -1 25 1 13 001
24 6 24
(023
b. [101
1201
023
101]=2
201
Not singular
0231 [0-11
1 3
101 = - -3 =
2 2
201 | 0 2 —1
Check:
023 ?—1§ 100
101 - -3 - [=]010
2 2
201 0 2 —1 001
22. Find the matrix P that results from the similarity
transformation
P =X"'QX,
where

o []5-[2]]

1

|
55 [[1009 ~10
2 2 _

2 1 [8 9} [4 3}

3 3

X 1QX =

23. The H,O molecule belongs to the point group C»y,
which contains the symmetry operators E s 62, Oa,
and 6, where the C; axis passes through the oxygen
nucleus and midway between the two hydrogen nuclei,
and where the o, mirror plane contains the three nuclei
and the o} mirror plane is perpendicular to the o,
mirror plane.

a. Find the 3 by 3 matrix that is equivalent to each
symmetry operator.

100
010
001

Eo

-1 0 0
Cyr < 0 —-10
0 01

100
010
001

04 <

-100
pb<| 0 =10
0 01

b. Show that the matrices obtained in part (a)
have the same multiplication table as the
symmetry operators, and that they form a group.
The multiplication table for the group was to
be obtained in an exercise. The multiplication

table is
E C aj}(}*z) a\v(xz)
E E C2 a\v(yz) a\v(xz)
C; Co  E Gyaz Ouiyo)

Gu(ys) Ou(ys) Ovany E C2
Gu(rz) Ov(xz) Ovysy C2 E



where Gy (y;) = 64 and Gy(xz) =63. We perform
a few of the multiplications.

100 -1 00
Ga0p < | 010 0 —-10
001 0 01

-1 00
=| 0 —-10| <C
0 01
-1 00 -1 00

C)<| 0 -10]] 0 -10
0 01 0 01
100
=010 |<FE
001
-1 00 -1 0 0
Caopepy < | 0 =10 0 —10
0 01 0 01

100
=010 | < 0wy
001

24. The BF3; molecule is planar with bond angles of 120°.

a. List the symmetry operators that belong to this
molecule. We place the molecule in the x-y
plane with the boron atom at the origin and
one of the fluorine atoms on the x axis. Call
the fluorine atoms a, b, and c starting at the
x axis and proceeding counterclockwise around
the x-y plane. The symmetry elements are:
a threefold rotation axis, three vertical mirror
planes containing a fluorine atom, the horizontal
mirror plane, and three twofold rotation axes
containing a fluorine atom. The operators are
E,C3(2),04,0p,0¢,01,C2q,Cap, Coc.
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b. Find the three-dimensional matrices correspond-
ing to the operators:

i C3p

x' = cos (120°)x — sin (120°)y
1 V3

= ——_x——y

2 2
y" = sin (120°)x + cos (120°)y

NS

-ty
/
zZ = Z.
1 /3
N 270
G| L 1o
0 0 1
ii. 5,
X =x
"=y
/
=z
100
g.<|0-10
00 1
iii. Coy,
)C/ZX
/=—y
/
=z
100
C2a<_> 0-10
00 1

c. Find the following operator products:

i. G304 =0¢
il. 0,0, =0,
iii. C3(z)C2a = O¢
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EXERCISES

Exercise 14.1. Use the rules of matrix multiplication to
show that Eq. (14.3) is identical with Egs. (14.1) and (14.2).

air a2 X1
azr az X2
2

aylx) +apxy = ¢l

a x| +axnxy = ¢

Exercise 14.2. Use Cramer’s rule to solve the simultane-
ous equations

4x +3y =17
2x —3y = =5
17 3
-5 -3 -51+15 36
T s 126 18
2 -3
417
25| -—20-34 54
YTl 5| —i2—6 187
2 -3

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00014-8
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(Chapter 14

ne Solution of Simultaneous
gebraic Equations with More
nan Two Unknowns

Exercise 14.3. Find the values of x, and x3 for the previous
example.

2211
141 41| 1]
1101 10 1 11 110

Xy = =
2 41 -

o TH oA ] 4]

111 11 11 -11

111
_ _24-19-210)+10-4 -6
S 2(=1-D—-@-D+¢@E+1) -2

2 4 21

1 -1 4 —L4| 42 14
11 10 1 10 110 ~1 4

X3 = =
2 4 1 -

NN IR RS
1-11 11 11 11
111

2(— 10 —4) — 1(40 — 21) + 1(16 + 21)

20—1-D—@—-D+@+1)

—10
_ _5
-2

Exercise 14.4. Find the value of x; that satisfies the set of
equations

11 1 1 X1 10
1-11 1 x| |6
11 -1 1 x| |4
11 1 =1 x 1

el25
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(U
S I T N
11 -1
IS
101 1 1
6 -1 1 1|_ _,
41 -1 1
111 -1
—4 1
X|=—==
-8 2

The complete solution is

Exercise 14.5. Determine whether the set of four
equations in three unknowns can be solved:

X1 +x2+x3 =12
4x1 +2xy +8x3 = 52
3x1 +3x2 +x3 = 25
2x1 +x2 +4x3 = 26

We first disregard the first equation. The determinant of the
coefficients of the last three equations vanishes:

428
331
214

=0

These three equations are apparently linearly dependent.
We disregard the fourth equation and solve the first three
equations. The result is:
= ——, = 9’ = —

X1 5 X2 X3==

Exercise 14.6.
matrix inversion

Solve the simultaneous equations by

2x1+xp =4
X1+2x+x3 =7
X2 +2x3 =8
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3 1 1
r10]” 4 2 4
121 = —l 1 —l
2 2
012 1 1 3
4 2 4
3 1 1
4 2 4 A 3
1 1 R
5 ; e
r_r3 2
4 2 4
The solution is
3 7
x1=§, xy =1, x3=§

Exercise 14.7. Use Gauss—Jordan elimination to solve the
set of simultaneous equations in the previous exercise. The
same row operations will be required that were used in
Example 13.16.

2x1+x =1
X1 +2x+x3 =2
X2 +2x3 =3
In matrix notation

AX=C
210 X1 1
121 x| =12
012 X3 3

The augmented matrix is

210:1
121:2
012:3

1
We multiply the first row by > obtaining

11031

22
121:2
012:3

We subtract the first row from the second and replace the
second row by this difference. The result is

11():1
22
3 .3
0-1:-=
2 2
012:3
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1
We multiply the second row by 3

11031
22
11.1

0= —:—
232

012:3

We replace the first row by the difference of the first row
and the second to obtain

1.

10——:0
3

11 .1

0= — :—

2 3 2

01 2 :3

We multiply the second row by 2,

1.
10—=:0
3
2 .
01 = :1
3
01 2 :3

We subtract the second row from the third row, and replace
the third row by the difference. The result is

1.
10—-—=:0
3
2 .
01 = :1
3
00 4 12
L 3 7

1
We now multiply the third row by X

_ LA
10—=:0
3
2 .
01 - :1
3
2 .
00 - :1
L 3 .

We subtract the third row from the second and replace the
second row by the difference, obtaining

1

10—=:0
3

01 0 :0

00 o1

3

1
We now multiply the third row by 5

1.1
10 —=: =

372
01 0 :0

1 .1
00 - : =
L 3 "2

We add the third row to the first row, and replace the first
row by the sum. The result is

-1
100 : =
2
010:0
1.1
00 -: =
L 3 24
We multiply of the third row by 3 to obtain
_ 1A
100: =
2
010:0
-3
001: =
L 2

‘We now reconstitute the matrix equation. The left-hand side
of the equation is EX and the right-hand side of the equation
is equal to X.

AX=C
EX=C' =X
1
2
EX=X=1|0
3
2
The solution is
= -, = O’ = -
X1 5 X2 X3 5

Exercise 14.8. Find expressions for x and y in terms of z
for the set of equations

2x +3y—12z =0
x—y—z=0
3x4+2y—-13z =0

The determinant of the coefficients is

2 3 —12
1 -1 -1{=0
32 —13



Since the determinant vanishes, this system of equations can
have a nontrivial solution. We multiply the second equation
by 3 and add the first two equations:

5x —15z =0
x = 3z

We multiply the second equation by 2 and subtract the
second equation from the first:

S5y —10z =0
y =2z

Exercise 14.9. Show that the second eigenvector in the
previous example is an eigenvector.

V21 0 1/2 0
1 V21 —1/V2 =10
0 1 V2 1/2 0

Exercise 14.10. Find the third eigenvector for the previous
example.

—\/Exl +x+0=0
X1 — «/Exz +x3=0
0+x—+2x3 =0
The solution is:
X1 =2x3, X =x3v2
With the normalization condition

X3 4 2x7 4 x5 = 4x3

1
x1=X3=§

_ﬂ_\ﬁ

2T T2
1/2
X=|1/V2
1/2

Exercise 14.11. The Hiickel secular equation for the
hydrogen molecule is

a—W B

B a—W

Determine the two orbital energies in terms of o and 8.

x 1 =0=x>—1
1 x

x ==£I

A e

a+p
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PROBLEMS

1. Solve the set of simultaneous equations:

3x+y+2z =17
x—=3y+z=-3
xX+2y—-3z=-4

Find the inverse matrix

11 1
-1 5 5 5
fl3f 4 1o
Lo 3 135 35 35
B 1 1 2
7 7 7
11 1
5 5 5
1
4 11 1 ; _ 13
35 35 35 ) N )
1 1 2 N
7 7 7
x=2, y=37 Z=4

2. Solve the set of simultaneous equations

y+z=2
x+z=3
x+y=4

Find the inverse matrix:

1 1 1

2 2 2

011 ] L1
101 =| = —= =
110 2 2 2
1 1 1
2 2 2

1 1 1 5

AT ER

— —— — 3:_

2 2 2 4 2

1 1 1 1

2 2 2 2

5 3 1

x:—’ = -, = —

> YT T
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3. Solve the set of equations, using Cramer’s rule:

3x1+x2+x3 =19
X1 —2x2 4+ 3x3 = 13
X1 +2x2 +2x3 = 23

19 1 1

13 -23

23 2 2 =175
xl: = :3

311 =25

1-23

1 22

3191

1133

1232 —100
_X2= = :4

311 =25

1-23

122

31 19

1 -213

1 2 23 —150
)(j3: = :6

311 =25

1-23

122

Verify your result using Mathematica.

2 0 1
-1 5 5
311
123 1 1 8
Lo o | 25 525
4 1 7
25 5 25
2 0 1
5 5
1 3
! I8 12 =14
25 525 || 2 B 6
4 1 7
25 5 25
4. Solve the set of equations, using Gauss-Jordan
elimination.
X1+x2 =6
2%y —x3 =1
X1 +2x2 =5

Write the augmented matrix

110 :6
02—-1:1
120 :5

Multiply the first row by 2

22 0 :12
02—-1:1
120 :5

Subtract the third line from the first line and replace
the first line by the difference

100 :7
02—1:1
120 :5

Subtract the second line from the third line and replace
the third line by the difference

100 :7
02 —1:1
101 :4

Subtract the third line from the first line and replace
the third line by the difference

10 0 :7
02—1:1
00-1:3

Subtract the third line from the second line and replace
the second line by the difference

10 0 : 7
02 0 : -2
00—-1:3

Multiply the second line by 1/2 and the second line
by —1

100: 7
010:—1
001:-3
The solution is
x1=7, x2=-1, x3=-3



Use Mathematica to confirm your solution.

110 2 0 —1
02 -1 =[-10 1
12 0 -2 -1 2
2 0 —1 6 7
-1 0 1 1|1=1-1
-2 -1 2 5 -3
x1=7, xo=-1, x3=-3

5. Solve the equations:

3x1 +4xy +5x3 =25
dx1 4+ 3xp — 6x3 = —7
X1+x24+x3=06

In matrix notation

6. Solve the equation:

1113
2111
1234
2014

345 X1
43 -6 X2
11 1 X3
The inverse matrix is
345 |
43 -6 =
111
9 1 39 T
8 8 8
5 1 19
4 4 4
1 1 7
8 8 8 4
The solution is
x1 =2,

25

=| -7

6
9 1 39
8 8 8
5 1 19
4 4 4
1 1 7
8 8 8
25 2

—7 | =
6 3

xo=1, x3=3

X1

X2

X4
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The inverse matrix is

-1 1 1 17
» 6 2 6 6

1113 5 1 1 3

2111 4 4 4 4

1234 N 4, 2 1

201 4 3 303
5 1 1 1
L 12 4 12 12

11 117

62 6 6

5 1 1 3 6 1

4 4 4 4 51 |1

Ay 2 LT

3 33 7 1

5 1 1 1

L12 4 12 12 4

The solution is

X1=Xxo=x3=x4 =1

. Decide whether the following set of equations has a

solution. Solve the equations if it does.

3x+4y+z =13
4x +3y+2z =10
Tx +Ty+3z =23

The determinant of the coefficients is

341
4321=0
773

A solution of x and y in terms of z is possible. Solve
the first two equations

2]l

Use Gauss-Jordan elimination. Construct the aug-
mented matrix

34: 132

43:10-2z
Multiply the first equation by 3 and the second
equation by 4:

9 12:39-3;

16 12 : 40 — 87
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Subtract the first line from the second line and replace
the first line by the difference

70:1-5z

16 12 : 40 — 8z

Multiply the first line by 16 and the second line by 7

112 0 : 16 — 80z
112 84 : 280 — 567

Subtract the first line from the second line and replace

the second line by the difference

112 0 : 16 — 80z

0 84 :264+24z7

Divide the first equation by 112 and the second
equation by 84:

.16 80

10 — -2

12~ 112°

0 264, 2

© 84 g4t
16 80 1 5
T T et T 7t
264 24 22 2
y = o i= 5 T35z

- 4+ —

84 84 7 7

8. Solve the set of equations by matrix inversion. If
available, use Mathematica to invert the matrix.

2x1 +4x +x3 = 40
X1 + 6x2 +2x3 = 55
3x1+x2+x3 =23

The inverse matrix is

4 3 2
—1
241 151 111 lg
162 =| = —— =
311 11 11 11
17 10 8
11 11 11
4 3 2 41
11 11 11 11
40
5 1 3 76
= - _= 55 | = | —
11 11 11 11
23

@m

The solution is

41 76 54
X1 = ﬁ, Xy = H, X3 = ﬁ
Check the inverse
4 3 2
241 11 11 11 |
PEY | RERNE N e
311 11 11 11 001

17 10 8

1 11 11

9. Find the eigenvalues and eigenvectors of the matrix

111
111
111

The eigenvalues are 0,3. The eigenvectors are, for
eigenvalue 0:

—1 —1

0 and 1

1 0

Check the first eigenvalue:

111 —1 0
111 0 [=1]0
111 1 0

For the eigenvalue 3, the eigenvector is

Check this

111 1 3
111 11=1]3
111 1 3

The eigenvalue is equal to 3.
10. Find the eigenvalues and eigenvectors of the matrix

011
101
110

The eigenvalues are —1, — 1, and 2, and the

eigenvectors are:

—1 —1 1
0o [, 1 < —1, 1 2
1 0 1



Check the first case:

011 -1 1
101 0 |=1]20
110 1 —1

11. Find the eigenvalues and eigenvectors of the matrix

101
101
101

Does this matrix have an inverse? The eigenvalues are
0 and 2. The eigenvectors are

0 —1 1
11, 0 < 0, 1 <~ 2
0 1 1
Check the last case:
101 1 2
101 1|1=1|121|D
101 1 2

The determinant is

101
101|=0
101

There is no inverse matrix.

12. In the Hiickel treatment of the cyclopropenyl radical,
the basis functions are the three 2p, atomic orbitals,
which we denote by f1, f2, and f3.

Y=cifi+cafr+cf

The possible values of the orbital energy W are sought
as a function of the c¢ coefficients by solving the three
simultaneous equations

xci+co+ce3 =0
c1+xc2+c3 =0
ci+cy+xe3 =0

where x = (a Y ,3) and where « and S are certain
integrals whose values are to be determined later.

a. The determinant of the ¢ coefficients must be set
equal to zero in order for a nontrivial solution
to exist. This is the secular equation. Solve the
secular equation and obtain the orbital energies.

x 11

I1x1|=0
11x
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x 11

x 1 11 1 x
1x1|= —
1 x 1x 11
11x
=X —x—x+14+1—-x=0
=x —3x+2=0

X =3x+2=0
The roots to this equation are
x=-2, x=1, x=1

The orbital energies are

a—p
W={Ja-58
o+28

. Solve the three simultaneous equations, once

for each value of x. Since there are only two
independent equations, express ¢, and ¢3 in terms
of ¢;. Forx = —2:

—2c1+cy+cec3 =0
c1—2c0+c3 =0
cir+cy—2c3 =0

The solution is:
Cl =C=¢C3
Forx = 1:

cirt+c+c3 =0
cir+co+e3 =0
cir+c+ec=0

The solution is:

c1=0, ¢ =—c3
or

=0, c1 =—c3
or

c3=0, ci=—c2

. Impose the normalization condition

c%—i—c%—i—c%:l

to find the values of the ¢ coefficients for each
value of W.Forx = 1,W =«a — 8

1 1
c1 =0, czzﬁ, C3=——2
Forx = -2,W = «a + 26:
1 1 1
cl ﬁ’ Cz_ﬁ’ C3—ﬁ
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d. Check your work by using Mathematica to find
the eigenvalues and eigenvectors of the matrix

x 11
1x1
11x

Using the Scientific Workplace software, we find
that the eigenvalues are:

x+2,x—1
The eigenvectors are:

—1 —1
0 <~ x—1, 1 <~ x—1,

1 0

1
1 < x4+ 2,
1
Check the last case:
x 11 1
1x1 1
11x 1

x+2
x+2
x+2
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Probability, Statistics, and Experimental

Errors

EXERCISES

Exercise 15.1. List as many sources of error as you can for
some of the following measurements. Classify each one as
systematic or random and estimate the magnitude of each
source of error.

a. The measurement of the diameter of a copper wire
using a micrometer caliper.

Systematic: faulty calibration of the caliper 0.1 mm
Random: parallax and other errors in reading the

caliper 0.1 mm

b. The measurement of the mass of a silver chloride
precipitate in a porcelain crucible using a digital
balance.

Systematic: faulty calibration of the balance 1 mg
Random: impurities in the sample
lack of proper drying of the sample

air currents

c. The measurement of the resistance of an electrical
heater using an electronic meter.

Systematic: faulty calibration of the meter 2 2
Random:  parallax error and other error in

reading the meter 1 €2

Mathematics for Physical Chemistry. http://dx.doi.org/10.1016/B978-0-12-415809-2.00039-2
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d. The measurement of the time required for an
automobile to travel the distance between two highway
markers nominally 1 km apart, using a stopwatch.

Systematic: faulty calibration of the stopwatch 0.2 s
incorrect spacing of the markers 0.5 s
Random: reaction time difference in pressing the

start and stop buttons 0.3 s

The reader should be able to find additional error
sources.

Exercise 15.2. Calculate the probability that “heads” will
come up 60 times if an unbiased coin is tossed 100 times.

100! [/ 1\'®
60140! <§)
B 9.3326 x 10'7

T (8.32099 x 1081)(8.15915 x 1047)
x 7.8886 x 10731 = 0.01084

probability

Exercise 15.3. Find the mean and the standard deviation
for the distribution of “heads” coins in the case of 10 throws
of an unbiased coin. Find the probability that a single toss
will give a value within one standard deviation of the mean.

The probabilities are as follows:

el135
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2 _ 2y )2 — _ 2 _
ﬂo. of heads binomial probabilit)\ oy = () —x) 60.0 = (7.50) 373
=n coefficient =pn oy = ~3.75=1.94
0 1 0.0009766
1 10 0.009766 Exercise 15.5. Calculate the mean and standard deviation
2 45 0.043947 of the Gaussian distribution, showing that w is the mean
3 120 0.117192 and that o is the standard deviation.
4 210 0.205086
1 o 2,92
5 252 0.2461032 (x) = / xe WTH/207 i
6 210 0.205086 V2ro J-co
7 120 0.117192 _ 1 /OO (v + M)e—yz/z(ﬂ dx
8 45 0.043947 V2o J-
9 10 0.009766 1 o0 2 2
— —y°/2
Qo 1 0.0009766J = oo /_OO ye T dx
1 e 2962
2710/ pe Ay =04 p=p
10 —
(n) = ann = 5.000 (x2> _ 2] /00 xzef(xfu)Z/Zaz dx
n=1 AV LTTO J—o00
10 1 *© 2 2252
_ -y /20
(n*) = ) pan® =27.501 = Vino /_OO O+ wye dy
n=t 1 * 2 2 2 /207
= TM/ (% +2y + phe 2 dy
02 = (n?) — (n)* = 27.501 — 25.000 = 2.501 | e .
— 2 —y°/20
_ _ = e d
on = ~/2.501 = 1.581 N /_Ooy Y
The probability that n lies within one standard deviation of 2 / > ye~ ¥2/207 4 y
the mean is 2o J-co
oo
probability = 0.205086 + 0.2461032 + 0.205086 = 0.656 + 21 / Mze_yz/zgz dy
To J—o0
This is close to the rule of thumb that roughly two-thirds 1 JT
of the probability lies within one standard deviation of the = 75 (T(zcﬂ)” 2) +0+pu*=0"+pu’
To
mean.
o‘x2 = (xz) = M2 = 0‘2

Exercise 15.4. If xranges from 0.00 to 10.00 and if f (x) =
cx2, find the value of ¢ so that f(x) is normalized. Find the
mean value of x, the root-mean-square value of x and the
standard deviation.

oy =0

10.00 Exercise 15.6. Show that the fraction of a population lying

10.00
| — ¢ / 2y = i3] = $(1000.0) between u — 1.960 and ju+ 1.960 is equal to 0.950 for the
0.00 0.00 Gaussian distribution.
3
c = = 0.003000 +1.96
1000.0 fraction — — / K —ew?e? g,
NV2mo Ju—1.960
10.00 10.00
1 1.960
(x) = c/ dx = c—x* - ! / oY /207 dy
0.00 4 o.00 V2mo J-1960
0.003000 1 1.960 s
= 222 (10000) = 7.50 _ f eV gy
4 V2mo Jo
10.00 | .|1000
(xz) = c/ xtdx = c=x> y
0.00 5 0.00 Letu = E
0.003000
= ——(100000) = 60.0
5 1.960
y = 1960 < u = = 1.386

Xrms = <x2>1/2 = (60.0)1/2 =7.75 ﬁa
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V2o 1386 5 5 h?
fraction = e " du 0, =A(py) —(px) =+
V2ro ,/o P 4L?

| op1se o =

= ﬁ./o e " du = erf(1.386) = 0.950 Px ™ o

. , - 2,1/2
Exercise 15.7. For the lowest-energy state of a particle in ~ EXercise 15.9. Find the expression for (v}) /2, the root-
a box of length L, find the probability that the particle will ~ mean-square value of v, and the expression for the standard

be found between L /4 and 3L /4. The probability is deviation of vy.

9 [0.7500L m 172 poo mol
robability) = — sin? (7rx/L)dx 2y = / 2 ——2)d
P y) L Joas00L e/ (i) <2nkBT) oo S P\ Toper ) O

) I3 /2.3562 L, m 1/2 poo mu?
=(Z)(= sin” (y)dy =2 / 2 ——=)d
(L> <7T) 0.7854 2rkgT 0 Ve P g ) O
_2 [y sin (y) cos (y)T“"’2 S(m N\ (KeT ),
|2 2 0.7854 B (27TkBT> ( m ) /o !
_ 2 [2.3562 _sin (2.3562) cos (2.3562) x exp (— u?) du
T 2 ' 2 m V2 (okgT 3/2\/5 kg T
07854 n sin (0.7854) cos (0.7854) =2 2mkpT i T T
2 2
2
= —(1.1781 + 0.2500 — 0.39270 + 0.2500) kT
i ol = (1) —0=(?) = ——
= 0.8183 « m
_ [kgT
Exercise 15.8. Find the expectation values for p, and p)% Tu = m
for our particle in a box in its lowest-energy state. Find the
standard deviation. Exercise 15.10. Evaluate of (v) for N, gas at 298.15 K.
h2 [t d
(px) = T—/ sin (rx/L) | — sin (zx/L) | dx 8RT\'/?
i LJy dx ) =\ —+
M
h2m (F | 1 12
=71L sin (x /L) cos (rx/L)dx _ <8(8.3145 J K™ mol™")(298.15 K))
ho o LO x B 7(0.028013 kg mol 1)
= TIla /0 sin (u) cos (u)du — 4747 ms™!
) b4
— E% s 2(”) =0 Exercise 15.11. Evaluate vy for N gas at 298.15 K.
! 0
This vanishing value of the momentum corresponds to the — 3RT\'/?
fact that the particle might be traveling in either direction s M

with the same probability. The expectation value of the
square of the momentum does not vanish:

B (3(8.3145 JK~! mol=")(298.15 K))”2
N (0.028013 kg mol ™)

2 22 [F @ -1
(py) = —h Z/o sin (mc/L)dx—2 sin (rx /L) =5152ms
N2 5,2 L 2 Exercise 15.12. Evaluate the most probable speed for
- (Z) h Z/O sin” (wx/L)dx nitrogen molecules at 298.15 K.
2 ,2L (7
- (5) h2——/ sin? (u)du SRT\ 12
L L 0 vmp — N
M
T 2h22L u sinu)]|” o
- (Z) Lz |2 4 | B <2(8.3145JK1 mol=1)(298.15 K)) /
N2 L2 L R W2 B (0.028013 kg mol~1)
- (Z) U Sy Ry 5 = 4207 ms !



Exercise 15.13. Find the value of the z coordinate after
1.00 s and find the time-average value of the z coordinate
of the particle in the previous example for the first 1.00 s of
fall if the initial position is z = 0.00 m.

()¢ ! 12
Uz 28

1 —2\,2
= —5080ms ™)’ = —4.90m

Zz(t) - Z(O)

B 1 1.00 )
zZ = —m/o gt~ drt
o <(9.80m s—2)> [f}"m
2(1.00 s) 3,

B <9.80 m s2> (1.00 s)3)
2.00s 3

= —1.633m

Exercise 15.14. A sample of 7 individuals has the
following set of annual incomes: $40000, $41,000, $41,000,
$62,000, $65,000, $125,000, and $650,000. Find the mean
income, the median income, and the mode of this sample.

mean

1
§($40,000 + $41,000 + $41,000 + $62,000

+ $65,000 + $125,000 + $650,000)
$146,300
median = $62,000

mode = $41,000

Notice how the presence of two high-income members of
the set cause the mean to exceed the median. Some persons
might try to mislead you by announcing a number as an
“average” without specifying whether it is a median or a
mean.

Exercise 15.15. Find the mean, (x), and the sample
standard deviation, sy, for the following set of values:
x = 2.876 m, 2.881 m, 2.864 m, 2.879 m, 2.872 m,
2.889 m, 2.869 m. Determine how many values lie below
(x) — sy and how many lie above (x) + sy.

(x) = 2.876

1
52 8[(0.000)2 + (—0.005)> + (—0.012)?

X

4 (0.003)> + ( — 0.004)>
+(0.013)% 4+ (= 0.007)?]
0.0000687

sy = +/0.0000687 = 0.008

(x) — sy = 2.868,(x) +s, = 2.884

Mathematics for Physical Chemistry

There is one value smaller than 2.868, and one value
greater than 2.884. Five of the seven values, or 71%, lie in
the range between (x) — s, and (x) + sy.

Exercise 15.16. Assume that the H-O-H bond angles
in various crystalline hydrates have been measured to be
108°,109°,110°,103°,111°, and 107°. Give your estimate
of the correct bond angle and its 95% confidence interval.

1
Bond angle = (@) = 6(108O + 109° + 110° + 103°

+111° 4+ 107°) = 108°

s = 2.8°

(2.571)(2.8°)
= = 3.30
& \/6

Exercise 15.17. Apply the Q test to the 39.75 °C data
point appended to the data set of the previous example.

|(outlying value) — (value nearest the outlying value)|

0=

(highest value) — (lowest value)
42.58 —39.75  2.83

——— = —— =0.919
42.83 —39.75  3.08

By interpolation in Table 15.2 for N = 11, the critical Q
value is 0.46. Our value exceeds this, so the data point can
safely be neglected.

PROBLEMS
1. Assume the following discrete probability distribu-
tion:
X 0 1 2 3 4 5

Px 0.00193 0.01832 0.1054 0.3679 0.7788 1.0000

6 7 8 9 10
0.7788 0.3679 0.1054 0.01832 0.00193

Find the mean and the standard deviation. Find the
probability that x lies between (x) — o, and (x) — oy.

10
(n) = Zn:O "Pn
n = y10
n=0 Pn
10
Z pn = 2(0.00193) +2(0.01832) + 2(0.1054)
n=0

+2(0.3679) 4 2(0.7788) + 1.000
= 3.5447
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10
ann = (04 10)2(0.00193) + (1 + 9)2(0.01832)
n=0

+ (2 + 8)2(0.1054) + (3 + 7)2(0.3679)
+ (4 + 6)2(0.7788) + 1.000

= 17.723
17.723
(n) = = 5.00
3.5447
10
(n? = —Z"ZO "’ pa
Zrllozo DPn
10
> n?py = 95.697
n=0
95.697
(n?) = = 26.997
3.5447

o2 = (n®) — (n)? = 26.997 — 25.00 = 1.0799
on = ~/1.0799 = 1.039

probability that x lies between (x) — o, and (x) — oy
_1.000 + 2(0.7788)
N 3.5447

=0.722

2. Assume that a certain biased coin has a 51.0%
probability of coming up “heads” when thrown.

a. Find the probability that in ten throws five
“heads” will occur.

10 0.510)°(0.490)°
ﬁ(- )~(0.490)

(252)(0.03450)(0.02825)
= 0.2456

probability

b. Find the probability that in ten throws seven
“heads” will occur.

10! ; ;
=3 (0-510)7(0.490)

(120)(0.008974)(0.11765)
= 0.1267

probability

3. Calculate the mean and the standard deviation of all of
the possible cases of ten throws for the biased coin in
the previous problem. Let n be the number of “heads”
in a given set of ten throws. Using Excel, we calculated
the following:

(0.510)" Pn npp n’p, \

ﬂ bin.

coeff. (0.490)'0-"
0 1 0.000797923 0.000797923 0 0
1 10 0.000830491 0.008304909 0.008304909 0.008304909
2 45 0.000864389 0.038897484 0.077794967 0.155589934
3 120 0.000899670 0.107960363 0.323881088 0.971643263
4 210 0.000936391 0.196642089 0.786568356 3.146273424
5 252 0.000974611 0.245601956  1.228009780 6.140048902
6 210 0.001014391 0.213022105 1.278132629 7.668795772
7 120 0.001055795 0.126695363 0.886867538 6.208072768
8 45 0.001098888 0.049449976 0.395599806 3.164798446
9 10 0.001143741 0.011437409 0.102936684 0.926430157
&0 1 0.001190424 0.001190424 0.011904242 0.119042424

10

(n) = Y npy =5.100
n=0
10

(n®) = Y n’p, = 28.509
n=0

o2 = (n%) — (n)? = 28.509 — 26.010 = 2.499
on = ~/2.499 = 1.580

The three values n = 4, n = 5, and n = 6 lie
within one standard deviation of the mean, so that the
probability that n lies within one standard deviation of
the mean is equal to

probability = 0.196642 4 0.245602 + 0.213022
= 0.655266 = 65.53%

This is close to the rule of thumb value of 2/3.

. Consider the uniform probability distribution such

that all values of x are equally probable in the range
—5.00 < x < 5.00. Find the mean and the standard
deviation. Compare these values with those found in
the chapter for a uniform probability distribution in
the range 0.00 < x < 10.00.

1
5 (5.00 — 5.00) = 0.00

)
I

1
2
=0l = 5.00 4+ 5.00) = 2.8875
* 2\/5( )

The mean is in the center of the range as expected, and
the standard deviation is the same as in the case in the
chapter.

2
|
|

. Assume that a random variable, x, is governed by the

probability distribution

C
fx)=-
X

where x ranges from 1.00 to 10.00.



6.

a. Find the mean value of x and its variance and
standard deviation. We first find the value of ¢ so
that the distribution is normalized:

10.00 . 10.00
/ —dx = cln(x)|; 49
1

00 X
¢[In (10.00) — In (1.000)]

c1In (10.00)

1
c = ———— =0.43429
In (10.00)

10.00
(x) = / xde
1

.00 X

10.00
= c/ dx = ¢(9.00)
1.00
9.00

= —=3.909
In (10.00)

%(100.0 ~ 1.00)
99.0

= — =121.50
21n (10.00)

02 = (x%) — (x)? = 21.50 — (3.909)> = 6.220

ox = +6.220 = 2.494

b. Find the probability that x lies between (x) — o
and (x) — o,.

6.403 .

probability = / —dx
1415 X

6.403
cln ()] 415

=l lin(6403) — In(1.415)]

In (10.00)
_ In(6.403/1.415)

In (10.00)

= 0.6556

This close to the rule of thumb value of 2/3.

Assume that a random variable, x, is governed by the
probability distribution (a version of the Lorentzian
function)

c

=777

where x ranges from —6.000 to 6.000.

Mathematics for Physical Chemistry

a. Find the mean value of x and its variance
and standard deviation. We first normalize the
distribution:

6.000 1
1 = C/ 2—dx
~6.000 X~ + 1

6.000 1
2c / 5 dx
0 xc+1

= 2carctan (x) |8‘OOO

2c[1.40565] = 2.8113¢

1
c = = 0.35571
2.8113

where we have used Eq. (11) of Appendix E.

6.000 X
()C) = C/ z—dx =0
—6.000 X* + 1

where have used the fact that the integrand is an
odd function.

) 6.000 x2
(x) = cf dx
—6.000 x2+1
6.000 x2
26‘/ 5 dx
0 x=+1
= 2c¢[x — arctan (x)]|8‘OOO
= 2¢[6.000 — arctan (6.000) — 0]
= 2(0.35571)[6.000 — 1.40565] = 3.2685

where we have used Eq. (13) of Appendix E.

o2 = [(x?) — 0] = 3.2685
o = /3.2685 = 1.8079

b. Find the probability that x lies between (x) — oy
and (x) + oy.

18079 |
probability = ¢ / ——dx
_18079 X2 + 1

1.8079 1
= 26/ 2—dx
0 x=+1

= 2carctan ()c)|(1)'8079
= 2¢[1.06556]
= 2(0.35571)(1.06556) = 0.7581

7. Assume that a random variable, x, is governed by the

probability distribution (a version of the Lorentzian
function)
c

TW=7
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where x ranges from —10.000 to 10.000. Here is a
graph of the unnormalized function:

o

626

fx)fc

—-/ \'_ﬁ

-10 -5 0 - 10

a. Find the mean value of x and its variance
and standard deviation. We first normalize the

distribution:
10.00 1
1 = C/ z—dx
—~10.00 X + 4
10.00 4
= 26'/ z—d)C
0 x> +4
10.00
_ e WA /DI 1y 3734
2 0
1
c = =0.72812

1.3734

where we have used Eq. (11) of Appendix E.

10.00
) = ¢ / X 40

10.00 X2+ 1

where have used the fact that the integrand is an
odd function.

10.00 x2 10.00 x2
(xz) :c/ dx:Zc/ dx
—10.00 xz +1 0 xz +1
) arctan (x/2) 10.000
=2 |x — —
2 0

arctan (5.000) 0i|

= 2c |:10.000 —
= 2(0.72812)[10.000 — 0.68670] = 13.5624

where we have used Eq. (13) of Appendix E.

o2 = [(x?) — 0] = 13.562
oy = /13562 = 3.6827

b. Find the probability that x lies between (x) — o,

and (x) + oy.
3.6827 1
probability = ¢ / ——dx
_36827 X2+ 4
3.6827 1
= ZC/ 2—dx
0 xc+1
arctan (x/2) 3.6827
=2c —
2 0
= ¢[1.07328]

= (0.72812)(1.07328) = 0.7815

8. Find the probability that x lies between u — 1.5000
and i + 1.5000 for a Gaussian distribution.

1 u+1.5000
fraction = 5 / e—(x—u)z/za2 dx
VvV 2To Jpu—1.5000
1.500
_ 1 f o e_yz/zaz dy
2w J-1.5000
5
_ 1 /1 000 e_yz/zgz dy
V2mo Jo
y
Let U = ——
ﬁa
1.500
y = 1.5000 <u = o 1061
«/50
2, 1.061
fraction = V20 / e—uz du
V2mo Jo

1 1.061 2
- g
ﬁ/(; e u
erf(1.061) = 0.8662

9. The nth moment of a probability distribution is
defined by

M, = / (x — 1) f (x)dx.

The second moment is the variance, or square of
the standard deviation. Show that for the Gaussian
distribution, M3 = 0, and find the value of My, the
fourth moment. Find the value of the fourth root of M.

foo (x—u)3;
oo V21

o
2h2
e P dx =0

Mz = e—()f—lt)z/za2 dx

o0 1
—o  A2mo



where we have let y = x —u, and where we set the inte-
gral equal to zero since its integrand is an odd function.

o= [ = L 20?4
4 = (x ") mae x

= / —yz/ZUzdx
2710

— 4—)/20d
2m7/0 v

where have recognized that the integrand is an even
function. From Eq. (23) of Appendix F,

0
/ Zne—rx dx
0

so that

_DOG)---@n l)ﬁ

on+1,2n+1

f°° 4,-rix? g, (1)(3)ﬁ
0

23,5
My = 23 0% 7 =
Vo8
Mt = 3o = 13160

10. Find the third and fourth moments (defined in the pre-
vious problem) for the uniform probability distribution
such that all values of x in the range —5.00 < x < 5.00
are equally probable. Find the value of the fourth root
of My. Find the value of the fourth root of Mjy.

1 5.00
M3 = —— x3 dx
10.00 J_500

| 4500

10.00 4 | 500
1 [(5.00)4 (5.00)*

1000 4 4
1 5.00

My = —— 44
YT 70.00 ) 500t

5.00

i| =0.00

1 %

10.00 5 |

1 .00)° —5.00)°
_ (5.00)°  (—5.00) 1250
10.00 5 5

M, = Y125.0 = 3.344

11. A sample of 10 sheets of paper has been selected
randomly from a ream (500 sheets) of paper. The
width and length of each sheet of the sample were
measured, with the following results:

Mathematics for Physical Chemistry

ﬂheet number Width/in Length/in\

1 8.50 11.03

2 8.48 10.99

3 8.51 10.98

4 8.49 11.00

5 8.50 11.01

6 8.48 11.02

7 8.52 10.98

8 8.47 11.04

9 8.53 10.97
Qo 8.51 11.00 /
a. Calculate the sample mean width and its sample

standard deviation, and the sample mean length
and its sample standard deviation.

1
(w) = E(S.SO in 4+ 8.48 in + 8.51 in 4+ 8.49 in

+8.50in + 8.48 in + 8.52 in + 8.47 in
+8.53 in 4 8.51 in) = 8.499 in

©
g
Il

{é [(0.00 in)? + (0.02 in)? + (0.01 in)?

+(0.01 in)? + (0.00 in)? + (0.02 in)?
+(0.02 in)? + (0.03 in)?
1/2
+(0.03 in)2 + (0.01 in)2]}
= 0.019 in

(I = %(11.03 in 4 10.99 in + 10.98 in
+11.00in+ 11.01 in+ 11.02 in
+10.98 in + 11.04 in
+10.97 in + 11.00 in) = 11.002 in

1
s = {5 [(0.03 in)® + (0.01 in)* + (0.02 in)*

+ (0.00 in)? 4 (0.01 in)? + (0.02 in)?
+(0.02 in)? + (0.04 in)® + (0.03 in)?

. 21112 .
+(0.00 in) ]} —0.023 in
b. Give the expected error in the width and length
at the 95% confidence level.

(22620019 in)

gy = JTo
(2.262)(0.023 in)

V10

w = 8.50 in £ 0.02 in
[ = 11.01 in £0.02 in
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c. Calculate the expected real mean area from the
width and length.

A = (8.499 in)(11.002 in) = 93.506 in?

d. Calculate the area of each sheet in the sample.
Calculate from these areas the sample mean area
and the standard deviation in the area.

Aheet

Width/in  Length/in Area/inN

number
1 8.50 11.03 93.755
2 8.48 10.99 93.1952
3 8.51 10.98 93.4398
4 8.49 11.00 93.39
5 8.50 11.01 93.585
6 8.48 11.02 93.4496
7 8.52 10.98 93.5496
8 8.47 11.04 93.5088
9 8.53 10.97 93.5741
!O 8.51 11.00 93.61 /

(A) = 93.506 in®
sa = 0.150 in?
e. Give the expected error in the area from the
results of part d.

(2.262)(0.159 in)
A = —

=0.114 in?
V10

12. A certain harmonic oscillator has a position given as

a function of time by
z = (0.150 m)[sin (wt)]

where

k

w = —.

m
The value of the force constant k is 0.455 N m™!
and the mass of the oscillator m is 0.544 kg. Find
time average of the potential energy of the oscillator
over 1.00 period of the oscillator. How does the time
average compare with the maximum value of the
potential energy?

0.455 N m™!
— (2222 ) o157t
0.544 kg
1 2
r:—:—n=6.87s
V w
V—1k2

Probability, Statistics, and Experimental Errors

— 1 1 1 2
V = <m> 5(0.455 Nm™)(0.150 m)

6.87 s
x/ sin? [(0.915 s*l)z] dr
0
Let u = (0.915 s~ 1)z.

y

! 1(0455N ~1(0.150 m)?
687s) 2" moEum

1 2 5
X <m>/0 sin (I/l)dt

u  sin Cu)
2 4
(0.0008143 N m)z = 0.00256 J

2

(0.0008143 N m) |:

0

The time average is equal to % of the maximum value
of the potential energy:
1

1
Vinax = Ekzﬁm = 5(0.455N m~)(0.150 m)?

= 0.00512J

13. A certain harmonic oscillator has a position given by

z = (0.150 m)[sin (wt)]

where
k

w = -
m

The value of the force constant k is 0.455 N m™!
and the mass of the oscillator m is 0.544 kg. Find
time average of the kinetic energy of the oscillator
over 1.00 period of the oscillator. How does the time
average compare with the maximum value of the
kinetic energy?A certain harmonic oscillator has a
position given by

z = (0.150 m)[sin (wt)]

where
k

w = -
m

The value of the force constant k is 0.455 N m™!
and the mass of the oscillator m is 0.544 kg. Find
time average of the kinetic energy of the oscillator
over 1.00 period of the oscillator. How does the time
average compare with the maximum value of the
kinetic energy?

B (0.455 Nm™!

=0.915s7"!
0.544 kg

v = (;—j = (0.150 m)w[cos (wt)]

(0.150 m)(0.915 s~ H[cos (w?)]
= (0.1372 m s~ ") cos[(0.915 s~ 1)¢]
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1 2
T=—-—=—=06.87s
v w
K = Lmp?
= —mv
2

_ 1 1
K = [ —— ) =(0.544 kg)(0.1372 m s~ 1)?
(6.87 s)2( &) ms )

6.87 s
x[ cos> [(0.915 s_l)t] dr
0

Letu = (0.915 s~ 1)z.

o (L) %(0.544 ke)(0.1372 m s~)?

6.87 s
1 2
0915 ¢—1 2 (u)dt
) <0.915 s—l)/o cos® (u)
in (2 2
= (0.0008143 kg m2sf2) u + sin (2u)
2 4 o

= (0.0008143 kg m? s~2)7 = 0.00256 J

The time average is equal to % of the maximum value
of the kinetic energy:

1 1
Vinax = Esznax = 5(0544kg)(0.1372m s™hH?
= 0.00512]

The following measurements of a given variable
have been obtained: 23.2, 24.5, 23.8, 23.2, 23.9,
23.5, 24.0. Apply the Q test to see if one of the data
points can be disregarded. Calculate the mean of

15.
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these values, excluding the suspect value if one can
be disregarded.

0= 05 0.38
137
The critical value of Q for a set of 6 members is equal
to 0.63. No data point can be disregarded. The mean is

mean =

1
5(23.2 +24.5+238

+23.2423.9423.5+24.0)
=23.73

The following measurements of a given variable
have been obtained: 68.25, 68.36, 68.12, 68.40,
69.20, 68.53, 68.18, 68.32. Apply the Q test to see if
one of the data points can be disregarded.

The suspect data point is equal to 69.20. The
closest value to it is equal to 68.53 and the range from
the highest to the lowest is equal to 1.08.

Q_o.67_062
T 1.08 0

The critical value of Q for a set of 8 members is
equal to 0.53. The fifth value, 69.20, can safely be
disregarded. The mean of the remaining values is

mean

1
7(68.25 + 68.36 4 68.12,68.40

+68.53 4 68.18 + 68.32)
68.31



(Chapter 16)

Data Reduction and the Propagation

of Errors

EXERCISES

Exercise 16.1. Two time intervals have been clocked as
t] = 6.57 s+0.13 sand t; = 75.12 s £ 0.17 s. Find
the probable value of their sum and its probable error. Let
t=1t +b.

T=56.57s+7512s=131.69 s
g = [(0.138)> + (0.17 8)*1"/> = 0.21 s
r=131.69s+0.21s

Exercise 16.2. Assume that you estimate the total system-
atic error in a melting temperature measurement as 0.20 °C
at the 95% confidence level and that the random error has
been determined to be 0.06 °C at the same confidence level.
Find the total expected error.

& = [(0.06 °C)? + (0.20 °C)?1'/? = 0.21 °C.

Notice that the random error, which is 30% as large as the
systematic error, makes only a 5% contribution to the total
eITor.

Exercise 16.3. In the cryoscopic determination of molar
mass,! the molar mass in kg mol~! is given by

_ wKy
T WAT:

(1 —kyATy),

where W is the mass of the solvent in kilograms, w is the
mass of the unknown solute in kilograms, A 7t is the amount

L carl W. Garland, Joseph W. Nibler, and David P. Shoemaker, Experi-
ments in Physical Chemistry, 7th ed., p. 182, McGraw-Hill, New York,
2003.
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by which the freezing point of the solution is less than that of
the pure solvent, and K y and k s are constants characteristic
of the solvent. Assume that in a given experiment, a sample
of an unknown substance was dissolved in benzene, for
which Ky = 5.12 K kg mol~! and k; = 0.011 K~!. For
the following data, calculate M and its probable error:

W = 13.185+0.003 g
w = 0.423 +0.002 g
ATy = 1.263 £ 0.020 K.
wa
M = ——(1 — kAT
WATf( ATy

(0.423 2)(5.12 K kg mol™!)
T (13.1859)(1.263 K)
x[1 = (0.011 K™ 1)(1.263 K)]
(0.13005 kg mol~!)[1 — 0.01389]
= 0.12825 kg mol ™' = 128.25 g mol ™!

We assume that errors in K y and & ¢ are negligible.

M _ Kr kAt
dw  WAT FEt

(5.12 K kg mol™1)
(13.185 2)(1.263 K)
x[1 = (0.011 K~1)(1.263 K)]
= 0.30319 kg mol ! g~!
K
g—ﬂ‘; - _—WI/UZAfo(l — ks ATY)
(0.423 2)(5.12 K kg mol™!)
(13.185 2)2(1.263 K)

el45
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x[1 — (0.011 K~1)(1.263 K)]
= 0. 00973 kg mol ! g~!

W(IT)2(1 ATY = yar 1)

(0.423 g)(5.12 K kg mol 1)
(13.185 g)(1.263 K)?2
x[1 = (0.011 K™)(1.263 K)]
(0.423 g)(5.12 K kg mol~1)(0.011 K~1)
B (13.185 g)(1.263 K)
= 0.10154 kg mol ' K~!
= 0.10011 kg mol ! K~!
en = [(0.30319 kg mol ™! g71)20.002 g)?
+(0.00973 kg mol ™! g71)2(0.003 g)?
+(0.10011 kg mol~" K=12(0.020 K)?1'/2
= [3.68 x 10~/ kg? mol 2
+8.52 x 1071% kg? mol 2
+4.008 x 107° kg? mol—2]'/2
= 0.00209 kg mol !
M = 0.128 kg mol~! & 0.002 kg mol !
T+2 g mol !

AT

= 128 g mol™

The principal source of error was in the measurement of
ATs.

Exercise 16.4. The following data give the vapor pressure
of water at various temperatures.” Transform the data,
using In (P) for the dependent variable and 1/7 for the
independent variable. Carry out the least squares fit by hand,
calculating the four sums. Find the molar enthalpy change
of vaporization.

Vapor pressure/torr\

Temperature/°C

0 4.579
5 6.543
10 9.209
15 12.788
20 17.535

23.756

NE -/

2 R. Weast, Ed., Handbook of Chemistry and Physics, 5S1st ed., p. D-143,
CRC Press, Boca Raton, FL, 1971-1972.

—0.00143 kg mol ! K~!
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/1/(T/K) \

In (P/torr)
0.003354 3.167835
0.003411 2.864199
0.003470 2.548507
0.003532 2.220181
0.003595 1.878396
!).003661 1.521481 j

Sy = 0.02102

Sy = 14.200

Syy = 0.04940

S = 7373 %1077

D = NS, — S2 =6(7.373 x 107°) — (0.02102)?
= 3.9575x 107/
o NSy — 8.8,
D
6(0.049404) — (0.021024)(14.2006
R )~ ( ) ) .
3.95751 x 107
y — S8y =SSy
D
(7.46607 x 1072)(14.2006) — (0.021024)(0.049404)

3.95751 x 10~7
= 21.156

Our value for the molar enthalpy change of vaporization is

AH, = —mR = —(—5362 K)(8.3145 T K~ ! mol™")
= 44.6 x 103 I mol™! = 44.6 kJ mol ™!

Exercise 16.5. Calculate the covariance for the following
ordered pairs:

y X
—1.00 0.00
0 1.00
1.00 0.00
0.00 —1.00

(x) = 0.00
(y) = 0.00

1
5(0.00 -+ 0.00 4 0.0040.00) =0

Sx.y =
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Exercise 16.6. Assume that the expected error in the
logarithm of each concentration in Example 16.5 is equal to
0.010. Find the expected error in the rate constant, assuming
the reaction to be first order.

D = NS, — 8% =9(7125) — (225)? = 13500 min?

9 1/2

em=———) (0.010)=2.6 x 107* min~!
13500 min

m = —0.03504 min~! & 0.0003 min~!

k = 0.0350 min~" & 0.0003 min "

Exercise 16.7. Sum the residuals in Example 16.5 and
show that this sum vanishes in each of the three least-square
fits. For the first-order fit

ri =—0.00109 rg = 0.00634
ry =0.00207  r7 = —0.00480
r3 = —0.00639 rg = 0.01891
ry = —0.00994 ry = —0.01859.
rs = 0.01348

sum = —0.00001 ~ 0

For the second-order fit

—0.3062

r1 =0.3882  r¢
rp =0.1249
r3 = —0.0660 rg = —0.0182
rg = —0.2012 r9 = 0.5634.

—0.1492

rs = —0.3359
sum = —0.00020 ~ 0

For the third-order fit

rp =2.2589  rg = —2.0285
ry = 0.8876
r3 = —0.2631 rg = —0.2121
rgy = —1.1901 r9 =3.8031.

rs = —1.2927

rs = —1.9531
sum = 0.0101 = 0

There is apparently some round-off error.
Exercise 16.8. Assuming that the reaction in Example

16.5 is first order, find the expected error in the rate constant,
using the residuals as estimates of the errors. Here are

the residuals, obtained by a least-squares fit in an Excel
worksheet.

r1 = —0.00109 re = 0.00634
rp = 0.00207  r7 = —0.00480
r3 = —0.00639 rg = 0.01891
rs = —0.00994 ry = —0.01859.
rs = 0.01348

The standard deviation of the residuals is

9
1 1
s? = - § = 5(0.001093)
0

D = NS, — 82 =9(7125) — (225)* = 13500 min®

N 1/2
Em = (B) t(v,0.05)s,

9 1/2
=(— 2.365)(0.033064
< 13500 min2> ( ) )
= 0.0020 min~!
k = 0.0350 min~! + 0.002 min~!

Exercise 16.9. The following is a set of data for the
following reaction at 25 °C.3

(CH3)3CBr + H,O — (CH3)3COH + HBr

/Time/h [(CH3)3CBr]/mol r1\

0 0.1051
5 0.0803
10 0.0614
15 0.0470
20 0.0359
25 0.0274
30 0.0210
35 0.0160

0.0123

\Z J

3L Bateman, E. D. Hughes, and C. K. Ingold, “Mechanism
of Substitution at a Saturated Carbon Atom. Pm XIX. A Kinetic
Demonstration of the Unimolecular Solvolysis of Alkyl Halides,” J. Chem.
Soc. 960 (1940).



Using linear least squares, determine whether the

reaction obeys first-order, second-order, or third-order
kinetics and find the value of the rate constant.
To test for first order, we create a spreadsheet with the time
in one column and the natural logarithm of the concentration
in the next column. A linear fit on the graph gives the
following:

0

o 10 20 » a0
-1

-15
-2

In{conc) -2.5 ‘H—".___‘H'\‘

-3

=35 \m““‘\
. S

_4.: Y= -0.05??; -2.2533 >

RPS1L

N time/h

In (conc) = —(0.0537)¢ — 2.2533

with a correlation coefficient equal to 1.00. The fit gives a
value of the rate constant

k=0.0537 h~!

To test for second order, we create a spreadsheet with the
time in one column and the reciprocal of the concentration
in the next column. This yielded a set of points with an
obvious curvature and a correlation coefficient squared
for the linear fit equal to 0.9198. The first order fit is
better. To test for third order, we created a spreadsheet with
the time in one column and the reciprocal of the square
of the concentration in the next column. This yielded a
set of points with an obvious curvature and a correlation
coefficient squared for the linear fit equal to 0.7647. The
first order fit is the best fit.

Exercise 16.10. Take the data from the previous exercise
and test for first order by carrying out an exponential fit
using Excel. Find the value of the rate constant. Here is the
graph

‘“"u\ﬁ

timefhour

The function fit to the data is

¢ = (0.1051 mol 17 1)e~00537
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so that the rate constant is
k=0.0537h""
which agrees with the result of the previous exercise.

Exercise 16.11. Change the data set of Table 16.1
by adding a value of the vapor pressure at 70 °C of
421 torr = 40 torr. Find the least-squares line using both
the unweighted and weighted procedures. After the point
was added, the results were as follows: For the unweighted
procedure,

m = slope = —4752 K
b = intercept = 19.95;

For the weighted procedure,

m = slope = —4855 K
b = intercept = 20.28.

Compare these values with those obtained in the earlier
example: m = slope = —4854 K, and b = intercept =
20.28. The spurious data point has done less damage in the
weighted procedure than in the unweighted procedure.

Exercise 16.12. Carry out a linear least squares fit on the
following data, once with the intercept fixed at zero and one
without specifying the intercept:

x 0 1 2 3 4 5
y 210 299 4.01 499  6.01 6.98

Compare your slopes and your correlation coefficients for
the two fits. With the intercept set equal to 2.00, the fit is

7

¥= 09885+ 2
R =09

4

o 1 2 3 4 5 L]
x

y = 0.9985x + 2.00
r2 = 0.9994

Without specifying the intercept, the fit is

y = 0.984x +2.0533
r2 = 0.9997
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= 0.984x + 20533
R =0

Exercise 16.13. Fit the data of the previous example to a
quadratic function (polynomial of degree 2) and repeat the
calculation. Here is the fit to a graph, obtained with Excel

400

0.1627x% §7771x + 126,82 7
RT=.999

350 Y

300

250

P{vap)ftorr 200

150
100 }/’,—/‘/’

50

0
20.00 30.00 40.00 50.00 60.00 70.00
temperature/degrees Celsius

P =0.1627t> — 6.7771t + 126.82

where we omit the units.

dpP
= 0.3254r — 6.7771

This gives a value of 7.8659 torr °C~! for dP/dr at 45 °C.
dp 3 -
AHp = (TAVy) )= (318.15 K)(0.1287 m” mol ™)

101325 m—3
% (7.8659 torr K~1) <—m)

760 torr
= 4.294 x 10* I mol™" = 42.94 kJ mol ™!

This is less accurate than the fit to a fourth-degree
polynomial in the example.

PROBLEMS

1. In order to determine the intrinsic viscosity [n] of a
solution of polyvinyl alcohol, the viscosities of several
solutions with different concentrations are measured.

The intrinsic viscosity is defined as the limit*

1
lim (-m (l»
c=>0\c¢ 10

where c is the concentration of the polymer measured
in grams per deciliter, 7 is the viscosity of a solution
of concentration ¢, and 17 is the viscosity of the pure
solvent (water in this case). The intrinsic viscosity and
the viscosity-average molar mass are related by the
formula

M 0.76
[n] = (2.00 x 107*dl g7 (-)
My

where M is the molar mass and My = 1 g mol™!
(1 dalton). Find the molar mass if [5] = 0.86 dl g~!.
Find the expected error in the molar mass if the
expected error in [5]is 0.03 dl g~ .

[’7] 3 M 0.76
(2.00 x 10~4dl g=1)  \ My

", 0] 1/0.76
(ﬁo) - <(2.00 % 104 dl g_1)>

[n] 12
- <(2.00 % 104 dl g—1)>

0.86dl g~ !
(2.00 x 10~ dl g~ 1)
= 6.25 x 10* g mol™!

1.32

M = (1 gmol™h) (

aM
m €]

1.32M(5.00 x 10 g dI7")!-32[5]" 3¢,
(1.32)(1 g mol~1)(5.00 x 10% g d171)!32
x(0.86 dl g~1%32(0.03 d1 g7 1)
=22x10° gmol™!

EM =

Assume that the error in the constants M and 2.00 x
10~* dl g~! is negligible.

2. Assuming that the ideal gas law holds, find the amount
of nitrogen gas in a container if

P = 0.836 atm £ 0.003 atm
V = 0.01985 m> & 0.00008 m>
T =293K=+0.2K.

4 Ccarl W. Garland, Joseph W. Nibler, and David P. Shoemaker,
Experiments in Physical Chemistry, 7th ed., McGraw-Hill, New York,
2003, pp. 321-323.



Find the expected error in the amount of nitrogen.

PV

RT

(0.836 atm)(101325 J m—3 atm~1)(0.01985 m?)
(8.3145 J K= mol=1)(298.3 K)

= 0.6779 mol

1/2
en N on 282 + on 282+ on 282 !
m\ep) P \ar ) T \av) TV

( an ) Vo (0.01985 m3)
9P )ry  RT ~ (83145JK~! mol=1)(298.3 K)

= 553%x 10*mol J~! m3 =8.003 x 107° mol Pa~!

(zm) PV
oT Jpy ~ RTZ

(0.836 atm)(101325 J m™3 atm~1)(0.01985 m?)

(8.3145 T K—! mol=1)(298.3 K)2
= —2273%x 1073 mol K~!

on P
aV/)rp RT

(0.836 atm)(101325 I m™3 atm™—!)

- = 34.153 mol m ™3

(8.3145 J K—1 mol=1)(298.3 K)
en ~ [(8.003 x 1076 mol Pa~1)2
x[(0.003 atm) (101325 Pa atm*l)]2
+(—2.273 x 1073 mol K" H2(0.2 K)?
+(34.153 mol m—3)2(0.00008 m3)2]]/ ?
en ~ [5.918 x 107° mol® 4 2.067 x 10~/ mol?

+7.465 x 107% mol21'/2 = 3.7 x 1073 mol
n = 0.678 mol = 0.004 mol

. The van der Waals equation of state is

nza
P+ 5 ) (V.= nb) =nRT

For carbon dioxide, a = 0.3640 Pa m® mol~! and
b = 4.267 x 107> m> mol~!. Find the pressure of
0.7500 mol of carbon dioxide if V = 0.0242 m?
and 7 = 298.15 K. Find the uncertainty in the
pressure if the uncertainty in the volume is 0.00004 m?
and the uncertainty in the temperature is 0.4 K.
Assume that the uncertainty in n is negligible. Find
the pressure predicted by the ideal gas equation
of state. Compare the difference between the two
pressures you calculated and the expected error in the
pressure.

nRT nza
“V-ouw  v?
(07500 mol)(8.3145 J K~! mol~!)(298.1 K)
7 0.0242 m3 — (0.7500 mol)(4.267 x 10~5 m3 mol—!)

(0.7500 mol)2(0.3640 Pa m® mol~!)
(0.0242 m3)2
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=7.6916 x 10* Pa — 3.496 x 10% Pa = 7.657 x 10* Pa
<8P> __nRT 2n%a

V) (V—nb? V3

_ (0.7500 mol)(8.3145 T K~ ! mol~1)(298.1 K)

7 [0.0242 m3 — (0.7500 mol)(4.267 x 10~3 m3 mol—1)]2

N 2(0.7500 mol)2(0.3640 Pa m® mol~1)
(0.0242 m3)3

=3.1836 x 10° Pam~3 + 2.889 x 10* Pam >
=3212 x 100 Pam ™3

P _ nR

aT ),y V—nb

B (0.7500 mol)(8.3145  K~! mol~!)

7 0.0242 m3 — (0.7500 mol)(4.267 x 10—5 m3 mol~!)

=2.580 x 102 PaK !
1/2
. P 252 (2P z, /
= —_— — ) €
P av) v \er) °T
= [(3.212 x 10% Pa m—3)2(0.00004 m>)2
1/2
+(2.580 x 102 Pa K~ 12(0.4 K)ﬂ /

1/2
- [1.651 x 10* Pa? + 1.065 x 10* Paz] " 1.65% 10 Pa

P =7.657 x 10* Pa+ 1.65 x 10% Pa
=7.66 x 10* Pa=+0.02 x 10* Pa

From the ideal gas equation of state

nRT
Vv
(0.7500 mol)(8.3145 T K~! mol~1)(298.1 K)
0.0242 m3

= 7.681 x 10* Pa

The difference between the value from the van der
Waals equation of state and the ideal gas equation of
state is

difference = 7.657 x 10* Pa — 7.681 x 10* Pa
—2.4 x 10 Pa= —0.024 x 10* Pa

This is roughly the same magnitude as the estimated
erTor.

. The following is a set of student data on the vapor

pressure of liquid ammonia, obtained in a physical
chemistry laboratory course.

a. Find the
vaporization.

indicated enthalpy change of
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/ \ By calculation
T

emperature/°C Pressure/torr
Sy = 0.048324
760 o115 S.2 = 0.00023376
~74.0 59.40
-72.0 60.00
D = (10)(0.00023376) — (0.048324)>

~70.0 75.10 6

68.0 91.70 =239 10
—64.0 112.75 Em = D t(v,0.05)s;,
—62.0 134.80 12
~60.0 154.30 =(— (2.306)(0.002113)

58.0 176.45 239 %107
e ’ =216.8K

—-56.0 192.90
& / m =2958.7K+217K

A Hyyp = 24600 J mol ™" + 1800 J mol ™

Taking the natural logarithms of the pressures and
the reciprocals of the absolute temperatures, we
carry out the linear least squares fit

5. The vibrational contribution to the molar heat capacity
of a gas of nonlinear molecules is given in statistical
mechanics by the formula

5.5
5.3 L‘ =6 uZe Ui
; S i
5.1 Cn(Vib) = R 21 (1 — e—ui)2
1=
T 49
,,?_ 4.7 where u; = hv;/kgT. Here v; is the frequency of
§ 45 the i th normal mode of vibration, of which there are
T 43 ™. 3n —6if nis the number of nuclei in the molecule, £ is
£ 41 N Planck’s constant, kg is Bc?ltzmann’s constant, R is the
3.0 v ={2958.7x + JE%%O&._ ideal gas constant, and 7 is the absolute temperature.
555 R? = 0.993 The H,O molecule has three normal modes. The
3' § frequencies are given by
0.0046  0.0047  0.0048  0.0049  0.005  0.0051 v = 478 x 1013 571 £0.02 x 1013 57!
YT/K 14 —1 14 —1
v = 1.095 x 10" s £0.004 x 10" s
In (Pyap/torr) = —2958.7 + 18.903 vy = 1.126 x 10" s7!1 £0.005 x 10" s7!
T Calculate the vibrational contribution to the heat
AHm,vap = —Rm = (8.3145 J mol™" K™) capacity of H,O vapor at 500.0 K and find the 95%
| confidence interval. Assume the temperature to be
% (2958.7 K) = 24600 J mol™ fixed without error.
b. Ignoring the systematic errors, find the 95% up = vy
. kgT
confidence interval for the enthalpy change of a4 P
o (6.6260755 x 1073% J 5)(4.78 x 1013 s71)
vaporization. = .
(13806568 x 10~23 J K—1)(500.0 K)
| 10 = 4.588
2_ 2 2 _ _
57 =3 Zrl =0.002113 w =7
= (6.6260755 x 1073 J'5)(1.095 x 101 s~ 1)
The expected error in the slope is (1.3806568 x 10723 J K~1)(500.0 K)
= 10.510
N\ /2 _ Jws
Em = <5> 1(v,0.05)s; 7 ket

(6.6260755 x 10734 J $)(1.126 x 1014 s~ 1)
(1.3806568 x 1023 J K—1)(500.0 K)
D=NS, — S? = 10.580




Cp(mode 1) =

| (4.588)2674.588

—1 —
(8.3145J K~ mol )m

1.817 7K ! mol~!
(10.51)6_10‘51
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= (8.3145 T K~ ! mol=1)[0.0005379 — 0.0028455
—0.000000145] = —0.01918 J K~! mol~!

-1 -1
Cp(mode 2) = (8.3145 T K~ ! mol )m N2 5 (9N 5 (9Cn\2 12
= 0.00238 J K~ mol ™! fon = [( duy ) ar (E) ot ( du3 > 83}
Cuntmode 3) = (83145 1 K=" mor~1) (1030 10 = [(~ 1025 7K™  mol™)2(1.92 x 1072)?
(1 =e™%) +(—0.02026 T K~ mol=1)2(3.84 x 1072)2
= 0.00224 7K~ mol ™! F(—0.01918 T K~ mol~1)2(4.80 x 10-2)2]1/2
Cin(vib) = 1.1863 J K~ mol™! = 387 x 1074 12 K2 mol=2 4 6.05 x 10~7 12 K2 mol 2
hew, +8.48 x 1077 J2 K~2 mol~2]1/2
o= T = 0.0197 JK~ ! mol™!
(6.6260755 x 10~34 7 5)(0.02 x 1013 s~ 1) Cin(vib) = 1.1863 J K1 mol ™!
T (13806568 x 1023 T K1)(500.0 K) +0.0197 7K~ mol™!
= 1.92x 1072
hey, . . . .
2= T 6. Water rises in a clean glass capillary tube to a height
(6.6260755 x 10~3* 1 5)(0.004 x 1014 s~ 1) h given by
T (13806568 x 10-23 J K~ 1)(500.0 K) h+ T _ 2_7/
— 3.84x 1072 3 pgr
hevy;  (6.6260755 x 1073* 1 5)(0.005 x 1014 s~1) where r is the radius of the tube,p is the density of
T kBT T (13806568 x 10-23 J K-1)(500.0 K) water, equal to 998.2 kg m™3 at 20 °C, g is the
— 4.80 x 1072 acceleration due to gravity, equal to 9.80 m s2, h
is the height to the bottom of the meniscus, and y is
Cm the surface tension of the water. The term r /3 corrects
du for the liquid above the bottom of the meniscus.
|: 2u1e_”1 3 u%e‘”' s u%e‘”l “1i|
(1—e"1)2  (1—et1)2 ( _efu1)3e a. If water at 20 °Crises to a height 2 0f 29.6 mm in

(8.3145 T K1 mol™1)

2(4.588)¢ 4588
x a- 6744588)2 -

(4.588)2¢ 4388
(1 — e—4388)2 -

2(4.588)26_2(4‘588)
1- 674.588)3

(8.3145 T K1 mol™1)
%[0.09528 — 0.21857 — 0.00449] = —1.025J K~} mol ™!

aCp
aup

2upeHi2 uize_uz u%ef“z —u
R - -2 e
(1— efu2)2 (1- efuz)Z (1— efuz)S
(83145 J K~ mol™1)

2(10.51)e~ 1051
X (1,6—10.5])2

(10.51)28710'51
T (1= 1051)2

2(10.51)2672(10.51)
1- 6_10'5])3

(8.3145 T K1 mol™1)

%[0.000573 — 0.00301 — 0.000000164]

= —0.02026 T K~ mol™1
aCp
ous

B 2upe i3 u%e_“3 u%e_“3

B [(1 —e )2 (1—e )2 T(1—e13)3

2(10.58)26_2(10‘58)
(1- 6_10'58)3

= (8.3145 7K ' mol™ 1)

2(10.58)e~ 1058 (10.58)2¢ 1058
| T 10582 T (1 10582

a tube of radius r = 0.500 mm, find the value of
the surface tension of water at this temperature.

! <h+r) L 9982 ke m=?)
= — - ) == . m
vy = 5p8r 3)=5 g
x(9.80 m s72)(0.500 x 1073 m)
; 0.500 x 1073 m
x (296107 m 4 ————
= 0.0728 kg s> = 0.0728 kg m? s> m 2
=0.0728 I m~
b. If the height # is uncertain by 0.4 mm and

the radius of the capillary tube is uncertain by
0.02 mm, find the uncertainty in the surface
tension.

dy 22 dy 22
v (G) A+ (5) 4

ay 1
yN_1
on ) = 2P8

(998.2 kg m™?)(9.80 m s72)(0.500 x 10~ m)
B 2

172

=2.446 T m™3
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(3_J/> _ 12 ;= l , Determine whether the reaction is first, second, or third
ar) 6 per= 3 ps order. Find the rate constant and its 95% confidence

(998.2 kg m=3)(9.80 m s72)(0.500 x 1073 m)  interval, ignoring systematic errors. Find the initial
= 3 pressure of butadiene. A linear fit of the logarithm of
16307 m>3 the partial pressure against time shows considerable

curvature, with a correlation coefficient squared equal
£, = [(2.446 7 m=3)2(0.0004 m)> to 9.9609. This is a poor fit. Here.is the fit of the
reciprocal of the partial pressure against time:

1/2
+(1.630 T m—>)2(0.00002 m)]

second order fit

=19.6x 1077 > m© 4 1.0630 x 10~ > m~®]'/2 oot
=98x 104 Tm™> . ;“”V
y =0.0728 I m~2 £ 0.00098 J m~2 ' ]
c. The acceleration due to gravity varies with £’ L “T*
latitude. At the poles of the earth it is equal §5 —
to 9.83 m s2. Find the error in the surface S p
tension of water due to using this value rather : [
than 9.80 m s~2, which applies to latitude 38°. j T
ay 1 r
_ = — h — 0
<ag> Zpr( + 3) 0 50 100 150 i.:::l"in =0 300 kL 400

1 -3 -3
5(998'2 kg m™)(0.500 x 107 m) This is a better fit than the first order fit. A fit of

0.500 x 1073 m the reciprocal of the square of the partial pressure is
- 3 ) significantly worse. The reaction is second order. The

X (29.6 x 1073 m+
rate constant is

= 0.00743 kg m™!

a
= ()

%(0.03 m s72) ‘: 0.00022 J m~>

k = slope = 0.0206 atm™' min~!
P@) = 1 1
T b 1.0664 atm™!

- ‘(0.00743 kg m~!)

= 0.938 atm

The last two points do not lie close to the line. If one
or more of these points were deleted, the fit would be
better. If the last point is deleted, a closer fit is obtained,
/ \ with a correlation coefficient squared equal to 0.9997,

Time/min Partial pressure of butadiene/ atm a slope equal to 0.0178, and an initial partial pressure

7. Vaughan obtained the following data for the
dimerization of butadiene at 326 °C.

equal to 0.837 atm.
0 to be deduced
3.25 0.7961 e
08 |4
8.02 0.7457 e,
07 3
12.18 0.7057 0.6 .
05 R
17.30 0.6657 concerr -
tration 0.4 e
24.55 0.6073 e y =13.213E-07%° + 9.307E{05x- LOIIE
R¥=9.998E-01
33.00 0.5573 0.2
42.50 0.5087 ol
0
68.05 0.4173 time/min
90.05 0.3613 . .
8. Make a graph of the partial pressure of butadiene
119.00 0.3073 . . . . .
as a function of time, using the data in the previous
259.50 0.1711 problem. Find the slope of the tangent line at
QB.OO 0.1081 J 24.55 min and deduce the rate constant from it.
Compare with the result from the previous problem.




Here is the graph, with a fit to a third-degree
polynomial. To find the derivative, we differentiate the
polynomial:

dpP
— = 9639 x 10772
dt
+1.8614 x 10~%t — 0.01091
dpP . 1
—_— = —0.00692 atm min
dr |,—0455
dpr
— = —kc?
dt
i — _4P/dr_ 0.00692 atm min”!

P2 (0.6073 atm)?

= 0.0188 atm™! min~!

This value is smaller than the value in the previous
problem by 9%, but is larger than the value obtained
by deleting the last two data points by 8%.

9. The following are (contrived) data for a chemical
reaction of one substances.

-

\

ime/min Concentration/mol I~
0 1.000
2 0.832
4 0.714
6 0.626
8 0.555
10 0.501
12 0.454
14 0.417
16 0.384
18 0.357

Kzo 0.334 /

a. Assume that there is no appreciable back reaction
and determine the order of the reaction and
the value of the rate constant. A linear fit of the
natural logarithm of the concentration against the
time showed a general curvature and a correlation
coefficient squared equal to 0.977. A linear fit
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of the reciprocal of the concentration against the
time gave the following fit:

3 ¥ = 0.0999x + 1.0007

2.5
- /

0.5

This close fit indicates that the reaction is second
order. The slope is equal to the rate constant, so
that

k = 0.0999 1 mol~! min~!

b. Find the expected error in the rate constant at the

95% confidence level. The sum of the squares of
the residuals is equal to 9.08 x 1073, The square
of the standard deviation of the residuals is

1
52 = 6(9.08 x 107) = 1.009 x 107>

D = NS — 82 = 11(1540) — (110)°

1.694 x 10* — 1.21 x 10* = 4.84 x 10°

N 12 1 172
) 0,005 = [
(D) (.0.05)sr (4.84 x 103>

x(2.262)(1.009 x 1077)

Em

3.4 x 10~* 1 mol~! min~!

k = 0.0999 1 mol~! min~!

4+0.0003 1 mol~! min~!

c. Fit the raw data to a third-degree polynomial and
determine the value of the rate constant from the
slope at # = 10.00 min. Here is the fit:
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1.2 / t/s V /volt \

y =-B.86E-05x3 +4. 32E-03x2- 8.41E-02x + 9.93E-01
R? =9.99E-01

1 0.00 1.00
\ 0.020 0.819
0.8

5 0.040 0.670
N

£ os e 0.060 0.549

g \ 0.080 0.449

S 04

— 0.100 0.368

0.2 0.120 0.301

. 0.140 0.247

0 5 10 15 20 0.160 0.202

time/min 0.180 0.165

ono 0.135 J

c = —8.86 x 107713 +4.32 x 1073¢?

-2
—8.41 > 1077 4 0.993 Find the capacitance and its expected error.

dc

— = —2.66 x 107412 + 8.64 x 10731 m(Y®Oy__t
d V(0) RC
—8.41 x 1072
Here is the linear fit of In[V (r) /V (0)] against time
At time t = 10.00 min 0.5
0
d_c = —0.0243 0.05 oj1 0.15 0
dr -0.5
de a
-— = —kCZ g -1
dr s
k= dc/dr 0.0243 mol 17! min™! -1.5
= 2 T 050l mol I )2 , v=-1C.CLO:7-x1+ 0.0004
= 0.0968 1 mol~! min~! s
’ time/seconds
The value from the least-squares fit is probably
more reliable. 10.007 5!
c=-"0_ 00 9 81%105 F=98.1 uF
R 102000 2

10. If a capacitor of capacitance C is discharged through ) )
a resistor of resistance R the voltage on the capacitor The sum of t{‘% squares of the residuals is equal to
follows the formula 1.10017 x 10

~ 1
V(t) = V() /RC 52 5 (110017 x 107%) = 1.222 x 107°

./ 6 _ -3
The following are data on the voltage as a function s = V1.222x 10 110510

2 2
of time for the discharge of a capacitor through a D = NS, = §; = 12(0.154) — (1.100)
resistance of 102 k<. = 1.848 — 1.2100 = 0.638



The expected error in the slope is given by

(Y 1/2t9005 ()"
e =\D 9.0.05)s =\ Gg38

x(2.262)(1.105 x 1073) = 1.04 x 1072
m = —10.007 s7' £0.0104 s~
10.007 s~ 0.0104 57!
102000 © ~ 102000 £
=981 x10°F+1.0x 107’ F
= 98.1 WF£0.1 puF

11. The Bouguer-Beer law (sometimes called the
Lambert-Beer law or Beer’s law) states that A =
abc, where A is the of a solution, defined as
log;o (Io/1I) where Ij is the incident intensity of light
at the appropriate wavelength and [ is the transmitted
intensity; b is the length of the cell through which
the light passes; and c is the concentration of the
absorbing substance. The coefficient a is called the
molar absorptivity if the concentration is in moles per
liter. The following is a set of data for the absorbance of
a set of solutions of disodium fumarate at a wavelength
of 250 nm.

Mathematics for Physical Chemistry

slope = m = ab = 1436.8 1 mol ™!

1436.8
4= =—"2 _14371mol"! cm™!
b 1.000 cm
Here is the fit with no intercept value specified:
1
0.9 = 14d5adn 30036
0.8 = 0.9999 /’

0.7

0.6 e
0.5 /’
04 &
0.3 /
0.2 /
0.1 ,/
3 I
0.00E+00QL.00E-042.00E-043.00E-044.00E-045.00E-046. 00E-047.00E-04

concentration/mol/liter

Absorbance

m 1445.1

— =" —14451mol ! ¢cm™!
b 1.000 cm

a =

The value from the fit with zero intercept specified is
probably more reliable.

a=14371mol~! cm™!

A 0.1425 0.2865
1.00 x 10~% 2.00 x 10~%

0.4280

¢ (mol I

3.00 x 10~4

0.5725 0.7160 0.8575
4.00 x 1074 5.00 x 10~% 6.00 x 107%

Using a linear least-squares fit with intercept set
equal to zero, find the value of the absorptivity aif b =
1.000 cm. For comparison, carry out the fit without
specifying zero intercept.

Here is the fit with zero intercept specified:

1

|
= =14368
0.8 ;’ -li;s; A
0.7 /
g 0s //
g 05
204 &
K-
<03 /./

0.2

01 ¥

" I

0.00E+0QL.00E-042.00E-043.00E-044.00E-045.00E-046. 00E-047.00E-04

concentration/mol/liter

A = abc
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