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0-2 Solutions Manual for Statistical Inference

“When I hear you give your reasons,” I remarked, “the thing always appears to me to be so

ridiculously simple that I could easily do it myself, though at each successive instance of your
reasoning I am baffled until you explain your process.”

Dr. Watson to Sherlock Holmes

A Scandal in Bohemia

0.1 Description

This solutions manual contains solutions for all odd numbered problems plus a large number of
solutions for even numbered problems. Of the 624 exercises in Statistical Inference, Second Edition,
this manual gives solutions for 484 (78%) of them. There is an obtuse pattern as to which solutions
were included in this manual. We assembled all of the solutions that we had from the first edition,
and filled in so that all odd-numbered problems were done. In the passage from the first to the
second edition, problems were shuffled with no attention paid to numbering (hence no attention
paid to minimize the new effort), but rather we tried to put the problems in logical order.

A major change from the first edition is the use of the computer, both symbolically through
Mathematica’™ and numerically using R. Some solutions are given as code in either of these lan-
guages. Mathematica®™ can be purchased from Wolfram Research, and R is a free download from
http://www.r-project.org/.

Here is a detailed listing of the solutions included.

Chapter Number of Exercises Number of Solutions Missing
1 55 51 26, 30, 36, 42
2 40 37 34, 38,40
3 50 42 4,6,10,20, 30, 32, 34, 36
4 65 52 8,14,22,28, 36,40
48,50, 52,56, 58, 60, 62
5 69 46 2,4,12,14, 26,28
all even problems from 36 — 68
6 43 35 8,16,26,28, 34,36, 38,42
7 66 52 4,14,16, 28, 30, 32, 34,
36,42, 54, 58,60, 62, 64
8 58 51 36,40, 46, 48, 52, 56, 58
9 58 41 2,8,10,20, 22,24, 26, 28, 30
32,38, 40,42,44, 50, 54, 56
10 48 26 all even problems except 4 and 32
11 41 35 4,20,22,24,26,40
12 31 16 all even problems
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Chapter 1

Probability Theory

“If any little problem comes your way, I shall be happy, if I can, to give you a hint or two as
to its solution.”

1.1 a.

e.

Sherlock Holmes
The Adventure of the Three Students

Each sample point describes the result of the toss (H or T) for each of the four tosses. So,
for example THTT denotes T on 1st, H on 2nd, T on 3rd and T on 4th. There are 2* = 16
such sample points.

The number of damaged leaves is a nonnegative integer. So we might use S = {0,1,2,...}.

We might observe fractions of an hour. So we might use S = {t : ¢ > 0}, that is, the half
infinite interval [0, 0o).

Suppose we weigh the rats in ounces. The weight must be greater than zero so we might use
S = (0, 00). If we know no 10-day-old rat weighs more than 100 oz., we could use S = (0, 100].

If n is the number of items in the shipment, then S = {0/n,1/n,...,1}.

1.2 For each of these equalities, you must show containment in both directions.

a.

b.

1.3 a.

1.4 a.

reA\BerecAande ¢ BosrecAandae ¢ ANB & x e A\(ANB). Also, x € A and
r¢BorecAandre B xe AN B

Suppose © € B. Then either x € A or x € A°. If x € A, then z € BN A, and, hence
z € (BNA)U(BNA®). Thus B C (BNA)U(BNA®). Now suppose z € (BNA)U(BNA°).
Then either z € (BN A)orz € (BNA®). If x € (BN A), then z € B. If x € (BN A°),
then « € B. Thus (BN A) U (BN A°¢) C B. Since the containment goes both ways, we have
B=(BNA)U (BN A*). (Note, a more straightforward argument for this part simply uses
the Distributive Law to state that (BN A)U (BN A°)=BN(AUA°)=BNS=RB.)

Similar to part a).

From part b).
AUBp:AU[(BﬁA)U(BﬂAC)] =AUBNAUAUBNAY) =AU[AU(BNA%] =
AU (BN A°).

r€EAUB & zx€AorzeB & xe€BUA
r€EANB & z€eAandzeB & x€ BNA.
r€eAUBUC)& z€AorxeBUC S z€AUBorze(C& ze€(AUB)UC.

(It can similarly be shown that AU (BUC)=(AUC)U B.)
reAN(BNC)e z€AandezeBandzeCe z€(ANB)NC.

.2€(AUB)s z¢Aorx¢Be rzcAandz e B z€ A°NB°

re€(ANB)= ¢ ANB& ¢ Aandr ¢ B& x€ A°orx € B o€ A°U B,
“A or B or both” is AUB. From Theorem 1.2.9b we have P(AUB) = P(A)+P(B)—P(ANB).
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“A or B but not both” is (AN B¢) U (B N A¢). Thus we have

P(ANB®)U(BNA®)) = PANB°+ P(BN A" (disjoint union)
= [P(A)—P(ANB)]+[P(B)— P(ANB)] (Theoreml.2.9a)
= P(A)+P(B)—-2P(ANB).

“At least one of A or B” is AU B. So we get the same answer as in a).

d. “At most one of A or B” is (AN B)¢, and P((ANB)°) =1—- P(ANB).

1.5 a.

1.6

AN BNC ={aU.S. birth results in identical twins that are female}

P(ANBNC) =g x %3

po=(1-u)(1—-w), pr=ull—w)+wl—u), p=uw,

po=p2 = utw=1
pL=p2 = uw=1/3.

These two equations imply u(1 — u) = 1/3, which has no solution in the real numbers. Thus,
the probability assignment is not legitimate.

1.7 a.

1.8 a.

1.9 a.

P(scoring i poi 1- 2 if i =0
scoring i points) = { mr? [(6—i)25—2<5—i>2, ifi=1,...,5.
P(scoring i points|board is hit) = P(scoring}z’(é);i:;;siz E;?rd is hit)
P(board is hit) = Lj
P(scoring ¢ points N board is hit) = Lj (69" 5_2 (65— i=1,...,5.
Therefore,

(6—i)°—(5—1i)
52
which is exactly the probability distribution of Example 1.2.7.

P(scoring i points|board is hit) =

P(scoring exactly ¢ points) = P(inside circle ¢) — P(inside circle i + 1). Circle ¢ has radius
(6 —14)r/5, so

N2 9 . 2 9 “2 “\2

_ _ 1 _ 2 (5—

P(sscoring exactly ¢ points) = T(652 )2 — (6 5(; +2 s = (6—4) 52(5 ) .
r wr

11-24

. Expanding the squares in part a) we find P(scoring exactly ¢ points) = , which is

25
decreasing in i.

Let P(i) = X224, Since ¢ < 5, P(i) > 0 for all i. P(S) = P(hitting the dartboard) = 1 by
definition. Lastly, P(i U j) = area of i ring + area of j ring = P(i) + P(j).

Suppose = € (UgAq)¢, by the definition of complement x ¢ U,A,, that is z € A, for all
o € I'. Therefore x € A¢, for all @ € I'. Thus z € N, AS, and, by the definition of intersection
x € A¢ for all a € T'. By the definition of complement z ¢ A, for all o € I'. Therefore
T & UpAq. Thus z € (UgAqy)©.
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b. Suppose = € (N, Ay)¢, by the definition of complement = & (Ny A, ). Therefore z & A, for
some « € I'. Therefore 2 € A¢, for some o € I'. Thus z € U,A¢, and, by the definition of
union, x € AS for some « € I'. Therefore x ¢ A, for some a € I". Therefore x ¢ Ny Ay. Thus

€ (Nadn)C.
1.10 For A4,..., A,

1= =1

@)(U&)-ﬂ& (M(ﬂ&)—UM

i=1 = i=1

Proof of (7): If x € (UA;)°, then « ¢ UA;. That implies = ¢ A; for any i, so x € A§ for every 4
and = € NA;.

Proof of (ii): If x € (NA4;)¢, then = ¢ NA;. That implies © € A¢ for some i, so x € UAS.

1.11 We must verify each of the three properties in Definition 1.2.1.

a. (1) The empty set @ € {0, S}. Thus@ € B. (2) 0° =S € Band S* =0 € B. (3) luS =S5 € B.

b. (1) The empty set @ is a subset of any set, in particular, § C S. Thus § € B. (2) If A € B,
then A C S. By the definition of complementation, A€ is also a subset of S, and, hence,
Ac e B. (3)If Ay, Ay, ... € B, then, for each i, A; C S. By the definition of union, UA; C S.
Hence, UA; € B.

c. Let By and By be the two sigma algebras. (1) @ € By and @ € By since By and Bs are
sigma algebras. Thus ) € By N By. (2) If A € By N By, then A € By and A € Bs. Since
Bi and By are both sigma algebra A¢ € By and A¢ € Bs. Therefore A € By NBs. (3) If
Ay, Ag, ... € BiN By, then Ay, As,... € By and Ay, As, ... € By. Therefore, since By and Bs
are both sigma algebra, U2, A; € By and U2, A; € By. Thus U2, A; € By N Ba.

1.12 First write

(04)

(0o 0 )

1=n—+1
= P <U Ai> +P < U A,») (A;s are disjoint)
= i=n—+1
oo
= ZP +P< U Ai) (finite additivity)
i=n+1

Now define By, = U;’ik A;. Note that Bgy1 C By and By — ¢ as k — oo. (Otherwise the sum
of the probabilities would be infinite.) Thus

P(GAJ—$$P<UA>—3&
i=1

=1

n

i=1

ZP

1.13 If A and B are disjoint, P(AU B) = P(A) + P(B) = £ + 3 = 13, which is impossible. More
generally, if A and B are disjoint, then A C B¢ and P(A) < P(B¢). But here P(A) > P(B°),
so A and B cannot be disjoint.

1.14 If S = {s1,..., S}, then any subset of S can be constructed by either including or excluding
si, for each i. Thus there are 2" possible choices.

1.15 Proof by induction. The proof for k = 2 is given after Theorem 1.2.14. Assume true for k, that

is, the entire job can be done in ny; X ng X --- X ni ways. For k£ + 1, the k + 1th task can be
done in ng41 ways, and for each one of these ways we can complete the job by performing



1-4

1.16
1.17

1.18

1.19

1.20

1.21

Solutions Manual for Statistical Inference

the remaining k tasks. Thus for each of the niy; we have ny x ng x --- X ng ways of com-
pleting the job by the induction hypothesis. Thus, the number of ways we can do the job is
(Ix(npxmgX--xng))+-+(1x(ng Xng X+ Xng))=n1 Xng X XNg X Ngt1.

ni41terms
a) 263.  b) 26% +26%. c) 26% + 263 + 262.
There are () = n(n — 1)/2 pieces on which the two numbers do not match. (Choose 2 out of

n numbers without replacement.) There are n pieces on which the two numbers match. So the
total number of different pieces is n 4+ n(n —1)/2 =n(n+1)/2.

The probability is (i)nn L ("_2173&2_1)1. There are many ways to obtain this. Here is one. The
denominator is n" because this is the number of ways to place n balls in n cells. The numerator
is the number of ways of placing the balls such that exactly one cell is empty. There are n ways
to specify the empty cell. There are n — 1 ways of choosing the cell with two balls. There are
(g) ways of picking the 2 balls to go into this cell. And there are (n — 2)! ways of placing the
remaining n — 2 balls into the n — 2 cells, one ball in each cell. The product of these is the

numerator n(n — 1)(5)(n — 2)! = (3)nl.
a. (§) =15.
b. Think of the n variables as n bins. Differentiating with respect to one of the variables is

equivalent to putting a ball in the bin. Thus there are r unlabeled balls to be placed in n
unlabeled bins, and there are ("*7~') ways to do this.

A sample point specifies on which day (1 through 7) each of the 12 calls happens. Thus there
are 7'2 equally likely sample points. There are several different ways that the calls might be
assigned so that there is at least one call each day. There might be 6 calls one day and 1 call
each of the other days. Denote this by 6111111. The number of sample points with this pattern
is 7(162)6!. There are 7 ways to specify the day with 6 calls. There are (162) to specify which of
the 12 calls are on this day. And there are 6! ways of assigning the remaining 6 calls to the
remaining 6 days. We will now count another pattern. There might be 4 calls on one day, 2 calls
on each of two days, and 1 call on each of the remaining four days. Denote this by 4221111.
The number of sample points with this pattern is 7(142) (g) (g) (2)4!. (7 ways to pick day with 4
calls, (*7) to pick the calls for that day, (3) to pick two days with two calls, (5) ways to pick
two calls for lowered numbered day, (g) ways to pick the two calls for higher numbered day,
4! ways to order remaining 4 calls.) Here is a list of all the possibilities and the counts of the
sample points for each one.

pattern  number of sample points

6111111 7(7)6! = 4,656,960
5211111 7(12)6(3)5! = 83,825,280
4221111 7(7) () (5) ()4t = 523,908,000
4311111 7(}; )6@5! = 139,708,800
3321111 (D) (%) (3)5(§)4! = 698,544,000
3222111 7(%5)(9) (;) (g) (§)3! = 1,397,088,000
22211 (GO (@)2 = 314,344,800

3,162,075,840

The probability is the total number of sample points divided by 7'2, which is w ~

.2285.

n 27r
The probability is (2("2)3) . There are (3?) ways of choosing 2r shoes from a total of 2n shoes.
2r

Thus there are @Zf) equally likely sample points. The numerator is the number of sample points
for which there will be no matching pair. There are (Q"T ) ways of choosing 2r different shoes
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styles. There are two ways of choosing within a given shoe style (left shoe or right shoe), which
gives 22" ways of arranging each one of the (27; ) arrays. The product of this is the numerator

(5,)2%"-

1.22 a) (?é)(f?) (?3;6)6@2)@;) b) %%6‘“%
(180) ( 30 )
1.23
P( same number of heads ) = Z P(1° tosses x, 2" tosses x)
=0
n T n—z72 n n 2
066 - G50
=l \z 2 2 4 =\
1.24 a.
P(A wins) = Z P(A wins on i toss)
i=1
2 4 oo 241
1 1 1 1 1 1
T G T )4 = - — 9/3.
()30 6) G - 26 -
b. P(Awins) =p+ (1—-p)?p+ (1 —p)p+--- =22 p(1—p)* = Furg L
2 K . . . . . .
c. d% (17(1”717)2) = [17(1’:1))2]2 > (. Thus the probability is increasing in p, and the minimum

is at zero. Using L’Hopital’s rule we find lim, .o 1_(1’%17)2 =1/2.
1.25 Enumerating the sample space gives S’ = {(B, B), (B, G), (G, B), (G,G)} ,with each outcome
equally likely. Thus P(at least one boy) = 3/4 and P(both are boys) = 1/4, therefore
P( both are boys | at least one boy ) = 1/3.
An ambiguity may arise if order is not acknowledged, the space is S’ = {(B, B), (B, G), (G, G)},
with each outcome equally likely.

1.27 a. For n odd the proof is straightforward. There are an even number of terms in the sum
(0,1,---,n), and ( ) and (nT_L k), which are equal, have opposite signs. Thus, all pairs cancel
and the sum is zero. If n is even, use the following identity, which is the basis of Pascal’s

triangle: For k > 0, (Z) = (";1) + (Zj) Then, for n even

ser(y) = () ()« ()
() ()= S ("))
() ()07 G-

b. Use the fact that for £ > 0, k(g) = n(lc 1) to write

STTC D oY () B o] Gl B

j=0
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k+1 n 7 n— —1 : n—
c. Yop_y (-1) + k() = kL:l(—l)k'H(k_i) = nZ?:O (—=1)( jl) = 0 from part a).
The average of the two integrals is

[nlogn+ (n+1)log(n+1)] /2 —n
(n+1/2)logn —n.

[(nlogn —n) +((n+1)log (n +1) —n)] /2

Q

Let d,, = logn! —[(n 4+ 1/2)logn — n|, and we want to show that lim,_,., md, = ¢, a constant.
This would complete the problem, since the desired limit is the exponential of this one. This
is accomplished in an indirect way, by working with differences, which avoids dealing with the

factorial. Note that ) )
dn—dn+1 = (n+ 2) log (1+Tl) — 1.

Differentiation will show that ((n + 3))log((1 + X)) is increasing in n, and has minimum
value (3/2)log2 = 1.04 at n = 1. Thus d,, — dp+1 > 0. Next recall the Taylor expansion of
log(l1+z) =2 —22/2+2%/3 —2*/4 + ---. The first three terms provide an upper bound on

log(1 + z), as the remaining adjacent pairs are negative. Hence

1 11 1 1 1
dpd,, (i ) 1=
0< 1< <n—|—2> <n2n2+3n3> 12n2+6n3

It therefore follows, by the comparison test, that the series > 7 d,, —dp, 11 converges. Moreover,
the partial sums must approach a limit. Hence, since the sum telescopes,

N—o0

N
lim " dy —dpy1 = Jim dy —dy=c
1

Thus lim,, .o d, = d1 — ¢, a constant.

Unordered Ordered
a. {44,12,12} (4,4,12,12), (4,12,12,4), (4,12,4,12)
(12,4,12,4), (12,4,4,12), (12,12,4,4)
Unordered Ordered
(2,9,9,12), (2,9,12,9), (2,12,9,9), (9,2,9,12)
{2,9,9,12}  (9,2,12,9), (9,9,2,12), (9,9,12,2), (9,12,2,9)
(9,12,9,2), (12,2,9,9), (12,9,2,9), (12,9,9,2)

b. Same as (a).

c. There are 65 ordered samples with replacement from {1,2,7,8,14,20}. The number of or-
dered samples that would result in {2,7,7,8,14,14} is 55— = 180 (See Example 1.2.20).
Thus the probability is %.

d. If the k objects were distinguishable then there would be k! possible ordered arrangements.
Since we have ki, ..., k,, different groups of indistinguishable objects, once the positions of
the objects are fixed in the ordered arrangement permutations within objects of the same
group won’t change the ordered arrangement. There are ki!ks!-- - k,,! of such permutations
for each ordered component. Thus there would be m different ordered components.

e. Think of the m distinct numbers as m bins. Selecting a sample of size k, with replacement,
is the same as putting k balls in the m bins. This is (k”,:*l), which is the number of distinct
bootstrap samples. Note that, to create all of the bootstrap samples, we do not need to know

what the original sample was. We only need to know the sample size and the distinct values.

a. The number of ordered samples drawn with replacement from the set {z1,...,2,} is n™. The
number of ordered samples that make up the unordered sample {z1,...,z,} is n!. Therefore
the outcome with average W that is obtained by the unordered sample {1, ..., 2, }
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has probability n”—; Any other unordered outcome from {z1,...,x,}, distinct from the un-
ordered sample {z1,...,2,}, will contain m different numbers repeated k1, ..., k,, times

where k1 + ko + -+ + k,, = n with at least one of the k;’s satisfying 2 < k; < n. The
probability of obtaining the corresponding average of such outcome is

n!

n!
————— < — since kylko! - k! > 1.
kilkg! -k Inm nn’ "

Therefore the outcome with average W

is the most likely.

b. Stirling’s approximation is that, as n — oo, n! &~ v2rn"T(1/2)e=" and thus

<n! )/ V2nm\  nle® 2mnnt(1/2)g=nen _
n" er n"2nmw n"y/2nm '
c. Since we are drawing with replacement from the set {1, ..., z,}, the probability of choosing

any x; is % Therefore the probability of obtaining an ordered sample of size n without z;
is (1 = 1)™. To prove that lim, (1 — )" = e~!, calculate the limit of the log. That is

1 log (1 -1
lim nlog (1 — ) = lim M.
L’Hopital’s rule shows that the limit is —1, establishing the result. See also Lemma 2.3.14.

1.32 This is most easily seen by doing each possibility. Let P(i) = probability that the candidate
hired on the ¢th trial is best. Then

1 1 1
Pl)=—, P2)=-—— P(i) = P(N)=1
(1) N (2) N1’ , P(i) N_it1 , P(N)
1.33 Using Bayes rule
P(CB|M)P(M) .05 x %
P(M|CB) = = = .9524.
(M|CB) P(CBIM)P(M)+ P(CB|F)P(F) .05 x £+.0025 x &

1.34 a.

P(Brown Hair)
= P(Brown Hair|Litter 1)P(Litter 1) + P(Brown Hair|Litter 2) P(Litter 2)

- (6066

b. Use Bayes Theorem

. L P(BH|L1)P(L1) _ BB _
P(Litter 1|Brown Hair) = PBHILV)P(LL) + PBHI2PI2 31& = Iy

1.35 Clearly P(:|B) > 0, and P(S|B) = 1. If Ay, A,, ... are disjoint, then

p<f]Ai B> _ PUZANB) _ PUZ(A4ND)

P(B) - P(B)

_ Zi_lg((g)imB) _ ZP(AZIB)
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Using the same events A, B, C and W as in Example 1.3.4, we have

PW) = P(WJA)P(A)+PW|B)P(B)+ P(W|C)P(C)
1 1 1 y+1
= y(=)wo(2)+1(:) = =
HORIORIC RS
_ P(AOW) _ 4/3
Thus, P(AW) = =555y~ = (711)/3 = 17 where,
=3 ifv=3
1 1
<3 ifv<jy
ﬁ>% ify> 1.

. By Exercise 1.35, P(-|W) is a probability function. A, B and C are a partition. So

P(AW) + P(B|W) + P(C|W) = 1.

But, P(B|W) = 0. Thus, P(A|W) + P(C|W) = 1. Since P(A|W) = 1/3, P(C|W) = 2/3.
(This could be calculated directly, as in Example 1.3.4.) So if A can swap fates with C, his
chance of survival becomes 2/3.

P(A) = P(AN B) + P(AN B°) from Theorem 1.2.11a. But (AN B¢) C B¢ and P(B°) =
1—-P(B)=0. So P(ANB¢) =0, and P(A) = P(AN B). Thus,
P(ANB) P(A)

P(A|B) = PB) -1 = P(4)

. A C B implies AN B = A. Thus,

P(ANB) P(A)
P(BIA) = =5 = g = 1

And also,
P(AnB) P(A4)
W ="pm) ~PB)
If A and B are mutually exclusive, then P(AU B) = P(A) + P(B) and AN (AU B) = A.
Thus,

_ P(AN(AUB)  P(A)
PAIAVE) = =508 ~ PA) = PB)’

. P(ANBNC)=P(AN(BNC)) = P(A|BNC)P(BNC) = P(A|BnC)P(B|C)P(C).

Suppose A and B are mutually exclusive. Then AN B =0 and P(ANB) =0. If A and B
are independent, then 0 = P(AN B) = P(A)P(B). But this cannot be since P(A) > 0 and
P(B) > 0. Thus A and B cannot be independent.

If A and B are independent and both have positive probability, then
0< P(A)P(B) = P(ANB).

This implies AN B # (), that is, A and B are not mutually exclusive.

P(A°N B) = P(A°|B)P(B) =[1— P(A|B)]P(B) = [1 — P(A)]|P(B) = P(A°)P(B) , where
the third equality follows from the independence of A and B.

P(A°N B°) = P(A°) — P(A°N B) = P(A°) — P(A°)P(B) = P(A°)P(B°).



Second Edition 1-9

1.41 a.

P( dash sent | dash rec)
P( dash rec | dash sent) P( dash sent)
P( dash rec | dash sent) P( dash sent) + P( dash rec | dot sent)P( dot sent)

_ (2/3)(4/7) _ s

(2/3)(4/7) + (1/4)(3/7)

b. By a similar calculation as the one in (a) P(dot sent|dot rec) = 27/434. Then we have
P( dash sent|dot rec) = 15. Given that dot-dot was received, the distribution of the four
possibilities of what was sent are

Event Probability
dash-dash  (16/43)?
dash-dot 16/43)(27/43)

( )(
dot-dash  (27/43)(16/43)
dot-dot (27/43)2

1.43 a. For Boole’s Inequality,

Z ~Py+ Pyt P, <) P(A
i=1 i=1

since P; > P; if 1 < j and therefore the terms —Pop, + Pop41 < 0for k=1,..., "T’l when
n is odd. When n is even the last term to consider is —F,, < 0. For Bonferroni’s Inequality

apply the inclusion-exclusion identity to the AS, and use the argument leading to (1.2.10).

b. We illustrate the proof that the P; are increasing by showing that P> > P;. The other
arguments are similar. Write

n—1 n
Py= Y PAN4) = > P(A; N Aj)
1<i<j<n i=1 j=i+1
n—1 n

Z (AN A; N AL) + P(A; N A; N (UpAg)©)
k=1

Now to get to P35 we drop terms from this last expression. That is

D P(AiNA; N Ag) + P(A; N A; N (U Ag)©)

i=1 j=i+1 Lk=1
n—1 n n
> Z Z Z (AiﬂAjﬂAk)
i=1 j=i+1 Lk=1
n—2 n—1 n
> Z Y PANA;NAL) = > PANA;NA;) = P
i=1 j=i+1 k=j+1 1<i<j<k<n

The sequence of bounds is improving because the bounds Py, Py — Po+P3, P, — P+ P;— Py +
Ps, ..., are getting smaller since P; > P; if i < j and therefore the terms —Pop, + Por41 < 0.
The lower bounds P, — Po, Py — P, + Ps — Py, P, — P, + Ps — P, + Ps — P, .. ., are getting
bigger since P; > P; if i < j and therefore the terms Pppi1 — Pap > 0.
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c. If all of the A; are equal, all of the probabilities in the inclusion-exclusion identity are the

same. Thus
n

P, =nP(A), P,= (2)P(A), . P = (;‘) P(A),
and the sequence of upper bounds on P(U;A;) = P(A) becomes
n n
PlznP(A), P1P2+P3|:77,(2>+<3>:|P(A),
which eventually sum to one, so the last bound is exact. For the lower bounds we get

P — P = [n— <’;>] P(A), P—Py+P;— Py = {n— (’;) + (g) - (Zﬂ P(A), ...

which start out negative, then become positive, with the last one equaling P(A) (see Schwa-
ger 1984 for details).

1.44 P(at least 10 correct|guessing) = iozw &%) (%)k (%)n_k = .01386.
1.45 X is finite. Therefore B is the set of all subsets of X. We must verify each of the three properties

in Definition 1.2.4. (1) If A € B then Px(A) = P(Uy,caf{s; € S : X(s;) = z;}) > 0 since P
is a probability function. (2) Px(X) = P(UZ{s; € § : X(sj) = z;}) = P(S) = 1. 3) If
A, As, ... € B and pairwise disjoint then

oo

Px (U2 Ar) = P(J{Usea {55 € S: X(s;) = z:}})
k=1
= Y P(Upea{s; €9: X(s;) =a:}) = D Px(Ap),
k=1 k=1

where the second inequality follows from the fact the P is a probability function.

1.46 This is similar to Exercise 1.20. There are 77 equally likely sample points. The possible values of

X3 are 0, 1 and 2. Only the pattern 331 (3 balls in one cell, 3 balls in another cell and 1 ball in a
third cell) yields X3 = 2. The number of sample points with this pattern is () (3) (3)5 = 14,700.
So P(X3 = 2) = 14,700/77 =~ .0178. There are 4 patterns that yield X3 = 1. The number of
sample points that give each of these patterns is given below.

pattern  number of sample points

34 7(;)6 = 1,470
22 T =220
3211 7(?})6(3) (5)2! = 176,400
31 (5 (4 = 88,200

288,120

So P(X3 = 1) = 288,120/7" ~ .3498. The number of sample points that yield X3 = 0 is
77 — 288,120 — 14,700 = 520,723, and P(X5 = 0) = 520,723 /77 ~ .6322.

1.47 All of the functions are continuous, hence right-continuous. Thus we only need to check the

o

limit, and that they are nondecreasing

imp oo 3+ 2tan Hz) =L+ L () =0, limgoe § + Ltan"'(2) = 3+ 2 (3) =1, and

£ (3+2tan"!(z)) = 5z > 0, so F(x) is increasing,

. See Example 1.5.5.

. = . = g T
lim, ., e © =0, lim, ,,ce ¢ =1, %e ¢ =eTe ¢ >0.

d. limg, (1 —e%) =0, limy .oo(l —e ) =1, L(1—e %) =e* > 0.

' dx
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. — . — d — l—e€)e Y d —

e limy . oo 55 =0, limy o e+ 55 = 1, £(355) = §1+Z)—i,)z >0and L(e+55) >
0, Fy (y) is continuous except on y = 0 where lim, (e + Hl_%) = F(0). Thus is Fy (y) right
continuous.

1.48 If F(+) is a cdf, F(z) = P(X < z). Hence lim; o, P(X <) =0 and lim, ,_- P(X <z)=1.
F(z) is nondecreasing since the set {x : X < z} is nondecreasing in x. Lastly, as « | xo,
P(X <z)— P(X < xg), so F() is right-continuous. (This is merely a consequence of defining
F(z) with “<7))

1.49 For every t, Fx(t) < Fy(t). Thus we have

P(X>t)=1-P(X<t)=1-Fx(t)>1—Fy(t)=1-P(Y <t)=P(Y > 1).
And for some t*, Fix(t*) < Fy (t*). Then we have that
PX>t")=1-PX<t")=1-Fx({t")>1-Fy(t")=1—-PY <t*)=P(Y >t").

1.50 Proof by induction. For n = 2

2

1—¢2
thl=14+t= .
> =
k=1

Assume true for n, thisis > ;_; th=1 = % Then for n 4+ 1

n+1 n
_ _ 1—tm 1—t" " (1—t)  1—tnt?
= Tl g = " = =

where the second inequality follows from the induction hypothesis.

1.51 This kind of random variable is called hypergeometric in Chapter 3. The probabilities are
obtained by counting arguments, as follows.

x fx(x)=P(X =x)

0 Q) /() =466

1 Q@)D ~ a0

2 () ) =100

3 Q&) /() =000

1 QE)/C) 0002
The cdf is a step function with jumps at © =0,1,2,3 and 4

1.52 The function g(-) is clearly positive. Also,

> * fl=) 1-F(z,)
g(z)dr = / ———dr = ———-=1.
/zo wo 1—F(x() 1-F(x,)
1.53 a. limy, o Fy(y) = limy, 0 = 0 and lim, o Fy(y) = limy o0 1 — % =1 Fory <1,

Fy (y) = 0 is constant. For y > 1, d%Fy(y) =2/y® > 0, so Fy is increasing. Thus for all y,

Fy is nondecreasing. Therefore Fy is a cdf.

: 4 2/ ify>1
c. Fz(2)=P(Z<z)=P10(Y —1)<2z)=P( <(2/10)+1) = Fy((2/10) + 1). Thus,

0 if 2<0
F zZ) = .
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1.54 a. foﬂ/Q sinzdr = 1. Thus, c=1/1=1.

b. [7 e l*ldy = f_ooo e“dr + [;° e "dw =1+41=2. Thus, c = 1/2.
1.55

3
1
P(V <5 =PT<3)= / 1—5@*“1'5 dt=1—e¢2
0 .

For v > 6,

Therefore,



Chapter 2

Transformations and Expectations

2.1 a. fo(r) =4225(1 —2), 0 < z < 1; y = 2® = g(z), monotone, and Y = (0,1). Use Theorem
2

1.5.
_ d _ d 1
@) = LW W] = L@@ = 20580 -y ) Ly )
dy dy 3
= My(1—y'?) = 14y—149*3, 0<y<1.

To check the integral,

1 7/3 1
14y — 143 dy = T2 —14% —72—67/3‘ —1-0=1.
/0 (14y Yy )dy = Ty 73, y =6y""|
b. fu(z) =T7e"™, 0 <z < 00, y = 4z + 3, monotone, and Y = (3,00). Use Theorem 2.1.5.

Fr(y) = £ (2= d<y‘3>\ — 7T/ 3y <

4 dy: 4

T w9
1|~ 1

To check the integral,

/°° T e W0W=-3) gy = _ o= (T/0)-3) ""’ - (1) =1.
3 4 3

c. Fy(y)=P0<X < /y) =Fx(\/y). Then fy(y) = ﬁfx(\/ﬂ) Therefore

fr(y) = F:’)O(\f) (1=vB)* =152 (1= Vi)*, 0<y<l.

To check the integral,

1 1
2 1 2
/ 15y%(17\/§)2dy:/ (15y%—30y+15y%)dy:15(§)—30(§)+15(3):

0 0
2.2 In all three cases, Theorem 2.1.5 is applicable and yields the following answers.

a. fy(y) =3y Y2 0<y<1
b. fy(y) = (w1 e V(1 — e ¥)™, 0 < y < 0.

nim!

e fr(y) =% logye—(1/2)((logy)/0) , 0 <y < oo

23 P(Y =y) = P(7 =y) = P(X = £) = §(3)¥/07Y), where y = 0,3, 3, %,..., 257

2.4 a. f(x) is a pdf since it is positive and
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b. Let X be a random variable with density f(x).

PUX <) = It $aerda if t <0
LSO It [y Ixe M dr if >0
where, fioo A Mdr = e ioo = zeM and fot e Mdy = —%e‘”‘g =—ze M4 1
Therefore,

1 _ Xt i
[ le ift <0
P(X<t)—{1_%e—ktdx ift>0

c. P(|X|<t)=0fort<0,and for t >0,

Y1 £
P-t<X<t) = / 5/\6)\95(133—"-/ ix\ekadm
0

—t

P(|X] <t)

- 43 [e41] = 1-e

DN | =

2.5 To apply Theorem 2.1.8. Let Ay = {0}, 4; = (0, %), 43 = (, ‘%’T) and Ay = (37”,277). Then
gi(z) = sin?(z) on A; for i = 1,2,3,4. Therefore g; ' (y) = sin™ " (/7), g5 ' (y) = m —sin" ' (\/7),
g5 (y) = sin_l(\/gj) + 7 and g; ' (y) = 27 — Sin_l(\/g). Thus

() 1 1 1‘+1 1 1‘4_1 1 1‘_1_1 1 1’
Y y = —_— | — et B —_— | — et R e——————
2 |V1—-y2/y 2 | V1-y2/y 2m |V1—-y2\/y 2r | V1-y2y
1
= ———, 0<y<l1
™/y(l—y)

To use the cdf given in (2.1.6) we have that 21 = sin™'(,/7) and x5 = 7 —sin™ ' (/7). Then by
differentiating (2.1.6) we obtain that

rly) = 2fx(sin’1(\/z?)d%(sin’1(\/§) = 2fx(m = sin’l(\/??)d%(ﬂ —sin™' (v/9)
— Q(L#L) _ﬂiii)
e yI—y2yy 2r VI —y 2y
1
oyl -y)

2.6 Theorem 2.1.8 can be used for all three parts.

a. Let Ag = {0}, A; = (—00,0) and Ay = (0,00). Then gy (x) = |z|°> = —23 on A; and
g2(x) = |z|> = 23 on A,. Use Theorem 2.1.8 to obtain

1 a3
fy(y):§e vy 2/3, 0<y <o

b. Let Ag = {0}, A; = (—1,0) and Ay = (0,1). Then g;(x) = 1 — 22 on A; and go(z) = 1 — 22
on As. Use Theorem 2.1.8 to obtain

3
Fr) ==y 2+ 20-y'"2 0<y<1
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c. Let Ag = {0}, A; = (=1,0) and Ay = (0,1). Then g;(z) =1 — 22 on A; and ga(z) =1 — =
on As. Use Theorem 2.1.8 to obtain

w

3 1
Ig1—v1—w2 +-2-y)? O0<y<l

fr(y) = T-y 8

2.7 Theorem 2.1.8 does not directly apply.

a. Theorem 2.1.8 does not directly apply. Instead write

PY<y = PX

2<y
(— f§X<\/§) if |2 <1
(1<X <) ifz>1

P

{2

{f x)dr if 2] <1
[ .

‘ffX e ifx>1

Differentiation gives

2.1 i <
Ao ={00, U
9 + 9 \/g ITy-=
b. If the sets By, Bo,..., Bk are a partition of the range of Y, we can write

y) = ZfY(y)I(y € By)
%

and do the transformation on each of the By. So this says that we can apply Theorem 2.1.8
on each of the By and add up the pieces. For A; = (—1,1) and Ay = (1, 2) the calculations
are identical to those in part (a). (Note that on A; we are essentially using Example 2.1.7).

2.8 For each function we check the conditions of Theorem 1.5.3.

i hmw_,oF( Y=1-e2=0,lim, o F(z)=1—e"*=1.

a. (1
ii) 1 —e™" is increasing in .

(iii) 1 —e~* is continuous.

)
i)
)
(iv) Fr'(y) = —log(1 - y).
)
)
)

b. (i) lim, o F(x) =e™°/2 =0, lim, o F(z) =1— (e!7>°/2) = 1.
(i) e~*/2 is increasing, 1/2 is nondecreasing, 1 — (e!~*/2) is increasing.
(iii) For continuity we only need check =0 and = = 1, and lim,_,o F(z) = 1/2,

lim,_; F(x) =1/2, so F is continuous.
(iv
<i<y<l,
1

_ log(2y 0<y
Fxl(y)z{ (20) %Sy<

1 —log(2(1 - y))

) limy oo F(z) =e7°/4 =0, lim;_ oo F(x) =1—e">/4=1.
i) e ®/4 and 1 — e~ /4 are both increasing in x.

) limg o F(z) =1—e%/4=2 = F(0), so F is right-continuous.
gy J log(4y) 0<y<j

ECURE (/I s
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2.9 From the probability integral transformation, Theorem 2.1.10, we know that if u(z) = F,(x),
then F,(X) ~ uniform(0, 1). Therefore, for the given pdf, calculate

0 fx<l1
U(w)ZFm(w)={(x1)2/4 ifl<az<3
1 if3<z

2.10 a. We prove part b), which is equivalent to part a).

b. Let A, = {z : Fy(x) < y}. Since F, is nondecreasing, A, is a half infinite interval, either
open, say (—oo, ), or closed, say (—oo, z,]. If A, is closed, then

Fy(y) = P(Y <y) = P(Fx(X) <y) = P(X € Ay) = Fi(zy) <.

The last inequality is true because z, € A,, and F;(z) < y for every « € A,. If A, is open,
then
Fy(y) =P(Y <y) = P(F(X) <y) = P(X € 4y),

as before. But now we have

P(Xc€A)=P(X e(—ooxy)) = lxi%}P(X € (—o0,z]),

Use the Axiom of Continuity, Exercise 1.12, and this equals lim,y, Fix(x) < y. The last
inequality is true since Fy(z) < y for every z € A,, that is, for every < z,. Thus,
Fy (y) <y for every y. To get strict inequality for some y, let y be a value that is “jumped
over” by F,. That is, let y be such that, for some z,

li?lFX(:z:) <y < Fx(zy).
aly

For such a y, A, = (—00,zy), and Fy (y) = limyy, Fx(z) < y.

.2
2.11 a. Using integration by parts with u = x and dv = xe™ dx then

o 1 a2 1 .2 | R 1
EX2:/ ?—e T dr=— |—ze —l—/ ez dx 22—(27r):1.
oo ™

T 2

—00

Using example 2.1.7 let Y = X?2. Then

1 1 -y 1 - 1 -y
= | - Lo

= e + e
2y [V2r V2r V2my
Therefore,
EY = /oo Y e dy = L [_nge‘;’ - +/Ooy2le_2ydy} = L(\/27r) =1.
o V2my 2w 0 0 Varm

This was obtained using integration by parts with u = Zy% and dv = %eTy and the fact the
fv (y) integrates to 1.

b. Y = |X| where —oo < z < 0o. Therefore 0 < y < co. Then

Fy(y) = P(Y<y) = P(X[<y) =
= P@<y) -P(X<-y) = Fx(y)— Fx(-y).
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Therefore,

Fy(y)=%Fy(y)=fx(y)+fx(—y)= L S :\/Z

o 2 —y 2 [ 2 00 2
EY :/ y[ezdy — \/7/ e Ydu = \/7 [*67’“ 0 ] — ,
0 ™ ™ 0 T T
where u = y—Q.
- 2 I
dy| =1/ —1/==1.
y] \/;\/ 2

Thus,

o -

This was done using integration by part with « = y and dv = ye 2 dy. Then Var(Y)=1- 2

2.12 We have tan 2 = y/d, therefore tan~!(y/d) = x and % tan~!(y/d) = W Ldy = dz. Thus,

2 1

fy(y) = wd W’

0<y<oo.

This is the Cauchy distribution restricted to (0, 00), and the mean is infinite.
213 P(X =k)=(1—p)kp+pF(1 —p), k=1,2,.... Therefore,

EX = i pfp+pt-p) = [ik )t 1+ka’“ '

k=1 k=1
1 1 1 —2p + 2p?
- “‘p)p[wumz] BT
2.14
/0 (1-Fx(z)dz = / P(X > z)dx

/ / fx(y)dydz
/0 /O dxfx (y)dy

/0 yfx(y)dy = EX,

where the last equality follows from changing the order of integration.

2.15 Assume without loss of generality that X < Y. Then X VY =Y and X AY = X. Thus
X+Y =(XAY)+ (X VY). Taking expectations

EX+Y]|=E[(XAY)+ (XVY)=EXAY)+EXVY).

Therefore E(X VY)=EX +EY —E(X AY).
2.16 From Exercise 2.14,

ET = / [ae™ M +(1 —a)e "] dt = _ =
0
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2.17 a. fom 322dr = m3 % % = m= (%)1/3 = .794.

b. The function is symmetric about zero, therefore m = 0 as long as the integral is finite.

1 /> 1 1 o 1
f/ —dr =—tan"*(z) =— (I+I) =1.
T o 1422 T e N2 2

This is the Cauchy pdf.
218 E|X —a| = [7_|z —a|f(x)dx = [*  —(z —a)f(x)dz+ [~ (x — a)f(x)dz. Then,

—E|X—a\ / fla dx—/ flz)dz =0

The solution to this equation is @ = median. This is a minimum since d?/da*E|X —a| = 2f(a) >

2.19

|
je2
=

|
Q
e
I

Lil/o;(a:—a)Qfx(x)dx _ /oo d%(x_affx(x)dx

_ /w “2(z - a)fx(x)dw = —2[0/00 2 fx(2)do — a/m fX(x)dac]
_ aEX -] - -

Therefore if -LE(X —a)? = 0 then —2[EX —a] = 0 which implies that EX = a. If EX = a then
LF(X —a)? = —2[EX —a] = —2[a — a] = 0. EX = a is a minimum since d?/da’E(X — a)? =
2 > 0. The assumptions that are needed are the ones listed in Theorem 2.4.3.

2.20 From Example 1.5.4, if X = number of children until the first daughter, then

P(X =k)=(1-p)*'p,

where p = probability of a daughter. Thus X is a geometric random variable, and

EX = ) k(1-p*'p Zdil— = —pd% [2(1—;9)’“—1]
k=1 k=1 k=0
d [1 1
- P {_1} T

Therefore, if p = % ,the expected number of children is two.

2.21 Since g(x) is monotone
Eg(X)=[ g(x)fx(x)dx=[ yfx(g‘l(y))%g‘l(y)dy=[ yfy (y)dy = EY,

where the second equality follows from the change of variable y = g(z), * = ¢~ '(y) and
dz = g~ (y)dy.

2.22 a. Using integration by parts with v = x and dv = ze=*"/B* we obtain that

o 2 oo
/ 22e % /By — 6—/ e~ /B dy.
0 2 Jo

The integral can be evaluated using the argument on pages 104-105 (see 3.3.14) or by trans-
forming to a gamma kernel (use y = —A?/3%). Therefore, [;° e~ /B dy = V7 3/2 and hence
the function integrates to 1.
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b. EX =23//7 EX?2 =332/2 VarX = 2 [3-4].
2.23 a. Use Theorem 2.1.8 with Ay = {0}, A; = (—1,0) and Ay = (0,1). Then g;(x) = 2% on A4;
and go(z) = 22 on Ay. Then

1 _
fY(y):§y V20 0<y<1.

1 1 2
b EY = fpufrdy =5  EY?=[’frdy=3  Va¥=3-(35) =5
a1l
2.24 a. EX = fol rax® tdr = fol ax®dr = a;”:ll .= e
o |l
EX? = fol r2ax® ldx = fol ax®tldx = “3:22 =323
2
VarX = 245 - <ﬁ+1) = @D
x n(n+1 n
b BX =30 n P 195*% (2?)1):(2%1)' (n+1)(2n+1)
EX2: n L_l :1nn+ n-+ :n+ n-+ )
VarX 72(:71+i)(gn+1 z:Zn-ﬁ{l 77;71 +3n—?—1  n%42n41 f n?41
arad = /g *( ) 1 =1
c. EX fo x712dxf%f02 — 222 + 2)dx = 1.
fo 2; r—1 2dx—%f (z* — 22° + 2?)dax = &.
VarX 8 _12= %
225 a. Y = —X and g7'(y) = —y. Thus fy(y) = fx(97 W)l 59 " W) = fx(~y)| - 1| = fx(y)
for every y.
b. To show that Mx(t) is symmetric about 0 we must show that Mx (04 €) = Mx (0 — €) for
all e > 0.

[e%s) 0 [e%s)
Mx+e) = [ O pc@de = [ e px@dos [ e px@ds
o 0

— 00

oo 0 0o
= e(—=) —2)d e(—x) —Vdr — Cex d
/0 e fx () 99+/ e’ fx (—a)da / e fx(x)da

—00 —00

— /OO e(ofe)mfx(x)dx = Mx(o — 6)-

2.26 a. There are many examples; here are three. The standard normal pdf (Example 2.1.9) is
symmetric about a = 0 because (0 — €)? = (0 + €)2. The Cauchy pdf (Example 2.2.4) is
symmetric about a = 0 because (0 — €)? = (0 + €)2. The uniform(0, 1) pdf (Example 2.1.4)
is symmetric about a = 1/2 because

B _J1 ifo<e<s
s+ =ram-o={, §1055

b.
/a T s = /O " fla+ )de (change variable, ¢ =  — a)
- AwaQ% (flate) = fla—e) for all e > 0)
_ / " fa)da. (change variable, z = a — ¢)
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Since
a (oo} (oo}
| @ [ s@is= [ fade=1,
—co a —o0
it must be that

/_; flz)dz = /aoo f(z)dz =1/2.

Therefore, a is a median.

EX—-a = EX-a) = Ai(x—a)f(x)dm
_ /;(x—a)f(x)dx+/:o(x—a)f(a:)dx

= [Casa-ader [ estar o

With a change of variable, € = a —x in the first integral, and € = x —a in the second integral
we obtain that

EX-a = E(X—a)
= —/Ooef(a—e)de+/ooef(a—e)de (fla+¢€) = f(a—e¢) for all € > 0)
0 0
= 0 (two integrals are same)

Therefore, EX = a.

.Ifa>e>0,

fla—e)=e979) > (079 — f(a4¢).
Therefore, f(z) is not symmetric about a > 0. If —e < a <0,
fla—e)=0<e 9 = fla+e).

Therefore, f(x) is not symmetric about a < 0, either.
The median of X =log2 <1 =EX.
The standard normal pdf.

. The uniform on the interval (0, 1).

For the case when the mode is unique. Let a be the point of symmetry and b be the mode. Let
assume that a is not the mode and without loss of generality that a = b+¢ > b for € > 0. Since
b is the mode then f(b) > f(b+€) > f(b+ 2¢) which implies that f(a—e€) > f(a) > f(a+€)
which contradict the fact the f(z) is symmetric. Thus a is the mode.

For the case when the mode is not unique, there must exist an interval (z1,x3) such that
f(z) has the same value in the whole interval, i.e, f(z) is flat in this interval and for all
b € (x1,22), bis a mode. Let assume that a ¢ (x1, z2), thus a is not a mode. Let also assume
without loss of generality that a = (b+ €) > b. Since b is a mode and a = (b+€) & (z1, z2)
then f(b) > f(b+¢€) > f(b+ 2¢) which contradict the fact the f(z) is symmetric. Thus
a € (x1,x2) and is a mode.

f(z) is decreasing for x > 0, with f(0) > f(z) > f(y) for all 0 < z < y. Thus f(z) is
unimodal and 0 is the mode.
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2.28 a.

o= [ @-atteis = [ -t [T @

— 00 — 00

0 e
/ v f(y + a)dy + / v f(y + a)dy (change variable y = x — a)
0

—00

/ —ygf(—y+a)dy+/ Yy’ fy +a)dy
0 0
= 0. (f(=y+a)=fly+a))
b. For f(x) =e™®, u1 = pe = 1, therefore az = p3.
Uz = / (x—1)%edx = / (3 — 32% + 3z — 1)e “dx
0 0
= T@A)-30(3)+30(2)-T(1) = 3-3x20+3x1-1 = 3.

c. Each distribution has p; = 0, therefore we must calculate o = EX? and uy = EX?.
(1) f(.’L') = — e_w2/27 M2 = 17 Ha = 33 Qg = 3.

Var
(11> f(x):%7_1<$<17 /’[/2:%7 /’64:%, 044:%'
(il) f(z) = 1e "I, —00 <z < o0, fo =2, fa = 24, oy = 6.

As a graph will show, (iii) is most peaked, (i) is next, and (ii) is least peaked.
2.29 a. For the binomial

EX(X —1)

Il
8
—
8
|
=
N
8 3
N
S

5
—
—
|
=
S—
3
|
8

where we use the identity z(z — 1)() = n(n — 1)(";2), substitute y = z — 2 and recognize

that the new sum is equal to 1. Similarly, for the Poisson

> —/\)\w 0 —/\)\y
EX(X -1 =Y a@-1" =Y S =2,
z! y!
r=2 y=0

where we substitute y = x — 2.
b. Var(X) = E[X(X —1)] + EX — (EX)2. For the binomial

Var(X) = n(n—1)p* + np — (np)* = np(1 — p).

For the Poisson
Var(X) = A2+ A= A2 =\

= S () e () )
A G B = R RN R AV VA G
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n

a n—1 (a+(l;71)
— Zn<y — 1) + (CL + 1) (y — 1) ((n—l)+(a+1)+b_1)

y=1 (y=1)+(a+1)

i%%(a+2‘?)j§: ( a+1 (rz—»l) ( ("o )

+1+b—1 _ — n—1)+(a+1)+b—1
(’1 a+1 ) y=1 Y 1) + (CL + 1) Yy 1 ( (y)*lg%*(azrl) )
_ na g+l (n - 1) (a+if{_1) _ na
- : y n—1 a+1)+b—1\ ’
atbigitla+ D\ g (AT etd

since the last summation is 1, being the sum over all possible values of a beta-binomial(n —
l,a+1,b). E[Y(Y —1)] = % is calculated similar to EY, but using the identity
yly—1) (Z) =n(n—1) (Z:g) and adding 2 instead of 1 to the parameter a. The sum over all

possible values of a beta-binomial(n — 2, a 4 2,b) will appear in the calculation. Therefore

nab(n + a + b)

Var(Y) =E[Y(Y - 1)] + EY — (EY)? = @ b2atbil)

2.30 a. E(e") = Jo " ida = ée“ﬂg =Llelc— L1 =1L(elc—1)
b. E(") = Jy Beltde = 2z (cte® — €' 4+ 1). (integration-by-parts)
c.
Ee'™) = /‘1 i(5(g570‘)/ﬁe”"(iz + /°° i(if(gcfo“)/ﬁemdx
—0 28 o 20
I S G (5-)
28 (5+1) 28 (5 —1)
4eat
= — -2 t<2/p.
S éA<t<

d E(eX) = 32 et (1 - p)T = pr s, (TR ((1 fp)et)w. Now use the fact
that 00, (") ((1 —p)et> (1 —(1 —p)et> =1 for (1 —p)e < 1, since this is just the

sum of this pmf, to get E(e!X) = (ﬁ) , t < —log(1l—p).

2.31 Since the mgf is defined as Mx (t) = Ee'X, we necessarily have Mx (0) = Ee® = 1. But ¢/(1—t)
is 0 at t = 0, therefore it cannot be an mgf.

2.32
d d LN (t EX ,
%S(t) - = q (log (M, (t)) . = d?\/.fm(t()) » =0 = EX (since Mx(0) = Ee’ =1)
& _ A (M) L Mu)ME() — M)
w0, = a(Ee)l, - DLOP |
_ 1-EX’—(EX)®
= — = VarX.

233 a. Mx(t) =Y .2 e 757;)‘1 =e MY, 7(62!)90 = e M = e,
EX = $M,(t)],_, = eX“ " D)e! LN
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EX2 = iMw(t)(

< = AN DA AN D] A2
t=0

VarX = EX2 — (EX)2 = A2 + A — A2 = \.

b.
Mr(t) = Ze p( I pz 1*
x=0
1 P
= = , log(1 —
iCa—pd T oima-pe st =)
d -p t
EX = —M,(t) = —(1—pe
dt =0 (1—(1—p)e")? ( ) -
_ pdl-p) _ 1-p
p? P
d2
EX? = —M, ()
dt t=0
2
(1*(1 — p)et) (p(l *p)et) +p(1 - p)e'2 (1*(1 — p)et) (1-p)e'
- (1-(1-p)e)
t=0
PP -p)+2°(1-p)®  p(l-p)+2(1-p)°
- p4 - p2 :
1— 201 —p)?  (1—p)? 1—
varx = X p)+2( p)” zp) -
p P p
c. My(t) = [T, 27rUe —(2=p)*/20° g — e e~ (@®—2u2—20"t2+1)/20” 12 Now com-

plete the square in the numerator by writing
22 = 2ux — 20%tx+p® = 2% —2(u+ o*t)x £ (u+ o%t) + p?

= (z—(u+0%)” = (u+ o) + p?
(2 — (u+ 0*0)? — [2u0° + (0°1)?).

Then we have Mm(t) _ 6[2M02t+(g2t)2]/20’2 #foo e-ﬁ(w—(;ﬁ-gzt))z

2mo J —00
_ d 2 o?t? /2 —
EX = §M(1)],_ = (uto’t)er+o T
EX? = %Mx(t)’t:o — (/H—aZt) eht+a®t? /2 ;2 put+ot/2 T w2+ o2,
VarX = p? + 0?2 — p? = o2
2.35 a.
T > 2" 1 7(10 x)?/2 : :
EX] = 8 dz (f1 is lognormal with =0, o9 = 1)
271'3:
= (r=1)g=v* 12e¥dy (substitute y = logz, dy = (1/x)dx)
ST

_ - 1 O (2 —apytr? 2
= E/_ e~V /2Ty gy — 27T/_ o~ (v —2rytr?) /2, 2y

2
e’ /2.
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/ x" f1(x) sin(2rlogx)dx = - ~(og2)*/2 sin(27 log x)dx
0

(bubbtltute y=logx, dy = (1/x)dx)
1

oo \/27r

1 2
_ (y+r r 7(y+r) /2 sin(27ry + 27Tr)dy
Vir©

—v*)/2 sin(27y)dy

(sin(a + 27r) = sin(a) if r =0,1,2,...)
= O7
because e ~¥)/2sin(2ry) = —e” ~(=9*)/2gin(27(—y)); the integrand is an odd function
so the negative integral cancels the positive one.
2.36 First, it can be shown that
lim et*—(og®)” — 5

by using 'Hopital’s rule to show
i 2 (log )2

Tr— 00 t{L’

=1

and, hence,
lim tz — (logz)? = lim tz = oo.
r—00 r— 00

Then for any k > 0, there is a constant ¢ such that

% 1 ) <1
/ 2 ptw(log ) /QdﬂCZC/ —dx = clogx\ioZOO-
kT L

Hence M, (t) does not exist.
2.37 a. The graph looks very similar to Figure 2.3.2 except that f; is symmetric around 0 (since it
is standard normal).
b. The functions look like #2/2 — it is impossible to see any difference.
c¢. The mgf of f; is e®1(Y), The mgf of fy is ef2(®).
d. Make the transformation y = e® to get the densities in Example 2.3.10.
a

fdd fO e )‘tdt =e /\I. Verify
! d 1 -z 1 — Az

AT A1,
de dt] dm[ 2

b ik Joo et = [ ke dt = [T —teMdt = —TF = — 5. Verify
d [* . d L
@ dt = — -
aJ, © X \2

c. & ftl Ldz = —%. Verify

d/l Ll d Ay a1y 1
dat |J, 2| T a\ x|, ) Tt t)

o] 00 -2 .
d. 4 7(;1:7115)2 doe = [~ 4 (7(91:7115)2) =[72@—t)3de = —(z — 1) ’1 = 7(1;)2' Verify
o _ d —1|*® d 1 1
) e =— | —(z—t ‘ =———= .
(w—t)7de = { (z—1) } d1—t  (1—1)°

dt 1



Chapter 3

Common Families of Distributions

3.1 The pmf of X is f(x) = m, = Nyg,Ng+1,...,Ny. Then
Ny 1 1 Ny No—1
EX - = —
> e = e (47 )
T=INo r= T=
B 1 Ni(N+1)  (Ng—=D(Ny—1+1)
~ N;—Ng+1 2 2
Ni + Ny
—
Similarly, using the formula for Zf[ 22, we obtain
Er? — 1 Ni(N,+1)(2N;+1) — No(N,—1)(2N,—1)
- N1—Njp+1 6
N,—=Ny)(N,—No+2
VarX = Bx2-px — MZNOW,—Not2)

12

3.2 Let X = number of defective parts in the sample. Then X ~ hypergeometric(N = 100, M, K)
where M = number of defectives in the lot and K = sample size.

a. If there are 6 or more defectives in the lot, then the probability that the lot is accepted
(X =0) is at most

. B - S OGH (100 - K)- - - (100 - K — 5)
P(X=0|M=100,N=6,K) = ?1}()(({; = 100 - --- - 95 ’

By trial and error we find P(X = 0) = .10056 for K = 31 and P(X = 0) = .09182 for
K = 32. So the sample size must be at least 32.

b. Now P(accept lot) = P(X = 0 or 1), and, for 6 or more defectives, the probability is at

most 6 104 o o4
P(X=0or1|M=100,N =6,K) = ((E)l(%) + (1)(55))1).
K K
By trial and error we find P(X =0 or 1) =.10220 for K = 50 and P(X =0 or 1) = .09331
for K = 51. So the sample size must be at least 51.

3.3 In the seven seconds for the event, no car must pass in the last three seconds, an event with
probability (1 — p)3. The only occurrence in the first four seconds, for which the pedestrian
does not wait the entire four seconds, is to have a car pass in the first second and no other
car pass. This has probability p(1 — p)®. Thus the probability of waiting exactly four seconds
before starting to cross is [1 — p(1 — p)3](1 — p)3.
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3.5 Let X = number of effective cases. If the new and old drugs are equally effective, then the
probability that the new drug is effective on a case is .8. If the cases are independent then X ~
binomial(100,.8), and

100 100
P(X >85) = E ( ).8%2100% = .1285.
x
=85

So, even if the new drug is no better than the old, the chance of 85 or more effective cases is
not too small. Hence, we cannot conclude the new drug is better. Note that using a normal
approximation to calculate this binomial probability yields P(X > 85) ~ P(Z > 1.125) =
.1303.

3.7 Let X ~ Poisson(\). We want P(X > 2) > .99, that is,
P(X <1)=e*+ X <01

Solving e=* + Ae™* = .01 by trial and error (numerical bisection method) yields A\ = 6.6384.

3.8 a. We want P(X > N) < .01 where X ~ binomial(1000,1/2). Since the 1000 customers choose
randomly, we take p = 1/2. We thus require

1000 T 1000—x
1000\ (1 1
P(X>N)= E (x)<2) (1—2> < .01

r=N-+1

1) 1000 1000 /00
= .01.
@) 3, (%)

r=N+1

which implies that

This last inequality can be used to solve for N, that is, IV is the smallest integer that satisfies
1) 1000 1000 000
= .01.
() 2 (7)<
rz=N+1
The solution is N = 537.

b. To use the normal approximation we take X ~ n(500, 250), where we used p = 1000(%) =500
and ¢% = 1000(%)(3) = 250.Then

X —500 = N —500
P(X>N):P< )<.0

>
V250 V250

thus,

N — 500
PlZ>— ) <.01
< V250 >

where Z ~ n(0,1). From the normal table we get

N — 500
P(Z>233)~.009< .01 = — =2.33
( ) V250
= N =~ 537.

Therefore, each theater should have at least 537 seats, and the answer based on the approx-
imation equals the exact answer.



3.9 a.

3.11 a.
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We can think of each one of the 60 children entering kindergarten as 60 independent Bernoulli
trials with probability of success (a twin birth) of approximately %. The probability of having
5 or more successes approximates the probability of having 5 or more sets of twins entering

kindergarten. Then X ~ binomial(60, 55) and

P(X>5)=1- 24: (i?) <910)I (1 - 910)6096 = .0006,

z=0

which is small and may be rare enough to be newsworthy.

Let X be the number of elementary schools in New York state that have 5 or more sets
of twins entering kindergarten. Then the probability of interest is P(X > 1) where X ~
binomial(310,.0006). Therefore P(X > 1) =1 — P(X = 0) = .1698.

Let X be the number of States that have 5 or more sets of twins entering kindergarten
during any of the last ten years. Then the probability of interest is P(X > 1) where X ~
binomial(500, .1698). Therefore P(X >1)=1—-P(X =0)=1-3.90 x 1074 ~ 1.

GO iy
M/N—p,M—00,N—00 (%)
K M\(N—M)(N—K)!

2K —2)! M/N—p, Moo, N—oo NI(M—2)(N—M—(K —z))!

In the limit, each of the factorial terms can be replaced by the approximation from Stirling’s
formula because, for example,

M! = (M) (V2r MM+ 2e=M) )\ o ppM+1/2g=M

and M!/(v2rMM+1/2¢=M) — 1. When this replacement is made, all the v/27 and expo-
nential terms cancel. Thus,

() ()

I
M/Nﬁp,]\}goo,N—n)o (%)
_ (K) lim MM+1/2(N*M)N_M-‘rl/Q(N*K)N_K—Fl/Q
x ) M/N—p,M—o0,N—oo NN+1/2(M_x)M—w+1/2(N_M_K+x)N—M—(K—x)+1/2

We can evaluate the limit by breaking the ratio into seven terms, each of which has a finite
limit we can evaluate. In some limits we use the fact that M — oo, N — oo and M/N — p
imply N — M — oco. The first term (of the seven terms) is

M i L, 1,
_M@mi(m)M_M@mi(l_‘r_ﬁz)M_ej_e.

M

lim

Lemma 2.3.14 is used to get the penultimate equality. Similarly we get two more terms,

. N-M N=M K—=x
lim =e
N—-—M—oo N—M—(K—l’)

_ (N-K\" .
Jvlinoo(N) e

and
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Note, the product of these three limits is one. Three other terms are

M 1/2
lim M
im HOO(M_:E)

I
—

N—-M 1/2
NI}VIHLOO<N—M—(K—3:)> =1

N—K 1/2
RS (N) =1L

(M —2)"(N =M — (K —2))""

and

The only term left is

lim T
M /N —p,M—00,N—o00 (N_K)
i M—2z\"(N-M-(K—-z)\""
= 1m
M /N —p,M—o00,N—o00 N - K N-K
= pA-p~

b. If in (a) we in addition have K — oo, p — 0, MK/N — pK — ), by the Poisson approxi-
mation to the binomial, we heuristically get

() e

c. Using Stirling’s formula as in (a), we get

() ()

lim
N,M,K—»oo,%—)O,%—A (%)
_ K-z |_
i e % K% M%e®(N—M)" " “el-v
im
N,M,K—o00, 0, KM 5 ! NEKeK

1 - KM\® (N —M\"*""
ozl N, M, K—o0, 40, KM _x \ N N

1 M\ K
—\" lim 1- -
! NMK o0, M0, KM ) K

e\

x!

3.12 Consider a sequence of Bernoulli trials with success probability p. Define X = number of
successes in first n trials and Y = number of failures before the rth success. Then X and Y
have the specified binomial and hypergeometric distributions, respectively. And we have

F,(r—1) = PX<r-1)

= P(rth success on (n + 1)st or later trial)

(

P(at least n 4+ 1 — r failures before the rth success)

PY>n—r+1)
1-PY<n-r)
= l—Fy(n—’/’).



3.13 For any X with support 0,1,...
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, we have the mean and variance of the 0—truncated Xt are

given by
= > P(X =uz)
T ;x Xr =) ;‘”P(X>0)
1 = 1 = EX
= —— Y ePX=2) = — S aP(X=2) = —— .
P(X>0);x (X ==2) P(X>O);)x (X =2) P(X > 0)
In a similar way we get EX2 = P(%jo)' Thus,
EX? EX \’
VarXr = — .
WAL T PX > 0) (P(X>O))
a. For Poisson(\), P(X >0)=1-P(X =0)=1-— 670# =1— e, therefore
e AN
P(Xr = = — =1,2,...
(Xr =) x!(1—e=?) TS
EXr = M(1—e?)
VarXry = A2+ N)/(1—e )= (\/(1—e )%

b. For negative binomial(r, p), P(

X>0)=1-P(X=0)=1-("3")p"(1-p)°=1-p". Then

r+zfl) r _ x
( p'(1-p)
P(Xr = L 1,2,.
( T a:) 1_p7« [
r(l—p)
EXr = ——=
! p(l—p")
1-— 2(1-p)? 1-
vy = TUDRUop? [ o)),
p*(1—p") p(1—p")
314 a. > 7, _ﬁo_gpf = loép >, % =1, since the sum is the Taylor series for log p.
b.
-1 | - -1 | & . -1 [1 -1 [1-p
o= 2 (S ] = 2 [ = 2L [ < 2L ()
logp L_l( ) 1 logp LE_:O( ) 1 logp [p logp \ p
Since the geometric series converges uniformly,
B (1-p) <= d
EX® = z(l—p)* = —(1—p)*
logp ; ( ) log p ;dp( )
_ (-pd i(l_p)x _ (-pd [1—p} _ —(-p)
logp dp “— logp dp | p p?logp
Thus . )
Varx = —0=P) |y U=p) ]
p?logp log p
Alternatively, the mgf can be calculated,
-1 & 17 log(14pet—et)
M, (t) = [ 1— } _ loglltpe —¢)
0= 1ogp 2[00 e

and can be differentiated to o

btain the moments.



3-6 Solutions Manual for Statistical Inference

3.15 The moment generating function for the negative binomial is
T t r
17(1—p)e—1
M(t) = (pt) _ 1"'*%(3 ,
1—(1—p)e r 1-(1—pe
the term

1—p)(e'—1 t1
T(l p)(e )—>>\(6 ):)\(et—l) asr — o0, p— land r(p—1) = A

(1 —p)e’ 1

Thus by Lemma 2.3.14, the negative binomial moment generating function converges to
t
eMe =1 the Poisson moment generating function.

3.16 a. Using integration by parts with, u = t® and dv = e~!dt, we obtain

oo

T(a+1) :/ teFD=te=tgt — 4 (—e ™)
0

— /00 at® Y (—e)dt = 0+ al'(a) = al'(a).
0 0

b. Making the change of variable z = v/2t, i.e., t = 22 /2, we obtain

oo oo 2 oo
r(1/2) :/o t71 27t dt = /0 %e‘f/zzdz = \/5/0 e 24z = \/5\\/[7; =V

where the penultimate equality uses (3.3.14).

3.17
EXY = /Oox” 1 2 e By = 1 /Oox(’”ra)*le*m/ﬁdx
0 [(a)p> [(a)B* Jo
_ T@ra)Bt BT(vta)
B L) - T(a)

Note, this formula is valid for all ¥ > —a. The expectation does not exist for v < —a.

3.18 If Y ~ negative binomial(r, p), its moment generating function is My (t) = ( ) , and,

ya
1—(1—p)e’

from Theorem 2.3.15, M,y (t) = ( . Now use L’Hopital’s rule to calculate

o)
1—(1—p)eP?

i ( p ) I 1
im | ———— | = lim = ,
p=0\1—(1—p)e™ /) »=0 (p—Dte" ert 11—t

so the moment generating function converges to (1 — )", the moment generating function of
a gamma(r, 1).
3.19 Repeatedly apply the integration-by-parts formula

1 (e’ o xnflefw 1 e e} o
n Zd — n Zd
r(n)L S o Y +F(n—1)/w 20 TE Tz,

until the exponent on the second integral is zero. This will establish the formula. If X ~
gamma(a, 1) and Y ~ Poisson(z). The probabilistic relationship is P(X > z) = P(Y < a—1).

[e%e] et®

3.21 The moment generating function would be defined by % f_oo T2

o0 tx o0
/ %dm > / dex = 00,

thus the moment generating function does not exist.

dz. On (0,00), €' > x, hence



3.22 a.
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> e\
E(X(X-1) = ;)x(x—l) o
a2 e )\172
= e )\;(m_Z)! (let y = x — 2)
_ 67,\)\2§:>‘7? — M2 — 22
y=0 ¥’
EX? = MN+EX = M+
VarX = EX?2—(EX)? = XN +X-)2 = X\

E(X(X-1))

I
NgE
=
8
|
=
RN
=
+
8
—
N————
bt
2
—_
|
=
8

where in the second equality we substituted y = z — 2, and in the third equality we use the
fact that we are summing over a negative binomial(r + 2, p) pmf. Thus,

VarX = EX(X -1)+EX — (EX)?
— 1-p° rl-p r2(1-p?
= rrd) 2 T p p?
_ r(l-p)
=
2 _ oon 1 xa—le—x/ﬂ T = 1 Ooxa+1e—m/ﬁ ZE
Bx? = [ & = g ), !
_ 1 a at2 ala 2
= Tt (a+1)8%
VarX = EX?—(EX)? = a(a+1)f%-a?6*> = ap’
(Use 3.3.18)
EX — Ia+1)T(a+0) al'(a)(a+0) _ .«
I'(a+4+1) (o) (a+B)(a+8)(a) a+p’
Ex? — I(a+2)T(a+p) _ (a+D)al () (a+5) _ ala+1)
Ia+0+2)T () (a+8+1)(a+8)T (a+8)T (a) (a+08)(a+5+1)"
VarX — EX?_(Bx)? - —¢loth o of o

(a+B)(a+B+1)  (a+B)? (a+8)*(a+p+1)
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e. The double exponential(y, o) pdf is symmetric about p. Thus, by Exercise 2.26, EX = p.

VarX = / (x—p)?—elz=1llogy = / 022 Ze 1Flgds
oo 20 . 2
= 02/ Ze*dz = o°T(3) = 2%
0
3.23 a.
_5—1d — _ B —
/OK x x 3 x ) Faf’
thus f(z) integrates to 1 .
b. EX™ = %, therefore
of
EX =
(1-0)
2
EX2 _ O[,B
(2-5)
2 2
VarX = of — (aﬁ)Q
2= (1-p)

c. If B < 2 the integral of the second moment is infinite.
3.24 a. fi(x) = %e“”/ﬁ, z>0.For Y = XY, fy(y) = %e‘yv/ﬁy"’_l, y > 0. Using the transforma-
tion z = y7 /[, we calculate

,y o0 - o0 n
EY" = 7/ y 1t ley /de = ﬁ””/ Ve dy = ﬂ"/vl" (—l—l) .
B Jo 0 Y

Thus EY = §'/7T(L + 1) and VarY = 52/ {F (%H) 12 <%+1)}.
b. fu(x) = %e‘”/ﬁ, x> 0.For Y = (2X/8)Y2, fy(y) = ye ¥"/2, y > 0 . We now notice that

> V2
EY = / er_y2/2dy = Tﬂ-
0

since \/% ffooo er_yz/ 2 = 1, the variance of a standard normal, and the integrand is sym-
metric. Use integration-by-parts to calculate the second moment

EY? = / y36792/2dy = 2/ yefy2/2dy =2,
0 0

where we take u = y2, dv = ye~¥"/2. Thus VarY = 2(1 — w/4).

c. The gamma(a, b) density is
_ 1 a—1_—x/b
fx(@) = I’(a)bax e .

Make the transformation y = 1/2 with dx = —dy/y? to get

a+1
P = I = g ()
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The first two moments are

_ N oy _ Tla—bpet 1
Br= (y) T T (a1
2 — ) _
EYT = ()b = (a—l)(a—2)b2’
and so VarY = 1

(a—1)2(a—2)b2
A fale) = rperee e /P w > 0. For Y = (X/B)'V2, fr(v) = rimy’e ™', y > 0. To

calculate the moments we use integration-by-parts with v = y2, dv = ye‘y2 to obtain

2 o0 —y? _ 2 o0 —y2 _ 1
_r<3/2>/0 vy = r<3/2>/0 R VF V)

and with u = y3,dv = ye™¥" to obtain

2 2 o0 4 —y? _ 3 o0 9 42 _ 3
B =y |, VT = r ) v = e

Using the fact that ﬁ fi’ooo y2e*y2 = 1, since it is the variance of a n(0, 2), symmetry yields
I° y2e~¥'dy = /7. Thus, VarY = 6 — 4/, using I'(3/2) = 1V

e. fo(@)=e®,2>0.ForY =a—ylogX, fy(y) = e ¢ e %, —o0 < y < oo. Calculation

of EY and EY? cannot be done in closed form. If we define

[e9) oo
L = / log xze™*dx, 12:/ (log x)%e *dx,
0 0

then EY = E(a — ylogz) = a — vI1, and EY? = E(a — vlogx)? = o? — 2ayI; + 7*I5. The
constant [y = .5772157 is called Euler’s constant.

3.25 Note that if T is continuous then,

Pt <T <t+5,t<T)

Pt <T <t+d|t <T)

Pt<T)
Pt <T <t+6)
N Pt<T)
Fr(t+6) — F (1)
1—Fp(t) '
Therefore from the definition of derivative,
() — L o FIUEO P F@ _falt
R IR S HYFS R ey 5 T 1—Fp(t)  1-Fr(t)
Also,
d 1
—a(log[l—F @) = —m(—fT(t)) = hr(t).

3.26 a. fr(t) = ge ~t/8 and Fr(t) = f(f;la —/Bdy = — e_gﬂ/5|tJ =1—e /P Thus,

_ @Bt 1
hT(t) - 1—FT(t) - 1_(1 o e_t/ﬂ) - B
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~ ~ /B /8

b. fr(t) = %t'yfle*t /B t>0and Fr(t) = fot %:ﬂ’leﬂ” /Bdx = fot e tdy=—e" gw =
1—e t"/P where u = 27/8. Thus,
(/B e 0y
1 e~ (t—w)/B
C. FT(t) = Tre—G=m/B and fT(t) = m Thus,
1T e e—(t=1)/B)2 1 1
hr(t) = 7 (= /(1% ) i BFT(f)-
1+e—(t—w)/B

3.27 a. The uniform pdf satisfies the inequalities of Exercise 2.27, hence is unimodal.

b. For the gamma(a, 3) pdf f(z), ignoring constants, - f(z) = w [B(a—1) — z], which
only has one sign change. Hence the pdf is unimodal with mode 3(« — 1).

c. For the n(u,o?) pdf f(z), ignoring constants, %f(m) = %e*(*z/ﬁy/%{z, which only has
one sign change. Hence the pdf is unimodal with mode pu.

d. For the beta(a, 8) pdf f(z), ignoring constants,

(@) = 21— 22 [(0-1) ~ a{at5-2)]

a—1

a+p—2"°

which only has one sign change. Hence the pdf is unimodal with mode

3.28 a. (i) w known,

h(z) =1, ¢(0®) = =10,00)(0%), wi(0?)=—553, ti(zx)=(x—p)

(ii) o2 known,
1 2 2
Flal) = —o=—exp (= oy Jexp (= 2oy ) exp (1 ).
oo 202 202 o2

ha)=exp (35). cln) = A ew (55), wil) =p t) =2

b.(i) a known,

h@) =47, 2 >0, of) =7, wi(B) =3 t@)=-=z
(ii) B known,

h(z) =e */P 2 >0, cla)= W wi(a) =a—1, ti(z) =logz.
(iii) «a, B unknown,

fzla, B) = F(al)ﬂa exp((a—1)logx — %),
h(z) = Itpsoy(x), cla,f) = W, wy(a) =a—1, t1(z) =logx,
wa(a, B) = =1/8, ta(z) = x.
c.(i) a known, h(x) = z* ;o 4j(z), c(B) = B(éﬁ), w1 (B)=pF—-1, ti(x) =log(l —x).
(ii) B known, h(z) = (1 — )P~ yy(z), c(a) = B(l , wi(z)=a—1, ti(z) =loguz.




(iii)

d.
e.

3.29 a.

3.31 a.
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«, # unknown,

h&x) = Ijo,y (), c(a,B) = B(Olhﬁ), wi(a) =a—1, t1(z) =logz,
wa(B) = B —1, tafx) = log(l - fv)
W) = §iloa2,..3 (), o) =e? wi(f) =logh, ti(x) ==
h(z) = (r - 1) Itr g1,y ( = ) =log(l —p), ti(z)==.

For the n(u,o?)
f(z)

202
et Y/ > —12/20 +ap/o? )

A/\

so the natural parameter is (nl, 72)
{(nm2):m <0, =00 < 1p < 00}

For the gam na(oz, B),
1 —x/B
f( ) ( ( ) ) ( (ozfl)log:n z/ ) ,

so the natural parameter is (11,72) = (o« — 1,—1/() with natural parameter space
{(mm2)m > —1m2 <0}

For the beta(a, 3),
110 = (e ) (e e 07 se=),

so the natural parameter is (n;,m2) = (o — 1,3 — 1) and the natural parameter space is
{(nm2)m > —1me > —1}.
For the Poisson

—1/202, u/0?) with natural parameter space

x!

fx)= <1> (e7) evlos?

so the natural parameter is 7 = log # and the natural parameter space is {n:—oo < 1 < 0o}.

. For the negative binomial(r, p), 7 known,

P =) = (F7) ) (09,

so the natural parameter is n = log(1 — p) with natural parameter space {n:n < 0}.

k
0 = % / h(z)c(0) exp <;wi(9)ti($)> dx
k
= /h(x)c’(@) exp (Z wi(ﬂ)ti(x)> dx
k k
+ / h(z)c(0) exp (Z wi(ﬁ)ti($)> ( ag;io)ti(x)> da
k

=1

_ / h(z) [ ;; 1ogc(9)] c(6) exp <zi: wi(ﬂ)ti(x)> dz +E

"L 9w, (0)
09, ti(z)}

=1

i=1

0
= 9 ——loge(f) + E

Therefore E [Zle aqg;(je)ti(x)} = —%jlogc(@).
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82

k
0 = W/h(x)cw) exp (;wz(ﬁ)tl(m)> dx

2 k

0
= ——loge(f) 4+ Var (
203 ;

Therefore Var (Zle 818’];(9)1514(95)) = —g—;logc(ﬁ) —E {Zle 82%2(9%1-(33)]
i 3 3

3.33 a.(i) h(z) = €"I{_oocucoot (@), c(f) = = exp(52)0 >0, wi(0) = &

(ii) The nonnegative real line.

b. (i) h(x) = [{—soca<coo}(T), c(0) = mexp(g—;) —0 << o0,a>0,
w1 (0) = 3, wa(0) = &, (@) = —a?, ta(2) = .
(ii) A parabola.
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c.(i) h(z) = pcpcoot (@), cla) = %a >0, wi(a)=a, wa)=a,
t1(z) =log(x), to(x) = —u.
(ii) A line.
d. (i) h(z) = Cexp(x?)[[—coczcoo} (), ¢(0) =exp(h*) — o0 < < o0, wi(h) =0,
we(0) = 602, ws(0) =03, ti(z) = —4a3, ta(x) =622, t3(z) = —4dz.
(ii) The curve is a spiral in 3-space.
(iii) A good picture can be generated with the Mathematica statement

ParametricPlot3D[{t, t~2, t~3}, {t, 0, 1}, ViewPoint -> {1, -2, 2.5}].

3.35 a. In Exercise 3.34(a) w1 (\) = 55 and for a n(e’,e”), wy(0) =
b. EX =y = af3, then 3 = £. Therefore h(z) = 1I{ocpcooy (@

)
cla) = %,a >0, wi(a)=a, waa)=1%, ti(z) =log(x), t2(z)=—=.

c. From (b) then (ai1,...,an,B1,...,0n) = (al,...7an,%,...,o‘7")

1
2ef *

3.37 The pdf ( )f((x;—”)) is symmetric about u because, for any € > 0,

1
1 +€e)— 1 € 1 € 1 —€)—
f<<uw) (=L (-9 =Ly (w ) M),
ag g g g ag g g g
Thus, by Exercise 2.26b, u is the median.

3.38 P(X >x4)=P(0Z+p>024+ 1) =P(Z > z,) by Theorem 3.5.6.
3.39 First take p =0 and o = 1.

a. The pdf is symmetric about 0, so 0 must be the median. Verifying this, write

< 1 1
0 T \2 2

P(Zzo)z/wl !

1
= dz = —tan™?
; 2% an~ (z)

b. P(Z>1)= %tanfl(z)ﬁo =1(z-z By symmetry this is also equal to P(Z < —1).

1
-1 =1
Writing z = (z — p)/o establishes P(X > p) = % and P(X > p+o0) = 1.

3.40 Let X ~ f(z) have mean u and variance o2. Let Z = % Then

EZz(Clr)E(X—,u):O

and

X — 1 1 2
VarZ = Var BY= (= Var(X —p) = | — | VarX = -1
o o2 02 02

Then compute the pdf of Z, fz(2) = fo(cz4+p) -0 = ofs(02+p) and use fz(z) as the standard
pdf.

3.41 a. This is a special case of Exercise 3.42a.
b. This is a special case of Exercise 3.42b.

3.42 a. Let 61 > 605. Let X1 ~ f(x —01) and X5 ~ f(x — 63). Let F(z) be the cdf corresponding to
f(2) and let Z ~ f(z).Then

F(x—eg) = P(ng—ez) = P(Z+92Sl‘) = P(XQSJ,‘)

IN
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The inequality is because x — 03 > x — 61, and F is nondecreasing. To get strict inequality
for some x, let (a,b] be an interval of length 6; — 0y with P(a < Z < b) = F(b) — F(a) > 0.
Let = a+ 0;. Then

F(z|61) = F(z—06) = Flat61—-61) = F(a)
< F(b) = F(a+91—92) = F(.’E—(QQ) = F(.’E|92>

b. Let 01 > 03. Let X3 ~ f(x/01) and X2 ~ f(x/02). Let F(z) be the cdf corresponding to
f(z) and let Z ~ f(z). Then, for z > 0,

Flx|oy) = PXy<z) = PlowZ<z) = P(Z<z/o1) = F(x/o1)
< F(zfoy) = P(Z<z/oy) = P(oaZ<z) = P(Xs<1)
= F(z]|o02).

The inequality is because x/oy > x/o1 (because © > 0 and o1 > o3 > 0), and F is
nondecreasing. For z < 0, F(z | 01) = P(X1 < 2) =0 = P(Xy < z) = F(z | 02). To
get strict inequality for some z, let (a,b] be an interval such that a > 0, b/a = 01/02 and
Pla< Z <b)=F(b)— F(a) > 0. Let = aoy. Then

F(zx|lo1) = F(z/o1) = F(ao1/o1) = F(a)
< F(@() = F(aoy/o9) F(x/o9)
= F(.T | 0'2).

3.43 a. Fy(ylf) =1— FX(§|9) y > 0, by Theorem 2.1.3. For 6, > 6o,

Fy(y|01) =1— Fx (1 91> <1-Fx <1
Y )
for all y, since Fx(x|0) is stochastically increasing and if 6, > 0, Fx(z|02) < Fx(z|6,) for
all z. Similarly, Fy (y|61) =1 — FX(%|91) <1l- FX(%|02) = Fy(y|02) for some y, since if
01 > 02, Fx(x]03) < Fx(x|0;) for some x. Thus Fy (y|0) is stochastically decreasing in 6.
b. Fx(z|0) is stochastically increasing in 6. If 6; > 65 and 61,65 > 0 then é > %. Therefore
Fx($|%) < FX(:c\é) for all  and FX(a:|9—11) < FX(:c\é) for some z. Thus Fx(z|}) is
stochastically decreasing in 6.

02) — Fy(yl62)

3.44 The function g(x) = |x| is a nonnegative function. So by Chebychev’s Inequality,
P(]X| = b) < E|X|/b.
Also, P(|X| > b) = P(X? > b?). Since g(x) = 22 is also nonnegative, again by Chebychev’s

Inequality we have
P(|X| >b) = P(X* > b") <EX?/b".

For X ~ exponential(1), E|X| =EX =1 and EX? = VarX + (EX)? =2 . For b = 3,
E|X|/b=1/3>2/9=EX?/b*

Thus EX?/b? is a better bound. But for b = /2,
E|X|/b=1/V2<1=EX?/bp"

Thus E|X|/b is a better bound.
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3.45 a.

Y

Mx) = [ e

el /00 fx(z)dzx

where we use the fact that e!® is increasing in = for ¢t > 0.

/aoo e fx (x)dx

e P(X > a),

Y

Mx(t) = /_O;etxfx(x)dm > /a e fx (z)dx

—00

el /a fx(x)dr = e"“P(X <a),

where we use the fact that e* is decreasing in x for ¢t < 0.
c. h(t,z) must be nonnegative.

3.46 For X ~ uniform(0,1), 4 = % and 0® = &, thus

1 k 1 k — 2k
P(|Xu>ka)1P<§X§+>{ V12 k<3,
2 V12 2 12 0 k> /3,

For X ~ exponential(\), p = A and 02 = A2, thus

_ —1_ _ B I R R
P(|X — p| > ko) =1~ P(A kASXS/\JF’fA)—{e(kH) k> 1.

From Example 3.6.2, Chebychev’s Inequality gives the bound P(|X — u| > ko) < 1/k%.

Comparison of probabilities

k u(0,1) exp(N) Chebychev
exact exact
1 .942 .926 100
.5 711 617 4
1 423 135 1
1.5 134 .0821 44
V3 0 0.0651 33
2 0 0.0498 .25
4 0 0.00674 .0625
10 0 0.0000167 .01

So we see that Chebychev’s Inequality is quite conservative.
3.47

P(|Z] > t) e

2P(Z >t) = m/

\[/OO Lhe a2,
1422
0 2
\[/ ! e*w2/2dx+/ m767952/%1:5.
7 |)y 1+a? P
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To evaluate the second term, let u = %5, dv = xe*ﬁ/zdm, v = 76712/2, du = (11;77”2)2, to
obtain
o] 2 S o] 2
/ x e_xz/zdx _ x (_e_x2/2) _ / 1—=z (_e_w2/2)dx
. 1+ a2 1+ a2 . . (L+22)?
t 2 /00 1-a2® 2
= —_— dx.
1+e2° * ¢ (1+x2)26 v
Therefore,

2t 2 2 [ 1 1— 22 2
P(Z>t) = S e t/2 \/7/ —2?/24
(Z=1) \/;14—2526 + T Jy 1—|—x2+(1—|—x2)2 ¢ *
2 L g \/E/f’o 2 22
= — _ = x d
\/;1+t2€ + T Ji (14 22)2 ¢ *
\/51 Jf ge
s

3.48 For the negative binomial

Pix=at )= ("I T - = (S5 ) - pppx =)

rx+1 r+1

For the hypergeometric

Wa)(kzotet Detl) g < ko < M,z > M — (N — k)

P(X=x)
P(X =z+1)=1{ (X)) ifx=M—(N—k)—1
0 ’ otherwise.
3.49 a.
E(g(X)(X —aB)) = - )z — « 1 g lem/ By,
(9(X)( B)) ; g(z)( ﬂ)r(a)ﬂ

Let u = g(z), du = ¢'(z), dv = (z — af)z® e */8 v = —Bz*e~*/P. Then

Eg(X)(X —af) = (x)ﬂx%*r/ﬁ\zo + ﬂ/ooo g'(x)z”‘ex/ﬁdx} .

e

Assuming g(z) to be differentiable, E| X ¢'(X)| < 0o and lim, .., g(z)z%e~*/8 = 0, the first
term is zero, and the second term is SE(X¢'(X)).

_ o 1 .
Let u = g(z) and dv = (8 — (o — 1)1=2)2*71(1 — z)”. The expectation is

I'a+0)
I'(a)L'(3)

assuming the first term is zero and the integral exists.

a—1/1 _ B} ! . / a—1/1 _ .A\B—1 _ _ /
{g(fﬂ)w (1-2) }0+/0(1 x)g (x)a* (1 — )" dx| = E((1 - X)g'(X)),



Second Edition 3-17

3.50 The proof is similar to that of part a) of Theorem 3.6.8. For X ~ negative binomial(r, p),

Eg(X)

= 29($)<T+il)p’°(l—p)x

= ig(yl)(rzgzg)pr(lp)yl (set y =2 +1)

_ yilg(y— )(rﬂzj—l) (TJF?:I_l) "(1-p)vt

_ i[r—kz—lg(ly—_plq {(T—i_z_l)pr(l—p)y} (the summand is zero at y = 0)

() (727,

where in the third equality we use the fact that (T;K‘Q)

1



Chapter 4

Multiple Random Variables

4.1 Since the distribution is uniform, the easiest way to calculate these probabilities is as the ratio
of areas, the total area being 4.

a. The circle 2% + y* < 1 has area m, so P(X?+Y?2 <1) =12
b. The area below the line y = 2z is half of the area of the square, so P2X —Y >0) = 2
c. Clearly P(|X +Y]| <2)=1.

4.2 These are all fundamental properties of integrals. The proof is the same as for Theorem 2.2.5
with bivariate integrals replacing univariate integrals.

4.3 For the experiment of tossing two fair dice, each of the points in the 36-point sample space are

equally likely. So the probability of an event is (number of points in the event)/36. The given
probabilities are obtained by noting the following equivalences of events.

PUX =0y =0} = PH(1LD,21),0,3),23),05,25) = 5 = ¢
PUX=0Y =1}) = PU{(1,2),(22),(L4),2.4,(,6),26)) = o = ¢

({X =1,Y=0})
= P{B,1),(4,1),(5,1),(6,1),(3,3),(4,3),(5,3),(6,3), (3,5), (4,5), (5,5), (6,5)})

P{X =1,Y =1})
= P({(3,2),(4,2),(5,2),(6,2),(3,4), (4,4),(5,4),(6,4), (3,6), (4,6), (5,6), (6,6)})

4.4 a. fofo (z + 2y)dxdy = 4C =1, thus C =

b. fx(x {f04 x4 2y)dy = 2(z+1) 0<x<2
otherwise

c. Fxy(z,y)=P(X <z,Y <y) f_ fy f(v,u)dvdu. The way this integral is calculated
depends on the values of x and y. For example, for 0 <z <2 and 0 < y < 1,

Fxy(z,y) = / / fu,v)dodu = / / —(u+ 2v)dvdu = Ty, VT
—o00 J —00 0 0 4 8 4

But for 0 <z <2and 1 <y,

ny(x,y)/; /: f(u,v)dvdu/OZ/Oli(qu%)dvdu

+

»| &,
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The complete definition of Fxy is

0 r<0ory<0

2?y/8+y?z/4 O<z<2and0<y<l1
Fxy(z,y) = y/2+4?%/2 2<zand 0<y<1

2?/8 + /4 0<z<2and 1<y

1 2<zand 1<y

d. The function z = g(z) = 9/(z + 1)? is monotone on 0 < z < 2, so use Theorem 2.1.5 to
obtain fz(z) =9/(82%),1 <2< 9.

45 a. P(X >VY) = fol f\lf z +y)dedy = 5.
b P(X2<Y < X) = [y [V¥ 20dudy = L.

4.6 Let A = time that A arrives and B = time that B arrives. The random variables A and B are
independent uniform(1,2) variables. So their joint pdf is uniform on the square (1,2) x (1,2).
Let X = amount of time A waits for B. Then, Fx(z) = P(X < z) = 0 for z < 0, and
Fx(z)=P(X <z)=1for 1 <z For x =0, we have

FX(O)P(X<0)P(X0)P(BgA)/Q/aldbda;

Andfor0 <z < 1,

72

2—x
Fx(z)=P(X<2)=1-P(X>2)=1-P(B—A> 1) :1—/ / 1dbda = %ﬂf?
1

4.7 We will measure time in minutes past 8 A.M. So X ~ uniform(0, 30), Y ~ uniform(40, 50) and
the joint pdf is 1/300 on the rectangle (0,30) x (40, 50).

60— Yy 1
P(arrive before 9 A M.) = P(X +Y < 60) = / / —dxdy ==
40

300 2
4.9
Pla<X <be<Y <d)
P(X<bc<Y <d) —P(X<a,c<Y <d
— P(X<bY<d)-PX<bY<c)—P(X<aY<d+PX<aY<c
= F(b,d)— F(b,c) — F(a,d) — F(a,c)
= Fx(b)Fy(d) — Fx(b)Fy(c) — Fx(a)Fy(d) — Fx(a) Y()
_p d)— P(Y < ¢)] - P(X < a) [P(Y < d) — P(Y < )]

)= P(X <a)P(c<Y <d)

I
A/‘:'i/—\
8 X<
IAIA A

4.10 a. The marginal distribution of X is P(X = 1) = P(X =3) = 1 and P(X = 2) = 1. The
— 1
B 3

marginal distribution of Y is P(Y =2) = P(Y =3) = P(Y =4) = z. But
1.1
PX=2Y =3)=0# (1)) = P(X =2)P(v =3)

Therefore the random variables are not independent.
b. The distribution that satisfies P(U = 2,V = y) = P(U = 2)P(V = y) where U ~ X and
V~Yis
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4.12

4.13

4.15
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The support of the distribution of (U, V) is {(u,v) : v = 1,2,...;v = u+ 1,u + 2,...}. This
is not a cross-product set. Therefore, U and V are not independent. More simply, if we know
U = u, then we know V > u.

One interpretation of “a stick is broken at random into three pieces” is this. Suppose the length
of the stick is 1. Let X and Y denote the two points where the stick is broken. Let X and Y
both have uniform(0, 1) distributions, and assume X and Y are independent. Then the joint
distribution of X and Y is uniform on the unit square. In order for the three pieces to form
a triangle, the sum of the lengths of any two pieces must be greater than the length of the
third. This will be true if and only if the length of each piece is less than 1/2. To calculate the
probability of this, we need to identify the sample points (z,y) such that the length of each
piece is less than 1/2. If y > x, this will be true if z < 1/2, y —2x < 1/2 and 1 —y < 1/2.
These three inequalities define the triangle with vertices (0,1/2), (1/2,1/2) and (1/2,1). (Draw
a graph of this set.) Because of the uniform distribution, the probability that (X,Y") falls in
the triangle is the area of the triangle, which is 1/8. Similarly, if z > y, each piece will have
length less than 1/2 if y < 1/2, x —y < 1/2 and 1 —x < 1/2. These three inequalities define
the triangle with vertices (1/2,0), (1/2,1/2) and (1, 1/2). The probability that (X,Y") is in this
triangle is also 1/8. So the probability that the pieces form a triangle is 1/8 +1/8 = 1/4.

a.

E(Y - g(X))
E((Y —E(Y | X)) + (E(Y | X) - g(X)))*
= E(Y -E(Y | X)? +BEY | X) - g(X))* +2B[(Y - E(Y | X))(E(Y | X) - g(X))].

The cross term can be shown to be zero by iterating the expectation. Thus
E(Y — g(X))* =E(Y —E(Y | X))’ +EE(Y | X)—g(X))* > E(Y —E(Y | X))?, for all g(").

The choice g(X) = E(Y | X) will give equality.
b. Equation (2.2.3) is the special case of a) where we take the random variable X to be a
constant. Then, g(X) is a constant, say b, and E(Y | X) = EY.

We will find the conditional distribution of Y'|X 4 Y. The derivation of the conditional distri-
bution of X|X + Y is similar. Let U = X +Y and V =Y. In Example 4.3.1, we found the
joint pmf of (U, V). Note that for fixed u, f(u,v) is positive for v = 0,...,u. Therefore the
conditional pmf is

04 Ve % \ve~? ) U—
_ f(U,U) _ (u—v)! v! _(u A 0 .
f('U"LL) - f(u) - (9-"—)\)1‘6"(9*’)‘) - v m m 5 'U*O,...,'LL.
That is V|U ~ binomial(U, A/ (6 + \)).

a. The support of the distribution of (U, V) is {(u,v): u=1,2,...;0=0,£1,£2,...}.
If V>0, then X > Y. So for v =1,2,..., the joint pmf is

fovu,v) = PU=u,V=v) = PY=u,X=u+v)
= p(l-p"Tp-p Tt = P
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If V<0, then X <Y. So for v=—-1,-2,..., the joint pmf is

fov(uv) = PU=uV=v) = P(X=uY =u—0)
= p(1- p)uilp(l — p)“ﬂ’*l — p2(1 _p)2u7v72.

If V=0, then X =Y. So for v =0, the joint pmf is
fov(w,0)=PU=uV=0)=P(X=Y=u)=p(1-p)"“ 'p(l—p)**=p*(1-p> 2

In all three cases, we can write the joint pmf as
fow(u0) = (1= p)? 1172 = (=)™ ) (1= p)"1 2 =12 o= 0,1 £,

Since the joint pmf factors into a function of u and a function of v, U and V are independent.

b. The possible values of Z are all the fractions of the form r/s, where r and s are positive
integers and r < s. Consider one such value, /s, where the fraction is in reduced form. That
is, 7 and s have no common factors. We need to identify all the pairs (z,y) such that x and
y are positive integers and x/(z + y) = r/s. All such pairs are (ir,i(s —r)), i = 1,2,....
Therefore,

p (Z :f) = ;P(X =ir,Y =i(s—r)) = ;p(l —p)"lp(l — p) e

— PN sy p? (1-p)°  pP(1—p) 2
B (1_9)2;«1 w= (1-p?1-(1-p)°  1-(1—-p)° "~

PX=2,X+Y=t)=P(X=2Y=t—2)=PX=2)P(Y =t—z)=p*(1-p) 2
417 a. PY =i+1) = f;“ e %dx = e *(1 — e~1), which is geometric with p =1 — e~ 1.
b. Since Y > 5 if and only if X > 4,
P(X -4<azY >5) =P(X —-4<z2[X>4)=P(X <z)=e",

since the exponential distribution is memoryless.

4.18 We need to show f(z,y) is nonnegative and integrates to 1. f(x,y) > 0, because the numerator
is nonnegative since g(z) > 0, and the denominator is positive for all z > 0, y > 0. Changing
to polar coordinates, x = rcosf and y = rsin, we obtain

00 o /2 poo w/2 oo /2
/ / flz,y)dxdy = / / 2gi(r)rdmlﬁ = 2/ / g(r)drdfd = E/ 1d0 = 1.
0 0 0 0 T T Jo 0 ™ Jo

4.19 a. Since (X; — Xg)/\/i ~n(0,1), (X1 — X2)2/2 ~ X% (see Example 2.1.9).

b. Make the transformation y; = xfkilm’ Y2 = 1 + x9 then x1 = y1y2, 2 = y2(1 — y1) and
|J]| = y2. Then

I'og+a o 1 artan_1
L oy R D | e

thus Y7 ~ beta(ay, as), Y2 ~ gamma(a; + a1,1) and are independent.
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4.20 a. This transformation is not one-to-one because you cannot determine the sign of X5 from
Y1 and Y;. So partition the support of (X7, X5) into Ay = {—00 < 77 < 00,75 = 0},
A ={—00 <z < 00,29 >0} and Ay = {—00 < x1 < 00,22 < 0}. The support of (Y1,Y>)
is B={0 <y1 < o00,—1 <yz <1}. The inverse transformation from B to A; is x1 = y2./y1

and o = \/y1—y,y2 with Jacobian
1
; VO 1
1= 1193 Yy2/U1 | T :
2" Vo e 2¢/1—y3

The inverse transformation from B to As is 1 = y24/y1 and 2o = —+\/1 —ylyg with Jy =
—J1. From (4.3.6), fv,v,(y1,%2) is the sum of two terms, both of which are the same in this

case. Then
1 2 1
— = oYy /(20%)
fviv, (W, y2) o2’ 2143
Ly L
_ L, 0 <y <oo, 1<y <l

2mo? V1-13

b. We see in the above expression that the joint pdf factors into a function of y; and a function
of y2. So Y7 and Ys are independent. Y7 is the square of the distance from (X, Xs) to
the origin. Y5 is the cosine of the angle between the positive xi-axis and the line from
(X1, X2) to the origin. So independence says the distance from the origin is independent of
the orientation (as measured by the angle).

4.21 Since R and 6 are independent, the joint pdf of T = R? and 4 is

1
fro(t,0) = Ee‘”% 0<t<oo, 0<0<2m.

Make the transformation z = v/t cos®, y = v/tsinf. Then t = 22 + %, § = tan~!(y/z), and

2 2
J=| 5 2 ’:2.
Therefore
2 @) 2, 2 o
Py (@ y) = e 2,0 <a® +y% < oo, 0<tan”'y/z <2
/i
Thus,

1 10,22
e~ 3@ HYT)

fX,Y(xay>:ﬂ —oo < x,y < 00.

So X and Y are independent standard normals.

4.23 a. Let y = v, ¢ = u/y = u/v then

oz Oz 1 _u 1

J = u gv — | v IR —
9 9y 0 1 v
ou  Ov

I(a+8) T(a+B+7y) (u>a*1 (1 u

fov(u,v) = T(a)T(B) T(a+B)(7) \v

(%
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Then,

_ I'(at+B+y) 4ol lv,aq R
R = ey a0

M)B 1w
v

1
_ Wu“‘l(l - u)ﬂ”‘l/ y? T 1 -y dy (y =Ty ZdU)
0 u

L(a)T(B)I(
F(a+ﬁ+’y) ua—l(l _ u)ﬁ+’y—1 F(ﬁ)r(’}/)
L(a)T(B)L(v) T(8+7)
_ T(atp+9) w11 — o)1 w
= Ty W Osusl
Thus, U ~ gamma(a, 8 + 7).

b. Let x = yuv, y = \/% then

8% % %Ul/Qufl/Z L 1/24=1/2 1
J = & % = %v_l/Qu_l/Q —%ul/Qv_?’/Q = %"
a+pB-1 ~y—1
D(a+5+7) a1 51 \/ﬂ * u 1
=272V 1 2 1—/=) =
fov () = FarErm Ve 1 ve) v v) 2
The set {0 < 2 < 1,0 < y < 1} is mapped onto the set {0 < u < v < %,O < u < 1}. Then,
Ju(u)
1/u
= fuv(u,v)dv
_ -1
_ T(a+p+7) uo‘_l(l u)5+’y 1/1/u 1—uv =1 /9 _ Vu/v K ( /u/v)ﬁ "
T(a)T(B)T(7) u 1—u 1—u 201 —u)
Call it A
To simplify, let z = ~ ?/v Y Thenv=u=z=1,v=1/u=2=0and dz = Q(Vlugvdv
Thus,
fulw) = A/zﬁfl(l —2)7 7 Ydz ( kernel of beta(g,7))
_ F(Oé‘f'ﬁ"',y) ua—l(l o u)ﬁ-&-’y—lr(ﬁ)l—‘(’}/)
L(a)L(B)L(7) L(6+7)
L(at+B+y) a1 Bty—1
= ATV sl g)BHy 1.
Tar@ " W 0SS

That is, U ~ beta(a B+7), as in a).

4.24 Let 2y =2+ vy, 20 = then o = 2129, y = z1(1 — 22) and

m+y’
oz ox P 5
— | 0z 0z _ 2 1 _
|J| = yl ayz’ = ‘ 1—2 s = Z1.
azl azz 2 1

The set {x > 0,y > 0} is mapped onto the set {z; > 0,0 < 23 < 1}.

]. r— —2z1z ]- Ss— —Zz Z1%
le,Zz(Zl’ZQ) = F(’I") (2122) 16 %2 F(S) (Zl - 2122) 16 1+ 2Zl
1 _ D(r+s) ,_ _
r+s—1 z1 r—1 s—1
_ R S 1— , 0<2,0< 29 <1.
T(rts) TG 2 (L #2) s
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faz, 22(21,22) can be factored into two densities. Therefore Z; and Z, are independent and
Zy ~ gamma(r + s,1), Zo ~ beta(r, s).
4.25 For X and Z independent, and Y = X + Z, fxv(z,y) = fx(z)fz(y — z). In Example 4.5.8,

1
Ixy(z,y) = Lo (z )10 ©0,1/10)(y — ).
In Example 4.5.9, Y = X2 + Z and

Frv () = fx (@) f2y = %) = ST @5 0100 — 7).

4.26 a.
P(Z<z,W=0) = PminX,Y)<zY<X) = PY<zY<X)
- //oolfw/k e Y/ P dxdy
(e (a) )
= —ex —+= )z ).
/H—)\ P nwooA
Similarly,
P(Z <zW=1) = mlnXY)<zX<Y) = P(X<zX<Y)
OO1 1 1
= // e~ T/AZ ey/”dydx = i/\(l—e p{ (M—i—/\)z}).
b.
P(VV:O):P(Y<X):/OO/OO 1efg”/)‘lefy/“dxdyzi.
- o Jy A 7 Pt
I
PW=1)=1-P(W=0)=——.
W =1)=1- PV =0 = L
1 1
P(Zgz):P(ZSz,W:O)—i—P(Zgz,W:1):1—exp{—(—|—)\>z}.
W
Therefore, P(Z < z,W =1i) = P(Z < z)P(W =), fori = 0,1, z > 0. So Z and W are
independent.

4.27 From Theorem 4.2.14 we know U ~ n(u + ,202) and V ~ n(u — v, 20?). It remains to show
that they are independent. Proceed as in Exercise 4.24.

126 L [(e—)*+(y—)?]
2ro

Letu=x+y,v=a—y, thenx:%(u—i—v),y:

fxv(z,y) = (by independence, sofxy = fx fy)
1

5(u—wv) and

g=| 2 12 |1
12 —12 |7
The set {—00 < 2 < 00, —00 < y < o0} is mapped onto the set {—o00 < u < 00, —00 < v < 00}
Therefore
1 s [(e)-w)"+ (=) | L
= 202 2 2 R
fov(u,v) 202’ 2
1l e [2(g)2—u(u+~y)+%+2(g)z—v(u—v)Jr%}
T ine2©

= g g T (u (4 ) ()T (0~ (i =),

By the factorization theorem, U and V are independent.
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4.29 a.

4.30 a.

b.
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£ = ﬁg?ﬁg = cotf. Let Z = cotf. Let Ay = (0,7), g1(8) = cotf, g;'(z) = cot™' 2

Ay = (m,27), g2(0) = cot 6, g5 *(2) = m + cot ™! z. By Theorem 2.1.8

L B s NP S
21+ 22" 2r' 14 22" w1422

—00 < 2z < o0.

fz(2) =

XY = R?cosfsinf then 2XY = R22cosfsinf = R2?sin26. Therefore % = Rsin26.

Since R = v/ X2 +Y?2 then % = Rsin 20. Thus % is distributed as sin 26 which
is distributed as sin#. To see this let sinf ~ fg,g9. For the function sin 26 the values of
the function sin@ are repeated over each of the 2 intervals (0,7) and (m,27) . Therefore
the distribution in each of these intervals is the distribution of siné. The probability of
choosing between each one of these intervals is % Thus fosing = % fsino + 5 fsmg = fsino-
\/% has the same distribution as Y = sinf. In addition, \/% has the
same distribution as X = cos# since sin 6 has the same distribution as cos . To see this let
consider the distribution of W = cos€ and V = sin where 6 ~ uniform(0, 27). To derive
the distribution of W = cos @ let A; = (0,7), g1(0) = cosf, g7 *(w) = cos™ ' w, Ay = (7, 27),
g2(0) = cos, g5 *(w) = 27 — cos~' w. By Theorem 2.1.8

Therefore

1 -1 1 1 1 1

— b - 1<w<l
27T|\/1—w2| 27T|\/1—w2| /1 — w?

To derive the distribution of V = sin, first consider the interval (%, 2X). Let g;(0) = sin®,
497 (v) = m — sin™! v, then

fw(w) =

fr(v) = ——, —-1<v<1.

Second, consider the set {(0, ) U (2%, 27)}, for which the function sin § has the same values
as it does in the interval (7” 7). Therefore the distribution of Vin {(0,%) U (3F,2m)} is

the same as the distribution of V' in (5%, §) which is ; \/ﬁ, —1<wv <1. On (0,27) each
of the sets (Z,2X), {(0,%) U (2F,2m)} has probability 1 of being chosen. Therefore
11 1 11 1 1 1
frv)=cc—m—mt - ——=————=, -1<uv<L

271 —02 271 —02 71—02

Thus W and V has the same distribution.

Let X and Y be iid n(0,1). Then X? + Y? ~ x3 is a positive random variable. Therefore
with X = Rcosf and Y = Rsinf, R = v X2 +Y? is a positive random variable and
6 = tan~!'(¥) ~ uniform(0,1). Thus —222— ~ X ~ n(0,1).

X
1
EY = E{E(Y|X)} = EX = .
VarY = Var(E(Y|X))+E(Var(Y]|X)) = VarX +EX? = %—i—% = %
1
EXY = E[E(XY|X) = EXE(Y|X)] = BX® = ¢
1 (1\? 1
X)Y) = EXY-EXEY = - —|- = —.
Cov(X, Y) 3 (2) 12

The quick proof is to note that the distribution of Y|X = z is n(1, 1), hence is independent
of X. The bivariate transformation ¢ = y/x, u = z will also show that the joint density
factors.
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431 a.
EY:EUMHXH:EmX:%.

VarY = Var (E(Y|X)) + E (Var(Y|X)) = Var(nX) + EnX (1

n

PY =y X<z)= (y

)xy(l —z)"Y, y=0,1,...,n,

n) Ny+1)T'(n—y+1)

Ply=y) = (y I'(n+2)

4.32 a. The pmfof Y, for y =0,1,..., is

/OOO Fy (WA FA(N)dA = /0

o0 \Ye— 1

y! T(a)s>

= i ], A e { (_i’A) } v

1+8

1 B\
= YT v (Hﬁ> '

If « is a positive integer,

_(vre-T\ () ()
= (") (5) ()
the negative binomial(a, 1/(1 + 3)) pmf. Then

EEY[A) = EA = of
Var(E(Y|A)) + E(Var(Y|A)) =

fy(y)

EY =
Vary =

b. For y =0,1,..., we have

P(Y=y[A) = Y PY=y[N=nAP[N =n|)

B

= e Mpa)vell—PA
(pA)’e” ™
y!

b

VarA+EA = af’+aB8 =

n2 n

—xX)=2 4+

“127 %6

O<z<l1.

Ao~ temMBa)

(les m=n—y)

4-9

afB(B+1).
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the Poisson(pA) pmf. Thus Y|A ~ Poisson(pA). Now calculations like those in a) yield the
pmfof Y, fory =0,1,..., is

B >y+a

Hy+a) <1+pﬁ

1
a)y!(pB)*
Again, if « is a positive integer, Y ~ negative binomial(c, 1/(1 + pg3)).

4.33 We can show that H has a negative binomial distribution by computing the mgf of H.
Befl! = BE ("] N) = BE (0t 300 N} — B {[B (¥ )]},

because, by Theorem 4.6.7, the mgf of a sum of independent random variables is equal to the
product of the individual mgfs. Now,

> -1 (1-p* -1 & (ef1-p)™ -1
BeXit — Z et (1-p) _ Z (e'(1—p) _ (—log{l—et(l —p)}) )
= logp T logp e T logp
Then
] 1_t1_ N o] 1 1_t1_ n 7)\)\n
B og {1—e’( p)} _ Z og {1—¢'( p)} € (since N ~ Poisson)
logp o logp n!
ZAlog(1—e' (=) ( y]q (1—et(1—p) \"
_ - %ﬁt“’p)) ¢ o (W)
= ¢ € & z_% n!

The sum equals 1. It is the sum of a Poisson([)\log(l —ef(1— p))]/[logp]) pmf. Therefore,

. —\/logp
E(@Ht) — A {elog(lfet(lfp))} A logp _ (elogp)*)‘/ logp 1
1—et )

/ (1-p
)/ logp

This is the mgf of a negative binomial(r, p), with r = —A/logp, if r is an integer.
4.34 a.

=
~
I

&
I

/0 P(Y = ylp)f,(p)dp
1

L)oo a0

_ n F(Ck-l—,@) ! y+a—1 o n+pB—y—1

= (s [, e

_ <n) I(a+pP) T(y+a)T'(n+8—y)
y) (@) T(atntps)

y=0,1,...,n.

(X =z[p)fp(p)dp

=
>
I
&
I
O\H
i
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ree—1\Ta+p) (1 (a0 1 )@+8) =1
(2 et 7 "
AT

B r+z—1\T'(a+ (r+a)l'(z+pP) .
B ( . ) (@)@ T(r+ o +a+f) b
Therefore,
EX = E[E(X|P)] = E [T(l _P)] _ P
P a—1’
i _ 1 1—-P F(Ck-i-ﬁ) a—1 _ 8—1
E{ P ] /< P >F(a)F(ﬂ)p (L-p)"dp
_ Tla+p) [! (a=1)=177 _ \(B+1)—1 _ I(a+8) Ma—DI'(B+1)
M), P = e R
8
T oa—-1
Var(X) = E(Var(X|P))+ Var(E(X|P)) = E|:T(1P_2P>:|+Var(r(1_P)>
_ BrY@+h) o flatps-1)
ala—1) (a—1)2(a—2)’
1-P| _ (@+8) (a—2)-1/4 _ \(B+1)-1 _ [(a+ ) I'(a—2)I'(B + 1)
E[ P2 } /of(a)F(ﬁ)p U= = T TatA-1)
_ (B+D)(a+p)
ala—1)
and
1-P\ 1-P\? 1-P1\° BB+ 3
Var( P ) - P < P ) ‘(E[ P D S ogen G0
_ Bla+p-1)
(a—=1)2(a~-2)
where
1-P\? _ D(a+8) (a—2)-1 2)—1
e[ (50) | = [ Harr
_ De+p)Ta=-2)TB+2) _  BB+1)
F(@)T(B) T(e—2+6+2) (a—2)(a—1)

4.35 a. Var(X) = E(Var(X|P)) + Var(E(X|P)). Therefore,

Var(X) = E[nP(1— P)]+ Var(nP)
= n o n?Var
= "t Barprn YA
afla+pB+1-1)

(a+B3)(a+B+1)

+ n?VarP
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nafla+0+1) naf

- — 2
 (a+ ) (a+8+1) (a+52)(a+ﬁ+1)+n VarP
- naiﬁaf_ﬁ_nvarp+n2VarP

= nEP(1—-EP)+n(n—1)VarP.

b. Var(Y) = (Var(Y|A)) + Var(E(Y|A)) = EA + Var(A) = p+ 142 since EA = = of8 and

2
Var(A) = af? = (0‘5 . The “extra-Poisson” variation is 172,

437 a. Let Y = > X;.

1 1
P(Y =k) = P(Y =k <c=5(l+p) <1)

(v = He = 5(1+9))P(P = p)dp

(Z) %(1 +p)*[1 - %(1 +p)]”_k£((z)}r(2p“‘1(1 —p)*~dp

[
Y\ (A 4+p*(A=p"FT(a+b) , b1
9k on—k F(a)I‘(b)p (1—=p)° dp

/
/0
[
- Qg s
(Z)an jﬁ;(f)”kai)i%;i”’

- ) ()

Jj=0

A mixture of beta-binomial.

EY = E(E(Y]|c)) = E[nd] = E {n (;(1 —&-p))} = % (1 + aib> .

Using the results in Exercise 4.35(a),
Var(Y) = nEC(1 — EC) + n(n — 1)VarC.
Therefore,
1 1 1
Var(Y) = nE {2(1 + P)] <1 —-E {2(1 + P)]) +n(n —1)Var (2(1 + P))
n n(n —1)
Z(l +EP)1-EP)+ TVarP
oy a \° Jrn(nfl) ab
4 a+b 4 (a+b2(a+b+1)

—2dv, = = 5%. Then
- U

4.38 a. Make the transformation v = % —

/A 1. 1 vt
—e =dv
0 V L(rT(1—7r) (A—v)
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1 1 N
=L T EN ey
F(r)F(lfr)/O x (Au) © b
LT (Y gy e
NT(C(1—7) Jy \u - T(r)A
since the integral is equal to I'(1 — r) if r < 1.

b. Use the transformation t = v/\ to get

1 1

A A —1 —r o 1 r—1 _ —r _
/Op,\(y)duzm/o VT (A =v) dy_if(r)f’(l—r)/ot (I-t)~"dt =1,

since this is a beta(r, 1 — r).

r—1

d d 1 1
—1 = — |log ——— - 1)1 - = - =
T og f(x) T {og F(r))\r+(r )log x ;1:/)\] - 3 >0

for some z, if r > 1. But,

d o gmx/v — [ e g (v)dy
— |1 dv| = 0 v <0 Vuz.
- [og/o » ax(v) u} 1 Lol gn (v)dv x

4.39 a. Without loss of generality lets assume that ¢ < j. From the discussion in the text we have

that
f(9517-~-793j—1,50j+17~-~,17n|£13j)
_ (m — z;)!
Topqlees Tiqlexjiqle e T,
><< Py ) ..... (Pa—l )m’”(wﬂ ) SR < Pn )
1—p; 1—p; 1—-p; 1—p;
Then,
f(@ilz;)
= Z f@1, @1, g, T |Tg)
(L1 y i1, 1y T 1, T4 1seeesTy)
(Ik#ll,(l/]) xl! ..... x]_ll-l‘]+1! ..... .’En!
x ( D1 Y. (pji_l)%‘—l(pji'ﬂ)mﬁl ..... (pin)ﬁn

1 —Pj ].—p]
. m—x;—T;
(m—x; —x;)! (1 - —ﬁ;j)
. m—x;—x;
(m—x; —x;)! (1 - 15’@)

o (m — J?])' ( Di )Iz 1 pi Mm—=T;—T;
 xlm - — ) —p, 1—p;

(m—x; —x;)!
x )] 1 L. ol

leoons . .
(@n i) Xry. Lj—1+y Li41- LTj—1-

— (
1 —pj —pi L—pj—pi 1—pj—pi

x ( P1 ) Pi—1 Tio1 Pit+1 yEi
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pj71 Tj—1 ijrl Tjt1 Pn Ty

< (
1—pj—pi 1 —pj —pi 1—pj—pi

B (m — ;)! (—Pi_y (1_ i )m—wi—xj.

z!(m—z; — ;)1 —p;

Thus X;|X; = x; ~ binomial(m — x;, 1_1’7;%)_
b.

m!

m—=T;—x;

f(@i,x;) = fil;) fa;) = iy’ (1 —pj —pi)

xilz;l(m — x5 — x;)!
Using this result it can be shown that X; + X; ~ binomial(m, p; + p;). Therefore,
Var(X; + X;) = m(pi + p;)(1 — pi — p;)-
By Theorem 4.5.6 Var(X; + X;) = Var(X;) + Var(X;) + 2Cov(X;, X;). Therefore,
1 1
Cov(X;, X;) = 5[m(pi+pj)(1—pi—pj)—mpi(l—pi)—mpi(l—pi)] = 5(—2mpipj) = —mp;p;-
4.41 Let a be a constant. Cov(a, X) = E(aX) — EaEX = ¢EX — aEX = 0.

4.42

pxyy = Cov(XY,Y) E(XY?)—pxypy _ EXEY?—px py pry
’ OXyoy OXYyOoy OXyOy ’

where the last step follows from the independence of X and Y. Now compute

oky = BXY)?-[E(XY)? = EX’EY? - (EX)*(EY)?
= (0% +1X) (0% +13) — pXpy = oxoy +oxuy +ovuk.
Therefore,
vy = px Oy +13)—pxmy (X Oy _
D (GRod okt todud) Py (ko i ok +oko})!
4.43
Cov(X1 + X2, Xo + X3) = E(Xi+ X2)(Xo + X3) — E(X; + Xo)E(Xs + X3)
— (4/12 +0_2) _4M2 — 0_2

Cov(X,+X2)(X,~X2) = EX1+X0)(X;—-X2) = EX{-X7 = 0.

4.44 Let p; = E(X;). Then

Var (X1 + Xo + -+ X,,)

= B[(X;+Xo4 -+ X)) — (u+pa+ -+
= BIX;—m)+ (Xg=p) + -+ (X, —pn)]

_ ZE(Xi—/u)Q—i-? > E(X - ) (X5 — )

1<i<j<n

= Zn:VarXi+2 Z Cov(X;, Xj).

i=1 1<i<j<n
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4.45 a. We will compute the marginal of X. The calculation for Y is similar. Start with

fxv(@,y) !
Xy \Z,yY =
2rox oy \/1—p?

o [ {(525) - (52) (522) » (522}

X

and compute

Eim (o.z272pwz+z2)0'ydz7

I B e

—00 2TOx 0y \/1—p

where we make the substitution z = ¥22%, dy = oydz, w = *£%. Now the part of the
exponent involving w? can be removed from the integral, and we complete the square in z

to get
WZ
T 2(1-52) [ee]
. e 20-p%) R Te R li 5 [(2272pwz+p2w2)7p2w2]
fX(x) = —_— (& (1—p*=) dZ
2o x\/1—p? J_oo
e—w?/2(1=p%) gp®W?/2(1=p%) oo (5= p?
= e 2(1-p2) dz.

2wox/1—p? —o

The integrand is the kernel of normal pdf with o = (1 — p?), and pu = pw, so it integrates
to v2m\/1—p2. Also note that e~ /2(1=p") er*w?/2(1=p") — ¢=w*/2 Thys,

@) = — T iTE e L)
— — = 7X
N rox i VT T amoy :

the pdf of n(px,c%).

b.
frix (ylz)
) 6_2(1ip2)[(m;;X)Q_QP(m;;X)(y;gy)-‘r(y;iy)z}
- 2roxoyy/1—p2
- L ok ax)?
Vamax ¢
- L st ) e () e () () ()|
V2roy \/1—p?
L [ () e () () ()]
V2ray \/1-p?
1 *m [(y*#Y)*(P%(I*#X))F

= Rl ] Y

V2roy \/1-p? 7

which is the pdf of n((uy —ploy/ox)(x —px),ov/1— p2).

¢. The mean is easy to check,

E(aX +bY) =aEX 4+ bEY = aux + buy,
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4.46 a.

b.

C.

Solutions Manual for Statistical Inference
as is the variance,
Var(aX + bY) = a*VarX + b*VarY + 2abCov(X,Y) = a’c% + b*0% + 2abpoxoy.

To show that aX + bY is normal we have to do a bivariate transform. One possibility is
U=aX+bY,V =Y, then get fuv(u,v) and show that fy(u) is normal. We will do this in

the standard case. Make the indicated transformation and write x = %(u —bv), y = v and
obtain / y )
1/a —=b/a
1= ‘ 0 I
Then

1

fUV(U»U) = m

Now factor the exponent to get a square in u. The result is
1 b2 + 2pab + a? u? b+ap 9
— -2 uv +v°| .
2(1—p?) a? b2 + 2pab + a? b2 + 2pab + a?

Note that this is joint bivariate normal form since puy = py =0, 02 = 1, 02 = a? +b% + 2abp
and

e—ﬁ [[%(u—bi))]z—Zg(u—b'L;)—&-vQ]

_ Cov(U,V)  E(aXY +bY?) ap+b

oyoy ouoy Va2 + b2+ abp’

*

thus ) )
(1- 52 =1 a’p? +abp+ 0> (1-p*)a” _ (1-p’)a
a? + b2 +2abp a2+ b2 + 2abp o2

where a\/1—p? = oy+/1—p*2. We can then write

u uv (%

1 1 2 2>
vv(u,v) = exp | ——F——= | 20—+
fov(w.v) 2royoyy/1—p*? [ 24/1—p*2 <0121 pUUUV oy

which is in the exact form of a bivariate normal distribution. Thus, by part a), U is normal.

)

EX = axEZ, +bxEZy+Ecx = ax0+4+bx0+4+cx = cx
VarX = a4 VarZ, + b4 VarZ, + Varcx = a% +b%
EY = ay0+by0O+cy = cy
VarY = a3 VarZ, +b3VarZ, + Varey = a3 +0b3
Cov(X,Y) = EXY-EX: EY

= E[(axany + bbeZ22 +cxey +axby Z1Z5 + axcey Z1 + bxay Za 74
+bxcy Zs + cxay Zy + cxby Za) — cxcy]
= axay +bxby,
since EZ? = EZ2 = 1, and expectations of other terms are all zero.

Simply plug the expressions for ay, bx, etc. into the equalities in a) and simplify.
Let D = axby —aybx = —\/1—p2?0xoy and solve for Z; and Z,,

g = r(Xoex) —by(Y—ey) _ oy(X—px)tox(Y—py)
' D \/2(1+p)axay

oy (X—px)+ox (Y —py)
2(1—[))0’ny

Zy =
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Then the Jacobian is

>
<

S

® )\ T DD D iy

and we have that

S]

1 7%(”Y(«’”—l"X)‘*'”zx(’!;—}’-Y))z 1 7% (Uy(m—ux)+0§((?§—ury))2 1
_ 2(1+p)o2 o 2(1-p)o2 o
X,y (& = e X%y e X%y
fxy(z,y) or o [
2
1 _
= (2moxoyv/1—p?) texp | — TOAX
2(1 - p2) gx
2
xr — _ _
- 2p ,ux<y uy)+(;gm/) , —oo<zr<oo, —oo <Yy <00,
ox oy oy

a bivariate normal pdf.

Another solution is

ax = poxbx = +/(1—p?ox

ay = O‘yby = 0
cx = px
cy = py.

There are an infinite number of solutions. Write bx = ++/0%—a%.by = £\/0%—a3-, and
substitute bx,by into axay = poxoy. We get

axay + (:l:\/O'g(—a%(> (:t\/af,—a%) = poxoy.

Square both sides and simplify to get

2y 2 2 2 9 2 2
(1= pYoxoy =oxay —2poxoyaxay + oyax.

This is an ellipse for p # %1, a line for p = £1. In either case there are an infinite number
of points satisfying the equations.

By definition of Z, for z < 0,

P(Z<z) = P(X<zand XY >0)+P(—X <zand XY <0)
= PX<zandY <0)+P(X >-zandY <0) (since z < 0)
= P(X<2)P(Y <0)+P(X >-2)P(Y <0) (independence)
= PX<z)P(Y <0)+PX <z)P(Y >0) (symmetry of Xand Y)
= P(X <2)(P(Y <0)+P(Y >0))
= P(X <2).

By a similar argument, for z > 0, we get P(Z > z) = P(X > z), and hence, P(Z < z) =
P(X <z). Thus, Z ~ X ~ n(0,1).

By definition of Z, Z > 0 < either ()X <0and Y > 0 or (ii)X > 0 and Y > 0. So Z and
Y always have the same sign, hence they cannot be bivariate normal.
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4.49 a.
fxl@) = / (af1(@)or(v) + (1 — a) fo ()92 (v))dy

= afi() / a@)dy + (1 — a) fo(2) / o (y)dy
= afi(z) +(1—a)f2(x).

frly) = / (@h(@) ) + (1 - @) fo(@)g2())da
= an(y) / fi(@)dz + (1 - a)galy) / fol)dz
= agi(y) + (1 —a)ga(y).

b. (=) If X and Y are independent then f(x,y) = fx(z)fy (y). Then,

f(x,y) — fx(x)fy(y)

= afi(@)gi(y) + (1 — a)f2(z)g2(y)
—lafi(2) + (1 = a) f2(2)][agi(y) + (1 — a)ga(y)]
= a(l-a)[fi()g1(y) — f1(2)g2(y) — f2(2)91(y) + f2(2)g2(y)]
= a(l-a)lfi(x) = fo(2)][g1(y) — 92(v)]
= 0.

Thus [£1(x) — fa(2)]lg1(y) — g2(y)] = 0 since 0 < a < 1.
() i [/1(2) ~ fo(@)][91(y) — g2(y)] = O then

f1(@)g1(y) + f2(x)g2(y) = f1(x)g2(y) + f2()g1(y)-

Therefore
fx (@) fy(y)
= a*fi(@)g1(y) + a(l — a) fr(z)g2(y) + a(l — a) f2(x) g1 (y) + (1 — @) f2(2)g2(y)
= a*fi(@)g1(y) + a(l = a)[f1(2)g2(y) + fo(2)g1(y)] + (1 = a)? fa(x)g2(y)
= a*fi(@)g(y) + a(l — a)[f1(2)g1(y) + f2(2)g2(y)] + (1 — a)® fa(2)g2(y
= afi(@)g1(y) + (1 — a) fo2(z)g2(y) = f(z,y).

Thus X and Y are independent.

Cov(X,Y) apr&y + (1= a)ube — [apn + (1 = a)po]ady + (1 — a)&o]
a(l —a)[mé&n — e — padn + p2&o]

= a(l—a)[pm — p2l[& — &l

To construct dependent uncorrelated random variables let (X,Y) ~ af;(z)g1(y) + (1 —
a)fa(x)g2(y) where f1, fa, g1, g2 are such that f; — fo # 0 and g1 — go # 0 with p1 = 2 or
& =&
d.(i) f1 ~ binomial(n,p), fo ~ binomial(n,p), g1 ~ binomial(n, p), ga ~ binomial(n, 1 — p).
(ii) f; ~ binomial(n, pl) f2 ~ binomial(n, pg) g1 ~ binomial(n, p1), g2 ~ binomial(n, p3).
(iii) f1 ~ binomial(ni, ), f2 ~ binomial(ns, ;2-), g1 ~ binomial(n1, p), g» ~ binomial(nz, p).
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4.51 a.

P(X/Y <t)

Ly t>1
i+(1—t) t<1
2 —

P(XY <t) = t—tlogt 0<t<l

1
P(XY/Z <t) = /P(XYgzt)dz
0
17, .
fol[gt—l—(l—zt)]dz ift<1
Jo [+ —z)]de+ [l 5hde <1
1—t/4 ift<1
t— 4 + o logt ift>1"

4.53

P(Real Roots) = P(B*>4AC)
= P(2log B > log4 +log A+ log C)
= P(—2logB < —log4 —log A —1log(C)
= P(—2logB < —logd+ (—log A —1log(C)).

Let X = —2log B, Y = —log A —log C. Then X ~ exponential(2), Y ~ gamma(2, 1), indepen-

dent, and
P(Real Roots) = P(X < —logd+Y)
= [ P(x < —loga+ ) Wiy
log4

—log4
- /Oo / o L a2 ggyeva
= ye Y
log4 JO 2
oo

= / (1 —e2 1°g4e_y/2> ye Ydy.
log4

Integration-by-parts will show that f;o ye ¥/t = bla + b)e‘“/b and hence

1 1
P(Real Roots) = 1(1 +log4d) — — (

2
= +log4d | =.511.
21 +og> 5

3
454 Let Y = [[i_, X;. Then P(Y < vy) = P([[l_, X; <y) = P(}_, —log X; > —logy). Now,
—log X; ~ exponential(1) = gamma(1,1). By Example 4.6.8, > | —log X; ~ gamma(n, 1).
Therefore,
e 1
P(Y <y)= / —— 2" le Tz,
—logy F(”)
and

d 1
rly) = —/ 2"l dz
Y< ) dy —logy F(Tl)
1

d
S g | n—1_—(—logy) % —1
F(n)( ogy)" e dy( ogy)

1
— — (—logy)" ! 1.
F(n)( ogy)" ", 0<y<
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4.55 Let Xy, X5, X3 be independent exponential(\) random variables, and let Y = max(X;, X», X3),
the lifetime of the system. Then
P(Y <y) = P (max(X1, X2, X3) <y)

= P(X;<yand Xy <yand X3 <y)

= P(X1 <y)P(Xz <y)P(X5 <y).
by the independence of X7, X5 and X3. Now each probability is P(X; < y) = foy %e‘“/)‘da? =
1—e ¥/ so

3
PY <y) = (1—6_y/’\) , 0<y< oo,
and the pdf is
—e=/A)? e—u/A
fY<y):{3(1 e ) e y >0

0 y <0.
4.57 a.
1< IR
1
A = [gz;le]T = ggxi, the arithmetic mean.
1< 1
Ay = [=Y 27t = , the harmonic mean.
nz i %($++i)
. . 1 & 1 ! 1 & D Dt !
limlog A, = limlog[—~ a{]" = lim —log[-> f] = lim = IS
r=1 =1 i=
LS5~ 2T logay 1 — 1 -
= lim2&i=t 270 = Z N oga; = —log(| [ ).
MU T el

Thus Ag = lim, o A, = exp(L log(TT}_; 2:)) = ([T}, ;)7 , the geometric mean. The term
rai !t = a7 log x; since ral ! ddrsc;' = d% exp(rlogx;) = exp(r log ;) log x; = z7 log x;.
b. (i) if log A, is nondecreasing then for r < r’log A, < log A,, then e'°84r < elo8 4 Therefore
A, < A,,. Thus A, is nondecreasing in r.
.. _ % 7_1 reT 1 T ac "log x;
(i) ftog 4, = Flog( Ty o) + 2K 3 [T gty ),

i
ro 1 z7 r T
n i=1%i z=1""1

where we use the identity for 7z} ~" showed in a).

(iii)
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We need to prove that log(n) > >"" | a; 1og(aii). Using Jensen inequality we have that
Elog(3) = Y01, ailog(3) < log(Ef) = log(3_, aiz-) = log(n) which establish the
result. ' '

4.59 Assume that EX = 0, EY = 0, and EZ = 0. This can be done without loss of generality
because we could work with the quantities X — EX, etc. By iterating the expectation we have

Cov(X,Y)=EXY = E[E(XY|Z)].
Adding and subtracting E(X|Z)E(Y|Z) gives
Cov(X,Y) =E[E(XY|Z) - E(X|Z2)E(Y|Z2)] + E[E(X|2)E(Y|Z)].

Since E[E(X|Z)] = EX = 0, the second term above is Cov|[E(X|Z)E(Y|Z)]. For the first term
write

E[E(XY]Z) - E(X[Z)E(Y|2)] = E[E{XY — E(X|2)E(Y|Z)| Z}]

where we have brought E(X|Z) and E(Y|Z) inside the conditional expectation. This can now
be recognized as ECov(X,Y|Z), establishing the identity.

4.61 a. To find the distribution of f(X1|Z2), let U = X)Z(—jl and V = Xj. Then 2o = hy(u,v) = uv+1,
x1 = ha(u,v) = v. Therefore

fov () = fxy (hi(u,v), ha(u,v))|J| = e~ WDy,

and
o1

_ > —(uv+1) vy =
u) = ve e 'dv=——.
Thus V|U = 0 has distribution ve™. The distribution of X;|X5 is e~ ** since X; and X5
are independent.

b. The following Mathematica code will draw the picture; the solid lines are B; and the dashed
lines are By. Note that the solid lines increase with x1, while the dashed lines are constant.
Thus B is informative, as the range of X5 changes.

e = 1/10;

Plot[{-e*x1 + 1, e*x1 + 1, 1 - e, 1 + e}, {x1, 0, 5},

PlotStyle -> {Dashing[{}], Dashing[{}],Dashing[{0.15, 0.05}],
Dashing[{0.15, 0.05}1}]

fov* J5 vem (e dudy

P(X; <z|B = PV<v|—-e<U<e = =
( 1= I 1) ( = | ) f()oo f_e ve—(u'u-‘rl)e—'ududv
_ —v*(1+e) 1 —v*(1—¢€) 1
e ! |:e 1+e€ T 14e < 1—e + 1—e:|

_ 1 1
e ! |:_ 14+e€ + 1—6j|
Thus lim, .o P(X; < z|B)) =1 —e ¥ —ve ¥ = fov* ve Vdv = P(V <v*|U = 0).

z rlde —(z1+22) oo d —(z+1+e) —(1+e€) -
f e Todxq e —e —e T+1
P(Xy <alBy) = 20— = 1 e—(+0
fo e~%2dzs

Thus lime_o P(X; < #[By) =1 —¢e® = [ e®day = P(X; < 2|Xo =1).
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4.63 Since X = eZ and g(z) = €? is convex, by Jensen’s Inequality EX = Eg(Z) > g(EZ) = €° = 1.
In fact, there is equality in Jensen’s Inequality if and only if there is an interval I with P(Z €
I) =1 and g¢(z) is linear on I. But e* is linear on an interval only if the interval is a single
point. So EX > 1, unless P(Z =EZ =0) = 1.

4.64 a. Let a and b be real numbers. Then,
la 4+ b]* = (a+b)(a +b) = a® 4 2ab + b* < |a|* + 2|ab] + |b]* = (|a| + |b])>.

Take the square root of both sides to get |a + b| < |a| + |b|.
b. | X+Y|<|X|+|Y|=E|X+Y|<E(X|+[Y|) =E[X|+E|Y]
4.65 Without loss of generality let us assume that Eg(X) = Eh(X) = 0. For part (a)

BlCOnx) = [ " g@)h(a) fx (2)da

— 00

- / g(x)h(z) fx (x)dz + / g(x)h(z) fx (x)dx
{z:h(z)<0}

{:h(x)>0}

< g(zo) /{ e M @+ g0 /{ W) fx (2)da

z:h(z)>0}

S RCLEE

— 00

= g(xo)ER(X) = 0.
where z¢ is the number such that h(zg) = 0. Note that g(z¢) is a maximum in {z : h(z) < 0}

and a minimum in {z : h(z) > 0} since g(x) is nondecreasing. For part (b) where g(z) and
h(z) are both nondecreasing

E(g(X)h(X))

| s@nie) @

— 00

_ / o(2)h(x) fx (2)dz + / 9(@)h(z) fx (a)da
{z:h(z)<0}

{w:h(2)>0}

v

o(z0) /{ IRCINCTENTED /{ W) fx (x)de

z:h(z)>0}

| he) s

— 00

= g(z0)ER(X) =0.

The case when g(x) and h(x) are both nonincreasing can be proved similarly.
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Properties of a Random Sample

5.1 Let X = # color blind people in a sample of size n. Then X ~ binomial(n,p), where p
The probability that a sample contains a color blind person is P(X > 0) = 1 — P(X = 0),
where P(X =0) = (3)(.01)0(.99)” = .99". Thus,

P(X >0)=1-.99" > .95 & n > log(.05)/log(.99) ~ 299.

5.3 Note that Y; ~ Bernoulli with p; = P(X; > pu) = 1 — F(p) for each i. Since the Y;’s are iid
Bernoulli, Y7, Y; ~ binomial(n,p =1 — F(u)).
55 Let Y = X1 +---+ X,,. Then X = (1/n)Y, a scale transformation. Therefore the pdf of X is

Ix(@) = Tty ($5) = nfy(na).

5.6 a. ForZ:X—Y,setW:X.ThenY:W—Z,XzW,and|J|=‘ 0 1

-1 1
fzw(z,w) = fx(w)fy(w—2) -1, thus fz(z) = ffooo fx(w) fy (w — 2)dw.
0 1
1w —z/w?
faw(z,w) = fx(w) fy (z/w) - |=1/w|, thus fz(2) = [72 [=1/w] fx (w) fy (z/w)dw.
0 1
—w/Z® 1)z
fzw(zw) = fx(w)fy(w/z) - [w/z?|, thus fz(z) = [7 |w/2?|fx (w) fy (w/2)dw.

5.7 Tt is, perhaps, easiest to recover the constants by doing the integrations. We have

e B e D
/ ———dw = orb, / ————dw = 711D

’ = 1. Then

b. For Z = XY, set W = X. Then Y = Z/W and |J| = ‘

= —1/w. Then

c. For Z = X/Y, set W = X. Then Y=W/Z and |J| = ’ = w/2%. Then

—e 1+ (3) oo 1+ (452)
and
/°° Aw Cw
5= 5 | dw
—o [14(2)7 1+ (27)

_ / v c(wz>2]dw_0z/ B
—oo [14+(5)7 1+ (25%) oo 1+ (#5%)
2 2 o\ 2
14 (w z)
T

= A% log [1—1— (j)Q] — CTTlog

The integral is finite and equal to zero if A = M 0—227 cC=M T% for some constant M. Hence

—7mnCz.

— 00

1 2n M 1 1
fz(2) = = [UWB—Tﬂ'D— T Z} = 55
m2oT m(o+7) 14 (z/(047))
. _ T _ o _ —o7? 1
lfB_o'+T’D_?‘F)’M_

2z(o+T) 1+( 2 )2'

T
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2n(n1— 1) Zj; j: (X =X)°
= 2n(n1_ 3 éé(& - X+ X - X;)?
- 2n(nl_ 5 ié [(XFX)%Q(X;X)(X]—X) + (X]—X)z}
= Qn(nl_ 0 ;n(Xz - X)? - 22(& - X)jZ:;(X]_X) +n§;(xj — X)?
—
=0
- 2n(nn— 1) é(Xl - X)* 2n(nn— ) j:(Xa - X)?
- LR = 8

b. Although all of the calculations here are straightforward, there is a tedious amount of book-
keeping needed. It seems that induction is the easiest route. (Note: Without loss of generality
we can assume 6; = 0, so EX; =0.)

(i)

Prove the equation for n = 4. We have S* = ; Z?:l Z?:l(Xi — X;)?, and to calculate
Var(5?) we need to calculate E(S?)? and E(S?). The latter expectation is straightforward
and we get E(S?) = 246,. The expected value E(5?)? = E(S*) contains 256(= 4%) terms
of which 112(= 4 x 16 + 4 x 16 — 42) are zero, whenever i = j. Of the remaining terms,
e 24 are of the form E(X; — X;)* = 2(04 + 363)

e 96 are of the form E(X; — X;)*(X; — Xx)? = 04 + 363

e 24 are of the form E(X; — X;)?(X), — X,)? = 463

Thus,

1 1 1

Assume that the formula holds for n, and establish it for n+1. (Let S,, denote the variance
based on n observations.) Straightforward algebra will establish

1 n n n
2 _ 2 B 2
i=1 j=1 k=1
def'n 1
= ———[A+2B
2n(n+1) [4+25]
where
2 n—3, . . .
Var(4) = 4n(n—1)% |04 — — 192 (induction hypothesis)
Var(B) = n(n+1)8; —n(n —3)63 (X) and X1 are independent)

Cov(A,B) = 2n(n—1)[0s— 03] (some minor bookkeeping needed)
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Hence,
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Var(s2,,) = — ' [Var(A) + 4Var(B) + 4Cov(A, B)] = — [04 S 203] ,

An?(n+1) n+1
establishing the induction and verifying the result.

c. Again assume that §; = 0. Then

n n n

Cov(X,S?) = 2n2 ) ZX’“Z Z (X.—

k=1 i=1 j=1

The double sum over 7 and j has n(n — 1) nonzero terms. For each of these, the entire

expectation is nonzero for only two values of k (when &k matches either i or j). Thus

2n(n —1)

Cov(X,8%) = 520y

1
EX;(X; — X;)? = ~03,

and X and S? are uncorrelated if 63 = 0.

5.9 To establish the Lagrange Identity consider the case when n = 2,

(a1b2 — a2b1)2 = a%bz + a2b1 — 2(11()2(12()1

= alb3 4+ a3b? — 2a1bsasby + ab? + a3b3 — aib —

= (af +a3)(b] + b3) — (a1by + azbs)*.

Assume that is true for n, then

i=1

(£9) (57 (5)

i=1

)
(Za +an+1> <§n:b n+1> - (iaibi—&-anﬂbnﬂ

272
asbs

)2

( 3) by, (z b?) ) (z b> b
=1 1=1 =1

n—-1 n n

= Z Z (aibj — ajbi)z + Z(aibn_ﬂ - an+1bi)2
i=1 j=i+1 i=1
n  n+l

== Z (aibj — ajbi)g.
i=1 j=i+1

If all the points lie on a straight line then Y — p,, = ¢(X — ), for some constant ¢ # 0. Let

b; =Y — p, and a; = (X — py), then b; = ca;. Therefore >, Z;T_H( ib;
the correlation coefficient is equal to 1.

5.10 a.

0 = EX; = p

—a;jb;)? = 0. Thus
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0 = B(X;—p? = o
03 = E(X;—p)®
= E(X;—pu)*(X; —p) (Stein’s lemma: Eg(X)(X — 0) = ¢’Eg'(X))
= 20°E(X; —p) = 0
0y = BX;,—p)?t = E(Xi—u)3(Xi—u) = 30’B(X; —p)? = 30t
b. Var$? = (6, — 2=303) = L(30* — 1=354) = 207

c. Use the fact that ( 1)52/0 ~x2_; and Vary?_; =2(n — 1) to get

Var (W) =2(n—-1)

g

which implies ((";41)2 )VarS? = 2(n — 1) and hence

2(n—1) _ 204
(01t 1

Remark: Another approach to b), not using the x? distribution, is to use linear model theory.
For any matrix A Var(X’ AX) = 2,u§trA2 + 420" A, where po is 02, 0 = EX = pl. Write

VarS? =

52 =L 3" (X, —X)=-X'(I - J,)X Where
11 _1 ... _1
_ 1 _1
I—J,= n 1=
_.l 1_.l

Notice that trA? = trA =n — 1, A9 = 0. So

204

n—1

VarS? = %Var(X’AX) = ;2 (20" (n—1)+0) =
n—1) (n—1)

5.11 Let g(s) = s2. Since g(-) is a convex function, we know from Jensen’s inequality that Eg(S) >
g(ES), which implies 02 = ES? > (ES)2. Taking square roots, ¢ > ES. From the proof of
Jensen’s Inequality, it is clear that, in fact, the inequality will be strict unless there is an
interval I such that g is linear on I and P(X € I) = 1. Since s? is “linear” only on single points,
we have ET? > (ET)? for any random variable T', unless P(T = ET) = 1.

o2 S2(n—1)
2 _
o) - of; e ({0
o [~ 1 (25)~1-a/2
Vit ), Vingy e T

Since /S2(n — 1)/02 is the square root of a x? random variable. Now adjust the integrand to
be another x? pdf and get

o2 I'(n/2)2"/? /°° 1 _ 1 _
Ef(cVS2) = . (n=1)/2 _ ~,=a/24, .
(C S) Vou—1 T((n-1)/2)2@D72 |, T(n/2)2721 ¢ M

5.13

=1 since x2 pdf

gives E(cS) =o.
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X _ Z?:ll Xi _ Xn+1 + Z?:l Xi _ Xn,+1 +an
T T n+1 B n+1
) n n+1 ~ )
nSn = CE S > (Xi = Xni1)
i=1
n+1 S 2
X1 +nX,
S (Xi;; ! ) (use ()
i=1
5 (KoK
= ""n4+1 n+1
n+1 S 2
S {(Xl %) - <X"“ ~ )} (£%.)
p n+1 n+1
! 2 Xpt1—X 1 2
= X:—X,) =2 (X;— X, ntl n X,1—X
35 -2 () (R0 ) o s (5
" _ .2 _ .2 (X i1 X,)? n+1 =2
= X — X)) + (Xng1 — X)) — nt1 — Xn
n
(since Z(X’ - X, = 0)
1
= (=18 + g (X — X))’
Z?:l (Xiiii)Q ~ X3

(Xiil)/ Yis (Xiii)2/2 ~ t

. Square the random variable in part b).

Let U ~ X% and V ~ sz independent. Their joint pdf is

1 P_1 a1 7(u2+v)

T

From Definition 5.3.6, the random variable X = (U/p)/(V/q) has an F' distribution, so we
make the transformation z = (u/p)/(v/q) and y = u + v. (Of course, many choices of y will
do, but this one makes calculations easy. The choice is prompted by the exponential term
in the pdf.) Solving for u and v yields

Pry Ty
u=—"1— v= yq , and |J| = —F—.
1—|—51‘ 1—|—;)a: <1+ﬂx)

P

We then substitute into fy v (u,v) to obtain

%’—1 3—1 q
f (‘T y) q —+ ( —|—xy > ( . ) 2y ;
X, Y4, 7 2 q + 2z 71].
I (p) I‘ (,) 2([1 q)/ =T P ( + 7.];)
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Note that the pdf factors, showing that X and Y are independent, and we can read off the
pdfs of each: X has the F' distribution and Y is xf) +q- 1f we integrate out y to recover the
proper constant, we get the F' pdf

o F(erq) q p/2 pp/2—1
Ix@) = 5y (g <p) (qu)p;q.

2
b. Since F}, 4 = Xp/P let U ~ X%, Ve~ x?, and U and V are independent. Then we have

= S0
U/p u q .
EF, = E|— E(—|E(= b d d
. <V/q> <p> (V) (by independence)
p 1
£ - EU =
P <V> ( 2
Then
1y _ /1 1 a9 _ 1 -1 -2
E(V) = /0 UF(%)24/2U2 e 2dv F(g)Qq/Z/O V2 e 2dv
—92 _
_ 1 T q 2) 9(4=2)/2  _ r (qT) 20a-2)/2 _ 1
e\ NCSICSPTES:
Hence, EF}, , = %%2 = qTqQ, if ¢ > 2. To calculate the variance, first calculate
U2 g2 ¢ 1
2\ _ _ 2
E(F2,)=E (p2v2) = FEWME <V2) .
Now
E(U?) = Var(U) + (EU)? = 2p + p?
and 1 <1 1 1
El—)= Bl (a/2)=1e=v/2 3y — .
<v2> / 2TE22r’ T =29
Therefore,
2 2
q ¢  (p+2)
EF?, = Zp(2+p = — ,
ra = P G ) T p -2
and, hence
2 2 2
7*(p+2) q ( q ) <q+p—2>
Var(F, ,) = — =2 , q >4
(Fra) pla—=2)(g=4) (¢-2) q—2) \plg—4)

c. Write X = g—g then % = % ~ Fyp, since U ~ XZ, Ve~ x§ and U and V are independent.

dx

Y

_ /X _ _pX _ _qY
d. Let Y = T ip/OX = qipX’ so X = p(f_y) and

= 1(1—y)~?. Thus, Y has pdf
pT—Q
) (0’ (i) g
( (

Irty) 14+2_au )¥p(l—y)2

qp(l-y)

P g\1"t 2 4 (p Q)
24 1— ~ 23,
2,2)} y2 (1-y)2 beta (7,5
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5.18 If X ~ t,, then X = Z//V/p where Z ~n(0,1), V ~ Xf) and Z and V are independent.

a.

5.19 a.

5.20 a.

EX =EZ/\/V/p=(EZ)(E1/,/V/p) =0, since EZ = 0, as long as the other expectation is
finite. This is so if p > 1. From part b), X2 ~ F} ,. Thus VarX = EX? = p/(p—2),if p > 2
(from Exercise 5.17b).

. X2=22/(V/p). Z? ~ X3, so the ratio is distributed F} ,.
. The pdf of X is

1

Ix(z) = 1+ 22 /p)etD/2"

I'(p/2)\/pT

Denote the quantity in square brackets by C),. From an extension of Stirling’s formula
(Exercise 1.28) we have

[ r(et)

p—1 1
1\ 5 t+35 _p=1
. . V27w (Lzl 2o %e 2 1
lim €, = lim ——
p—00 p—0o0 \/%(122 Sot3 6771’;2 pmT
p—1 1
_ —1\ =z T3 _
o172 (B1) = *z o—1/2 p1/2

= lim = —_—,
VI pmee ey g VT V2

2

by an application of Lemma 2.3.14. Applying the lemma again shows that for each x

lim (1+x2/p)(:0+1)/2 _ 6I2/2
p—00

)

establishing the result.

. As the random variable F1 , is the square of a t,, we conjecture that it would converge to

the square of a n(0,1) random variable, a 3.

. The random variable ¢F} , can be thought of as the sum of ¢ random variables, each a t,

squared. Thus, by all of the above, we expect it to converge to a x§ random variable as
p — 0.

xf, ~ xﬁ + X<2i where xﬁ and X?t are independent x? random variables with ¢ and d = p — ¢
degrees of freedom. Since x? is a positive random variable, for any a > 0,

P(xp >a)= P(Xg +x3>a) > P(Xg > a).

. For ky > kg, k1Fy, , ~ (U+V)/(W/v), where U, V and W are independent and U ~ x7_,

Vo~ Xil—kz and W ~ x2. For any a > 0, because V/(W/v) is a positive random variable,
we have

P(kyFy, . > a) = P(U +V)/(W/v) > a) > P(U/(W/v) > a) = P(ksFr,, > a).

.a=P(Fy, > Foky)=PkFy, > kFyky) So, kF, 1, is the a cutoff point for the random

variable kF}, .. Because kF}, , is stochastically larger that (k—1)Fj_1 ., the o cutoff for kFy, ,,
is larger than the a cutoff for (k — 1)Fy_1,,, that is kFy 5, > (k — 1)Fy 1,0

The given integral is

—_

> ~%0/2,, / 1 (v2) /D -1=ve/2g
e U/ vxr e X
/0 V2 T(v/2)2"?
1 v/? /°° 2
- -z -t z/2 ((v+1)/2)-1 fl/:v/2d
= e X e X
V21 D(v/2)2""% Jo
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_ 1 /2 /oo /21— (42 g integrand is kernel of
V2r 1"(1//2)2”/2 0 gamma((v+1)/2,2/(v+t%)
1 VV/Q 92 (v+1)/2
= ——— = ((v+1)/2) | —=
Era 02 (7)
1 T((v+1)/2) 1

Vim T(v/2) (1442 )t/

the pdf of a t, distribution.
b. Differentiate both sides with respect to t to obtain

vfp(vt) = /O b () £ () dy,

where fr is the F' pdf. Now write out the two chi-squared pdfs and collect terms to get

1 L =1)/2— ()2
vir(vt) = /y”_ e IHDv/2qy
) I'(1/2)T(v/2)2 D72 Jo
t—1/2 I‘(”T‘H)Q(V‘H)/Q

I'(1/2)0(v/2)2" /2 (1 41t/
Now define y = vt to get

R (y/v) '
IeW) = R aDNwD (15 )7

the pdf of an Fi .

c. Again differentiate both sides with respect to ¢, write out the chi-squared pdfs, and collect
terms to obtain

t—m/?
(m/2)T(v/2)2 )2

(vfm) f (v m)t) = — / T ym=2)/2g=(+0w/2g,,

Now, as before, integrate the gamma kernel, collect terms, and define y = (v/m)t to get

r(ﬂ) my m/2 ym/2—1
Trly) = r(m/g)zr(y/g) ( ) (11 (m)o)y) 7

v
the pdf of an F,,, ..

5.21 Let m denote the median. Then, for general n we have

P (max(X,,...,X,)>m) = 1-P(X;<mfori=1,2,...,n)
1 n
= 1-[P(X;<m)]" = 1—(2) .

5.22 Calculating the cdf of Z2, we obtain

Fy2(2) = P((min(X,Y))? <2) = P(—z <min(X,Y) < /2)
Pmin(X,Y) < v/z) — P(min(X,Y) < —/2)

= [1-Pmin(X,Y) > v2)] —[1 - Pmin(X,Y) > —/2)]
P(min(X,Y) > —v/2) — P(min(X,Y) > /z)

= P(X>-V2)P(Y > —V2) = P(X > V2)P(Y > V2),
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where we use the independence of X and Y. Since X and Y are identically distributed, P(X >
a)=P(Y >a)=1- Fx(a), so

Fp2(2) = (1= Fx(—v2))* = (1 - Fx(V2))* = 1 = 2Fx (=V/>),
since 1 — Fx(v/z) = Fx(—+/z). Differentiating and substituting gives

F2(2) = - Fpa(z) = fx(—ﬁ)% = J%Tefwfl/z,

the pdf of a x? random variable. Alternatively,
P(Z<z) = P ([min(x, V)2 < z)

= P(—Vz<min(X,Y) < Vz)
= P(-Vz<X<Vz,X<Y)+P(—/z2<Y <2 Y <X)
P(—Vz2< X < VX SY)P(X <Y)
+P(—Vz <Y < V2|V < X)P(Y < X)
Y

— IP(VE<X<Vh+LP(-E<

using the facts that X and Y are independent, and P(Y < X) = P(X <Y) = 1 . Moreover,
since X and Y are identically distributed

P(Z% < 2) = P(—VZ < X < V3)

and
fz2(z) = iP(—\&< X <Vz) = L (6_2/212_1/2 —&—e_z/zlz_lm)
z dz -0 = V2r 2 2
Lo iyp 22
= 27 %eTRE
V2w
the pdf of a x3.
5.23
P(Z>z) = Y P(Z>z)P(X=x) = Y PU1>z...,Us>z2a)P(X =)
x=1 =1
= Z H PU; > 2)P(X =x) (by independence of the U;’s)
rx=14i=1
- T - x 1
= ;P(Ui >2)"P(X =1x) = ;(1*2) el
I (-2 elr 1
= == — ]..
(e—l);::1 x! e—1 0<z<
5.24 Use fx(z) = 1/0, Fx(x) = 2/0,0 <2z < 0. Let Y = X(,,), Z = X(1). Then, from Theorem
5.4.6,
B n! 11 /2\0 (y—2\""" y\°  n(n—1) ne2
T2y (29 = G —50ia0 (5) < 0 > (1-5) == w-ar* 0<z<y<e
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Nowlet W=2/Y, Q=Y. ThenY =Q, Z =WQ, and |J| = ¢q. Therefore

%(q —wq)" g = %

The joint pdf factors into functions of w and ¢, and, hence, W and @ are independent.
5.25 The joint pdf of X(yy,..., X(y) is

fwq(w,q) = (1—w)" 2", 0<w<1,0<q<0.

nla” a—1 a—1
f(ul,...,un)zeanul eunT, 0<ug <<y < 6.

n

Make the one-to-one transformation to Y1 = X(1)/X(2),...,Yn-1 = X(ne1)/X(n), Yo = Xn).
The Jacobian is J = g3 - - - y2 L. So the joint pdf of Y7,...,Y,, is

nla™ _ _ _ _
f(yl""vyn) = gan (yl"'yn)a 1(y2"'yn)a 1"'(yn)a 1(y2y?2,"'y2 1)
nla™ )
= e Vi Tt O<yi<li=1.n—1, 0<y, <0

We see that f(y1,...,yn) factors so Y7,...,Y, are mutually independent. To get the pdf of
Y7, integrate out the other variables and obtain that fy, (y1) = 199", 0 < y; < 1, for some
constant c¢;. To have this pdf integrate to 1, it must be that ¢; = a. Thus fy, (y1) = ayi™ ",
0 < y; < 1. Similarly, for i = 2,...,n — 1, we obtain fy,(y;) = iay!**,0 < y; < 1. From
Theorem 5.4.4, the pdf of Yy, is fy, (yn) = 7&yn®~ ", 0 < y,, < 0. It can be checked that the
product of these marginal pdfs is the joint pdf given above.
5.27 a. fX(,->\X<,->(U|U) = fX(i))X(j)(u, v)/fx;,(v). Consider two cases, depending on which of i or
j is greater. Using the formulas from Theorems 5.4.4 and 5.4.6, and after cancellation, we
obtain the following.

(i) If i < 4,

Pt (o) = (i—1()!.(j—i_i)!fX(u)F)i(_l(u)[FX(U)FX(U)]jilF)l(j(v)

- e (o] (RN

Note this interpretation. This is the pdf of the ith order statistic from a sample of size j—1,
from a population with pdf given by the truncated distribution, f(u) = fx(u)/Fx (v),
u <.

(ii) If j <4 and u > v,

Ixo1x, (ulv)

= f;}‘(i_j)l! —5ifx (@ I=Fx ()" [Fx(u) = P ()] 7 1=Fx ()"
_ (=) Ix(w {Fm) - Fx<v>]”'1 [1Fx<u> —Fy(0)]"
(i—j—Dn—i)!1-Fx(v) 1-Fx(v) 1-Fx(v) ’

This is the pdf of the (i —j)th order statistic from a sample of size n— j, from a population
with pdf given by the truncated distribution, f(u) = fx(u)/(1 — Fx(v)), u > v.

b. From Example 5.4.7,

~ n(n— Dr" % /a” 1 . b g
fvir(vlr) = YTy /2<v< /2.
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5.30
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Let X; = weight of ith booklet in package. The X;s are iid with EX; = 1 and VarX; = .052.
We want to approximate P (321 X; > 100.4) = P (3212 Xi/100 > 1.004) = P(X > 1.004).
By the CLT, P(X > 1.004) ~ P(Z > (1.004 — 1)/(.05/10)) = P(Z > .8) = .2119.
From the CLT we have, approximately, X1 ~ n(u,02/n), X ~ n(p,0?/n). Since X; and X,
are independent, X; — X5 ~ 1n(0,202/n). Thus, we want

99 = P(’X17X2| <O'/5)
—o/5 X1—X, - o/5

= P
<o/m<a/m wm)

1 /n 1 /n
Pl cz<2 /0
( 5 \/; <4<3 \/;) ’
where Z ~ 1(0,1). Thus we need P(Z > v/n/5(v/2)) ~ .005. From Table 1, /n/5v/2 = 2.576,

which implies n = 50(2.576)2 ~ 332.
We know that 0%—( = 9/100. Use Chebyshev’s Inequality to get

Q

P (=3k/10 < X—p < 3k/10) > 1 — 1/k>.
We need 1 — 1//{2 > .9 which implies k > V10 = 3.16 and 3k/10 = .9487. Thus
P(—.9487 < X — ;1 < .9487) > .9
by Chebychev’s Inequality. Using the CLT, X is approximately n(u, O’?—() with o = .09 =.3
and (X — p)/.3 ~n(0,1). Thus
X—u ]
9=P|[-1645 < —3 < 1.645 ) = P(—.4935 < X — p < .4935).

Thus, we again see the conservativeness of Chebychev’s Inequality, yielding bounds on X — p
that are almost twice as big as the normal approximation. Moreover, with a sample of size 100,
X is probably very close to normally distributed, even if the underlying X distribution is not
close to normal.

a. For any € > 0,

P (il

P (e |V il > |V v

P<|Xn—a|>6 m+ﬁ’)
P (|X, —a| > ey/a) — 0,

IN

as n — oo, since X,, — a in probability. Thus v/X,, — \/a in probability.
b. For any € > 0,

P i,I <e = P LSXngi
X 1+€ 1—e¢
ae ae
= P - — <X, < —
<a 14+€ — Sa+ 1—6)
> P a——eanga—i-£ At <at S
1+e€ 1+€ 1+e€ 1—e

- P<|Xn—a|<‘“> 1,
1+4€

as n — oo, since X,, — a in probability. Thus a/X,, — 1 in probability.
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c. S2 — o2 in probability. By a), S, = \/S2 — Vo2 = ¢ in probability. By b), ¢/S,, — 1 in
probability.
5.33 For all € > 0 there exist N such that if n > N, then P(X,, +Y, > ¢) > 1 — €. Choose N; such
that P(X,, > —m) > 1 —€/2 and N; such that P(Y,, > ¢+ m) > 1 —€/2. Then

P(X,+Y,>¢c)>P(X,>-m,+Y,>c+m)>P(X,>-m)+PY,>c+m)—1=1—c¢.

5.34 Using EX,, = p and VarX,, = 02/n, we obtain

EM _ v©
o o o
Vi(Xn—p)

g

Var = 2 Var(X, —p) = = VarX = =2 = 1.
g (o2 n

5.35 a. X; ~ exponential(1). ux = 1, VarX = 1. From the CLT, X,, is approximately n(1,1/n). So

Xn—l Xn_l
NG — Z ~n(0,1) and P(l/\/ﬁ §x> — P(Z < x).
b.
%P@ <7)= %Fz(x) = fz(x) = \/12?6_9”2/2.

" (17 =)

= % <iXi g;c\/ﬁ+n> <W: iXiNgamma(n,1)>

i=1
1

= LRVt = fwlevi+n) Vi = Ty @V + )TV .

Therefore, (1/T'(n))(zy/n +n)*te~@Vrtn) /n ~ \/#276_'”2/2 as n — oo. Substituting z = 0

yields n! ~ n"t1/2e="\/27.

5.37 a. For the exact calculations, use the fact that V;, is itself distributed negative binomial(10r, p).
The results are summarized in the following table. Note that the recursion relation of problem
3.48 can be used to simplify calculations.

PV, =v)
(a) (b) (c)
v Exact Normal App. Normal w/cont.
0 .0008 .0071 .0056
1 .0048 .0083 .0113
2 .0151 .0147 .0201
3 .0332 .0258 .0263
4 .0572 .0392 .0549
5 .0824 .0588 .0664
6 .1030 .0788 .0882
7 .1148 .0937 .1007
8 1162 .1100 1137
9 .1085 1114 1144
10 .0944 1113 .1024




5.39 a.

5.41 a.

b.
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Using the normal approximation, we have p, = r(1 — p)/p = 20(.3)/.7 = 8.57 and

oy = \/r(1 —p)/p> = 1/(20)(.3)/.49 = 3.5.

V,—8.57 S 1-8.57
35 7 35

P(Vn=0)=1—P(Vn21):1—P< ):1—P(Z2—2.16):.0154.

Another way to approximate this probability is

V —8.57 < 0-8.57
35 7 35

PV,=0=P(V,<0)=P < ) = P(Z < —2.45) = .0071.
Continuing in this way we have P(V =1) = P(V <1)—P(V <0) = .0154 — .0071 = .0083,
etc.

With the continuity correction, compute P(V = k) by P (W?iggm <Z< W?%fﬂ)’ SO
P(V =0) = P(-9.07/35< Z < —8.07/3.5) = .0104 — .0048 = .0056, etc. Notice that the
continuity correction gives some improvement over the uncorrected normal approximation.
If h is continuous given € > 0 there exits ¢ such that |h(z,)—h(z)| < € for |z, —z| < J. Since
X1,..., X, converges in probability to the random variable X, then lim, ., P(|X, — X| <
0) = 1. Thus lim,, o, P(|JA(X,) — h(X)| <€) = 1.

Define the subsequence X;(s) = s + I[, () such that in Ij, 3], a is always 0, i.e, the subse-
quence X1, X9, X4, X7,.... For this subsequence

s ifs>0
XJ(S)_’{5+1 ifs=0.

Let € = |z — pl.
(i) Forz —pu >0

P(Xp —pl>e¢) = P(Xp—pl>z—p)
= PXp—p<—(z—p)+PXn—p>z—p)
> PXn—p>z—p)
= P(X,>z) = 1-P(X,<uz).

Therefore, 0 = lim,,—, o0 P(| X —pt| > €) > lim,, oo 1 — P(X,, < ). Thus lim,,_,», P(X,, <
x) > 1.
(ii) For z — p < 0

P(I Xy —pl >€¢) = P(Xn—pl>—(z—p))
= PXp—p<z—p)+PXn—p>—(x—p)
> P(Xp—p<z—p)
= P(X, <uz).

Therefore, 0 = lim,, oo P(| X, — p| > €) > lim,, oo P(X,, < ).
By (i) and (ii) the results follows.
For every € > 0,
P( X, —pul>€¢) < PX,—p<—€)+P(X,—p>c¢
= PX,<p—€6)+1-PX,<pu+e) — 0 asn— 0.
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5.43 a. P(|Y, — 0| <e) (‘\/n ‘< ﬂn)e) Therefore,
11mP(|Y—0|<e*hmP(’\/n ’ \/n) P(|Z] < x0) =1,

where Z ~ 1n(0,0?). Thus Y,, — 6 in probability.
b. By Slutsky’s Theorem (a), ¢'(8)v/n(Y, —0) — ¢ ()X where X ~ n(0,02). Therefore
Valg(Ya) = g(0)] = ¢'(0)v/n(Ys — 0) — n(0,0°[g'(0)]%).

5.45 We do part (a), the other parts are similar. Using Mathematica, the exact calculation is

In[120]:=
f1[x_]=PDF[GammaDistribution[4,25],x]
pl=Integrate[f1[x],{x,100,\[Infinity]}]1//N
1-CDF [BinomialDistribution[300,p1],149]

Out [120]=
e~ (-x/25) x~3/2343750

Out[121]=
0.43347

Out[122]=
0.0119389.

The answer can also be simulated in Mathematica or in R. Here is the R code for simulating
the same probability

pl<-mean(rgamma(10000,4,scale=25)>100)
mean (rbinom (10000, 300, pl)>149)

In each case 10,000 random variables were simulated. We obtained pl = 0.438 and a binomial
probability of 0.0108.

5.47 a. —2log(U;) ~ exponential(2) ~ x3. Thus Y is the sum of v independent x3 random variables.
By Lemma 5.3.2(b), Y ~ x3,.
b. Blog(U;) ~ exponential(2) ~ gamma(l, ). Thus Y is the sum of independent gamma
random variables. By Example 4.6.8, Y ~ gamma(a, )

c. Let V = Za log(Uj) ~ gamma(a,1). Similarly W = 22:1 log(U;) ~ gamma(b,1). By

Exercise 4.24, m ~ beta(a, b).
5.49 a. See Example 2.1.4.
b. X =g(U) = —log :5Z. Then ¢! (2) = 7= Thus
e Y e Y
fx(@)=1x 15 ev)e = EYEE — 00 <y < 00,

which is the density of a logistic(0, 1) random variable.

c. Let Y ~ logistic(u, 8) then fy(y) = ﬂf ( ) where fz is the density of a logistic(0,1).
Then Y = 8Z + p. To generate a loglstlc(u 6) random variable generate (i) generate U ~
uniform(0, 1), (ii) Set Y = log 1% + p.

5.51 a. For U; ~ uniform(0, 1), EU; = 1/2, VarU; = 1/12. Then

X:ZUi—6=12U—6:x/ﬁ<[1]/_\/1§>
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is in the form /n ((U—EU) /o) with n = 12, so X is approximately n(0,1) by the Central
Limit Theorem.

b. The approximation does not have the same range as Z ~ n(0,1) where —0co < Z < 400,
since —6 < X < 6.

12 12 12 1
EXzE(ZUZ-—6> = EU;—6= <ZQ>—6:6—6:0.
i=1

i=1 i=1

12 12
VarX = Var (Z Ui6> = Varz U; = 12Varl; = 1

i=1 i=1

EX3 = 0 since X is symmetric about 0. (In fact, all odd moments of X are 0.) Thus, the first
three moments of X all agree with the first three moments of a n(0,1). The fourth moment
is not easy to get, one way to do it is to get the mgf of X. Since Ee!V = (ef — 1) /t,

12 _ 12
p[(Z210m0)] 2 oo (£2) 7 (L2
t t

Computing the fourth derivative and evaluating it at ¢t = 0 gives us EX*. This is a lengthy
calculation. The answer is EX* = 29/10, slightly smaller than EZ* = 3, where Z ~ n(0, 1).

5.53 The R code is the following:

a. obs <- rbinom(1000,8,2/3)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs
[1] 5.231

> variance
[1] 1.707346

b. obs<- rhyper(1000,8,2,4)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs

[1] 3.169

> variance
[1] 0.4488879

c. obs <- rnbinom(1000,5,1/3)
meanobs <- mean(obs)
variance <- var(obs)
hist (obs)

Output:

> meanobs
[1] 10.308

> variance
[1] 29.51665
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5.55 Let X denote the number of comparisons. Then

EX = Y P(X>k) = 1+» P(U> Fy(ye-1))
k=0 k=1
oo [ee]
= 1+ (1-F(p-1) = 14> (1-Fy(y)) = 1+EY
k=1 k=0

5.57 a. Cov(Y1,Ys) = Cov(X; + X3, X2 + X3) = Cov(X3,X3) = A3 since X1, X5 and X3 are

independent.

b.

Z:{l ifX; =X3=0
! 0 otherwise

pi = P(Zi =0) = P(Y; =0) = P(X; = 0,X3 = 0) = e +2) Therefore Z; are

Bernoulli(p;) with E[Z;] = p;, Var(Z;) = p;(1 — p;) and

E[Z1Z,) = P(Z1=1,Z3=1) = P(Y1=0,Y,=0)

= PX1+X3=0,X0+X5=0) = P(X;=0)PXy;=0P(X3=
e Me T A2eT A3,

Therefore,
COV(Zl, Z2) = E[Z1Z2} - E[ZﬂE[ZQ]
— e Mg s e*(AnL)\s)e*()\er)\s) — e*(>\1‘+>\3)e*(>\2+>\3)(e>\3 _ 1)
= pipa(e™ —1).
Th 7y, Zy) = 22D
us Corr(Zy, Zs) o=/ (1=p2)
c. E[Z17Z5] < p;, therefore
Cov(Z1,7y) = E[Z1Z5] —E[Z1]E[Z2] <p1 —pip2 = pi(l —p2), and
Cov(Z1,Z2) < p2(l—p1).
Therefore,
1-— 1-—
Corr(Zl,Zg) p1( pz) _ pl( p2)
Vil —p1)yv/p2(L—p2)  /p2(1—p1)
and

p2(1 —p1) /P2l —p1)

COI‘I‘(Z]_,ZQ) =
VoL =p1)y/p2(T—p2)  /pi(1—p2)

which implies the result.

5.59
) L PV <yU<ify(v)
PY<y) = PV <ylU<_f(V) = p<U<1fy<v>>
v ely @) ga L vy
_ Sk T udv o ; / frlv

T(atb) , a— 1(17y)b—1

TSty Y

5.61 a. M = sup, i
(DEICIRN -
Y reprqn vy

< 00, since a — [a] > 0 and b— [b] > 0 and y € (0,1).



Second Edition 5-17

T(a+b) 1 b—1
T () Y y* (1-y)

b. M = sup, +qajriy
F(laDT () ¥

< 00, since a — [a] > 0 and y € (0,1).

ylal=1(1—y)b=1

T(a+b) ,a—1 b—1
1-y)
M — wroy Y’ -y
C. sup F([aiLlJrﬁ) _ =
Y T([al+1)T (b)) ”[Q]H HA—y)* !

when b’ = [b] and will be equal to zero when b = b, thus it does not affect the result.
d. Let f(y) = y*(1 — y)®. Then

< oo, since a —[a] —1 < 0and y € (0,1). b—b >0

df (y - a 1 a- -
d(y) 1=y =y B -y’ =y 1 - )"l —y) + By
which is maximize at y = . Therefore for, « =a —a’ and =0 — b
I'(a+b a—a’ —_p
M- ré)m?) ( a—d ) ( b—v )b '
T D(a'+V) o B ! _ :
oty \* +b-10 a—a +b-b

a—a b—b
T s P . a—a’ b—b’
We need to minimize M in o’ and b'. First consider (m) <m> . Let
. [ cC—x . . . . .
¢ = «a + 3, then this term becomes (%) (Cpa) . This term is maximize at % = %, this
T'(a+b)

is at & = Je. Then M = (§)(@=a'+0=¥) IO Note that the minimum that M could be
T(aHT ()

is one, which it is attain when a = o’ and b = b’. Otherwise the minimum will occur when

a—a and b — b are minimum but greater or equal than zero, this is when o’ = [a] and

b =[b] or a’ =a and b’ = [b] or o’ = [a] and ¥/ = b.

2

5.63 M = sup, ﬁ Let f(y) = _é’z + % Then f(y) is maximize at y = % when y > 0 and at
sxe A
2
y= 7T1 when y < 0. Therefore in both cases M = = . To minimize M let M’ = \e=.
7“2
Then dlodg)\M = % )\3, therefore M is minimize at A = 1 or A = —1. Thus the value of \ that
will optimize the algorithm is A = 1.
5.65
m m lzm f(Y)I(Y< )
* _ * Ny - R m i=1 g(Y3) -
P(X*<z) = ZP(X < zlgi)g = ZI(K,SI)% = Ty IO
i=1 i=1 i=1 g(Y;)
(Y) r fly ©
. EBogmy IV <) [T m g(y)dy p
m—00 B 1Y) = s f(y) d = f(y)dy
99(Y) J2o a9 9(y)dy —o0

5.67 An R code to generate the sample of size 100 from the specified distribution is shown for part
c¢). The Metropolis Algorithm is used to generate 2000 variables. Among other options one can
choose the 100 variables in positions 1001 to 1100 or the ones in positions 1010, 1020, ..., 2000.

a. We want to generate X = oZ + u where Z ~ Student’s ¢t with v degrees of freedom.
Therefore we first can generate a sample of size 100 from a Student’s ¢ distribution with

v degrees of freedom and then make the transformation to obtain the X’s. Thus fz(z) =
L) 1 1
T ()

w7z Let V ~n(0, %) since given v we can set

v
v—2"

Now, follow the algorithm on page 254 and generate the sample Z1, Z5 ..., Z190 and then
calculate X; =oZ; + p.

EV=EZ=0, and Var(V)=Var(Z)=
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1 g~ (ogz—w)?/202
b. fx(z)= Taea - . Let V' ~ gamma(a, 3) where
pt(0?/2))2 2(pto?) _ p2p+to’
o= (e ) and (= € °

e2(ut+o?) _ e2uto?’ et+(0?/2) '
since given p and o2 we can set

EV = aff = ¢#*+(0"/2) — EX

and , ,
Var(v) — Olﬁ2 — 62(M+0' ) _ eQM"rO’ — Var(X)
Now, follow the algorithm on page 254.

™

c. fx(z)= %e 52271 Let V ~ exponential(3). Now, follow the algorithm on page 254 where

) Viafl VAV =2 1 +2Z7
pi = min T e B ;1

i—1

An R code to generate a sample size of 100 from a Weibull(3,2) is:

#initialize a and b

b <-2

a<-3

Z <- rexp(1,1/b)

ranvars <- matrix(c(Z),byrow=T,ncol=1)

for( i in seq(2000))

{

U <- runif(1,min=0,max=1)

V <- rexp(1,1/b)

p <- pmin((V/Z) "~ (a-1)*exp((-V"-a+V-Z+Z~a)/b),1)

if (U <= p)
Z <=V
ranvars <- cbind(ranvars,Z)
}
#0ne option: choose elements in position 1001,1002,...,1100

to be the sample

vector.1l <- ranvars[1001:1100]
mean(vector.1)

var(vector.1)

#Another option: choose elements in position 1010,1020,...,2000
to be the sample

vector.2 <- ranvars[seq(1010,2000,10)]
mean (vector.2)

var (vector.2)

Output:

[1] 1.048035

[1] 0.1758335

[1] 1.130649

[1] 0.1778724

5.69 Let w(v, z) = %, and then p(v, z) = min{w(v, z), 1}. We will show that

Zi~ fy = P(Ziy1 <a) = P(Y < a).



Second Edition
Write
P(Zit1 <a) = P(Vig1 < aand Uiy < pig1) + P(Z; < a and Uiy > pig1).
Since Z; ~ fy, suppressing the unnecessary subscripts we can write
P(Ziy1<a)=PV <aand U < p(V,Y))+ P(Y <aand U > p(V,Y)).
Add and subtract P(Y < a and U < p(V,Y)) to get

P(Zipn<a) = PY <a)+P(V<aand U <p(V,Y))
~P(Y <aand U < p(V,Y)).

Thus we need to show that
PV<aandU<p(V,Y)) =P <aand U < p(V,Y)).
Write out the probability as
PV <aand U < p(V,Y))

- / / (v,9) fy (y) fv (v)dydv
[ 1w <y (W) e (0) o (0)dyd

+/a /Oo I(w(v,y) 2 1) fy () fv(v)dydv

/ / w(v,y) < 1 fy () fv(y)dydv

/ / (v,9) = D) fy (y) fv (v)dydo.

Now, notice that w(v,y) = 1/w(y,v), and thus first term above can be written

/ / (v,9) < 1) fy (v) fv (y)dydv

/ / ) > 1) fy (v) fv (y)dydv
= P(Y <a,p(V,Y)=1U<p(V,Y)).

The second term is

[ / " Hw(o,y) > 1) fy ) (0)dydo

= [ [ rtw <0 ($AR) v
— /:1 /jo I(w(y,v) <1) <;:EZ;;¥EZ;> fv () fy (v)dydv
- /_a _00 I(w(y,v) < Dw(y,v) fv ) fy (v)dydv

= P(Y <a,U<p(V,Y),p(V,Y)<1)
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Putting it all together we have

PV <aand U < p(V,Y))

P(Y <a,p(VY)=1,U < p(V}Y))
+P(Y <a,U<p(V,Y),p(V.Y) <1)
= P <aand U < p(V,Y)),
and hence
P(Zi+1 < a) = P(Y < CL),

so fy is the stationary density.



Chapter 6

Principles of Data Reduction

6.1 By the Factorization Theorem, |X| is sufficient because the pdf of X is

1 2 2 1 2 2

—x°/20° _ —|z|*/20° _ 2

e = —=e =g(lz||lc7) - 1
— — ol - L

falo?) =

6.2 By the Factorization Theorem, T'(X) = min;(X;/4) is sufficient because the joint pdf is

f((IJl, - ,.’En|9) = H 619_%"[(1-974,00)(1‘1*) = einel(97+oo)(T<X)) -e_Eixi .

=t o(T()10) h(x)

Notice, we use the fact that ¢ > 0, and the fact that all x;s > 46 if and only if min;(z; /i) > 6.
6.3 Let x(1) = min; x;. Then the joint pdf is

eh/o

- 1 _ Ti— o " —Xxi/o
ﬂmww%mﬂ—HU€MM/%mM0—<a)e ) (300) L
= h(x)

g( 1y, Siws|p,0)

Thus, by the Factorization Theorem, (X(l), Do Xi) is a sufficient statistic for (u, ).
6.4 The joint pdf is

n k k n
]___[ {h(xj)c(e)exp (Z wi(e)ti(ffj)> } =c(0)" exp sz(e) th(ﬂfj) H h(z;) .

=1 i=1 7j=1 j=1
—_———
9(T(x)|6) h(x)

By the Factorization Theorem, (Z;-L:l ti(X;),. .., Z;l:l t (Xj)) is a sufficient statistic for 6.
6.5 The sample density is given by

n n

1

Hf(xiW) = H%I(—i(ﬁ—l)gxigi(0+1))
B (219)11(1%[1)[(““?2—(9—1))I<maxa;i§9+1).

Thus (min X, /i, max X;/4) is sufficient for 6.



6-2 Solutions Manual for Statistical Inference

6.6 The joint pdf is given by

a—1
1 n n
f($1,...,$n|04,ﬁ a 16_m7/ﬂ = ( ) x; e_Etrl/ﬂ,
i) ['(a) g Zl;[l

By the Factorization Theorem, (T, X;,> ., X;) is sufficient for (c, 8).

6.7 Let x(1) = ming{z1,..., 20}, T(p) = max{z1,..., 20}, yay = mingd{yi,...,yn} and yu,) =
max;{yi,...,yn}. Then the joint pdf is

f(x,516)
- 1
= 1I Lo, ,05) (i) L (05,0, (Vi)
= (03— 61)(64 — 02)
1 n
— ((Q3 —61)(04 — 92)> 1(91,oo)(1‘(1))1(_00,93)(x(n))lwzm) (y(l))I(—oo,04)(y(n)) \1/

h(x)

9(T(x)[0)

By the Factorization Theorem, (X(l), Xy, Yy, Y(")) is sufficient for (61, 02,03,04).
6.9 Use Theorem 6.2.13.

F(x[0) _ (@m) "o LI(Sm 28,2 g,
F310) ~ (2m) Pe s T2 2"@_;9 F2ng=2)| -

This is constant as a function of 6 if and only if 4 = Z ; therefore X is a minimal sufficient
statistic for 6.

b. Note, for X ~ location exponential(d), the range depends on the parameter. Now

LC I Y G 1

z;))
f(ylo) Hn 1 (e (i 9)19 OO) )
)
)

m9 -3z H A I(g 00) (xl 721-:701-]

enﬁe—Eiyi H ](0 o) ( Ys

(0,00) (Min ;)

e‘Eiin(g,oo)(min yi)

To make the ratio independent of 6 we need the ratio of indicator functions independent
of 6. This will be the case if and only if min{xy,...,z,} = min{y1,...,yn}. So T(X) =

min{ Xy,..., X, } is a minimal sufficient statistic.
c.
fxl0) e~ Si(@i=f) [T, (14 e~ @02
B n (s — 2 -3 1‘,76
f(y16) 1, (1+ e (:-0) e~Zi(y;=0)

n (s — 2
= efzi(yz‘fzi) Hi:l (1 +e (y: 9))
H?:l (1 + e*(mi—e))

This is constant as a function of 6 if and only if x and y have the same order statistics.
Therefore, the order statistics are minimal sufficient for 6.

d. This is a difficult problem. The order statistics are a minimal sufficient statistic.



Second Edition 6-3
e. Fix sample points x and y. Define A(0) = {i : z; < 0}, B(0) = {i : y; < 0}, a(f) = the

number of elements in A(#) and b(f) = the number of elements in B(#). Then the function
f(x10)/f(y|0) depends on 8 only through the function

Z|$i—9|—2|yi—9\
Z (0 —xi) + Z (z; —0) — Z (0 —yi) — Z (yi —0)

i€ A(0) i€ A(0)° i€B(6) i€B(6)°
= (a(0) — [n —a(0)] — b(0) + [n — b(6)])¢

Zmz—s—le—I—Zyz Zyl

i€ A(0) i€ A(0)° 1€B(0) i€B(0)°
= 2( (9)_b Z i+ Z Ti + Z Yi — Z Yi
i€ A(0) 1€A(0)° i€B(0) i€B(0)°

Consider an interval of s that does not contain any z;s or y;s. The second term is constant
on such an interval. The first term will be constant, on the interval if and only if a(8) = b(6).
This will be true for all such intervals if and only if the order statistics for x are the same
as the order statistics for y. Therefore, the order statistics are a minimal sufficient statistic.

6.10 To prove T'(X) = (X(1), X(n)) is not complete, we want to find g[T'(X)] such that E g[T'(X)] = 0
for all 6, but g[T'(X)] # 0 . A natural candidate is R = X(,,) — X(1), the range of X, because by
Example 6.2.17 its distribution does not depend on 6. From Example 6.2.17, R ~ beta(n—1,2).
Thus ER = (n — 1)/(n + 1) does not depend on 6, and E(R — ER) = 0 for all 6. Thus
9 Xy, Xy] = Xy — Xy —(n—1)/(n+1) = R—ER is a nonzero function whose expected
value is always 0. So, (X 1), X (n)) is not complete. This problem can be generalized to show
that if a function of a sufficient statistic is ancillary, then the sufficient statistic is not complete,
because the expectation of that function does not depend on #. That provides the opportunity
to construct an unbiased, nonzero estimator of zero.

6.11 a. These are all location families. Let Z(y),...,Z(,) be the order statistics from a random
sample of size n from the standard pdf f(z]0). Then (Z() +6,..., Z¢,) + 6) has the same
joint distribution as (X(y),..., X)), and (Y(1),...,Y¥(n—1)) has the same joint distribution
as (Z(n) + 60— (Z(l) +6),.. .,Z(n) + 60— (Z(n,1) +0)) = (Z(n) — Z(l), R Z(n) — Z(n,l)).

The last vector depends only on (Z1, ..., Z,) whose distribution does not depend on 6. So,
(Yay, ..., Y(—1)) is ancillary.

b. For a), Basu’s lemma shows that (Y7,...,Y,_1) is independent of the complete sufficient
statistic. For ¢), d), and e) the order statistics are sufficient, so (Y7,...,Y,,—1) is not inde-

pendent of the sufficient statistic. For b), X () is sufficient. Define Y;, = X(q). Then the joint
pdf of (Y1,...,Y,) is

n—1
— o=y, —0) ,—(n—1)y, Yi 0< Yn—1 < Yp—2<---<UY
f(ylv'-'vyn) n:e € He ) O<yn<OO
Thus, Y,, = X(y) is independent of (Y1,...,Y, 1).
6.12 a. Use Theorem 6.2.13 and write
fl@,n0)  f(z|0,N=n)P(N =n)
[y, n'10) fylo,N =n")P(N =n')
™67 (1-6)" " py, , ™ P
— (:1:) ( ) p — Hmfy(l _ H)nfn —x+y (:E/)p

()= p (Do
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6.13

6.14

6.15

6.17

6.18
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The last ratio does not depend on 6. The other terms are constant as a function of 8 if and
only if n = n’ and = y. So (X, N) is minimal sufficient for §. Because P(N = n) = p,
does not depend on 6, N is ancillary for 6. The point is that although N is independent of
#, the minimal sufficient statistic contains /N in this case. A minimal sufficient statistic may
contain an ancillary statistic.

E(i) E(E(ﬁ’N)) _ E(;[E(X|N)) - E<]1VN9> ~ B = 0.
Var(?\([) Var (E <§‘N)> +E<Var <§‘N)> — Var(6) +E<]$2Var (X | N))
_ 0+E(NGJ(V129)> _ 0(19)E<i]>.

We used the fact that X|N ~ binomial(N, 6).

Let Y7 = log X; and Y5 = log X5. Then Y; and Y5 are iid and, by Theorem 2.1.5, the pdf of
each is

1
fyla) = aexp {ay — eV} = 1/—& { /o ey/(l/a)} —o0 <y < oo.

We see that the family of distributions of Y; is a scale family with scale parameter 1/a. Thus,
by Theorem 3.5.6, we can write Y; = éZi, where Z; and Zs are a random sample from f(z|1).

Then

logXy Y1 /)2, _Z

logXo Yo (L/a)Z, Zo
Because the distribution of Z;/Zs does not depend on a, (log X1)/(log X2) is an ancillary
statistic.

Because X1, ..., X, is from a location family, by Theorem 3.5.6, we can write X; = Z;+pu, where

Zi,...,Zy is arandom sample from the standard pdf, f(z), and p is the location parameter. Let

M (X) denote the median calculated from X7, ..., X,. Then M(X) = M(Z)+pand X = Z+p.

Thus, M(X) — X = (M(Z) +p) — (Z 4+ p) = M(Z) — Z. Because M (X) — X is a function of

only Zy,...,Z,, the distribution of M(X) — X does not depend on y; that is, M(X) — X is an

ancillary statistic.

a. The parameter space consists only of the points (6, ) on the graph of the function v = a6?.
This quadratic graph is a line and does not contain a two-dimensional open set.

b. Use the same factorization as in Example 6.2.9 to show (X, S?) is sufficient. E(S?) = af?
and E(X?) = VarX + (EX)? = a#?/n + 0% = (a + n)6? /n. Therefore,

2
E( n XQ—S>:< n )<“+"92)—1a92=0, for all 6.
a+n a a+n n a

Thus g(X, S?) = a_’ianz — 22 has zero expectatlon so (X, S5?) not complete.

The population pmf is f(x|6) = 0(1 —0)71 = [Loelos1=0)2 an exponential family with ¢(z) =
x. Thus, ), X; is a complete, sufficient statistic by Theorems 6.2.10 and 6.2.25. Y. X; —n
negative binomial(n, ).

The distribution of Y =}, X, is Poisson(n\). Now

Zg n)\v —nA

If the expectation exists, this is an analytic function which cannot be identically zero.
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To check if the family of distributions of X is complete, we check if E, g(X) = 0 for all p,
implies that g(X) = 0. For Distribution 1,

E,g(X) =) g()P(X = x) = pg(0) + 3pg(1) + (1 — 4p)g(2).

=0

Note that if g(0) = —3¢(1) and ¢(2) = 0, then the expectation is zero for all p, but g(x) need
not be identically zero. Hence the family is not complete. For Distribution 2 calculate

E, 9(X) = g(0)p + g()p* + g(2)(1 — p— p°) = [9(1) — 9(2)]p* + [9(0) — g(2)]p + 9(2).

This is a polynomial of degree 2 in p. To make it zero for all p each coefficient must be zero.
Thus, g(0) = g(1) = g(2) = 0, so the family of distributions is complete.

The pdfs in b), ¢), and e) are exponential families, so they have complete sufficient statistics
from Theorem 6.2.25. For a), Y = max{X,} is sufficient and
2n o,
f(y):ﬁ?f Lo0<y<#d

For a function g(y),

2n 2ng?n—1

0
Eg(Y) = / 9(y) g y*" 1 dy = 0 for all  implies g(@)eT =0 for all
0

by taking derivatives. This can only be zero if g(f) = 0 for all 6, so Y = max{X;} is complete.
For d), the order statistics are minimal sufficient. This is a location family. Thus, by Example
6.2.18 the range R = X(,) — X(1) is ancillary, and its expectation does not depend on 6. So
this sufficient statistic is not complete.

a. X is sufficient because it is the data. To check completeness, calculate
0 0
Eg(X) = 59(=1) + (1 = 0)9(0) + S9(1).

If g(—1) = g(1) and g(0) = 0, then Eg(X) = 0 for all 8, but g(z) need not be identically 0.
So the family is not complete.

b. |X| is sufficient by Theorem 6.2.6, because f(x|f) depends on x only through the value of
|z|. The distribution of |X| is Bernoulli, because P(|X| =0) =1—6 and P(|X| =1) = 6.
By Example 6.2.22, a binomial family (Bernoulli is a special case) is complete.

c. Yes, f(z|0) = (1 —60)(0/(2(1 — 0)I*| = (1 — §)el*Nosl0/CO=] " the form of an exponential

family.

The sample density is [, 027" = 0"([], z:)"~", so [[, X; is sufficient for 6, not >°, X;.

b. Because [[; f(z:|0) = gne@—1loeiz) oo (T], X;) is complete and sufficient by Theorem
6.2.25. Because [[, X; is a one-to-one function of log ([[; X;), [[; X;i is also a complete
sufficient statistic.

Use Theorem 6.2.13. The ratio

®

f(x|0) _ e_nl(fﬂ(n)/?»zu))(e)
f(Y|9) e_nl(y(n)/2»y(1))(9)

is constant (in fact, one) if and only if z(;) = yu) and ¢,y = Ym). So (X, Xn)) is a
minimal sufficient statistic for 8. From Exercise 6.10, we know that if a function of the sufficient
statistics is ancillary, then the sufficient statistic is not complete. The uniform(, 20) family is
a scale family, with standard pdf f(z) ~ uniform(1,2). So if Z1,...,Z, is a random sample
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from a uniform(1,2) population, then X; = 67;,...,X,, = 67, is a random sample from a
uniform(&,?@) population, and X(l) = 0Z(1) and X(n) = QZ(n) So X(l)/X(n) = Z(l)/Z(n)7 a
statistic whose distribution does not depend on 6. Thus, as in Exercise 6.10, (X (1), X(y,)) is not
complete.

If \=0, EA(X) = h(0). f A =1,
Eh(X) = e 'h(0 i (—.

Let A(0) = 0 and 3702, hfyﬂ) =0, so Eh(X) = 0 but h(z) # 0. (For example, take h(0) = 0,
h(1) =1, h(2) = =2, h(z) =0 for x > 3 .)

Using the fact that (n — 1)s2 = Y, 27 — nz?, for any (u,0?) the ratio in Example 6.2.14 can
be written as

7]0(}("”’02) = exp [:2 (le —Z%) - % (Zx? —ZZI?)] .

f(ylp, o?)

a. Do part b) first showing that _, X2 is a minimal sufficient statistic. Because (3, X;, >, X?)
is not a function of }_; X2, by Definition 6.2.11 (3=, X;,>_; X?) is not minimal.

b. Substituting 02 = p in the above expression yields

x|y, 1 2 2
;< I M; = exp lei—Zyil exp l_Qﬂ (sz —Z%)] :

(¥, p

This is constant as a function of p if and only if >, 27 = Y, y?. Thus, Y, X? is a minimal
sufficient statistic.

c. Substituting 02 = p? in the first expression yields

W_exp[ <sz zy)—;(z—zyﬂ

This is constant as a function of y if and only if >, 2; = > y; and Y, 27 = >, y2. Thus,
(3, X;, >, X?) is a minimal sufficient statistic.

d. The first expression for the ratio is constant a function of y and o? if and only if >, z; =
Sy and 3o 22 =3, y2 Thus, (32, X;, >, X?) is a minimal sufficient statistic.

a. This pdf can be written as

AP\ A Al
o= (5)(5) er (G)or (5-22)
This is an exponential family with ¢;(x) = z and ta(x) = 1/z. By Theorem 6.2.25, the
statistic (>, X;,>,(1/X;)) is a complete sufficient statistic. (X,T") given in the problem

is a one-to-one function of (>, X;,>";(1/X;)). Thus, (X,T) is also a complete sufficient
statistic.

b. This can be accomplished using the methods from Section 4.3 by a straightforward but
messy two-variable transformation U = (X7 + X3)/2 and V = 2)\/T = A\[(1/X1) + (1/X2) —
(2/[X1 + X3])]. This is a two-to-one transformation.
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6.29 Let f; = logistic(e,5;), § =0,1,..., k. From Theorem 6.6.5, the statistic

[T, fi(:) I, fk(l"i)) <H?_1 fi(z@)) ITi-, fk(%)))
H?:l fo(xi) T H?:1 fo(xi) H?:l fO(w(i)) Y H;L:l f0(m(l’)>

is minimal sufficient for the family {fo, f1,...,fx}. As T is a 1 — 1 function of the order
statistics, the order statistics are also minimal sufficient for the family {fo, f1,..., fx}. If F is
a nonparametric family, f; € F, so part (b) of Theorem 6.6.5 can now be directly applied to
show that the order statistics are minimal sufficient for F.

T(x) = (

6.30 a. From Exercise 6.9b, we have that X/, is a minimal sufficient statistic. To check completeness
compute fy, (y), where Y = X (). From Theorem 5.4.4 we have

n—1
Fruly) = Sx(y) (= ()" = 070 [0 = e @7,y g

Now, write E,, g(Y1) = f:o g(y)ne="W=1) dy. If this is zero for all , then f:o g(y)e™™ dy =0
for all v (because ne™* > 0 for all u and does not depend on y). Moreover,

0= % MOO g(y)e ™ dy} = —g(pe ™"

for all u. This implies g(p) = 0 for all p, so X (1 is complete.

b. Basu’s Theorem says that if X(;) is a complete sufficient statistic for u, then X ;) is inde-
pendent of any ancillary statistic. Therefore, we need to show only that S? has distribution
independent of y; that is, S is ancillary. Recognize that f(x|u) is a location family. So we

can write X; = Z; + p, where Zy, ..., Z, is a random sample from f(z|0). Then
1 - = 1 _
5% = X;—X)? = Z; -(Z . Zi — 7).
S - XY = S (Zik ) - (A ) = = (- 2)
Because S? is a function of only Zi,..., Z,, the distribution of S? does not depend on ;

that is, S? is ancillary. Therefore, by Basu’s theorem, S is independent of X(4).

6.31 a. (i) By Exercise 3.28 this is a one-dimensional exponential family with ¢(z) = 2. By Theorem
6.2.25, >, X; is a complete sufficient statistic. X is a one-to-one function of > X,
so X is also a complete sufficient statistic. From Theorem 5.3.1 we know that (n —
1)5%/02 ~ x2_, = gamma((n — 1)/2,2). S? = [0%/(n — 1)][(n — 1)S?/0?], a simple scale
transformation, has a gamma((n —1)/2,202%/(n— 1)) distribution, which does not depend
on u; that is, S2 is ancillary. By Basu’s Theorem, X and S? are independent.

(ii) The independence of X and S? is determined by the joint distribution of (X, S?) for each
value of (u,0?). By part (i), for each value of (i, 02), X and S? are independent.

b.(i) i is a location parameter. By Exercise 6.14, M — X is ancillary. As in part (a) X is a
complete sufficient statistic. By Basu’s Theorem, X and M — X are independent. Because
they are independent, by Theorem 4.5.6 Var M = Var(M — X+ X) = Var(M — X )+ Var X.

(ii) If S? is a sample variance calculated from a normal sample of size N, (N — 1)S2/o? ~
X% _1- Hence, (N — 1)*Var $?/(0%)? = 2(N — 1) and Var S? = 2(¢?)?/(N — 1). Both M
and M — X are asymptotically normal, so, My,...,My and M; — X1,..., My — Xn
are each approximately normal samples if n is reasonable large. Thus, using the above
expression we get the two given expressions where in the straightforward case o? refers
to Var M, and in the swindle case o2 refers to Var(M — X).

() on] e () v,

Divide both sides by E (Yk) to obtain the desired equality.

E(X*)=E (;(Y)k =E
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(ii) If ais fixed, T = )", X; is a complete sufficient statistic for 3 by Theorem 6.2.25. Because
0 is a scale parameter, if Z1, ..., Z, is a random sample from a gamma(«, 1) distribution,
then X(;)/T has the same distribution as (8Z;y)/ (8>_; Zi) = Zwu)/ (3_; Zi), and this
distribution does not depend on 3. Thus, X(;)/T is ancillary, and by Basu’s Theorem, it
is independent of T. We have

_p(fe - X | 1) indep. X part () E(X»)
E(X(i)IT)—E< T T‘T) —TE(T T TE( = =T

Note, this expression is correct for each fixed value of (a,3), regardless whether « is
“known” or not.

6.32 In the Formal Likelihood Principle, take F1 = Es = E. Then the conclusion is Ev(E, z1) =
Ev(E, xz9) if L(0|x1)/L(0|x2) = c. Thus evidence is equal whenever the likelihood functions are
equal, and this follows from Formal Sufficiency and Conditionality.

6.33 a. For all sample points except (2,x3) (but including (1,x7)), T(4,%;) = (4,%;). Hence,

9(T (G, x;)|0)h(G,%5) = 9((5,%;)10)1 = f*((4,%;)[6)-

For (2,x3%) we also have

TR = gL = FOOC = CoAN)
= CQLOK) = SL0) = LROGD) = F(2x)

By the Factorization Theorem, T'(J, X ) is sufficient.
b. Equations 6.3.4 and 6.3.5 follow immediately from the two Principles. Combining them we
have Ev(E1,x7) = Ev(Es, x3), the conclusion of the Formal Likelihood Principle.

c. To prove the Conditionality Principle. Let one experiment be the E* experiment and the
other E;. Then

LOIGx3)) = 1 (Gx0)16) = 3 F506,18) = L (Bly).

Letting (j,%;) and x; play the roles of xi and x5 in the Formal Likelihood Principle we
can conclude Ev(E*, (j,%;)) = Ev(E},x;), the Conditionality Principle. Now consider the
Formal Sufficiency Principle. If T'(X) is sufficient and T'(x) = T'(y), then L(0|x) = CL(8]y),
where C' = h(x)/h(y) and h is the function from the Factorization Theorem. Hence, by the
Formal Likelihood Principle, Ev(FE,x) = Ev(E,y), the Formal Sufficiency Principle.

6.35 Let 1 = success and 0 = failure. The four sample points are {0, 10,110, 111}. From the likelihood
principle, inference about p is only through L(p|x). The values of the likelihood are 1, p, p?,
and p3, and the sample size does not directly influence the inference.

6.37 a. For one observation (X,Y’) we have

1(0) = <§92 log f(X, Y|9)> - E( 2913/) _ 2531/

But, Y ~ exponential(f), and EY = 6. Hence, I(0) = 2/6% for a sample of size one, and
I1(0) = 2n/6? for a sample of size n.

b.(i) The cdf of T is



(i)

(iii)
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where Fby, 2, is an F' random variable with 2n degrees of freedom in the numerator and
denominator. This follows since 2Y;/0 and 2X;0 are all independent exponential(1), or
x3. Differentiating (in t) and simplifying gives the density of T as

fr(t) = ?Ei@? <t2 faz’)n (t2i292)n’

and the second derivative (in 6) of the log density is

thE26°0* -0 2n (. 2
(92(t2 _|_92)2 - 62 (t2/92 + 1)2 ’

2n

and the information in 7" is

1 2
-2k <T2/92+1>

The expected value is

2n

2
2n 1
= = 1-2B| ———
92 92 <F22n,2n + 1)

. 1\ T /°° 1wl @) TMTn+2) 4l
. Otwl(+w> T2 T2nt2)  20n+1)

F22n,2n +1 B F(n)Z
Substituting this above gives the information in 7" as

n
2n+1

)

2n n+1
—1-2—- | =16
[z [ 2(2n+1)} ©)
which is not the answer reported by Joshi and Nabar.
Let W =3, X;and V =}, Y;. In each pair, X; and ¥; are independent, so W and V are
independent. X; ~ exponential(1/6); hence, W ~ gamma(n, 1/60). ¥; ~ exponential(8);
hence, V' ~ gamma(n, ). Use this joint distribution of (W, V') to derive the joint pdf of
(T,U) as

_ 2 2n—1 ufﬁ Uft
f(t,ulf) = [I‘(n)]ztu exp ( ) , u>0, t>0.
is

Now, the information in (T, U)

0? 20T 2V 2nf  2n

The pdf of the sample is f(x,y) = exp [0 (>, z:) — (O, v:) /0] . Hence, (W, V) defined
as in part (ii) is sufficient. (T,U) is a one-to-one function of (W, V'), hence (T, U) is also
sufficient. But, EU? = EWV = (n/6)(nf) = n? does not depend on 6. So E(U? —n?) =0
for all 8, and (T, U) is not complete.

6.39 a. The transformation from Celsius to Fahrenheit is y = 92/5 + 32. Hence,

g(T* (y) —32) ((5)(y) + (:5)(212) — 32)

((5)(92/5 +32) + (5)(212) = 32) = (Bla+50 = T(x).

O] oto| ot

b. T(z) = (.5)z + 50 # (.5)z + 106 = T*(x). Thus, we do not have equivariance.
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Because X,..., X, is from a location scale family, by Theorem 3.5.6, we can write X; =
oZ; + p, where Z1, ..., Z, is a random sample from the standard pdf f(z). Then
Ti(X,, ..., X5) _ Ty (0 Z1+ty ..., 0Zp+10) _ oT\(Z,,...,Zy) _ TW(Zy,....Zy)
TQ(X17...,Xn) T2(021+/1,,...70'Zn+u) UTQ(Zl,...,Zn) T2(217...,Zn).

Because T /T is a function of only Zi,...,Z,, the distribution of T} /T> does not depend
on u or o; that is, T1/T5 is an ancillary statistic.

- R(xy,...,2n) = x(n) — (7). Because a > 0, max{az; + b,...,azx, + b} = ax,) + b and
min{azi+b, ..., ax,+b} = ax)+b. Thus, R(ax1+0b, ..., ax,+b) = (ax)+b)—(ax)+b) =
a(xmy — (1)) = aR(x1,...,2y,). For the sample variance we have

1
S%(ax1 +b,...,ax, +b) = — > ((az; +b) = (az + b))
1
= aQn — Z(a:l —7)? = a®S%*(xy,...,xp).

Thus, S(axy +b,...,ax, +b) = aS(x1,...,x,). Therefore, R and S both satisfy the above
condition, and R/S is ancillary by a).

Measurement equivariance requires that the estimate of p based on y be the same as the
estimate of p based on x; that is, T*(z1 + a,...,z, +a) —a =T*(y) — a = T(x).

. The formal structures for the problem involving X and the problem involving Y are the same.

They both concern a random sample of size n from a normal population and estimation of
the mean of the population. Thus, formal invariance requires that T'(x) = T%*(x) for all x.
Combining this with part (a), the Equivariance Principle requires that T'(z1 +a, ..., x,+a)—
a=T*(z1+4a,...,zn+a)—a=T(z1,...,2,),1e., T(x1+a,...,xn+a) =T(x1,...,2,)+a.

Wz 4a,..zp+a) = > (@i +a)/n =0, x) /n+a=W(r,...,z,) + a, so W(x)

is equivariant. The distribution of (Xi,...,X,) is the same as the distribution of (Z; +
0,...,Z,+0), where Z1,...,Z, are a random sample from f(z — 0) and E Z; = 0. Thus,
EoW =E> ,(Z; +0)/n =0, for all §.

For a location-scale family, if X ~ f(x|6,0?), then Y = g, .(X) ~ f(y|c + a,c?a?). So
for estimating 02, g, .(0?) = c?0%. An estimator of o2 is invariant with respect to G if

W(cxy + ay...,cx, +a) = 2W(xq,...,2,). An estimator of the form kS? is invariant
because
k/’ n n 2
2 _ , _ ,
kES*(cxy+a,...,cxp+a) = — l:zl <(C$Z +a) ;(Cwl + a)/n)
= K zn:((c:p-—ka)—(c:f—ka))Q
n—1 pat ’
= 2 F i(x —1)? = AkS*(x Tn)
n_li:1 4 yereydbin).

To show invariance with respect to Go , use the above argument with ¢ = 1. To show
invariance with respect to Gs, use the above argument with a = 0. ( G2 and Gs are both
subgroups of G;. So invariance with respect to G; implies invariance with respect to G, and
Gs.)

The transformations in G leave the scale parameter unchanged. Thus, g,(c?) = o2. An
estimator of o2 is invariant with respect to this group if

Wz +a,...,20+a) =W(g.(x)) = Ga(W(x)) = W(x1,...,25).
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An estimator of the given form is invariant if, for all @ and (z1, ..., z,),

W(x1 +a,...,2, +a) :¢<x—;—a) s2 :¢(§) 2 =W (x1,...,Tn).

In particular, for a sample point with s = 1 and & = 0, this implies we must have ¢(a) = ¢(0),
for all a; that is, ¢ must be constant. On the other hand, if ¢ is constant, then the estimators
are invariant by part a). So we have invariance if and only if ¢ is constant. Invariance
with respect to G; also requires ¢ to be constant because Gs is a subgroup of G;. Finally,
an estimator of o2 is invariant with respect to Gz if W(cz1,...,cx,) = W (x1,..., 7).
Estimators of the given form are invariant because

W(cxy,y ... cxn) = ¢ (%) 325 =2 (%) 2 =W (xy,. .., xp).



Chapter 7

Point Estimation

7.1 For each value of , the MLE @ is the value of § that maximizes f(x|f). These values are in the
following table.

z 0 1 2 3 4
1

0 1 20r3 3 3

At x =2, f(z]2) = f(x|3) = 1/4 are both maxima, so both § = 2 or § = 3 are MLEs.
7.2 a.

a—1
. - 1 a—1 —wl/ﬁ _ 1 s . —ELZL/B
10 = e = e lnm] e

logL(Blz) = —logT'(a)"” —nalogf + (a—1)log [H a:z] - Zéxl
i=1
OlogL _na " DT
o B B

Set the partial derivative equal to 0 and solve for 3 to obtain § = > xi/(na). To check
that this is a maximum, calculate

0?logL no 2y

na (na)? a 2(na)? _ (na)32 <o.

2 T 32 T 3 T 2 2
08 lp—p B B pmp (i)™ (i) (22 wi)
Because B is the unique point where the derivative is 0 and it is a local maximum, it is a

global maximum. That is, B is the MLE.
b. Now the likelihood function is

n a—1
L(a, flz) = sz] e MiwlP,
i=1
the same as in part (a) except « and 3 are both variables. There is no analytic form for the
MLESs, The values & and 3 that maximize L. One approach to finding & and 8 would be to
numerically maximize the function of two arguments. But it is usually best to do as much
as possible analytically, first, and perhaps reduce the complexity of the numerical problem.
From part (a), for each fixed value of «, the value of § that maximizes L is ), z;/(na).
Substitute this into L. Then we just need to maximize the function of the one variable «
given by

_
F(a)nﬁna

a—1
1 - —Sms [ (Siwi ) (na))
- 4 o H xi e 1 1
L(a)™ (32, @i/ (na)) |J=1 ]

1 n a—1 o
= T o m/ma)™ lnx] o



7-2 Solutions Manual for Statistical Inference

For the given data, n = 14 and ), x; = 323.6. Many computer programs can be used
to maximize this function. From PROC NLIN in SAS we obtain & = 514.219 and, hence,

8= 14(2%1319) = .0450.

7.3 The log function is a strictly monotone increasing function. Therefore, L(6|x) > L(6'|x) if and
only if log L(#|x) > log L(#'|x). So the value 6 that maximizes log L(f|x) is the same as the
value that maximizes L(6]x).

7.5 a. The value Z solves the equation

(1-p)"= H(l —xiz),

i

where 0 < 2 < (max; ;)" !. Let k= greatest integer less than or equal to 1/2. Then from

Example 7.2.9, k must satisfy

k(1 —p)]" > H(k —z;)  and  [(k+1)1-p]" < H(k +1-— ).

Because the right-hand side of the first equation is decreasing in 2, and because k < 1 /% (so
2<1/k) and k+1 > 1/%, k must satisfy the two inequalities. Thus & is the MLE.

b. For p = 1/2, we must solve (%)4 = (1 —202)(1 — 2)(1 — 19z), which can be reduced to the
cubic equation —3802% + 41922 — 40z + 15/16 = 0. The roots are .9998, .0646, and .0381,
leading to candidates of 1, 15, and 26 for k. The first two are less than max; x;. Thus k = 26.

7.6 a. f(x]0) =11, 01’;21[9,00)(xi) =(IL=z) 0" 119,00y (7(1)). Thus, X (1) is a sufficient statistic for
0 by the Factorization Theorem.

b. L(0]x) = 0™ (T[; 2; 2) Ijg,00)(z(1)). 0™ is increasing in §. The second term does not involve 6.
So to maximize L(6]x), we want to make 6 as large as possible. But because of the indicator
function, L(0|x) = 0 if @ > x(1y. Thus, 6 = x(y).

c. EX = fgoo Gz~ dz = 6 logz|,” = co. Thus the method of moments estimator of 6 does not
exist. (This is the Pareto distribution with o =6, 5 = 1.)

77 L(0x) = 1,0 < x; < 1, and L(1|x) = [[;1/(2y/x;), 0 < x; < 1. Thus, the MLE is 0 if

1>T1,1/(2/2;), and the MLE is 1 if 1 < [[, 1/(2/@:).

7.8 a. EX? = Var X + u? = 0%. Therefore X? is an unbiased estimator of o2.

b.

1 P
Lo|x) = ——e /7). logL(o|x) = log(2n)~'/2 —logo — 2%/(207).
V2mo
logL 1 2?
agf - *;+%’:'0:>&X2:&3 =6 =VX2=|X|.
0%logL —32%0% 1

= —, which is negative at 6 = |x|.
do? o6 + o2 & ]
Thus, & = |z| is a local maximum. Because it is the only place where the first derivative is
zero, it is also a global maximum.
c. Because EX = 0 is known, just equate EX? =02 = 1 5™ X2 = X? = 5 = [X].
7.9 This is a uniform(0, #) model. So EX = (0 + ¢)/2 = 0/2. The method of moments estimator
is the solution to the equation /2 = X, that is, § = 2X. Because 6 is a simple function of the
sample mean, its mean and variance are easy to calculate. We have

0?/12  6*

E§:2EX:2EX:2Q:9, and Varf =4Var X =4 .
2 n 3n
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The likelihood function is

1 1
L(0]x) = H 510 o)(z:) = = on —I10,01(% () ) 1[0,00) (% (1))
i=1

where 21y and x(,) are the smallest and largest order statistics. For § > z(,), L = 1/0", a
decreasing function. So for 6 > x(n), L is maximized at 6 = T(n).- L =0 for § < x(y,. So the

overall maximum, the MLE, is 6 = X(n)- The pdf of 6= X(n) is nz"~ Lo, 0 < § 0. This
can be used to calculate

. . 92
" 9 BR2=—"10 and Vard= "
n+1 2

Ef = S L —
n+ (n+2)(n+1)

6 is an unbiased estimator of 0; 0 is a biased estimator. If n is large, the bias is not large
because n/(n + 1) is close to one. But if n is small, the bias is quite large. On the other hand,
Var < Var for all 6. So, if n is large, 0 is probably preferable to 0.

7.10 a. f(x]0) =T, geaf ™ op(2i) = (;Ta) (ILi 20)™ ™" T(—oo 51 (@) Tj0,00) (1)) = L, Blx). B
the Factorization Theorem, (], X4, X(5)) are sufficient.

b. For any fixed a, L(a, B|x) = 0 if 3 < x(,), and L(«, #|x) a decreasing function of 3 if
B = x(ny. Thus, X(,) is the MLE of 3. For the MLE of « calculate

0 0 n
—logL = — |nl —nal 1)1 | =——nl 1 i
50108 %0 ln oga—nalogf+(a—1) ogl?[a:,] S og 8+ ogIZIxZ

Set the derivative equal to zero and use B = X(n) to obtain

-1
n 1

Y= = |[— log X, — logX; .

& nlog X o~ o8 T, X, lnzi:(og (n)— log )]

The second derivative is —n/a? < 0, so this is the MLE.
. X(ny =25.0, log[], X; = 3, log X; = 43.95 = 3 = 25.0, & = 12.59.

711 a.
0—1
fxlo)y = o=t = o (Hu) = L(0x)
i1L—119+911H = 243 loga
75 108 = o5 |nlog Nog | | z:i| = 7 i og ;.

Set the derivative equal to zero and solve for 6 to obtain § = (—+ >, logx;)~!. The second
derivative is —n/6? < 0, so this is the MLE. To calculate the variance of §, note that
Y; = —log X; ~ exponential(1/6), so — >, log X; ~ gamma(n,1/6). Thus 0 = n/T, where
T ~ gamma(n, 1/0). We can either calculate the first and second moments directly, or use
the fact that 6 is inverted gamma (page 51). We have

1 o (1, 4 _ 0" T'(n—1) 0
E* — —4n—1 ot — — .
T I'(n) /0 tt ¢ dt I(n) 61 n—1
n o] n _ 2
Ei _ 0 / 1 L L0t gy 0" T'(n—2) _ 0 7
T2 L'(n) Jo L(n) 672 (n—1)(n-2)
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and thus )

i 0 and Varé:+
n—1 (n—1)°(n—2)

b. Because X ~ beta(6,1), EX = 0/(6 + 1) and the method of moments estimator is the
solution to

6% = 0 as n — .

Ed =

7.12 X, ~ iid Bernoulli(d), 0 < § < 1/2.

a. method of moments:

MLE: In Example 7.2.7, we showed that L(f|x) is increasing for § < T and is decreasing
for 6 > z. Remember that 0 < 6 < 1/2 in this exercise. Therefore, when X < 1/2, X is
the MLE of 6, because X is the overall maximum of L(f|x). When X > 1/2, L(f|x) is an
increasing function of 6 on [0, 1/2] and obtains its maximum at the upper bound of § which
is 1/2. So the MLE is § = min {X,1/2}.

b. The MSE of 6 is MSE() = Var 6 + bias(8)? = (6(1 — 0)/n) + 0> = (1 — 0)/n. There is no
simple formula for MSE(é), but an expression is

MSE(d) = E(@-6)° = Y .(6-0) (Z) 9v(1 — 6)"v

y=0
in/2] , n 2
- y_ ™Yoyl — gyn—v 1_ ™Yoyl — gyn—v
a Z<n ) (y)e (a-orr+ > (2 9) (y)e (=0
y=0 y=[n/2]+1
where Y = Y. X; ~ binomial(n, §) and [n/2] = n/2, if n is even, and [n/2] = (n —1)/2, if

n is odd.

c. Using the notation used in (b), we have
~ _ b (Y 2(n -
MSE(0) = E(X - 0)> =Y (f —9) D)oo

n
y=0

Therefore,

MSE(f) — MSE(f)

Il
S\
~
5]

+
—
| — |
/
S i<
I
N—
|
N

-] oo
)(z-3) Q-

The facts that y/n > 1/2 in the sum and 6 < 1/2 imply that every term in the sum is positive.

Therefore MSE(#) < MSE(6) for every 8 in 0 < 6 < 1/2. (Note: MSE(#) = MSE(f) = 0 at

Il
[
7N
S <

+
DN | =

\

]

>

0=0.)
— 1,—3lei—6] — L1 ,—3%ilzi—0| inimi _ — L
7.13 L(0|x) = [[; se 2 = e 2 , so the MLE minimizes ), [z; — 0] = >, |y — 0],
where (1), ..., Ty, are the order statistics. For z(;) <0 < x(j11),
n J n J

Dolew 0= (0 -2up)+ Y (@@ —0)=2j-n)0 =Y zum+ Y za

i=1 i=1 i=j+1 i=1 i—j+1
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This is a linear function of 6 that decreases for j < n/2 and increases for j > n/2. If n is even,
2j —n = 0 if j = n/2. So the likelihood is constant between x(,, 2y and z((,/2)41), and any
value in this interval is the MLE. Usually the midpoint of this interval is taken as the MLE. If
n is odd, the likelihood is minimized at 6= T((n+1)/2)-

7.15 a. The likelihood is

n/2 T — 2

For fixed A, maximizing with respect to p is equivalent to minimizing the sum in the expo-
nential.

A @-p)? A (/) =) 2@/ =)
dp Z 2, B dp Z x; B Z x; u2’

% % i

Setting this equal to zero is equivalent to setting

R

O\ M
and solving for p yields fi,, = Z. Plugging in this fi,, and maximizing with respect to A
amounts to maximizing an expression of the form A*/2e=*?. Simple calculus yields
(z; — 7)°
2@2.’Ei

« n
)\n—% where b—zi:

Finally,

; 1 1 1 11
DI N R )]

b. This is the same as Exercise 6.27b.
c. This involved algebra can be found in Schwarz and Samanta (1991).

7.17 a. This is a special case of the computation in Exercise 7.2a.
b. Make the transformation

z= (e —1)/z1,w=21 = x1=w,x9=wz+1.
The Jacobean is |w|, and
1
fZ(Z) = /le(w)fX2<wz+ 1)wdw — ﬁe—lm/we—w(l—O—z)/Odw7

where the range of integration is 0 < w < —1/zif 2 < 0, 0 < w < oo if z > 0. Thus,

o) = e [ e 0 it <o
02 fooo we~w1+2)/0 gy, if2>0

Using the fact that [we™"/%dw = —e~"/?(aw + a?), we have

o e(1+z)/29 y—z .
f — 10 o 9z(1+,§)12+ 2 iz <0
Z(z) =€ 1 if >0
(== if z >
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From part (a) we get 6 = 1. From part (b), X5 = 1 implies Z = 0 which, if we use the second
density, gives us 6 = oco.

The posterior distributions are just the normalized likelihood times prior, so of course they
are different.

The usual first two moment equations for X and Y are

_ 1
1
i = EY = - 2 = EY? = 42 2.
y Ky n % Yi oy + Hy
We also need an equation involving p.
1
- E 2y = EXY =Cov(X,Y)+ (EX)(EY) = poxoy + uxpy.

Solving these five equations yields the estimators given. Facts such as

1 2 _ -2 22— ()’ /n i(wi — 2)?
Ly o D= Gl _ Bie=o

n n

are used.

. Two answers are provided. First, use the Miscellanea: For

k
L(0]x) = h(x)c(6) exp (Z wiw)ti(x)) ,

the solutions to the k equations > ", t;(x;) = Eqg (Z?:1 ti(Xj)> =nEgt;(X1),i=1,...,k,
provide the unique MLE for 8. Multiplying out the exponent in the bivariate normal pdf
shows it has this exponential family form with & = 5 and ¢1(z,y) = =, ta(x,y) =y, ts(z,y) =

22, t4(z,y) = y? and t5(r,y) = zy. Setting up the method of moment equations, we have

o= omux, St = (i +0%),
i i
Zyi

inyi = Z[COV(X7Y)+MXMY] = n(poxoy + puxpy).

npy, Yy =l + o),

K2

These are the same equations as in part (a) if you divide each one by n. So the MLEs are
the same as the method of moment estimators in part (a).
For the second answer, use the hint in the book to write

LOx,y) = L(0]x)L(0,x]y)

= (2m0%) Zexp {—%‘12 Z (@, — ,u,X)Z}
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We know that z and 6% = ,(2; — #)?/n maximizes A; the question is whether given oy,
py, and p, does Z, 6% maximize B? Let us first fix 0% and look for jix, that maximizes B.
We have

OlogB poy POY et
o <§ [(yz py) o (z; ux)D 0

- ox
i

poy .
= Y (i—py) = ;E(xi*ux)-

Similarly do the same procedure for L(6|y)L (6, y|x) This implies ) . (z;—pux) = 2% 3. (yi—

Ty

fry ). The solutions fix and fiy therefore must satisfy both equations. If » (y; — ) # O
Yoi(zi — fix) # 0, we will get p=1/p, so we need ), (y; — fty) = 0 and Zl(ffz fx) =

Q@

This implies iix =z and iy = §. (M < 0. Therefore it is maximum). To get 63 take
810 B g A o set
2 S i [ ) | 2 o
ox

= Z<xi—ﬂx><yi—ﬂy> = BN (i i)

Similarly, >, (zi — fix)(yi — fiy) = 5 Z (yi — fiy)?. Thus 6% and 6% must satisfy the
above two equations with fix = X, jiy = Y. This implies

o g »x—;fz Ay — )2
48 DERIIELS PUREPS Ll i B e 1

Therefore, 6% = az (z; — )2, 6% = a)_,(yi — y)* where a is a constant. Combining the
knowledge that (z,1 Y. (z;, — #)?) = (fix, 6% ) maximizes A, we conclude that a = 1/n.
Lastly, we find p, the MLE of p. Write

log L(Z,7,6%, 6%, p|%,y)
1 Z (‘Tz - 5)2 _ 20(% - :f)(yl —7) " (yi - ?j)Q
2(1-p?) = 0% Gx,0y 62

- X0y
A
because 6% = 2 3. (z; — z)? and 6% = 1 3" .(y; — ¥)?. Now
n p
log L = —= log(1 — p?) —
Og 2 Og( p ) 17p2 + 1 p2
and
Olog L n np A(1—p?) 4+ 24p% . 0
O  1—p2 (1-p?)? (1-p?)? '
This implies
At Ap—np—np® )
=0 = A =np(l+p
=) (1+ %) =np(1 +p*)
A I (5 -0y —0)
- P= n o n ; 5’ngy
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7.19 a.

1
L(Aly) H W“D( 55, — Bxi) )
= (2n0%) "2 exp <_%i2 Z (y: —2Bz5y; + 52%2)>

n B2y, x? 1 B
= (2m0?) /2e><p<—2§2z exp —@ny—kﬁ ZmzyL :

By Theorem 6.1.2, (3, Y%, >, 2;Y;) is a sufficient statistic for (8,0?).
b.

n n 1 3 32
logL(B,0%|y) = —5108(2@ - §log02 T 952 ny + 52 Zﬂciyi - ﬁzxf

For a fixed value of o2,

OlogL se A i Tili
Og _0—22 TilYi — 2237: B:Zx:;/

Also,

OlogL 1 9
so it is a maximum. Because /3 does not depend on ¢?, it is the MLE. And B is unbiased

because
_ > BY; _ > i T BT _5

c. B= > aiYi, where a; = z;/ 3, % are constants. By Corollary 4.6.10, £ is normally dis-
tributed with mean (3, and

2
A z; > a7 o?
Vaﬂ:Z“””FZ(;g) ST S
1 i i

=
@

7.20 a.

Sy N
TR PN EP

3

3. Y 1 o no? o
V 2 = V Y7-, = ? = = —.
" (Zi w) T e 2V S T e
Because Y, 27 —nz? =Y, (z; — 2)> > 0, Y, 27 > nz?. Hence,

R 2 2 Y
Var § = 7 §U—Var(21 l).

(In fact, 3 is BLUE (Best Linear Unbiased Estimator of 3), as discussed in Section 11.3.2.)
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7.21 a.

1Y 1 EY;, 1 ~fa

Zg

1 Y; 1 Vary;, o2 1
D
Using Example 4.7.8 with a; = 1/2? we obtain
PR s

Thus,

2 2
A o o 1 1 Y:
Var 8 = < — — = Var— —.
h lef_nzzzzx? nzi:xi
Because g(u) = 1/u? is convex, using Jensen’s Inequality we have
1 1 1
<z =
2" n ; z?

Thus

)

.Y o?  o? 1 1 Y;
Var (&) = T < 2N - S
ar(Zixi nz? — n? Zz:m? arnzi:xi
7.22 a.

— _ \/ﬁ _ (*_92 2 1 _(O_1\2 2
,0) = 0w(0) = n(Z—0)°/(20%) _—_ ,—(0—p)7/27"
£(2.60) = faloyr(0) = L =t

b. Factor the exponent in part (a) as

1
272

(6 1) = — (0 — 6(x))°

202

1
B 724+ 02/n

-n ,_

2 - 2
ﬁ(ﬂf —0) (@ — )7,
where §(x) = (7224 (02 /n)pu) /(7 + 0% /n) and v = (0272/n)/(7+02/n). Let n(a,b) denote
the pdf of a normal distribution with mean a and variance b. The above factorization shows
that
f(x,0) =n(0,%/n) x n(p, 7?) = n(5(x),v?) x n(u, 7> + o2 /n),
where the marginal distribution of X is n(u, 72 +¢2/n) and the posterior distribution of 6|x
is n(d(x), v?). This also completes part (c).
7.23 Let t = s? and 6 = o2, Because (n — 1)5%/0? ~ x2_,, we have

[(n—1)/2]-1
f(t|9> — 1 n- 1t e—(n—l)t/29n — 1.
T(n=1)/2)20 D72 \ @ g

With 7(6) as given, we have (ignoring terms that do not depend on 6)

1 (== 1)t/20 1 1 1/66

N 1 ((n—=1)/2)+a+1 . 71 (TL _ 1)t N l
0 R BN 3lf
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which we recognize as the kernel of an inverted gamma pdf, IG(a,b), with

—1 -t 177t
a:n2 + and b{(n2)+ﬁ} .

Direct calculation shows that the mean of an IG(a,b) is 1/((a — 1)b), so

—1 1 —1.2 1
SR I

E(0|t) = .
1) lpa-1 2l 4a-1

This is a Bayes estimator of o2.
7.24 For n observations, Y = . X; ~ Poisson(n\).

a. The marginal pmf of Y is

— * (nA)Ye ™ 1 a=1,-X/p
m(y) = /O v TR
ny o D S nY 6 yte
_ v Avto)-1lo~5mmdy, = — T ( ) .
y!F(a)ﬂo‘/o ‘ Jr@pe @ g
Thus,

(y+e)—1,~ 575D
T(Aly) = FlN)7(Y) = A ‘ + ~ gamima <y+04, ’ ) .

m(y) I(y+a) (%)Ha np+1
b.
B = G+a)tr = oyt —(ad)
2
Var(Ay) = (y—&—oz)(n;_H)Z.

7.25 a. We will use the results and notation from part (b) to do this special case. From part (b),
the X;s are independent and each X; has marginal pdf
(oo}
1

o0
mwm&#h/‘ﬂwm%mmﬁw:/ L 020 0= /27 g,
—o0

oo 2TWOT

Complete the square in 8 to write the sum of the two exponents as

272 po? 2
O-[F=#]) e
- 9 o272 o 2(02 +72)°

02472

Only the first term involves 6; call it —A(8). Also, e=4(%) is the kernel of a normal pdf. Thus,

T —A®) do = Vo7
(& ™
—00 \/0'2“!‘7'27

and the marginal pdf is

1 oT (v — p)?
2 2 /o

= 2 —

m(zlp, %) 2ror " o2 + 72 P { 2(02 4+ 12)

an(p, 0?4+ 72) pdf.
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b. For one observation of X and € the joint pdf is
h(z,0|T) = f(x|0)m(0]7),
and the marginal pdf of X is

m(x|T) = /jo h(z,0|7)do

Thus, the joint pdf of X = (X3,...,X,,) and 8 = (01,...,0,) is

h(x,0|7) = Hh x;, 0;]7),

and the marginal pdf of X is

mx|r) = / / Hh(xi,ﬁ,;h) déy ...do
_ / {/ h(xr, 01 |7) dﬁl}Hhx“MT)ng . df.
> =2
The df; integral is just m(z1|7), and this is not a function of 05, ..., 0,. So, m(z1|7) can be

pulled out of the integrals. Doing each integral in turn yields the marginal pdf
m(x|r) = H m(x;|7).

Because this marginal pdf factors, this shows that marginally Xi,..., X,, are independent,
and they each have the same marginal distribution, m(z|7).
7.26 First write o
Fla1, .. x0]0)7(0) o e~ 2oz @) 10/a
where the exponent can be written

O 20— 5200) + 5 (32— 82.)

with 01 (x) =2+ Z—z, where we use the “4” if § > 0 and the “—” if § < 0. Thus, the posterior
mean is

n

- 2
22 @O ==

ffooo fe~ 2oz (0—0x (x))? do
[ T g

E(0]x) =

Now use the facts that for constants a and b,

0 0
/ e 50 g = / e 50 gy — 1/ 1,
0 o 2a
/ te= 5= g = / (t —b)e 500" gy +/ pe-3=07 g — Lo—ger g [T
0 0 0 a 2a
0
/ tem 800 g = —le_%b2 + b4/ 1,
oo a 2a

to get
Y % (0—(x) +d04+(x)) + o (6 70 (0 _pmgir st (x))

o2
2\ 5

E(0]x) =
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7.27 a. The log likelihood is

b.

7.29 a.

log L =Y —f7; +y; log(B7:) — 7; + x: log(7;) — logy;! — log ;!
i=1

and differentiation gives

a n le Zn y
—logl = T+ = p==E=l=
op ; b B Dy Ti
9 ;3 z+y
—~ logl, = — e S R = 1)
or, g ﬂ+ﬁTj +Tj =Y s
— 1+ '
j=1
cos . . A N ity
Combining these expressions yields 3 = 3_7_, y;/ > i_, x; and 7; = wiﬂ? )

The stationary point of the EM algorithm will satisfy

Z:‘L:l Yi

b= LY iy T
. 71+
T = =
B+1
o= LW
B+1

The second equation yields 71 = y; /3, and substituting this into the first equation yields
8 = 2?22 yj/Z?:z xj. Summing over j in the third equation, and substituting § =
> i—0Yi/ i shows us that 377 o 75 = 37, x;, and plugging this into the first equa-
tion gives the desired expression for §. The other two equations in (7.2.16) are obviously
satisfied.

. The expression for B was derived in part (b), as were the expressions for 7;.

The joint density is the product of the individual densities.

. The log likelihood is

log L = Z —mpBt; + y; log(mpBr;) + z; log(;) + logm! — log y;! — log ;!

i=1
and
9 D i1 Vi
—loglL = 0 = g i=1
85 & 21:1 mT;
0 x;+y
—loglL = 0 = = 9
or; 8 T mp

Since o5 =1, 8= Y7, ya/m = Y00, yi/ Siy @i Also, 355 = 32 (y; + ;) = 1, which
implies that mB = . (y; + ;) and 75 = (z; +y;)/ >, (yi + T4).

. In the likelihood function we can ignore the factorial terms, and the expected complete-data

likelihood is obtained by on the r*" iteration by replacing z; with E(Xl\%l(r)) = mﬂ(r).

Substituting this into the MLEs of part (b) gives the EM sequence.
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The MLEs from the full data set are B = 0.0008413892 and

7 = (0.06337310,0.06374873,0.06689681,0.04981487,0.04604075, 0.04883109,
0.07072460, 0.01776164, 0.03416388, 0.01695673, 0.02098127,0.01878119,
0.05621836,0.09818091, 0.09945087, 0.05267677, 0.08896918, 0.08642925).

The MLEs for the incomplete data were computed using R, where we take m = > x;. The
R code is

#mles on the incomplete data#
xdatam<-c(3560,3739,2784,2571,2729,3952,993,1908,948,1172,
1047,3138,5485,5554,2943,4969,4828)
ydata<-c(3,4,1,1,3,1,2,0,2,0,1,3,5,4,6,2,5,4)
xdata<-c(mean(xdatam) ,xdatam); for (j in 1:500) {
xdata<-c(sum(xdata)*tau[l] ,xdatam) beta<-sum(ydata)/sum(xdata)
tau<-c((xdatatydata)/(sum(xdata)+sum(ydata))) } beta tau

The MLEs from the incomplete data set are ,3 = 0.0008415534 and

7 = (0.06319044,0.06376116,0.06690986, 0.04982459, 0.04604973, 0.04884062,
0.07073839, 0.01776510, 0.03417054, 0.01696004, 0.02098536, 0.01878485,
0.05622933,0.09820005, 0.09947027, 0.05268704, 0.08898653, 0.08644610).

7.31 a. By direct substitution we can write
log L(6ly) = E [log L(6ly, X) 6, y| — E [log k(X[6, )| 0, y] .

The next iterate, 6(r+1) is obtained by maximizing the expected complete-data log likelihood,
so for any 0, E {log L(QA(”l)y, X)‘ é(r),y} >E [log L0y, X)| é(r),y}

b. Write
EmwmmeM=/®u@mwmwwmwws/bw@mwmw@mww

from the hint. Hence E [log k(X[ y)‘ o), y} <E [log k(X0 y)’ o), y}, and so the

entire right hand side in part (a) is decreasing.

2
7.33 Substitute o = 8 = /n/4 into MSE(pp) = “2U=p)_ ( ok ) and simplify to obtain

(atBin) at+Btn P
MSE(pp) = 4(\/ﬁn_|_ n)2’
independent of p, as desired.
7.35 a.
9 (9(x)) = d(zi+a,...,zn+a)
St f e ta—tdt [T (y+a) I fz —y)dy (=t—a)
T TG ra—nd T -y dy T

= a+0,(x) =g (p(x)).
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b.
1 —1%(x,—1)? _ 1 —In(@—t)? _—1(n—1)s>
Hf(xi—t):we 1Si(e,—)? _ G ) g3 (n=1)s*
SO
o —Ln(z—t)2 _
5 (x) = (Vn/V2r) [7 te 2@ dr T_
U V) [Z e a1
c.
1 1 1 1
Hf(xi_t):HI(t—2§$iSt+2) ZI(x(n)—QSth(1)+2),
SO
{L’(l)Jrl/Q
Op(x) = Joiys1o Lt _ Tt Tm
P fz(1)+1/2ldt 9 :
JL’(,L)—&-l/Q

7.37 To find a best unbiased estimator of , first find a complete sufficient statistic. The joint pdf is

0= (55) THomted = (35) Tommasie

By the Factorization Theorem, max; | X;| is a sufficient statistic. To check that it is a complete
sufficient statistic, let Y = max;|X;|. Note that the pdf of Y is fy(y) = ny"~1/6", 0 < y < 6.
Suppose g(y) is a function such that

6 nyn—l
Eg(Y)= / o g(y)dy =0, for all 6.
0

Taking derivatives shows that 6" ~1g(0) = 0, for all . So g(0) = 0, for all §, and Y = max;|X;|
is a complete sufficient statistic. Now

6 n—1
ny n n—+1
EY = dy = 0 = E Y ) =0.
/Oy on Y n+1 < n )

Therefore ”Tﬂmaxi|Xi| is a best unbiased estimator for € because it is a function of a complete
sufficient statistic. (Note that (X(l), X (n)) is not a minimal sufficient statistic (recall Exercise
5.36). It is for 0 < X; < 20, —20 < X; < 0, 40 < X; < 60, etc., but not when the range is

symmetric about zero. Then max;|X;| is minimal sufficient.)

7.38 Use Corollary 7.3.15.

a.

9 _ 9 o1 _ 9 _ |
%bgL(H\x) = aglOgHQxi = agzi:[logﬁ—&-(ﬁ 1) logz;)

Z [; + logxi] = -n l— Z loixi—;] .

%

Thus, — )", log X;/n is the UMVUE of 1/6 and attains the Cramér-Rao bound.
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7] logf .,
FTR ¥

1 n nx
= Z(Glog@ - 1) ez = eloge “o-1 e

- 5wl

Thus, X is the UMVUE of 991 ﬁ and attains the Cramér-Rao lower bound.

Note: We claim that if 8 7 log L(0|X) = a(0)[W(X) — 7(0)], then EW(X) = 7(6), because
under the condition of the Cramér-Rao Theorem, E % log L(A|x) = 0. To be rigorous, we
need to check the “interchange differentiation and integration“ condition. Both (a) and (b)
are exponential families, and this condition is satisfied for all exponential families.

0 —logL(0|x)

13}
50 = 3 Z [loglogf — log(8—1) + z;logf]

7.39
Eo {592 logf(X|9)} = E [59 (;elogf(Xf))ﬂ

o (HIxO\] _ L (Efxe) (&0
90\ f(X]0) ) F(X[0) '

Now consider the first term:

92 2
2 rXe] /i B i/f) .
Ey e | 892f(x|0) dx = 7 | 20 f(x|0) dx (assumption)
= dEa[a logf<X|9>} = 0, (7.3.8)
00
and the identity is proved.
7.40
L LOx) = 94 [[rra-pt— = me-lo + (1 — z;) log(1 — p)
80% _3pgip p —apizgp i) 108 p
B Z{xl_(lzl)] _ nZ n—-nt _ n - p)
p o 1-p p 1-p pi—p) "

i

By Corollary 7.3.15, X is the UMVUE of p and attains the Cramér-Rao lower bound. Alter-
natively, we could calculate

—nEy (;02 10gf(X9)>

= e (Dotos[p - Y]) = (o Dxlom (1 - X) g1 - )

- () - ()
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Then using 7(0) = p and 7/(0) = 1,

™' (0) __ v _p(-p) _ox

—nEg (Zslogf(X|0))  n/p(1—p) n

We know that EX = p. Thus, X attains the Cramér-Rao bound.
741 a. E()C, a0 X) =, aEX; =), aip = ,uz‘ a; = j. Hence the estimator is unbiased.

b. Var (3", a,X;) = > ,aiVar X; = >, a?0? = 6% ), a?. Therefore, we need to minimize ), a?,
subject to the constraint ) . a; = 1. Add and subtract the mean of the a;, 1/n, to get

2=l K‘i) +H2=2(ai_;)2+i,

%

because the cross-term is zero. Hence, >, a? is minimized by choosing a; = 1/n for all i.

Thus, >, (1/n)X; = X has the minimum variance among all linear unbiased estimators.
7.43 a. This one is real hard - it was taken from an American Statistician article, but the proof is

not there. A cryptic version of the proof is in Tukey (Approximate Weights, Ann. Math.

Statist. 1948, 91-92); here is a more detailed version.

Let ¢; = ¢f (1 + At;) with 0 < A < 1 and [t;] < 1. Recall that ¢f = (1/07)/3;(1/0%) and

VarW* =1/37,(1/07). Then

aW; o 1 52
(Z %) ; (quj)gz(h ’

?

1 *2
— YIESTS) 22(] (1+ Xt;)%0

1
D25 a5 (1 + Aty)]?
using the definition of ¢;. Now write
D oar(L+x)" = 1420 ity + XY q5t) = [L+ A g5t ]+ 3 Z%tz O ait)?);
i J J J J
where we used the fact that > ;4 = 1. Now since

qu (14 Atj) 1+/\qu ,

1+

/\2[23‘ Qj@ - (Zj thj)2]
[1 + )\Z] qjtj]2
N[ = (35 4it5)°]
[1 +A le qjtj]2 ’

qiWi _ 1
Var(zjqj) )
< 1
= 5,0/

since ) ¢;t7 < 1. Now let T' = )~ ¢;t;, and

aiWi 1 A1 —T7]
(z qg) =5,/ [” L+ XTT? ]

1+
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and the right hand side is maximized at T = —\, with maximizing value

@ Vs ! A ESp\v ) VAR
Var(Ej%) = Zj(l/af-) [1+ [1— 222 } = VarW e

Bloch and Moses (1988) define A as the solution to

1+ A
bm X bmin = T
ax/ 11—
where b;/b; are the ratio of the normalized weights which, in the present notation, is
bi/bj = (14 M) /(1 + Xt;).

The right hand side is maximized by taking ¢; as large as possible and t; as small as possible,
and setting ¢; = 1 and ¢t; = —1 (the extremes) yields the Bloch and Moses (1988) solution.

b.
1/k 2
T AT R R )
(1/0?) /(3,1/5?) i
Thus,

012nax 2 U?nin 2
bmaX:T 1/0]- and brnin = ? 1/O'j

J J

and B = bmax/bmin = 02y /0, Solving B = (14 A)/(1 — A) yields A = (B —1)/(B + 1).
Substituting this into Tukey’s inequality yields
VarW < (B + 1)2 _ ((O-IQHax/UIZnin) + 1)2

VarW* — 4B 4(020/020)

7.44 Y, X; is a complete sufficient statistic for § when X; ~ n(0,1). X* — 1/n is a function of
>, X;. Therefore, by Theorem 7.3.23, X? — 1/n is the unique best unbiased estimator of its
expectation.

—o 1 S - 1 1 1
E <X2—> =Var X + (EX)> -~ =~ + 0% - — =062
n n o n n
Therefore, X2 — 1/n is the UMVUE of §2. We will calculate
Var (X?—1/n) = Var(X?) = E(X*) — [E(X?)]?, where X ~n(,1/n),

but first we derive some general formulas that will also be useful in later exercises. Let Y ~
n(6,0?). Then here are formulas for EY* and Var Y?2.

EY* = EY3(Y -60+0)] = EY3Y -0)+EY?0 = EY3Y —0)+60EY>.
EY?(Y-0) = o’E(3Y?) = 0%3(c°+0%) = 30t 4 360202 (Stein’s Lemma)
OEY® = 0(300°+06%) = 30%°0%+6 (Example 3.6.6)
VarY? = 30 +660%02+6* - (62 +6%)? = 20 +46%%
Thus,
Var (X2 — 1> = Var X% = 2% Jr4192l > iﬁ
n n n n
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To calculate the Cramér-Rao lower bound, we have

&*logf(X10) _ 0 L (x-0)2)2
E@(ae) - EG(aezlogme )
= 5 (2 fogem 12— Lix—o2]) = m(Zx-0) = -1
A G 2 - 7\ o -

and 7(0) = 62, [7'(0))? = (20)% = 462 so the Cramér-Rao Lower Bound for estimating 6? is

0
—nEy (éd—;zlogf(XW)) n

Thus, the UMVUE of 62 does not attain the Cramér-Rao bound. (However, the ratio of the
variance and the lower bound — 1 as n — c0.)

7.45 a. Because E S? = 02, bias(aS?) = E(aS?) — 02 = (a — 1)02. Hence,
MSE(aS?) = Var(aS?) 4 bias(aS?)? = a*Var(S?) + (a — 1)%c*.

b. There were two typos in early printings; k = E[X — u]*/o* and

Var(S?) = % </<; - 3) ol

n—1

See Exercise 5.8b for the proof.

c. There was a typo in early printings; under normality x = 3. Under normality we have

R =

E[X —yJ* [X—u
1 =E
g g

4
] =EZ4,

where Z ~ 1(0,1). Now, using Lemma 3.6.5 with g(z) = 2% we have
k=EZ*=Eg(2)Z =1E(32%) = 3E Z* = 3.

To minimize MSE(S?) in general, write Var(S?) = Bo?. Then minimizing MSE(S?) is
equivalent to minimizing a?B + (a — 1)?. Set the derivative of this equal to 0 (B is not a
function of a) to obtain the minimizing value of a is 1/(B + 1). Using the expression in part
(b), under normality the minimizing value of a is

1 1 n—1

B+1:;<3_L7;13)+17n+1'

d. There was a typo in early printings; the minimizing a is

n—1
(7’L+ 1) + (k—3)(n—1) °

a =

To obtain this simply calculate 1/(B + 1) with (from part (b))

B:1<n—n3>.
n n—1
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Using the expression for a in part (d), if x = 3 the second term in the denominator is
zero and a = (n — 1)/(n + 1), the normal result from part (c). If x < 3, the second term
in the denominator is negative. Because we are dividing by a smaller value, we have a >
(n—1)/(n+1). Because Var(S?) = Bo*, B > 0, and, hence, a = 1/(B +1) < 1. Similarly, if
k > 3, the second term in the denominator is positive. Because we are dividing by a larger
value, we have a < (n —1)/(n + 1).

For the uniform(#, 26) distribution we have E X = (204 6)/2 = 36/2. So we solve 30/2 = X
for 0 to obtain the method of moments estimator § = 2X /3.

. Let @(q),...,x(,) denote the observed order statistics. Then, the likelihood function is

1
L(0]x) = 971[%")/2@(1)](0)'

Because 1/0" is decreasing, this is maximized at § = T(y)/2. So 0= X(n)/2 is the MLE. Use
the pdf of X, to calculate E X,y = Q:lel@. SoEf = 321%9, and if k= (2n+2)/(2n + 1),
Ekd = 0.

. From Exercise 6.23, a minimal sufficient statistic for 6 is (X(1y, X(5))- 6 is not a function

of this minimal sufficient statistic. So by the Rao-Blackwell Theorem, E(é\X (1) X(n)) is an
unbiased estimator of @ (6 is unbiased) with smaller variance than 6. The MLE is a function
of (X(1), X(n)), s0 it can not be improved with the Rao-Blackwell Theorem.

6 =2(1.16)/3 = .7733 and 6 = 1.33/2 = .6650.

747 X; ~n(r,0%), so X ~n(r,0?/n) and EX? = 7% 4+ 062 /n. Thus E[(7X? — 70?/n)] = 7r? is
best unbiased because X is a complete sufficient statistic. If o2 is unknown replace it with s
and the conclusion still holds.

7.48 a.

7.49 a.

The Cramér-Rao Lower Bound for unbiased estimates of p is

[%P]Q 1 1 p(1—p)

_pREd2 X X\ — B ’
nE4ylogL(p| X) —nE{%log[p (1-p)* ]} _nE{_p%_g_;g} n

because EX = p. The MLE of pis p = ), X;/n, with Ep = p and Varp = p(1 — p)/n. Thus
p attains the CRLB and is the best unbiased estimator of p.

. By independence, E(X1X>X3X4) = [[, EX; = p?, so the estimator is unbiased. Because

>-; Xiis a complete sufficient statistic, Theorems 7.3.17 and 7.3.23 imply that E(X; X, X35X,|
>, X;) is the best unbiased estimator of p*. Evaluating this yields

E <X1X2X3X4

ZX’_ " P(X,=Xo= X3= Xu4= 1’2?:5 Xi=t—4)
i l P(>, Xi=1)

Pt -p" <n - 4> /<n)
(?)pt(l _ p)n—t t—4 ¢ )
for t > 4. For t < 4 one of the X;s must be zero, so the estimator is E(X1 X X3X4| >, X; =

t) =0.
From Theorem 5.5.9, Y = X1y has pdf

! 1 _ n—1
Friy) = ——<e v 11— y/*)} = %efny/x_

Thus Y ~ exponential(A/n) so EY = A\/n and nY is an unbiased estimator of A.
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. Because fx(z) is in the exponential family, >, X; is a complete sufficient statistic and

E (nX )|, Xi) is the best unbiased estimator of \. Because E(}_; X;) = n\, we must
have E (nX(1)| >, Xi) = >, Xi/n by completeness. Of course, any function of ), X; that
is an unbiased estimator of A is the best unbiased estimator of A. Thus, we know directly
that because E(} ", X;) = n\, >, X;/n is the best unbiased estimator of A.

. From part (a), A = 601.2 and from part (b) A = 128.8. Maybe the exponential model is not

a good assumption.

. E(@X +(1—a)eS) =aEX + (1 —a)E(cS) = af + (1 —a)d = 6. So aX + (1 — a)cS is an

unbiased estimator of 6.

. Because X and S? are independent for this normal model, Var(aX +(1—a)cS) = a?V; +(1—

a)?Vy, where Vi = VarX = 0%/n and Vo = Var(cS) = 2E S? — 62 = 262 — 6% = (¢? — 1)§%.
Use calculus to show that this quadratic function of ¢ is minimized at
Ve (e ()

Vi+Ve  ((A/n)+ =102 ((1/n) +—1)

a

. Use the factorization in Example 6.2.9, with the special values u = 6 and 02 = 62, to show

that (X, 5?) is sufficient. E(X —¢S) =6 — 60 = 0, for all §. So X — ¢S is a nonzero function
of (X, S?) whose expected value is always zero. Thus (X, S?) is not complete.

. Straightforward calculation gives:

E[0—(a; X + ach)]2 = ajVar X + a3c*Var S + 0*(a; + az — 1)

Because Var X = 0%/n and Var S = E $? — (E 5)% = 62 (62*1), we have

E[0— (0, X + anSﬂ2 = 0? [a%/n +a3(® —1)+ (ay +az — 1)2] )

and we only need minimize the expression in square brackets, which is independent of 6.
Differentiating yields as = [(n + 1)c? — n] “landa =1-— [(n+1)c? —n] -

. The estimator T* has minimum MSE over a class of estimators that contain those in Exercise

7.50.

. Because 6 > 0, restricting 7" > 0 will improve the MSE.
d. No. It does not fit the definition of either one.

. Because the Poisson family is an exponential family with t(z) = z, >, X; is a complete

sufficient statistic. Any function of ), X; that is an unbiased estimator of A is the unique
best unbiased estimator of A. Because X is a function of ), X; and EX = A, X is the best
unbiased estimator of A.

. 52 is an unbiased estimator of the population variance, that is, E.S? = X. X is a one-to-one

function of 3°, X;. So X is also a complete sufficient statistic. Thus, E(S?|X) is an unbiased
estimator of A and, by Theorem 7.3.23, it is also the unique best unbiased estimator of .
Therefore E(S%|X) = X. Then we have

Var 5% = Var (E(5%| X)) + E Var(S?/X) = Var X + E Var(5%X),

so Var $2 > Var X.

. We formulate a general theorem. Let T'(X') be a complete sufficient statistic, and let 7(X) be

any statistic other than T'(X) such that ET(X) = ET'(X). Then E[T"(X)|T(X)] =T(X)
and VarT'(X) > VarT(X).
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Let a be a constant and suppose Covy, (W, U) > 0. Then

Varg, (W + aU) = Varg, W + a*Varg,U + 2aCovg, (W, U).

Choose a € (—QCOVQO (W, U)/VargoU, 0). Then Varg, (W + aU) < Varg, W, so W cannot be
best unbiased.

All three parts can be solved by this general method. Suppose X ~ f(z|0) = c¢(0)m(z), a < x <
6. Then 1/¢(8) = ff m(z) dr, and the cdf of X is F(z) = ¢(0)/c(x),a < x < 0. Let Y = X(,,) be
the largest order statistic. Arguing as in Example 6.2.23 we see that Y is a complete sufficient
statistic. Thus, any function T(Y") that is an unbiased estimator of h(#) is the best unbiased
estimator of h(#). By Theorem 5.4.4 the pdf of Y is g(y|0) = nm(y)c(6)"/c(y)" ™1, a < y < 6.
Consider the equations

0 0
/ fzl6)dr=1  and / T(y)g(410) dy = h(6),

which are equivalent to
0 0
1 T(y)nm(y) h(0)
m(x)der = — and / dy = .

[ mtaras = . et YT o
Differentiating both sides of these two equations with respect to 6 and using the Fundamental
Theorem of Calculus yields

() T(O)nm(0)  c(0)"h'(0) — h(0)nc(0)" 1 ()
m() = 0 and O o) )

Change 6s to ys and solve these two equations for T'(y) to get the best unbiased estimator of
h() is
W (y)
T(y) = hly) + ————.
W= i )ety)
For h() = 67, h'(0) = ro™— 1.
a. For this pdf, m(z) =1 and ¢(8) = 1/6. Hence

r—1
r Ty n+r .
Ty)=y" + = Y
) n(f) ~

b. If 6 is the lower endpoint of the support, the smallest order statistic Y = X() is a complete
sufficient statistic. Arguing as above yields the best unbiased estimator of h(8) is

' (y)
T(y) = h(y) — ————.
W =R ony)ety)
For this pdf, m(z) = e~ and ¢(#) = ¢’. Hence
r—1 r—1
Ty Ty
Ty) = ne-Ye¥ n
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7.56 Because T is sufficient, ¢(T") = E[h(X7, ..., X,)|T] is a function only of T. That is, ¢(T") is an
estimator. If Eh(X4,...,X,) = 7(0), then

En(Xy, -+, X,) =E[E(h(X,,....X,)|T)] =7(0),

so ¢(T) is an unbiased estimator of 7(#). By Theorem 7.3.23, ¢(T) is the best unbiased estimator
of 7(6).

7.57 a. T is a Bernoulli random variable. Hence,

EpT = Pp(T = 1) = Pp (Zn: X > Xn+1> = h(p)

i=1

i=1
estimator of h(p). We have

oo

n+1
> -]
=1

b. 27.”1 X, is a complete sufficient statistic for 8, so E (T ‘Z::rll XZ-> is the best unbiased

n n+1
P(ZXi>Xn+1 ZXz:y>
lzl 7:—&:-11 n+1
P (ZX > Xopn, Y X = y> /P <ZX =y> .
=1 =1 =1

The denominator equals (";1)1)?/(1 — p)"" 1Y If y = 0 the numerator is

n n+1
P <2Xi > Xpi1, in = o) =0.
=1 =1

If y > 0 the numerator is

n n+1 n n+1
P (ZXl > Xn+1,ZXi = y,Xn+1 = 0) +P <ZX1 > Xn—i—lyZXi = ann—i-l = 1)

=1 =1 =1 =1

which equals

P <in >0,iXi=y> P(Xn+1 :O)+P (in > 17iXZ :y—1> P(Xn+1 = 1)
=1 =1

i=1 i=1

For all y > 0,

n n n
P (in >0, X, = y) =P (ZXi = y) = (Z)pya —p)" Y
i=1 1=1 =1
If y=1 or 2, then
n n
P <ZX > 1,ZXZ» :y—1> =0.
=1 =1

And if y > 2, then

n n n
n _ ne
p<§ Xi>17§ Xi:y_1>zp<§ Xi:y_1>:(y_l>py 1(1_p) y+1
i=1 i=1 i
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Therefore, the UMVUE is

0 ify=20
n+1 (pra-pva-p) _ (3 _ 1 .
E (T ZXi = y) = ("pra-prvtt T () T (nAD(ndl-y) ify=1or2
= (el rrao " @) e
(73 e =y &P o
7.59 We know T = (n — 1)5%/0? ~ x2_,. Then
%) 2 +n—1
ETP/2 — %/ S S Vit T T w =Cpn-
L(*3) 277 Jo (%)
Thus P
P
(n—1)8>
’ (02 = Con

so (n — 1)1’/251’/017_,” is an unbiased estimator of o?. From Theorem 6.2.25, (X,S?) is a

complete, sufficient statistic. The unbiased estimator (n—l)p/QSp/Cp,n is a function of (X, S?).
Hence, it is the best unbiased estimator.

7.61 The pdf for Y ~ x?2 is
1

Thus the pdf for % = o2Y /v is

2 v/2—-1
gsy=L 1 (v o v/(20%)
a2 T (v/2)2v/2 \ o2

I//Q—Ie—y/Q.

Thus, the log-likelihood has the form (gathering together constants that do not depend on s2

or o2)
2

1 s s2
log L(0?|s?) = log (02) + K log (02> - Klﬁ + K",

where K > (0 and K’ > 0.

The loss function in Example 7.3.27 is
L(o% a) = % — log (%) -1,
o o

so the loss of an estimator is the negative of its likelihood.

7.63 Let a = 72/(72 + 1), so the Bayes estimator is 6™ (x) = az. Then R(u,6™) = (a — 1)°u2 + a2.
As 72 increases, R(p,0™) becomes flatter.

7.65 a. Figure omitted.

b. The posterior expected loss is E (L(6, a)|z) = e““E e~ —cE(a—0)—1, where the expectation
is with respect to m(6|z). Then

d set
—E(L(0,a)|z) = ce““Ee % —c =0,
da
and a = —% log E e~ is the solution. The second derivative is positive, so this is the mini-

mum.
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—ch

c. m(0]x) = n(z,0?/n). So, substituting into the formula for a normal mgf, we find Ee=¢ =

e—c@+0°¢®/2n and the LINEX posterior loss is
E(L(8,a)lx) = ecla—a)to’c?/am _ cla—1z)—1.

Substitute Ee~ = e¢=¢#+0°¢*/2n jnto the formula in part (b) to find the Bayes rule is
T —co?/2n.

. For an estimator X + b, the LINEX posterior loss (from part (c)) is

E(L(0,z 4 b)|z) = ebec /2 _ o 1,

For X the expected loss is g0 /2n _ 1, and for the Bayes estimator (b = —co?/2n) the
expected loss is ¢*0?/2n. The marginal distribution of X is m(z) = 1, so the Bayes risk is
infinite for any estimator of the form X + b.

. For X + b, the squared error risk is E [()_( +b) — 9}2 = 02/n +b?, so X is better than the

Bayes estimator. The Bayes risk is infinite for both estimators.

7.66 Let S =), X; ~ binomial(n, §).

CBf =ES = LES? = L(n0(1-0) + (n)?) = £ + 2162,

n

. 2 .
T = (Zj;éi Xj) /(n ~1)2. For S values of i, T = (S — 1)2/(n — 1)? because the X;

that is dropped out equals 1. For the other n — .S values of ¢, T = S?/(n — 1)? because
the X; that is dropped out equals 0. Thus we can write the estimator as

JK(Tn)nSQn_1<S(S_1)2+(nS) S ) S5

n? n (n—1)> (n—1)> n(n—1)°

CEIK(T,) = —L—(n0(1 — 0) + (nf)? — np) = L=n0> _ g2

n(n—1) n(n—1)

. For this binomial model, S is a complete sufficient statistic. Because JK(T},) is a function of

S that is an unbiased estimator of #2, it is the best unbiased estimator of 62.



Chapter 8

Hypothesis Testing

8.1

8.2

8.3

Let X = # of heads out of 1000. If the coin is fair, then X ~ binomial(1000,1/2). So

1000 T n—x
1 1 1
P(X >560) = < (fo> (2> (2) ~ .0000825,

=560

where a computer was used to do the calculation. For this binomial, E X = 1000p = 500 and
Var X = 1000p(1 — p) = 250. A normal approximation is also very good for this calculation.

X —500 S 959.5—-500
V250 T /250

Thus, if the coin is fair, the probability of observing 560 or more heads out of 1000 is very
small. We might tend to believe that the coin is not fair, and p > 1/2.

P{X > 560} = P{ } ~ P{Z > 3.763} ~ .0000839.

Let X ~ Poisson(\), and we observed X = 10. To assess if the accident rate has dropped, we
could calculate

10
P(X <10[A=15)=)_
=0

e 1150 152 15'0
g — e 1_,_154_?_‘_...4_170! ~ .11846.

This is a fairly large value, not overwhelming evidence that the accident rate has dropped. (A
normal approximation with continuity correction gives a value of .12264.)

The LRT statistic is
SupegeoL(myl, s 7ym)
supg L(0ly1, - - - Ym)

Ay) =

Let y = 3", y;, and note that the MLE in the numerator is min {y/m.fy} (see Exercise 7.12)
while the denominator has y/m as the MLE (see Example 7.2.7). Thus

{1 if y/m <6

(60)Y (1—60)™ Y .
(y/"(;)y(l_y(}m)m—y lf y/m > 007

AMy) =

and we reject Hy if
(60)”(1-60)" "
(y/m)*(1 —y/m)"™"

To show that this is equivalent to rejecting if y > b, we could show A(y) is decreasing in y so
that A(y) < ¢ occurs for y > b > m#by. It is easier to work with log A(y), and we have

<c.

log M(y) = v 1o f + (m — y) log (1 — 6) —y log () — (m — ) log <m‘y>

m m
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d 1 m
—logA(y) = logby—log(l—6y) — log (%) — y; + log (my) +(m—y)

b0 (")
= log (y/(;n 1-6o )

For y/m > 0y, 1 —y/m = (m —y)/m < 1 — 9, so each fraction above is less than 1, and the
log is less than 0. Thus % log A < 0 which shows that A is decreasing in y and A\(y) < ¢ if and
only if y > b.

8.4 For discrete random variables, L(6|x) = f(x]0) = P(X = x|f). So the numerator and denomi-
nator of A(x) are the supremum of this probability over the indicated sets.

8.5 a.

8.6 a.

The log-likelihood is

log L(#,v|x) = nlogf + nflogr — (0 + 1) log <H xl> ;v <z,

3

where (1) = min; z;. For any value of 6, this is an increasing function of v for v < z(7). So
both the restricted and unrestricted MLEs of v are & = x (7). To find the MLE of 0, set

% log L(0, z (1) [x) = % +nlogz(i) — log (1;[ Iz> =0,

and solve for 6 yielding
n n

é = = n ~ — =
log([T; zi/zyy) T
(9%/06%)log L(0,z(1)|x) = —n/6% < 0, for all 6. So 0 is a maximum.

Under Hy, the MLE of 6 is 0 = 1, and the MLE of v is still & = z(;). So the likelihood ratio
statistic is

2 /(1T 0)?

e () ()

Ax) =

(0/0T)log A(x) = (n/T) — 1. Hence, A(x) is increasing if T < n and decreasing if T' > n.
Thus, T' < ¢ is equivalent to T < ¢; or T' > c¢o, for appropriately chosen constants ¢; and cs.
We will not use the hint, although the problem can be solved that way. Instead, make
the following three transformations. First, let Y; = log X;, i« = 1,...,n. Next, make the
n-to-1 transformation that sets Z; = min; Y; and sets Zs,...,Z, equal to the remaining
Y;s, with their order unchanged. Finally, let Wy = Z; and W; = Z; — Z1, @1 = 2,...,n.
Then you find that the W;s are independent with Wy ~ fy, (w) = nve™™" w > logv,
and W; ~ exponential(1), i = 2,...,n. Now T' = Y , W, ~ gamma(n — 1,1), and, hence,
2T ~ gamma(n — 1,2) = X%(nfl)'

supe, L(0x,y)  supy [T, be=i/? H;n=1 %67.1”/9
SPaL1%.Y) g, [ e o7 s 57

Supy am% exp {* (Z?:l zi + ZT:I yj)/ 6}

P e oxp {— S0y @s/0} 7 exp { = Sy s/}

Ax,y) =
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Differentiation will show that in the numerator 6y = (3, x; + >_;Yj)/(n+m), while in the

denominator 6 = z and i = . Therefore,

(z2r) el (o25%) (B sn))

(z2) o {- () nf (25) oo~ (25) Som)
(n +m)ntm i@)" (Z] yj>m

(S )
And the LRT is to reject Hy if A(x,y) <ec.

n+m ' n L m n4m
A= Bt m) X, Dl )@ m) gy
nhmm DT+ DY DTt DY nnmm

Therefore X\ is a function of T'. A is a unimodal function of T' which is maximized when
T=-12_,
m—+n —
are constants that satisfy a™(1 —a)™ = b"(1 — b)™
c. When Hy is true, », X; ~ gamma(n,0) and 3 _;Y; ~ gamma(m, ) and they are indepen-
dent. So by an extension of Exercise 4.19b, T ~ beta(n,m).
8.7 a.

)‘(X7 Y) =

Tl o) " (sizion
L(0, \x) :HX =0/ 19,00y (1) = (A) L ST CTO

which is increasing in ¢ if z(;) > 6 (regardless of A). So the MLE of 6 is 6 = x(1)- Then

Olog L T; t ] 5 Y
ai :_/\ - ;2 S0 = mh=}n-nb = A=z-aq)
Because
PlogL _n _,Yw—nb)  __ n  WE-ze) o
ON2 22 A3 @-z1)°  (@-zm)’ @—zm)”

T—T(1)

we have § = r(1) and A=7— x(1) as the unrestricted MLEs of # and A. Under the restriction
0 <0, the MLE of 0 (regardless of \) is

é— 0 if$(1)>0
0= xy if ) <0.

For z(;y > 0, substituting 6y = 0 and maximizing with respect to A\, as above, yields o = Z.

Therefore,
M) = supg, L(0,A | x) _ Sup{(Awe):ggo}L()\,H | x) _ 1L(7 . ifz1) <0
supg L(6,\ | x) L0, )| x) Lo if z(1) >0,
where

- ~ n n
o0 erert (3 (rmy (o sy
L\ 0| x) (1/;\> o—n(@—z(1))/(@—x(1)) T z T

So rejecting if A\(x) < c is equivalent to rejecting if x(;)/Z > ¢*, where ¢* is some constant.
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The LRT statistic is

supﬁ(l/ﬁ")e_xixi/ﬁ

M) = SUPBW('Y"/ﬁ")( Hi l‘i)v_le_z’i”z/ﬂ.

The numerator is maximized at Bo = . For fixed v, the denominator is maximized at
By = >,z /n. Thus

i*’nef’ﬂ

A(x) = — s = D P
) o B e e 7 sy /BN, 20

The denominator cannot be maximized in closed form. Numeric maximization could be used
to compute the statistic for observed data x.

—n

T

We will first find the MLEs of a and 6. We have
L | >
L(a,0]x) = e~ (#:=0)7/(2a0)
( ) 21;[1 2mal
= 1 1
log L = ——log(2 — —(x; — 0)%
og L(a,0 | x) ; 5 og(2mrab) 2@9(56Z 0)
Thus
dlog L 11 9 n 1 «— 5 set
Oa — < 24 2042 ;= 6) ) 2a ' 2002 ;(1‘ )
dogL < 1 1 5 1
00 ; [_29+2a92 (z; = 9) +a9(xi_9)}

B n R o nT—nl set
= Tt g 0

We have to solve these two equations simultaneously to get MLEs of a and 6, say a and 0.
Solve the first equation for a in terms of 6 to get

— 1 ¢ 02
a—nelz:;(xl 0)-.

Substitute this into the second equation to get

So we get 6 = z, and

the ratio of the usual MLEs of the mean and variance. (Verification that this is a maximum
is lengthy. We omit it.) For a = 1, we just solve the second equation, which gives a quadratic
in 6 that leads to the restricted MLE

; — 144/ 14+4(6% +22)

- 2

R
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Noting that af = 62, we obtain
Hn 1 (Ii_éR)2/(2éR)

)\(X) — L(éR | X) _ =1 \/ﬁ _ _
L(a,0 | x) I, me—(%—eﬁ/(zae)

(1/(27TéR))n/2 e_zi(ﬂf,i—éR)z/(QéR)
(1/(2m62))"/? e~ Silwi—2)*/(25%)
_ (&Z/éR)n/2 e(”/z)fzi(mféf?ﬁ/(?én)'

. In this case we have

n

1
log L(a, 0 | x) Z {—log (27mab?) — M(xl — 9)2} .

=1
Thus
algfL N :1 <_21a+2ai92(mi—9)2) B _272—'_2(1102;(%—9)2 oo,
- —Zm;a:l(a:i—e)“a;?:Axi—e) <o

Solving the first equation for a in terms of 6 yields

1 n
= 2
i=1
Substituting this into the second equation, we get

(x.—0
_E_}_ﬁ_ﬁ_nM_

o 0 Zz (mi_e)Q B

So again, 6 =z and
)

o
- nx2 Z T 32
in the unrestricted case. In the restrlcted case, set a = 1 in the second equation to obtain
Olog L noo1 0) + 1 &
o0~ g i
Multiply through by 6%/n to get
1 « 0 o
24 = -z
o =0 =)
=1 =1
Add +7Z inside the square and complete all sums to get the equation

—0?+ 6%+ (202 +0(z—0) =0.
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This is a quadratic in 8 with solution for the MLE
Or =7+ 5:+4(6r2+5:2)/2.

which yields the LRT statistic

B ) - p TN (fj)ne("/Q)_Ei(“’i_éR)z/(QéR).
L(a,0 | x) I, 21Aé2 e—(z,—0)?/(2a0”) O

T 1 —(e,—0r)%/(207)

A LBy | %) =1 fanf2,

The MLE of A under Hy is Ay = (1‘/)‘1, and the MLE of \; under H, is A\; = Y;~'. The
LRT statistic is bounded above by 1 and is given by

L )T
(ILY:) e

Rearrangement of this inequality yields ¥ > (HiY;)l/ " the arithmetic-geometric mean
inequality.

The pdf of X; is f(xs]A;) = (A\i/22)e /% z; > 0. The MLE of A under Hy is \g =
n/[>,(1/X;)], and the MLE of A; under H; is = X, Now, the argument proceeds as in
part (a).

8.10 Let Y = >, X;. The posterior distribution of Ay is gamma (y + «, 3/(5 +1)).

a.

8.11 a.

(B+1)"" (/“0 -
P\ <\ — tyte t(B+1)/8 4.
OS2 = pyrayare

POV > oly) = 1 — P\ < oly).

Because §/(8 + 1) is a scale parameter in the posterior distribution, (2(8 + 1)A/8)|y has

a gamma(y + «,2) distribution. If 2« is an integer, this is a X%y+2a distribution. So, for
a=5/2and =2,

2(8+1)A < 2(8+1)Xo
g B

PQSAMA=P(

@zpua%sww

From Exercise 7.23, the posterior distribution of o2 given S? is IG(v, ), where v = a+ (n —
1)/2 and 6 = [(n — 1)S?/2 +1/8]7L. Let Y = 2/(026). Then Y|S? ~ gamma(vy,2). (Note:
If 2 is an integer, this is a x3, distribution.) Let M denote the median of a gamma(y, 2)
distribution. Note that M depends on only o and n, not on S? or 3. Then we have P(Y >
2/4]5?) = P(0? < 1]5?) > 1/2 if and only if

M-2/p

2 2
M>>=(nm-1)8?+=, thatis, S%< 1
n—

g g

. From Example 7.2.11, the unrestricted MLEs are i = X and 6% = (n — 1)S?/n. Under Hy,

fi is still X, because this was the maximizing value of u, regardless of o2. Then because
L(%,0?|x) is a unimodal function of o2, the restricted MLE of o2 is 62, if 6% < 1, and is 1,
if #2 > 1. So the LRT statistic is

o [ if62 <1
(x) = (Y2 (@ =1/2 if 52 > 1.
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We have that, for 62 > 1,

(9(?2)log)\(x) = g (012 - 1) <.

So A(x) is decreasing in 62, and rejecting Hy for small values of \(x) is equivalent to rejecting
for large values of 62, that is, large values of S2. The LRT accepts Hy if and only if S? < k,
where k is a constant. We can pick the prior parameters so that the acceptance regions
match in this way. First, pick « large enough that M/(n—1) > k. Then, as [ varies between
0 and oo, (M —2/3)/(n — 1) varies between —co and M/(n — 1). So, for some choice of 3,
(M —2/8)/(n—1) =k and the acceptance regions match.

For Hy: u <0 vs. Hy: o > 0 the LRT is to reject Hy if Z > co/y/n (Example 8.3.3). For
a = .05 take ¢ = 1.645. The power function is

X_
Bor6as—— Y —p (7> 16a5- Y
a//n a/v/n o

Note that the power will equal .5 when p = 1.6450//n.

For Hy: p =0 vs. Ha: p# 0 the LRT is to reject Hy if |Z| > co/y/n (Example 8.2.2). For
a = .05 take ¢ = 1.96. The power function is

B(M)=P(

B(p) = P (~1.96 — Vnu/o < Z < 1.96 + Vnu/o) .

In this case, p = £1.960/+/n gives power of approximately .5.

The size of ¢ is a; = P(X; > .95|0 = 0) = .05. The size of ¢2 is ag = P(X;+ X5 > C|6 = 0).
If1<C <2, thisis

2-0)

1 1
CXQ:P(X1+X2>C|9:0):/ / ldzodry = 5
1-CJC—=x,

Setting this equal to a and solving for C gives C = 2 — v/2a, and for a = .05, we get
C=2-+1~168.

. For the first test we have the power function

0 if 0 < —.05
Br(6) = Py(X, > .95) = {9 +.05 if—.05<6<.95
1 if .95 < .

Using the distribution of Y = X7 + X5, given by

y— 20 if20 <y<20+1
fy(y|0){29+2y if 20+1 <y <20+2
0 otherwise,

we obtain the power function for the second test as

0 if0<(C/2) 1
B @ +2-0)22 i (C/2)—1<0<(C—1)/2
B0) = Po(Y > C) = 1 (c_20)2/2 if (C—1)/2<8<C)2
1 if C/2 < 0.

From the graph it is clear that ¢, is more powerful for 6 near 0, but ¢- is more powerful for
larger 6s. ¢o is not uniformly more powerful than ¢;.
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d. If either X; > 1 or X5 > 1, we should reject Hy, because if § = 0, P(X; < 1) = 1. Thus,
consider the rejection region given by

{(xl,ifg)Z 1+ T > C} U{(.’El,xz)i x> ].} U{((El,xg)Z To > 1}

The first set is the rejection region for ¢o. The test with this rejection region has the same
size as ¢o because the last two sets both have probability 0 if § = 0. But for 0 < § < C' — 1,
The power function of this test is strictly larger than (5(6). If C' — 1 < 0, this test and ¢o
have the same power.

The CLT tells us that Z = (3, X; —np)//np(1 — p) is approximately n(0,1). For a test that
rejects Hyg when ) . X; > ¢, we need to find ¢ and n to satisfy

c—n(.49) c—n(.51)
P|Z> ————=—=|=.01 and P|Z> ——— | =.99
( n(.49)(.51)> ( v/n(.51)(.49)
We thus want 19 51
w =933 and w —_9233
n(.49)(.51) n(.51)(.49)
Solving these equations gives n = 13,567 and ¢ = 6,783.5.
From the Neyman-Pearson lemma the UMP test rejects Hy if
2 2\—n/2 —Eix?/(Qaf) n 1 1 1
Halo) _ (moy) e =(2) exp{ Y2 (- ) >k
f@loo)  (2mo2) "/ 2e~Tiwt/(200) o1 2 o2 o3

%

for some k > 0. After some algebra, this is equivalent to rejecting if

2log (k " 1 1
fo > o8 (k(91/00) ) =c <because — = 5 > O> .
: (; _ ;) op 01
(3 0.2 0.2
0 1
This is the UMP test of size «, where a = P, (Y, X? > ¢). To determine ¢ to obtain a specified
a, use the fact that >, X2/02 ~ x2. Thus

a= Py, (ZXE/O'(Q) > c/a%) = P(Xi > 0/0(2)),

so we must have ¢/03 = x2 , which means ¢ = o3 x2 .

a.
Size = P(reject Hy | Hpis true) = 1 = TypeIerror = 1.
Power = P(reject Hy | Hy is true) = 1 = Type II error = 0.
b.
Size = P(reject Hy | Hyis true) = 0 = Type I error = 0.
Power = P(reject Hy | Hy istrue) = 0 = Type Il error = 1.

a. The likelihood function is

pn—1
L(p, 0]x,y) = p" (HI) 0" | [T
i J
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Maximizing, by differentiating the log-likelihood, yields the MLEs

1 i and 0 m
l=——=——— an ==
> logz; > logy;
Under Hy, the likelihood is
0—1

L(0|Xay) = 9n+m HIzHy] )
i J

and maximizing as above yields the restricted MLE,

é n+m
0=— :
>oilogw; + 37, logy;

The LRT statistic is
fo—0
gt

Bo—p1
i (Hx> LI
i J

)‘(X7 Y) =

. N Fo» Go—0
Substituting in the formulas for 6, /i and 6y yields ([, xi)ao_“ (HJ yj> R and

gy g oy " g
Ax,y) = 20— = 00 = (m+n) (m+n> (1—1)"1™

This is a unimodal function of T'. So rejecting if A(x,y) < ¢ is equivalent to rejecting if
T < ¢y or T > ¢y, where ¢; and ¢y are appropriately chosen constants.

Simple transformations yield —log X; ~ exponential(1/p) and —logY; ~ exponential(1/6).
Therefore, T = W/(W + V) where W and V are independent, W ~ gamma(n,1/u) and
V ~ gamma(m,1/0). Under Hj, the scale parameters of W and V are equal. Then, a
simple generalization of Exercise 4.19b yields T' ~ beta(n, m). The constants ¢; and ¢y are
determined by the two equations

PT<c))+PT >cy)=a and (1—c1)"c} =(1—ca)"ch.

|

= 1—P0(—\C/%§X—90§
= 1—P9(_CU/;//77\/‘%90—9 a)j\—/%<co/\(/jﬁ/\-/+-ﬁ90—9>
R SO R Gl

where Z ~1n(0,1) and ® is the standard normal cdf.

BE

IA
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b. The size is .05 = ((6p) = 1 + ®(—c¢) — ®(c¢) which implies ¢ = 1.96. The power (1 —
type II error) is

T5< B0y +0)=1+®(—c—+/n) —P(c—/n) =1+ ®(—1.96—/n) —P(1.96 — \/n).
~0

®(—.675) ~ .25 implies 1.96 — \/n = —.675 implies n = 6.943 ~ 7.
8.19 The pdf of ¥ is
1
fylo) = gy(l/G)flefyl/e’ L0

By the Neyman-Pearson Lemma, the UMP test will reject if

2 fyl1)

To see the form of this rejection region, we compute

d 1 71/2 y7y1/2 - 1 73/2 y7y1/2 y1/2 1
dy (2y ‘ —a9¥ YT T

1y—1/26y—y1/2 _ f(wl2)

which is negative for y < 1 and positive for y > 1. Thus f(y|2)/f(y|1) is decreasing for y <1
and increasing for y > 1. Hence, rejecting for f(y|2)/f(y|l) > k is equivalent to rejecting for
y < ¢g or y > c1. To obtain a size « test, the constants ¢y and ¢; must satisfy

2 2
a=PY <cgl0=1)+PY >2clf=1)=1-e"“+e“ and I (<l ):f(cl|)

fleoll)  flegl1)

Solving these two equations numerically, for o = .10, yields ¢y = .076546 and ¢; = 3.637798.
The Type II error probability is

1/2|€1
= .609824.

co

Cll 71/271/2 _
Plep<Y <|0=2)= Y eV T dy= —eY

co

8.20 By the Neyman-Pearson Lemma, the UMP test rejects for large values of f(x|Hy)/f(x|Hy).
Computing this ratio we obtain

The ratio is decreasing in z. So rejecting for large values of f(z|Hy)/f(z|Hp) corresponds to
rejecting for small values of x. To get a size « test, we need to choose ¢ so that P(X <
c|Hp) = . The value ¢ = 4 gives the UMP size o« = .04 test. The Type II error probability is
P(X =5,6,7|H;) = .82.

8.21 The proof is the same with integrals replaced by sums.

8.22 a. From Corollary 8.3.13 we can base the test on ), X;, the sufficient statistic. Let ¥ =
>; Xi ~ binomial(10,p) and let f(y|p) denote the pmf of Y. By Corollary 8.3.13, a test
that rejects if f(y|1/4)/f(y|1/2) > k is UMP of its size. By Exercise 8.25¢, the ratio
f(yl1/2)/f(y|1/4) is increasing in y. So the ratio f(y|1/4)/f(y|1/2) is decreasing in y, and
rejecting for large value of the ratio is equivalent to rejecting for small values of y. To get
a = .0547, we must find ¢ such that P(Y < ¢|p = 1/2) = .0547. Trying values ¢ = 0,1, ..,
we find that for ¢ = 2, P(Y < 2|p =1/2) = .0547. So the test that rejects if ¥ < 2 is the
UMP size o = .0547 test. The power of the test is P (Y < 2|p = 1/4) ~ .526.
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. . k 10—k
The size of the test is P (Y >6lp=1/2) = 3,2, (*)) ()" (3) ~ .377. The power
function is 3(9) = ,10 6 (lko)ﬁk(l — )10k
There is a nonrandomized UMP test for all « levels corresponding to the probabilities

P(Y < z\p— 1/2), where ¢ is an integer. For n = 10, « can have any of the values 0,
56 176 386 638 848 968 1013 1023 .41
TO517 T02T 1081 0347 1020 10947 1030 1091 0347 103 .

The test is Reject Hy if X > 1/2. So the power function is
1 1
LO+1) 44 1-1 L o 1
ﬁ(@)ng(X>1/2):/ — 1" (l—z) de=0-x =1-—.
172 D(O)T(1) 0 112 20

The size is supye gy, 3(0) = supg<; (1 —1/2%) =1-1/2=1/2.
By the Neyman-Pearson Lemma, the most powerful test of Hy: 6§ =1 vs. Hy: 6 = 2 is given
by Reject Hy if f(x | 2)/f(x | 1) > k for some k > 0. Substituting the beta pdf gives

@) _pene 00" 1E)
fall) = S ipeii—a TErmT T

Thus, the MP test is Reject Hy if X > k/2. We now use the « level to determine k. We have
1 1 1 k

a = sup B(0) = (1) = fX(x|1)das:/ — sl e =1 2.
0€0, k/2 ky2 B(1,1) 2

Thus 1 — k/2 = «, so the most powerful « level test is reject Hy if X > 1 — a.

. For 0y > 01, f(x|02)/f(x|601) = (62/61)2%27 % an increasing function of 2 because 6y > ;.

So this family has MLR. By the Karlin-Rubin Theorem, the test that rejects Hy if X >t is
the UMP test of its size. By the argument in part (b), use t = 1 — « to get size a.

8.24 For Hy: 0 = 0y vs. Hy: 0 = 01, the LRT statistic is

Ax) = L(0o[x) _ {1 if L(0o|x) > L(01]x)
max{L(6o|x), L(01[x)} | L(Bo|x)/L(61]x) if L(fo|x) < L(61]x).

The LRT rejects Hy if A(x) < ¢. The Neyman-Pearson test rejects Hy if f(x|01)/f(x]00) =
L(61]x)/L(0g|x) > k. If k = 1/c > 1, this is equivalent to L(0y|x)/L(01]|x) < ¢, the LRT. But
if ¢ > 1or k <1, the tests will not be the same. Because ¢ is usually chosen to be small (k
large) to get a small size «, in practice the two tests are often the same.

8.25 a.

For 65 > 01,
—(r— 2 0'2
g(z | 02) _¢ (' 92)2/2 — (@(02—01)/0° (07-03) /207
gz | 61) e~ (@—61)"/202

Because 3 — 61 > 0, the ratio is increasing in x. So the families of n(6, o%) have MLR.

For 65 > 017
g(z|0) e "05/x! 0 xeel—eg
glx]6) e o¥/xt \ 6, ’

which is increasing in x because 62/6; > 1. Thus the Poisson(#) family has an MLR.

For 65 > 0.,

glz]8:) _ (5)050- (92(1—91)>1 (1—92>"

gl 601) — (Mer(1- 91 e T\ 0, (1-6,) ) \1—6,
Both 65/6; > 1 and (1 —61)/(1 — 63) > 1. Thus the ratio is increasing in z, and the family
has MLR.
(Note: You can also use the fact that an exponential family h(x)c(6) exp(w(€)z) has MLR if
w(f) is increasing in 6 (Exercise 8.27). For example, the Poisson(#) pmfis e ¢ exp(x log 0) /!,
and the family has MLR because log 6 is increasing in 6.)
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8.26 a. We will prove the result for continuous distributions. But it is also true for discrete MLR
families. For 6; > 03, we must show F(z|01) < F(z|02). Now

d f(l61)

— [F(z]61) — F(x|02)] = 0,) — 0s) = 0 -1]).

1 P (al6n) = F(alon)] = F(el6n) ~ Falon) = f(ale) (HE01

Because f has MLR, the ratio on the right-hand side is increasing, so the derivative can only
change sign from negative to positive showing that any interior extremum is a minimum.
Thus the function in square brackets is maximized by its value at co or —oo, which is zero.

b. From Exercise 3.42, location families are stochastically increasing in their location param-
eter, so the location Cauchy family with pdf f(z|) = (x[1+(z—0)])~! is stochastically
increasing. The family does not have MLR.

8.27 For 05 > 91,
9(t02) _ (02) w(os)—w(one
g(t]61)  c(61)
which is increasing in ¢ because w(62) — w(61) > 0. Examples include n(8,1), beta(6,1), and
Bernoulli(6).

8.28 a. For 65 > 61, the likelihood ratio is

f(@lf2) _ oi-0, [H_ez—(hr
[ (z[61) Ier=0z ]

The derivative of the quantity in brackets is

d 1_’_6w701 693791 _ ea:792

%1_‘_6%—02 - (1+6m*92)2 .

Because 63 > 61, e*~% > 7% and, hence, the ratio is increasing. This family has MLR.

b. The best test is to reject Hp if f(x|1)/f(z|0) > k. From part (a), this ratio is increasing
in z. Thus this inequality is equivalent to rejecting if x > k’. The cdf of this logistic is
F(z|0) = e””_‘g/(l +e*7%). Thus

’
ek: -1

a=1-F(#|0)= TP -1

W and /BZF(kJH):

For a specified a, k' = log(1 — a)/a. So for o = .2, k' ~ 1.386 and § ~ .595.
¢. The Karlin-Rubin Theorem is satisfied, so the test is UMP of its size.
8.29 a. Let 05 > 6. Then

F(xlfe) _ 14 —6)* 1+ (1461)°/a” — 261/
F@l00) 14w —602)> 1+ (1+62)% /2 — 20, /2

The limit of this ratio as © — oo or as © — —oo is 1. So the ratio cannot be monotone
increasing (or decreasing) between —oco and oo. Thus, the family does not have MLR.

b. By the Neyman-Pearson Lemma, a test will be UMP if it rejects when f(z|1)/f(z|0) > k,
for some constant k. Examination of the derivative shows that f(z|1)/f(x|0) is decreasing
for z < (1 —+/5)/2 = —.618, is increasing for (1 —/5)/2 < 2 < (1 ++/5)/2 = 1.618, and is
decreasing for (1++/5)/2 < x. Furthermore, f(1|1)/f(1|0) = £(3|1)/f(3]|0) = 2. So rejecting
if f(x|1)/f(x]|0) > 2 is equivalent to rejecting if 1 < & < 3. Thus, the given test is UMP of
its size. The size of the test is

1 1 s

3
1
Pl<X<30=0)= / ——— dxr = —arctanz| =~ .1476.
1 wl4z T 1
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The Type II error probability is

3 3
1 1 1
1—P(1 <X<3|9:1):1—/ —————dr=1— —arctan(z — 1)| ~ .6476.
1 Tl+(z—1) @ 1

. We will not have f(1|6)/f(1]0) = f(3]0)/f(3]|0) for any other value of § # 1. Try 6 = 2, for

example. So the rejection region 1 < z < 3 will not be most powerful at any other value of
0. The test is not UMP for testing Hy: 6 < 0 versus Hy: 6 > 0.

For 05 > 0, > 0, the likelihood ratio and its derivative are
Pl G 03ta® o d [l 6 367
f(z]61) 601 03+a2 dr f(x|01) 01 (02422)

The sign of the derivative is the same as the sign of z (recall, 3 — 67 > 0), which changes
sign. Hence the ratio is not monotone.

Because f(z]0) = (0/m)(6% + |z|?)~1, Y = | X| is sufficient. Its pdf is

20 1
0) = ————, > 0.
F0I0) =T s
Differentiating as above, the sign of the derivative is the same as the sign of y, which is
positive. Hence the family has MLR.
By the Karlin-Rubin Theorem, the UMP test is to reject Ho if >, X; > k, because ), X;

is sufficient and ), X; ~ Poisson(n\) which has MLR. Choose the constant k to satisfy
P, Xi> kA= X)) =
- 1>

=

Q

P(Z>(k—n)/vn) = 05,

P(ZXi>k‘

Thus, solve for k and n in

Q

P(2>(k—2n)/V2n) £ 0.

k—n k —2n
=1.645 and — —1.98,
vn vV2n

yielding n = 12 and k£ = 17.70.
This is Example 8.3.15.

. This is Example 8.3.19.

From Theorems 5.4.4 and 5.4.6, the marginal pdf of Y and the joint pdf of (¥7,Y},) are
fal0) = n(1—(p—0)"", o<y <O+1,
Fynl0) = nn—1D)(yn—y)" % 0<ys <yn <O+1.

Under Hy, P(Y,, > 1) =0. So
1
o= P(Y; > k|0) = / R — 1)L dy = (1 — k)",
k

Thus, use k = 1 — a'/™ to have a size « test.
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For0 <k—1,06(0)=0.Fork—1<6<0,

0+1
B(6) = / n(1— (1 — 0)"dys = (1— k+ 0)".

For 0 < 0 <k,

0+1 k 0+1
860) = / n(1— (- 0))" L dyy + /9 / 1 — 1) (g — 92)" dyn dys
= a+l1-(1-06)".

And for k < 6, 8(0) = 1.

(Y1,Y,,) are sufficient statistics. So we can attempt to find a UMP test using Corollary 8.3.13
and the joint pdf f(y1,y,|0) in part (a). For 0 < 6 < 1, the ratio of pdfs is

0 f0<y1 <60, y1 <y, <1
n9 b n
Sy ynlf) 0){1 0 <y <y <1

Fnuml0) oo 1<y, <0+1.0<ys <y

For 1 < @, the ratio of pdfs is

f(ylvynm)

For 0 < 6 < k, use k' = 1. The given test always rejects if f(y1,ynl0)/f(y1,¥|0) > 1 and
always accepts if f(y1,yn|0)/f(y1,yn]0) < 1. For § > k, use k' = 0. The given test always

vejects if £(y1, yal8)/ (51, yn[0) > 0 and always accepts if f(y1,9al9)/f (1, y]0) < 0. Thus
the given test is UMP by Corollary 8.3.13.

f(ylvyn‘g) o 0 ify1 <yp <1
oo <y <y, <O+1.

. According to the power function in part (b), 8(f) = 1 for all @ > k = 1 — a'/™. So these

conditions are satisfied for any n.
This is Exercise 3.42a.

. This is Exercise 8.26a.

We will use the equality in Exercise 3.17 which remains true so long as v > —a. Recall that
Y ~ x% = gamma(v/2,2). Thus, using the independence of X and Y we have

X _ I'((v—1)/2)
ET' =E = EX)\WEY V2 = pfr—"— 2
N Wy TN
if v > 1. To calculate the variance, compute
X2 _ N(v=2)/2) (42 + 1w
ne _ _ 2 1_(,2 _
E(T") _Ey/y (EX*)WEY (= + v T(/2)2 —

if v > 2. Thus, if v > 2,

W r (T -1)/2)\?
V= (M D(v/2)v2 )

. If 6 = 0, all the terms in the sum for k = 1,2,... are zero because of the §* term. The

expression with just the £ = 0 term and § = 0 simplifies to the central ¢ pdf.

. The argument that the noncentral ¢ has an MLR is fairly involved. It may be found in

Lehmann (1986, p. 295).
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P(X > 0y + za0//nlbo) = P ((X—6p)/(0//n) > 24l60) = P(Z > z4) = a, where Z ~
n(0,1). Because  is the unrestricted MLE, and the restricted MLE is 6y if Z > 6y, the LRT
statistic is, for = > 6

(27T02)7n/2e_2'i(mi_90)2/202 e—[n(i—90)2+(n—1)32]]/202 ) ] ]
)\(X) = 5 — — s — e—n(z—Oo) /20 )
(Qﬁaz)*n/ e—Zi(z,—7)? /202 e—(n—1)s%/20

and the LRT statistic is 1 for T < 6y. Thus, rejecting if A < ¢ is equivalent to rejecting if
(T —00)/(c/y/n) > (as long as ¢ < 1 — see Exercise 8.24).

. The test is UMP by the Karlin-Rubin Theorem.
L P(X > 0+ tho1.05/vnl0 = 0g) = P(Th-1 > ty_1.4) = a, when T,,_; is a Student’s

t random variable with n — 1 degrees of freedom. If we define 62 = 13" (2; — z)? and
62 = L 37 (z; —09)?, then for > 6 the LRT statistic is A = (6%/62)"/?, and for z < 0 the
LRT statistic is A = 1. Writing 6% = 2=1s? and 63 = ( — 6)* + 2-1s?, it is clear that the

LRT is equivalent to the t-test because A < ¢ when
nts? (n=1)/n

= <c and z>6,,
(@—00)*+2=Ls2  (2—00)* /s> +(n—1)/n =7

which is the same as rejecting when (Z — 6p)/(s/+/n) is large.
The proof that the one-sided ¢ test is UMP unbiased is rather involved, using the bounded

completeness of the normal distribution and other facts. See Chapter 5 of Lehmann (1986)
for a complete treatment.

Size = Py, {| X0 |> tn,l,a/m/sz/n}
1— Py, {_tn—l,a/Q\/ S52/n <X —6p < tn1,a/2V Sz/n}

X -0 X -0
1— Py, {tn—l,(x/Q < 0 < tn_La/g} ( 0~ t,,—1 under H0>

\/S?%/n /52 /n

= 1-(1-a) = «

The unrestricted MLEs are §# = X and 62 = >, (X; — X)?/n. The restricted MLEs are
o = 6o and 63 = >, (X; — 69)?/n. So the LRT statistic is

(2160) " Pexp{—nd2/(262)}
(276) " 2exp{-n?/(26%)}

> (xi_:f)2 ]n/Q _ l > (mi_j)z
? il

Ax) =

n/2

2 (x;=60)

For a constant ¢, the LRT is

: ; i (Ii_f)Q . 1 2/m
reject Hy if _ 2/n
e [Zz (w,—2)" + n(f—ao)zl 1+n(z2—600)°/ Y, (z,—1)° <

After some algebra we can write the test as

i

82 1/2
reject Hy if |Z — 0y |> RCQ/” - 1) (n— 1)} .
n
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We now choose the constant ¢ to achieve size «, and we

reject if [Z — 0o [> t,_1,0/2/5%/n.

. Again, see Chapter 5 of Lehmann (1986).

From Exercise 4.45¢, W; = X; — Y, ~ n(uw,a‘%v), where px — py = pw and 0% + o2 —
poOXOy = J%,V. The W;s are independent because the pairs (X;,Y;) are.

The hypotheses are equivalent to Hy: puyw = 0 vs Hy: puw # 0, and, from Exercise 8.38, if
we reject Hog when | W |> tn—1,a/21/Shy /n, this is the LRT (based on Wy, ..., W,,) of size
a. (Note that if p > 0, Var W; can be small and the test will have good power.)

A(X y) _ SupHOL(MX7MYaU2 ‘ XaY) _ L(ﬂaa—g ‘ X7y)
’ supL(px, py, 0% [ x,y)  Llfix, fiy, 67 | x,y)

Under Hy, the X;s and Y;s are one sample of size m + n from a n(u,o?) population, where
W= px = Wy. So the restricted MLEs are

f= Ez’Xi"‘ZiYi _ nT+ny and &2 = Ez (Xi_ﬂ)2+2i (Yi_ﬂ)Q
n+m n+m 0 n+m ’

To obtain the unrestricted MLEs, fi,, fi,, 62, use

Lpx, py,o%|z,y) = (2ﬂ02)7("+m)/267[2i(IF”X)QJFZi(yF“Y)QVQ"Q.

Firstly, note that ix =  and fiy = ¥, because maximizing over px does not involve py
and vice versa. Then

Olog L n+m 1 1 L2 2| 1 set
o2 2 o2 * 2 [XZ: (w: = fix) +zi:(yl ) (02)?

implies
1
n+m’

52 = [Z (z; — 77)24'2 (y; — 37)2

=1 =1

To check that this is a maximum,

0%log L B nerLi T — )2 a2 i
8(02)2 . = 9 (02)2 [;( i ,UX) Jr;(yi ,UY) ] (0_2)3 .
= 71—1;7n((}é)2_(n+m)(&é)2 = _n—;m(&éy < 0.

Thus, it is a maximum. We then have

_ntm

@red) e { gk (XL @ - N -0} gy
o= Fexp {3k [zz‘_lm—x>2+zz’il<yi—y>2}}( >

_nim )
(2762)” 72 exp o1

and the LRT is rejects Hy if 62/6% > k. In the numerator, first substitute i = (nZ +

my)/(n+m) and write

I ] (O e ) e

2
i=1 = (n+m)

(2
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because the cross term is zero. Performing a similar operation on the Y sum yields

_\2 _\2 _\2

65 2 (@—o) + 2 (v, —9) +345 (@-9) nm (z-7)°
= - =n+m—+ ———— .
o2 62 n+m 062

g

nt+m—2
n+m

2

Because 6% = 32 large values of 62 / 6° are equivalent to large values of (Z

and large values of |T'|. Hence, the LRT is the two-sample ¢-test.

(X — Y/\/U2 (1/n+ 1/m)
,/52 1/n+1/m \/n+m 2)82/02)/(n+m —2)

8-17

/s

Under Hy, (X—Y) ~n(0,02(1/n+1/m)). Under the model, (n—1)S% /o? and (m—1)5% /o>
are independent y? random variables with (n — 1) and (m — 1) degrees of freedom. Thus,

(n+m—2)S2/o* = (n—1)S%/0? + (m — 1)S% /0® ~ Xp,,,_o- Furthermore, X —
independent of S% and S%, and, hence, 5’2 SoT ~ tpim—2.

Y is

The two-sample ¢ test is UMP unbiased, but the proof is rather involved. See Chapter 5 of

Lehmann (1986).

For these data we have n = 14, X = 1249.86, S% = 591.36, m = 9,Y = 1261.33, S2 = 176.00
and Sg = 433.13. Therefore, T = —1.29 and comparing this to a t9; distribution gives a
p-value of .21. So there is no evidence that the mean age differs between the core and

periphery.
The Satterthwaite approximation states that if Y; ~ X%i, where the Y;’s are independent,
then )
2
approx X[, A (Z a’l}/;)
;aiYi R - where 7= I ci?Yf/ri'
We have Y1 = (n — 1)5% Jo% ~x2_; and Y2 = (m — 1)S% /o ~ x2,_,. Now define
2 2
9x Oy
a; = and a9 = .
n(n —1)[(0%/n) + (o3 /m)] m(m —1)[(0%/n) + (o5 /m)]
Then,
Sy = ok (n—1)S%
o n(n—1)[(c%/n) + (0% /m)] 0%
of (m—1)Sy
m(m — 1) [(0% /n) + (02 /m)] 0%
_ S% /n+ S3 /m N X3
0% /n+oi /m 17
where
5% /n+5% /m 2 S2 52 2
b= () ( %/n+ 8y /m)
= ST 1 53 sp_ s
(n—1) nz(ai/n-&-crf,/m)Q (m—1) 7n2(a§(/n+a§//m)2 ”2(7' ) mz(m 1)

Because X — Y ~ n(ux — py,0%/n+o3 /m) and o2 /n+o’2 Jm

ix — py =0 we have
_ (X -Y) /\/UX/TL—HTY/TTL opron

S2 /n+ 5% /m (8% /n+8% /m)
%/ v/ Tt )

X%/, under Hj :
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c. Using the values in Exercise 8.41d, we obtain 7/ = —1.46 and © = 20.64. So the p-value is
.16. There is no evidence that the mean age differs between the core and periphery.

d. F = 5%/5% = 3.36. Comparing this with an Fi3 g distribution yields a p-value of 2P(F >
3.36) = .09. So there is some slight evidence that the variance differs between the core and
periphery.

There were typos in early printings. The t statistic should be

( )*( — p2)

(n1—1)s% +(n2—1)s %,/pQ’
ni nz n1+n2 2

and the F statistic should be s% /(p?s% ). Multiply and divide the denominator of the ¢ statistic
by o to express it as

(X - Y) - (M1 - M2)
o2 p202
ni + no

divided by

(n1 —1)s% /0® + (na — 1)s3/(p*0?)

ny+no—2 '
The numerator has a n(0,1) distribution. In the denominator, (ny — 1)s% /o ~ x2 _; and
(ng—1)s3-/(p*0?) ~ x2,_, and they are independent, so their sum has a x2 . _, distribution.
Thus, the statistic has the form of n(0,1)/+/x2/v where v = ny + na — 2, and the numerator

and denominator are independent because of the independence of sample means and variances
in normal sampling. Thus the statistic has a t,,4n,—2 distribution. The F' statistic can be

written as ) ) - ) )
sy _ sy/(pPo”) _ [(n2 = 1)sy /(p°0”)]/(ng — 1)
p*s% sk /o? [(n1 = 1)s%/(0?)]/(n1 — 1)
which has the form [Xizil/(nz — 1)]/[X%171/(n1 — 1)] which has an F),,_1,,—1 distribution.

(Note, early printings had a typo with the numerator and denominator degrees of freedom
switched.)

Test 3 rejects Hy: @ = 6y in favor of Hy: 0 # 6y if X > 6, + Za/20/+/n or X < 0o — 2a/20//n.
Let ® and ¢ denote the standard normal cdf and pdf, respectively. Because X ~ n(f,02/n),
the power function of Test 3 is

BO) = Py(X <0y —zq/20/v/n)+ Py(X > 00 + 20/20//n)

B I e ]

and its derivative is

=L (i—o/\_f /> 3 7 <00/f a”) |

Because ¢ is symmetric and unimodal about zero, this derivative will be zero only if

b —6 -z 90 — + Z
U/f a/2 0_/\/> a/2s
that is, only if § = 6y. So, § = 6 is the only possible local maximum or minimum of the power

function. 8(6y) = « and limg_, 1+ B(0) = 1. Thus, 6 = 6y is the global minimum of 3(#), and,
for any 6" # 60y, 8(0’) > B(6y). That is, Test 3 is unbiased.
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8.45 The verification of size « is the same computation as in Exercise 8.37a. Example 8.3.3 shows
that the power function G,,(#) for each of these tests is an increasing function. So for 6 > 6y,
Bm(0) > Bm(00) = a. Hence, the tests are all unbiased.

8.47 a.
b.

8.49 a.

This is very similar to the argument for Exercise 8.41.
By an argument similar to part (a), this LRT rejects Hy" if

T+ = — =< _tn+m72,a-

Because Hy is the union of Hy and Hj ', by the IUT method of Theorem 8.3.23 the test
that rejects Hy if the tests in parts (a) and (b) both reject is a level « test of Hy. That is,
the test rejects Ho if TT < —tpym-20 and T~ > tyim—2.4.

Use Theorem 8.3.24. Consider parameter points with ux — uy = 6 and ¢ — 0. For any
o, P(TT < —tytm-2,0) = a. The power of the T~ test is computed from the noncentral ¢
distribution with noncentrality parameter |, — py — (=90)|/[o(1/n+1/m)] = 26/[c(1/n +
1/m)] which converges to oo as ¢ — 0. Thus, P(T~ > tp4m—2.) — 1 as ¢ — 0. By Theorem
8.3.24, this IUT is a size « test of Hy.

The p-value is
P 7 or more successes 9_1
out of 10 Bernoulli trials )

- (NG 6 (6 E-CE 666 G

= .171875.

Povalue = P{X>3|A=1}=1-P(X <3|A=1)
e 112 11l 110
= 1- |: 20 + 1 + 0l :| ~ .0803.

Pvalue = P{} X;>9[3\=3} = 1-P(Y <9|3x=3)

38 37 36 35 3l 30
_= —_ _3 —_— —_— —_— —_— ... —_— —_— ~
= 1—e [8!+7!+6!+5!+ +1!+OJ ~ .0038,

where Y = Zle X, ~ Poisson(3\).

8.50 From Exercise 7.26,

m(0]x) = /#e—nw—éi(x)ﬁ/(zaz)’

2

where 04 (x) = Z + & and we use the “+” if § > 0 and the “—” if § < 0.

a.

na

For K > 0,

P(G > [(‘x7 a) = 4/ 2:02 /I; e—n(9—5+(x))2/(202) dg = P (Z > \é'ﬁ[K—(5+(X)]) ,

where Z ~n(0,1).
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b. As a — o0, 6+(x)—>:ﬁsoP(9>K)—>P(Z> f(K a?))
c. For K =0, the answer in part (b) is 1 — (p-value) for Hy: 6 < 0.

8.51 If a < p(x),

sup P(W(X) > co) = a < p(x) = sup P(W(X) > W(x)).

0€60¢ [dSISH)
Thus W(x) < ¢, and we could not reject Hp at level o having observed x. On the other hand,
if a > p(x),

sup P(W(X) > ¢,) = a > p(x) = sup P(W(X) > W(x)).

0€60¢ [4dSSH)
Either W (x) > ¢, in which case we could reject Hy at level a having observed x or W(x) < ¢q.
But, in the latter case we could use ¢, = W(x) and have {x': W(x') > ¢/} define a size «
rejection region. Then we could reject Hy at level a having observed x.

8.53 a.
1 1 2 /09,2 1 1
P(—00 <0 =+ e d) = -+ - = 1.
(roo<o<o =gty [ o 33
b. First calculate the posterior density. Because
f(i‘|0) _ \/ﬁ e—n(i—@)z/(Qaz),
2o
we can calculate the marginal density as
me(@) = 3@ / F(@10) e/ g
27T7'
T L I o7 /2% /m) 7))
2\ 2no 22m/( 2/n )72

(see Exercise 7.22). Then P(6 = 0|z)

I
N[
By
~—
a8
2
B
3
—~
8

P(|X|>zl6=0) = 1-P(|X|
= 1-P(-=z

where @ is the standard normal cdf.
d. For 0> =72 =1 and n = 9 we have a p-value of 2 (1 — ®(37)) and

-1
_ 81z /20
- (1)

The p-value of Z is usually smaller than the Bayes posterior probability except when Z is
very close to the 8 value specified by Hy. The following table illustrates this.

Some p-values and posterior probabilities (n = 9)

T
0 +.1 +.15 +.2 +.5 +£.6533 L7 +1 +2
p-value of 1 7642 6528 .5486 .1336 .05 0358 .0026 =~0

posterior
P =0|z) | .7597 .7523 .7427 .7290 .5347  .3595 .3030 .0522 =0
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8.54 a. From Exercise 7.22, the posterior distribution of f|x is normal with mean [r2/(7% 4 02 /n)|z
and variance 72/(1 4+ n7%/0?). So

PO<0x) = P (Z <0 [72/(72+J2/n)]x>
- N 72/(1+n712/0?)

= pPlz<- . z| = pPlz> . z|.
V(@2/n) (2402 /n) V(@2/n)(T2+02/n)
b. Using the fact that if § = 0, X ~ n(0,0%/n), the p-value is

e o5 38) (2 )

c. Foro?=712=1,

1 . o 1
P(9§0|m):P<Z2 (1/n)(1+1/n)x> and P(sz)—P<sz>.

Because
1 1

<
(1/n)(1+1/n) 1/n

the Bayes probability is larger than the p-value if £ > 0. (Note: The inequality is in the
opposite direction for T < 0, but the primary interest would be in large values of .)

b

d. As 72 — o0, the constant in the Bayes probability,
T 1 1

V@)oot (n) | o/

the constant in the p-value. So the indicated equality is true.

8.55 The formulas for the risk functions are obtained from (8.3.14) using the power function 5(6) =
O(—z4 + 09 — 0), where @ is the standard normal cdf.

8.57 For 0-1 loss by (8.3.12) the risk function for any test is the power function G(u) for 4 < 0 and
1—B(p) for p > 0. Let @« = P(1 < Z < 2), the size of test §. By the Karlin-Rubin Theorem,
the test 0, that rejects if X > z, is also size a and is uniformly more powerful than J, that
is, Bs. (1) > Bs(p) for all > 0. Hence,

R(p,0.,) =1 - 5., (1) <1—Bs(u) = R(u,0), forall up>0.

Now reverse the roles of Hy and H; and consider testing H: ;o > 0 versus Hi : o < 0. Consider
the test 6* that rejects Hy if X <1 or X > 2, and the test 5;5& that rejects Hy if X < z,. It is
easily verified that for 0-1 loss 4 and §* have the same risk functions, and 0} and 6., have the
same risk functions. Furthermore, using the Karlin-Rubin Theorem as before, we can conclude
that 47 is uniformly more powerful than §*. Thus we have

R(p,0) = R(p,6") > R(p, 6% ) = R(p, 6-,), forall p<0,

with strict inequality if g < 0. Thus, J,_ is better than 4.



Chapter 9

Interval Estimation

9.1 Denote A = {z: L(z) < 0} and B = {x: U(z) > 0}. Then ANB = {z: L(zx) <0 <U(z)}
and 1 > P{AUB} = P{L(X)<0or0<U(X)} > P{L(X)<6forf<L(X)} =1, since
L(z) < U(x). Therefore, P(ANB) = P(A)+P(B)—P(AUB) =1—-a1+1—as—1=1—a3—axs.

9.3 a. The MLE of 3 is X(;,,) = max X;. Since (3 is a scale parameter, X(,)/f is a pivot, and

Cﬁ aogn .
05 = P3(Xn)/B < ¢) = Ps(all X; < cf) = vl =™
implies ¢ = .05Y/20". Thus, .95 = P3(X(,)/B > ¢) = Ps(X(ny/c > B), and {B: B <
X(n)/(.057/0m)} is a 95% upper confidence limit for (3.
b. From 7.10, & = 12.59 and X, = 25. So the confidence interval is (0,25/[.051/(12:5914)]) —

(0,25.43).
94 a.
Maay) = SUPy—», L (0’%,0'32/‘ x,y)
7 SUP e (0,4-o00) L (Ug(v 012/| €, y)
The unrestricted MLEs of 0% and o3 are 6% = ETX? and 63 = 23;27 as usual. Under the
restriction, A = Ao, 0% = \go%, and
L(o%dookley) = (2m0%) " (2mhgok) e/ o o)

= (2mo%) TP A T 2= (GoRal 40/ (2000%)

Differentiating the log likelihood gives

dlog L d m+n 9 m-+n m AoXx? + Ty?
5 = 5 | — logoyx — log (271) — - log Ag———1—5—+
d (%) dox 2 2 2 2Xo0%
m+mn , o -1 XX +3y? 5\ -2 set
- 5 (%) o ex) S0
which implies
52 )\OEI? + Eyf
0 Ao(m +n)
To see this is a maximum, check the second derivative:
d?log L m+n —2 1 -3
S = (0%) " = 3= (MoZa? +2y7) (%)
d(o%) 2 Ao o2 =52
e I

2
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therefore &3 is the MLE. The LRT statistic is
A2 \N/2 9 \m/2
(6%)"" (¢¢)

2 /A m+4n)/2 7
X572 (@)

and the test is: Reject Hy if A(x,y) < k, where k is chosen to give the test size .

b. Under Hy, Y Y?/(Aoo%) ~ x2, and > X? /0% ~ X2, independent. Also, we can write

n/2 m/2
AXY) = ! L
’ o n_ oy (BY?/Xo0%)/m ._m m_ (EXZ/0%)/n ._n
m+n (2X2/c%)/n m+n m+n (XY?/Xo0%)/m  m+n
1 n/2 1 m/2
= mn . m m n 1
ln+m + m+nF [m-{-n m+nF ]
o EY?/)\om . . . .
where F' = m ~ F,, » under Hy. The rejection region is
1 1
(I7y): n m n/2 m n 1 m/2 = o
|:n+m + m—+n F:| |:m+n + m+nF :|

where ¢, is chosen to satisfy

—n/2 —m/2
P{[ L F} { mo,n Fl] <Ca}a.
n+m m+4+n n+m m-+n

. To ease notation, let a =m/(n+m) and b =a_ y?/ > x?. From the duality of hypothesis
tests and confidence sets, the set

n/2 m/2
1 1
W) = [ —— > e
) <a+b/)\> <(1_a)+f1(11)—‘1) /\> =

is a 1 —« confidence set for A. We now must establish that this set is indeed an interval. To do
this, we establish that the function on the left hand side of the inequality has only an interior
maximum. That is, it looks like an upside-down bowl. Furthermore, it is straightforward to
establish that the function is zero at both A = 0 and A = co. These facts imply that the set of
A values for which the function is greater than or equal to ¢, must be an interval. We make
some further simplifications. If we multiply both sides of the inequality by [(1 — a)/b]™/2,
we need be concerned with only the behavior of the function

- () (2

Moreover, since we are most interested in the sign of the derivative of h, this is the same as
the sign of the derivative of log h, which is much easier to work with. We have

d
Sl
o8 h(\)

d n m
7Y {—glog(a +b/X) — Elog(b + a)\)}

n b/ A m_a
2a4+b/A  2b+al
1

= TGy Y e mAnb
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The sign of the derivative is given by the expression in square brackets, a parabola. It is easy
to see that for A > 0, the parabola changes sign from positive to negative. Since this is the
sign change of the derivative, the function must increase then decrease. Hence, the function
is an upside-down bowl, and the set is an interval.
9.5 a. Analogous to Example 9.2.5, the test here will reject Hy if T < k(po). Thus the confidence
set is C = {p: T > k(p)}. Since k(p) is nondecreasing, this gives an upper bound on p.
b. k(p) is the integer that simultaneously satisfies

> <n>py(1 -p)""?>1-a and > <n>py(1 -p)"Y<l-o
y=h(p) V7 y=k(p)+1 Y

9.6 a. For Y = > X; ~ binomial(n, p), the LRT statistic is

OB =po)" o —p)\Y (1-p )"
= (3)pv (1 —p)n—v (ﬁ(l—po)> (1_]5)

where p = y/n is the MLE of p. The acceptance region is

A(po) = {y: <1;50>y <11_Z;f)n_y > k}

where k* is chosen to satisfy P, (Y € A(po)) = 1 — . Inverting the acceptance region to a

confidence set, we have
y n—y
C = : - = 2 k .
W {p (p) ( I=p

b. For given n and observed y, write

() = {p: (0/9)" (n)(n = y))" P (1 =p)" " 2 K"}

This is clearly a highest density region. The endpoints of C(y) are roots of the n'! degree
polynomial (in p), (n/y)¥ (n/(n —y))" Y p¥(1 — p)"~¥ — k*. The interval of (10.4.4) is
p

: 713— Z 2 .
{p' N EnItE “/}

The endpoints of this interval are the roots of the second degree polynomial (in p), (p—p)? —
zi /Qp(l — p)/n. Typically, the second degree and n'" degree polynomials will not have the

same roots. Therefore, the two intervals are different. (Note that when n — oo and y — oo,
the density becomes symmetric (CLT). Then the two intervals are the same.)

9.7 These densities have already appeared in Exercise 8.8, where LRT statistics were calculated
for testing Hyp:a = 1.

a. Using the result of Exercise 8.8(a), the restricted MLE of @ (when a = ag) is

G —aot ai+4> 23/n
0= )

and the unrestricted MLEs are
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The LRT statistic is

AAn/2 __ 1 Ry
aG) e 2a09’02(11 0o)

o (i

2 N
= ( : )n/ en/267 2“;50 E(Ii700)2

— L 5(z;—0)2 Qﬂaoéo

e 2ab

The rejection region of a size « test is {z: A(z) <c¢,}, and a 1 — « confidence set is
{ao: AM(z) > ca}-
b. Using the results of Exercise 8.8b, the restricted MLE (for a = ag) is found by solving

—agh? + (62 +(Z—0)%]+6(z—0) =0,
yielding the MLE

Or = T + /T + 4ao(62 + 72)/2a0.
The unrestricted MLEs are

&[\\U‘Q&D

L ) 1> N
0=z and az@;(%_m) _

yielding the LRT statistic
)\({E) = (&/éR)n e(n/z)*z(wiféﬁ{)?/(zéﬁ{).

The rejection region of a size « test is {z: A(z) <c,}, and a 1 — « confidence set is
{aog: M) > ca}-
9.9 Let Z1,...,Z, beiid with pdf f(2).

a. For X; ~ f(x —p), (X1,..., Xpn) ~ (Z1+ 4y Zn + 1), and X —p~Z +p—p=2Z. The
distribution of Z does not depend on p.

b. For X; ~ f(z/0)/o, (X1,...,Xn) ~ (0Z1,...,02,), and X /o ~ 0Z /o = Z. The distribu-
tion of Z does not depend on o.

. For Xi ~ f((x — p)/0)[0, (X1, Xn) ~ (071 + f- ., 0Zn + 1), and (X — p)/Sx ~
(cZ+p—p)/Soz4y =0Z/(0Sz) = Z/Sz. The distribution of Z/Sz does not depend on
[ or o.

9.11 Recall that if 0 is the true parameter, then Fr(7T'|0) ~ uniform(0,1). Thus,

PQO({TS a1 SFT(T|90) S 1—0&2}) :P(Oél S U S 1—0[2) = 1—0[2 — Qq,
where U ~ uniform(0, 1). Since
te {t! ar < FT(t|9) <1- 0&2} & fe {9 o < FT(t|9) <1- 042}

the same calculation shows that the interval has confidence 1 — ag — «7.
9.12 If Xy,..., X, ~ iid n(6,), then \/n(X — 0)/v/0 ~ n(0,1) and a 1 — « confidence interval is
{0: |\v/n(z — 0)/vV0| < 242} Solving for 6, we get

{0: nh* — 0 (2ni+z§/2> +nz? < 0} = {9: 0 e (2ni+zi/2:|:,/4nizi/2+zi/2> /Qn}

Simpler answers can be obtained using the ¢ pivot, (X —8)/(S/+/n), or the x? pivot, (n—1)52 /6.
(Tom Werhley of Texas A&M university notes the following: The largest probability of getting
a negative discriminant (hence empty confidence interval) occurs when vnf = %za /2, and
the probability is equal to a/2. The behavior of the intervals for negative values of Z is also
interesting. When = = 0 the lefthand endpoint is also equal to 0, but when z < 0, the lefthand
endpoint is positive. Thus, the interval based on Z = 0 contains smaller values of § than that
based on Z < 0. The intervals get smaller as T decreases, finally becoming empty.)
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9.14 a.
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For Y = —(log X)~1, the pdf of Y is fy(y) = ;%e_e/y, 0 <y < oo, and

20 0 20
PY/2<0<Y)= —e Vdy = e V| =12 _ 71 = 239,
0 Y o

Since fx(z) = 0291, 0 <z <1, T = X% is a good guess at a pivot, and it is since fr(t) =1,
0 < t < 1. Thus a pivotal interval is formed from P(a < X% < b) = b — a and is

{0: logb <g< loga}.

Since X? ~ uniform(0, 1), the interval will have confidence .239 as long as b — a = .239.

The interval in part a) is a special case of the one in part b). To find the best interval, we
minimize log b —log a subject tob—a =1—a, or b =1 — a + a. Thus we want to minimize
log(l — a + a) — loga = log (1+1_T°‘), which is minimized by taking a as big as possible.

Thus, take b = 1 and a = «, and the best 1 — a pivotal interval is {0: 0<6< llgi‘;‘ } Thus

the interval in part a) is nonoptimal. A shorter interval with confidence coefficient .239 is
{6:0 <0 <log(l —.239)/log(x)}.
Recall the Bonferroni Inequality (1.2.9), P(A; N Az) > P (A1) + P(A2) — 1. Let 4 =

P(interval covers ) and A; = P(interval covers 2). Use the interval (9.2.14), with th—1,0/4

to get a 1 — /2 confidence interval for y. Use the interval after (9.2.14) with b = x? | /4

and a = Xi—l 14 O get a 1—a/2 confidence interval for o. Then the natural simultaneous
set is
Ca(CE) - (:U',02) xftn—l o¢/4i <‘LL <f+tn—1 a4 i
’ n — — > f

and P (Cy(X) covers (u,0%)) = P(A1NAy) > P (A1) +P(4A:)—1=2(1-a/2)-1=1-qa.

: : .z ko 7 1 ko X—p
If we replace the u interval in a) by {u. T— A SpSIT+ \/ﬁ} then s n(0,1), so we

use 2o/4 and

Co(x) (1,0%): T — 2o /s < p < T + 20 /4— and (n—1)s” <2< (n—1)s’
b = ’ : — Ra/dT — > S o < <7
/ " / \/ﬁ Xz‘flva‘/‘L X?L*l,lfa/4

and P (Cy(X) covers (p,0?)) >2(1—a/2)—1=1— o

The sets can be compared graphically in the (u, o) plane: C, is a rectangle, since p and o2
are treated independently, while Cy is a trapezoid, with larger o2 giving a longer interval.
Their areas can also be calculated

S 2 1 1
Areaof C, = [215,1_17&/4] (n—1)s -
Vn Xi—l,l—a/4 Xi—17a/4
s n—1 n—1
Area of C, = Zoja— 7= +
[ Vin Xi71,1fa/4 Xiq,a/z;
1 1
X (n—1)s> 5 - —
anl,lfa/él anl,a/4

and compared numerically.
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9.15 Fieller’s Theorem says that a 1 — a confidence set for 6 = py /ux is

a.

9.16 a.

9.17 a.

9.18 a.

2 2 2
9: j’2 . tn—l,a/Q 82 02 _9 g — tn—l,a/2 Sy x 0+ gz . tn—l,a/Q 82 <0
’ n—1 "% n—1 n—1"Y] =7

t2
Define a = 2 — ts%, b = z§ — tsyx, ¢ = §° — ts}, where t = %‘1‘/2 Then the parabola

opens upward if @ > 0. Furthermore, if a > 0, then there always exists at least one real root.
This follows from the fact that at 6 = §/Z, the value of the function is negative. For = §/Z
we have
2 Lo (U y 2 2
(z° — ts%) (%) —2(zy —tsxy) (%) + (7 — asy)

72 —
Y Y
= —t 33283(_2$8XY+S§/:|

= Z(gz(%—fv>2—2;1;(%—w)(yi—y)ﬂyi—y)?ﬂ

which is negative.

. The parabola opens downward if a < 0, that is, if z2 < ts%. This will happen if the test of

Hy: ux = 0 accepts Hy at level a.

. The parabola has no real roots if b> < ac. This can only occur if a < 0.

The LRT (see Example 8.2.1) has rejection region {x: |z — 6y| > z,/20/y/n}, acceptance
region A(fy) = {2: —24/20/v/n < T — 0y < 24)20/+y/n}, and 1—a confidence interval C(6) =
{0:2 = 24/00/\/n <0 < T+ 24/00//n}.

. We have a UMP test with rejection region {x : T — 0y < —z,0/+/n}, acceptance region

A(0o) = {x: T—0y > —z40/+/n}, and 1—a confidence interval C(0) = {0: T+z40/\/n > 0}.

. Similar to b), the UMP test has rejection region {z: & — 6y > z,0/+/n}, acceptance region

A(Oy) ={z: T — 0y < z,0/y/n}, and 1 — « confidence interval C(0) = {6: T — z40/+/n < 6}.
Since X — 0 ~ uniform(—1/2,1/2), P(a < X — 60 < b) = b — a. Any a and b satisfying

bza—i—l—awilldo.Onechoiceisa:—%—l—%,b: 5.

1
2

. Since T'= X/0 has pdf f(t) =2t,0<t <1,

b
P(agX/ng):/ 2t dt = b — a®.

Any a and b satisfying b = a? + 1 — a will do. One choice is a = \/a /2, b = /1 — a/2.
P(X=1)= (i’)pl(l —p)3~t =3p(1 — p)?, maximum at p = 1/3.
P(X=2)= @)pz(l —p)372 = 3p?(1 — p), maximum at p = 2/3.

. P(X=0)= (g)po(l —p)379% = (1—p)3, and this is greater than P(X = 2) if (1 —p)? > 3p?,

or 202 +2p—1<0. At p=1/3,2p> +2p— 1 = —1/9.

. To show that this is a 1 — o = .442 interval, compare with the interval in Example 9.2.11.

There are only two discrepancies. For example,
P(p € interval | .362 <p < .634) = P(X =1 or X =2) > .442

by comparison with Sterne’s procedure, which is given by
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X interval
0 [.000,.305)
1 [.305,.634)
2 [.362,.762)
3 [.695,1].

9.19 For Fp(t|0) increasing in 6, there are unique values 0y (t) and 0 (t) such that Fr(t|0) <1— ¢
if and only if 6 < 0y/(t) and Fr(t|0) > § if and only if & > 01(t). Hence,

POLT)<0<0u(T)) = PO<0u(T))—P(O<0L(T))
- P (FT(T) <1- %) S (FT(T) < %)
= 1l—oa.

9.21 To construct a 1 — « confidence interval for p of the form {p: ¢ < p < u} with P{ <p <) =
1 — a, we use the method of Theorem 9.2.12. We must solve for ¢ and u in the equations

x

(1) g =y <Z)“k(1 —w)" % and (2) %

k=0

n

3 (Z) (1 — o)k,

k=x

In equation (1) a/2 = P(K < z) = P(Y < 1 —u), where Y ~ beta(n — z,z + 1) and
K ~ binomial(n,u). This is Exercise 2.40. Let Z ~ Fb(;,_4) 2(a41) and ¢ = (n —z)/(z + 1). By
Theorem 5.3.8¢c, ¢Z/(1 + ¢Z) ~ beta(n —z,z + 1) ~ Y. So we want

a/2:P((1iZCZ)§1—u>:P<;21wu).

From Theorem 5.3.8a, 1/Z ~ Fy(z11),2(n—z)- S0 we need cu/(1—u) = Fy(z41),2(n—=),a/2- Solving
for u yields

L By (o4 1),2(n—2),0/2

B 1+ %FZ(x—i-l),Q(n—x),a/Z .

A similar manipulation on equation (2) yields the value for ¢.
9.23 a. The LRT statistic for Hy: A = A\g versus Hy: A\ # Ao is

g(y) = e (nAg)? fe ™ (nA)Y,

where Y = S°X; ~ Poisson(n\) and A = y/n. The acceptance region for this test is
A(Xo) = {y: g(y) > c(X)) where ¢(Xg) is chosen so that P(Y € A(X\g)) > 1 — . g(y) is a
unimodal function of y so A()\g) is an interval of y values. Consider constructing A(X) for
each \g > 0. Then, for a fixed y, there will be a smallest Ao, call it a(y), and a largest Ao,
call it b(y), such that y € A()\o). The confidence interval for A is then C(y) = (a(y),b(y)).
The values a(y) and b(y) are not expressible in closed form. They can be determined by a
numerical search, constructing A()\g) for different values of Ay and determining those values
for which y € A(X\g). (Jay Beder of the University of Wisconsin, Milwaukee, reminds us that
since ¢ is a function of A, the resulting confidence set need not be a highest density region
of a likelihood function. This is an example of the effect of the imposition of one type of
inference (frequentist) on another theory (likelihood).)

b. The procedure in part a) was carried out for y = 558 and the confidence interval was found to
be (57.78,66.45). For the confidence interval in Example 9.2.15, we need the values X%HG,.% =
1039.444 and X715 05 = 1196.899. This confidence interval is (1039.444/18,1196.899/18) =
(57.75,66.49). The two confidence intervals are virtually the same.



9-8 Solutions Manual for Statistical Inference

9.25 The confidence interval derived by the method of Section 9.2.3 is

C(y)Z{u:erTlllOg(g) <“<y+7111°g<1_62y>}

where y = min; ;. The LRT method derives its interval from the test of Hy: p = pg versus
Hy: p # po. Since Y is sufficient for pu, we can use fy (y | u). We have

\y) = Sup—y, L(ply) — _ ne" (Y — 10) g .00)(w)
SUD e (—00.00) L(11]Y) ne= W=V, )@y
Cn(y— 0 if y < o
= e (y #O)I[H0,00) (y) = {e—n(y—,uo) if y > Lo-

We reject Hy if A(y) = e~"=ro) < ¢, where 0 < ¢, < 1 is chosen to give the test level a. To
determine c,, set

logc
a = P{reject Ho|p=po} = P{Y>Mo— gnQOYY<M0 M:ﬂo}
1 o0
= P { Y > po — 08 Ca W= /1'0} = / ne‘"(y—ﬂo) dy
uo_lognca
= —e y—ro) ~ = el — (.
Mo*log’%

Therefore, ¢, = a and the 1 — « confidence interval is

log o 1
C(y)={uru§y§u—n}={ury+n logaéuﬁy}-

To use the pivotal method, note that since p is a location parameter, a natural pivotal quantity
is Z =Y — p. Then, fz(2) = ne "I o0)(2). Let P{a < Z < b} = 1 —«, where a and b satisfy

C;:/Oane_"zdz:—e_"z‘gzl—e_"“ = e_"“zl—%
Lo —log (1—%)
n
% = /boo ne "?dz = —e "? :o =e ™ = _pb= log%
e
= b=——log (5)

Thus, the pivotal interval is Y +log(a/2)/n < u <Y +log(1l — «/2), the same interval as from
Example 9.2.13. To compare the intervals we compare their lengths. We have

1 1
Length of LRT interval = y—(y+ —loga) = ——loga
n n

1 1 1 1—-—a/2
Length of Pivotal interval = (y + —log(1 — a/?)) —(y+ —loga/2) = —log o/
n n n a/2

Thus, the LRT interval is shorter if —log o < log[(1 — «/2)/(c/2)], but this is always satisfied.
9.27 a. Y = > X; ~ gamma(n, A), and the posterior distribution of A is

(y+ %)n+a 1

e~ > Wtd)
I'(n+a) Antaetl ’

m(Aly) =




9.29 a.

9.31 a.

. Converting to an F' distribution, 8.4 =

Second Edition 9-9

an IG (n+a, (y + $)7'). The Bayes HPD region is of the form {\: w(Aly) > k}, which is
an interval since 7(A|y) is unimodal. It thus has the form {\: a1(y) < A < as(y)}, where a;
and ay satisfy
1 —Ze+h_ L —Lw+d

a1n+a+1 a2n+a+1
The posterior distribution is IG(((n —1)/2) +a, (((n—1)s%/2) +1/b)~1). So the Bayes HPD
region is as in part a) with these parameters replacing n + a and y + 1/b.
As a — 0 and b — oo, the condition on a; and as becomes

1 ,L% . 1 _ 1 (n=1s?
a -2+ PR (VP e s R
We know from Example 7.2.14 that if 7(p) ~ beta(a,b), the posterior is 7(ply) ~ beta(y +
a,n—y+b) for y=>x;. So al— « credible set for p is:

{p: ﬁy+a,n—y+b,1—a/2 < p < ﬂy-ﬁ-a,n—y-‘rb,a/Q}'

(c/d)Fac 24

m, the interval is

yta yta
ey E2(yta) 2(n—y+b),1-a /2 mey b F2(y+a) 2(n—y+b),a/2

e SPS Ty e g
+ a2y +a) 2(n—y+b),1-a/2 + 2o e 2 +a) 2(n—y+b).a/2
or, using the fact that F,, , = F, },,
1 < » < ng—;ib F2(y+a),2(n+b),a/2
L+ 2 Py ararasz L 2555 Patya) 20n-ytb),0/2

For this to match the interval of Exercise 9.21, we need = = y and

Lower limit: n—y+b=n—2a2+1 = b=1
yt+a=2z = a=0

Upper limit: y+a=xz+1 = =
n—y+b=n—z = b=0.

So no values of a and b will make the intervals match.

We continually use the fact that given Y =y, x3, is a central x* random variable with 2y
degrees of freedom. Hence

Exzy = E[E(Gy|Y)] = E2Y = 2A
Varxzy = E[Var(x3y|Y)] + Var[E(x5y |Y)]
= E[4Y]+ Var[2Y] = 44X 44\ = 8A
) 2 1 \"
— txay tXoy — -
mgf Ee E[E(e™2v|Y)] E <1 — 2t>

y!

< e (1/\2t)y

— A
E = 6_>\+1—2t.
y=0

From Theorem 2.3.15, the mgf of (x3,, — 2\)/V8\ is

A
et A/2 |:67A+17t/m} .
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The log of this is

N 2 N t2 a8 A o
*““ﬂtfk+1fwviiffn@+2¢X*4u¢Z¢®+a £2/2 as A ,

so the mgf converges to et/ 2, the mgf of a standard normal.
b. Since P(x3y < X3y.o) =  for all A,

X%Y,oc —2A
V8A

In standardizing (9.2.22), the upper bound is

— Zgq @S A — 0.

#—li)-l[xg(Y-&-a),a/Z - 2(>\ + a’)] n;}i12()‘ + a’) —2A
80+ a) 80+ a)

nb
nb+1X§(Y+a),o¢/2 —2A _ /8(A+a)

VBA 8A

While the first quantity in square brackets — 2,2, the second one has limit

1 nb
_an-‘rl A + anb+1

lim
A—00 8(A+a)

so the coverage probability goes to zero.
9.33 a. Since 0 € C,(z) for every x, P(0 € Co(X)|p=0)=1.If u > 0,

PlueCy(X)) = Pp<max{0,X+a}) = Pp<X+a) (since p > 0)
= P(Z>—a) (Z ~n(0,1))
= .95 (a = 1.645.)

A similar calculation holds for p < 0.
b. The credible probability is

max(0,z+a) max(—x,a)
/ 1 6_%(N—:E)2 d/J / 1 e—%tz dt
min(0,z—a) V 2m min(—z,—a) V 2T

= P (min(—-z,—a) < Z < max(—z,a)).

To evaluate this probability we have two cases:

(i) |z <a = credible probability = P(|Z| < a)

(ii) |z|>a = credible probability = P(—a < Z < |z])
Thus we see that for a = 1.645, the credible probability is equal to .90 if |z| < 1.645 and
increases to .95 as |z| — .

9.34 a. A 1 — « confidence interval for p is {p: Z — 1.960/y/n < p < T + 1.960/y/n}. We need
2(1.96)0/\/n < a/4 or \/n > 4(2)(1.96). Thus we need n > 64(1.96)2 ~ 245.9. So n = 246
suffices.

b. The length of a 95% confidence interval is 2¢,_1,.0255/+/n. Thus we need

S o S2 0_2
P (2tn—1,.025\/ﬁ < 4) >9 = P <4t%_17_025 < > > .9




9.35

9.36
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We need to solve this numerically for the smallest n that satisfies the inequality

(n—1)n 2
= 2 Xn-1.1-
t%—l,.ozs - 64 e

Trying different values of n we find that the smallest such n is n = 276 for which

(n—1)n

TR 306.0 > 3055 = 2, .
t?z—l,.025 - 64 = Xn—1,1

As to be expected, this is somewhat larger than the value found in a).
length = 22, /50/+/n, and if it is unknown, E(length) = 2t /5 ,,_co/+/n, where

Va5

V2T (n/2)

and EcS = o (Exercise 7.50). Thus the difference in lengths is (20/v/n)(zq/2 — cta/2). A little
work will show that, as n — 0o, ¢ — constant. (This can be done using Stirling’s formula along
with Lemma 2.3.14. In fact, some careful algebra will show that ¢ — 1 asn — 00.) Also, we know
that, as n — 00, tq/2n—1 — Za/2. Thus, the difference in lengths (20//n)(24/2 — ctas2) — 0
as n — 00.

The sample pdf is

n

flzy,...,z,]0) = H €0 I ig ooy (7:) = ez(w—mi)l(gm) [min(z;/7)].
i=1

Thus T = min(X;/4) is sufficient by the Factorization Theorem, and

n

n ) n L
P(T>t)= H P(X; > it) = H/ e dy = H 0=t — 6_%0_9)7
=170t i=1

i=1

and
n(n+1) JEEIUES Yo

fT(t) - 2 s
Clearly, 0 is a location parameter and Y = T — 6 is a pivot. To find the shortest confidence
interval of the form [T + a,T + b], we must minimize b — a subject to the constraint P(—b <
Y < —a) =1 — «. Now the pdf of Y is strictly decreasing, so the interval length is shortest if
—b =0 and a satisfies

t>0.

n(n+1)
s a— a

PO<Y <—a)=e" =1-oa.
So a =2log(l —a)/(n(n+1)).

9.37 a. The density of Y = X(,,) is fy(y) = ny" /6™, 0 < y < 6. So 0 is a scale parameter, and

T =Y/0 is a pivotal quantity. The pdf of T is fr(t) =nt" 1, 0<t < 1.
b. A pivotal interval is formed from the set

Y Y Y
0:a<t<bd :{9: <7<b}:{9:7<0<7},
{fra<t<b} “=9= b~ T a
and has length Y (1/a — 1/b) = Y (b — a)/ab. Since fr(t) is increasing, b — a is minimized
and ab is maximized if b = 1. Thus shortest interval will have b = 1 and a satisfying
o= foa nt"1dt = " = a = a!/". So the shortest 1 — o confidence interval is {0:y<6<

y/at/"}.
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9.39 Let a be such that ffoo f(z) dz = /2. This value is unique for a unimodal pdfif a > 0. Let p

be the point of symmetry and let b = 2u —a. Then f(b) = f(a) and fb x)dr=a/2.a<p
since [*_ f(z)de = /2 <1/2 = ["_ f(z)dz. Similarly, b > ,u And, f( ) f(a) > 0 since

fla) > f(z)forallz < aand [*_ f(x) d:c = a/2 >0 = f(x)>0forsomex <a = f(a)>0.
So the conditions of Theorem 9.3.2 are satisfied.

9.41 a. We show that for any interval [a,b] and € > 0, the probability content of [a — €,b — €] is

greater (as long as b — € > a). Write

a b—e
/b f@de— [ f@)da

béf dx—/ f(z) da
fb—)b—(b— o) — fa)la— (a—e)]
elf(b—€) = fla)] < 0,

where all of the inequalities follow because f(z) is decreasing. So moving the interval toward
zero increases the probability, and it is therefore maximized by moving a all the way to zero.

IAINA

b. T =Y — u is a pivot with decreasing pdf fr(t) = ne’”tI[oyoo] (t). The shortest 1 — « interval

on T is [0, — £ log o], since
b
/ ne Mdt=1-a = b:—lloga.
0 n

Sincea < T < bimplies Y —b < <Y —a, the best 1 —« interval on p is Y—i—% loga < u<Y.

9.43 a. Using Theorem 8.3.12, identify g(¢) with f(z|01) and f(¢) with f(z|6y). Define (/)( ) =1if

9.45

t € C and 0 otherwise, and let ¢’ be the indicator of any other set C’ satisfying [, f o f(t)dt >
1 — . Then (¢(t) — &/(1))(9(t) — Af(£)) < 0 and

> [o-ova-an=[a- [ a-x[[1-[ ]z [s-[ 0

showing that C' is the best set.

b. For Exercise 9.37, the pivot T' = Y/ has density nt"~!, and the pivotal interval a < T < b

results in the € interval Y/b < 6 < Y/a. The length is proportional to 1/a — 1/b, and thus
g(t) = 1/t2. The best set is {t: 1/t?> < Ant"~ '}, which is a set of the form {t:a <t < 1}.
This has probability content 1 — a if @ = o'/". For Exercise 9.24 (or Example 9.3.4), the g
function is the same and the density of the pivot is fi, the density of a gamma(k 1). The
set {t: 1/t2 < Mfr(t)} = {t: freo(t) > N}, so the best a and b satisfy f frt)dt =1—«
and fiy2(a) = fir2(b).

a. Since Y = > X; ~ gamma(n,\) has MLR, the Karlin-Rubin Theorem (Theorem 8.3.2)

shows that the UMP test is to reject Hy if Y < k(Ag), where P (Y < k(Ag)|A = Ag) = a.

b. T =2Y/X ~ x3, so choose k(Xo) = $AoX3p.o and

1
Y >k} = {/\: Y > 2/\X§W} ={X:0<A<2Y/x3, .}

is the UMA confidence set.

c. The expected length is E ¥ Z2nd

2n a X2n, o

d. X(1) ~ exponential(A\/n), so EX(1) = A/n. Thus

2 % 12
E(length(C*)) = 2;;.042)\ — 956X
E(length(C™)) = A = 829\

120 x log(.99)
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9.46 The proof is similar to that of Theorem 9.3.5:

Py(0' € C*(X)) = Py (X € A*(0')) < Py (X € A(0')) = Py (0 € (X)),

where A and C are any competitors. The inequality follows directly from Definition 8.3.11.

9.47 Referring to (9.3.2), we want to show that for the upper confidence bound, Py(8' € C) < 1—«
if 0 > 0. We have

Py(0' € C) = Py(0/ < X + 200/ /).

Subtract € from both sides and rearrange to get

Pf)(e'ec):Pe(z//?/g<f/\_/g+za):P(Z>§//:/g—za>,

which is less than 1 — « as long as 6’ > 6. The solution for the lower confidence interval is
similar.

9.48 a.

Start with the hypothesis test Hy: 6 > 6y versus H;: 0 < 6. Arguing as in Example 8.2.4
and Exercise 8.47, we find that the LRT rejects Hy if (X — 609)/(S/v/n) < —tn—1.a. So the
acceptance region is {z: (Z — 6p)/(s/v/n) > —tn—_1,} and the corresponding confidence set
is {0: T+ tn_1a8/v/n >0}

b. The test in part a) is the UMP unbiased test so the interval is the UMA unbiased interval.
9.49 a. Clearly, for each o, the conditional probability Py, (X > 0y + z40/v/n | 0) = «, hence the

test has unconditional size «. The confidence set is {(0,0): 0 > T — z,0/+/n}, which has

confidence coefficient 1 — « conditionally and, hence, unconditionally.
b. From the Karlin-Rubin Theorem, the UMP test is to reject Hy if X > ¢. To make this size

a,

Py (X >¢) = Py, (X >clo=100Plc=10)+P (X >cloc=1)P(oc=1)
X -0 c—0
= pP( 100> 100)+(1—p)P(X—9()>C—9(])
Cc— 00
= pP|(Z> 10 + (1 —p)P(Z > c—by),
where Z ~ n(0,1). Without loss of generality take 6y = 0. For ¢ = 2(4_p)/(1—p) We have for
the proposed test
Py, (reject) = p+(1—p)P (Z > z(a_p)/(l_p))
(a—p)
= p+l-p = p+ta—-p = «a
( )(1 - p)

This is not UMP, but more powerful than part a. To get UMP, solve for ¢ in pP(Z >

¢/10) 4+ (1 — p)P(Z > ¢) = o, and the UMP test is to reject if X > ¢. For p =1/2, a = .05,

we get ¢ =12.81. If « = .1 and p = .05, ¢ = 1.392 and 205 = 0526 1.62.

9.51
PG(QEC(X17'-~7X7L)) = P@(X_k1§6§_+k2>
= P(-k2a<X-0<k)
= B (-kz < ZZi/n < kl) ,

where Z; = X; — 0,4 = 1,...,n. Since this is a location family, for any 6, Z1, ..., Z, are iid

with pdf f(z), i. e., the Z;s are pivots. So the last probability does not depend on 6.
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9.52 a. The LRT of Hy: 0 = og versus Hy: 0 # oy is based on the statistic

Sup,u,,a:ag L (/1’7 JO| l’)

AMz) = .
SUP, 0e(0,00) L(/j" 02| Qf)

In the denominator, 62 = Y (x; — Z)?/n and fi = Z are the MLEs, while in the numerator,

o2 and i are the MLEs. Thus

/2 _ S(z;—x)? S(x;—)2
—-n o2 —n/2 - 2
N (2m03) e %o o3 /2" 2
(:L') - on—n/2 _ S(z—n)2 ? e—n/2
(2762) e 207

and, writing 6% = [(n — 1)/n]s?, the LRT rejects Hy if

o2 —n/2 _ (n—1)s?
0 202
(nhﬁ) e 70 <k

n

2
where k,, is chosen to give a size « test. If we denote t = (";%)5 , then T ~ x2_, under Hy,

and the test can be written: reject Hy if t"/2e~%/2 < k.. Thus, a 1 — « confidence set is

2\ n/2
{02: {n/2e=t/2 > k/}/x} _ {02: ((71—21)8> e_(n—012>.;2 /2> k;} _
o

Note that the function ¢"/2¢~*/2 is unimodal (it is the kernel of a gamma density) so it
follows that the confidence set is of the form

C1)e2
{02:16”/26_75/22147’&} = {ag:agtgb} = {02:a<(n;)s<b}
o

O o s B

where a and b satisfy a”/2e~%/? = b"/2e=%/? (since they are points on the curve t"/2¢~/2),

Since 5§ = ”%r? — 1, a and b also satisfy

I
—
q
)
=
|
=
VA
)
A
9
)
AN
£}
|
=
Vo)
)

- 1 q((n+2)/2)=1 ~a/2 _ - 1
T (#32) 2022 T (#32) 2022

or, fota(a) = fnia(b).

p((n+2)/2)=1,-b/2

. The constants a and b must satisfy f,_ 1(b)b> = f._1(a)a®. But since b((»=1/2)-1p2 —

b{(n+3)/2)=1 " after adjusting constants, this is equivalent to f, 3(b) = fnys(a). Thus, the
values of a¢ and b that give the minimum length interval must satisfy this along with the
probability constraint. The confidence interval, say I(s?) will be unbiased if (Definition 9.3.7)

_az@ﬂefw%)ggﬁgﬁefw%)zl—m

Some algebra will establish

m@%mﬁ)g{
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where ¢ = 0/2/02. The derivative (with respect to ¢) of this last expression is bf,,_1(bc) —
afn—1(ac), and hence is equal to zero if both ¢ = 1 (so the interval is unbiased) and
bfn—1(b) = afn—1(a). From the form of the chi squared pdf, this latter condition is equivalent

to fn+1(b) = fnJrl(a’)‘

. By construction, the interval will be 1 — « equal-tailed.

E [blength(C) — Ic(u)] = 2cob — P(|Z| < ¢), where Z ~n(0, 1).

- & 2eob = P(Z < )] = 200~ 2 (e 2) .

. If bo > 1/+/27 the derivative is always positive since e/2 < 1.

EL((10).C)] = E[L((10).C)IS < K] P(S < K) + E[L((11.0),0)|S > K] P(S > K)
= E[L((10),C)|S < K] P(S < K) + E[L((1.0),O)|S > K] P(S > K)
R[L(10),C")] + B[L((10),O)|S > K] P(S > K),

where the last equality follows because €’ = () if S > K. The conditional expectation in the
second term is bounded by

E[L((p,0),C)|S > K] = E]lblength(C) — Ic(u)|S > K]
= E[2bcS — Ic(p)|S > K]
> E[20cK —1|S > K] (since S > K and Io < 1)
= 2bcK —1,

which is positive if K > 1/2bc. For those values of K, C’ dominates C.

9.57 a.

b.

The distribution of X,,+1 — X is n[0,0%(1 + 1/n)], so
P (Xn+1 € X & 2000/1+ 1/n) = P(|Z] < zaj2) =1 - a.

p percent of the normal population is in the interval u =+ 2,50, so T+ ko is a 1 — a tolerance
interval if

P(p = zp)0 CoX +ko) :P(X—kogu—zp/ga and)_(—i-kaz,u—i—zp/ga) >1—a.
This can be attained by requiring
P(X —ko > p—z,00)=a/2 and P(X 4 ko < p+ 2,00) = a/2,

which is attained for k = z,/5 + 24/2/v/n.
From part (a), (X1 — X)/(Sy/1+1/n) ~ t,_1, so a 1 — « prediction interval is X +

tnfl,a/QS\/ 1+ l/n
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Asymptotic Evaluations

10.1 First calculate some moments for this distribution.

2
EX =0/3, EX?*=1/3, VarX = —%.

Wl =

So 3X,, is an unbiased estimator of # with variance
Var(3X,,) = 9(VarX)/n = (3 — 6*)/n — 0 as n — oo.

So by Theorem 10.1.3, 3X,, is a consistent estimator of 6.
10.3 a. The log likelihood is

—g log (276) — % Z(mz —0)/0.

Differentiate and set equal to zero, and a little algebra will show that the MLE is the root
of 62 + 6 — W = 0. The roots of this equation are (—1 ++/1 + 4W)/2, and the MLE is the
root with the plus sign, as it has to be nonnegative.

b. The second derivative of the log likelihood is (=2~ 22 + nf)/(26°), yielding an expected
Fisher information of
-2 X2 +n0  2n0+n
203 o202

1(6) = —Eq

and by Theorem 10.1.12 the variance of the MLE is 1/1(0).

10.4 a. Write
XY Y Xi(Xite) 14 > Xi€

RS E D 3 ¢

From normality and independence

EX;e; =0, VarX;e; = o?(p? +7%), EX?=p?+ 7% VarX? = 27%(2u° 4+ 72),

and Cov(X;, X;¢;) = 0. Applying the formulas of Example 5.5.27, the asymptotic mean
and variance are

X.Y: X.Y; 2(,,2 2 2
E(Z ll)ﬁland\/ar(z zl)wna(,u +t) g

> X2 X7 ) S G TR  aGe )
b. Sy, >
%, PTEx,

with approximate mean 3 and variance o2/(nu?).
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1 Y; 1 €;
n Z Xi B ﬂ + n Xi
with approximate mean 3 and variance o2/(nu?).

a. The integral of ET? is unbounded near zero. We have

1 1
1 1

ET? > o —em @207 g " K —dx = oo,
" 2ro? Jy a2 2ro? Jy a?

where K = maxo<z<1 6_(w_”)2/202

b. If we delete the interval (-4, ), then the integrand is bounded, that is, over the range of
integration 1/22 < 1/42.

c. Assume g > 0. A similar argument works for g < 0. Then

P(=0 <X <6)=PVn(=0 —p) < Vn(X —p) < vn(d — p)] < P[Z < vn(d — ),

where Z ~ n(0,1). For § < p, the probability goes to 0 as n — oc.
We need to assume that 7(0) is differentiable at § = 6, the true value of the parameter. Then
we apply Theorem 5.5.24 to Theorem 10.1.12.

We will do a more general problem that includes a) and b) as special cases. Suppose we want
to estimate Me™/t! = P(X =t). Let

B 1 X =t
T=T(X1,...,X,) = {0 g
Then ET = P(T =1) = P(X; =t), so T is an unbiased estimator. Since }_ X; is a complete
sufficient statistic for A, E(T|Y_ X;) is UMVUE. The UMVUE is 0 for y = > X; < ¢, and for
y=>t,

E(Tly) = P(X1=t|ZXi=y)
 PXi=t)Yy Xi=y)
N Py Xi=y)
_ P =P Xi=y 1)
a PR_Xi=y)

{(Ne M tH{[(n = DA fem (=Y (y — 1)1}
(nA)ve—nA /y!

(e

a. The best unbiased estimator of e=* is ((n — 1)/n)¥.
b. The best unbiased estimator of \e™* is (y/n)[(n — 1)/n]¥~1
c. Use the fact that for constants a and b,

d
aA“bA =" \*"Y(a + Alogh),

to calculate the asymptotic variances of the UMVUEs. We have for ¢t = 0,

e ((5)") - o]

n
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and fort =1

no<fn—1\" fer )| = (A—1)e? ’
e (253 () ) - [ e

n—1 n

Since [(n —1)/n]™ — e~ as n — oo, both of these AREs are equal to 1 in the limit.

. For these data, n = 15, > X; = y = 104 and the MLE of X is A = X = 6.9333. The

estimates are
MLE UMVUE
P(X =0) .000975 .000765
P(X =1) .006758 .005684

It is easiest to use the Mathematica code in Example A.0.7. The second derivative of the
log likelihood is

o 1 /B -a/B) _ L

where ¢(z) =T(z)/T'(2) is the digamma function.

. Estimation of 3 does not affect the calculation.

c. For 4 = af known, the MOM estimate of 3 is Z/a. The MLE comes from differentiating

the log likelihood
d s
a3 <omlogﬂ ;m/ﬂ) Z0= =7/
The MOM estimate of 8 comes from solving
1 1
hal ;= d= 2 — 2
IRV o BN
which yields g =62 /Z. The approximate variance is quite a pain to calculate. Start from
_ _ 1 2
EX =p, VarX = —uf, E&?~pupB, Vare?~ =us?,
n n

where we used Exercise 5.8(b) for the variance of 52. Now using Example 5.5.27 and (and
~ 3
assuming the covariance is zero), we have Varf ~ % The ARE is then

ARE(3,5) = [35°/] [B (it )|

Here is a small table of AREs. There are some entries that are less than one - this is due
to using an approximation for the MOM variance.

1

1 3 6 10
1.878 0.547 0.262 0.154
4.238 1.179 0.547 0.317
6.816 1.878 0.853 0.488
9.509 2.629 1.179 0.667
12.27  3.419 1.521 0.853
15.075 4.238 1.878 1.046
17913 5.08 2.248 1.246
20.774 5.941 2.629 1.451
23.653 6.816 3.02 1.662
26.546 7.704 3.419 1.878

S ©ooNo o W =@
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10.13 Here are the 35 distinct samples from {2,4,9,12} and their weights.

{12,12,12,12},1/256 {9,12,12,12},1/64

{9,9,9,12},1/64 {9,9,9,9},1/256
{4,9,12,12},3/64 {4,9,9,12},3/64
{4,4,12,12},3/128  {4,4,9,12},3/64
{4,4,4,12},1/64 {4,4,4,9},1/64
{2,12,12,12},1/64  {2,9,12,12},3/64
{2,9,9,9},1/64 {2,4,12,12},3/64
{2,4,9,9},3/64 {2,4,4,12},3/64
{2,4,4,4},1/64 {2,2,12,12},3/128
{2,2,9,9},3/128 {2,2,4,12},3/64
{2,2,4,4},3/128 {2,2,2,12},1/64
{2,2,2,4},1/64 {2,2,2,2},1/256

19,9,12, 12}, 3/128
{4,12,12,12},1/64
{4,9,9,9},1/64
{4,4,9,9},3/128
{4,4,4,4},1/256
{2,9,9,12},3/64
{2,4,9,12},3/32
{2,4,4,9},3/64
{2,2,9,12},3/64
{2,2,4,9},3/64
{2,2,2,9},1/64

The verifications of parts (a) — (d) can be done with this table, or the table of means
in Example A.0.1 can be used. For part (e),verifying the bootstrap identities can involve
much painful algebra, but it can be made easier if we understand what the bootstrap sample
space (the space of all n™ bootstrap samples) looks like. Given a sample x1, z3, . .
bootstrap sample space can be thought of as a data array with n™ rows (one for each
bootstrap sample) and n columns, so each row of the data array is one bootstrap sample.

For example, if the sample size is n = 3, the bootstrap sample space is

Z1
Z1
1
gl
Z1
Z1
Z1
x1
1
T2
T2
T2
Z2
T2
T2
T2
T2
T2
r3
T3
T3
T3
z3
€3
T3
T3
T3

Note the pattern. The first column is 9 z;s followed by 9 zss followed by 9 x3s, the second
column is 3 x1s followed by 3 xas followed by 3 z3s, then repeated, etc. In general, for the

entire bootstrap sample,

I
T
T
T2
T2
T2
z3
T3
T3
I
z1
T
T2
T2
T2
z3
T3
T3
T
T
T
T2
T2
Z2
z3
T3
T3

Z1
T2
T3
T
T2
T3
z1
T2
T3
z1
T2
T3
1
T2
T3
z1
T2
T3
z1
z2
T3
T
T2
zs3
z1
T2
T3
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o The first column is n” ! x;s followed by n"~! xys followed by, ..., followed by n®~! z,s

o The second column is n"~2 z;s followed by n”~2 z3s followed by, ..., followed by n™~2
.S, repeated n times

o The third column is n”3 z;s followed by n" 2 zss followed by, ..., followed by n™3
ZS, repeated n? times

o The nt* column is 1 z; followed by 1 x4 followed by, . .., followed by 1 z,,, repeated n”

times

So now it is easy to see that each column in the data array has mean &, hence the entire
bootstrap data set has mean Z. Appealing to the 3% x 3 data array, we can write the
numerator of the variance of the bootstrap means as

33 ) Rt
i_lj_lkz_:l{g(xz—l-m]—l—xk)—x]
NN
= 2> (i @) + (@) + (o — @)
i=1 j=1k=1
ENERE
- ;?ZZ [(; — 2)% + (z; — 2)° + (2 — 2)°],

(2

Il
=
<

Il
-
=~

Il
_

because all of the cross terms are zero (since they are the sum of deviations from the mean).
Summing up and collecting terms shows that

3 3 3
1 T P = —
32 Z Z Z (@ = 2)? + (2 — 2)* + (21, — 2)%] = 32(% -z
and thus the average of the variance of the bootstrap means is

3 _
3% i (@i —2)°
33

w

which is the usual estimate of the variance of X if we divide by n instead of n — 1. The
general result should now be clear. The variance of the bootstrap means is

n n n 2
S5 [
11:17,2:11 TZHZIH .

= pz ST (@i =2+ (i, — )+ (0, — )]

i1=1142=1 in=1

since all of the cross terms are zero. Summing and collecting terms shows that the sum is
n";Q Z?=1(fi2* f2)2, and the variance of the bootstrap means is n" =2 Y7 (z; — )% /n" =
i (@i —2)%/n”.

As B — oo Varg () = Var*(0).

. Each Varp, (é) is a sample variance, and they are independent so the LLN applies and

1 “ A\ M—00 A A
—E Varp (0) "— EVarg(f) = Var™(0),
m

i=1

where the last equality follows from Theorem 5.2.6(c).



10-6

Solutions Manual for Statistical Inference

10.17 a. The correlation is .7781

b. Here is R code (R is available free at http://cran.r-project.org/) to bootstrap the data,

calculate the standard deviation, and produce the histogram:

cor (law)

n <- 15

theta <- function(x,law){ cor(law([x,1],law[x,2]) }
results <- bootstrap(l:n,1000,theta,1aw,func=sd)
results[2]

hist(results[[1]])

The data “law” is in two columns of length 15, “results[2]” contains the standard deviation.
The vector “results[[1]]” is the bootstrap sample. The output is

Vi V2
V1l 1.0000000 0.7781716
V2 0.7781716 1.0000000
$func.thetastar
[1] 0.1322881

showing a correlation of .7781 and a bootstrap standard deviation of .1323.

. The R code for the parametric bootstrap is

mx<-600.6;my<-3.09

sdx<-sqrt(1791.83) ;sdy<-sqrt(.059)
rho<-.7782;b<-rho*sdx/sdy;sdxy<-sqrt(1-rho~2)*sdx
rhodata<-rho

for (j in 1:1000) {
y<-rnorm(15,mean=my, sd=sdy)
x<-rnorm(15,mean=mx+b* (y-my) , sd=sdxy)
rhodata<-c(rhodata,cor(x,y))

}

sd(rhodata)

hist(rhodata)

where we generate the bivariate normal by first generating the marginal then the condid-
ional, as R does not have a bivariate normal generator. The bootstrap standard deviation
is 0.1159, smaller than the nonparametric estimate. The histogram looks similar to the
nonparametric bootstrap histogram, displaying a skewness left.

. The Delta Method approximation is

r~n(p, (1= p*)?/n),

and the “plug-in” estimate of standard error is /(1 — .77822)2/15 = .1018, the smallest so
far. Also, the approximate pdf of r will be normal, hence symmetric.

1 147 1
t=-1 dt = ——
ZOg(l—r)’ 1— 2
the density of r is

2
1 n [l (147\ 1. (14p
——exp -2 |51 —log (L —1<r<l.
\/27r(1r2)eXp< 2[2 0g<1—r> ZOg(l—p>:| ) =r=
14p

More formally, we could start with the random variable T', normal with mean % log (—)

. By the change of variables

1-p

. . 2T
and variance 1/n, and make the transformation to R = ;{j and get the same answer.
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The variance of X is

2
_ _ 1
VarX =E(X —pu)? = E (n ZXi —,u)
i

1
= 5B DX =) +2> (X — ) (X5 —p)
i i>j
1 _
= o) (n02 + zn(n2 )pO'Q)
o2 n—1
— _ —|— po
n
In this case we have
n i—1 o
ED (Xi—w)(X—p)| =0 Y o
i>j i=2 j=1

In the double sum p appears n — 1 times, p? appears n — 2 times, etc.. so

i:iipi’j :ni(n—i)pi— . (n— 1_pn),

i=2 j=1 i=1 L=p L=p

where the series can be summed using (1.5.4), the partial sum of the geometric series, or
using Mathematica.

. The mean and variance of X; are

EXZ = E[E(Xz‘Xzfl)] = EpXi71 — ... = pi—lEXl

and
VarX; = VarE(X;|X;_1) + EVar(X;|X; 1) = p*0® + 1 = o*

for 02 = 1/(1 — p?). Also, by iterating the expectation
EX 1 X; = E[E(X1 X;|X;-1)] = E[E(X1|X,;_1)E(X;| X;—1)] = pE[ X1 X;_1],

where we used the facts that X; and X; are independent conditional on X; ;. Continuing
with the argument we get that EX; X; = p"'EX?. Thus,

pEXE — p' I (EX)? - p'lo? i—1

VarX; Var X; N Vo2a2? -7

— 00, so0 it has breakdown value 0. To see this, suppose that ;1 — oo.

COI‘I‘(Xl, X,L) =

2
If any x; — oo, s

Write

n

s* = : Z(xl —z)? = n i 1 <[(1 - %)xl —z_4)*+ Z(l‘l — x)2> ,

n—1~4
=1

where Z_1 = (x2 + ...+ x,)/n. It is easy to see that as x; — o0, each term in the sum
— 00.

. If less than 50% of the sample — oo, the median remains the same, and the median of

|z; — M| remains the same. If more than 50% of the sample — oo, M — oo and so does
the MAD.
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10.23 a. The ARE is [20 f(u)]?. We have
Distribution Parameters  variance f(u) ARE

normal u=0,0=1 1 .3989 .64
logistic u=0,=1 =m2/3 .25 .82
double exp. pu=0,0=1 2 .5 2

b. If X1, Xo,..., X, are iid fx with EX; = g and VarX; = 02, the ARE is 022 * fx(u)]%
If we transform to Y; = (X; — u)/o, the pdf of Y; is fy(y) = ofx(oy + p) with ARE
2% fy (0)]* = 0?2 % fx (1))?

¢. The median is more efficient for smaller v, the distributions with heavier tails.

v VarX f(0) ARE
3 3 367 1.62
5 5/3  .379  .960
10 5/4 389 757
25 25/23 .395 .678
50 25/24 .397 .657
00 1 399 .637

d. Again the heavier tails favor the median.

6 o ARE
01 2  .649
A2 747
52 .89
.01 5 777
1 5 1.83
bS5 298

10.25 By transforming y =« — 0,
| ve-os@-od= [ vwswa.

Since % is an odd function, ¥ (y) = —¢(—y), and

/fo b fdy = [ v f)dy + /O°°¢(y>f<y>dy

O o0
_ / —p(—y) f(y)dy + / W() f (y)dy
_ 0

- - W) )y + / T ) )y =0,
0 0

where in the last line we made the transformation y — —y and used the fact the f is symmetric,
so f(y) = f(—y). From the discussion preceding Example 10.2.6, 8, is asymptotically normal
with mean equal to the true 6.

10.27 a. ) 5( )
im =[(1— = lim R

PX<a)=PX<a|lX~F)1-080)+Px<aX=2)d=(1-9§)F(a)+l(z <a)
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and

(1-9)F(a) =

c. The limit is

by the definition of derivative. Since F(as) = S0}

d d_1
o5 F(as) = 45 2(1—9)
or ;o 1 r_ 1
Has)as = 505 = % = 30 = 5)27(ap)

Since ag = m, the result follows. The other limit can be calculated in a similar manner.
10.29 a. Substituting cl’ for 1) makes the ARE equal to 1.

b. For each distribution is the case that the given v function is equal to cl’, hence the resulting
M-estimator is asymptotically efficient by (10.2.9).

10.31 a. By the CLT,

m]ﬁ;pl —n(0,1) and J@M —n(0,1),
p1(1—p1) p2(1=p2)
so if p; and py are independent, under Hy : p1 = p2 = p,
P1— D2
\/(;1 + )51~ )

where we use Slutsky’s Theorem and the fact that p = (S1 + S2)/(n1 + n2) is the MLE of
p under Hy and converges to p in probability. Therefore, T — x3.

b. Substitute p;s for S; and F;s to get

—n(0,1)

L a2 N2
o~ MO =P (b, —p)
nip nop
2 ~ ~\12 2 ~ ~\12
m [(A=p) = A =P | n5 [(1=py)— (1P
n1(1 —p) na2p
ni(p1 —p)® | na(p2 — p)?
Hi-p) P17
Write p = (n1p1 + nape)/(n1 + ng). Substitute this into the numerator, and some algebra
will get
- A \2
« « ~ . b1 —Dp
ni (P — p)? +n2(p2 — p)* = %
ny no

soT*="1T.
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c. Under Hy,
P1 — D2

J(E+2)pa-n

and both p; and po are consistent, so p1(1 —p1) — p(1 — p) and pa(1 — p2) — p(1 — p) in
probability. Therefore, by Slutsky’s Theorem,

—n(0,1)

D1—Do
\/ﬁl(l—ﬁ1)+i)z(1—ﬁ2)

ni n2

—n(0,1),

and (T**)? — x3. It is easy to see that T** # T in general.

d. The estimator (1/n; + 1/n2)p(1 — p) is the MLE of Var(p, — p2) under Hy, while the
estimator p1(1 — p1)/n1 + p2(1 — p2)/nq is the MLE of Var(p; — p2) under Hy. One might
argue that in hypothesis testing, the first one should be used, since under Hy, it provides
a better estimator of variance. If interest is in finding the confidence interval, however, we
are making inference under both Hy and Hy, and the second one is preferred.

e. We have p; = 34/40, po = 19/35, p = (34 + 19)/(40 + 35) = 53/75, and T = 8.495. Since
x%,_og) = 3.84, we can reject Hy at a = .05.

10.32 a. First calculate the MLEs under p; = p2 = p. We have

—Tn—1

n—1 m—Try—Ta—: -
L(pla) = p™p™2p”™ - pp7! <12p ZPZ)
=3

Taking logs and differentiating yield the following equations for the MLEs:

n—1
Ologl  w1+w 2 (m— D imt xz) o
dp P 1-2p— Y175 ps

OlogL x

n
Opi pi  1-2p— Z?:_; i

=0, 1=3,...,n—1,

with solutions p = %, pi=3ti=3,...,n—1,and p, = (m— Z?:_ll a:i) /m. Except

for the first and second cells, we have expected = observed, since both are equal to x;. For
the first two terms, expected = mp = (x1 + x2)/2 and we get

_ajm)’

Z (observed — expected)® B (Jcl—%f (2 (g — z5)°

T1t+zo -
5 I +.’E2

= +
expected fidos

b. Now the hypothesis is about conditional probabilities is given by Hy: P(change—initial

agree)=P(change—initial disagree) or, in terms of the parameters Hy : p1p+1p3 = p2p+2p4.

This is the same as p1ps = paps3, which is not the same as p; = ps.
10.33 Theorem 10.1.12 and Slutsky’s Theorem imply that

and the result follows.

10.35 a. Since o/y/n is the estimated standard deviation of X in this case, the statistic is a Wald
statistic
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b. The MLE of 62 is 62 = Y, (z; — )?/n. The information number is

L ﬁlo 2 lcj
d(c?)? 2 987 T 952

Using the Delta method, the variance of 6, = /62 is 7. /8n, and a Wald statistic is

2
“w

262"
252 H
ag _O-M

Oy — 00
\/oa/8n

10.37 a. The log likelihood is

__n 2 1 2, 2
logL = ——logo —§Z(xl—u) /o
with
d 1 n.,
@ = ;Z(xi—ﬂ)zﬁ(ﬂf—/ﬁ
i
d2
i

so the test statistic for the score test is

25 (7 — p) _ i
ag

b. We test the equivalent hypothesis Hy : 02 = 0. The likelihood is the same as Exercise

10.35(b), with first derivative
d n(67 —o?)

S do? T 204

and expected information number

The score test statistic is
~2 2
n O-H — 0y

5 2
2 og

10.39 We summarize the results for (a) — (¢) in the following table. We assume that the underlying
distribution is normal, and use that for all score calculations. The actual data is generated
from normal, logistic, and double exponential. The sample size is 15, we use 1000 simulations

and draw 20 bootstrap samples. Here 6y = 0, and the power is tabulated for a nominal o = .1
test.
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Underlying
pdf Test 6o 0o+ .250 69+ .50 69+ .750 Oo+ 1o 0Oy + 20

Laplace Naive 0.101 0.366 0.774 0.957 0.993 1.
Boot 0.097 0.364 0.749 0.932 0.986 1.

Median  0.065 0.245 0.706 0.962 0.995 1.

Logistic Naive  0.137 0.341 0.683 0.896 0.97 1.
Boot 0.133 0.312 0.641 0.871 0.967 1.

Median  0.297 0.448 0.772 0.944 0.993 1.

Normal Naive  0.168 0.316 0.628 0.878 0.967 1.
Boot 0.148 0.306 0.58 0.836 0.957 1.

Median  0.096 0.191 0.479 0.761 0.935 1.

Here is Mathematica code:
This program calculates size and power for Exercise 10.39, Second Edition

We do our calculations assuming normality, but simulate power and size under other distri-
butions. We test Hy : 0 = 0.

theta_0=0;

Needs["Statistics‘Master‘"]

Clear[x]
f1[x_]=PDF[NormalDistribution[0,1],x];
F1[x_]=CDF [NormalDistribution[0,1],x];
f2[x_]=PDF [LogisticDistribution[0,1],x];
£3[x_]=PDF [LaplaceDistribution[0,1],x];
vi=Variance[NormalDistribution[0,1]];
v2=Variance[LogisticDistribution[0,1]];
v3=Variance[LaplaceDistribution[0,1]];

Cualculate m-estimate

Clear[k,k1,k2,t,x,y,d,n,nsim,a,wl]

ind[x_,k_]:=If [Abs[x]<k,1,0]

rholy_,k_]:=ind[y,k]*y~2 + (1-ind[y,k])* (k*Abs[y]l-k"2)

alow([d_] :=Min[Mean[d] ,Median[d]]

aup[d_] :=Max [Mean[d] ,Median[d]]
sollk_,d_]:=FindMinimum[Sum[rho[d[[i]l]-a,k],{i,1,n}],{a,{alowl[d],aupl[d]}}]
mest[k_,d_]:=sol[k,d] [[2]]

generate data - to change underlying distributions change the sd and the distribution in the
Random statement.

n = 15; nsim = 1000; sd = Sqrt[vi];

theta = {theta_0, theta_0O +.25%sd, theta_0 +.5%sd,
theta_0 +.75*sd, theta_0 + 1xsd, theta_0 +2*sd}

ntheta = Length[thetal

data = Table[Table[Random[NormalDistribution[O, 111,
{i, 1, n}]1,{j, 1,nsim}];

ml = Table[Tablel[a /. mest[kl, datal[j]] - thetal[i]1],
{j, 1, nsim}], {i, 1, n\thetal}];

Calculation of naive variance and test statistic

Psilx_, k_] = x*If[Abs[x]l<= k, 1, 0]- kxIf[x < -k, 1, 0] +
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kxIf[x > k, 1, 0]
Psill[x_, k_] = If[Abs[x] <= k, 1, 0];
num =Table[Psilwi[[j11[[i]1], k1], {j, 1, msim}, {i, 1,n}];
den =Table[Psii[wil[[j]1]1[[i]1]1, k11, {j, 1, nsim}, {i, 1,n}];
varnaive = Map([Mean, num~2]/Map[Mean, den]"2;
naivestat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varnaive[[j]]/n],
{j, 1, nsim}],{i, 1, nthetal}];
absnaive = Map[Abs, naivestat];
N[Table[Mean[Table[If [absnaivel[[i]][[j]] > 1.645, 1, 0],
{j, 1, nsim}]], {i, 1, n\thetal}]]

Calculation of bootstrap variance and test statistic

nboot=20;
u:=Random[DiscreteUniformDistribution[n]]
databoot=Table[datal[[jj]1] [[ul],{jj,1,nsim},{j,1,nboot},{i,1,n}];
mlboot=Table[Table[a/.mest [kl,databoot [[j1][[jj11],
{jj,1,nboot}],{j,1,nsim}];
varboot = Map[Variance, mlboot];
bootstat = Table[Table[m1[[i]][[j]] -theta_0/Sqrt[varboot[[jl1]1],
{j, 1, nsim}], {i, 1, nthetal}];
absboot = Map[Abs, bootstat];
N[Table[Mean[Table [If [absboot[[i]][[j]1] > 1.645, 1,0],
{j, 1, nsim}]], {i, 1, ntheta}]]\)

Calculation of median test - use the score variance at the root density (normal)

med = Map[Median, datal;

medsd = 1/(n*2*f1[theta_0]);

medstat = Table[Table[med[[j]] + \thetal[[i]l] - theta_0/medsd,
{j, 1, nsim}], {i, 1, nthetal}];

absmed = Map[Abs, medstat];

N[Table [Mean[Table [If [\ (absmed[[i]][[j]] > 1.645, 1, 0],
{j, 1, nsim}]1], {i, 1, nthetal}]]

10.41 a. The log likelihood is
log L = nrlogp + nzlog(l — p)

with
d nr nT d? _nr nT
—logL = — — d log L = —_—
o og » = an o —— log

expected information (’}ip) and (Wilks) score test statistic

(%fﬁ) _In ((L=p)r+pz
p*(1-p)
Since this is approximately n(0,1), a 1 — « confidence set is

{r: 7 (S ) = e
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b. The mean is u = r(1 — p)/p, and a little algebra will verify that the variance, r(1 — p)/p?

can be written r(1 — p)/p? = u + p?/r. Thus

(AT e

The confidence interval is found by setting this equal to z,/2, squaring both sides, and
solving the quadratic for u. The endpoints of the interval are

r(8z + 25 )5) £ \/rzi/Q \/161@ +162% + 7122

8r — 222 /o
For the continuity correction, replace Z with Z41/(2n) when solving for the upper endpoint,
and with  — 1/(2n) when solving for the lower endpoint.

c. We table the endpoints for a« = .1 and a range of values of r. Note that r = oo is the
Poisson, and smaller values of r give a wider tail to the negative binomial distribution.

r lower bound upper bound
1 22.1796 364.42
5 36.2315 107.99
10 38.4565 95.28
50  40.6807 85.71
100  41.0015 84.53
1000  41.3008 83.46
oo 41.3348 83.34

10.43 a. Since
P (in =o> —(l-p=a2=p=1-a'/"

and
P <ZXi :n> =p" =a/2=p=al/"
i
these endpoints are exact, and are the shortest possible.

b. Since p € [0, 1], any value outside has zero probability, so truncating the interval shortens
it at no cost.

10.45 The continuity corrected roots are

z

2
2ﬁ+zi/2/n:t}tj:\/ o

[£2n(1 — 2p) — 1] + (25 + 22 5 /n)? — 4p>(1 + 22, /n)
2(1 + Zi/z/”)

where we use the upper sign for the upper root and the lower sign for the lower root. Note that
the only differences between the continuity-corrected intervals and the ordinary score intervals
are the terms with & in front. But it is still difficult to analytically compare lengths with the
non-corrected interval - we will do a numerical comparison. For n = 10 and o = .1 we have
the following table of length ratios, with the continuity-corrected length in the denominator

n 0 1 2 3 4 ) 6 7 8 9 10
Ratio 0.79 082 0.84 085 086 0.8 086 0.85 084 0.82 0.79

The coverage probabilities are
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p
score

CcC

1l 2 3 4 5 6 7 8 9 1
93 97 92 90 .89 90 92 97 93 .99
99 97 92 98 98 98 92 97 .99 .99

Mathematica code to do the calculations is:

Needs["Statistics‘Master ‘"]

Clear[p, x]

pbino[p_, x_] = PDF[BinomialDistribution[n, pl, x];

cut = 1.64572;
n = 10;

The quadratic score interval with and without continuity correction

slowcc[x_] := p /. FindRoot[(x/n - 1/(2*n) - p)~2 ==
cut*(px((1 - p))/n, {p, .001}]

supcc[x_] := p /. FindRoot[(x/n + 1/(2%n) - p)~2 ==
cut*(p*((1 - p)/n, {p, .999}]

slow[x_] := p /. FindRoot[(x/n - p))~2 ==
cut*(px(1 - p))/n, {p, .001}]

suplx_] := p /. FindRoot[(x/n - p)~2 ==

cut*(px(1 - p)/n, {p, .999}]
scoreintcc=Partition[Flatten[{{0,sup[0]},Table[{slowcc[i],supcc[il},

{i,1,n-1}]1,{slowcc[n],1}},2],2];
scoreint=Partition[Flatten[{{0,sup[0]},Table[{slow[i],sup[il},

{i,1,n-1}],{slowcc[n],1}},21,2];

Length Comparison

Table[(sup[i] - slowl[il)/(supccl[i]l - slowcc[il), {i, 0, n}]

Now we’ll calculate coverage probabilities

10-15

scoreindcc[p_,x_]:=If [scoreintcc[[x+1]] [[1]]<=p<=scoreintcc[[x+1]][[2]],1,0]
scorecovcc [p_] :=scorecovcc [p]=Sum[pbino[p,x]*scoreindcc[p,x],{x,0,n}]
scoreind[p_,x_]:=If [scoreint[[x+1]] [[1]]<=p<=scoreint[[x+1]1][[2]],1,0]
scorecov [p_] :=scorecov[p]=Sum[pbino[p,x]*scoreind[p,x],{x,0,n}]
{scorecovcc[.0001] ,Table[scorecovcc[i/10],{i,1,9}],scorecovcc[.9999]1}//N
{scorecov[.0001] ,Table[scorecov[i/10],{i,1,9}],scorecov[.9999]}//N

10.47 a. Since 2pY ~ x2,. (approximately)

P(an‘,lfa/2 < 2pY < Xir,a/2) =1—-aq,

and rearrangment gives the interval.

. The interval is of the form P(a/2Y < p < b/2Y), so the length is proportional to b — a.

This must be minimized subject to the constraint f; f(y)dy = 1— «, where f(y) is the pdf
of a x2,. Treating b as a function of a, differentiating gives

¥ —1=0 and fO) — f(a)=0

which implies that we need f(b) = f(a).



Chapter 11

Analysis of Variance and Regression

11.1 a. The first order Taylor’s series approximation is
Var[g(Y)] = [¢'(9))* - VarY = [¢'(8)]* - v(B).

b. If we choose g(y) = g*(y) = [ \/&T)d% then

dg*(e)_d/9 1o 1
g do J, \Jo(x) Vo(0)

by the Fundamental Theorem of Calculus. Then, for any 6,

Var[g" (V)] ~ (i@) o(8) = 1

. ey 2
11.2 a. v(A) = A, g*(y) = /Y, dgd>(\>‘) = ﬁ, Varg*(Y) =~ (dgT(\A)) -v(\) = 1/4, independent of .

b. To use the Taylor’s series approximation, we need to express everything in terms of § =
EY = np. Then v(f) = 6(1 — §/n) and

(dg%@)Q__( 1 .?1.1>2__21.
de 1_¢0 2\/% n 4nf(1 —0/n)

* 2
vl ()] = (52 o6 = 4.

3

Therefore

independent of 6, that is, independent of p.
c. v(f) = K62, dg:lée) = 4 and Var[g*(Y)] = (%)2 - K6? = K, independent of 6.
11.3 a. gi(y) is clearly continuous with the possible exception of A = 0. For that value use
I’Hopital’s rule to get

-1 I (log y)y*
= 1i1m ——F
A—0 A—0 1

b. From Exercise 11.1, we want to find v()) that satisfies

=logy.

y>‘—1 Y 1
= dx.
A /a Vo(z)

Taking derivatives
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Thus v(y) = y~2*A~1. From Exercise 11.1,

A A 2
Var (y _1> ~ <d9 _1> v(0) = 2A-Dg=20-1 — 1,

) dy A

Note: If A = 1/2, v(0) = 6, which agrees with Exercise 11.2(a). If A = 1 then v() = 62,
which agrees with Exercise 11.2(c).
11.5 For the model
Y;'j:ﬂ+7'i+€ij, iil,...,k, j:].,...,’lli,

take k = 2. The two parameter configurations

(M7T17T2) = (10’552)
(:U’vThTQ) = (77875)7

have the same values for p+ 7 and p + T2, so they give the same distributions for Y7 and Ys.

11.6 a. Under the ANOVA assumptions Y;; = 0; + €;;, where €;; ~ independent n(0,0?), so Yi; ~
independent n(6;,0?). Therefore the sample pdf is

ko n; (v1;—0:)? 1 k  n

H H(Q?TUQ)_l/Qe_ 207 = (2ro?) ="/ 2exp 552 (y;; — 0;)?
i=1j=1 i=1 j=1

k
1
= (271‘0’2)_27“'/2 exp {_M anef}
i=1
k

Therefore, by the Factorization Theorem,

FiVor Y Y YV2
i g
is jointly sufficient for (91, - ,Qk,ag). Since (Y1, ... ,?k.,Sg) is a 1-to-1 function of this
vector, (Yi.,..., Y%, SZQ,) is also jointly sufficient.
b. We can write

k  ny
S, 1 -
(2m0) 72 exp —@Z (Y4 —0,)°
i=1 j=1
k. ny
S, 1 - _ _
— (271'0’2) ¥n; /2 exp *@ Z ([yz] - yz] + [ny — 91])2
i=1 j=1
2\—Sn;/2 R 1 1 &~ )
= (2m0°) exp 7@2 [y;; — il” p exp fﬁZm[yi.fﬁi] )
i=1 j=1 i=1

so, by the Factorization Theorem, Y., i=1,...,n,is independent of Yi; —Yi..i=1,...,n,
SO SZQ, is independent of each Y;..
c. Just identify n;Y;. with X; and redefine 6; as n;6;.
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Let U; = Y;. — 6;. Then
k ~ B k
S mil(Vi = V) = (6~ O = 3 ma(Us ~ U)2,
i=1 i=1

The U; are clearly n(0,02/n;). For K = 2 we have

S% = nl(Ul—l_])2+n2(U2—U)2

. (U TL1U1+712U2)2+” (U n1U1+n2U2)2

1 1 77114_”2 2 | U2 77114_”2
) 2 ny 2

= (U - )
(Uh 2)° | <n1+n2) + ng (n1+n2>

_ (i-e)?
T, 1
ny na

Since Uy — Uy ~ n(0,02%(1/ny + 1/n3)), S2/0? ~ x3. Let Uy, be the weighted mean of k U;s,
and note that

_ _ n _
Ug+1=Ux + N]:rll (Ugt1 — Ug),
where N, = Z?Zl n;. Then
k1 . k1 . " 42
Siyn = an(Uv —Ups1)? = va |:(Ul - Uy) — N]:rll (Ugt1 — Uk)
i=1 i=1
N _
= Si + et Ve (Uk+1 — U/f)27
Nit1

where we have expanded the square, noted that the cross-term (summed up to k) is zero, and
did a boat-load of algebra. Now since

Us1 — U ~1(0,06*(1/ni41 + 1/Ni)) = n(0, 06 (Nig1 /ne+1Nk)),

independent of S7, the rest of the argument is the same as in the proof of Theorem 5.3.1(c).

Under the oneway ANOVA assumptions, Y;; ~ independent n(6;, o?). Therefore

.~ n (Qi, Uz/ni) (Y;;'s are independent with common a2)

a;Y;, ~ n (aiei,a?o2/ni)
k
Zaiﬁ. ~ 1 <Z aif)l-,JQZaf/ni> .
; i=1

All these distributions follow from Corollary 4.6.10.

11.9 a. From Exercise 11.8,

Tzzaﬂ_/ifvn(zai@i,ogza?),

and under Hy, ET = 6. Thus, under Hy,

Z aiﬁ—é

T ~tN_k,
\/ngai
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where N = Y n;. Therefore, the test is to reject Hy if
Sati-s
2
\/Sh 2o ai/n;

b. Similarly for Hy: Y a;0; <6 vs. Hy: Y a;0; > 6, we reject Hy if

> tN—k,%-

)
Safios o
\/ngag/”i

11.10 a. Let HY, i =1,...,4 denote the null hypothesis using contrast a;, of the form

Hé Zaijﬂj Z 0.
J

If H} is rejected, it indicates that the average of s, 03, 64, and 05 is bigger than 6; which
is the control mean. If all H}’s are rejected, it indicates that 65 > 6; for i = 1,2, 3, 4. To see
this, suppose H¢ and H§ are rejected. This means 65 > @ > f3; the first inequality is
implied by the rejection of Hj and the second inequality is the rejection of Hg. A similar
argument implies 05 > 65 and 65 > 6. But, for example, it does not mean that 6, > 65 or
03 > 5. It also indicates that

1 1 1
5(05+04)>93, g(g5+94+03)>92, 1(05+94+83+02)>91.

b. In part a) all of the contrasts are orthogonal. For example,

5

1 1 1
E g = (0.1, -2 —= =
. a2;a3; ( s Ly 35 37 3>

NI = O O

Il

|

|

+

I

+

|

Il
=

and this holds for all pairs of contrasts. Now, from Lemma 5.4.2,

2
= S o
COV( E a;iYi., g aj’i}/;<> - g Ajijis
i i i

which is zero because the contrasts are orthogonal. Note that the equal number of obser-
vations per treatment is important, since if n; # n,; for some 4, 7', then

k k k 0_2 k @i
_ _ (s
Cov E ati% E aj,iYi = E ajiaj/i— = 0'2 E B A 7é 0.
i=1 =1 =1 =1

c. This is not a set of orthogonal contrasts because, for example, a; X as = —1. However, each
contrast can be interpreted meaningfully in the context of the experiment. For example, a
tests the effect of potassium alone, while a5 looks at the effect of adding zinc to potassium.

11.11 This is a direct consequence of Lemma 5.3.3.

11.12 a. This is a special case of (11.2.6) and (11.2.7).
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From Exercise 5.8(a) We know that

1 oo 1 2
=72 -0 = WZ(%-_%“)'

i=1 i
Then
1 1 (Y- — . " y
S 2, = _ i
k(k—1) lzz; " 2k(k—1) ; 32/n ; /n
i@ -9/ (k—1)
= = ;
p
which is distributed as Fj_1 n— under Hy: 64 = --- = 6. Note that
Zt ;= Z Z G2
i=114=1

therefore ¢3,, and t7,; are both included, which is why the divisor is k(k—1), not @ = (g)
Also, to use the result of Example 5.9(a), we treated each mean Y;. as an observation, with
overall mean Y. This is true for equal sample sizes.

Nk/2
1 -5 i j— o
L(ly) = < ) DD DA Dls

2mo?
Note that
DD i =07 = D> (v — ) +Zm (7. — 0:)?
i=1 j=1 i=1 j=1
k
= SSW+> n 0;)
i=1
and the LRT statistic is
( / )Nk/2

where

7 =SSW  and TOfSSW-Fani y.)? = SSW + S9B.

Thus A < k if and only if SSB/SSW is large, which is equivalent to the F' test.

. The error probabilities of the test are a function of the ;s only through n = > 62. The

distribution of F' is that of a ratio of chi squared random variables, with the numerator
being noncentral (dependent on 7). Thus the Type II error is given by

L (xam/-) AL O/ N
P =r (N > ) 2 P (S T 7)o

where the inequality follows from the fact that the noncentral chi squared is stochastically
increasing in the noncentrality parameter.
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11.14 Let X; ~ n(6;,0?). Then from Exercise 11.11

Cov (Z'L %Xh Zz \/asz'L) = 02 Z a;V;
Var (Zz \‘/lé—le> = g2 Z %7 Var (Z; \/alel) — g2 ZCW?,

and the Cauchy-Schwarz inequality gives

(Z aﬂﬁ) / (Z a?/ci) < Zcivz‘2~

If a; = c;v; this is an equality, hence the LHS is maximized. The simultaneous statement is
equivalent to

(Zle a;i(Ji. — 91‘))2
(s25h, a2/n)

< M for all ay,...,ag,

and the LHS is maximized by a; = n;(g;. — 0;). This produces the F' statistic.

11.15 a.

Since t2 = F} ,,, it follows from Exercise 5.19(b) that for k > 2
Pl(k=1)Fy_1,, > a] > P(t; > a).

So if a = t?j a2 the F' probability is greater than «, and thus the a-level cutoff for the F
must be greater than t? | Jo-

. The only difference in the intervals is the cutoff point, so the Scheffé intervals are wider.

c. Both sets of intervals have nominal level 1 — «, but since the Scheffé intervals are wider,

11.16 a.

11.17 a.

11.18 a.

tests based on them have a smaller rejection region. In fact, the rejection region is contained
in the t rejection region. So the ¢ is more powerful.

If 0, = 0; for all 7, j, then 0; — 0; = 0 for all 4, j, and the converse is also true.

. Hy:0 ¢ ﬂijeij and H;: 0 € Uij(@ij)c.

If all of the means are equal, the Scheffé test will only reject o of the time, so the ¢ tests
will be done only « of the time. The experimentwise error rate is preserved.

. This follows from the fact that the ¢ tests use a smaller cutoff point, so there can be rejection

using the ¢ test but no rejection using Scheffé. Since Scheffé has experimentwise level «,
the t test has experimentwise error greater than .

. The pooled standard deviation is 2.358, and the means and ¢ statistics are

Mean t statistic
Low Medium High Med-Low High-Med High-Low
3.51. 9.27 24.93 3.86 10.49 14.36

The t statistics all have 12 degrees of freedom and, for example, t12,.91 = 2.68, so all of the
tests reject and we conclude that the means are all significantly different.

PY >alY >b) = PY >a,Y >b)/P(Y >b)
= P(Y >a)/P(Y >0) (a>0b)
> P(Y >a). (P(Y >b)<1)

. If a is a cutoff point then we would declare significance if Y > a. But if we only check if Y is

significant because we see a big Y (Y > b), the proper significance level is P(Y > a|Y > b),
which will show less significance than P(Y > a).
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11.19 a. The marginal distributions of the Y; are somewhat straightforward to derive. As X; 1 ~
gamma(A;41,1) and, independently, 7%, X; ~ gamma(}~;_, A;,1) (Example 4.6.8), we
only need to derive the distribution of the ratio of two independent gammas. Let X ~
gamma(Aq, 1) and Y ~ gamma(Ag, 1). Make the transformation

u=zly, v=y = xT=uv, Y=0,
with Jacobian v. The density of (U,V) is
A1—1

_ _ _ _ u 1
(uv))‘l lv)\g 11}6 uv_—v __ A1+ 16 v(1+u).

- T(A)T(A2)

1

) = 5T

To get the density of U, integrate with respect to v. Note that we have the kernel of a
gamma(A; + A2, 1/(1 + w)), which yields

_ I'(\ +)\2) w1

T = FTO) T weT

The joint distribution is a nightmare. We have to make a multivariate change of variable.
This is made a bit more palatable if we do it in two steps. First transform

Wi=X, Woa=X1+Xy, Wa=X1+Xo+X3, ..., Wpo=Xi+Xo+ - -+X,,
with
Xi=Wy, Xo=Wo-Wp, Xz=W3-W,, ... X,=W,-W,_,

and Jacobian 1. The joint density of the W; is
n 1
flwy,we, ... wy,) = H m(wZ —wi )N e Ty S wp < - < wy,
i=1 ¢

where we set wg = 0 and note that the exponent telescopes. Next note that

w2 — W1 w3 — W2 Wn — Wp—1

Y1 = ) Y2 = ) s Yn—1 = ) Yn = Wn,
w1 w2 Wp—1

with
Yn

1. O
Since each w; only involves y; with j > 4, the Jacobian matrix is triangular and the
determinant is the product of the diagonal elements. We have

w; = 1=1,....,.n—1, w, = Yn.-

di n . dn
i _ Y i=1,...,n—1, 2 _q,

dyi  (L+y) [ A +yy) dyn

and

A -1
_ Yn
fyny2, - 00) = T'(\) (H?_ll(l‘i‘yj))

n—1 >\’L_1
X 1 ( y’ﬂ — yn > e_yn
n—1 n—1
i=2 I'(A) Hj:i (1+y;) Hj:i—l(l +y5)
1

XH Yn

=1 (L+ws) H?:_il(l +y;)
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Factor out the terms with y, and do some algebra on the middle term to get

1 1 )\171
f(ylvaa-“ayn) = y,?’\_le_y" —
_ Ai—1
H ( Yi—1 1 )
i=2 L+ yi- 1H (1+y])
n—1

(1 +yz)H" L(1+y)

We see that Y, is independent of the other Y; (and has a gamma distribution), but there
does not seem to be any other obvious conclusion to draw from this density.

b. The Y; are related to the F' distribution in the ANOVA. For example, as long as the sum
of the \; are integers,

Xy 2X541 Xi’iJrl
Yi= = i 2 NF,\HI,Z"_ A
Zj:l X; 223‘:1 X; XZ;:1>\j j=1
Note that the F' density makes sense even if the )\; are not integers.
11.21 a.
188.54
Grand mean §.. = R = 12.57
3 5
Total sum of squares = Z Z (yij —5.)° = 1295.01.
i=1 j=1

3 5
11

= > (15 —3508)2 + > (y2; — 9:274)* + > (y3; — 24.926)°
1 1 1

= 1.089+2.189+463.459 = 66.74

3
Between SS = 5 (Z (yij — yz)2>
1
= 5(82.120 + 10.864 + 152.671) = 245.65-5 = 1228.25.
ANOVA table:
Source df SS MS F

Treatment 2 1228.25 614.125 110.42
Within 12 66.74 5.562
Total 14 1294.99

Note that the total SS here is different from above — round off error is to blame. Also,
F5 19 = 110.42 is highly significant.
b. Completing the proof of (11.2.4), we have

k
SN Wi - = YD (i — )+ @ —9)

i=1 j=1 i=1 j=1
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ni k ng
= Z Z (yij — )" + Z (7. — )
i=1 j=1 i=1 j=1
k n;
—i—Z Z (Yij — ¥i-) (G- — ) »
i=1 j=1

where the cross term (the sum over j) is zero, so the sum of squares is partitioned as

ng

k k
Z Z (yij — 5i.)* + Zm @ — )
i=1

i=1 j=1

c. From a), the F' statistic for the ANOVA is 110.42. The individual two-sample t’s, using
52 = =22 (66.74) = 5.5617, are

P 15—3
(3.508 — 9.274)? 33.247
2, = = = 14.945
12 (5.5617)(2/5) 2.2247 ’
(3.508 — 24.926)?
2, = = 206.201
13 2.2247 ’
(9.274 — 24.926)2
2, = = 110.122
z 2.2247 ’
and 2(14.945) + 2(206.201) + (110.122
(14.945) +2(206.201) + (110.122) =11042 = F.
6
11.23 a.
EY;; = E(p+7m+bi+e;) = p+7+Ebj+Ee; = ptm
VarY;; = Varb; + Vare;; = 0?3—&—02,
by independence of b; and €;;.
b.

Var (i az‘}_/r) = i a?VarYi. + 2 Z Cov(a;Y;.,ayYy.).
i=1

i=1 >4’

The first term is

n B n 1 T 1
2 _ 2 _ 20, 2 2
gaiVarYi.—;aiVar ;Z,u—i—n—i—bj—i-eij —T—QZai(rUB—H”U)

j=1 i=1

from part (a). For the covariance B
EY; = u + Tiy

and

&3]
—~
-~
S
~—

Il

1 1
E I3 - b 17 I el b i’q
M+T+T§j(J+€J) B+ +T§j:(J+€J)

(N+Ti)(N+Tz")+Ti2E Db +eg)| [ Db +ej)

J J
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since the cross terms have expectation zero. Next, expanding the product in the second term
again gives all zero cross terms, and we have

_ 1
E(Yi i) = (u+7)(u+70) + 5 (rop),

and o
Cov(Y;.,Yy.) = o3 /r.

Finally, this gives

n _ 1 n
Var <Z aiYi.> = 3 Za?(ra% +ro?) + 22 aiapo% /v

i=1 >4
1 n n
- T[Za?o%%(Za»Q
i=1 =1
1 n
_ 2 2
- e >_a
i=1
1 n
= (P +oB)1-p) ) al.
=1

where, in the third equality we used the fact that ). a; = 0.
11.25 Differentiation yields

O RSS =2 [yi — (c+dz)] (-1)Z0 = ne+dX o=y
set
DRSS =23 [y — (c;4+dx)] (—2) B0 = el m+dY a? =3 2.
b. Note that nc+d> z; = > y; = ¢=§ — dz. Then

(y—dﬁc)z:zci —i—de? = Zmiyi and d(zxf —n:EQ) = szyl —inﬂ

which simplifies to d = > 2;(y; — 9)/ Y. (x; — z)%. Thus ¢ and d are the least squares
estimates.

c. The second derivatives are

SQQRSS ’aad =D 7 5 RSS—Zx

Thus the Jacobian of the second-order partials is

‘an‘i %ié :nzx?*(in)QZHZ(fmffc)Q>o.

11.27 For the linear estimator ZZ a;Y; to be unbiased for v we have

E (Zaﬁ@) :Zai(a%—ﬁxi) zoz:>2ai =1 and Zaixizo.

Since Vary_, a;Y; = 02>, a?, we need to solve:

minimize Z a? subject to Zai =1 and Zaixi = 0.
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A solution can be found with Lagrange multipliers, but verifying that it is a minimum is
excruciating. So instead we note that

1 _
Zaizléai:ﬁ_kk(bi_b)a

for some constants k, by, bo,...,b,, and

;aix¢:0:>k: Zz(bz*l;)(fz*f) and ai:ﬁi Zi(bifg)(xi—:f).

Now

= 2 _
1 T(b; — b 1
Za?_Z[_ z(bi — b) I I 7° 3 (bi = b)°
; ~ln 22i(bi = b)(xi — ) no [0 = b) (@ — 2)]2
since the cross term is zero. So we need to minimize the last term. From Cauchy-Schwarz we
know that B
>oi(bi —b)? < 1

D2 = 0) (i — D)2~ Xi(wi — @)

and the minimum is attained at b; = x;. Substituting back we get that the minimizing a; is
1 i(z;—i)

L — W, which results in ), a;Y; =Y — [z, the least squares estimator.

n

11.28 To calculate

o2 \ 2mo?

n/2

~ 1 3 o+ ’ ’
, B 4 8ilyi—(a+pz:))* /o
n}y%xL(U |y7aﬁ) = max ( ) e 2

take logs and differentiate with respect to o2 to get

d%:l? log L(02|y, &, ) _% n %Zi[%‘ (Sé): ﬁxi)]z_
Set this equal to zero and solve for o2. The solution is 2.
11.29 a.
Eé; = B(Y; — & — Ba;) = (a+ f2;) — o — Ba; = 0.
b.

Varé; = E[Y; — & — fz,)?
= E[(Y; —a—fr;) — (@ —a) —z(3-B)
= VarY, + Vara + x%VarB —2Cov(Y;, &) — 22,Cov (Y3, /3’) + 2x;Cov (&, B)

11.30 a. Straightforward algebra shows

& = §-p1
L W1t )

DT T (- 2)?
_ 1 #@—1) |
N Z{n S -2 7"
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Z(x,—T)

1
n Z(Ii7£)2 ’

b. Note that for ¢; = S>ei=1and > ¢;z; =0. Then

Ea =

Z Vary; =

22 2
g Ci'y

5
=
jo3
Il

and

2 _
EQ‘*

DR o
WS e T n
c. Write 8 = > d;y;, where
d = T — T

From Exercise 11.11,

Cov(d, )

Cov <Z CZY;,ZdZY;> = 0'2267;(12'
(z; — )

1 @@ -2 ] 1 Y-
Z{n z<x—x>2} 2 S Gy

EZCiY;' = Zci(a—i—ﬁxi = q,

(cross term = 0)

> E - gg - ch (@i — 2)?

&= [0ij = (cj + djmy)]Y;

11.31 The fact that

follows directly from (11.3.27) and the definition of ¢; and d;. Since & = ), ¢;Y;, from Lemma

11.3.2

COV(éi,@) = o2 ch [(51']' — (Cj + djxi)]
J

= 0'2 Ci_zcj(cj"_djxi)
J

2 Ci—g C?—l’ig dej
J J

Il
Q

Substituting for ¢; and d; gives

1 (x;— )z
¢ = ——
’ n S
1 z?
2 — —
ZCJ - n + Sm
J
l‘;f
Li chdj = _57 )
j T

and substituting these values shows Cov(é;, &) = 0. Similarly, for B,

COV(Q,B) = 02 dl - chdj — X; Zd?
j J

J
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with

4 =

2l = g

j
1
x; 2 = )

and substituting these values shows Cov(¢;, 3) = 0.
11.32 Write the models as

3y = a+frite
yi = o +0(2i-2)+e
= o +0z+e.

a. Since z = 0,
s 2 (@i =) (wi—y) > zlyi—9Y) 4
L Y o

b.
a = Y- BE,
& = g-Pz=y
since z = 0.
& ~n(a+ Bz,0%/n) = n(a,0?/n).
c. Write

Ny 1 4 i
o Zﬁyiﬁ :Z<523>yz

Then

AR — _ g2 l “i —
Cov(a, ) = —0o E n\522) 0,
since Y z; = 0.

11.33 a. From (11.23.25), 8 = p(oy/ox), so f = 0 if and only if p = 0 (since we assume that the
variances are positive).
b. Start from the display following (11.3.35). We have

52/S..  RSS/(n—2)
52
= (n-2) i
S2
= n—-2)— 1
(Snym — sgy)

and dividing top and bottom by Sy, Sy, finishes the proof.
c. From (11.3.33) if p = 0 (equivalently 8 = 0), then 3/(S/v/Syz) = v — 2 7/v/1— 12 has a

t,,—o distribution.
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11.34 a. ANOVA table for height data

Source df SS MS F
Regression 1 60.36 60.36 50.7
Residual 6 7.14 1.19

Total 7 67.50

The least squares line is § = 35.18 + .93x.
b. Since y; — § = (yi — 9:) + (Ji — §), we just need to show that the cross term is zero.

7
<
<
S
N
=
@)
&

I
<
=

I

M :

[ = @+ Bas)] [(@+ Ba) — 9]

1

i=1 i

[

ﬁ
I
-

(5= 9) = Blai = 9)| |Blai - 2)] (6 =g f)

(@i = D)~ ) = Y (i = 7

I
=™

N
Il
-

from the definition of B

A 52
S =) = B Y (-2 = g

11.35 a. For the least squares estimate:

S i~ 02 =23 (31— 0)a? =0

which implies
DT
b. The log likelihood is

logL——flog (2ma?) ~ % 22

and maximizing this is the same as the minimization in part (a).

c. The derivatives of the log likelihood are

d 1 o 9
d? —1 4
202 logL = 2 % z;,

so the CRLB is 0%/ Y, #}. The variance of 6 is

Vard = Var <Zzy ) > (Z?z;) ot =0/ Y at

so @ is the best unbiased estimator.
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11.36 a.
Ea = BE(Y -j3X) = E[E(Y—Bm)’()} = E[a+8X -pX] = Ea = o
Ef = EE@BX)] = Ef = 5
b. Recall
VarY = Var[E(Y|X)] + E[Var(Y]X)]
Cov(Y,Z) = Cov[E(Y|X),E(Z|X)] +E[Cov(Y, Z|X)].
Thus
Varé = E[Var(3|X)] = aQE[ZXZ?/SXX}
Varf = o%E[1/Sxx]
Cov(a,3) = E[Cov(d&,f(]X)] = —0?E[X/Sxx].

11.37 This is almost the same problem as Exercise 11.35. The log likelihood is
logL = —— log (2m0?) ~ 5,2 Z — Bx;)?

The MLE is Y, z;y:/ >, 27, with mean 8 and variance 02/ ", 2%, the CRLB.

11.38 a. The model is y; = 0z; + €;, so the least squares estimate of  is > x;y;/ > x? (regression
through the origin).

(3 Z7

(El‘z z) _ oz o,

> a? > a?
(Zzz z) _ fo(ng) - Zx? '
PIE (S a3)? (S a3)?

The estimator is unbiased.
b. The likelihood function is

L{olx) = };[1 (y;)! B [Tui!

%logL — 2 [_GZxH—Zyilog(Gxi) - logHyi!}
_ —sz‘f‘zxgxyj set

which implies

h_ Zyz
0= S
A Ox; A i Ox; 0
E6 = %xl =0 and Varfd = Var (gi) = (§x1)2 = S

0? 0 DY - Ui s 2T
logL—{—ZzH— 7 ]— 0 and E—@logL— 0

Thus, the CRLB is /> x;, and the MLE is the best unbiased estimator.
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11.39 Let A; be the set

o (. s 1 (20 — )2
Ai - avﬂ : (a + BxO'L) - (a + ﬁin):| / S ﬁ + (057) S tn—2,a/2m

Then P (N, A;) is the probability of simultaneous coverage, and using the Bonferroni In-
equality (1.2.10) we have

ziP(A,-)—( i(l——)— m-1)=1-a.
=1

i=1

11.41 Assume that we have observed data (y1, 1), (y2,22),- .., (Yyn—1,2Zn—1) and we have x,, but not
Yn. Let ¢(y;|z;) denote the density of Y;, a n(a + bx;, 0?).

a. The expected complete-data log likelihood is

n n—1
E <Z log (b(}’ilwi)) = log ¢(yilz:) + Elog ¢(Y1x,),

i=1 i=1

where the expectation is respect to the distribution ¢(y|x,) with the current values of the
parameter estimates. Thus we need to evaluate

1 1
Elog (Y |z,) = E [ =5 log(2707) — 5= (Y — m)? |,
2 207

where Y ~ n(uo,02). We have

E(Y — 1)? = E([Y — po] + [0 — 1)) = 05 + [0 — a]?,

since the cross term is zero. Putting this all together, the expected complete-data log
likelihood is

-3 log 2mo?) — Zl (a1 + bz;)]? —

0'(2) + [(ao + bo.’En) — (a1 + blxn)P
203

o2
= —710 (2m0?) (ay + b)) i
g(2mo7) Z; 1+ biay)]” — 207
if we define y,, = ag + bos,-
b. For fixed ag and by, maximizing this likelihood gives the least squares estimates, while the
maximum with respect to o3 is

52 Yoy — (a1 4 bixi)]? + of
2 .
n

So the EM algorithm is the following: At iteration ¢, we have estimates a(*), b®), and 62(®).
We then set 3 = a® + b®z,, (which is essentially the E-step) and then the M-step is
to calculate at1) and b(t1) as the least squares estimators using (y1,21), (y2,2),
(ynfla Tpo1), (yf(lt)a In)a and

n 2
s _ Tl = (@ + 0 ) 4 o
2+ _ .

n
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. The EM calculations are simple here. Since yr(f) =a® 4+ bWz, the estimates of a and b
must converge to the least squares estimates (since they minimize the sum of squares of
the observed data, and the last term adds nothing. For 62 we have (substituting the least
squares estimates) the stationary point

A2 2
= 0 = Oghgy

52 — E?:l[yi —(a+ ?’xi)]Q + 62
n

where o2, is the MLE from the n — 1 observed data points. So the MLE s are the same as
those without the extra x,,.

. Now we use the bivariate normal density (see Definition 4.5.10 and Exercise 4.45 ). Denote
the density by ¢(x,y). Then the expected complete-data log likelihood is

n—1

> log ¢(wi, yi) + Elog (X, yn),

i=1

where after iteration ¢ the missing data density is the conditional density of X given Y = y,,,
XIY =y~ 0 (1 + 000 o) = ). (1= 20

Denoting the mean by s and the variance by 03, the expected value of the last piece in
the likelihood is

Elog (X, yn)

1
= —5log2roXoy(1-p%)

el L e R e M =t

1
= —5log2moXoy(1-p%)

- ‘72(2)+(W>2_2p<(uo—ﬂx)(yn—m/))+(%—M/>2]'

2(1—p?) |ox ox oXO0Y oy

So the expected complete-data log likelihood is

n—1 2
a,

log ¢(zi,yi) + log ¢(1o, Yn) — =55

2 2= )%

The EM algorithm is similar to the previous one. First note that the MLEs of uy and o
are the usual ones, 3 and 62, and don’t change with the iterations. We update the other

estimates as follows. At iteration ¢, the E-step consists of replacing mg ) by

t+1 (t) t Ug?
:cgﬁ ) = by + ' )W(yn - 7).
Oy

Then u(;ﬂ) = 7 and we can write the likelihood as

1 Szz+0(2)_2p Say +@

1
——log(2m0%6% (1 — p?)) —
92 Og( TrO'XO—Y( P )) 2(1 _pg) 0’%{ UXa'Y a_%
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which is the usual bivariate normal likelihood except that we replace Sy, with S, + o8.
So the MLEs are the usual ones, and the EM iterations are

(1)
N g _
2 = i+ 0 e - 9)
0]
Y
g = g
J2(t41) S§2+(1—ﬁ2(t))6§((t)
UX =
n
t
AU = S

VS 4 (1 )2y,

Here is R code for the EM algorithm:

nsim<-20;
xdata0<-c(20,19.6,19.6,19.4,18.4,19,19,18.3,18.2,18.6,19.2,18.2,
18.7,18.5,18,17.4,16.5,17.2,17.3,17.8,17.3,18.4,16.9)
ydata0<-(1,1.2,1.1,1.4,2.3,1.7,1.7,2.4,2.1,2.1,1.2,2.3,1.9,2.4,2.6,
2.9,4,3.3,3,3.4,2.9,1.9,3.9,4.2)

nx<-length(xdata0) ;

ny<-length(ydata0) ;

#initial values from mles on the observed data#

xmean<-18.24167 ;xvar<-0.9597797 ; ymean<-2.370833;yvar<- 0.8312327;
rho<- -0.9700159;

for (j in 1:nsim) {

#This is the augmented x (02) data#
xdata<-c(xdataO,xmeant+rho*(4.2-ymean)/(sqrt (xvarxyvar)))
xmean<-mean(xdata) ;

Sxx<-(ny-1)*var(xdata)+(1-rho"2) *xvar

xvar<-Sxx/ny

rho<-cor(xdata,ydata0)*sqrt ((ny-1)*var(xdata)/Sxx)

}

The algorithm converges very quickly. The MLEs are

fix =18.24, [y =237, 6% =.969, &% =.831, p=—0.969.



Chapter 12

Regression Models

12.1 The point (2',¢’) is the closest if it lies on the vertex of the right triangle with vertices (2, y")
and (2/,a + bz’). By the Pythagorean theorem, we must have

@ =2+ (= (a+02)] + |2+ =] = (@ =)+ (0 — (a+b2))’.
Substituting the values of &’ and ¢’ from (12.2.7) we obtain for the LHS above
b(y'—bx’ —a) ? . b2 (y' —ba'—a) ? n b(y'—bx’ —a) 2 n y'—br—a)\>
142 1+b? 1+b? 1402
b +b1+b7+1
= (= (a+ba))? | —
W o)) |

= (y — (a+0ba")*.

12.3 a. Differentiation yields 9f/0¢; = —2(x; — &) — 208 [yi—(a+0&)] L0 = &1+ A3?) =
z;—AB(y;—«), which is the required solution. Also, 8 f/9¢? = 2(1 + AB3?) > 0, so this is a
minimum.

b. Parts i), ii), and iii) are immediate. For iv) just note that D is Euclidean distance between
(z1,vVy1) and (x2,vAys), hence satisfies the triangle inequality.
12.5 Differentiate log L, for L in (12.2.17), to get

0 —-n 1 A - R 2
——logl=—5 + —5—— [yl—(o?+ﬁ:ci)} .
do? o2 2(0%)2 1452 ; '
Set this equal to zero and solve for o2. The answer is (12.2.18).
12.7 a. Suppressing the subscript ¢ and the minus sign, the exponent is

(=) | (0488 _ (0?+520§ ) (e_k)? 4 B=larBl

2 2 2 2 2., 322
os lop o0} oZ+B3%0;

)

ola+o3B(y—a)

where k = = e Thus, integrating with respect to £ eliminates the first term.
€ 5
b. The resulting function must be the joint pdf of X and Y. The double integral is infinite,
however.

12.9 a. From the last two equations in (12.2.19),

which is positive only if S, > Szy/ﬁ Similarly,

1 ~ 1 ~ 1S
~2 242 2 zy
52 =28 _ (3262 _-_-g _ 32 "= ,
€ n vy ¢ n vy n ﬂ

which is positive only if Sy, > BSW.
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b. We have from part a), 63 > 0 = S, > Sy, /8 and 62 > 0 = Sy, > (S,,. Furthermore,

&g > 0 implies that S, and /3 have the same sign. Thus Sy, > |Sxy|/|3\ and Sy, > |B\|Sxy|
Combining yields

< i< \Smy|

12.11 a.

Cov(aY+bX,cY+dX)
= E(aY +bX)(cY +dX) — E(aY + bX)E(cY + dX)
E (acY?+(bc + ad) XY +bdX?) — E(aY + bX)E(cY + dX)
= acVarY + ac(EY)? + (be 4 ad)Cov(X,Y)
+(bc 4+ ad)EXEY + bdVarX + bd(EX)? — E(aY + bX)E(cY + dX)
= acVarY + (be + ad)Cov(X,Y) + bdVarX.

b. Identify a = BA\, b =1, ¢ =1, d = —f3, and using (12.3.19)
Cov(BAY;+X;,Y;—08X;) = BAVarY + (1 — A\3?)Cov(X,Y) — BVarX

BA (02 + B%0F) + (1 — AB%)Bog — B (03 + o)

= Bro?—Bo2 = 0

if \o2 = 05 (Note that we did not need the normality assumption, just the moments.)
c. Let W; = BAY; + X, V; =Y, + X,. Exercise 11.33 shows that if Cov( WZ,Vl) 0,
then v/n — 2r/v/1 —r2 has a t,,_o distribution. Thus v/n — 2r\(3)/\/1 — r3(8) has a t,,_»

distribution for all values of 3, by part (b). Also

P ({ﬂ: (71:27??\7;/2\5()@ < Fl,n_gﬂ}) =P ({(X Y): W < F17n_27a}> =1-a.

12.13 a. Rewrite (12.2.22) to get

(35— 20 cpzpr ) fy G

Uﬁ/n—Q

b. For § of (12.2.16), the numerator of r () in (12.2.22) can be written

ﬁ/\Syy—F(l—ﬁQ/\)Swy_ﬂSxy = 3*(ASay) + B(Srz — ASyy) + Say = XSy (5 — B) <ﬂ+ /\IB) '

Again from (12.2.22), we have
r3(6)
1-r3(B)
(BAS,yy+(1=B2X) Sy — Sy )
(82228, 4+20AS sy +Suz) (Syy—28Swy+02Swa) — (BASyy+(1—320) S0y —BSes)”’

and a great deal of straightforward (but tedious) algebra will show that the denominator
of this expression is equal to

(14 A8%)% (SyySex — S2,) -
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12.17 a.
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Thus
A\ 2 2
B A (#-8) (+35)
1-r3(6) (1-232)% (SyyS:—S2,)

A\ 2
(5-5) (HW (1+32)252,

2
55 1“52) 32 [(Sue = ASyy)* + 082, |

after substituting &% from page 588. Now using the fact that B and —1//\5 are both roots
of the same quadratic equation, we have

3 2
(14”}752)2 _ <l“+)\5)2 _ (85,=ASy) +4/\5§y.
B sz

Thus the expression in square brackets is equal to 1.

e tB(=/B) e 1

n(~a/p) =

1 4 eatB(—c/B) - 140 92

e tB((—a/B)+e) efe
m(=a/B)+ o) = e T T

and
e Pe ePe
1—7n((—a/B)—c)=1-— Tr e fe — 13 o5
d eotBr
%W(f) = ﬁm = pr(z)(1 = m(z)).
Because
71'(.13) _ ea+6z
1—nm(z) ’

the result follows from direct substitution.
Follows directly from (d).

. Follows directly from

2F(oz—i—ﬁyc) = f(a+ pz) and %F(a—l—ﬁx) =zf(a+ px).

Oa
For F(z) =e*/(1+€"), f(z) = F(z)(1 — F(x)) and the result follows. For F(z) = 7(z) of
(12.3.2), from part (c) if follows that ﬁ =0

The likelihood equations and solution are the same as in Example 12.3.1 with the exception
that here m(x;) = ®(a + fz;), where ® is the cdf of a standard normal.

. If the 0 — 1 failure response in denoted “oring” and the temperature data is “temp”, the

following R code will generate the logit and probit regression:

summary (glm(oring~temp, family=binomial(link=logit)))
summary (glm(oring~temp, family=binomial(link=probit)))
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For the logit model we have

Estimate Std. Error z value Pr(> |z|)
Intercept  15.0429 7.3719 2.041 0.0413
temp —0.2322 0.1081 —2.147 0.0318

and for the probit model we have

Estimate Std. Error z value Pr(> |z|)
Intercept  8.77084 3.86222 2.271 0.0232
temp —0.13504 0.05632 —2.398 0.0165

Although the coefficients are different, the fit is qualitatively the same, and the probability
of failure at 31°, using the probit model, is .9999.

12.19 a. Using the notation of Example 12.3.1, the likelihood (joint density) is

J ) * Lyt J j
H eorf’ﬁﬂiy Y 1 nj—Y; _ H # nj ea Z] yj*+ﬁ Z]‘ zjy]’f
1+ eotBz; 1+ e+ pBx; o 1 1+ eatPz; .
Jj=

Jj=1

By the Factorization Theorem, > y y; and > j z;y; are sufficient.
b. Straightforward substitution.

12.21 Since L log(m/(1 — ) = 1/(w(1 — 7)),

varlog (17 ) = (ﬂﬁ_ﬂ))? on L

Ezainzzai[a-l-ﬁwiﬁ-u(l—(s)} :5Zai$i:ﬁ

12.23 a. If Y a; =0,

for a; = x; — T.

E(Y—ﬁfc)z%Z[aJrﬁfcﬁru(l—é)]—6@:a+u(1—5),

i
so the least squares estimate a is unbiased in the model Y; = o + Sz; + ¢;, where o/ =
a+p(l—-9).

12.25 a. The least absolute deviation line minimizes
ly1 — (c+dz1)| + ly2 — (c +dz1)| + |yz — (c + dx3)] .

Any line that lies between (x1,y1) and (z1,y2) has the same value for the sum of the first
two terms, and this value is smaller than that of any line outside of (x1,y1) and (x2,ys).
Of all the lines that lie inside, the ones that go through (z3,y3) minimize the entire sum.

b. For the least squares line, a = —53.88 and b = .53. Any line with b between (17.9—14.4)/9 =
.39 and (17.9 — 11.9)/9 = .67 and a = 17.9 — 136D is a least absolute deviation line.

12.27 In the terminology of M-estimators (see the argument on pages 485 — 486), BL is consistent
for the [y that satisfies Eg, >, ¥(Y; — Boxi) = 0, so we must take the “true” § to be this
value. We then see that

ZZD(Yi — Bra;) — 0

as long as the derivative term is bounded, which we assume is so.
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12.29 The argument for the median is a special case of Example 12.4.3, where we take z; = 1

12.31

so 02 = 1. The asymptotic distribution is given in (12.4.5) which, for 02 = 1, agrees with
Example 10.2.3.

The LAD estimates, from Example 12.4.2 are & = 18.59 and 3 = —.89. Here is Mathematica
code to bootstrap the standard deviations. (Mathematica is probably not the best choice here,
as it is somewhat slow. Also, the minimization seemed a bit delicate, and worked better when
done iteratively.) Sad is the sum of the absolute deviations, which is minimized iteratively
in bmin and amin. The residuals are bootstrapped by generating random indices u from the
discrete uniform distribution on the integers 1 to 23.

1. First enter data and initialize

Needs["Statistics‘Master‘"]

Clear[a,b,r,ul

a0=18.59;b0=-.89;aboot=a0;bboot=b0;

y0={1,1.2,1.1,1.4,2.3,1.7,1.7,2.4,2.1,2.1,1.2,2.3,1.9,2.4,
2.6,2.9,4,3.3,3,3.4,2.9,1.9,3.9%};

x0={20,19.6,19.6,19.4,18.4,19,19,18.3,18.2,18.6,19.2,18.2,
18.7,18.5,18,17.4,16.5,17.2,17.3,17.8,17.3,18.4,16.9%};

model=a0+b0*x0;

r=y0-model;

u:=Random[DiscreteUniformDistribution[23]]

Sad[a_,b_] :=Mean[Abs [model+rstar-(a+b*x0)]]

bmin[a_] :=FindMinimum[Sad[a,b],{b,{.5,1.5}}]

amin:=FindMinimum[Sad[a,b/.bmin[a] [[2]]],{a,{16,19}}]

2. Here is the actual bootstrap. The vectors aboot and bboot contain the bootstrapped values.

B=500;

Do[
rstar=Table[r[[ul],{i,1,23}];
astar=a/.amin[[2]];
bstar=b/.bmin[astar] [[2]];
aboot=Flatten[{aboot,astar}];
bboot=Flatten[{bboot,bstar}],
{i,1,B}]

3. Summary Statistics

Mean[aboot]
StandardDeviation[aboot]
Mean [bboot]
StandardDeviation [bboot]

4. The results are Intercept: Mean 18.66, SD .923 Slope: Mean —.893, SD .050.



	intro.pdf
	ch1sol.pdf
	ch2sol.pdf
	ch3sol.pdf
	ch4sol.pdf
	ch5sol.pdf
	ch6sol.pdf
	ch7sol.pdf
	ch8sol.pdf
	ch9sol.pdf
	ch10sol.pdf
	ch11sol.pdf
	ch12sol.pdf

