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Preface

This solutions manual contains worked-out solutions to end-of-chapter problems in the
book. Over time, I plan to add additional solved problems.

When useful, I will include hints about how software tools like R or MATLAB can be
used. In fact, these tools have been used to carry out the required calculations, and there
may be numerical differences in the results, if you use these environments, keeping the best
numerical precision, rather than using paper and a pocket calculator, possibly introducing
some rounding. Needless to say, the important point of these problems is conceptual, as
they should support the understanding of the underlying financial concepts. Therefore, do
not bother about small inconsistencies (which would be important in real life, where you
have to stick with market conventions in rounding things!).

The manual is work-in-progress, so be sure to check back every now and then, to see
whether a new version has been posted.

This version is dated December 12, 2018.

As usual, for comments, suggestions, and criticisms, my e-mail address is given below.

Paolo Brandimarte
paolo.brandimarte@polito.it
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1
Financial Markets: Functions, Institutions,

and Traded Assets

1.1 SOLUTIONS

Problem 1.1 The expected returns are given by:

µ1 = 0.2× 0.03 + 0.2× 0.17 + 0.3× 0.28 + 0.2× 0.05 + 0.1× (−0.04) = 0.13

µ2 = 0.2× 0.09 + 0.2× 0.16 + 0.3× 0.10 + 0.2× 0.02 + 0.1× 0.16 = 0.10.

To find the standard deviations, we first compute

E[R2
1] = 0.2× 0.032 + 0.2× 0.172 + 0.3× 0.282 + 0.2× 0.052 + 0.1× (−0.04)2 = 0.0301

E[R2
2] = 0.2× 0.092 + 0.2× 0.162 + 0.3× 0.102 + 0.2× 0.022 + 0.1× 0.162 = 0.0124.

Then

σ1 =
√

E[R2
1]− µ2

1 =
√

0.0301− 0.102 = 0.1151

σ2 =
√

E[R2
2]− µ2

2 =
√

0.0124− 0.132 = 0.0488.

Finally, the correlation is

ρ1,2 =
Cov(R1, R2)

σ1 · σ2
=

E[R1 ·R2]− µ1 · µ2

σ1 · σ2
.

We need

E[R1 ·R2] = 0.2× 0.03× 0.09 + 0.2× 0.17× 0.16 + 0.3× 0.28× 0.10

+ 0.2× 0.05× 0.02 + 0.1× (−0.04)× 0.16 = 0.0139.

Therefore,

ρ1,2 =
Cov(R1, R2)

σ1 · σ2
=

0.0139− 0.13× 0.10

0.1151× 0.0488
= 0.1674.
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2 FINANCIAL MARKETS: FUNCTIONS, INSTITUTIONS, AND TRADED ASSETS

Problem 1.2 We sell (short) the 300 shares at e40 and we have to add the required
margin to the posted assets:

A = 300× 40× (1 + 0.50) = e18,000

The liabilities are 300 stock shares times price:

L = 300× P

To find the critical price, we must consider the ratio of equity, E = A − L and the floating
side, which is the liability side in this case:

E

L
=

18,000− 300× P
300× P

= 0.25

which yields

Plim =
18,000

300× 1.25
= e48.

As a reality check, this price is larger than the current one (e 40).

Problem 1.3 The stock price and the payoff are given in the following table:

State ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

S(T ) 20 25 30 35 40 45 50 55
max{S(T )− 40, 0} 0 0 0 0 0 5 10 15

Since states are equiprobable, the expected payoff value is just

0× 5 + 5 + 10 + 15

8
= 3.75.

The most important message here is that the expected value of a function is not the function
of the expected value:

max
{

E[S(T )]− 40, 0
}

= max{37.5− 40, 0} = 0 6= E
[

max{S(T )− 40, 0}
]
.

Problem 1.4 To find the divisor, we divide the value of the market portfolio by the current
index value, I0 = 118:

D =
50,000× 50 + 100,000× 30 + 80,000× 45

118
= 77,118.64

The index value in the next three days is:

I1 =
50,000× 52 + 100,000× 28 + 80,000× 43

77,118.64
= 114.63

I2 =
50,000× 48 + 100,000× 25 + 80,000× 40

77,118.64
= 105.03

I3 =
50,000× 45 + 100,000× 30 + 80,000× 39

77,118.64
= 108.53



2
Basic Problems in Quantitative Finance

2.1 SOLUTIONS

Problem 2.1 If you take the safe route, you earn $100,000 for sure. The expected value
of the fee you receive with the active strategy is

E[X] = 0× P{R < 0}+ 50,000× P{0 ≤ R < 0.03}
+ 100,000× P{0.03 ≤ R < 0.09}+ 200,000× P{0.09 ≤ R}.

If you use statistical tables providing vales for the standard normal CDF Φ(z)
.
= P{Z ≤ z},

you should standardized the return thresholds, with µ = 0.08 and σ = 0.10:

z1 =
0.00− 0.08

0.10
= −0.8

z2 =
0.03− 0.08

0.10
= −0.5

z4 =
0.09− 0.08

0.10
= 0.1.

Then, we find

π1
.
= P{R < 0} = Φ(z1) = 0.2119

π2
.
= {0 ≤ R < 0.03} = Φ(z2)− Φ(z1) = 0.0967

π3
.
= P{0.03 ≤ R < 0.09} = Φ(z3)− Φ(z2) = 0.2313

π4
.
= P(R ≥ 0.09) = 1− π1 − π2 − π3 = 0.4602.

Hence,

E[X] = 50,000× 0.0967 + 100,000× 0.2313 + 200,000× 0.4602 = 120,000

E[X2] = 50,0002 × 0.0967 + 100,0002 × 0.2313 + 200,0002 × 0.4602 = 20,961,494,844.79

std[X] =
√

E[X2]− E2[X] =
√

20,961,494,844.79− 120,0002 ≈ 81,000
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4 BASIC PROBLEMS IN QUANTITATIVE FINANCE

If you are risk neutral, the active strategy would be preferred, but there is a considerable
risk. If you are uncomfortable with standard deviation, you may also consider the probability
of regretting a decision. On the one hand, if we take chances, the probability that the risky
fee is less than the safe $100,000 is

P{risky fee < 100,000} = π1 + π2 = 0.3086.

On the other hand, if choose the safe alternative, we will regret our decision with a probability

P{risky fee > 100,000} = π4 = 0.4602.

Indeed, there is considerable uncertainty, and the choice is quite subjective. This may also
depend on the context, i.e., is this fee our only source of income?

R Hint. The problem is very easy to solve with the help of R:

> p1=pnorm(0,mean=0.08,sd=0.1);p1

[1] 0.2118554

> p2=pnorm(0.03,mean=0.08,sd=0.1)-p1;p2

[1] 0.09668214

> p3=pnorm(0.09,mean=0.08,sd=0.1)-pnorm(0.03,mean=0.08,sd=0.1);p3

[1] 0.2312903

> p4=1-pnorm(0.09,mean=0.08,sd=0.1);p4

[1] 0.4601722

> probs=c(p1,p2,p3,p4)

> bonus=c(0,50,100,200)*1000

> m=sum(probs*bonus);m

[1] 119997.6

> stdev=sqrt(sum(probs*bonus^2)-m^2);stdev

[1] 81006.66

The slight differences with respect to the above solution are due to numerical roundoff.

Problem 2.2 Since we add (jointly) normal variables, the portfolio return will be normal,
too:

Rp = 0.4R1 + 0.6R2

= 0.4× 0.03 + 0.6× 0.04 +
(
0.4× 1.2 + 0.6× 0.8

)
Rm + 0.4ε1 + 0.6ε2

= 0.036 + 0.96Rm + 0.4ε1 + 0.6ε2.

Then, since the specific risk factors have zero expected value,

E[Rp] = 0.036 + 0.96× µm = 0.036 + 0.96× 0.04 = 0.0744,

where µm = E[Rm]. To compute portfolio volatility σp = std(Rp), we take advantage of the
lack of correlation among risk factors:

σp =
√

0.962σ2
m + 0.42σ2

ε,1 + 0.62σ2
ε,2

=
√

(0.96× 0.25)2 + (0.4× 0.3)2 + (0.6× 0.4)2 = 0.36.

Note that, if you use the stock returns R1 and R2, you have to compute their covariance,
since

Var(Rp) = 0.42 ·Var(R1) + 2 · 0.4 · 0.6 · Cov(R1, R2) + 0.62 ·Var(R2).
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Using standardization and standard normal tables (or statistical software), we find

P

{
Z ≤ 0− 0.0744

0.36

}
= 1− Φ(0.2067) ≈ 0.4181.

Problem 2.3 The current price of the zero is

Pz(0) =
1000

(1 + 0.043)3
= $881.3473

so that the value of the portfolio of 100 bonds, i.e., the value of the asset side is

A = 100× Pz(0) = $88,134.73.

The liability side is 50% of this value,

L = $44,067.365.

To find the critical bond price, we set the ratio of equity to the floating side (asset side) to
the maintenance margin:

100× Plim − 44,067.365

100× Plim
= 0.20 ⇒ Plim = $550.8421,

which is lower than initial one, as we are in trouble when the value of our assets drops. The
corresponding yield is found by solving

1000

(1 + y∗)3
= 550.8421 ⇒ y∗ = 0.2199.

Given the problem data, we find a rather large value of yield, such that a margin call is
quite unlikely. Anyway, we observe that if we buy bonds on margin, we are in trouble when
interest rates rise. On the contrary, if we short-sell bonds, we are in trouble when interest
rates drop, as this implies an increase in bond prices.

Problem 2.4 If we sell the asset and close the (long) futures positions at TH , the cash
flow will be

S(TH) + φ1 ·
[
F1(TH)− F1(0)

]
+ φ2 ·

[
F2(TH)− F2(0)

]
,

where the positions in the futures, maturing at t = TF , are denoted by φ1 and φ2, respec-
tively. They will be negative in the case of a short position (taking a short position may
sound more natural when we have to sell an asset, but this depends on the involved correla-
tions). Also note that, actually, the two maturities of the futures contracts need not be the
same, and that we disregard marking-to-market.

The variance of this cash flow is

V = σ2
s + φ21σ

2
1 + φ22σ

2
2 + 2φ1σs,1 + 2φ2σs,2 + 2φ1φ2σ1,2,

where we denote variances of the three prices involved by σ2
s , σ2

1 , and σ2
2 , respectively, and

their covariances by σs,1, σs,2, and σ1,2. Note that, in terms of variance, nothing would
change if we consider the variation of the hedged portfolio value from t = 0 to t = TH ,

δS + φ1 · δF1 + φ2 · δF2,



6 BASIC PROBLEMS IN QUANTITATIVE FINANCE

where δS
.
= S(TH)−S(0), δF1

.
= F1(TH)−F1(0), and δF2

.
= F2(TH)−F2(0). We write the

first-order optimality conditions for the minimization of variance (a convex problem),

∂V

∂φ1
= 2φ1σ

2
1 + 2σs,1 + 2φ2σ1,2 = 0,

∂V

∂φ2
= 2φ2σ

2
2 + 2σs,2 + 2φ1σ1,2 = 0.

Rearranging a bit yields a system of linear equations,

φ1σ
2
1 + φ2σ1,2 = −σs,1,

φ1σ1,2 + φ2σ
2
2 = −σs,2,

which may be solved, e.g., by using Cramer’s rule:

φ1 =

∣∣∣∣−σs,1 σ1,2
−σs,2 σ2

2

∣∣∣∣∣∣∣∣ σ2
1 σ1,2

σ1,2 σ2
2

∣∣∣∣ = −σs,1 · σ
2
2 − σ1,2 · σs,2

σ2
1 · σ2

2 − σ2
1,2

,

φ2 =

∣∣∣∣ σ2
1 −σs,1

σ1,2 −σ2
s,2

∣∣∣∣∣∣∣∣ σ2
1 σ1,2

σ1,2 σ2
2

∣∣∣∣ = −σs,2 · σ
2
1 − σ1,2 · σs,1

σ2
1 · σ2

2 − σ2
1,2

.

NOTE: A common mistake is to ignore the correlation between the two hedging instruments
and use the familiar minimum variance hedging ratio. This is wrong in general but, if the
two futures prices are uncorrelated, i.e., σ1,2 = 0, we find two decoupled equations, whose
solution (apart from a change in sign) is in fact the same as in the case of a short position
in a single futures contract.

Problem 2.5 To begin with, we need the probability distribution of the portfolio return
Rp, which is normal with expected value

µp = 0.057,

since risk factors have zero expected value, and standard deviation

σp =
√

(3.4× 0.1)2 + (−2.6× 0.12)2 − 2× 0.48× 3.4× 2.6× 0.1× 0.12 + 0.22 = 0.3887.

Hence, for the first question (assuming we need to standardize and use the old statistical
tables...)

P{Rp > 0.025} = P

{
Z >

0.025− 0.057

0.3887

}
= P{Z > −0.0823} = Φ(0.0823) = 0.5328.

For the second question, loss has normal distribution with expected value

µL = −1,000,000× 0.057 = −57,000,

and standard deviation
σL = 1,000,000× 0.3887 = 388,700.

The quantile at probability level 95% is

V@R0.95 = µl + z0.95σL = −57,000 + 1.6449× 388,700 = $582,372.6.

This is the absolute V@R, which is reduced by the positive expected profit. If you use R,
you get a slightly different result due to numerical roundoff.
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Problem 2.6 The fair option value is

f0 = e−rT · (πufu + πdfd),

and the Laue of the process ft/Bt at time t = 0 is just

f0
B0

=
e−rT · (πufu + πdfd)

1
.

At time t = T

EQn

[
fT
BT

]
=

EQn
[fT ]

BT
=
πufu + πdfd

erT
=

f0
B0

.

Problem 2.7 This is essentially a pricing problem that we may solve by replication. We
have are three assets with linearly independent tradeoffs, which are able to span any payoff
in R3. The portfolio replicating the payoff of the insurance contract is found by solving the
following system of linear equations:

1 · h1 + 3 · h2 + 1.2 · h3 = 0,

3 · h1 + 1 · h2 + 1.2 · h3 = 0,

0 · h1 + 0 · h2 + 1.2 · h3 = 1,

where h1, h2, and h3 denote the respective holdings in the three primary assets. Solving the
system yields

h1 = − 1
4 , h2 = − 1

4 , h3 = 5
6 .

Hence, the current value of the replicating portfolio is

1 · h1 + 1 · h2 + 1 · h3 = − 1
4 −

1
4 + 5

6 = 1
3 ≈ 0.3333,

which must be the fair value of the insurance contract, by the law of one price.
There is no need to consider risk aversion, as the market is complete and we perfectly

replicate the payoff, state by state.
It is worth noting that the two risky assets are shorted, which make sense, since we must

profit from those short positions when the bad state occurs. Let us check how the replication
works in each state, noting that the 5

6 shares of the risk-free asset yield $1 in any state:

1. In state ω1, we need to buy 0.25 shares of both assets 1 and 2, to close the two short
positions. The cash we need, 0.25 × 1 + 0.25 × 3 = $1, is provided by the risk-free
asset. We break even, and the total payoff is zero.

2. In state ω2, we need to buy 0.25 shares of both assets 1 and 2, to close the two short
positions. The cash we need, 0.25 × 3 + 0.25 × 1 = $1, is provided by the risk-free
asset. We break even, and the total payoff is zero.

3. In state ω3, we do not need any cash to close the two short positions, since the two
risky assets are worth nothing, and we replicate the payoff of $1 with the cash provided
by the risk-free asset.
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2.2 ADDITIONAL PROBLEMS

Additional problem 2.1 Consider a market model with two states and two assets,
where:1

B(0) = 55, B(T, ω1) = 60, B(T, ω2) = 60,

S(0) = 45, S(T, ω1) = 45, S(T, ω2) = 40.

• Is there an arbitrage opportunity?

• Is there an arbitrage opportunity if shortselling is forbidden?

• Is there an arbitrage opportunity if shortselling is allowed, but there is a 5

Solution

Using our notation,

V =

[
55
45

]
Z =

[
60 45
60 45

]
.

Asset B (say, a zero) is clearly risk-free, with holding period return

60− 55

55
=

1

11
= 9.091%,

whereas asset S (say, a stock share) is risky and has a nonpositive return. In this static
framework, where interest rate risk plays no role, we may also interpret asset B as a bank
account with a risk-free holding period return of 9.091%. Indeed, when we account for the
initial price, asset B dominates asset S, and there is a clear arbitrage opportunity. For
instance, if we shortsell one stock share and invest the resulting cash in the bond, we hold
a portfolio

h =

[
45/55
−1

]
,

with initial value 0 and strictly positive terminal value:

VTh = 0, Zh =

[
4.0909
9.0909

]
.

Indeed, the cash grows to
45

55
· 60 = 49.0909

which is more than enough to close the short position in the stock (the price is 45 in state
ω1, the less favorable one). Using MATLAB, we may check the calculation and verify that
the LP problem (2.30) of the book is unbounded below:

>> V = [55; 45];

>> ZZ = [60 45; 60 40];

>> h = [45/55; -1];

>> dot(V,h)

ans =

1This problem is adapted from Problems 2.7 and 2.8 of G. Campolieti, R.N. Makarov, Financial Mathemat-
ics: A Comprehensive Treatment, CRC Press, 2014.
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0

>> ZZ*h

ans =

4.0909

9.0909

>> h = linprog(V’, -ZZ, zeros(2,1))

Problem is unbounded.

h =

[]

Using MATLAB again, we may easily verify that the state prices are not all positive:

>> Pi = ZZ’\V

Pi =

1.6667

-0.7500

>> h1 = ZZ\[1;0]

h1 =

-0.1333

0.2000

dot(V,h1)

ans =

1.6667

>> h2 = ZZ\[0;1]

h2 =

0.1500

-0.2000

>> dot(V,h2)

ans =

-0.7500

In the first MATLAB line, we solve the pricing equations:

B(T, ω1) · π1 +B(T, ω2) · π2 = B(0)

S(T, ω1) · π1 + S(T, ω2) · π2 = S(0)

which are the equality constraints in the dual of LP problem (2.30); note the transposition of
matrix Z. The dual variables π1 and π2 are state prices, i.e., the prices of a contingent claim
paying 1 if the corresponding state occurs, 0 otherwise. We can find them by replication.
The second MATLAB line solve the replicating equations

B(T, ω1) · h1 + S(T, ω1) · h2 = 1

B(T, ω2) · h1 + S(T, ω2) · h2 = 0,

which yield a replicating portfolio with holdings

h1 = −0.1333, h2 = 0.2

and initial value

B(0) · h1 + S(0) · h2 = 1.667,
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which is the state price π1 (by the law of one price). The initial value of the portfolio for
state ω2 is negative, and in fact there is an arbitrage opportunity.

If we forbid shortselling, we cannot take advantage of the arbitrage opportunity, since we
cannot shortsell the risky asset. In fact, if we add non-negativity constraints on the decision
variables of the LP, then this is not unbounded anymore (and has zero value):

>> h = linprog(V’, -ZZ, zeros(2,1),[],[],zeros(2,1))

Optimal solution found.

h =

0

0

With proportional transaction costs, when we shortsell, we obtain a smaller amount of
cash,

45× 0.95 = 42.75,

which, invested at the risk-free rate, yields only

42.75× 60

55
= 46.64.

In state ω2, to close the short position, we need to buy the risky asset for the following cash
price:

45.05 = 47.75,

which is larger than what we have. Transaction costs preclude the execution of the arbitrage
strategy.



3
Elementary Theory of Interest Rates

3.1 SOLUTIONS

Problem 3.1 In the problem statement, the choice of compounding is not specified. For
illustration purposes, we use annual compounding in the solution. Continuous compounding
would simplify some calculations, as we have seen in the book chapter.

Let us find the term structure in terms of annually compounded rates, by inverting the
bond pricing formula for a zero,

Z(0, T ) =
F[

1 + r1(0, T )
]T ⇒ r1(0, T ) =

[
F

Z(0, T )

]1/T

− 1,

which gives

r1(0, 1) =

[
1000

947.87

]
− 1 = 5.5%,

r1(0, 2) =

[
1000

885.81

]1/2

− 1 = 6.25%,

r1(0, 3) =

[
1000

815.15

]1/3

− 1 = 7.05%,

r1(0, 4) =

[
1000

757.22

]1/4

− 1 = 7.2%.

The forward rates are found from the no-arbitrage relationship

[
1 + r1(0, T )

]T
=
[
1 + r1(0, T − 1)

]T−1 · [1 + f1(0, T − 1, T )
]
.

11
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Inverting the above condition, we find:

f1(0, 0, 1) ≡ r1(0, 1) = 5.5%,

f1(0, 1, 2) =

[
1 + r1(0, 2)

]2[
1 + r1(0, 1)

] − 1 = 7.01%,

f1(0, 2, 3) =

[
1 + r1(0, 3)

]3[
1 + r1(0, 2)

]2 − 1 = 8.67%,

f1(0, 3, 4) =

[
1 + r1(0, 4)

]4[
1 + r1(0, 3)

]3 − 1 = 7.65%.

The Macauley duration of a zero maturing in two years is two years. If we use annual
compounding again, we have the approximate relationship

δP

P
≈ − 1

1 + y1
·Dmac · δy1.

In our case, the current value of the portfolio is Π = N · Z(0, 2), where N is the number of
bonds, and loss is

L = −δΠ ≈ Π · Dmac

1 + y1
· δy1.

Since V@R0.95 is the quantile of loss at probability level 0.95, we have

V@R0.95 = z0.95 · σL,

where

σL ≈ Π · Dmac

1 + y1
· σy1 = 100,000× 2

1 + 0.0625
× 0.01 ≈ 1882.35.

Hence,

V@R0.95 = 1.6449 · 1882.35 = 3096.28.

In this specific case, we might also find the “worst” yield with confidence level 0.95,

y∗ = 0.0625 + 1.6449× 0.01 = 7.89%,

and reprice the bond

P ∗z =
1000

(1 + 0.0789)2
= 859.0879.

Therefore, the exact value-at-risk is just the number of bonds times the loss on each bond:

100,000

885.81
×
(
885.81− 859.0879

)
= 3016.69,

which is smaller than the first-order approximation due to the convexity effect. Clearly,
this exact approach applies to this very simple case, but not when multiple assets and risk
factors are involved.
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Problem 3.2 Using continuously compounded spot rates, the bond price would be

Pc = 50 · e−r(0,1)·1 + 50 · e−r(0,2)·2 + 1050 · e−r(0,3)·3,

but, since we use continuous compounding, we may express the spot rates as averages of the
forward rates:

r(0, 1) = f(0, 0, 1),

r(0, 2) =
f(0, 0, 1) + f(0, 1, 2)

2
,

r(0, 3) =
f(0, 0, 1) + f(0, 1, 2) + f(0, 2, 3)

3
.

Thus, we may just use the forward rates directly and find

Pc = 50 · e−0.037 + 50 · e−(0.037+0.045) + 1050 · e−(0.037+0.045+0.051) = $1013.49.

What we actually do is very simple to interpret: We successively discount from year t to
year t− 1 by the forward rate f(0, t− 1, t).

Problem 3.3 We should solve the equation

102 =
6

1 + y1
+

106

(1 + y1)2
,

which we rewrite as the polynomial equation

106z2 + 6z − 102 = 0,

by the variable substitution

z =
1

1 + y1
.

We find the two roots

−3±
√

32 + 106× 102

106
=

{
−1.0097
0.9531

.

The second root yields the positive solution

y1 =
1

0.9531
− 1 = 4.93%.

Problem 3.4 A portfolio consisting of the risky bond and the insurance is equivalent to
a risk-free bond, whose price is

Pc =
90

0.07
+

90

0.072
+

1090

0.073
= e1052.49.

If we buy the risky bond and pay for the insurance, the total cash outflow is is

960 + 200 = e1160 > 1052.49.

Hence, the insurance is too expensive. If we hold the corporate bond and wonder about
buying the insurance, we would be better off by selling the risky bond and buying a risk-free
one, paying only the difference, 1052.49− 960 = e92.49.
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Problem 3.5 The expected value of the portfolio is

E
[
Π(ω)

]
= E

[
10Pz(ω) + 20Pc(ω)

]
= 10 · E

[
Pz(ω)

]
+ 20 · E

[
Pc(ω)

]
,

where Pz(ω) and Pc(ω) are the random prices of the zero and the coupon-bearing bond,
respectively. The expected price of the zero is

E
[
Pz(ω)

]
= 0.2× 1000

1.0433
+ 0.5× 1000

1.0353
+ 0.3× 1000

1.0283
= e903.3888.

The expected price of the coupon-bearing bond is

E
[
Pc(ω)

]
= 0.2×

(
40

1.031
+

1040

1.0382

)
+ 0.5×

(
40

1.032
+

1040

1.0332

)
+ 0.3×

(
40

1.030
+

1040

1.0292

)
= e1013.8081.

Hence, the expected value of the portfolio is

E
[
Π(ω)

]
= 10× 903.3888 + 20× 1013.8081 = $29,310.05.

The fundamental message here is that we need the expected value of nonlinear functions of
the interest rates, which is not the function of the expected value. It is a wrong procedure
to find the expected rates and then price the bonds.

Furthermore, we are considering instantanoues changes in the underlying risk factors. We
might wish to account for the passage of time as well.

Problem 3.6 As first step, we need the (annually compounded) spot rates:

r1(0, 1) = f1(0, 0, 1) = 3%

r1(0, 2) =
√

1.03× 1.04− 1 = 3.4988%

r1(0, 3) = (1.03× 1.04× 1.05)
1/3 − 1 = 3.9968%.

In passing, we notice that the spot rates are quite close to the arithmetic averages of the
forward rates (3.5% and 4%, respectively), but differ a bit because we are assuming annual,
rather than continuous compounding.

Let us find the two current bond prices, given the current spread:

P1(2.3%) =
1000

(1 + 0.039968 + 0.023)3
= e832.6059

P2(2.3%) =
40

1 + 0.03 + 0.023
+

1040

(1 + 0.034988 + 0.023)2
= e967.1069.

Since we have a single risk factor, to find the exact value-at-risk, we may consider the “worst”
spread s∗ with confidence level 99%. The distribution of the additive shock on the spread
is uniform, so

s∗ = 0.023 +
[
− 0.01 + 0.99 · [0.02− (−0.01)]

]
= 0.0427.

The new bond prices are (neglecting the passage of time):

P1(4.27%) =
1000

(1 + 0.039968 + 0.0427)3
= e787.9781

P2(4.27%) =
40

1 + 0.03 + 0.0427
+

1040

(1 + 0.034988 + 0.0427)2
= e932.7514.

Hence, the worst case loss with confidence level 99% is

V@R0.99 = 53,000× 832.6059− 787.9781

832.6059
+ 93,000× 967.1069− 932.7514

967.1069
= e6144.54.
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Problem 3.7 A floater featuring a spread δ pays a coupon

Ci = F · r2(Ti−1, Ti) + δ

2

at time Ti. By the linearity of pricing, we may decompose this bond into the sum of a floater
without a spread and an annuity paying F · δ/2 every six months:

Pf (t, T ; δ) = Pf (t, T ) +
δ · F

2

m∑
i=1

Z(t, Ti),

where Pf (t, T ) is the price of a floater with no spread and the bond matures at time T = Tm.

Problem 3.8 A reverse floater pays a coupon

Ci = max

{
0, F · S − r2(Ti−1, Ti)

2

}
at time Ti, where S is given reference rate. If S is not large enough, we cannot rule out
the possibility that S− r2(Ti−1, Ti) < 0. If we neglect this, using the decomposition trick of
Problem 3.7, we may decompose the reverse floater into the difference of bonds. In this case,
however, we must pay attention to the nominal values. When we subtract the price Pf (t, T )
of the floater (with no spread), we are implicitly subtracting the nominal value. Thus, we
should subtract Pf (t, T ) from the price Pc(t, T ;S) of a coupon bearing bond with coupon
rate S, which cancels the two nominals; then, we must add the price of a zero maturing at
T = Tm, with face value F :

Prevf(t, T ;S) = FZ(t, T ) + Pc(t, T : S)− Pf (t, T ).

The nonlinear coupon rate introduces an optionality component, which requires the pricing
machinery of interest rate derivatives.





4
Forward Rate Agreements, Interest Rate

Futures, and Vanilla Swaps

4.1 SOLUTIONS

Problem 4.1 To price the bond, we need the rates for 6 and 12 months. We already know
r(0, 0.5) = 0.047, with continuous compounding. To find r(0, 1), it is convenient to work
with continuous compounding, which requires transforming the forward rates implied by the
futures quotes to continuously compounded rates (keep in mind that we are neglecting the
difference between forward and futures rates). The quotes give

f4(0, 6/12, 9/12) = (100− 94.9)/100 = 0.051,

f4(0, 9/12, 1) = (100− 94.5)/100 = 0.055.

Note that the futures contract maturing in six months provides us with the rate applying
to a quarter starting in six months. Hence,

f(0, 6/12, 9/12) = 4 log
(
1 + 0.051/4

)
= 5.068%

f(0, 9/12, 1) = 4 log
(
1 + 0.055/4

)
= 5.463%.

To find the spot rate for a maturity of 1 year, we may directly consider the growth factor

er(0,1)·1 = er(0,0.5)·0.5 · ef(0,0.5,0.75)·0.25 · ef(0,0.75,1)·0.25,

which implies

r(0, 1) =
0.047

2
+

0.05068

4
+

0.5463

4
= 4.983%.

Hence, the bond price is

Pc = 3× e−0.047×0.5 + 103× e−0.04983×1 = 100.92.

Problem 4.2 Since default occurs at month 28, the floating rate was reset four months
ago. There are four payments left, at months 30, 36, 42, and 48 with respect to the start

17
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date. With respect to the date of default, the first payment will occur in two months, and
we may price the fixed-rate bond as follows:

Pfixed = 0.4e−0.05×2/12 + 0.4e−0.05×8/12 + 0.4e−0.05×14/12 + 20.4e−0.05×20/12 = 19.9298,

where we measure money in $ millions (2% of 20 is 0.4, i.e., $400,000). The next payment
on the floating leg will be $700,000; hence, the value of the floating-rate leg is

Pfloat = e−0.05×2/12 ·
(
0.7 + 20

)
= 20.5282.

From the bank’s viewpoint, which receives floating rate, the value of the swap is

Pfloat − Pfixed = 20.5282− 19.9298 = 0.5984,

corresponding to a loss of $598,400.
We may also use decomposition into FRAs. The net cash flow for the FRA corresponding

to the next payment, in two months, is

CF2 = 20×
(
0.035− 0.02

)
= 0.3,

in $ millions. Since the term structure is flat, the forward rates are just 5% with continuous
compounding, corresponding to

2×
(
e0.05/2 − 1

)
= 5.063%

with semiannual compounding. Hence, the net cash flows are “forecasted” as

CF8 = CF14 = CF20 = 20×
(
0.025315− 0.02

)
= 0.1063.

By discounting net cash flows, we find

0.3× e−0.05×2/12 + 0.1063×
(
e−0.05×8/12 + e−0.05×14/12 + e−0.05×20/12

)
= 0.5984,

as before.



5
Fixed-Income Markets

5.1 SOLUTIONS

Problem 5.1 We notice that the price of the callable bond, despite the large coupon rate
with respect to prevailing rates, is below par, reflecting the value of the call option. To
find the value of the call option, we need the price of the corresponding noncallable bond,
which in turn requires an estimate of the risk-free rate r(0, 2) (the other rates are given).
We consider 3.5% as the swap rate for a swap spanning two years (this is the average of bid
and ask rates for that maturity; in the problem text, I have used “offer” rather than “ask”
by mistake).

Hence, assuming a notional of 100, the fixed payment for the swap is 3.5/2 every six
months. We find r(0, 2) by solving the following equation:

3.5

2
e−0.023×0.5 +

3.5

2
e−0.028×1 +

3.5

2
e−0.032×1.5 +

(
100 +

3.5

2

)
e−r(0,2)×2 = 100,

which gives r(0, 2) = 3.4846%. The price of the noncallable bond is, assuming F = 100,

P = 5e−0.023×0.5 + 5e−0.028×1 + 5e−0.032×1.5 + 105e−0.034846×2 = 112.5020.

Hence, the value of the call is

112.5020− 97.12 = e15.3820.

Problem 5.2 When an investor buys a puttable bond, she is buying a bundle consisting
of the put option and the plain bond. Unlike the case of the callable bond, the puttable
bond is more expensive than the plain one, as the investor is buying the put option (rather
than writing the call option embedded in a callable bond). Hence, the value of the put is

Vput = Pputable − Pplain.

19





6
Interest Rate Risk Management

6.1 SOLUTIONS

Problem 6.1 The present value of the liability, at the current level of yield, is

L(6%) =
10,000

1.065
= $7472.58,

and the bond price, assuming nominal value F = $10,000, is

P (6%) =
700

0.06
·
(

1− 1

1.066

)
+

10,000

1.066
= $10,491.73.

The value of equity is
E = N × P − L,

which is zero if we hold

N =
7472.58

10,491.73
= 0.7122

bonds (we assume asset divisibility).
We may evaluate equity under a different yield. If yield goes up by 100 basis points, we

have

L(7%) =
10,000

1.075
= $7129.86,

P (7%) =
700

0.07
·
(

1− 1

1.076

)
+

10,000

1.076
= $10,000.00,

E = 0.7122× 10,000.00− 7129.86 = $(−7.5092).

If yield goes down by 100 basis points, we have

L(5%) =
10,000

1.055
= $7835.26,

P (5%) =
700

0.05
·
(

1− 1

1.056

)
+

10,000

1.056
= $11,015.14,

E = 0.7122× 11,015.14− 7835.26 = $10.1083.

21
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The hedge is not working too bad, even though it is not quite perfect. To see why, let us
calculate the duration of the bond. If we use the definition,

D =
1

10,491.73
·
(

700

1.06
+

2 · 700

1.062
+

3 · 700

1.063
+

4 · 700

1.064
+

5 · 700

1.065
+

6 · 10,700

1.066

)
= 5.1242.

We may use the analytical formula

Dmac = 1 +
1

0.06
+

6 · (0.06− 0.07)− (1 + 0.06)

0.07 ·
[
(1 + 0.06)6 − 1

]
+ 0.06

,

which gives the same result. Thus, the bond duration does not match the duration of the
liability exactly, but it gets quite close, which explains the rather good performance.

We might also assess performance by simulating cash flows over time, but to do so we need
a future interest rate scenario. If we assume, as we did, an immediate jump in yield without
any further change, we would obtain an equivalent result. The generation of stochastic
interest rate scenarios would require a dynamic model and a Monte Carlo simulation. This
would also allow us to deal with a proper term structure, but requires modeling assumptions
and may be computationally demanding.

Problem 6.2 The prices of the two bonds are, respectively,

P1 =
1000

1.047
= 759.92,

P2 =
50

1.04
+

50

1.042
+

1050

1.043
= 1027.75,

and the Macauley durations are

Dmac,1 = 7,

Dmac,2 =
1

1027.75
·
(

1 · 50

1.04
+ 2 · 50

1.042
+ 3 · 1050

1.043

)
= 2.8615.

Let us find the weights of the two bonds in the portfolio, matching the duration of the
liability:

w1 + w2 = 1,

7w1 + 2.8615w2 = 5,

which yields
w1 = 0.5167, w2 = 0.4833.

Since the present value of the liability is

L =
20,000

1.045
= e16,438.54,

we should buy

N1 =
0.5167× 16,438.54

759.92
= 11.18, N2 =

0.4833× 16,438.54

1027.75
= 7.73

bonds of each type. Clearly, some rounding is needed, and the hedge will have to be
rebalanced after the coupon-bearing matures (actually, earlier than that, since rates are
going to change).
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The duration of a coupon-bearing bond maturing in six years would be

Dmac,3 =
1 · 50

1.04
+ 2 · 50

1.042
+ 3 · 50

1.043
+ 4 · 50

1.044
+ 5 · 50

1.045
+ 6 · 1050

1.046
50

1.04
+

50

1.042
+

50

1.043
+

50

1.044
+

50

1.045
+

1050

1.046

= 5.3489,

and the corresponding system,

w1 + w3 = 1,

7w1 + 5.3489w3 = 5,

would yield

w1 = −0.2113, w3 = 1.2113.

Since these two bond durations do not bracket the target duration, we should sell a bond
short, which may be expensive and not easy to accomplish over a long time span.

Problem 6.3 The prices of the two bonds are, respectively,

P1(3.5%) =
1000

1.0358
= 759.41,

P2(3.5%) =
40

1.035
+

40

1.0352
+

40

1.0353
+

1040

1.0354
= 1018.37,

where we emphasize the dependence on the interest rate. The two Macauley durations are

Dmac,1 = 8,

Dmac,2 =
1

1018.37
·
(

1 · 40

1.035
+ 2 · 40

1.0352
+ 3 · 40

1.0353
+ 4 · 1040

1.0354

)
= 3.7774.

Let us find the weights of the two bonds in the portfolio, matching the duration of the
liability:

w1 + w2 = 1,

8w1 + 3.7774w2 = 6,

which yields

w1 = 0.5264, w2 = 0.4736.

The present value of the liability is

L(3.5%) =
30,000

1.0356
= e24,405.02,

and the number of bonds in the immunized portfolio are

N1 =
0.5264× 24,405.02

759.41
= 16.92, N2 =

0.4736× 24,405.02

1018.37
= 11.35.

By construction, equity is zero at the current level of yield:

E(3.5%) = N1 · P1(3.5%) +N2 · P2(3.5%)− L(3.5%) = 0.
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If there is an upshift of 50 basis points, we find:

P1(4%) =
1000

1.048
= 730.69

P2(4%) =
40

1.04
+

40

1.042
+

40

1.043
+

1040

1.044
= 1000,

L(4%) =
30,000

1.046
= 23,709.44,

E(4%) = N1 · P1(4%) +N2 · P2(4%)− L(4%) = e1.29.

The hedge worked well, and equity is slightly increased because of a convexity effect.
If there is a downshift of 50 basis points, we find:

P1(3%) =
1000

1.038
= 789.41

P2(3%) =
40

1.03
+

40

1.032
+

40

1.033
+

1040

1.034
= 1037.17,

L(3%) =
30,000

1.036
= 25,124.53,

E(3%) = N1 · P1(3%) +N2 · P2(3%)− L(3%) = e1.37.

NOTE ABOUT CONVEXITY. In this problem, since we are using discretely com-
pounded rates, we cannot use the formulas for convexity that are given in the book, as they
apply to continuous compounding. Derivatives of exponential are nice, but here we have to
use the following reasoning:

P (y1) =
∑
t

Ct
(1 + y1)t

P ′(y1) = −
∑
t

tCt
(1 + y1)t+1

P ′′(y1) =
∑
t

t(t+ 1)Ct
(1 + y1)t+2

=
1

(1 + y1)2

∑
t

t(t+ 1)Ct
(1 + y1)t

,

which leads to the following expression for bond convexity:

C =
1

P (y1) · (1 + y1)2
·
∑
t

t(t+ 1)Ct
(1 + y1)t

In this case, the convexity of a zero is

T (T + 1)

(1 + y1)2
,

rather than just T 2, as is the case with continuous compounding. Here, we avoid introducing
different definitions in the vein of Macauley or modified duration. Also note that when
matching duration, we may use either duration, as this just implies multiplying both sides
of the duration matching equation by the same factor. It is also possible to verify that
the convexity of a linear combination of bonds is the corresponding linear combination of
convexities (if we apply the same yield to all bonds).
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Let us introduce the third bond, with the following price, duration, and convexity:

P3(3.5%) =
1000

1.0353
= 901.94,

Dmac,3 = 3,

C3 =
3× 4

1.0352
= 11.2021.

The convexities of the first two bonds are:

C1 =
8× 9

1.0352
= 67.2128

C2 =
1

1018.37× 1.0352
·
(

1 · 2 · 40

1.035
+ 2 · 3 · 40

1.0352
+ 3 · 4 · 40

1.0353
+ 4 · 5 · 1040

1.0354

)
= 17.2887.

To match both duration and convexity, we solve the linear system1

w1 + w2 + w3 = 1,

8w1 + 3.7774w2 + 3w3 = 6,

67.2128w1 + 17.2887w2 + 11.2021w3 =
6 · 7

1.0352
= 39.2074,

which gives

w1 = 0.2678, w2 = 2.1364, w3 = −1.4042,

and

N1 =
0.2678× 24,405.02

759.41
= 8.61,

N2 =
2.1364× 24,405.02

1018.37
= 51.20,

N3 =
−1.4042× 24,405.02

901.94
= −38,

where we should note the short position in the third bond.
In the first scenario, the price of the zero maturing in three years is 889.00, and equity

is −0.0034. In the second scenario, the price of the zero maturing in three years is 915.14,
and equity is 0.0036. Indeed, we observe a more stable equity, even though the advantage
is questionable in this specific case, especially given the need for a short position in a bond
(which could be synthesized by interest rate derivatives, though).

Problem 6.4 Note: This is the same as Problem 3.6 and was included by mistake. The
only difference is the level of confidence in value-at-risk, which here is 97%, rather than 99%.
We repeat the solution here, for the sake of convenience.

1In the convexity matching equation, we could multiply everything by 1.0352 to be somewhat more consistent
with the duration matching equation. This is inconsequential.
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As a first step, we need the (annually compounded) spot rates:

r1(0, 1) = f1(0, 0, 1) = 3%

r1(0, 2) =
√

1.03× 1.04− 1 = 3.4988%

r1(0, 3) = (1.03× 1.04× 1.05)
1/3 − 1 = 3.9968%.

The two current bond prices, given the current spread, are

P1(2.3%) =
1000

(1 + 0.039968 + 0.023)3
= e832.6059

P2(2.3%) =
40

1 + 0.03 + 0.023
+

1040

(1 + 0.034988 + 0.023)2
= e967.1069.

Since we have a single risk factor, to find the exact value-at-risk, we may consider The
distribution of the additive shock on the spread is uniform, so the “worst” spread s∗ with
confidence level 97% is

s∗ = 0.023 +
[
− 0.01 + 0.97 · [0.02− (−0.01)]

]
= 0.0421.

The new bond prices are (neglecting the passage of time):

P1(4.21%) =
1000

(1 + 0.039968 + 0.0421)3
= e789.2896

P2(4.21%) =
40

1 + 0.03 + 0.0421
+

1040

(1 + 0.034988 + 0.0421)2
= e933.7702.

Hence, the worst case loss with confidence level 97% is

V@R0.97 = 53,000× 832.6059− 789.2896

832.6059
+ 93,000× 967.1069− 933.7702

967.1069
= e5963.09.

Problem 6.5 This problem requires quite a bit of calculations, and it is best solved using
a tool like R, Excel, or MATLAB. Here we use MATLAB, but any other tool will do.

As a first step we find the features of the bond, whose interest rate risk we want to hedge.

% Coupon-bearing bond, maturing in 5 years, semiannual coupons

F=10000;

c=0.05;

r = 0.03; % flat rate 3%

cf = [repmat(c/2,9,1); 1+c/2]*F; % cash flows from bond

times = 0.5*(1:10)’; % cash flow times

df = exp(-times*r); % discount factors

P = dot(cf,df); % bond price

Pdur = sum(times.*df.*cf)/P; % bond duration

Pdolldur = Pdur*P; % dollar duration

Pfolio = P % current value of unhedged portfolio

We find:

• Bond price P0 = 10,911.25, the current value of the unhedged portfolio

• Bond duration D = 4.5118
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• Bond dollar duration D$ = 49,229.34

Then we find the features of the hedging instrument, a zero maturing in six months:

% zero maturing in six months, our hedging instrument

Fzero = 10000;

Pzero = Fzero*df(1);

Hdur = 0.5;

Hdolldur = Hdur*Pzero;

phi = - Pdolldur/Hdolldur;

• Zero price Z0 = 9851.12

• Zero duration Dz = 0.5

• Zero dollar duration D$
z = 4925.56

The hedge requires a position

φ = −D
$

D$
z

= −9.9947

in the hedging instrument.
Let us apply the parallel shift, from 3% to 4%:

% What if we have a parallel shift of 100 basis points ?

rnew = r + 0.01;

dfnew = exp(-times*rnew);

Pnew = dot(cf,dfnew);

Pzeronew = Fzero*dfnew(1);

PfolioNew = Pnew + phi * (Pzeronew - Pzero)

retPar = (PfolioNew-Pfolio)/Pfolio*100

The new value of the hedged portfolio is

10,430.59− 9.9947× (9801.99− 9851.12) = 10,921.65,

and the return is
10,921.65− 10,911.25

10,911.25
= 0.0954%.

We have a small gain, and the hedged worked well.
Now, let us apply the nonparallel shift:

% Now a nonparallel shift

rnew = r + linspace(0,0.02,10)’;

dfnew = exp(-times.*rnew);

Pnew = dot(cf,dfnew);

Pzeronew = Fzero*dfnew(1);

PfolioNew = Pnew + phi * (Pzeronew - Pzero)

retNONPar = (PfolioNew-Pfolio)/Pfolio*100

The new value of the hedged portfolio is

10,013.43− 9.9947× (9851.12− 9851.12) = 10,013.43,
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and the return is
10,013.43− 10,911.25

10,911.25
= −8.2283%.

We have a large loss, which is not quite surprising: The relevant rate for the zero did not
change at all, so the hedging instrument is ineffective.

Let us repeat, using a zero maturing in three years as the hedging instrument:

% CHANGE THE ZERO: maturity 3 years

Fzero = 10000;

Pzero = Fzero*df(6);

Hdur = 3;

Hdolldur = Hdur*Pzero;

phi = - Pdolldur/Hdolldur;

rnew = r + linspace(0,0.02,10)’;

dfnew = exp(-times.*rnew);

Pnew = dot(cf,dfnew);

Pzeronew = Fzero*dfnew(6);

PfolioNew = Pnew + phi * (Pzeronew - Pzero)

retNONPar = (PfolioNew-Pfolio)/Pfolio*100

The new value of the hedged portfolio (note the different hedging ratio) is

10,013.43− 1.7955× (8839.69− 9139.31) = 10,551.41,

and the return is
10,551.41− 10,911.25

10,911.25
= −3.2979%.

We have a loss again, since we hedge a single risk factor, but this second hedge is definitely
more effective than the previous one.

Let us repeat, using a zero maturing in five years as the hedging instrument:

% CHANGE THE ZERO: maturity 5 years

Fzero = 10000;

Pzero = Fzero*df(10);

Hdur = 5;

Hdolldur = Hdur*Pzero;

phi = - Pdolldur/Hdolldur;

rnew = r + linspace(0,0.02,10)’;

dfnew = exp(-times.*rnew);

Pnew = dot(cf,dfnew);

Pzeronew = Fzero*dfnew(10);

PfolioNew = Pnew + phi * (Pzeronew - Pzero)

retNONPar = (PfolioNew-Pfolio)/Pfolio*100

The new value of the hedged portfolio (note the different hedging ratio) is

10,013.43− 1.1439× (7788.01− 8607.08) = 10,950.39,

and the return is
10,950.39− 10,911.25

10,911.25
= 0.3588%.

Given the increased duration of the zero, now its drop in price is large enough to compensate
the loss on the coupon-bearing bond.



7
Decision-Making under Uncertainty: The

Static Case

7.1 SOLUTIONS

Problem 7.1 Let us denote the risky (multiplicative) gain by R̃, the risk-free gain by
Rf = 1 + rf , where rf is the holding period riskless return, and write the future wealth as
a function of q:

W̃T = q · R̃+
(
W0 − q

)
·Rf = q · (R̃−Rf ) +W0Rf .

Note that we are using multiplicative gains to avoid terms like (1 + · · · ), but we could use
returns as well. If the utility function is u(x) = −e−αx, the expected utility is

E
[
u
(
W̃T

)]
= −πue−α·

[
q·(Ru−Rf )+W0Rf

]
− πde−α·

[
q·(Rd−Rf )+W0Rf

]
= −e−α·W0Rf ·

{
πue
−α·
[
q·(Ru−Rf )

]
+ πde

−α·
[
q·(Rd−Rf )

]}
.

This is the product of a factor depending on initial wealth W0, but not q, and a factor
depending on q, but not initial wealth W0. When we apply the first-order optimality condi-
tion with respect to q, initial wealth will not play any role in finding the optimal q∗. Thus,
our allocation does not depend on initial wealth, which sounds rather weird. It is hard to
believe that we have an exponential utility function, even though it is used in the academic
literature for the sake of mathematical convenience.

Problem 7.2 If we invest the initial wealth W0, the terminal wealth is

W̃T =

n∑
i=1

xiR̃i,

where R̃i is the random multiplicative gain (one plus holding period return) for asset i, and
xi is the amount allocated to asset i, subject to the constraint

n∑
i=1

xi = W0.

29
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The first investor has W0 = 1 and solves the optimization problem

max E

a∑
i

xiR̃i −
b

2

(∑
i

xiR̃i

)2


subject to the constraint
∑
i xi = 1.

The second investor has W0 = K and solves the optimization problem

max E

a∑
i

yiR̃i −
b

2

(∑
i

yiR̃i

)2


subject to the constraint
∑
i yi = K, where we use different decision variables to avoid

confusion. If we rewrite the constraint for the second investor as∑
i

yi
K

= 1

we may substitute variables xi = yi/K and rewrite her problem as

maxK · E

a∑
i

xiR̃i −
bK

2

(∑
i

xiR̃i

)2
 .

The leading K multiplying the expected value is irrelevant, but we see that the risk aversion
coefficient is related to bK, rather than b, implying a different risk aversion for the second
investor, which results in a different portfolio. If the second investor had a coefficient or risk
aversion

b′ =
b

K
,

she would find the same portfolio as the first investor. This example shows that some caution
is needed when we use quadratic utility and take portfolio weights as decision variables,
rather than allocations expressed as monetary amounts.

Problem 7.3 We have to find an indifference price, i.e., an insurance premium c such that
you, the decision maker, are indifferent between insuring and not insuring your property. If
you pay for insurance, your wealth 100,000− c is certain, otherwise it is random. We should
solve the equation

log(100,000− c) = 0.95 · log 100,000 + 0.04 · log 50,000 + 0.01 · log 1 = 11.3701,

which yields
c = 100,000− e11.3701 = $13,312.

This is the maximum price you should be willing to pay.

Problem 7.4 Let σL1, σL2, and σL1+L2 denote the standard deviations of loss for the two
random variables and their sum, respectively. Given confidence level 1− α, we have

V@R1−α(L1) = z1−α · σL1
V@R1−α(L2) = z1−α · σL2

V@R1−α(L1 + L2) = z1−α · σL1+L2.



SOLUTIONS 31

Given the correlation ρ ≤ 1 between L1 and L2, we also know that

σL1+L2 =
√
σ2
L1 + 2ρ · σL1 · σL2 + σ2

L2 ≤
√
σ2
L1 + 2σL1 · σL2 + σ2

L2

=

√(
σL1 + σL2

)2
= σL1 + σL2.

Hence,
V@R1−α(L1 + L2) ≤ V@R1−α(L1) + V@R1−α(L2).

Problem 7.5 A common mistake is to use expected value and standard deviation of a
generic distribution and apply the formula for a normal distribution to find V@R. This is
certainly not even recommended as an approximation, when dealing with a skewed distri-
bution like the triangular distribution we consider here.

We should find, on the tail of the PDF corresponding to loss, a triangle with area 0.05.
To this aim, we may imagine shifting the origin to the point a = −75,000 of maximum loss
and consider an increasing line (going through the new origin) with slope depending on the
height of the triangle (corresponding to the mode c). This is illustrated in the following
figure, showing the profit/loss distribution:

a bc

h
x

P/L

• The point corresponding to the maximum loss, a = −75,000, is the origin of the shifted
axis.

• Corresponding to the mode c = 40,000, we show the height h of the triangular PDF.

• We must find a shift x, such that the shaded area must be 5%.

In order to find the height h, we use the fact that the total area of the PDF is 1, hence:

1
2 · h ·

[
b− a

]
= 1

2 · h ·
[
55,000− (−75,000)

]
= 1 ⇒ h =

1

65,000
.

Now let us imagine an increasing line y = mx departing from the new origin, corresponding
to a = −75,000, reaching height h for the point c = 40,000. We need the slope m of this
line, which joins the new origin and the point (c− a, h). Hence:

h = m(c− a) ⇒ m =
h

40,000− (−75,000)
=

1

115,000× 65,000
.

The area of the shaded triangle corresponding to x is

1
2mx

2,

and we need x such that this area is 5%:

1
2mx

2 = 0.05 ⇒ x =

√
2× 0.05

m
=

√
2× 0.05

115,000× 65,000
= 27,340.45.
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This amount should be transformed back to the original coordinates (which means that, in
terms of loss, it should be subtracted from the maximum loss), and the value-at-risk is:

V@R0.95 = 75,000− 27,340.45 = e47,659.55.

What happens if, on the contrary, we use the formula for a normal distribution? To deal
with loss, we flip the PDF, so that now a = −55, b = 75, and c = −40 (where we express
monetary amounts in thousands of dollars, for the sake of convenience). Using the formulae
for the triangular distribution, we find

µL =
−55− 40 + 75

3
= −6.6667

and

σL =

√
752 + (−40)2 + (−55)2 + 75× 40 + 75× 55− 55× 40

18
= 29.0354,

so that value-at-risk with confidence level 95% is

1000 ·
(
− 6.6667 + 1.6449× 29.0354

)
= e41,092.35,

with an underestimation error, since we neglect the negative skew of the profit/loss distri-
bution.

Problem 7.6 The CDF for the first random variable is the piecewise constant function

F1(x) =


0 if x < 4

0.25 if 4 ≤ x < 5

0.75 if 5 ≤ x < 12

1 if x ≥ 12,

with jumps corresponding to points where the probability mass is located. For the second
random variable, we have

F1(x) =


0 if x < 1
1
3 if 1 ≤ x < 6
2
3 if 6 ≤ x < 8

1 if x ≥ 8.

[In the book, I wrote probabilities as 0.33, so that they do not add up to 1, but they are
meant to be 1/3.] The figure below shows that there is no first-order stochastic dominance,
as the plots of the two CDFs cross each other.
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The integrated CDFs are two continuous piecewise linear functions:

F̃1(x) =


0 if x < 4

0.25 · (x− 4) if 4 ≤ x < 5

0.75 · (x− 5) + 0.25 if 5 ≤ x < 12

(x− 12) + 5.5 if x ≥ 12,

F̃2(x) =


0 if x < 1
1
3 · (x− 1) if 1 ≤ x < 6
2
3 · (x− 6) + 5

3 if 6 ≤ x < 8

(x− 8) + 3 if x ≥ 8,

If we plot the functions, as shown below, or we evaluate them at the breakpoints, we see
that F̃2(x) ≥ F̃1(x), with strict inequality for x > 1.
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Hence, the first investment dominates the second one in the sense of second-order stochastic
dominance. For instance, if we assume logarithmic utility, we find

0.25 · log 4 + 0.5 · log 5 + 0.25 · log 12 = 1.7725,
1
3 · log 1 + 1

3 · log 6 + 1
3 · log 8 = 1.2904.





8
Mean–Variance Efficient Portfolios

8.1 SOLUTIONS

Problem 8.1 Let us denote the expected return and the volatility of the risky asset by µ
and σ, respectively, whereas µp and σp refer to the overall portfolio. We consider the case
in which there is a positive risk premium, i.e., µ > rf , so that short-selling does not make
sense and the weight of the risky asset satisfies w ≥ 0.

If we set w < 1, we are investing a fraction 1 − w of portfolio in the risk-free asset, so
that (as we show in the book):

r̃p = wr̃ + (1− w)rf = w(r̃ − rf ) + rf ,

µp = w(µ− rf ) + rf ,

σp = wσ,

µp = σp ·
µ− rf
σ

+ rf .

Thus, the CAL for w < 1 is a line with slope given by the Sharpe ratio corresponding to rf
and an intercept given by rf itself.

If w = 1, we just invest in the risky asset, and we find a single point µp = µ and σp = σ.
If we set w > 1, the weight of the risk-free asset is negative, and we are borrowing at the

rate rBf > rf :

r̃p = w(r̃ − rBf ) + rBf ,

µp = w(µ− rBf ) + rBf ,

σp = wσ,

µp = σp ·
µ− rBf
σ

+ rBf .

Thus, the CAL for w < 1 is a line with a smaller slope

µ− rBf
σ

<
µ− rf
σ

,

35
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but a larger intercept

rBf > rf .

We assume that the risk premium is positive (µ− rBf > 0) when borrowing, too. Otherwise,

if µ < rBf , the slope of the second portion of the CAL is negative, and the portfolios there
would not be efficient.

The two lines intersect at the point corresponding to w = 1, as shown in the following
picture, where the resulting CAL is shown as a continuous line:

p



p



rf

w <1

w >1
Brf

This has an interesting implication in terms of asset allocation, as a function of the risk
aversion coefficient λ. On the mean–risk plane, if risk is measured by standard deviation,
the level curves of the mean–variance function (for a given expected “utility” level U) are
portions of a parabola with equation

µp = U +
λ

2
σ2
p,

whose symmetry axis is the vertical coordinate axis. The value U is the ordinate where the
parabola crosses the vertical axis, and it may be interpreted as a certainty equivalent return,
i.e., a riskless rate that would provide us with the same “utility” as the risky portfolios on
the parabola.

The optimal portfolio, in the standard case, corresponds to a tangency point between the
CAL and the level curve with the highest attainable utility, as shown below:

p

2

1

p
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In the picture, λ2 > λ1.
For each λ, we have a unique optimal portfolio, and if we change risk aversion, the solution

will change continuously, according to the formula:

w∗ =
µ− rf
λσ2

.

In the case of a different borrowing rate, the above formula applies only to the case where
w∗ < 1, which requires

λ >
µ− rf
σ2

.
= λmin.

The case w∗ < 1 requires

λ <
µ− rBf
σ2

.
= λmax.

Since there is a gap between λmin and λmax, the solution w∗ = 1 is obtained for a range of
coefficients λ, rather than a single one. This is illustrated in the figure below, and it is due
to the kinky point where the two lines intersect.

p

2

1

p

As an aside observation, we note that in linear programming, too, a solution (vertex of a
polyhedron) may be stable for a range of coefficients of the objective function. This is due
to the fact that the feasible set is a “kinky” polyhedron, which is nonsmooth at vertices.

Problem 8.2 We have to show that the general formula

w∗min =
Σ−1i

iTΣ−1i
.

yields

w1 =
σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

, w2 = 1− w1,

in the case of two assets.
The covariance matrix is

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
and its inverse is

Σ−1 =
1

∆

[
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
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where we use
∆

.
= σ2

1σ
2
2 − ρ2σ1σ2

to denote the determinant of Σ. Then,

Σ−1i =
1

∆

[
σ2
2 − ρσ1σ2
σ2
1 − ρσ1σ2

]
and

iTΣ−1i =
σ2
1 − 2ρσ1σ2 + σ2

2

∆
.

We may note, in passing, that a vector–matrix product like iTAi amounts to adding all of
the elements of A.

Thus, when taking the ratio
Σ−1i

iTΣ−1i
,

the factors ∆ cancel each other, and we find

w∗ =


σ2
2 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2
σ2
1 − ρσ1σ2

σ2
1 − 2ρσ1σ2 + σ2

2

 .
Problem 8.3 Let us consider the weight of asset 1,

w∗1 =
1

λ(1− ρ2)

(
π1
σ2
1

− ρ π2
σ1σ2

)
,

which may be rewritten as

w∗1 = K · γ − ρ
1− ρ2

,

where we define

K
.
=

π2
λσ1σ2(1− ρ2)

,

γ
.
=
π1σ2
π2σ1

.

The leading factor K includes a risk premium and can be positive or negative. The factor
γ is essentially the ratio of Sharpe ratios of the two assets and, in principle, it can take any
value, positive or negative, larger and smaller than 1.

The factor γ − ρ can be zero if | γ |< 1. For ρ→ ±1 the weight goes to ±∞. Apart from
this, to analyze the behavior of the weight, we need the derivative of the function

w̃ =
γ − ρ
1− ρ2

with respect to ρ:
dw̃

dρ
= −ρ

2 − 2γρ+ 1

(1− ρ2)2
.

The sign of the derivative depends on the roots of the quadratic function ρ2−2γρ+1. These
roots are

γ ±
√
γ2 − 1,
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and they are real if γ ≥ 1. The product of the roots, in any case, is 1, which means that
they have the same sign and that if one is larger than 1 (in absolute value), the other one is
less than 1 (in absolute value). Hence, at most one root is compatible with a coefficient of
correlation, and there the weight may switch from a decreasing function of ρ to an increasing
one (or vice versa).

The whole behavior depends on γ and the sign of the risk premia. Let us see a couple of
examples.

• Case 1: π1 = 0.03, σ1 = 0.2, π2 = 0.04, σ2 = 0.3, and λ = 2. Actually, the coefficient
of risk aversion λ scales weights up and down, but is not relevant in terms of the
sensitivity analysis we are interested in. Here, γ = 1.1250, and the two roots of the
quadratic equation are 1.6404 and 0.6096.

The plot of w∗1 for ρ ∈ [−0.95, 0.95] is as follows:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

1
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8

The weight goes to +∞ for limit correlations. The weight switches from decreasing to
increasing for ρ = 0.6096. The plot looks flat, but this is only because of the extreme
weight values taken for extreme correlations.

• Case 2: π1 = 0.01, σ1 = 0.5, π2 = −0.04, and σ2 = 0.5. For these (rather weird)
values, we find γ = −0.2500, and the two roots of the quadratic equation are com-
plex conjugates. The corresponding weight behavior has no switch from increasing to
decreasing (or vice versa) and is illustrated below:
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Problem 8.4 To solve the problem

max µTw − λ

2
wTΣw

s.t. iTw = 1,

we associate a Lagrange multiplier ν with the equality constraint and build the Lagrangian
function

L(w, ν) = µTw − λ

2
wTΣw + ν · (1− iTw).

The stationarity condition yields a system of linear equations,

∇wL(w, ν) = µ− λΣw − νi = 0,

which may be solved for w∗:

w∗ =
1

λ
Σ−1

(
µ− νi). (8.1)

To find the multiplier ν, we plug the optimal weights into the equality constraint of the
optimization problem,

iTw∗ = 1

⇒ iTΣ−1µ− νiTΣ−1i = λ

⇒ ν =
iTΣ−1µ− λ

iTΣ−1i

⇒ ν =
α− λ
β

,

where, for the sake of convenience, we define the following scalars:

α
.
= iTΣ−1µ = µTΣ−1i,

β
.
= iTΣ−1i.

Then, we plug this back into the optimal weights:

w∗ =
1

λ

[
Σ−1µ− α− λ

β
Σ−1i

]
=

Σ−1i

β
+

1

λ

βΣ−1µ− αΣ−1i

β

=
Σ−1i

iTΣ−1i
+

1

λ

(
iTΣ−1i

)
Σ−1µ−

(
iTΣ−1µ

)
Σ−1i

iTΣ−1i
.

To find the corresponding expected return we have just to write

µ∗ = µTw∗

=
µTΣ−1i

β
+

1

λ

βµTΣ−1µ− αµTΣ−1i

β

=
iTΣ−1µ

iTΣ−1i
+

1

λ

(
iTΣ−1i

) (
µTΣ−1µ

)
−
(
iTΣ−1µ

)2
iTΣ−1i

.
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Note that, since the covariance matrix is symmetric, its inverse is, too. Hence, the
transpose of Σ−1 is just Σ−1 itself.

Finding variance is equally easy, even though a bit more tedious:

(σ∗)2 = (w∗)TΣw

=
1

β2

[
iTΣ−1 +

1

λ

(
βµTΣ−1 − αiTΣ−1

)]
·Σ ·

[
Σ−1i +

1

λ

(
βΣ−1µ− αΣ−1i

)]
.

Let us introduce the scalar
γ
.
= µTΣ−1µ.

The calculation involves the following four products

iTΣ−1ΣΣ−1i = iTΣ−1i = β,

iTΣ−1Σ
(
βΣ−1µ− αΣ−1i

)
= βα− αβ = 0,(

βµTΣ−1 − αiTΣ−1
)
ΣΣ−1i = βα− αβ = 0,(

βµTΣ−1 − αiTΣ−1
)
Σ
(
βΣ−1µ− αΣ−1i

)
= β2γ − βα2 − α2β + α2β.

By putting the whole mess together, we find

(σ∗)2 =
1

β2

[
β +

1

λ2
(
β2γ − βα2

)]
=

1

β
+

1

λ2
βγ − α2

β

=
1

iTΣ−1i
+

1

λ2

(
iTΣ−1i

) (
µTΣ−1µ

)
−
(
iTΣ−1µ

)2
iTΣ−1i

.

Problem 8.5 We have to solve the linear system[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] [
x1
x2

]
=

[
π1
π2

]
where x1, x2 are the two pseudoweights, to be normalized, and π1 = µ1 − rf , π2 = µ2 − rf
are the two risk premia. Using, e.g., Cramer’s rule, we immediately find

x1 =
π1σ

2
2 − π2ρσ1σ2

σ2
1σ

2
2 − ρ2σ1σ2

,

x2 =
π2σ

2
1 − π1ρσ1σ2

σ2
1σ

2
2 − ρ2σ1σ2

.

Using normalization,

w1 =
x1

x1 + x2
=

π1σ
2
2 − π2ρσ1σ2

π1σ2
2 + π2σ2

1 − (π1 + π2)ρσ1σ2
,

and w2 = 1− w1.

Problem 8.6 The portfolio return, over the two time periods, is

r̃p = wr̃[t,t+1] + (1− w)r[t,t+1],f ,
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where w is the weight of the risky asset, and r̃[t,t+1] and r[t,t+1],f are the holding period
returns, over the two consecutive time buckets, for the risky and the risk-free assets, respec-
tively. Expected utility is

E
[
wr̃[t,t+1] + (1− w)r[t,t+1],f

]
− λ ·Var

[
wr̃[t,t+1] + (1− w)r[t,t+1],f

]
= wE

[
r̃[t,t+1]

]
+ (1− w)r[t,t+1],f − λw2 ·Var

[
r̃[t,t+1]

]
.

The first-order optimality condition yields the familiar result

w∗ =
E
[
r̃[t,t+1]

]
− r[t,t+1],f

2λ ·Var
[
r̃[t,t+1]

] .

Thus, we need the expected return and variance of the risky asset over the holding period.
The correct calculation is based on the multiplication of single-period gains:

r̃[t,t+1] = (1 + r̃t) · (1 + r̃t+1)− 1 = r̃t + r̃t+1 + r̃t · r̃t+1.

This involves a rather annoying product of random variables, which may be neglected if we
assume that single-period returns are small enough. Using the assumed model, we find

r̃[t,t+1] ≈ r̃t + r̃t+1 =
(
a+ br̃t−1 + εt

)
+
(
a+ br̃t + εt+1

)
= a+ br̃t−1 + εt + a+ b ·

(
a+ br̃t−1 + εt

)
+ εt+1

= 2a+ ab+ b · (b+ 1) · r̃t−1 + (b+ 1) · εt + εt+1,

where r̃t−1 is known from the previous time bucket t − 1, and εt and εt+1 are independent
variables with expected value zero and standard deviation σε.

Therefore, in the formula for the optimal weight w∗ we have to plug the following expres-
sions:

E
[
r̃[t,t+1]

]
= 2a+ ab+ b · (b+ 1) · r̃t−1,

Var
[
r̃[t,t+1]

]
= (b+ 1)2 · σ2

ε + σ2
ε ,

r[t,t+1],f = (1 + rf )2 − 1.
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Factor Models

Problem 9.1 The first step is to find the portfolio return as a function of portfolio weights:

r̃p = wr̃a + (1− w)r̃b

= w · (0.14 + 0.8r̃M + ε̃a) + (1− w) · (0.08 + 1.2r̃M + ε̃b)

= (0.08 + 0.06w) + (1.2− 0.4w)r̃M + wε̃a + (1− w)ε̃b,

where w is the weight of asset a. Note that we have expressed the portfolio return in terms
of uncorrelated risk factors, so we need not worry about the covariance between r̃a and r̃b.

Then, the variance of the portfolio return is

σ2
p = (1.2− 0.4w)2σ2

M + w2σ2
εa + (1− w)2σ2

εb.

To find its minimum, we write the first-order optimality condition:

dσ2
p

dw
= −2 · 0.4 · (1.2− 0.4w) · 0.22 + 2w · 0.32 − 2 · (1− w) · 0.252 = 0

⇒ 0.3178w = 0.1634

⇒ w = 0.5142.

Problem 9.2 The BIG mistake you do not want to make is to compute the expected
return, and then evaluate the corresponding bonus. This would be the function of the
expected value, whereas we want the expected value of a (nonlinear) function mapping
random return to bonus. The correct calculation is

E[B] = 200,000 · P{r̃p ≥ 9%}+ 100,000 · P{r̃p ≥ 12%},

where B is the bonus and r̃p is the portfolio return. Since every risk factor is normal (more
precisely, we deal with a jointly normal multivariate distribution), we need the expected
value and the standard deviation of the random return. Let rf be the risk-free holding
period return and βij be the risk exposure of asset i to factor j. The portfolio return is

r̃p =
(
w0rf + w1α1 + w2α2

)
+
(
w1β11 + w2β21

)
· F1 +

(
w1β12 + w2β22

)
· F2 + w1ε̃1 + w2ε̃2

= αp + βp1F1 + βp2F2 + w1ε̃1 + w2ε̃2,
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where w0 = 0.4 and w1 = w2 = 0.3 are the asset weights, and αp, βp1, and βp2 denote the
portfolio alpha and beta exposures. Plugging numbers, we find

αp = 0.024, βp1 = 0.12, βp2 = 0.45,

and the expected return is

µp = αp + βp1µF1 + βp2µF2 = 0.024 + 0.12× 0.03 + 0.45× 0.13 = 0.0861.

The standard deviation is

σp =
√
β2
p1σ

2
F1 + β2

p2σ
2
F2 + 2ρβp1σF1βp2σF2 + w2

1σ
2
ε1 + w2

2σ
2
ε2

=
√

(0.12 · 0.3)2 + (0.45 · 0.4)2 + 2 · 0.68 · 0.12 · 0.3 · 0.45 · 0.4 + (0.3 · 0.4)2 + (0.3 · 0.5)2

= 0.2818,

where we have to account for the correlation ρ between the two systematic factors.
Hence, the expected value of the bonus is

E[B] = 200,000 ·
(
1− P{r̃p ≤ 9%}

)
+ 100,000 ·

(
1− P{r̃p ≤ 12%}

)
= 200,000 ·

(
1− 0.05055211

)
+ 100,000 ·

(
1− 0.5478772

)
= e144,108.1.

We use statistical software (or statistical tables, with unavoidable roundoff errors) to find
the required probabilities. Note that, since the involved random variables are continuous, we
may write P{r̃ ≥ γ} = 1− P{r̃ ≤ γ}, without bothering too much about strict inequalities.

Problem 9.3 The return of each asset is modeled as

r̃i = αi + βir̃M + ε̃i,

where

αi = 0.02, i = 1, . . . , 10,

αi = −0.02, i = 11, . . . , 20,

βi = 1, i = 1, . . . , 20.

The portfolio profit/loss is

G̃p =
1,000,000

10
·

10∑
i=1

(
0.02 + r̃m + ε̃i

)
− 1,000,000

10
·

20∑
i=11

(
− 0.02 + r̃m + ε̃i

)
=

1,000,000

10
·

20∑
i=1

0.02 +
1,000,000

10

(
10∑
i=1

ε̃i −
20∑
i=11

ε̃i

)
= 40,000 + ε̃p,

where

ε̃p
.
=

1,000,000

10

(
10∑
i=1

ε̃i −
20∑
i=11

ε̃i

)
,



45

is a random variable with the following expected value and standard deviation:

µεp = 0,

σεp =
√

20 · 100,000 · 0.3 = $134,164.

Note that we cannot define return, as the initial capital is zero.
This is a long–short portfolio unrelated with systematic risk. If we compare specific

risk σεp against the expected profit, $40,000, we notice that the portfolio is not quite well
diversified.

If we increase the total number of assets to 50 (25 long, 25 short), the position in each
stock share is ±40,000, and

σεp =
√

50 · 40,000 · 0.3 = $84,853.

If we increase the total number of assets to 100 (50 long, 50 short), the position in each
stock share is ±20,000, and

σεp =
√

100 · 20,000 · 0.3 = $60,000.

Note that when the number of stocks increases by a factor 5 (from 20 to 100), the standard
deviation decreases by a factor

√
5, from $134,164 to $60,000.

Problem 9.4 We may work with either portfolio weights or monetary amounts. Let us
use weights

w1 =
100

350
= 0.2857, w2 =

250

350
= 0.7143.

The annual expected return is

µp,y = w1α1 + w2α2 +
(
w1β1 + w2β2

)
· µM

= 0.2857 · 0.007− 0.7143 · 0.003 +
(
0.2857 · 1.1 + 0.7143 · 0.8

)
· 0.07

= 0.0618567.

The annual variance is

σ2
p,y =

(
w1β1 + w2β2

)2 · σ2
M +

(
w1σε1

)2
+
(
w2σε2

)2
=
(
0.2857 · 1.1 + 0.7143 · 0.8

)2 · 0.372 +
(
0.2857 · 0.22

)2
+
(
0.7143 · 0.31

)2
= 0.160378.

To find V@R0.99, we need the corresponding quantile for the standard normal, z0.99 = 2.3263.
The annual value-at-risk is

V@R0.99,y = 350,000 ·
(
− µp,y + z0.99σpy

)
= 350,000 ·

(
− 0.0618567 + 2.3263 ·

√
0.160378

)
= $304,416.6,

where we change the sign of µp,y to switch from profit to loss. This value is not quite
reassuring.

To find the daily value-at-risk, we assume (given the square-root rule):

µp,d ≈ 0, σp,d =

√
σ2
p,y

250
= 0.02532809,

where we scale annual volatility to daily volatility assuming that there are 250 trading days
in one year. Then

V@R0.99,d = 350,000 · z0.99 · σp,d = 350,000 · 2.3263 · 0.02532809 = $20,622.68.
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Problem 9.5 The optimization of the risk-adjusted expected return may be expressed as

min−µTw +
λ

2
wTΣw,

where we flip sign to be more compatible with the treatment in the chapter on optimization
methods. We usually interpret wi as a portfolio weight, but for a dollar-neutral portfolio
this interpretation fails because the overall wealth invested is zero. Indeed, rather than the
usual constraint

∑
i wi = 1, we should write

n∑
i=1

wi = 0,

to enforce dollar-neutrality. We should interpret the decision variables as monetary
amounts invested. Since we hold both long and short positions, we may also write∑

i∈L
wi =

∑
i∈S

wi,

where L is the subset of assets for which we hold a long position, and S is the subset of
shorted assets. The total wealth W0 invested in the long side of the portfolio is matched by
a corresponding shorted amount. We might interpret wi, i ∈ L, as weights of the long side,
with respect to W0, but this is a bit pointless. The amount W0 can be scaled up and down
at will, while preserving dollar-neutrality.

Then, the usual expression for a multifactor model,

r̃p =

n∑
i=1

wir̃i =

n∑
i=1

wiαi +

n∑
i=1

m∑
k=1

wiβikF̃k +

n∑
i=1

wiε̃i,

should be interpreted in terms of monetary profit/loss, rather than return. Nevertheless, we
may express the portfolio beta with respect to factor k as

βpk =

n∑
i=1

wiβik.

Then, we may enforce beta-neutrality by the constraints

n∑
i=1

wiβik = 0, ∀k = 1, . . . ,m.

Again, scaling pseudoweights wi up and down is irrelevant in terms of systematic risk expo-
sure.

Now, we may take advantage of beta-neutrality to simplify the objective function. In
fact, the only risk exposure is due to specific risk. Let us consider the familiar expressions

Var(r̃i) =

m∑
k=1

m∑
q=1

βikσkpβiq + σ2
εi,

Cov(r̃i, r̃j) =

m∑
k=1

m∑
q=1

βikσkpβiq,
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where σkp is the covariance between systematic factors F̃k and F̃q and σ2
εi is the variance

of the specific factor ε̃i (we assume a diagonal model, thus specific factors are mutually
uncorrelated). If we collect betas βik into matrix B ∈ Rn×m, systematic factor covariances
into matrix ΣF ∈ Rm×m, and specific variances into the diagonal matrix S ∈ Rn×n, all of
the above reads

Σ = BΣFBT + S.

It may be useful to associate the covariance between returns of assets i and j with the
product among row i of B, the square matrix ΣF , and colum j of BT. Now, beta-neutrality
implies

BTw = 0.

Therefore variance of profit/loss boils down to

wTΣw = wT
(
BΣFBT + S

)
w = wTSw,

a diagonal quadratic form.
We may write the resulting model as follows:

min −
n∑
i=1

µiwi +
λ

2

n∑
i=1

w2
i σ

2
εi

s.t.

n∑
i=1

wi = 0

n∑
i=1

wiβik = 0, ∀k = 1, . . . ,m.

To solve the problem, we may associate a Lagrange multiplier ν0 with the dollar-neutrality
constraint and m multipliers νk with dollar-neutrality constraints. The Lagrangian function
is

L = −
n∑
i=1

µiwi +
λ

2

n∑
i=1

w2
i σ

2
εi + ν0

n∑
i=1

wi +

m∑
k=1

νk ·

(
n∑
i=1

wiβik

)
,

with stationarity conditions

∂L
∂wi

= −µi + 2λwiσ
2
εi + ν0 +

m∑
k=1

νkβik = 0, i = 1, . . . , n.

These n linear equations, together with the m + 1 neutrality conditions, allow to find the
n+m+ 1 unknown variables.

We have claimed that scaling the portfolio up and down does not affect dollar- and beta-
neutrality. However, as we have seen in Problem 7.2, the risk aversion parameter does
interact with the size of portfolio positions. Thus, we might wish to use a constraint like
w1 = 1 as an anchor to explore the impact of risk aversion.





10
Equilibrium Models: CAPM and APT

Problem 10.1 Whatever utility function we assume, finding a portfolio with a given
expected return, in this case, just requires solving the following equation:

w1 · 0.06 + (1− w1) · 0.04 = 0.03 ⇒ w1 = −0.5.

The weight of the second index is w2 = 1.5. Since the target return is outside the range of
the two expected returns of the two indexes, short-selling the index with the larger expected
value is required.

The volatility of the resulting portfolio would be

σp =
√

(−0.5 · 0.15)2 + (1.5 · 0.1)2 = 16.77%.

If every investor behaves in the same way, they would try to short-sell the first index, but
this is impossible if no one is holding the index. More generally, at market equilibrium, we
cannot have only short positions on an asset. In fact, the capitalization of the first market
accounts for 25% of the total, which could happen if every investor takes a short position in
it.

CAPM assumes that investors are mean–variance optimizers. This is consistent with
investors featuring a quadratic utility, not a logarithmic utility. Alternatively, mean–variance
optimization is consistent with utility maximization under a joint normality assumption.
Returns are assumed to be independent in this case, but they cannot be normal, as kurtosis
is larger than 3. However, mean–variance optimization would be consistent with logarithmic
utility with a suitably heavy-tailed and symmetric distributions within the family of elliptical
distributions. A Student’s t distribution with ν > 4 degrees of freedom has excess kurtosis

6

ν − 4
.

Thus, such a distribution with ν = 7 would have kurtosis 5, like the second index. A kurtosis
of 7 is not obtained for an integer ν, but such a distribution can be conceived for the first
market (and merged with the independent t for the second index to yield a joint elliptical
distribution), so we may not really say that CAPM cannot hold.
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Problem 10.2 To solve the problem, we need the current fair price of a Joint stock share,
since

SJ(0) = SE(0) + SPM (0) ⇒ SE(0) = SJ(0)− 30.

Using CAPM, we find

µJ = rf + β(µM − rf ) = 0.05 + 2 · 0.10 = 0.25.

Hence,

SJ(0) =
E[SJ(1)]

1 + µJ
=

100

1 + 0.25
= 80,

which implies
SE(0) = 80− 30 = 50.

Problem 10.3 We need expected returns, volatilities, the covariance between r̃i and r̃M ,
etc.:

µi =

5∑
k=1

πkr̃i(ωk) = 0.2 · 0.03 + 0.2 · 0.17 + 0.3 · 0.28 + 0.2 · 0.05 + 0.1 · (−0.04) = 0.13,

µM = 0.2 · 0.09 + 0.2 · 0.16 + 0.3 · 0.10 + 0.2 · 0.02 + 0.1 · 0.16 = 0.10,

σ2
i =

5∑
k=1

πkr̃
2
i (ωk) = 0.2 · 0.032 + 0.2 · 0.172 + 0.3 · 0.282 + 0.2 · 0.052 + 0.1 · (−0.04)2 − 0.132 = 0.0132,

σi =
√

0.0132 = 0.1151,

σM = 0.0488,

σiM =

5∑
k=1

πkr̃i(ωk)r̃M (ωk)− µiµM = 9.4 · 10−4,

ρiM =
σiM
σiσM

= 0.1675,

βiM =
σiM
σ2
M

=
9.4 · 10−4

0.04882
= 0.395.

The CAPM formula implies

rf =
µi − βiM · µM

1− βiM
=

0.13− 0.395 · 0.1
1− 0.395

= 14.96%.

This risk-free rate is surprisingly large, and even larger than the expected return from asset
i and the market. Needless to say, this is due to the fictional character of the input data,
and it may be understood by noting that asset i is not quite risky, in terms of exposure to
systematic risk, as its beta is fairly small (the correlation with the market is small, too).
However, asset i has a large expected return, which may only be obtained if the risk-free
rate itself is large.

Problem 10.4 We have
λ0 = rf = 0.04.

Then, we have to solve the system of linear equations

1.5λ1 − 0.9λ2 + 2λ3 = 0.085− 0.04,

0.5λ1 + 1.2λ2 + 0.6λ3 = 0.128− 0.04,

− 0.1λ1 + 0.4λ2 − 0.3λ3 = 0.049− 0.04,
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which yields
λ1 = 0.02, λ2 = 0.05, λ3 = 0.03.

The system may be solved in any way you like, but Cramer’s rule using determinants is
probably the easiest way to do it manually. The equilibrium expected return of a portfolio
with unit exposure to F1, i.e., such that βp1 = 1 and βp2 = βp3 = 0, is

λ0 + βp1λ1 = 0.04 + 0.02 = 6%.

Problem 10.5 We have to solve the system of linear equations

1.6λ1 − 0.8λ2 = 0.095− 0.04,

0.5λ1 + 1.3λ2 = 0.117− 0.04,

which yields
λ1 = 0.0537, λ2 = 0.0386.

The equilibrium expected return of a portfolio with the same exposure to systematic risks
as portfolio C should be

0.04− 0.1λ1 + 0.4λ2 = 0.0501,

which is larger than the value 4.1% in the table. Using portfolios A and B, as well as the
risk-free asset, we may build a portfolio (say, D) with the same systematic risk exposure as
C, but a larger expected return (0.0501). This is obtained by finding the respective weights
wA, wB , and w0 (of the risk-free asset) as follows:

1.6wA + 0.5wB = −0.1,

− 0.8wA + 1.3wB = 0.4,

wA + wB + w0 = 1,

where we note that the betas of the risk-free asset are clearly zero. This yields

wA = −0.1331, wB = 0.2258, w0 = 0.9073.

If we take a long position in portfolio D and an offsetting short position in C, where the exact
monetary amount of each position is irrelevant, we find a dollar-neutral and beta-neutral
portfolio, with return

wA ·µA+wB ·µB+w0 ·rf−µC = −0.1331·0.095+0.2258·0.117+0.9073·0.04−0.041 = 0.91%,

and no systematic risk, since (by construction)

wA · βA1 + wB · βA1 − βC1 = −0.1331 · 1.6 + 0.2258 · 0.5 + 0.1 = 0,

wA · βA2 + wB · βA2 − βC2 = 0.1331 · 0.8 + 0.2258 · 1.3− 0.4 = 0.

If we disregard specific risk (as well as model and estimation risks), the above return is
risk-free and can be obtained with a zero net investment, an arbitrage opportunity.





11
Modeling Dynamic Uncertainty

11.1 SOLUTIONS

Problem 11.1 The stochastic differential equation

dXt = 0.5 dt+ 2 dWt,

as we have seen in the book, defines a generalized Wiener process. Straightforward integra-
tion yields

XT = X0 + 0.5T + 2 · (WT −W0).

Therefore, if T = 4 and X0 = x, we find that the capital X4 after four years is normally
distributed, with expected value

µ = x+ 0.5 · 4 = x+ 2,

and standard deviation
σ = 2 ·

√
4 = 4.

The probability that X4 is negative is found by standardization (if you use tables)

P
{
X4 < 0

}
= P

{
Z <

0− (x+ 2)

4

}
= Φ

(
−x+ 2

4

)
.

This probability should be no more than 5%, which requires (in $ millions)

−x+ 2

4
≤ z0.05 = −1.6449 ⇒ x ≥ 4 · 1.6449− 2 = 4.579415.

Hence, the initial capital should be at least $4,579,415.

Problem 11.2 This is again a generalized Wiener process, with piecewise constant coef-
ficients. The increment in the first time period is normally distributed:

S3 − S0 ∼ N
(
2 · 3, 32 · 3

)
,
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where we use the notation N(µ, σ2), so the second parameter is variance, not standard
deviation. The increment in the second time period is normally distributed, too:

S6 − S3 ∼ N
(
3 · 3, 42 · 3

)
.

Since increments are independent, we are summing two independent normal variables, which
gives another normal with

E
[
X6 |X0 = 5] = 5 + 6 + 9 = 20

and
Var
(
X6

)
= 27 + 48 = 75.

Problem 11.3 Since eY
2
t ≥ 1, we cannot obtain a GBM, which features a distribution

ranging over the half-line [0,+∞). We apply Itô’s lemma to the function

Xt = F (Yt) = eY
2
t ,

where Yt satisfies the equation

dYt = 3Yt dt+ 7Yt dWt.

We collect the partial derivatives

∂F

∂t
= 0,

∂F

∂Yt
= 2Yte

Y 2
t ,

∂2F

∂Y 2
t

= 2eY
2
t + 4Y 2

t e
Y 2
t .

Note that the partial derivative with respect to time is zero, since F does not depend directly
on time. We find

dXt =
[
6Y 2

t · eY
2
t + 49Y 2

t ·
(
eY

2
t + 2Y 2

t e
Y 2
t

)]
dt+ 14Y 2

t e
Y 2
t dWt

=
(
55Y 2

t + 98Y 4
t

)
eY

2
t dt+ 14Y 2

t e
Y 2
t dWt.

Using substitutions

eY
2
t = Xt, Y 2

t = logXt,

we may rewrite the equation in terms of Xt:

dXt =
(
55 logXt + 98 log2Xt

)
Xt dt+ 14Xt logXt dWt.

As expected, this equation is not in the GBM form dX = µX dt+ σX dW .

Problem 11.4 We apply Itô’s lemma to the function

Yt ≡ F (St, t) = (St − 10)2 · e−2t

where St satisfies the equation

dSt = 2St dt+ 3St dWt.

Note that, in this case, there is an explicit dependence on time. We collect the partial
derivatives

∂F

∂t
= −2

(
St − 10

)2
e−2t,

∂F

∂St
= 2
(
St − 10

)
e−2t,

∂2F

∂S2
t

= 2e−2t.
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Therefore, the resulting SDE is

dYt =

[
−2
(
St − 10

)2
e−2t + 2

(
St − 10

)
e−2t · 2St +

1

2
· 2e−2t · 9S2

t

]
dt+ 3St · 2

(
St − 10

)
e−2t dWt

=
(
11S2

t − 200
)
e−2tdt+ 6St

(
St − 10

)
e−2tdWt.

We may express the equation in terms of Yt by the variable substitution St = 10 +
√
Yte2t.

Clearly, this is not a GBM.

Problem 11.5 The events {W5 −W2 ≥ 0} and {W1 ≤ 0} are independent, since they
refer to increments of a standard Wiener process on disjoint time intervals. Furthermore,
these increments are normally distributed with expected value zero, so

P
{

(W5 −W2 ≥ 0) ∩ (W1 ≤ 0)
}

= P
{
W5 −W2 ≥ 0

}
· P
{
W1 ≤ 0

}
= 0.5× 0.5 = 0.25.

We may take advantage of independence when dealing with variance as well. Using the
standard equality Var(X) = E[X2]− E2[X], we write

Var
[
(W5 −W2) ·W1

]
= E

[
(W5 −W2)2 ·W 2

1

]
− E2

[
(W5 −W2) ·W1

]
.

Using independence, we have

E
[
(W5 −W2) ·W1

]
= E

[
W5 −W2

]
· E
[
W1

]
= 0× 0 = 0.

By the same token, recalling that Var(Wt −Ws) = t− s,

E
[
(W5 −W2)2 ·W 2

1

]
= E

[
(W5 −W2)2

]
· E
[
W 2

1

]
=
{

Var
(
W5 −W2

)
+ E2

[
W5 −W2

]︸ ︷︷ ︸
=0

}
·
{

Var
(
W1

)
+ E2

[
W1

]︸ ︷︷ ︸
=0

}
= (5− 2)× 1 = 3.

Problem 11.6 An easy way to solve the problem is to represent Sa(T ) and Sb(T ) explicitly
as lognormal variables depending on a standard normal:

Sa(T ) = Sa(0) · exp

[(
µa −

σ2
a

2

)
· T + σa

√
T ε̃

]
,

Sb(T ) = Sb(0) · exp

[(
µb −

σ2
b

2

)
· T + σb

√
T ε̃

]
,

where ε̃ is the same standard normal variable, since the two price processes are driven by
the same standard Wiener process. Then we take advantage of properties of the exponential
function and write

Sa(T ) · Sb(T ) = Sa(0) · Sb(0) · exp
[
µab + σabε̃

]
,

where

µab
.
=

(
µa −

σ2
a

2

)
T +

(
µb −

σ2
b

2

)
T,

σab
.
= σa

√
T + σb

√
T .
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Note that we cannot write E
[
Sa(T ) ·Sb(T )

]
= E

[
Sa(T )

]
·E
[
Sb(T )

]
, since the two prices are

not independent; on the contrary, they are perfectly correlated. We observe that Sa(T )·Sb(T )
is lognormal. By recalling that

X ∼ N
(
µ, σ

)
⇒ E

[
eX
]

= eµ+σ
2/2,

we may write

E
[
Sa(T ) · Sb(T )

]
= Sa(0) · Sb(0) · exp

[
µab +

σ2
ab

2

]
.

By a similar token,
Sa(T )

Sb(T )
=
Sa(0)

Sb(0)
· exp

[
µa/b + σa/bε̃

]
,

where

µa/b
.
=

(
µa −

σ2
a

2

)
T −

(
µb −

σ2
b

2

)
T,

σa/b
.
= σa

√
T − σb

√
T .

Then

E

[
Sa(T )

Sb(T )

]
=
Sa(0)

Sb(0)
· exp

[
µa/b +

σ2
a/b

2

]
.

Problem 11.7 We may apply Itô’s lemma to the function

Yt = F (Xt) = eXt ,

where Xt satisfies the equation
dXt = 0 dt+ 1 dWt,

which means that Xt ≡Wt. The usual drill with derivatives yields

∂F

∂t
= 0,

∂F

∂Xt
= eXt = Yt,

∂2F

∂X2
t

= eXt = Yt.

Hence, the stochastic differential equation for Yt is

dYt =

[
∂F

∂t
+ 0 · ∂F

∂Xt
+

1

2
· 1 · ∂

2F

∂X2
t

]
dt+ 1 · ∂F

∂Xt
· dWt = 0.5Yt dt+ Yt dWt.

This is a GBM, but not a martingale, as the drift is not zero.
For the second question, what we want is

P
{
eW10 > 150 |W5 = 3

}
= P

{
W10 > log 150 |W5 = 3

}
.

Since the increment from t = 0 to t = 5 has been W5 = 3 and increments are independent,
the distribution of W10 = (W10−W5) + (W5−W0), conditional on W5−W0 = 3, is N(3, 5).
What we need, therefore, is the probability that a random variable S ∼ N(3, 5) is larger
than log 150 = 5.0106:

P{S > 5.0106} = P

{
S − 3√

5
>

5.0106− 3√
5

}
= 1− Φ

(
5.0106− 3√

5

)
= 1− 0.8157 = 0.1843.
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Problem 11.8 We might use an extension of Itô’s lemma to cope with multidimensional
processes, but in this case, by taking logs, we may transform the multiplicative form Y (t) =
S1(t) · S2(t) into the additive form

log Y (t) = logS1(t) + logS2(t).

By using Itô’s lemma, we find the equations for the log processes:

d logS1(t) =

(
µ1 −

σ2
1

2

)
dt+ σ1 dW (t),

d logS2(t) =

(
µ2 −

σ2
2

2

)
dt+ σ2 dW (t),

which (due to additivity of stochastic integrals) may be added to give

d
(

logS1(t) + logS2(t)
)

= d log
(
S1(t) · S2(t)

)
=

(
µ1 + µ2 −

σ2
1 + σ2

2

2

)
dt+ (σ1 + σ2) dW (t).

By using Itô’s lemma again, switching back from log-prices to prices, we find

dY (t) = d
(
S1(t) · S2(t)

)
=

(
µ1 + µ2 −

σ2
1 + σ2

2

2
+

(σ1 + σ2)2

2

)
Y (t) dt+ (σ1 + σ2)Y (t) dW (t)

= (µ1 + µ2 + σ1σ2)Y (t) dt+ (σ1 + σ2)Y (t) dW (t).

Note that we have always used the same driving standard Wiener process, since the two
processes were assumed to be perfectly correlated. This assumption does not sound realistic
if the two processes are, as in the second question, a stock share price on the US market
and an exchange rate. In such a case, we really need to extend Itô’s lemma to cope with
multidimensional processes (which is done in books on stochastic calculus).

Problem 11.9 We apply Itô’s lemma to the process Bt = e−yt·(T−t), the price at time t
of a zero with unit face value, maturing at time T , with yield yt:

∂Bt
∂t

= yte
−yt·(T−t) = ytBt,

∂Bt
∂yt

= −(T − t)e−yt·(T−t) = −(T − t)Bt,

∂2Bt
∂y2t

= (T − t)2e−yt·(T−t) = (T − t)2Bt,

where we note the explicit dependence of Bt on time t. Therefore,

dBt =

[
∂Bt
∂t

+ α · (y − yt)
∂Bt
∂yt

+
1

2
σ2y2t

∂2Bt
∂y2t

]
dt+ σyt

∂Bt
∂yt

dWt

=

[
yt − α · (y − yt) · (T − t) +

1

2
σ2y2t (T − t)2

]
Btdt− σyt(T − t)Bt dWt.

We notice that the volatility coefficient σyt(T − t) goes to zero when time t approaches
maturity T . This makes sense, as the bond price volatility should decrease when time-to-
maturity goes to zero. We may also recall that, indeed, the term (T − t) is the duration of
a zero-coupon bond.





12
Forward and Futures Contracts

12.1 SOLUTIONS

Problem 12.1 The equilibrium forward price should be

F0 = S0 · e(rd−rf )T = 1.2 · e(0.024−0.031)/2 = e1.1958.

Note that we are taking the viewpoint of a Eurozone investor, so the domestic rate is the
interest rate on euro and we consider the price of 1 GBP in euro. The quoted price is larger,
so it is convenient to sell GBP forward, after buying them spot now. A possible strategy is:

• Borrow e1000 now; after six months, the outstanding debt will be 1000 · e0.024/2 =
e1012.07.

• Buy 1000/1.2 = 833.33 GBP spot and invest them for six months; we will end up with
833.33 · e0.031/2 = 846.35 GBP.

• Take a short position to sell 846.35 GBP forward at the forward price.

• After six months we sell GBP forward, earning 846.35 · 1.22 = 1032.55 EUR. After
closing our debt, the resulting profit is 1032.55− 1012.07 = e20.48.

Problem 12.2 We need the forward prices of the four days in the scenario:

F0 = 1.13 · e(0.02−0.03)·120/360 = 1.1262,

F1 = 1.15 · e(0.02−0.03)·119/360 = 1.1462,

F2 = 1.13 · e(0.02−0.03)·118/360 = 1.1662,

F3 = 1.11 · e(0.02−0.03)·117/360 = 1.1064,

where we assume that interest rates are constant and that a year consists of 12 months of
30 days. Since you hold a long position for 150,000 GBP, the three cash flows, at the end of
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days 1, 2, and 3 are (in EUR):

150,000× (F1 − F0) = 150,000× (1.1462− 1.1262) = 2994.79,

150,000× (F2 − F1) = 150,000× (1.1662− 1.1462) = 2994.96,

150,000× (F3 − F2) = 150,000× (1.1064− 1.1662) = −8965.94.

If we neglect the time value of money, the total loss is

150,000× (1.1064− 1.1262) = e(−2976.19).

The initial deposit on the margin account was

150,000× 1.1262× 0.25 = e42,233.96.

Therefore, the return (on equity) has been

− 2976.19

42,233.96
= −7.047%.

The smaller the initial deposit, the larger the percentage profit/loss, because of the leverage
effect.

Problem 12.3 Let h be the hedging ratio, i.e., the number of index futures we need for
each unit (share) of the portfolio. The variation of the value of a hedged portfolio share is

δH = δS + hMF · δF,

where δS is the variation of the value of a portfolio share, δF is the variation in the index
futures price, and MF is the multiplier converting the index futures price to cash flows (we
neglect margin-to-market mechanics, in terms of time value of daily cash flows, as well as
margin requirements). The return on the hedged portfolio is

rH =
δS + hMF · δF

S0
,

where we just divide by the initial portfolio share value S0, since there is no initial cost when
entering into a futures contract (we neglect margin issues).

The returns on the portfolio and the return on the market portfolio are

r =
δS

S0
, rM =

δI

I0
,

respectively, where I0 is the initial value of the index, and δI is its variation. The beta of
the unhedged portfolio is

β =
Cov(r, rM )

σ2
M

= Cov

(
δS

S0
,
δI

I0

)
· 1

σ2
M

,

where σ2
M is the variance of the market return. The target beta of the hedged portfolio is

β∗, which means

βH =
Cov(rH , rM )

σ2
M

= β∗ ⇒ Cov(rH , rM ) = β∗ · σ2
M .
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Now we can write

Cov(rH , rM ) = Cov

(
δS + hMF · δF

S0
,
δI

I0

)
= Cov

(
δS

S0
,
δI

I0

)
+ Cov

(
hMF · δF

S0
,
δI

I0

)
= βσ2

M +
hMF · F0

S0
· Cov

(
δF

F0
,
δI

I0

)
.

If the variations in the futures index price track the variations in the index, we may write

δF

F0
≈ δI

I0
⇒ Cov

(
δF

F0
,
δI

I0

)
≈ σ2

M .

Hence, we find

βσ2
M +

hMF · F0

S0
· σ2

M = β∗ · σ2
M ,

h =
S0

MF · F0
· (β∗ − β).

If we consider an amount QA of portfolio shares, we may rewrite the above condition in
terms of number of futures contracts for the whole portfolio,

N =
VA
VF
· (β∗ − β),

where VA = QAS0 is the current value of the assets, and MF · F0 is the current monetary
futures price of the index. Again, we find the number of futures contracts in terms of values,
rather than quantities. If we really want to hedge, we aim at reducing β, so β∗ < β and
N < 0. Hence, we should hold a short position in index futures. If, on the contrary, we
want to increase exposure to systematic risk within a speculation strategy, N > 0 and we
should hold a long position in index futures.





13
Option Pricing: Complete Markets

13.1 SOLUTIONS

Problem 13.1 The replication portfolio for the call is found by solving the system

42∆ + e0.08/12 ·Ψ = 3,

38∆ + e0.08/12 ·Ψ = 0,

which yields
∆ = 0.75, Ψ = −28.5 · e−0.08/12 = −28.3106.

The call option price is
C0 = 0.75× 40− 28.3106 = 1.6894.

The call option writer collects the option premium and borrows an amount 28.3106, whose
sum, 30, is used to purchase 0.75 stock shares. At maturity, in the up scenario:

• The call is in-the-money, 0.25 additional stock shares must be purchased, with cost
0.25× 42 = 10.5, in order to have a whole share for the option holder.

• The strike price, 39, is collected.

• The outstanding debt, 28.5, is repaid.

• Since 10.5 + 28.5 = 39, the call writer breaks even.

In the down scenario:

• The call is out-of-the-money, and the 0.75 shares are sold, collecting a cash amount
0.75× 38 = 28.5.

• The outstanding debt, 28.5, is repaid using the cash.

In the case of the put (with same strike and maturity), we solve

42∆ + e0.08/12 ·Ψ = 0,

38∆ + e0.08/12 ·Ψ = 1,
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which yields

∆ = −0.25, Ψ = 10.5 · e−0.08/12 = 10.4302.

The put option price is

P0 = −0.25× 40 + 10.4302 = 0.4302.

The put option writer collects the option premium and shorts 0.25 shares, investing the
resulting cash at the risk-free rate. At maturity, in the up scenario:

• The risk-free investment yields 10.5.

• The put is out-of-the-money, 0.25 stock shares are purchased with cost 0.25×42 = 10.5,
to close the short position.

• The put writer breaks even.

In the down scenario:

• The risk-free investment yields 10.5.

• The put is in-the-money, so the writer has to buy a stock share for 39.

• The short position in the stock is closed using a fraction 0.25 of the stock share. The
remaining 0.75 shares are sold for 0.75× 38 = 28.5.

• Since 28.5 + 10.5 = 39, the put writer breaks even.

Problem 13.2 This option trading strategy is called a bull spread, as it is a bet on the
increase of the underlying asset price. The most intuitive way to create this payoff is by
taking a long position in a call with strike K1 and a short position in a call with strike
K2 > K1. All options are European-style.

This may be checked in the following table:

Condition Payoff from call 1 Payoff from call 2 Total payoff
ST < K1 0 0 0
K1 ≤ ST < K2 ST −K1 0 ST −K1

K2 ≤ ST ST −K1 K2 − ST K2 −K1

Since the call option price is a monotonically decreasing function of the strike, as it may
be easily checked by no-arbitrage, the initial value of the portfolio is

Ce0(K1)− Ce0(K2) ≥ 0,

where Ce0(K) is the initial price of a call with strike K. Hence, we have to pay an amount of
money at time 0 (negative cash flow), hoping to receive a positive payoff at maturity. The
plot of profit requires shifting the payoff down by an amount corresponding to the cost of
the strategy, as we show below.
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ST

K1

K2

0

Profit

Taking the time value of money into account, we should shift the payoff down by an
amount [

Ce0(K1)− Ce0(K2)
]
· erT .

By using put–call parity, we may create the same payoff by using put options and cash. The
equations

Ce0(K1) = P e0 (K1) + S0 −K1e
−rT ,

Ce0(K2) = P e0 (K2) + S0 −K2e
−rT ,

imply

Ce0(K1)− Ce0(K2) = P e0 (K1)− P e0 (K2) +
(
K2 −K1

)
e−rT .

If we just use the put options, taking a long position in a put with strike K1 and a short
position in a put with strike K2, we find the following payoff:

ST

K1 K2

(K K )2 1

0

Payoff

Again, we may check in tabular form:

Condition Payoff from put 1 Payoff from put 2 Total payoff
ST < K1 K1 − ST ST −K2 −

(
K2 −K1

)
K1 ≤ ST < K2 0 ST −K2 ST −K2

K2 ≤ ST 0 0 0

This payoff has the same form as the bull spread created with call options, but it is shifted
down by K2 −K1. If we only use the put options, however, the initial cash flow is positive,
since

P e0 (K1)− P e0 (K2) ≤ 0.
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Therefore, we receive a positive amount of cash from the initial trade, whereas the terminal
payoff is nonpositive. If we shift the payoff up, we find a profit similar to the profit diagram
obtained with calls.

Problem 13.3 Note that the slopes of the lines where the payoff is not constant are exactly
−1 and +1. This payoff may be decomposed into a bull spread (the portion on the right)
and a bear spread (the portion on the left).

Therefore we may:

• Buy a call with strike 90, which creates the slope +1 on the interval [90, 160].

• Write a call with strike 160, which sets the slope to zero on the interval [160,+∞).

• Buy a put with strike 70, which creates the slope −1 on the interval [20, 70].

• Write a put with strike 20, which sets the slope to zero on the interval [0, 20].

Problem 13.4 For any real variable X, we may write

X = X+ −X− = max{X, 0} −max{−X, 0}.

This decomposes the variable into the difference of its positive and negative parts, where
X+ ·X− = 0.

Therefore, if ST is the underlying asset price at maturity and F0 is the forward price for
delivery at time T , we have

ST − F0 = max
{
ST − F0, 0

}
−max

{
F0 − ST , 0

}
.

Therefore, the long position in the forward may be synthesized by a long position in a call
and a short position in a put, both European-style, maturing at T , with strike F0.

By the way, this shows that the call and the put option have the same price, if the strike
is the forward price. We may also see this using put–call parity, relating the option prices
at time 0:

Ce0 − P e0 = S0 − F0e
−rT =

(
S0e

rT − F0

)
e−rT = 0,

by spot–forward parity.
If we consider options with a strike K 6= F0, we may write

ST − F0 =
(
K − F0

)
+
(
ST −K

)+ − (K − ST )−,
which implies that we should buy a zero with face value

(
K − F0

)
maturing in T . In other

words, if K > F0, we should invest a cash amount
(
K − F0

)
e−rT at time 0; otherwise, if

K < F0, we should borrow the same amount of cash. This corresponds to the non-zero value
of a forward with delivery price K 6= F0.

Problem 13.5 Let us check put–call parity:

P e0 + S0 = 4 + 60 = 64

Ce0 +Ke−rT = 12 + 55e−0.05·0.75 = 64.98.

Put–call parity is violated, so there is an arbitrage opportunity. We should buy the cheap
portfolio and short the expensive one:
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• Buy a put option and a stock share.

• Write a call option and borrow $52.98, which will amount to $55 in nine months.

The net cash flow is positive, $0.98, yielding an immediate profit. At maturity:

• If the stock price is larger than $55, the call is exercised by the holder, and we sell
her the stock share we own, receiving $55 that we need to repay debt. The put option
expires worthless.

• If the stock price is smaller than $55, the call is not exercised by the holder. We sell
the stock share using the put, obtaining $55 that we need to repay debt.

In any scenario, we break even and the net cash flow at maturity is zero.

Problem 13.6 Consider the following portfolios:

1. Portfolio 1: One long position in a call, a cash amount D invested in a bank account,
and a zero with face value K.

2. Portfolio 2: One long position in a put plus one stock share.

We assume a constant risk-free rate, so that a bank account with rate r and a zero with
yield r are essentially equivalent.

At maturity, the value of portfolio 1 is

max
{
ST −K, 0

}
+DerT +K = max

{
ST ,K

}
+DerT .

The value of portfolio 2 is

max
{
K − ST , 0

}
+ ST +DerT = max

{
K,ST

}
+DerT ,

where dividends are reinvested at rate r whenever they are received. Note that D is the
present value of the dividend cash flow stream at time t = 0, which must be shifted forward
to time t = T . Since the two portfolios have the same value in every state of the world, by
the law of one price, the following extended put–call parity must hold:

P e0 + S0 −D = Ce0 +Ke−rT .

Problem 13.7 As a first step, we calibrate the binomial lattice, where the time step
δt = 1/3 consists of four months, the discount factor for each time step is D = e−r·δt =
e−0.03/3 = 0.99, u = 1.15, d = 0.9, and the risk-neutral probabilities are

πu =
e0.03/3 − 0.9

1.15− 0.9
= 0.4402, πd = 1− πu = 0.5598.

We may denote the lattice nodes as follows:

• Time 0: N0

• Time 1, i.e., t = 1 · δt: Nu
1 , Nd

1

• Time 2, i.e., t = 2 · δt: Nuu
2 , Nud

2 , Ndd
2

• Time 3, i.e., t = 3 · δt ≡ T : Nuuu
3 , Nuud

3 , Nudd
3 , Nddd

3
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The stock prices and the corresponding call payoffs at the four terminal nodes are:

SuuuT = S0 · u3 = 45.6262 ⇒ CuuuT = 15.6262,

SuudT = S0 · u2d = 35.7075 ⇒ CuudT = 5.7075,

SuddT = S0 · ud2 = 27.9450 ⇒ CuddT = 0,

SdddT = S0 · d3 = 21.8700 ⇒ CdddT = 0.

Backward recursion yields, at time t = 2 · δt:

Cuu2 = 0.99 ·
[
0.4402 · 15.6262 + 0.5598 · 5.7075

]
= 9.9735,

Cud2 = 0.99 ·
[
0.4402 · 5.7075 + 0.5598 · 0

]
= 2.4874,

Cdd2 = 0.99 ·
[
0.4402 · 0 + 0.5598 · 0

]
= 0.

By the same token,

Cu1 = 0.99 ·
[
0.4402 · 9.9735 + 0.5598 · 2.4874

]
= 5.7253,

Cd1 = 0.99 ·
[
0.4402 · 2.4874 + 0.5598 · 0

]
= 1.0841,

C0 = 0.99 ·
[
0.4402 · 5.7253 + 0.5598 · 1.0841

]
= 3.0960.

The estimate of the call price is C0 = $3.096.
In order to answer the second question, we need the following deltas:

∆u
1 =

Cuu2 − Cud2
S0 · u2 − S0 · ud

=
9.9735− 2.4874

39.6750− 31.0500
= 0.8679,

∆uu
2 =

Cuuu3 − Cuud3

Suuu3 − Suud3

=
15.6262− 5.7075

45.6262− 35.7075
= 1.

In fact, on the sample path (up, up, down), we are at node Nu
1 at time δt, where we should

hold ∆u
1 = 0.8679 shares; then, at time 2 · δt, we are at node Nuu

2 , where we should hold
one stock share. No calculation is actually needed, as the option will be in-the-money for
sure at maturity, conditional on being at node Nuu

2 ; so we should hold one share. Hence,
we should adjust delta from 0.8679 to 1 and buy

1− 0.8679 = 0.1321

additional stock shares.

Problem 13.8 We first calibrate the lattice:

u = eσ
√
δt = e0.50·

√
0.25 = 1.284,

d =
1

d
= 0.7788,

πu =
er·δt − d
u− d

=
e0.03·0.25 − 0.7788

1.284− 0.7788
= 0.4527.

The discount factor is e−0.03·0.25 = 0.9925.
The lattice for the underlying asset price is

50.0000 64.2013 82.4361 105.8500
38.9400 50.0000 64.2013

30.3265 38.9400
23.6183
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The corresponding lattice for the option prices is:

14.3394 6.2138 0 0
21.2585 11.4395 0

29.6735 21.0600
36.3817

The last time layer consists of the option payoffs; the put option is out-of-the-money for
large stock prices.

Then we roll backwards to time 2:

• At node Nuu
2 we clearly have Puu2 = 0, since the put is out-of-the-money at both

successor nodes.

• At node Nud
2 , the put is in the money, with intrinsic value Iud2 = 60 − 50 = 10. The

continuation value is

0.9925 ·
[
0.4527 · 0 + (1− 0.4527) · 21.06

]
= 11.4395,

which is larger than the intrinsic value, so it is not optimal to exercise and Pud2 =
11.4395.

• At nodeNdd
2 , the put is in the money, with intrinsic value Idd2 = 60−30.3265 = 29.6735.

The continuation value is

0.9925 ·
[
0.4527 · 21.06 + (1− 0.4527) · 36.3817

]
= 29.2252,

which is smaller than the intrinsic value, so it is optimal to exercise and P dd2 = 29.6735.

By a similar token:

Pu1 = max
{

60− 64.2013, 0.9925 ·
[
0.4527 · 0 + (1− 0.4527) · 11.4395

]
= max{−4.2013, 6.2138} = 6.2138,

P d1 = max
{

60− 38.9400, 0.9925 ·
[
0.4527 · 11.4395 + (1− 0.4527) · 29.6735

]
= max{21.06, 21.2585} = 21.2585,

P0 = max
{

60− 50, 0.9925 ·
[
0.4527 · 6.2138 + (1− 0.4527) · 21.2585

]
= max{10, 14.3394} = 14.3394.

The calibration of the model of the underlying asset price dynamics does not depend
on the option. Hence, we could use it for an Asian-style option as well. However, we
cannot recombine the lattice, and should use a binomial tree. In practice, we may use a
multinomial tree only to price a Bermudan-style Asian option, with a limited set of exercise
opportunities. The European-style case may be tackled by random Monte Carlo sampling.
The American-style case, when several observations define the average, is quite challenging,
but we may use approximate dynamic programming.

Problem 13.9 There is a typo (sorry!) in the book, as the payoff of this option is
ST − Smin, rather than Smax − Smin.

We calibrate the lattice first:

u = eσ
√
δt = e0.35

√
0.25 = 1.1912,

d =
1

u
= 0.8395,

πu =
er·δt − d
u− d

=
e0.05·0.25 − 0.8395

1.1912− 0.8395
= 0.4921.
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We may use a binomial tree, but we cannot recombine, as the option is path-dependent.
Hence, we evaluate the payoff for each sample path as follows:

Scenario t = 0 t = 1 t = 2 t = 3 Smin Payoff

1: uuu 50 59.56 70.95 84.52 50 34.52
2: uud 50 59.56 70.95 59.56 50 9.56
3: udu 50 59.56 50 59.56 50 9.56
4: udd 50 59.56 50 41.97 41.97 0
5: duu 50 41.97 50 59.56 41.97 17.59
6: dud 50 41.97 50 41.97 41.97 0
7: ddu 50 41.97 35.23 41.97 35.23 6.74
8: ddd 50 41.97 35.23 29.58 29.58 0

To find the option price, we need to compute and discount the expected payoff, considering
the risk-neutral probability of each path:

L0 = e−0.05·0.75 ·
[
0.49213 · 34.52 + 0.49212 · (1− 0.4921) · (9.56 + 9.56 + 17.59)

+ 0.4921 · (1− 0.4921)2 · 6.74
]

= 9.1359.

If we consider an option with payoff Smax − Smin, the procedure is similar:

Scenario t = 0 t = 1 t = 2 t = 3 Smin Smax Payoff

1: uuu 50 59.56 70.95 84.52 50 84.52 34.52
2: uud 50 59.56 70.95 59.56 50 70.95 9.56
3: udu 50 59.56 50 59.56 50 59.56 9.56
4: udd 50 59.56 50 41.97 41.97 59.56 17.59
5: duu 50 41.97 50 59.56 41.97 59.56 17.59
6: dud 50 41.97 50 41.97 41.97 50 8.03
7: ddu 50 41.97 35.23 41.97 35.23 50 14.77
8: ddd 50 41.97 35.23 29.58 29.58 50 20.42

Rather unsurprisingly, we find a quite expensive option:

SW0 = e−0.05·0.75 ·
[
0.49213 · 34.52 + 0.49212 · (1− 0.4921) · (9.56 + 9.56 + 17.59)

+ 0.4921 · (1− 0.4921)2 · (17.59 + 8.03 + 14.77) + (1− 0.4921)3 · 20.42
]

= 15.8267.

Needless to say, the accuracy of a three-step binomial tree is not quite adequate. Some
analytical formulas are available for lookback options in the case of continuous monitoring,
and Monte Carlo methods could be easily applied for discrete monitoring or more realistic
models than GBM, in the case of European-style options. We should also mention that it
is possible to adapt recombining binomial lattices to price lookback options, as shown in
an online technical note supplementing the textbook by John Hull; this may come in very
handy to price American-style lookbacks.

Problem 13.10 At time t = T1 we must make a decision by comparing the values of call
and put options, when the stock price is S1 = S(T1) and time-to-maturity is T2 − T1. To
answer the first question, we apply put–call parity at time t = T1:

P1 + S1 = C1 +Ke−r·(T2−T1),
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which yields a critical price S∗ = Ke−r·(T2−T1). When S1 > S∗, we should choose the call;
when S1 < S∗, we should choose the put (indeed, the as-you-like-option is also called chooser
option).

It turns out that a chooser option may be priced analytically in the GBM world, but let
us apply the idea to the binomial lattice, which is calibrated as usual:

u = e0.31·
√
0.25 = 1.168, d =

1

u
= 0.856, πu =

e−0.06·0.25 − 0.856

1.168− 0.856
= 0.51,

D = e−0.06·0.25 = 0.9851.

The lattice for the stock price is

74.99
64.22

55 55
47.10

40.34

We find the values of the call and put options at time T1 = 0.25 by rolling back the respective
lattices,

19.99
10.04

C0 0
0

0

0
0

P0 0
07.08

14.66

The values of the call and put options at time t = 0 are not relevant. In this case, the choice
is trivial, since we choose the one option that is in-the-money at each node. The chooser
option value at time t = 0

V = 0.9851 ·
[
0.51 · 10.04 + (1− 0.51) · 07.08

]
= 8.46.

Problem 13.11 The real-world drift is irrelevant. The call delta is

∆C = Φ
(
d1
)
,

where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

=
log(37/40) + (0.06 + 0.302/2)/3

0.30
√

1/3
= −0.2480.

Hence, using tables or any software with basic statistical functions, we find

∆C = Φ
(
− 0.2480

)
= 0.4021.

Problem 13.12 The real-world drift is irrelevant. The put delta is

∆P = ∆C − 1 = Φ
(
d1
)
− 1,

where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

=
log(47/35) + (0.03 + 0.452/2) · 5/12

0.45
√

5/12
= 1.2032.
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Hence, using tables or any software with basic statistical functions, we find

∆P = Φ
(
1.2032

)
− 1 = −0.1145.

The delta of the portfolio is
∆portf = 100 ·∆P + h,

where h is the position in stock shares, and the delta of the stock share itself is just ∆S = 1.
Setting the portfolio delta to zero, we find

h = −100 ·∆P = 11.45.

To immunize the risk of a long position in put options, we should hold a long position in
stock shares, which will compensate the drop in the put price, if the stock share price goes
up.

Problem 13.13 As a first step, let us find the deltas and gammas for the three options
(referred to as option a, b, and c, respectively). We need the terms d1:

da1 =
log(30/27) + (0.03 + 0.252/2)/4

0.25 ·
√

1/4
= 0.9654,

db1 =
log(30/30) + (0.03 + 0.252/2)/3

0.25 ·
√

1/3
= 0.1415,

dc1 =
log(30/28) + (0.03 + 0.252/2)/2

0.25 ·
√

1/2
= 0.7760.

Then, we find deltas:

∆a = Φ(0.9654)− 1 = −0.1672,

∆b = Φ(0.1415) = 0.5562,

∆c = Φ(0.7760) = 0.7811.

Note the negative delta of the put and the large delta of the last call, which is currently
in-the-money. We also find gammas, which we need for the second question:

Γa =
φ(0.9654)

40 · 0.45 ·
√

1/4
= 0.0668,

Γb =
φ(0.1415)

40 · 0.45 ·
√

1/3
= 0.0912,

Γc =
φ(0.7760)

40 · 0.45 ·
√

1/2
= 0.0964.

Denoting the holding of stock shares by hs, the value of the portfolio is

hs · S − 1000 · P a + 500 · Cb − 1500 · Cc,

with delta
hs − 1000 ·∆a + 500 ·∆b − 1500 ·∆c,

and gamma
−1000 · Γa + 500 · Γb − 1500 · Γc.
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To set delta to zero, we need to hold

hs = 1000 · (−0.1672)− 500 · 0.5562 + 1500 · 0.7811 = 726.395

stock shares, which we may round to 726.
If we want a gamma-neutral portfolio, this cannot be achieved by using stock shares, as

their gamma is zero. We must use nonlinear instruments, i.e., other options, or a change in
the current position in options. If we change the holding of the last call option, however,
this will change delta as well, undoing the delta-neutrality we have just achieved. We find
the new holding in shares and call options by solving a system of two equations:

hs + hc ·∆c = 1000 ·∆a − 500 ·∆b,

hc · Γc = 1000 · Γa − 500 · Γb.

This system is in upper triangular form. We first find hc to get gamma right,

hc =
1000 · 0.0668− 500 · 0.0912

0.0964
= 219.37.

We should hold a long position in the second call, buying 1500 + 219.37 options to offset the
current short position. Then, we adjust delta:

hs = 1000 · (−0.1672)− 500 · 0.5562− 219.37 · 0.7811 = −616.65.

Now, we should hold a short position in the stock.

Problem 13.14 The portfolio value is

V = 1000C − 1500P,

and its vega is

∂V

∂σ
= 1000

∂C

∂σ
− 1500

∂P

∂σ
.

Using the formula

V = φ(d1)St
√
τ ,

we find that the two vegas are:

VC = 50 ·
√

0.5 · 1√
2π
· exp

{
−0.18062

2

}
= 13.8767,

VP = 50 ·
√

2

12
· 1√

2π
· exp

{
−0.85552

2

}
= 5.6479.

Then, the portfolio vega is

1000 · 13.8767− 1500 · 5.6479 = 5404.79.

Since this is positive, we are long vega: An increase in volatility will increase the value of
the portfolio.
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Problem 13.15 The formula of vega is the same for call and put options, and the deltas
of a call and a put differ by a constant. Hence, vanna is the same for call and put options.

Let us recall the formulas for call delta and vega:

∆ = Φ(d1),

V = φ(d1)St
√
τ ,

d1 =
log(St/K) + (r + σ2/2)τ

σ
√
τ

,

where τ = T − t is time-to-maturity.
If we consider vanna as the partial derivative of vega with respect to St, we have:

∂2C

∂St∂σ
=
∂C

∂St

[
φ(d1)St

√
τ
]

=
√
τ ·
[
φ(d1) + St · φ(d1) ·

(
− d1

)
· 1

Stσ
√
τ

]
=
√
τ · φ(d1)

[
1− d1

Stσ
√
τ

]
=
φ(d1)

σ
·
[
σ
√
τ − d1

]
= −φ(d1)

σ
· d2,

where we use d2 = d1 − σ
√
τ and the fact that the PDF of a standard normal is just an

exponential function

φ(x) =
1√
2π
e−x

2/2,

to which we apply the chain rule to find derivatives of a composite function.
We may also go the other way around:

∂2C

∂σ∂St
=
∂C

∂σ
Φ(d1) = φ(d1) · ∂d1

∂σ
= φ(d1) · στ · σ

√
τ − σ

√
τd1 ·

√
τ

σ2τ

= φ(d1) · στ − d1
σ

= −φ(d1)

σ
· d2.

Problem 13.16 We may decompose this option as a portfolio of binary call options. A
binary call option pays $1 if ST ≥ K, 0 otherwise, and its price is

B(K) = e−rT · PQn

{
ST ≥ K

}
= e−rT · Φ

[
d2(r,K)

]
,

where d2(r,K), evaluated with risk-neutral drift r and strike K, is the familiar formula

d2 =
log(S0/K) +

(
r − σ2/2

)
T

σ
√
T

.

We should:

• Buy 5 binaries with strike 50 to create the value 5 in the range 50 ≤ ST < 60.

• Buy 5 more binaries with strike 60 to create the value 10 in the range 60 ≤ ST < 70.

• Write 9 binaries with strike 70 to create the value 1 in the range 70 ≤ ST .

Hence, the price is

5B(50) + 5B(60)− 9B(70) = 5 · 0.4747 + 5 · 0.1684− 9 · 0.0426 = 2.8320.
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Problem 13.17 The put payoff is e10 if ST = 40, and it is e20 if ST = 30. Thus, we are
looking for the real-world probability

P
{

30 ≤ ST ≤ 40
}

= P
{
ST ≥ 30

}
− P

{
ST ≥ 40

}
.

We recall that, in the risk-neutral world,

PQn

{
ST ≥ K

}
= Φ

(
d2(r,K)

)
,

where we evaluate d2 using the risk-neutral drift r. This is what we need, e.g., to price
a binary option with strike K (see Problems 13.16 and 13.18). However, here we need
probabilities under the real-world measure, with drift µ. Let us define the function

Ψ(µ,K)
.
= Φ

(
d2(µ,K)

)
,

where d2(µ,K) is the d2 term evaluated with real drift µ and strike K. Thus, for instance,

d2(0.10, 30) =
log(40/30) + (0.1− 0.402/2)/2

0.4 ·
√

0.5
= 1.0525,

and

P
{
ST ≥ 30

}
= Ψ(0.10, 40) = Φ(1.0525) = 0.8537.

Note that we are not using the actual option strike (50) as K, but the relevant stock price
(30), for which the payoff is 20. Then, repeating for a “strike” 40, we find the desired
probability as

P
{

30 ≤ ST ≤ 40
}

= Ψ(0.10, 30)−Ψ(0.10, 40) = 0.8537− 0.5141 = 0.3396.

More generally, we should realize that we must use the risk-neutral measure for pricing,
but we need the real measure for other purposes, most notably risk measurement.

Problem 13.18 The initial step in the profit diagram may be obtained by buying 5 binary
calls with strike 10. To increase slope from 0 to 1, we buy a vanilla call with strike 20, and
to bring it back to zero we write a call with strike 30. Finally, to set the portfolio value to
zero, for ST > 35, we sell 15 binaries with strike 35. Thus, the value of the option is

5B(10) + C(20)− C(30)− 15B(35),

where C(K) is the BSM formula for a call with strike K, and B(K) = e−rTΦ
(
d2(K)

)
is

the price of a digital (binary) call. We recall that Φ
(
d2
)

is the risk-neutral probability that
ST > K, which is what we need to price the option; see Problem 13.17 for a different use of
the formula.

Problem 13.19 Let us denote the time-to-maturity of the option by τ ≡ T − t. At time
t = 0, this is just τ = T , but it is better to be more general (especially when we need to
answer the second question).

By risk-neutral pricing, the option price is

f(St, t) = e−r(T−t) · EQn

[
S2
T |St

]
.

There are a few ways to evaluate the required expectation under the GBM model.
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One possibility is to write the stochastic differential equation for S2
t , which is easily found

by using Itô’s lemma:

dYt =
(
2r + σ2

)
Yt dt+ 2σYt dWt,

where Yt = S2
t . We know that, for a GBM following the equation dSt = µSt dt + σSt dWt,

E
[
ST |St

]
= Ste

µ(T−t). Hence,

EQn

[
S2
T |St

]
= S2

t e

(
2r+σ2

)
·
(
T−t
)
.

An alternative way to find the same expression is by rewriting S2
T | St as the square of a

lognormal variable:

S2
T |St =

{
St · exp

[(
r − σ2

2

)
· (T − t) + σ

√
T − t · ε

]}2

= S2
t · exp

[(
2r − σ2

)
· (T − t) + 2σ

√
T − t · ε

]
.

Using the formula for the expected value of a lognormal variable,1 we find again

EQn

[
S2
T |St

]
= S2

t · exp
[(

2r − σ2
)
· (T − t) + 2σ2 · (T − t)

]
= S2

t e

(
2r+σ2

)
·
(
T−t
)
.

Therefore

f(St, t) = S2
t e

(
r+σ2

)
·
(
T−t
)
.

Let us check that this expression satisfies the BSM equation:

∂f

∂t
= −

(
r + σ2

)
· S2

t e

(
r+σ2

)
·
(
T−t
)

= −
(
r + σ2

)
· f,

∂f

∂St
= 2Ste

(
r+σ2

)
·
(
T−t
)

= 2
f

St
,

∂2f

∂S2
t

= 2e

(
r+σ2

)
·
(
T−t
)

= 2
f

S2
t

.

By plugging these derivatives into the BSM equation, we find

∂f

∂t
+ rSt

∂f

∂St
+

1

2
σ2S2

t

∂2f

∂S2
t

= −
(
r + σ2

)
· f + 2rSt

f

St
+

1

2
σ2S2

t · 2
f

S2
t

= rf.

Problem 13.20 Given the shape of the PDE, we may consider the underlying stochastic
process as a GBM following the stochastic differential equation

dXt = aXt dt+ bXt dWt.

Hence, we may express the random variable XT , conditional on Xt = x, as

XT = x · exp

{(
a− b2

2

)
· (T − t) + b

√
T − t · ε

}
,

1If X ∼ N(ν, ξ2), the expected value of the lognormal variable Y = eX is eν+ξ
2/2.
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where ε ∼ N(0, 1) as usual. The log in the function defining the terminal condition allows
considerable simplifications when taking the conditional expectation, where only ε is random,
with expected value 0:

E
[
log
(
X4
T

)
+ k |Xt = k

]
= E

[
log

([
x · exp

{(
a− b2

2

)
· (T − t) + b

√
T − t · ε

}]4)
+ k

]

= log
(
x4
)

+ 4 · E
[(
a− b2

2

)
· (T − t) + b

√
T − t · ε

]
+ k

= log
(
x4
)

+ 4 ·
(
a− b2

2

)
· (T − t) + k.

Therefore, the solution is

V (x, t) = log
(
x4
)

+ 4 ·
(
a− b2

2

)
· (T − t) + k.

This solution does satisfy the terminal condition:

V (x, T ) = log
(
x4
)

+ 4 ·
(
a− b2

2

)
· (T − T ) + k = log

(
x4
)

+ k.

Furthermore, to check that it satisfies the PDE, we find the partial derivatives

∂V

∂t
= −4 ·

(
a− b2

2

)
,

∂V

∂x
=

4

x
,

∂2V

∂x2
= − 4

x2
.

Then, we plug them into the equation

∂V

∂t
+ ax

∂V

∂x
+

1

2
b2x2

∂2V

∂x2
= 0,

and find

−4 ·
(
a− b2

2

)
+ ax · 4

x
− 1

2
b2x2 · 4

x2
= 0,

Problem 13.21 Let us consider two strike prices K1 and K2 > K1. Any strike between
these values may be expressed as the convex combination

Kλ = λK1 + (1− λ)K2, λ ∈ [0, 1].

We want to show that the current call price C(K), as a function of strike K, is convex, i.e.,
that

C
(
Kλ) ≤ λC

(
K1

)
+ (1− λ)C

(
K2

)
, ∀λ ∈ [0, 1].

Consider a portfolio consisting of a long position in λ calls with strike K1 and 1 − λ calls
with strike K2, and a short position in one call with strike Kλ. To prove convexity of C(K),
we must show that the current value of the portfolio is non-negative:

λC
(
K1

)
− C

(
Kλ) + (1− λ)C

(
K2

)
≥ 0, ∀λ ∈ [0, 1].

Let us consider the payoff of the portfolio for each possible scenario of the underlying asset
price ST :



78 OPTION PRICING: COMPLETE MARKETS

Condition Payoff call K1 Payoff call Kλ Payoff call K2 Total payoff
ST < K1 0 0 0 0
K1 ≤ ST < Kλ λ

(
ST −K1

)
0 0 λ

(
ST −K1

)
Kλ ≤ ST < K2 λ

(
ST −K1

)
−
(
ST −Kλ

)
0 (1− λ)(K2 − ST )

K2 ≤ ST λ
(
ST −K1

)
−
(
ST −Kλ

)
(1− λ)

(
ST −K2

)
0

Let us check the total payoff in each scenario:

• In the range ST < K1, no call is in-the-money, and the total payoff is clearly 0.

• In the range K1 ≤ ST < Kλ, the first option yields a payoff λ
(
ST −K1

)
≥ 0.

• In the range Kλ ≤ ST < K2, the total payoff is

λ
(
ST −K1

)
−
(
ST −Kλ

)
= Kλ − λK1 − (1− λ)ST

= (1− λ)K2 − (1− λ)ST = (1− λ)
(
K2 − ST

)
,

which is positive in that range.

• Finally, in the range K2 ≤ ST , the total payoff is

λ
(
ST −K1

)
−
(
ST −Kλ

)
+ (1− λ)

(
ST −K2

)
= 0.

Since the payoff of the portfolio is never negative, by no-arbitrage, its initial value is non-
negative as well, which proves the claim.

Problem 13.22 We assume a year consisting of 360 days, where each month in turn
consists of 30 days.2

It is convenient to think of the portfolio as consisting of 1000 shares of a fund, with unit
value $100 (there is a mistake in the problem statement; we hold shares of the fund, not
units of the index). Let us denote:

• The current price of each share of the fund by S0 = $100

• The current value of the index by I0 = 100

• The variations in the share price and the index by δS and δI, respectively

• The price and delta of the put on the index by P (I, τ) and ∆(I, τ), respectively, when
the index value is I and time-to-maturity is τ

We use a single-index model such that

δS

S0
= β

δI

I0
,

2In this problem, we replicate and extend an example proposed in the HBS Business Case n. 9-201-071, Pine
Street Capital, by G. Chacko.
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where β = 1.5, we ignore specific risk, and α = 0, which may make sense for a short holding
period (as volatility may dominate drift on the short term). The variations in the share and
put price, given a variation in the index, are given (to first-order approximation) by

δS = β · S0

I0
· δI = βδI,

δP = ∆ · δI,

where we use S0 = I0 = 100 in the first equation (neglecting units of measurement).
Since

I0 = 100, K = 100, r = 0.05, τ = 60/360, σ = 0.25,

the put option price and delta are

P (100, 60/360) = 3.6516, ∆(100, 60/360) = −0.4472,

when the index value is I0 = 100.
Now we must allocate total wealth, $100,000, to the fund and the put option, in order

to achieve delta-neutrality. Let us denote the two holdings by hs and hp (number of shares
and puts, respectively) and solve the following system of linear equations:

hs · S0 + hp · P
(
S0

)
= 100,000,

hs · β + hp ·∆
(
S0

)
= 0.

Plugging numerical values, we have

hs · 100 + hp · 3.6516 = 100,000,

hs · 1.5− hp · 0.4472 = 0,

which yields
hs = 890.89, hp = 2988.07.

We may convert holdings in terms of wealth:

Ws = 890.89× 100 = $89,088.81, Wp = 2988.07× 3.6516 = $10,911.19.

Now, let us analyze instantaneous changes in the index:

• Scenario 1, instantaneous increase by 5%: The return on the stock shares is 1.5 ·0.05 =
7.5%, and the new put price is P (105, 60/360) = 1.8734. Hence, the new wealth is

890.89× 107.5 + 2988.07× 1.8734 = $101,368.22,

with a return of 1.37% due to a convexity effect.

• Scenario 2, instantaneous decrease by 5%: The return on the stock shares is −1.5 ·
0.05 = −7.5%, and the new put price is P (95, 60/360) = 1.8734. Hence, the new
wealth is

890.89× 92.5 + 2988.07× 6.3809 = $101,473.82,

with a return of 1.47% due to a convexity effect.

In this case, the hedge seems to be working pretty well. However, what if we consider
non-instantaneous changes, so that the theta effect cannot be neglected?
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• Scenario 1, increase by 5% after one month: The return on the stock shares is 1.5·0.05 =
7.5%, and the new put price is P (105, 30/360) = 0.995. Hence, the new wealth is

890.89× 107.5 + 2988.07× 0.995 = $98,743.60,

with a return of −1.26%.

• Scenario 2, decrease by 5% after one month: The return on the stock shares is −1.5 ·
0.05 = −7.5%, and the new put price is P (95, 30/360) = 5.669. Hence, the new wealth
is

890.89× 92.5 + 2988.07× 5.669 = $99,346.55,

with a return of −0.65%.

The hedge is less effective, due to the decay in the option price over time. When considering
an extended period of time, we should also consider the effect of α in the single-index model.



14
Option Pricing: Incomplete Markets

This chapter does not include problems in the book, but I will try to add some in the
(hopefully not so remote) future.
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15
Optimization Model Building

15.1 SOLUTIONS

Problem 15.1 We want to show that, if S1 and S2 are convex sets, then

xa,xb ∈ S1 ∩ S2 ⇒ λxa + (1− λ)xb ∈ S1 ∩ S2, ∀λ ∈ [0, 1].

Since S1 and S2 are convex sets,

xa,xb ∈ S1 ⇒ λxa + (1− λ)xb ∈ S1, ∀λ ∈ [0, 1],

xa,xb ∈ S2 ⇒ λxa + (1− λ)xb ∈ S2, ∀λ ∈ [0, 1].

If xa,xb ∈ S1 ∩ S2, then xa,xb ∈ S1 and xa,xb ∈ S2. Given convexity of S1 and S2, this
implies that both of the following conditions are true:

λxa + (1− λ)xb ∈ S1, ∀λ ∈ [0, 1],

λxa + (1− λ)xb ∈ S2, ∀λ ∈ [0, 1].

These, in turn, imply

λxa + (1− λ)xb ∈ S1 ∩ S2, ∀λ ∈ [0, 1],

which proves the claim.
This does not apply to the union of convex sets. For instance, the two intervals [0, 1] and

[2, 3] are convex subsets of the real line, but their union is not convex.

Problem 15.2 We want to show that

xa,xb ∈ S ⇒ λxa + (1− λ)xb ∈ S, ∀λ ∈ [0, 1],

where S = {x ∈ Rn |g(x) ≤ 0}. Given the definition of S, the conditions xa,xb ∈ S mean

g(xa) ≤ 0, g(xb) ≤ 0.
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Given convexity of function g(·), for any λ ∈ [0, 1], we have

g
[
λxa + (1− λ)xb

]
≤ λg

(
xa) + (1− λ)g

(
xb
)
≤ 0,

which implies

λxa + (1− λ)xb ∈ S, ∀λ ∈ [0, 1],

proving the claim.
As an example, the subset of R2

x21 + x22 − 4 ≤ 0,

defined by the convex function g(x) = x21 + x22 − 4, is convex: It is a circle of radius 2,
including both the circumference (boundary) and the interior. However, the constraint

x21 + x22 − 4 = 0,

corresponding to the boundary circumference, does not define a convex set. Also the con-
straint

x21 + x22 − 4 ≥ 0,

does not define a convex set, as it gives the (open) region outside the circle.

Problem 15.3 The L1 norm is defined as

‖x‖1
.
=

n∑
i=1

|xi | .

Its dual norm ‖·‖∗ is

‖u‖∗
.
= max

{
uTx : ‖x‖1 ≤ 1

}
.

More explicitly, we are dealing with the LP problem

max

n∑
i=1

uixi

s.t.

n∑
i=1

|xi | ≤ 1.

The constraint implies that xi ∈ [−1, 1]. Let i∗ be the subscript corresponding to the
largest ui in absolute value (breaking ties arbitrarily). Let us rule out the trivial case ui∗ = 0,
where whatever norm is just zero. Clearly, the objective function is maximized by setting
the corresponding xi∗ to +1, if ui∗ > 0, or to −1, if ui∗ < 0, and xi = 0 for i 6= i∗. Then,
the optimal value of the objective is

max
i=1,...,n

|ui | ≡ ‖u‖∞,

proving the claim.
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Problem 15.4 Let us denote the weights of the new tracking portfolio by wi, associated
with binary variables δi, set to 1 when wi 6= 0. These weights are collected into vector w,
whereas wb collects the weights of the benchmark to be tracked. Let us denote the weights
of the current portfolio by w0

i .
Since we allow short-selling, we cannot rely on the fact that weights are non-negative.

Hence, the link between weights and binary variables must we written as

wi ≤Mδi, wi ≥ −Mδi,

for a suitable constant M (e.g., the max absolute value of a weight in the portfolio; choosing
M = 1 would work in practice, but we might try to choose a smaller value, in order to
improve bounds from the convex relaxation).

To limit turnover and transaction costs, we should include a penalty term in the objective
function, of the form

ω ·
n∑
i=1

|wi − w0
i |,

where ω is a penalty coefficient. To express the penalty in linear form, we introduce non-
negative variables w+

i and w−i and rewrite the penalty term, subject to an additional con-
straint:

ω ·
n∑
i=1

(
w+
i + w−i

)
,

w+
i + w−i = wi − w0

i , ∀i.

Let us introduce an uncertainty set U , collecting covariance matrices Σk, k ∈ U . The
objective function would be

min
w

{
max
k∈U

(
w −wb

)T
Σk

(
w −wb

)}
+ ω ·

n∑
i=1

(
w+
i + w−i

)
.

We may recast the min–max part in a computationally viable way by introducing the aux-
iliary variable z, and solving the following problem:

min z + ω ·
n∑
i=1

(
w+
i + w−i

)
s.t. z ≥

(
w −wb

)T
Σk

(
w −wb

)
, k ∈ U ,

wi ≤Mδi, i = 1 . . . , n,

wi ≥ −Mδi, i = 1 . . . , n,

w+
i + w−i = wi − w0

i , i = 1 . . . , n,
n∑
i=1

δi ≤ Cmax,

n∑
i=1

wi = 1,

δi ∈ {0, 1}, w+
i , w

−
i ≥ 0,

where Cmax is the maximum portfolio cardinality. This is a mixed-integer QCQP. The
continuous relaxation is a convex optimization problem.
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Problem 15.5 The current price of the underlying asset, Si = S(ti), is clearly a state
variable but, since the option is path-dependent, this is not sufficient. The simplest idea is
to consider the cumulated sum of prices observed so far as another state variable:

Ii =

i∑
j=1

S(tj).

We might also consider the average or the intrinsic value.
Let us set δt = T/M as the discretized time step. The state transition equations, are

Si+1 = Si · exp

[(
r − σ2

2

)
δt+ σ

√
δt · εi+1

]
,

Ii+1 = Ii + Si · exp

[(
r − σ2

2

)
δt+ σ

√
δt · εi+1

]
,

with initial conditions S0 = S(0) and I0 = 0. The random variable εi+1 is the disturbance,
i.e., the risk factor.

The control variable is binary, related to the exercise or continuation decision, which may
be left implicit in the choice between two values. In fact, the value function is just the
(undiscounted) continuation value (other choices are possible) and the recursion is:

Vi(Si, Ii) = max

{
1

i
Ii −K, e−r·δt · E

[
Vi+1(Si+1, Ii+1) |Si, Ii

]}
.

To be precise, there would be another state variable, binary, which is initially set to 0 and
then is set to 1 in case we exercise the option, and then stays there, preventing further
exercise (the control variables are constrained by states in general). In our case, we may
neglect this, but we could not in the case of options with multiple exercise opportunities.
Such options are traded, e.g., on energy markets.

Problem 15.6 If we want to tackle the problem by dynamic programming, we need to
formalize state variables, control variables, and disturbances (risk factors). In some cases,
the choice is rather constrained and unique, in other cases, there may be room for sensible
alternatives. In specifying these ingredients, we are forced to clarify our hidden modeling
assumptions. In this example a natural choice is the following:

State variables:

• Available wealth Wt at time instants t = 0, 1, . . . , T , i.e., the beginning of each
time interval. Initial state W0 is given. The terminal wealth WT will define the
utility of bequest q(WT ).

• Employment state λt ∈ L = {α, β, η}. The current employment state λ0 is known.
As we discuss below, this state is related to the amount of labor income, in a way
that must be clarified, as there may be alternative modeling assumptions.

Control variables:

• Consumption Ct, for time instants t = 0, 1, . . . , T−1. This decision is constrained
by available wealth, 0 ≤ Ct ≤Wt, if we do not allow borrowing money.

• Fraction of saved amount invested in the risky asset, t = 0, 1, . . . , T − 1. The
constraint on this control variable is αt ∈ [0, 1].
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Risk factors:

• Return Rt from the risky asset, t = 1, 2, . . . , T . The probability distribution is
assumed to be independent of time and state. So, returns are a sequence of i.i.d.
random variables.

• Labor income Lt+1(λt), which is relevant for t = 0, 1, . . . , T −1. There is a subtle
modeling choice here. We assume that income is collected during a time period
(t − 1, t) and is available at the end of that period. Furthermore, we assume
that the employment state observed at time instant t defines the income Lt+1

collected later, during the time period (t, t + 1), and available for consumption
at time instant t + 1. An alternative (and perfectly legitimate) modeling choice
would be to assume that when we are at the beginning a time period, we have no
idea about the labor income that we will receive during the time period. Available
wealth W0 includes the income during time period (−1, 0); terminal wealth WT

will include labor income LT , earned during the time period (T−1, T ), depending
on employment state λT−1. The employment state λT is undefined. Labor income
is assumed to be a deterministic function of the employment state variable, but
the employment state (which follows a Markov chain), might be used to define a
state-dependent probability distribution.

The state transition equation for wealth is

Wt+1 = (Wt − Ct) · [1 + rf + αt(Rt+1 − rf )] + Lt+1, t = 0, 1, . . . , T − 1.

This is a discrete-time, continuous-state Markov process, partially controlled by control
decisions Ct and αt. The process of the employment state is a discrete-time Markov chain,
with discrete states, governed by conditional probabilities

πij = P {λt+1 = j | λt = i} , i, j ∈ L, t = 0, 1, . . . , T − 2.

This evolution is assumed to be purely exogenous.
The value function is Vt(Wt, λt), which satisfies the recursive functional equation

Vt(Wt, λt) = max
αt∈[0,1],Ct∈[0,Wt]

{
u(Ct) + β · E

[
Vt+1(Wt+1, λt+1) |Ct, αt, λt

]}
, t = 0, 1, . . . , T−1,

with terminal condition

WT (WT , λT ) = q(WT ),

where the employment state λT is actually irrelevant, and β ∈ (0, 1] is a subjective discount
factor. The expectation is conditional on the control choices Ct and αt, as well as the
employment state λt. If we do not consider utility from bequest, we may assume that the
whole terminal wealth is consumed, so that q(WT ) = u(WT ).

In order to tackle the problem by multistage stochastic programming with recourse, we
have to define a scenario tree, which includes:

• A root node n0, corresponding to time instant t = 0, where we have to make the
here-and-now decision. The initial states are λn0 and Wn0 .

• A set of intermediate nodes, say I, corresponding to time instants t = 1, 2, . . . , T − 1,
where we observe realized return, collect income, and make the next consumption–
saving decisions.
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• A set of terminal nodes S, corresponding to the last time instant t = T , where we
collect the last labor income and measure the utility of bequest from terminal wealth
WT .

Each terminal node corresponds to a sample path. Each node n, with the exception of the
root node n0, has a unique parent (antecedent) node a(n). Each node n ∈ I∪S is associated
with an unconditional probability πn. This unconditional probability is just the product of
all the conditional probabilities along the path leading from n0 to n. In order to discount
utilities, we also use τ(n) to denote the time period of each note, so that we may discount
the utility from consumption at node n as

βτ(n)u(Cn).

To generate the scenario tree, we need to generate sample paths of returns from the risky
asset, as well as employment states. The state variables related to employment are exoge-
nous, and if we assume, as we did with dynamic programming, that the state of employment
is known at the beginning of a time interval, but the corresponding labor income is collected
at the end, the income Ln associated with successor nodes of any node will be the same (we
have a predictable stochastic process, just like a time-varying interest rate). Thus, for each
node n ∈ I ∪ S we shall observe a return Rn for the risky asset, as well as an income In.

To avoid unnecessary nonlinearities, due to a product of control variables, we use Snr and
Snf , for n ∈ {n0} ∪ I, to denote the amounts saved and invested in the risky and risk-free
asset, respectively.

The resulting model is

max u(Cn0) +
∑
n∈I

πnβτ(n)u(Cn) +
∑
n∈S

πnβτ(n)q(Wn)

s.t. Cn + Snr + Snf = Wn, ∀n ∈ {n0} ∪ I,

Wn = Sa(n)r ·
(
1 +Rn

)
+ S

a(n)
f ·

(
1 + rf

)
+ Ln,

Cn, Snr , S
n
f ≥ 0.

Problem 15.7 We use subscripts i = 1, . . . , n to refer to assets, k = 1, . . . ,m to refer to
scenarios, and denote:

• The current holding of assets by h0i , so that current wealth is
∑n
i=1 h

0
iP

0
i , where P 0

i is
the current price of each asset.

• The holding of assets after rebalancing by hi, so that W k
T =

∑n
i=1 hiP

k
i is wealth in

scenario k, where P ki is the price of each asset in each scenario, at the end of the
holding horizon.

• The total number of asset shares of type i bought/sold by bi and si, respectively.

• The number of asset shares bought/sold on the platform by bp
i and sp

i , respectively,
for each asset i.

• The integer number of lots bought/sold through the brokers by bbk
i and sbk

i , respectively.

To define the objective function, we need the expected wealth, which should not be smaller
than the minimum target Wmin,

W =
1

m

m∑
k=1

W k
T ≥Wmin,
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and the positive/negative deviations Dk
+ and Dk

− with respect to the expected value, in each
scenario. The deviations for each scenario satisfy the constraint

W k
T −W = Dk

+ −Dk
−,

and MAD is
1

m

m∑
k=1

(
Dk

+ +Dk
−
)
.

Note that we do not need to explictly enforce the complementarity restriction Dk
+ ·Dk

− = 0,
as this will be enforced by optimality when we minimize MAD.

Let us represent the percentage transaction cost by fi and the fixed transaction cost of
each lot by Ci, for assets i = 1, . . . , n. Then, the budget constraint on the total transaction
expenditure is

G =

n∑
i=1

fiP
0
i

(
bp
i + sp

i

)
+

n∑
i=1

Ci
(
bbk
i + sbk

i

)
≤ B,

where the first sum is related with the platform and the second one with the brokers.
We must also write inventory balance constraints for each asset (using the number Li of

assets in each lot):

hi = h0i + bi − si,
bi = bp

i + Lib
bk
i ,

si = sp
i + Lis

bk
i .

Finally, we also need a cash balance constraint equating cash flows in and out,
n∑
i=1

siP
0
i =

n∑
i=1

biP
0
i +G,

i.e., what we gain by selling assets must cover what we need to buy other assets, including
the total transaction expenditure. To summarize, the resulting model is:

min
1

m

m∑
k=1

(
Dk

+ +Dk
−
)

s.t. W =
1

m

m∑
k=1

W k
T ,

W ≥Wmin,

W k
T −W = Dk

+ −Dk
−, k = 1, . . . ,m,

G =

n∑
i=1

fiP
0
i

(
bp
i + sp

i

)
+

n∑
i=1

Ci
(
bbk
i + sbk

i

)
,

G ≤ B,
n∑
i=1

siP
0
i =

n∑
i=1

biP
0
i +G,

hi = h0i + bi − si, ı = 1, . . . , n,

bi = bp
i + Lib

bk
i , ı = 1, . . . , n,

si = sp
i + Lis

bk
i , ı = 1, . . . , n.

All variables are non-negative, and bbk
i and sbk

i are also required to be integer.
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Optimization Model Solving

16.1 SOLUTIONS

Problem 16.1 We may use two alternative ways to prove concavity of the dual function.
One is based on the straightforward application of the definition of concave function, the
other one is based on a useful geometrical insight.

The dual function is defined as

w(µ)
.
= min

x∈S
f(x) + µTg(x), (16.1)

for µ ≥ 0 (we consider only inequality constraints, but this is not really necessary; the
reasoning below applies to equality constraints associated with unrestricted multipliers).
Concavity means

w
(
µλ
)
≥ λ

(
µ1

)
+ (1− λ)

(
µ2

)
, ∀λ ∈ [0, 1],

where

µλ = λµ1 + (1− λ)µ2.

As a preliminary observation, note that, for any functions h1 and h2,

min
x∈S

[
h1(x) + h2(x)

]
≥ min

x∈S
h1(x) + min

x∈S
h2(x),

since, when we optimize separately, we are not constrained to use the same x∗. Then, under
the condition λ ≥ 0 and 1− λ ≥ 0,

w
(
µλ
)

= min
x∈S

{
f(x) +

[
λµ1 + (1− λ)µ2

]T
g(x)

}
= min

x∈S

{
λ ·
[
f(x) + µT

1g(x)
]

+ (1− λ) ·
[
f(x) + µT

2g(x)
]}

≥ λ ·min
x∈S

[
f(x) + µT

1g(x)
]

+ (1− λ) ·min
x∈S

[
f(x) + µT

2g(x)
]

= λ
(
µ1

)
+ (1− λ)

(
µ2

)
.
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As an alternative approach, note that for any fixed x ∈ S, the function

hx(µ)
.
= f(x) + µTg(x)

is a linear affine function of µ. When we fix a vector µ and optimize with respect to x ∈ S,
we pick the line with the smallest value. Hence, the dual function is the lower envelope of
a (possibly infinite) family of linear affine function, which is a concave function (the upper
envelope is convex).

This is a consequence of a general property of convex functions (see Boyd, Vandenberghe,
Convex Optimization, pp. 80–81), stating that the pointwise maximum of a finite family of
convex functions

H(x)
.
= min

{
h1(x), h2(x), . . . , hm(x)

}
,

is convex. This may be extended to the pointwise supremum over an infinite collection of
convex functions,

H(x)
.
= sup

y∈S
f
(
x,y

)
.

We are flipping everything upside down and applying the idea to the pointwise infimum of
a family of concave functions. Linear affine functions are both convex and concave.

As we illustrate in Problems 16.2 and 12.3, this may result in a differentiable function or
not, depending on the nature of set S and the involved functions.

Problem 16.2 If we really want to do it “by the book,” we should associate three non-
negative Lagrange multipliers µ0, µ1, and µ2 with the inequality and the lower bound
constraints, respectively, and build the Lagrangian function

L(x,µ) = x21 + x22 + µ0

(
4− x1 − x2

)
− µ1x1 − µ2x2.

Stationarity with respect to primal variables yields

∂L
∂x1

= 2x1 − µ0 − µ1 = 0,

∂L
∂x2

= 2x2 − µ0 − µ2 = 0.

Complementary slackness conditions are

µ0

(
4− x1 − x2

)
= 0, µ1x1 = 0, µ2x2 = 0.

Case-by-case analysis is a bit annoying, but let’s do it with respect to the second and third
condition:

1. Case µ1 > 0, µ2 > 0: Then, we should have x1 = x2 = 0, but the inequality constraint
is not satisfied.

2. Case µ1 > 0, µ2 = 0: Then, we should have x1 = 0. The first stationarity condition
becomes µ0 = −µ1, which, given non-negativity of the multipliers, can only be satisfied
if µ0 = µ1 = 0, contradicting the assumption.

3. Case µ1 = 0, µ2 > 0: By symmetry, this is similar to the second case.

4. Case µ1 = 0, µ2 = 0: The two stationarity conditions imply x1 = x2 (take the
difference of the two equations). If we assume µ0 = 0, then we should have x1 = x2 = 0,
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but the inequality is not satisfied. If we assume µ0 > 0, the inequality must be active,
and we find x1 = x2 = 2, with value 8.

So, the optimal value is f∗ = 8, corresponding to the optimal solution (2, 2).
A common trick to simplify the matter is assuming an “interior” solution, i.e., we neglect

the lower bounds and assume x1, x2 > 0, which easily yields the above optimal solution,
which is in fact interior. The advantage is that we have to deal with a single Lagrange
multiplier, but of course we cannot exclude “corner” solutions a priori.

If we dualize the inequality, using a single multiplier µ ≥ 0, we obtain the dual function

w(µ) = min
x1,x2≥0

{
x21 + x22 + µ(−x1 − x2 + 4)

}
= min
x1≥0

{
x21 − µx1

}
+ min
x2≥0

{
x22 − µx2

}
+ 4µ.

The problem is decomposed into two independent subproblems. Since the two quadratic
functions are convex, the first-order condition is sufficient for optimality. The optima with
respect to x1 and x2 are obtained for

x∗1 = x∗2 =
µ

2
,

where µ ≥ 0. Hence, plugging this values into the dual function, we find the explicit form

w(µ) = 2 ·
(
µ2

4
− µ · µ

2

)
+ 4µ = −1

2
µ2 + 4µ.

This is a concave and differentiable function. The maximum of the dual function is obtained
for µ∗ = 4, and we have w(4) = f∗ = 8, verifying strong duality in this case.

Problem 16.3 By dualizing the inequality constraint with a multiplier µ ≥ 0, we obtain
the dual function

w(µ) = min
j=1,...,m

{
cTxj + µ

(
aTxj − b

)}
,

which is the lower envelope of a finite family of affine functions, as shown in the following
figure:

w()



This is a concave function that should be maximized. Each line corresponds to a feasible
solution xj . When two (or more) lines intersect for a given value of µ, there are multiple



94 OPTIMIZATION MODEL SOLVING

equivalent solutions. So, we have a nondifferentiability point when the relaxed problem
has multiple optimal solutions. A solution xj may be optimal for a range of values of the
multiplier µ.

This case should contrasted with Problem 16.2, where there is an uncountable set of
solutions in S and, due to strict convexity of the objective function, there is a unique
solution for each relaxed problem as a function of µ. In that case, the dual function may be
thought as the lower envelope of an infinite (uncountable) family of affine functions, and it
is everywhere differentiable.


