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PARTI 

E U C L I D E A N G E O M E T R Y 





CHAPTER 1 

CONGRUENCY 

1. Prove that the internal and external bisectors of the angles of a triangle are 
perpendicular. 

Solution. Let BD and BE be the angle bisectors, as shown in the diagram 
below. 

A 

Then 

Z.EBD = ZEBA+ZDBA = = ^ A + CBA = ^ 
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4 CONCURRENCY 

3. Let P be a point inside A ABC. Use the Triangle Inequality to prove that 
AB + BC > AP + PC. 

Solution. Extend AP to meet BC at D. Using 
the Triangle Inequality, 

AB + BD > AD = AP 4- PD 

so that 

AB + BD + DC > AP + PD + DC. 

Since 

and 

we have 

BD + DC = BC 

PD -f DC > PC, 

AB + BC > AP + PC. 

5. Given the isosceles triangle ABC with AB = AC, let D be the foot of the 
perpendicular from A to BC. Prove that AD bisects ABAC. 

Solution. Referring to the diagram, the two 
right triangles ADB and ADC have a com-
mon side and equal hypotenuses, so they are 
congruent by HSR. Consequently, ZBAD = 
ACAD. 

1. D is a point on BC such that AD is the bisector of Z.A. Show that 

/.ADC = 90 + 



5 

Solution. Referring to the diagram, 29 + (3 + 
7 = 180, which implies that 

A 

From the Exterior Angle Theorem, we have 

so that B C D 

9. Construct a right triangle given the hypotenuse and one side. 
Solution. We construct a right triangle ABC given the hypotenuse BC and 
the length c of side AC. 
Construction. 

(1) Construct the right bisector of BC, yielding M, the midpoint of BC. 
(2) With center M, draw a semicircle with diameter BC. 
(3) With center C and radius equal to c, draw an arc cutting the semicircle at 

A. 

Then ABC is the desired triangle. 

Justification. LB AC is a right angle by Thales' Theorem. 

11. Let Q be the foot of the perpendicular from a point P to a line I. Show that Q 
is the point on I that is closest to P. 
Solution. Let X be any point on I with X ^ Q, as in the figure below. 

B C M 

A 

P 



6 CONCURRENCY 

By Pythagoras' Theorem, we have 

PX2 = PQ2 + XQ2>PQ2, 

and therefore PX > PQ. 

13. Let ABCD be a simple quadrilateral. Show that ABCD is cyclic if and only 
if the opposite angles sum to 180°. 

Solution. We will show that the simple quadilateral ABCD can be inscribed 
in a circle if and only if AA +AC = 180 and AB + AD = 180. 

B 

Note that we only have to show that AA -f AC = 180, since if this is true, then 

AB + AD = 360 - (AA + AC) = 360 - 180 = 180. 

Suppose first that the quadrilateral ABCD is cyclic. Draw the diagonals 
AC and BD and let P be the intersection of the diagonals, then use Thales' 
Theorem to get the angles as shown. 

Since the sum of the internal angles in A ABC is 180, then 

x + y + s + t = {x + s) + (y + t) = 180. 

That is, AA + AC = 180 and AB + AD = 180, so that opposite angles are 
supplementary. 

Conversely, suppose that AA-\-AC = 180 (and therefore that AB+AD = 180 
also) and let the circle shown on the following page be the circumcircle of 
A ABC. 
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If the quadrilateral ABCD is not cyclic, then the point D does not lie on 
this circumcircle. Assume that D lies outside the circle and let Df be the 
point where the line segment CD hits the circle. Since ABCD' is a cyclic 
quadrilateral, Z.B + ZD' = 180 and therefore ZD = ZD', which contradicts 
the External Angle Inequality in AAD'D. 

If the point D is inside the circle, a similar argument leads to a contradiction 
of the External Angle Inequality. 

Thus, if LA + ZC = 180 and IB 4- ZD = 180, then quadrilateral ABCD is 
cyclic. 

15. Given a circle C(P, s), a line I disjoint from C(P, s), and a radius r, (r > s), 
construct a circle of radius r tangent to both C(P,s) and I. 

Note: The analysis figure indicates that there are four solutions. 

Solution. We see that the centers of the circles lie on the following constructible 
loci: 



8 CONCURRENCY 

• a line parallel to I at distance r from I 

• a circle C(P, r + s) or a circle C(P, r - 5) 

Since we are given the radius, the construction is reduced to finding the centers 
of the desired circles. We show how to construct one of them. 

(1) Construct a line m parallel to I at distance r from I on the same side of I 
as C(Rs). 

(2) Construct C(P , r+ 5). 

(3) Let 0 = m n C(P, r + s). Note that if m and C(P, r + s) do not intersect, 
there is no solution. 

(4) Construct C(0,r). 



I 




