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Chapter 1

Strategies for solving
problems

1.8. Pendulum on the moon

The only way to get units of time from `, g, and m is through the combination√
`/g. Therefore,

TM

TE
=

√
`/gM√
`/gE

=

√
gE

gM
=⇒ TM ≈

√
6 TE ≈ 7.3 s. (1)

1.9. Escape velocity

(a) Using M = ρV , we have

v =

√
2G · (4/3)πR3ρ

R
=

√
(8/3)πGR2ρ. (2)

(b) We see that v ∝ R
√

ρ. Therefore,

vJ

vE

=
RJ

√
ρJ

RE

√
ρE

= 11 · 1√
4

= 5.5. (3)

1.10. Downhill projectile

The angle β is some function of the form, β = f(θ, m, v0, g). In terms of units, we
can write 1 = f(1, kg, m/s, m/s2). We can’t have any m dependence, because there
is nothing to cancel the kg. And we also can’t have any v0 or g dependence, because
they would have to appear in the ratio v0/g to cancel the meters, but then seconds
would remain. Therefore, β can depend on at most θ. (And it clearly does depend
on θ, because β = 90◦ for θ = 0 or 90◦, but β 6= 90◦ for θ 6= 0 or 90◦.)

1.11. Waves on a string

The speed v is some function of the form, v = f(M, L, T ). In terms of units, we can
write m/s = f(kg, m, kg m/s2). We need to get rid of the kg’s, so we must use the

ratio T/M . We then quickly see that
√

LT/M has the correct units of m/s. Note

that this can also be written as
√

T/ρ, where ρ is the mass density per unit length.

1.12. Vibrating water drop

The frequency ν is some function of the form, ν = f(R, ρ, S). In terms of units, we
can write 1/s = f(m, kg/m3, kg/s2). We need to get rid of the kg’s, so we must use

the ratio S/ρ. We then quickly see that
√

S/ρR3 has the correct units of 1/s. Note

that this can also be written as
√

S/M , where M is the mass of the water drop.
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2 CHAPTER 1. STRATEGIES FOR SOLVING PROBLEMS

1.13. Atwood’s machine

(a) This gives a1 = 0. (Half of m2 balances each of m1 and m3.)

(b) Ignore the m2m3 terms, which gives a1 = −g. (Simply in freefall.)

(c) Ignore the terms involving m1, which gives a1 = 3g. (m2 and m3 are in freefall.
And for every meter they go down, a total of three meters of string appears
above them, so m1 goes up three meters.)

(d) Ignore the m1m3 terms, which gives a1 = g. (m2 goes down at g, and m1 and
m3 go up at g.)

(e) This gives a1 = −g/3. (Not obvious.)

1.14. Cone frustum

The correct answer must reduce to the volume of a cylinder, πa2h, when a = b. Only
the 2nd, 3rd, and 5th options satisfy this. The correct answer must also reduce to
the volume of a cone, πb2h/3, when a = 0. Only the 1st, 3rd, and 4th options satisfy
this. The correct answer must therefore be the 3rd one, πh(a2 + ab + b2)/3.

1.15. Landing at the corner

The correct answer must go to infinity for θ → 90◦. Only the 2nd and 3rd options
satisfy this. The correct answer must also go to infinity for θ → 45◦. Only the 1st
and 2nd options satisfy this. The correct answer must therefore be the 2nd one.

1.16. Projectile with drag

Using the Taylor series for e−αt, we have

y(t) =
1

α

(
v0 sin θ +

g

α

)(
1− (1− αt + α2t2/2− · · ·)

)
− gt

α

≈
(
v0 sin θ +

g

α

)(
t− αt2/2

)
− gt

α

= (v0 sin θ)t− 1

2
gt2 − 1

2
αt2v0 sin θ. (4)

If α ¿ g/(v0 sin θ), then the third term is much smaller than the second, and we
obtain the desired result. So α ¿ g/(v0 sin θ) is what we mean by “small α.”
However, we also assumed αt ¿ 1 in the expansion for e−αt above, so we should
check that this doesn’t necessitate a stricter upper bound on α. And indeed, the total
time of flight is less than 2v0 sin θ/g (because this t makes the above y(t) negative),
so the condition α ¿ g/(v0 sin θ) implies αt ¿ (g/v0 sin θ)(2v0 sin θ/g) = 2. So
αt ¿ 1 is guaranteed by α ¿ g/(v0 sin θ).

1.17. Pendulum

Here is a Maple program that does the job:

q:=3.14159/2: # initial θ value

q1:=0: # initial θ speed

e:=.0001: # a small time interval

i:=0: # i will count the number of time steps

while q>0 do # run the program while θ > 0
i:=i+1: # increase the counter by 1

q2:=-(9.8)*sin(q)/1: # the given equation

q:=q+e*q1: # how q changes, by definition of q1

q1:=q1+e*q2: # how q1 changes, by definition of q2

end do: # the Maple command to stop the do loop

i*e; # print the value of the time

This yields a time of t = 0.5923 s. If we instead use a time interval of .00001 s, we
obtain t = 0.59227 s. And a time interval of .000001 s gives t = 0.592263 s.
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1.18. Distance with damping

In the ẍ = −Aẋ case, we have the following Maple program:

x:=0: # initial x value

x1:=2: # initial x speed

T:=1: # the total time

e:=.001: # a small time interval

for i to T/e do # run the program for a time T

x2:=-(1)*x1: # the given equation

x:=x+e*x1: # how x changes, by definition of x1

x1:=x1+e*x2: # how x1 changes, by definition of x2

end do: # the Maple command to stop the do loop

x; # print the value of the position

To run the program for different times, we simply need to change the value of T in
the 3rd line. Letting T equal 1 gives a final position of 1.264. Letting T equal 10 and
100 gives final positions of 1.99991 and 1.9999996, respectively. These approach 2.

In the ẍ = −Aẋ2 case, the only change in the entire program is in the 6th line,
where we now have the square of x1:

x2:=-(1)*x1^2: # the given equation

Letting T equal 1, 10, 100, 1000, and 10000, gives final positions of 1.099, 3.044,
5.302, 7.600, and 9.903, respectively. Looking at the successive differences between
these values, we see that they approach roughly 2.3. This constant difference for
inputs of powers of 10 implies a log dependence on the time.
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Chapter 2

Statics

2.20. Block under an overhang

Let’s break up the forces into components parallel and perpendicular to the over-
hang. Let positive Ff point up along the overhang. Balancing the forces parallel
and perpendicular to the overhang gives, respectively,

Ff = Mg sin β + Mg cos β, and

N = Mg sin β −Mg cos β. (5)

N must be positive, so we immediately see that β must be at least 45◦ if there is
any chance that the setup is static.

The coefficient µ tells us that |Ff | ≤ µN . Using Eq. (5), this inequality becomes

Mg(sin β + cos β) ≤ µMg(sin β − cos β) =⇒ µ + 1

µ− 1
≤ tan β. (6)

We see that we must have µ > 1 in order for there to exist any values of β that
satisfy this inequality. If µ →∞, then β can be as small as 45◦, but it can’t be any
smaller.

2.21. Pulling a block

The Fy forces tell us that N + F sin θ − mg = 0 =⇒ N = mg − F sin θ. And
assuming that the block slips, the Fx forces tell us that F cos θ > µN . Therefore,

F cos θ > µ(mg − F sin θ) =⇒ F >
µmg

cos θ + µ sin θ
. (7)

Taking the derivative to minimize this then gives tan θ = µ. Plugging this θ back
into F gives F > µmg/

√
1 + µ2. If µ = 0, we have θ = 0 and F > 0. If µ →∞, we

have θ ≈ 90◦ and F > mg.

2.22. Holding a cone

Let F be the friction force at each finger. Then the Fy forces on the cone tell us
that 2F cos θ − 2N sin θ −mg = 0. But F ≤ µN . Therefore,

2µN cos θ − 2N sin θ −mg > 0 =⇒ N ≥ mg

2(µ cos θ − sin θ)
. (8)

This is the desired minimum normal force. When µ = tan θ, we have N = ∞. So
µ = tan θ is the minimum allowable value of µ.

2.23. Keeping a book up

The result of Problem 2.4 is F ≥ mg/(sin θ + µ cos θ), assuming that sin θ + µ cos θ
is positive (that is, tan θ > −µ). If it is negative, there is no solution for F . To find
the maximum force, consider two cases:

5



6 CHAPTER 2. STATICS

(a) Your force is directed upward (θ > 0): Then Ff points downward in the max-
imal F case. So Fy gives F sin θ − Ff −mg = 0 =⇒ Ff = F sin θ −mg. But
Ff ≤ µN = µ(F cos θ), so we have

F sin θ −mg ≤ µF cos θ =⇒ F ≤ mg

sin θ − µ cos θ
, (9)

assuming that sin θ − µ cos θ is positive (that is, tan θ > µ). If it is negative,
then F (sin θ − µ cos θ) ≤ mg is true for any F , so there is no upper bound in
this case.

(b) Your force is directed downward (θ < 0): Then Ff points upward in the maxi-
mal F case. So Fy gives (note that sin θ is negative here) F sin θ + Ff −mg =
0 =⇒ Ff = −F sin θ + mg. But Ff ≤ µN = µ(F cos θ), so we have

−F sin θ + mg ≤ µF cos θ =⇒ F ≥ mg

sin θ + µ cos θ
, (10)

assuming that sin θ + µ cos θ is positive (that is, tan θ > −µ). If it is negative,
then F (sin θ+µ cos θ) ≥ mg is never true, so there is no solution for F . This is
the same result as in Problem 2.4, so it doesn’t actually yield an upper bound
on F .

Putting all this together (along with the results from Problem 2.4): As a function
of θ, and for a generic value of µ less than 1, the values of F that keep the book up
are signified by the shaded region in Fig. 1.

π/2−π/2 tanθ = 1/µtanθ = µtanθ = -µ

θ

F

F = mg

F = 

F = mg/µ

mg

sinθ+µcosθ

__________

mg

sinθ−µcosθ

__________

mg______

1+µ2

Figure 1

2.24. Bridges

(a) Looking at the Fx forces on the car, we see that the two inner diagonal beams
must have equal tensions. Then Fy with these two beams tells us that the
tensions are each mg/

√
3. Then Fy on one of the the upper (massless) hinges

gives the compression in the outer diagonal beams as mg/
√

3. Then Fx with
one of the upper hinges gives the tension in the top beam as mg/

√
3.

(b) Using Fy, we can start in the middle and work our way out along the diagonal
beams to show that they all have equal forces of mg/

√
3, alternating tension

and compression. We can then work our way back in along the top beams
(using Fx at the hinges) to show that the outer ones have mg/

√
3 compression,

and the middle one has 2mg/
√

3 compression. Likewise, the outer bottom
beams have mg/2

√
3 tension, and the inner bottom beams have 3mg/2

√
3

tension.
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(c) This is similar to part (b) for the diagonal beams; they all have equal forces of
mg/

√
3, alternating tension and compression. For the top beams, starting at

the outside and working in (using Fx at the hinges), they have compressions
of mg/

√
3, 2mg/

√
3, 3mg/

√
3, and so on. For the bottom beams, starting

at the outside and working in (using Fx at the hinges), they have tensions of
mg/2

√
3, 3mg/2

√
3, 5mg/2

√
3, and so on.

2.25. Rope between inclines

Let x be the length in contact with one of the platforms, and let ` be half the
length of the rope. The normal force on the x part is N = ρxg cos θ, and so the
friction force satisfies Ff ≤ ρxg cos θ. Balancing the vertical forces on one half of the
rope gives N cos θ + Ff sin θ = ρ`g. Using the above values of N and Ff , this gives
ρxg(cos2 θ + sin θ cos θ) ≥ ρ`g. The minimum x occurs when the function of θ here
is maximum. Setting the derivative equal to zero yields tan 2θ = 1, so θ = 22.5◦.
Plugging this back in and simplifying (using cos2 θ = (1+cos 2θ)/2 and sin θ cos θ =
(sin 2θ)/2) gives the desired maximum fraction as (`−x)/` = 3−2

√
2 ≈ 0.172. Note

that the setup isn’t possible if θ > 45◦, because the above inequality gives x > `,
which is by definition not allowed.

2.26. Hanging chain

(a) Let F and T be the tensions at the wall and the lowest point, respectively.
Looking at the y forces on half of the chain gives F cos θ = (M/2)g, and
looking at the x forces gives F sin θ = T . These yield T = (M/2)g tan θ.

(b) The slope of the chain is y′ = sinh αx, which is approximately αx for small
x. Consider a small piece that goes from −x to x. The weight is essentially
ρ(2x)g. The upward component of the tensions at the two ends is essentially
2Ty′ ≈ 2T (αx). Balancing these gives T = ρg/α.

Now let’s find α. The length from the bottom, as a function of a general value
of x, equals

∫ x

0

√
1 + y′2 dx =

∫ x

0

cosh αx = (1/α) sinh αx. (11)

Therefore, M/2 = (ρ/α) sinh αx0, where x0 is the location of the wall. But
the slope at the wall is sinh α0x = 1/ tan θ. So M/2 = ρ/(α tan θ) =⇒ ρ/α =
(M/2) tan θ. Plugging this into the above T gives T = (M/2)g tan θ, in agree-
ment with part (a).

2.27. Gravitational torque

A small mass element is ρ(dx)g. So the torque around the end is
∫ L

0
ρ(dx)g · x =

ρgL2/2 = (ρL)gL/2 = Mg(L/2), as desired.

2.28. Linear function

Letting b = a gives 2f(a) = f(2a). Using this in the case where b = 2a gives f(a) +
f(2a) = f(3a) =⇒ 3f(a) = f(3a). Repeating this process yields the general result,
n1f(a1) = f(n1a1), for any number a1 and any integer n1. Likewise, n2f(a2) =
f(n2a2) for any number a2 and any integer n2.

Given n1, n2, and a1, choose a2 so that n1a1 = n2a2. Then n1f(a1) = n2f(a2),
and so (n1/n2)f(a1) = f(a2) =⇒ (n1/n2)f(a1) = f(n1/n2 · a1) for any number a1

and any integers n1 and n2. Equivalently, rf(x) = f(rx) for any number x and any
rational number r, as desired.

2.29. Direction of the force

(1) Look at the torque around one end. If the stick is massless, then there is no
gravitational force, so the only possible force providing a torque is the hinge at the
other end. If this force doesn’t point along the stick, it will result in a nonzero
torque. This then implies a nonzero angular acceleration of the stick (infinite, in
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fact, because the stick is massless), which contradicts the fact that the system is
static.

(2) If the stick is massive, there is now a torque from gravity (unless the stick is
hanging vertically). This can cancel a nonzero torque from the hinge at the other
end.

2.30. Ball on a wall

Let T be the tension in the string. Then the friction force Ff from the wall must
also be T , to provide zero net torque around the center. So if N is the normal
force from the wall, then balancing the x forces quickly gives N = T sin θ. But
Ff ≤ µN =⇒ T ≤ µ(T sin θ) =⇒ µ ≥ 1/ sin θ. Interestingly, this equals 1 for
θ = 90◦.

2.31. Cylinder and hanging mass

If T is the tension in the string, then T = mg. If F is the friction force from the
plane, then balancing torques around the center of the cylinder gives F = T , so F
also equals mg. If N is the normal force from the plane, then balancing horizontal
forces on the cylinder gives N sin θ = F cos θ =⇒ N = mg/ tan θ. Finally, balancing
vertical forces on the cylinder gives

N cos θ + F sin θ −Mg − T = 0 =⇒
(

mg

tan θ

)
cos θ + (mg) sin θ −mg = Mg

=⇒ m =
(

sin θ

1− sin θ

)
M. (12)

If θ = 0, then m = 0. And if θ → 90◦, then m →∞. These make sense.

Alternatively, once we know that T = mg, we can just use torque around the contact
point on the plane, which doesn’t require knowing F or N . The lever arm for the
Mg force is R sin θ, and the lever arm for the T force is R(1− sin θ). Balancing the
torques around the contact point therefore gives (Mg)R sin θ = (mg)R(1− sin θ), in
agreement with the above result.

2.32. Ladder on a corner

If Nc is the normal force from the corner, then balancing torques around the top end
of the ladder gives Nc(3L/4) = Mg(L/2) cos θ =⇒ Nc = (2/3)Mg cos θ. And if Nw

is the normal force from the wall, then balancing torques around the corner gives
Nw(3L/4) sin θ = Mg(L/4) cos θ =⇒ Nw = (1/3)Mg cos θ/ sin θ. If Ff is the friction
force at the corner, then balancing the horizontal forces gives Ff cos θ = Nc sin θ+Nw,
and so Ff = (2/3)Mg sin θ + (1/3)Mg/ sin θ. But we need Ff ≤ µNc. Therefore,

2Mg sin θ

3
+

Mg

3 sin θ
≤ µ

2Mg cos θ

3
=⇒ µ ≥ sin θ

cos θ
+

1

2 sin θ cos θ
. (13)

Taking the derivative to minimize this gives tan θ = 1/
√

3 =⇒ θ = 30◦.

2.33. Stick on a corner

If N is the normal force from the corner, then balancing torques around your finger
gives N(L/4) = Mg(L/2) cos θ =⇒ N = 2Mg cos θ. Balancing the horizontal forces
then gives your Fx as Fx = N sin θ = 2Mg cos θ sin θ. And balancing the vertical
forces gives your Fy as Fy = Mg − N cos θ = Mg − 2Mg cos2 θ. Squaring these
components and simplifying gives the nice clean result that the magnitude of your
force is F = Mg. The vertical component satisfies Fy = 0 when cos θ = 1/

√
2, so

θ = 45◦.

Alternatively, a quicker way to do the problem is to note that balancing torques
around the pivot, along with forces along the line of the stick, tells us that your
force must have components Mg sin θ along the stick and Mg cos θ perpendicular to
it. In other words, your force must have magnitude Mg and must make the same
angle with the stick as the gravitational force does.
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2.34. Stick and a cylinder

(a) Balancing torques on the cylinder around its center tells us that the friction
forces from the plane and the stick are equal. Call them F . Balancing torques
on the stick around the pivot tells us that the normal force from the cylinder
on the stick is mg/2. Let N be the normal force from the plane on the cylin-
der. Balancing horizontal forces on cylinder gives F + F cos θ = N sin θ, and
balancing vertical forces gives mg + mg/2 = F sin θ + N cos θ. Solving these
equations for N yields N = 3mg/2. (This can also be obtained more quickly
by balancing torques on the whole system around the pivot.)

(b) The above equations give F = (3mg/2) sin θ/(1 + cos θ). The cylinder doesn’t
slip on the plane if F ≤ µ(3mg/2) =⇒ µ ≥ sin θ/(1 + cos θ). The cylinder
doesn’t slip under the stick if F ≤ µ(mg/2) =⇒ µ ≥ 3 sin θ/(1 + cos θ). Both
of these conditions must be satisfied, and the latter is more strict, so we have
µmin = 3 sin θ/(1 + cos θ). If θ → 0, then µmin → 0, as expected. If θ → 90◦,
then µmin → 3, which isn’t obvious.

2.35. Two sticks and a string

(a) Balancing vertical forces on the whole system tells us that the normal forces at
the bottoms of the sticks must sum to 2mg. Balancing torques on the whole
system around the hinge then tells us that these normal forces must be equal,
and hence both equal to mg. Finally, balancing torques on the right stick
around the hinge tells us that the tension T in the string satisfies

T (` cos 2θ) + mg(`/2) sin θ = mg` sin θ =⇒ T =
mg sin θ

2 cos 2θ
. (14)

(b) Look at the forces on the right stick. The mg forces (gravity and normal force)
cancel. Therefore, the force from the hinge must cancel the tension. So the
hinge force points up to the right (perpendicular to the stick) with magnitude
mg sin θ/(2 cos 2θ).

2.36. Two sticks and a wall

Let Fx and Fy be the desired components. The masses of the bottom and top sticks
are ρL and ρ(L/ cos θ), respectively. So balancing torques on the whole system
around the left end of the bottom stick gives

Fx(L tan θ) = ρg
(

L

cos θ
+ L

)(
L

2

)
=⇒ Fx =

ρLg

2

(
1 + cos θ

sin θ

)
. (15)

Balancing torques on the top stick around its bottom end, and using the Fx we just
found, gives

FyL = Fx(L tan θ) + ρg
(

L

cos θ

)(
L

2

)
=⇒ Fy =

ρLg

2

(
2 + cos θ

cos θ

)
. (16)

Fx goes to infinity for θ → 0, and Fy goes to infinity for θ → π/2.

Remark: Concerning the footnote in the problem: Squaring and adding the components

and using sin2 θ = 1−cos2 θ gives F 2 = (1+c)/(1−c)+(2+c)2/c2, with c ≡ cos θ. Setting

the derivative equal to zero gives c3 − 6c + 4 = 0. This cubic fortunately has 2 as a root.

The leftover quadratic gives c = −1 +
√

3 as the physical answer. ♣
2.37. Stick on a circle

(a) From Problem 2.18 (using the same notation), we have Ff = N sin θ/(1+cos θ).
But Ff ≤ µN , so we must have µ ≥ sin θ/(1 + cos θ).



10 CHAPTER 2. STATICS

(b) From Problem 2.18, we have Ff = (ρgR/2) cos θ and N = (ρgR/2) cos θ(1 +
cos θ)/ sin θ. Let Fg and Ng be the friction and normal forces from the ground
on the stick. Balancing horizontal forces on the stick gives Fg + Ff cos θ =
N sin θ. This yields Fg = (ρgR/2) cos θ. (An easier way to obtain this is
to balance horizontal forces on the whole system, which says that Fg equals
the friction force that the ground applies to the circle, which is Ff .) Balancing
vertical forces on the stick gives Ng+Ff sin θ+N cos θ = Mg. But the length of
the stick is R cot(θ/2), so M is given by M = ρR cot(θ/2) = ρR(1+cos θ)/ sin θ.
After some algebra, we find Ng = (ρgR/2 sin θ)(1 + cos θ)(2 − cos θ). But we
need Fg ≤ µNg. Therefore,

ρgR cos θ

2
≤ µ

ρgR(1 + cos θ)(2− cos θ)

2 sin θ
=⇒ µ ≥ sin θ cos θ

(1 + cos θ)(2− cos θ)
.

(17)

Remark: Concerning the footnote in the problem: Setting the derivative equal to

zero, using sin2 θ = 1−cos2 θ, and dividing by the factor (1+cos θ), gives the quadratic

equation, cos2 θ + 2 cos θ − 2 = 0. The physical root of this is cos θ = −1 +
√

3. ♣

2.38. Stacking blocks

For convenience, let d = `/2, so the blocks have length 2d. Then if N = 1, the
answer is simply d.

If N = 2, then as far as the top block is concerned, the bottom block is simply
the table from the N = 1 case. The top block can therefore hang out a distance d
beyond the bottom block. The CM of the two-block system is a distance d/2 from
the right end of the bottom block. In the cutoff case, the CM is right over the edge
of the table, so this means that the bottom block can hang out a distance d/2 past
the edge. The total overhang is therefore d + d/2.1

If N = 3, then as far as the top two blocks are concerned, the bottom block is
simply the table from the N = 2 case. The top two blocks can therefore hang out a
distance d + d/2 beyond the bottom block; see the first setup in Fig. 2. The CM of

d d

d/3

2m

d/2
d

m

Figure 2

the entire system is a distance d/3 from the right end of the bottom block (because
the top two blocks are effectively a point mass 2m sitting directly over the right end
of the bottom block; see the second setup in Fig. 2). In the cutoff case, the CM of
the entire system is right over the edge of the table, so this means that the bottom
block can hang out a distance d/3 past the edge. The total overhang is therefore
d + d/2 + d/3.

At this point (or perhaps after doing the N = 4 case) we can guess that the general
answer is d(1 + 1/2 + 1/3 + · · ·+ 1/N). Let’s prove this by induction. For a general
N , we’ll assume that the result is true for N − 1 and then prove that it is also true
for N . As far as the top N − 1 blocks are concerned, the bottom block is simply the
table from the N − 1 case. The top N − 1 blocks can therefore hang out a distance
d
(
1+1/2+ · · ·+1/(N −1)

)
beyond the bottom block. The CM of the entire system

is a distance d/N from the right end of the bottom block (because the top N − 1
blocks are effectively a point mass (N − 1)m sitting directly over the right end of
the bottom block). In the cutoff case, the CM of the entire system is right over the
edge of the table, so this means that the bottom block can hang out a distance d/N
past the edge. The total overhang L is therefore

L = d
(
1 +

1

2
+

1

3
+ · · ·+ 1

N − 1
+

1

N

)
, (18)

1Note that there is nothing to be gained by moving the top block a little to the left, with the
hope that since the CM of the two-block system has moved to the left, both blocks can then be
moved to the right, thereby possibly increasing the total overhang. If the top block is moved x to
the left, then the CM of the two-block system moves only x/2 to the left. So after the system is
moved to the right by this x/2, there is still a net loss of x− x/2 = x/2 in the overhang. Similar
arguments hold for other subsystems in the more general cases below.
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as we wanted to show. Since the result is true for N = 1, it is therefore true for all
N .

For large N , this result behaves like d ln N . So for N →∞, we can make the blocks
hang out infinitely far. But the result grows very slowly with N , like a log. If we
want the overhang to be L, then we need d ln N ≈ L =⇒ N ≈ eL/d, which grows
very quickly with L.
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Chapter 3

Using F = ma

3.25. A peculiar Atwood’s machine

(a) The bottom two masses together act like a mass of m/2n−2. This combination
balances the m/2n−2 mass, and so these three act like a mass of m/2n−3, which
then balances the m/2n−3 mass, and so on. This pattern continues until all
the masses on the right side of the top pulley act like a mass m, which then
balances the mass m on the left. So all the masses have zero acceleration.

(b) The tension in the bottom string is now zero, which means that the tension
in the next string is also zero (in particular, 2 times zero), and all the other
tensions are likewise zero. All the masses are therefore in freefall. We see that
removing an infinitesimal mass drastically affects the behavior of the system.

3.26. Keeping the mass still

We need the tension in the upper string to be Mg. So the tension in the lower string
is Mg/2. The F = ma equations are therefore

Mg/2−m1g = m1a, Mg/2−m2g = m2(−a). (19)

Solving for a in both of these and equating the results gives M = 4m1m2/(m1+m2).
We see that as far as M is concerned, m1 and m2 act like an effective mass equal to
the sum of their masses only if they are equal. Otherwise they act like an effective
mass that is less than their sum.

3.27. Atwood’s 1

By conservation of string, the downward acceleration of the left mass is 4 times
the upward acceleration of the right mass, because four segments of string are each
shortened by d if the right mass rises by d. Also, four tensions pull up on the right
mass. So the F = ma equations are

mg − T = ma1, 4T − 2mg = 2ma2. (20)

Solving these, along with a1 = 4a2, gives a1 = 4g/9 downward, and a2 = g/9
upward.

3.28. Atwood’s 2

By conservation of string, the downward acceleration of the left mass is 3 times the
upward acceleration of the right mass, because three segments of string are each
shortened by d if the right mass rises by d. Also, three tensions pull up on the right
mass. So the F = ma equations for the left and right masses are, respectively,

mg − T = ma1, 3T −mg = ma2. (21)

Solving these, along with a1 = 3a2, gives a1 = 3g/5 downward, and a2 = g/5
upward.

13
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3.29. Atwood’s 3

Define all accelerations positive upwards. By conservation of string, we have a2 =
−(a1 + a3)/2, because whatever mass disappears above m and 3m must appear
above 2m and be divided evenly between the two segments there. The F = ma
equations are

T −mg = ma1, 2T − 2mg = 2ma2, T − 3mg = 3ma3. (22)

Solving these (the first two quickly give a1 = a2), along with a2 = −(a1 + a3)/2,
gives a1 = a2 = g/5, and a3 = −3g/5.

3.30. Atwood’s 4

If T is the tension in the string connected to the right mass, then you can work your
way down the pulleys to show that the tension in the string connected to the left
mass is 2NT (where there are N pulleys, not including the rightmost one).

By conservation of string, if the left mass has acceleration a upward, then the second-
to-left pulley has acceleration 2a upward. This reasoning continues until the right
mass has acceleration 2Na downward.

The F = ma equations for the left and right masses are then (with upward and
downward taken to be positive, respectively)

2NT −mg = ma,

mg − T = m(2Na). (23)

Multiplying the second equation by 2N and adding the result to the first equation
gives the acceleration of the left mass as a = g(2N − 1)/(22N + 1). The acceleration
of the right mass is then

2Na =

(
22N − 2N

22N + 1

)
g =

(
1− 2−N

1 + 2−2N

)
g. (24)

For N = 0 we have a = 0, as expected. For N → ∞ we have a ≈ 0, but 2Na ≈ g;
so the left mass hardly moves upward, while the right mass accelerates downward
with an acceleration essentially equal to g.

3.31. Atwood’s 5

Draw a horizontal line between the two shaded pulleys. If the right pulley goes down
by d, then a length d of string appears above the line (because 2d appears above the
top pulley, but d disappears right below it). This length d must disappear below
the line. It gets divided evenly between the two pieces touching the bottom pulley,
which therefore goes up by d/2. So the downward acceleration of the top pulley is
twice the upward acceleration of the bottom pulley. The F = ma equations for the
top and bottom pulleys are, respectively,

mg + T − 2T = ma1, 2T −mg = ma2. (25)

Solving these, along with a1 = 2a2, gives a1 = 2g/5 downward, and a2 = g/5
upward. And T happens to equal 3mg/5.

3.32. Atwood’s 6

The string is one continuous piece, so the tension is the same throughout it. The
force on the (massless) left pulley is therefore T − 2T = −T . But this force must
be zero because the pulley is massless. Hence, T = 0, which means that nothing is
holding the masses up, so both are in freefall.

The physical reason for this result is that the left pulley is free to fall however much
is needed to provide enough string for the freefall motion of the masses. If the left
pulley falls a distance d, then a length d of string appears above it, but a length 2d
disappears below it. So a length d has been “generated,” which allows each of the
masses to fall a distance d/3 (as you can verify). Since there is nothing keeping the
left pulley from accelerating downward at 3g, there is therefore nothing keeping the
two masses from freefalling at g.
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3.33. Accelerating plane

Consider first the case of maximum a. In this case, the friction force points down
the plane. The F = ma equations along the plane and perpendicular to it are

Ff + mg sin θ = (ma) cos θ, N −mg cos θ = (ma) sin θ. (26)

These equations give Ff and N . Demanding that Ff ≤ µN gives

a ≤ g(sin θ + µ cos θ)

cos θ − µ sin θ
. (27)

Now consider the case of minimum a. In this case, the friction force points up the
plane. The F = ma equation along the plane changes to

−Ff + mg sin θ = (ma) cos θ, (28)

while the equation for the perpendicular direction remains the same. Ff ≤ µN now
gives

a ≥ g(sin θ − µ cos θ)

cos θ + µ sin θ
. (29)

Putting these bounds together gives

g(sin θ − µ cos θ)

cos θ + µ sin θ
≤ a ≤ g(sin θ + µ cos θ)

cos θ − µ sin θ
. (30)

The two special values of θ are (1) tan θ = µ, because if tan θ > µ, then a must be
positive; and (2) tan θ = 1/µ, because if tan θ > 1/µ, then a can go to infinity.

3.34. Accelerating cylinders

Let N1 be the normal force between the bottom two cylinders, let N2 be the normal
force between the left and top cylinders, and let N3 be the normal force between the
right and top cylinders.

Consider first the case of maximum a. In this case N3 = 0, because the top cylinder
is just about to rise up off the right cylinder. So we have:

Fx = max on top cylinder =⇒ N2 cos 60◦ = ma,

Fy = may on top cylinder =⇒ N2 sin 60◦ −mg = 0. (31)

Solving these equations for a gives a = g/
√

3.

Now consider the case of minimum a. In this case N1 = 0, because the top cylinder
is just about to fall down between the bottom two cylinders. So we have:

Fx = max on right cylinder =⇒ N3 cos 60◦ = ma,

Fx = max on top cylinder =⇒ N2 cos 60◦ −N3 cos 60◦ = ma,

Fy = may on top cylinder =⇒ N2 sin 60◦ + N3 sin 60◦ −mg = 0. (32)

Solving these equations for a gives a = g/3
√

3. Combining the results gives g/3
√

3 ≤
a ≤ g/

√
3.

3.35. Leaving the sphere

The normal force is obtained from the radial F = ma equation, which gives

mg cos θ −N = mRθ̇2 =⇒ N = mg cos θ −mRθ̇2. (33)

The friction force is µN , so the tangential F = ma equation is

mg sin θ − µ(mg cos θ −mRθ̇2) = mRθ̈. (34)

So θ̈ is given by
θ̈ = (g/R) sin θ − µ

(
(g/R) cos θ − θ̇2

)
. (35)
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The following program can be used to find the minimum ω0 for which the mass
leaves the sphere. We’ll let q, q1, and q2 stand for θ, θ̇, and θ̈, respectively. Note
that the program makes it clear that the result depends on g and R only through
their ratio g/R. As indicated in the 7th line, we’ll run the program until the particle
either leaves the sphere (when N = 0) or comes to rest on the sphere (when θ̇ = 0).

The procedure will be to run the program for various initial values of q1 until we
find the cutoff between the “coming to rest” and “leaving the sphere” outcomes. If
we run the program with the initial q1 = 3 value given below, then we find that the
particle ends up with a positive speed, which means that it hasn’t stopped; so it
must be the case the program was terminated by the N > 0 condition, and so the
particle leaves the sphere. However, if we run the program with an initial q1 = 2
value, then we find that the particle ends up with an infinitesimal negative speed
(in other words, essentially zero), which means that the particle has stopped; so it
must be the case the program was terminated by the θ̇ > 0 condition.

g:=10: # gravity

r:=1: # radius

u:=1: # friction

q:=0: # initial θ

q1:=3: # initial θ̇ (we’ll vary this)

e:=.0001: # a small time interval

while g*cos(q)>r*q1^2 and q1>0 do

# do process while N,q1 > 0

q2:=(g/r)*sin(q)-u*((g/r)*cos(q)-q1^2):

# equation of motion

q:=q+e*q1: # how q changes, by definition of q1

q1:=q1+e*q2: # how q1 changes, by definition of q2

end do: # stop do loop

q; # print angle at departure (or at stopping)

q1; # print speed at departure (or at stopping)

If you play around with the initial q1 value, you will find that the cutoff between
these two scenarios occurs at about q1 = 2.275. Above this value, the particle leaves
the sphere. Below it, it stops on the sphere.

Just below q1 = 2.275, you will find that the stopping angle is roughly q ≈ 0.78,
which corresponds to θ = 45◦. This makes sense because this is the angle where
the mg sin θ gravitational force exactly balances the µmg cos θ friction force, because
µ = 1 (and because θ̇ = 0 in Eq. (33), since the particle has stopped).

Just above q1 = 2.275, you will find that the final value of q is q ≈ 1.21, which
corresponds to θ ≈ 69◦. So this is where the particle leaves the sphere in the
minimum ω0 case. What happens in this case is that the particle gradually slows
down to a speed of essentially zero at θ = 45◦ and barely makes it through this spot
(taking an arbitrarily long time to do so), and then it picks up speed and leaves the
sphere at θ ≈ 69◦. Note that any ω0 value larger than 2.275 will yield a departure
angle smaller than θ ≈ 69◦, because in this case the particle passes the θ = 45◦ mark
with a nonzero speed and thus reaches the critical velocity (for leaving the sphere)
sooner than in the ω0 = 2.275 case.

You can produce a plot of θ̇ vs. θ if you wish, but it basically decreases from 2.275
at θ = 0 to essentially zero at θ = 0.78, and then grows to about 1.87 at θ = 1.21.
The actual plot is shown in Fig. 3.
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Figure 3

3.36. Comparing the times

(a) The block slides back down if the mg sin θ gravitational force down the plane
is larger than the maximum friction force, µ(mg cos θ). So we need mg sin θ >
µmg cos θ =⇒ tan θ > µ.
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(b) It turns out that the answer depends on the relation between θ and µ. The
acceleration on the way up points down the plane with magnitude au = g sin θ+
µg cos θ. The time on the way up is simply tu = v0/au. The acceleration on
the way down points down the plane with magnitude ad = g sin θ−µg cos θ. To
find the time on the way down, we need to find the length ` of the trip, which
we will then use in ` = adt2d/2. The length ` is obtained from the kinematic
equation for the upward motion, ` = v0tu−aut2u/2 = v2

0/(2au) (which can also
be seen by running time backwards for the upward journey). So ` = adt2d/2
gives v2

0/(2au) = adt2d/2 =⇒ td = v0/
√

auad. The total time with friction is
therefore

Tµ = tu + td = v0

(
1

au
+

1√
auad

)

=
v0

g

(
1

sin θ + µ cos θ
+

1√
sin2 θ − µ2 cos2 θ

)
. (36)

The total time without friction is simply the preceding result with µ = 0, which
gives T0 = 2v0/(g sin θ).

Letting x ≡ µ cos θ/ sin θ = µ/ tan θ (note that the tan θ > µ condition from
part (a) implies x < 1), the trip takes longer with friction if

Tµ > T0 =⇒ 1

1 + x
+

1√
1− x2

> 2. (37)

Isolating the square root and then squaring gives

1

1− x2
>

(1 + 2x)2

(1 + x)2

=⇒ 1 + x > (1 + 2x)2(1− x)

=⇒ x(2x2 − 1) > 0

=⇒ x > 1/
√

2. (38)

So if x > 1/
√

2 then Tµ > T0. Recalling the definition of x, we see that the
trip takes longer with friction if µ > (tan θ)/

√
2; the slowness on the way down

wins out over the decreased distance ` (this isn’t obvious, except in the limit
where µ is close to tan θ, in which case the block takes a very long time to come
back down). If µ is smaller than this, then the trip is quicker with friction; the
decreased length ` wins out over the slowness on the way down (which is by
no means obvious; the above calculation is required).

(c) For a given θ, if we factor out v0/(g sin θ) from the total time, we see from
part (b) that we want to minimize the function f(x) ≡ 1/(1+ x)+ 1/

√
1− x2.

Taking the derivative, we have

−1

(1 + x)2
+

x

(1− x2)3/2
= 0 =⇒ (1− x2)3 = x2(1 + x)4

=⇒ (1− x)3 = x2(1 + x)

=⇒ 2x3 − 2x2 + 3x− 1 = 0. (39)

Solving this numerically gives x ≈ 0.397 =⇒ µ ≈ (0.397) tan θ. This yields
f(x) ≈ 1.805. A frictionless plane (with x = 0) gives f(0) = 2, so the
µ ≈ (0.397) tan θ value of friction leads to a time equal to about 90% of the
frictionless time.
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3.37. −bv2 force

F = ma gives −bv2 = m dv/dt. Separating variables and integrating gives

− b

m

∫ t

0

dt =

∫ v

v0

dv

v2
=⇒ − bt

m
=

1

v0
− 1

v
. (40)

Solving for v, writing it as dx/dt, and then separating variables and integrating gives

∫ x

0

dx =

∫ t

0

dt
1
v0

+ bt
m

=⇒ x =
m

b
ln

(
1

v0
+

bt

m

) ∣∣∣∣
t

0

=⇒ x(t) =
m

b
ln

(
1 +

v0bt

m

)
.

(41)
This goes to infinity as t →∞, but slowly like a log.

3.38. kx force

F = ma gives kx = mv dv/dx. Separating variables and integrating gives

∫ x

x0

kx dx =

∫ v

0

mv dv =⇒ 1

2
kx2 − 1

2
kx2

0 =
1

2
mv2. (42)

Solving for v, writing it as dx/dt, and then separating variables and integrating gives

∫ x

x0

dx√
x2 − x2

0

= ±
√

k

m

∫ t

0

dt. (43)

Using the substitution x ≡ x0 cosh θ, which implies dx = x0 sinh θ dθ, yields

∫ θ

0

x0 sinh θ dθ

x0 sinh θ
= ±

√
k

m
t =⇒ θ = ±

√
k

m
t =⇒ x(t) = x0 cosh

(√
k

m
t

)
.

(44)

3.39. Equal distances

We know from Eq. (3.38) that the horizontal distance is 2v2
0 sin θ cos θ/g. The time

to the top is v0 sin θ/g, so the maximum height is (looking at the ball fall back
down to the ground) gt2/2 = v2

0 sin2 θ/2g. Equating these results gives tan θ = 4, so
θ ≈ 76◦.

3.40. Redirected motion

First solution: Let v be the speed right after the bounce, which is the same
as the speed right before the bounce. If t1 is the time to hit the surface, then
gt21/2 = h− y gives t1 =

√
2(h− y)/g, and so v = gt1 =

√
2g(h− y). The vertical

speed is zero right after the bounce, so the time it takes to hit the ground is given
by gt22/2 = y. Hence t2 =

√
2y/g. The horizontal distance traveled is therefore

d = vt2 = 2
√

y(h− y). Taking the derivative, we see that this function of y is
maximum at y = h/2. The corresponding value of d is dmax = h.

Second solution: Assume that the greatest distance, d0, is obtained when y = y0,
and let the speed at y0 be v0. Consider the situation where the ball falls all the
way down to y = 0 and then bounces up at an angle such that when it reaches
the height y0, it is traveling horizontally. When it reaches the height y0, the ball
will have speed v0 (by conservation of energy, which will be introduced in Chapter
5), so it will travel a horizontal distance d0 from this point. The total horizontal
distance traveled is therefore 2d0. So to maximize d0, we simply need to maximize
the horizontal distance in this new situation. From the example in Section 3.4, we
want the ball to leave the ground at a 45◦ angle. Since it leaves the ground with
speed

√
2gh, you can easily show that such a ball will be traveling horizontally at a

height y = h/2, and it will travel a distance 2d0 = 2h. Hence, y0 = h/2, and d0 = h.
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3.41. Throwing in the wind

The horizontal position is given by x(t) = v0t − gt2/2. This equals zero when t =
2v0/g (or t = 0, of course). The time to hit the ground is given by h = gt2/2 =⇒ t =√

2h/g. We want these two times to be equal, so 2v0/g =
√

2h/g =⇒ v0 =
√

gh/2.

3.42. Throwing in the wind again

The height is given by y = (v0 sin θ)t − gt2/2, so the ball hits the ground at the
usual time of 2v0 sin θ/g. The horizontal distance is given by x = (v0 cos θ)t+ gt2/2.
Plugging in t = 2v0 sin θ/g gives a final distance of x = (2v2

0/g)(sin θ cos θ + sin2 θ).
Maximizing this (and using some double-angle formulas) gives tan 2θ = −1 =⇒ θ =
3π/8.

3.43. Increasing gravity

The height y is obtained by integrating the acceleration twice. That is,

ÿ = −βt =⇒ ẏ = v0 sin θ − βt2/2 =⇒ y = (v0 sin θ)t− βt3/6, (45)

where we have used the initial values of y and ẏ. We see that y = 0 when t =√
6v0 sin θ/β (or t = 0, of course). Therefore, the final x value is x = (v0 cos θ)t =

v0 cos θ
√

6v0 sin θ/β. Maximizing this gives tan θ = 1/
√

2 =⇒ θ = 35.3◦.

3.44. Newton’s apple

Let the initial speed and angle be v0 and θ, and let the horizontal distance to the
apple be `. Then the time for the rock to reach the horizontal position of the apple
is t = `/(v0 cos θ). The rock’s height at this time is

y = (v0 sin θ)
(

`

v0 cos θ

)
− g

2

(
`

v0 cos θ

)2

= ` tan θ − g

2

(
`

v0 cos θ

)2

. (46)

But ` tan θ is simply the initial height h of the apple (because we are assuming that
the rock was aimed at the apple). So the height of the rock at time t = `/(v0 cos θ)
is y = h−(g/2)(`/v0 cos θ)2. But from the standard freefall y = h−gt2/2 result, the
height of the apple at this time is also y = h− (g/2)(`/v0 cos θ)2. The rock therefore
hits the apple.

3.45. Colliding projectiles

The vertical component of u must be uy = v, because the y motions of the balls
are independent of whatever is going on in the x direction. The time it takes both
balls to reach the top of their motions is v/g. Therefore, we need the horizontal
component of u to satisfy ux(v/g) = d =⇒ ux = gd/v. Therefore, u = (gd/v, v).

Hence, u =
√

(gd/v)2 + v2. Minimizing this yields v =
√

gd. Note that u →∞ for
both v → 0 and v →∞; these both make intuitive sense.

3.46. Equal tilts

The coordinates of the projectile are y = (v0 sin θ)t− gt2/2 and x = (v0 cos θ)t. The
projectile hits the plane when y/x = − tan θ. Using the expressions for x and y, this
gives t = 4v0 sin θ/g. Therefore x = (v0 cos θ)(4v0 sin θ/g), which has a maximum
at θ = 45◦. The distance along the plane is d = x/ cos θ = 4v2

0 sin θ/g, which
approaches 4v2

0/g as θ → 90◦.

3.47. Throwing at a wall

The maximum range of a projectile is v2
0/g, so we need ` < v2

0/g if the ball is to
reach the wall. The time to the wall is t = `/(v0 cos θ). The height at the wall
is y = (v0 sin θ)t − gt2/2. Plugging in our t gives y = ` tan θ − g`2/(2v2

0 cos2 θ).
Taking the derivative to maximize this gives tan θ = v2

0/g`. Note that the ` < v2
0/g

condition implies that θ > 45◦. Note also that the ball does not hit the wall at the
top of its parabolic motion.
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3.48. Firing a cannon

The initial speed is v0 =
√

2gL (imagine dropping the ball from the maximum
height of L, and then use gt2/2 = L and v = gt). When the ball is fired up the
plane, the acceleration along the plane is −g sin θ, so the position along the plane is
v0t− (g sin θ)t2/2. Setting this equal to L gives t = (v0 −

√
v2
0 − 2gL sin θ)/g sin θ.

The speed at the top of the plane is then V = v0−(g sin θ)t =
√

v2
0 − 2gL sin θ. Using

the above value of v0, this becomes V =
√

2gL
√

1− sin θ. The range of the resulting
projectile motion is the usual d = 2V 2 sin θ cos θ/g, which equals 4L(sin θ cos θ −
sin2 θ cos θ). Taking the derivative, and using cos2 θ = 1 − sin2 θ, gives 3 sin3 θ −
2 sin2 θ − 2 sin θ + 1 = 0. Fortunately, this cubic has sin θ = 1 as a root. The
remaining quadratic yields a positive root of sin θ = (

√
13− 1)/6 =⇒ θ ≈ 25.7◦.

3.49. Perpendicular and horizontal

(a) Looking at the direction perpendicular to the plane, the initial speed is v0, and
the acceleration is g cos θ (back toward the plane). So the time in the air is
t = 2v0/g cos θ. The horizontal speed of the ball is always vx = v0 sin θ, so the
x value when it hits the plane is x = vxt = (v0 sin θ)(2v0/g cos θ). The distance
down along the plane is then

d =
x

cos θ
= (v0 sin θ)

(
2v0

g cos θ

)
1

cos θ
=

2v2
0 sin θ

g cos2 θ
. (47)

If θ = 0, then d = 0, as expected. If θ = 90◦, then d = ∞, as expected. Note
that we could have instead found the time by demanding

− tan θ =
y

x
=

(v0 cos θ)t− gt2/2

(v0 sin θ)t
=⇒ t =

2v0

g cos θ
. (48)

(b) We can use the same reasoning as in part (a). Looking at the direction per-
pendicular to the plane, the initial speed is v0 sin θ, and the acceleration
is g cos θ. So the time in the air is t = 2v0 sin θ/g cos θ. The horizontal
speed of the ball is always vx = v0, so the x value when it hits the plane
is x = vxt = v0(2v0 sin θ/g cos θ). But this is the same x value as in part (a),
so the distance d down the plane is again 2v2

0 sin θ/(g cos2 θ). The θ = 0 and
θ = 90◦ limits again check. As in part (a), note that we could have instead
found the time by demanding

− tan θ =
y

x
=
−gt2/2

v0t
=⇒ t =

2v0 sin θ

g cos θ
. (49)

3.50. Cart, ball, and plane

Yes, the ball will land back in the tube. You can solve this problem by working
with the horizontal and vertical axes (which involves finding the intersection of the
parabolic projectile motion and the inclined plane), but it gets rather messy. So
let’s use the tilted axes parallel and perpendicular to the plane, which yields a quick
solution.

If V is the component of the cart’s velocity along the plane when the ball in fired,
then the position of the cart along the plane (relative to where the ball is fired)
is V t + (g sin θ)t2/2. But this is also the coordinate of the ball along the plane,
because the ball’s initial speed along the plane is likewise V (because the tube is
perpendicular to the plane), and the acceleration along the plane is likewise g sin θ.
Therefore, the ball and the cart have the same coordinate along the plane at all
times, so the ball lands back in the tube.

In short, we have two true statements concerning the direction along the plane: (1)
the ball and the cart have the same initial velocity, and always the same a = g sin θ,
so they always have the same velocity, and (2) the ball and the cart have the same
initial position, and always the same v (due to the previous statement), so they
always have the same position.
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3.51. Perpendicular to plane

Consider the direction perpendicular to the plane. The acceleration is g cos β (back
toward the plane), so if the initial speed is v, then the time in the air is t = 2v/g cos β.
(This can also be obtained by demanding that y(t)/x(t) = − tan β.) When the
projectile hits the plane, we have (using the above value of t)

tan θ =

∣∣∣ ẏ

ẋ

∣∣∣ =
gt− v cos β

v sin β
=

2

sin β cos β
− cos β

sin β
. (50)

Setting the derivative of this equal to zero to obtain the minimum θ, we find tan β =
1/
√

2 =⇒ β ≈ 35.3◦. The associated θ is then given by tan θ = 2
√

2 =⇒ θ ≈ 70.5◦.

3.52. Increasing distance

(a) Since x = (v cos θ)t and y = (v sin θ)t− gt2/2, the square of the distance from
you is

`2 = x2+y2 = (v cos θ t)2+(v sin θ t−gt2/2)2 = v2t2−vg sin θ t3+g2t4/4. (51)

We want the derivative of ` (and thus `2) to never be less than zero. The
derivative d`2/dt equals zero if

0 = 2v2t− 3vg sin θ t2 + g2t3

=⇒ 0 = g2t2 − 3vg sin θ t + 2v2

=⇒ t =
1

2g2

(
3vg sin θ ±

√
9v2g2 sin2 θ − 8v2g2

)
. (52)

A solution does not exist for t if the discriminant is less than zero, that is, if
sin θ < 2

√
2/3 =⇒ θ < 70.5◦. So if θ is less than or equal to 70.5◦, then `

never decreases during the flight.

(b) Let θ0 ≡ 70.5◦. If you throw a ball at an angle θ larger than θ0, then there is a
point (actually two points) in the flight where d`/dt = 0. This means that at
this point the ball is moving in the direction perpendicular to the radial line
from you to the ball. So if this radial line is considered to be the slope of a
hill, then the ball at this point has a velocity that is perpendicular to the hill.
The time-reversed motion of the ball therefore satisfies the setup in Exercise
3.51.

Conversely, if you throw a ball at an angle θ smaller than θ0, then there doesn’t
exist a point where the ball is moving perpendicular to the radial line from
you to the ball, so therefore the velocity is never perpendicular to the slope of
a hill, which means that such a θ isn’t possible in the setup of Exercise 3.51,
as we found. (If someone claimed that they could produce an angle θ < θ0 in
Exercise 3.51, then the-time reversed motion would yield an angle θ < θ0 for
which the distance decreases at some point in the flight, namely just after the
ball passes through the “hill”, in contradiction with the result of this problem.)

3.53. Projectile with drag

(a) F = ma gives ẍ = −αẋ and ÿ = −g − αẏ. Using the initial speed, the x
equation integrates to

ẋ = Ae−αt =⇒ ẋ = v0 cos θ e−αt. (53)

Assuming an initial position of zero, this then integrates to

x = −(v0 cos θ/α)e−αt + B =⇒ x = (v0 cos θ/α)(1− e−αt). (54)
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The y equation is ÿ = −α(g/α+ ẏ), which can be written as (d/dt)(g/α+ ẏ) =
−α(g/α + ẏ). This integrates to

g

α
+ ẏ = Ce−αt =⇒ ẏ = Ce−αt − g

α
=⇒ ẏ =

(
v0 sin θ +

g

α

)
e−αt − g

α
.

(55)
This then integrates to

y = − 1

α

(
v0 sin θ +

g

α

)
e−αt − gt

α
+ D

=⇒ y =
1

α

(
v0 sin θ +

g

α

)(
1− e−αt

)
− gt

α
. (56)

(b) We are given that mαv0 = mg =⇒ g/α = v0. Therefore, Eq. (55) gives
ẏ = (v0 sin θ + v0)e

−αt − v0. At the top of the motion, we have ẏ = 0 =⇒
e−αt = 1/(1 + sin θ). Using Eq. (54), the value of x at this time is

x =
v0 cos θ

g/v0

(
1− 1

1 + sin θ

)
=

v2
0

g

(
sin θ cos θ

1 + sin θ

)
. (57)

Taking the derivative to maximize this, and using cos2 θ = 1 − sin2 θ, yields
the cubic equation, sin3 θ+2 sin2 θ−1 = 0. This has sin θ = −1 as a root. The
remaining quadratic yields a positive root of sin θ = (

√
5−1)/2 =⇒ θ ≈ 38.2◦.

3.54. Low-orbit satellite

F = ma gives mg = mv2/R =⇒ v =
√

gR. Therefore,

v =
√

(9.8m/s2)(6.37 · 106 m) ≈ 7, 900m/s. (58)

3.55. Weight at the equator

Let the gravitational force from the earth be mg0. This would be the normal force
(that is, the reading on the scale) if the earth weren’t spinning. Since the earth
is in fact spinning, the radial F = ma equation is mg0 − N = mv2/R =⇒ N =
m(g0 − ω2R). In other words, the “effective” g that we interpret from the reading
on the scale is g = g0−ω2R. The ω for the earth is ω = 2π/(1 day) = 7.3 · 10−5s−1.
Using R = 6.37 · 106m, we have ω2R ≈ 0.034m/s2. This is about 0.3% of g0, so
the spinning of the earth causes the scale to read about 0.3% less. So if the earth
stopped spinning (but kept its same shape), a 150 lb person would have the scale
read about half a pound more.

3.56. Banking an airplane

The point is that we don’t want there to be any friction (or any other force) acting
along the seat. So we have only the normal force. Let the banking angle be θ.
The vertical component of the normal force is Ny = mg, which implies that the
horizontal component is Nx = mg tan θ. The horizontal F = ma equation is then
Nx = mv2/R =⇒ tan θ = v2/gR. The apparent weight is N =

√
N2

x + N2
y =

m
√

(v2/R)2 + g2.

3.57. Rotating hoop

The vertical component of the normal force must be mg, which implies that the hor-
izontal component is mg tan θ. The horizontal F = ma equation is then mg tan θ =
m(R sin θ)ω2 =⇒ ω =

√
g/R cos θ. We see that the minimum ω occurs when θ = 0,

in which case it has the value
√

g/R. If ω is smaller than this, then the bead just
sits at the bottom of the hoop.

3.58. Swinging in circles

Pick one of the masses. Let ` be the length of the string, and let θ be the angle
it makes with the vertical. The vertical component of the tension is mg, so the
horizontal F = ma equation is mg tan θ = m(` sin θ)ω2 =⇒ g/ω2 = ` cos θ. But
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` cos θ is the vertical distance below the ceiling, which we see has value of g/ω2,
independent of which string we’re looking at. The masses therefore all lie on a
horizontal line at a distance g/ω2 below the ceiling. Note that a given ω is possible
only if the lengths of all the strings satisfy ` ≥ g/ω2.

3.59. Swinging triangle

Let T1 be the tension in the left rod, let T2 be the tension in the upper right rod,
and let T3 be the compression in the lower right rod. Since v = 0 at the start, the
radial accelerations are zero.

The vertical (radial) F = ma equation on the left mass is

T1 − (1/2)T3 −mg = 0. (59)

The horizontal (tangential) F = ma equation on the left mass is

(
√

3/2)T3 = ma. (60)

The radial F = ma equation on the right mass is

T2 − (1/2)T3 − (1/2)mg = 0. (61)

The tangential F = ma equation on the right mass is

(
√

3/2)mg − (
√

3/2)T3 = ma. (62)

We have four equations in four unknowns (T1, T2, T3, a). Solving the equations by
the method of your choice gives T1 = (5/4)mg, T2 = (3/4)mg, T3 = (1/2)mg, and
a = (

√
3/4)g. The T ’s are all positive, so they are tensions and compressions as

defined above.

3.60. Circular and plane pendulums

The vertical component of the tension in the string of the circular pendulum is
mg. So the horizontal component is mg tan β ≈ mg sin β = mg(r/`), where r is
the radius of the circle. If θ is the angle the position vector makes with the x axis
in the horizontal plane, then the Fx component of the force is −mg(r/`) cos θ =
−mg(r/`)(x/r) = −mg(x/`), which is independent of y.

Let α be the angle the plane pendulum makes with the vertical. For small α, the
tension in the string of the plane pendulum is essentially equal to mg. So the
horizontal component Fx is −mg sin α = −mg(x/`), in agreement with above.

3.61. Rolling wheel

(a) Taking successive derivatives gives

(x, y) = R(ωt + sin ωt, 1 + cos ωt)

=⇒ (ẋ, ẏ) = R(ω + ω cos ωt,−ω sin ωt)

=⇒ (ẍ, ÿ) = R(−ω2 sin ωt,−ω2 cos ωt). (63)

(b) t = 0 corresponds to the top of the wheel, because y = 2R at this time. From
Eq. (63), the velocity and acceleration at t = 0 are (2Rω, 0) and (0,−Rω2),
respectively. Therefore, the magnitudes at the top are v = 2Rω and a = Rω2.
But a = v2/r. Therefore, r = v2/a = 4R.

3.62. Radius of curvature

(a) We have a = v2/r =⇒ r = v2/a. At the top, v = v0 cos θ and a = g.
Therefore, r = (v0 cos θ)2/g.

(b) Only the component of the acceleration perpendicular to the path is relevant
in finding the radius of curvature. At the beginning, this component is g cos θ.
Since v = v0 at the start, we have r = v2

0/(g cos θ).
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(c) The maximum height is the usual (v0 sin θ)2/2g. So we want

v2
0 cos2 θ

g
=

1

2

(
v2
0 sin2 θ

2g

)
=⇒ tan θ = 2 =⇒ θ ≈ 63.4◦. (64)

3.63. Driving on tilted ground

(a) The component of gravity along the plane is g sin θ. The car is most likely
to slip at the bottom of the circle, because at this location the g sin θ points
radially outwards (so that it works against the radially inwards friction force).
F = ma at the bottom point gives Ff −mg sin θ = mv2/R. But Ff ≤ µN =
µmg cos θ, so

µmg cos θ −mg sin θ ≥ mv2/R =⇒ v ≤
√

gR(µ cos θ − sin θ). (65)

Note that there is no possible value for v if tan θ > µ.

(b) At the side points, the “vertical” (along the plane) component of Ff must be
mg sin θ, because there is no acceleration in that direction. And the horizontal
component of Ff must be mv2/R. So we have

(mg sin θ)2 + (mv2/R)2 = F 2
f ≤ (µmg cos θ)2

=⇒ v ≤
√

gR (µ2 cos2 θ − sin2 θ)1/4. (66)

This upper bound is larger than the one in part (a), and it agrees with that
one when θ = 0.

3.64. Car on a banked track

In the case of maximal speed, the friction force points down along the “plane.” So
the F = ma equations along the plane and perpendicular to it are

Ff + mg sin θ = (mv2/R) cos θ and N −mg cos θ = (mv2/R) sin θ. (67)

Solving for Ff and N and demanding Ff ≤ µN gives

v ≤
√

gR

√
sin θ + µ cos θ

cos θ − µ sin θ
. (68)

Note that if tan θ ≥ 1/µ, then v can be arbitrarily large.

In the case of minimal speed, the friction force points up along the plane. So the
F = ma equations along the plane and perpendicular to it are

−Ff + mg sin θ = (mv2/R) cos θ and N −mg cos θ = (mv2/R) sin θ. (69)

The only change from above is Ff → −Ff . Solving for Ff and N and demanding
Ff ≤ µN gives

v ≥
√

gR

√
sin θ − µ cos θ

cos θ + µ sin θ
. (70)

Note that if tan θ ≤ µ, then v can be zero. If µ = 0, then the above two bounds are
equal and v must exactly equal

√
gR tan θ.

3.65. Horizontal acceleration

First solution: Let θ be the angular position below the horizontal. Then the
speed is v =

√
2gh =

√
2gR(1 + sin θ), so the radial acceleration is ar = v2/R =

2g(1 + sin θ). The tangential acceleration is at = g cos θ. We want the vertical
components of ar and at to cancel. Therefore,

ar sin θ = at cos θ =⇒ 2g(1 + sin θ) sin θ = g cos θ cos θ. (71)
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Using cos2 θ = 1− sin2 θ, this yields the quadratic equation, 3 sin2 θ+2 sin θ−1 = 0.
One root of this is sin θ = 1/3 =⇒ θ ≈ 19.5◦ (and also the mirror image on the
other side at θ ≈ 160.5◦). The other root is sin θ = −1 =⇒ θ = −90◦, which
corresponds to the top of the hoop, where ar = at = 0. So the acceleration does
indeed have a zero vertical component here, but this isn’t really the location we’re
concerned with. (It’s semantics whether or not the zero vector is “horizontal.”)

Second solution: If the acceleration is horizontal, then the net force must be
horizontal. Therefore, the vertical component of the normal force must be mg. The
radial F = ma equation is N − mg sin θ = mv2/R. Using the v from above, this
gives

N = mg(2 + 3 sin θ) =⇒ Ny = mg(2 + 3 sin θ) sin θ. (72)

Equating this with mg gives the quadratic equation in the first solution.

3.66. Maximum horizontal force

Let θ be the angular position below the horizontal. Then the speed is v =
√

2gh =√
2gR(1 + sin θ). The radial F = ma equation is N − mg sin θ = mv2/R (with

inward N taken to be positive). Using our v, this gives

N = mg(2 + 3 sin θ) =⇒ Nx = mg(2 + 3 sin θ) cos θ. (73)

Taking the derivative and using cos2 θ = 1 − sin2 θ gives the quadratic equation,
6 sin2 θ + 2 sin θ − 3 = 0. The roots of this are sin θ = (−1 ± √19)/6, which give
θ ≈ 34.0◦ and θ ≈ −63.3◦ (the latter is above the horizontal, 26.7◦ from the top of
the hoop). Plugging these values of θ back into Nx yields values of Nx ≈ (3.05)mg
and Nx ≈ (−0.306)mg, respectively. At θ ≈ 34.0◦, the hoop acts on the bead with a
larger inward Nx than at nearby points. At θ ≈ −63.3◦, the hoop acts on the bead
with a larger outward Nx than at nearby points.

3.67. Derivation of Fr and Fθ

The first derivative of r is

ṙ = (ṙ cos θ − rθ̇ sin θ)x̂ + (ṙ sin θ + rθ̇ cos θ)ŷ. (74)

The second derivative is

r̈ = (r̈ cos θ − 2ṙθ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ)x̂

+ (r̈ sin θ + 2ṙθ̇ cos θ + rθ̈ cos θ − rθ̇2 sin θ)ŷ. (75)

In this equation, if we pair up each term in the first line with the one below it in
the second line, we obtain (using Eq. (3.46))

r̈ = r̈r̂ + 2ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂

= (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂, (76)

as desired.

3.68. A force Fθ = 3mṙθ̇

Fθ = 3mṙθ̇ gives m(rθ̈ + 2ṙθ̇) = 3mṙθ̇, which yields

rθ̈ = ṙθ̇ =⇒
∫

θ̈

θ̇
dt =

∫
ṙ

r
dt =⇒ ln θ̇ = ln r + C =⇒ θ̇ = Dr. (77)

Fr = 0 gives r̈ − rθ̇2 = 0. Using the θ̇ we just found, this becomes r̈ = r(Dr)2.
Multiplying by ṙ and integrating gives ṙ2/2 = D2r4/4+E. Redefining the constants
gives the desired result, ṙ = ±√Ar4 + B.

If θ̇ is initially nonzero, then the D in Eq. (77) is nonzero, which implies A > 0. Since
r̈ = D2r3 > 0, the particle’s ṙ is always greater than its initial positive value, so the
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particle heads out to larger r. For large r, we have ṙ ≈ √
Ar2 ≡ αr2. Therefore,

starting at the moment when the particle is located at some large R, we have

∫ r

R

dr

r2
≈

∫ t

0

α dt =⇒ 1

R
− 1

r
≈ αt =⇒ r ≈ 1

1
R
− αt

. (78)

If t = 1/(αR), then r = ∞, as we wanted to show.

Note: the particle will actually reach infinity in a finite time even if ṙ ≤ 0, provided
that the initial r and ṙ don’t conspire exactly so that E (and hence B) is zero.

3.69. A force Fθ = 2mṙθ̇

Fθ = 2mṙθ̇ gives m(rθ̈ + 2ṙθ̇) = 2mṙθ̇, which yields

rθ̈ = 0 =⇒ θ̈ = 0 =⇒ θ̇ = C =⇒ θ = Ct + D. (79)

Fr = 0 gives r̈−rθ̇2 = 0. Using the θ̇ we just found, this becomes r̈ = rC2. To solve
this, we could multiply by ṙ and integrate, and then solve for ṙ and integrate again.
Or we can solve it the simple way by using the fact that exponential functions
have derivatives that are proportional to themselves. So the general solution is
r(t) = aeCt + be−Ct. But Ct = θ − D. Absorbing the extra multiplicative factor
into a and b gives r(θ) = Aeθ + Be−θ, as desired.

3.70. Stopping on a cone

The F = ma equation perpendicular to the surface of the cone gives

mg sin θ −N = (mv2/R) cos θ =⇒ N = mg sin θ − (mv2/R) cos θ. (80)

The F = ma equation along the direction of the motion gives −µN = m(dv/dt),
which yields

−µ dt =
dv

g sin θ − (v2/R) cos θ
=⇒ −µg sin θ

∫ t

0

dt =

∫ 0

v0

dv

1− v2

gR tan θ

. (81)

Letting u ≡ v/
√

gR tan θ gives

−µg sin θ

∫ t

0

dt =

∫ 0

v0/
√

gR tan θ

√
gR tan θ du

1− u2

=⇒ t = − 1

2µ

√
R

g sin θ cos θ
ln

(
1 + u

1− u

) ∣∣∣
0

v0/
√

gR tan θ

=
1

2µ

√
R

g sin θ cos θ
ln

(√
gR tan θ + v0√
gR tan θ − v0

)
. (82)

Note that if v0 =
√

gR tan θ, then t = ∞. This makes sense, because this is the
speed for which the string naturally makes an angle of θ with the vertical (as you
can show); so the normal force is initially (and hence always) equal to zero. Also, if
θ → π/2 (more precisely, if v0/

√
gR tan θ ¿ 1), then to lowest order the argument

of the log is 1+2v0/
√

gR tan θ. So the log is essentially equal to 2v0/
√

gR tan θ. We
then obtain t ≈ v0/(µg sin θ) ≈ v0/(µg), which makes sense because the acceleration
on flat ground is simply a = −µg. (Or more generally for θ 6= π/2, if v0 is very small,
the normal force is essentially equal to mg sin θ, so the acceleration is a = −µg sin θ.)

3.71. Motorcycle circle

(a) The maximum friction force is µmg, so the maximum speed is given by µmg =
mv2/R =⇒ vmax =

√
µgR. The radial and tangential F = ma equations are

Fr = mv2/R, and Ft = mv dv/dx. (83)
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The condition
√

F 2
r + F 2

t ≤ µmg (we may as well work with the inequality) is

√(
mv2

R

)2

+
(
mv

dv

dx

)2

≤ µmg

=⇒ v
dv

dx
≤

√
µ2g2 − v4

R2

=⇒
∫ √

µgR

0

v dv√
1−

(
v2

µgR

)2
≤ µg

∫ x

0

dx. (84)

Letting y ≡ v2/µgR gives

R

2

∫ 1

0

dy√
1− y2

≤ x. (85)

Then letting y ≡ sin θ gives

R

2

∫ π/2

0

dθ ≤ x =⇒ π

4
R ≤ x. (86)

So the minimum distance is 45◦ around the circle, independent of µ.

(b) Note that at the start, we have β = 0. And when the maximum speed is
achieved and the friction force points radially, we have β = 90◦. Assuming
that the friction force takes on its maximum value of µmg, the radial and
tangential F = ma equations are

µmg sin β = mv2/R, and µmg cos β = mv̇. (87)

Taking the time derivative of the first equation gives µmg cos β β̇ = 2mvv̇/R.
Dividing this by the second equation gives β̇ = 2v/R. But v/R = θ̇, where θ
is the angle traveled around the circle. So we have β̇ = 2θ̇. Integrating this,
and using the fact that both β and θ start at zero, gives β = 2θ. Therefore,
when the maximum speed is achieved and β = 90◦, we have θ = β/2 = 45◦, as
in part (a).
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Chapter 4

Oscillations

4.13. kx force

Trying a solution of the form x(t) = Aeαt in kx = mẍ gives α = ±
√

k/m, so the
most general solution is

x(t) = Ae
√

k/m t + Be−
√

k/m t. (88)

We want A = 0, because otherwise the first term would become large for large t.

So x(t) = Be−
√

k/m t, which gives B = x0. Hence, v(t) = −x0

√
k/m e−

√
k/m t.

Therefore, v(0) = −x0

√
k/m.

4.14. Rope on a pulley

Let x be the distance each end is above and below the average height. Then the
net force along the rope is σ(2x)g, so F = ma gives 2σgx = σLẍ. So we essentially
have the Exercise 4.13 with k/m → 2g/L. You should therefore pull the higher end

down with a speed v(0) = x0

√
2g/L.

4.15. Amplitude

Taking the derivative to find the max (or min) yields tan ωt = D/C. At this time
we have

x(t) = C cos ωt + D sin ωt = C · C√
C2 + D2

+ D · D√
C2 + D2

=
√

C2 + D2. (89)

This checks in the special cases where C = 0 or D = 0.

4.16. Angled rails

Let x be the position of each mass along the rail, relative to the equilibrium position.
Then the spring stretches a distance 2x sin θ, yielding a force of 2kx sin θ. The
component of this force along the rail is 2kx sin2 θ. So F = ma along the rail gives
−2kx sin2 θ = mẍ. Hence, ω =

√
2k/m sin θ.

4.17. Effective spring constant

(a) Let the mass move a distance x to the right. Then the two springs pull to the
left with forces −k1x and −k2x. The total force is therefore F = −(k1 + k2)x.
Hence, keff = k1 + k2. Note that if k1 = 0, then keff = k2, as expected. And if
k1 = ∞, then keff = ∞, as expected.

(b) Let the mass move a distance x to the right. How much does each spring
stretch? The key is that both springs must exert the same force, otherwise
there would be a nonzero net force on some part of the massless springs, and
this part would then undergo infinite acceleration. Let the springs stretch by
x1 and x2. Then we have k1x1 = k2x2. And also x1 + x2 = x, of course.

29



30 CHAPTER 4. OSCILLATIONS

Solving this system of two equations gives x1 = k2x/(k1 + k2) and x2 =
k1x/(k1 +k2). The force in each spring (which is the force that the mass feels)
is therefore k1x1 = k2x2 = k1k2x/(k1 + k2), directed to the left. Therefore,
keff = k1k2/(k1 + k2). Note that if k1 = 0, then keff = 0, as expected. And if
k1 = ∞, then keff = k2, as expected.

4.18. Changing k

Let’s first find the new equilibrium position. If it is a distance d to the right of the
center, then we have k(`+d) = 3k(`−d) =⇒ d = `/2. The effective spring constant
is k + 3k = 4k, because moving the mass a distance y to the right changes the force
from the left spring by −ky, and also changes the force from the right spring by
−3ky. So the general solution for the displacement, z, from equilibrium is

z(t) = A cos
(
2
√

k/m t
)

+ B sin
(
2
√

k/m t
)
. (90)

The initial conditions z(0) = −`/2 and v(0) = 0 quickly give A = −`/2 and B = 0.

So we have z(t) = −(`/2) cos(2
√

k/m t). Adding on the `/2 for the equilibrium

position gives the position relative to the center as x(t) = (`/2)
(
1− cos(2

√
k/m t)

)
.

4.19. Removing a spring

The initial effective spring constant is 2k, so the initial motion takes the form,

x(t) = d cos(
√

2k/m t + φ) =⇒ v(t) = −d
√

2k/m sin(
√

2k/m t + φ). (91)

At the moment in question, x = d/2, which gives cos(
√

2k/m t + φ) = 1/2. There-

fore, sin(
√

2k/m t + φ) = ±√3/2, which means that the velocity when the right

spring is removed is v = d
√

3k/2m.

After the spring in removed, the frequency is
√

k/m, so the general form of x is (it
is more convenient to write the position now as the sum of a sin and cos)

x(t) = A cos
(√

k/m t
)

+ B sin
(√

k/m t
)

=⇒ v(t) = −A
√

k/m sin
(√

k/m t
)

+ B
√

k/m cos
(√

k/m t
)
. (92)

The initial conditions, x(0) = d/2 and v(0) = d
√

3k/2m, quickly give A = d/2 and

B =
√

3/2 d. So we have

x(t) = (d/2) cos
(√

k/m t
)

+
(√

3/2 d
)
sin

(√
k/m t

)
. (93)

From Exercise 4.15, the amplitude is
√

A2 + B2 =
√

d2/4 + 3d2/2 =
√

7d/2. This
is larger than the original amplitude d, because after the right spring is removed, it
can’t help slow down the mass. The mass therefore overshoots the x = d mark.

4.20. Springs all over

(a) The key to this problem is that since the relaxed length is zero, the spring force
can be written as −kr (where r is measured relative to the fixed end), because
the vector −r contains the correct magnitude and direction. So if one of the
springs starts out at position r1 (measured relative to its fixed end) and is then
moved to position r2, then the difference in force is ∆F = −k(r2−r1) ≡ −k∆r.
The same statement can be made for the other spring. The r vectors are
measured relative to its fixed end, which is different from the fixed end of the
first spring, but this is irrelevant in the result, ∆F = −k∆r. Therefore, when
our mass is moved by a vector ∆r, the change in the total force is −2k∆r.
But since the force was zero at the equilibrium point, this means that the
total force on the mass at position ∆r (measured relative to the equilibrium
point) is −2k∆r. In other words, the mass is essentially on the end of a spring
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with spring constant 2k. It therefore undergoes simple harmonic motion in a
straight line (determined by the direction from the equilibrium point to the

initial position) with frequency
√

2k/m, independent of the direction of the
initial kick.

(b) From the above reasoning, if the mass is at position ∆r (measured relative to
the equilibrium point), then the total force on it is F = −(k1+k2+· · ·+kn)∆r.
The mass is therefore essentially on the end of a spring with spring constant
(k1+k2+· · ·+kn). It therefore undergoes simple harmonic motion in a straight

line with frequency
√

(k1 + k2 + · · ·+ kn)/m, independent of the direction of
the initial kick.

4.21. Rising up

Consider the first setup in Fig. 4. The mass hangs from two springs in series, which

cut

Figure 4

have a string between them. Two other limp (but barely) strings are attached as
shown. Initially, these strings have no tension and thus do nothing. The tension in
each spring is mg, so if they each have a spring constant k, then each one is stretched
by mg/k. The mass therefore hangs a distance 2mg/k below where is would hang
if it were massless.

Now cut the string connecting the springs. The two limp strings acquire a tension,
and we now have two springs in parallel, instead of in series; see the second setup in
Fig. 4. Each spring needs to support only half the weight, so each one is stretched
by mg/2k. The mass therefore hangs a distance mg/2k below where it would hang
if it were massless. This is 3mg/2k above where it hung before the string was cut.
So the mass does indeed rise. Strange but true.

4.22. Projectile on a spring

(a) The force on the projectile is F = −kr −mgŷ. The x component of F = ma

is therefore mẍ = −kx =⇒ x(t) = A cos ωt + B sin ωt, with ω =
√

k/m. And
the y component is mÿ = −ky−mg =⇒ mz̈ = −kz, where z ≡ y + mg/k. So
z takes the standard trig form, which yields y(t) = C cos ωt+D sin ωt−mg/k.

The initial conditions x(0) = 0 and ẋ(0) = v0 cos θ quickly give

x(t) =
(

v0 cos θ

ω

)
sin ωt. (94)

And the initial conditions y(0) = 0 and ẏ(0) = v0 sin θ give

y(t) =
(

mg

k

)
(cos ωt− 1) +

(
v0 sin θ

ω

)
sin ωt. (95)

(b) For small ωt, we have sin ωt ≈ ωt and cos ωt ≈ 1− (ωt)2/2. Therefore,

x(t) ≈
(

v0 cos θ

ω

)
ωt = (v0 cos θ)t. (96)

And, using ω2 = k/m,

y(t) ≈
(

mg

k

)(
−(k/m)t2

2

)
+

(
v0 sin θ

ω

)
ωt = −1

2
gt2 + (v0 sin θ)t. (97)

These are the standard projectile results, as desired. For the above approx-
imations to be valid, we need ωt ¿ 1 throughout the entire motion. If
we assume that ω(2v0 sin θ/g) ¿ 1, then the above approximations hold for
t = 2v0 sin θ/g, in which case we have y ≈ 0 at this time. That is, the pro-
jectile has hit the ground and the motion is finished. So “small ω” means
ω ¿ g/(v0 sin θ).

Now consider large ω. For any t, the x(t) motion is simple harmonic. In order
for the whole motion to be simple harmonic, we need it to be in a straight line,
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so y/x must be a constant. This means that the (mg/k)(cos ωt − 1) term in
y(t) must be negligible. We therefore need

v0 sin θ

ω
À mg

k
=⇒ v0 sin θ

ω
À g

ω2
=⇒ ω À g

v0 sin θ
. (98)

This is what is meant by “large ω.” In this case, both x and y are (essentially)
proportional to sin ωt. The projectile reaches a maximum distance from the
origin of v0/ω, and then heads back.

The above two conditions on ω can be summed up by saying that the time scale
of oscillations without gravity, namely 1/ω, should be much greater than or
much less than the time scale of projectile motion without the spring, namely
2v0 sin θ/g.

(c) We want y = 0 when ẋ = 0. But ẋ = (v0 cos θ) cos ωt, which is zero when
t = π/2. The y value at t = π/2 is (mg/k)(0 − 1) + (v0 sin θ/ω)(1). Setting
this equal to zero, and using k/m = ω2, gives g/ω2 = v0 sin θ/ω =⇒ ω =
g/(v0 sin θ). This is, in a sense, right “between” the two limiting cases above.

4.23. Corrections to the pendulum

(a) F = ma in the tangential direction gives −mg sin θ = mv dv/dx. Writing dx
as ` dθ, and separating variables and integrating gives

−
∫ θ

θ0

mg` sin θ dθ =

∫ v

0

mv dv =⇒ v = ±
√

2g`(cos θ − cos θ0). (99)

So
∫

dt =
∫

dx/v gives

T = 4

∫ θ0

0

` dθ

v
= 4

∫ θ0

0

` dθ√
2g`(cos θ − cos θ0)

=

√
8`

g

∫ θ0

0

dθ√
cos θ − cos θ0

.

(100)

(b) Using cos φ = 1− 2 sin2(φ/2), and making the substitution

sin x ≡ sin(θ/2)

sin(θ0/2)
=⇒ cos x dx =

(1/2) cos(θ/2) dθ

sin(θ0/2)
, (101)

gives

T =

√
8`

g

∫ θ0

0

dθ√
cos θ − cos θ0

=

√
4`

g

∫ θ0

0

dθ√
sin2(θ0/2)− sin2(θ/2)

= 2

√
`

g

∫ θ0

0

dθ

sin(θ0/2)
√

1− sin2 x

= 2

√
`

g

∫ π/2

0

(
2 sin(θ0/2) cos x dx

cos(θ/2)

)
1

sin(θ0/2) cos x

= 4

√
`

g

∫ π/2

0

dx√
1− sin2(θ0/2) sin2 x

≈ 4

√
`

g

∫ π/2

0

(
1 +

1

2
sin2(θ0/2) sin2 x

)
dx

≈ 4

√
`

g

∫ π/2

0

(
1 +

1

2

(
θ0

2

)2

sin2 x

)
dx

= 2π

√
`

g

(
1 +

θ2
0

16

)
, (102)
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where we have used the fact that the average value of sin2 x is 1/2 (or you can
just do the integral).

Note: In deriving the (11/3072)θ4
0 result mentioned in the footnote, an inter-

mediate step is (just to make sure you’re on the right track)

T ≈ 4

√
`

g

∫ π/2

0

(
1 +

1

2

(
θ0

2
− 1

6

(
θ0

2

)3
)2

sin2 x +
3

8

(
θ0

2

)4

sin4 x

)
dx.

(103)

4.24. Crossing the origin

In the overdamped case, the mass crosses the origin when

Ae−(γ−Ω)t + Be−(γ+Ω)t = 0 =⇒ AeΩt + Be−Ωt = 0 =⇒ e2Ωt = −B

A
. (104)

Therefore, t = (1/2Ω) ln(−B/A), so there is at most one solution for t. In order
for there to actually be a solution, we need t to be real, which means −B/A > 0.
Moreover, if it is assumed that t starts at zero, then we actually need −B/A > 1,
so that t is positive.

In the critically damped case, the mass crosses the origin when

e−γt(A + Bt) = 0 =⇒ t = −A

B
. (105)

Again, there is at most one solution, and it is always real in this case. But we need
−A/B > 0 if we want t to be positive.

4.25. Strong damping

For sufficiently strong damping, the mass is barely moving for large t (after any
effects of the initial velocity have disappeared). Therefore,

∑
F ≈ 0, which gives

−kx− bẋ ≈ 0. Separating variables and integrating gives

∫ x

x0

dx

x
= −k

b

∫ t

0

dt =⇒ ln
(

x

x0

)
= −kt

b
=⇒ x = x0e

−kt/b, (106)

as desired.

4.26. Maximum speed

In terms of the initial values x(0) = x0 and v(0) = v0, you can show that x(t) =
e−γt(A + Bt) becomes

x(t) = e−γt
(
x0 + (v0 + γx0)t

)
. (107)

Now, x(t) = 0 when t = −A/B = −x0/(v0 + γx0). The mass crosses the origin if
this t is greater than zero, that is, if v0 + γx0 < 0 =⇒ v0 < −γx0. So if v0 ≥ −γx0,
then the mass doesn’t cross the origin. The desired maximum speed (toward the
origin) is therefore |v0| = γx0 = ωx0.

4.27. Another maximum speed

In terms of the initial values x(0) = x0 and v(0) = v0, you can show that x(t) =
Ae−(γ−Ω)t + Be−(γ+Ω)t becomes

x(t) =
1

2

(
x0 +

v0 + γx0

Ω

)
e−(γ−Ω)t +

1

2

(
x0 − v0 + γx0

Ω

)
e−(γ+Ω)t. (108)

Now, x(t) = 0 when e2Ωt = −B/A =⇒ t = (1/2Ω) ln(−B/A). The mass crosses
the origin if this t is greater than zero, that is, if −B/A > 1. There are three cases
to consider: (1) If A < 0, then the mass crosses the origin if −B < A, which is
equivalent to −2x0 < 0, which is always true (since we’re assuming x0 > 0). (2) If
A > 0, then the mass crosses the origin if −B > A, which is equivalent to −2x0 > 0,
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which is never true. (3) If A = 0, then the mass crosses the origin at t = ±∞, which
means that it never really does. Putting this all together, we see that the mass does
not cross the origin if

A ≥ 0 =⇒ x0 +
v0 + γx0

Ω
≥ 0 =⇒ v0 ≥ −(γ + Ω)x0. (109)

The desired maximum speed (toward the origin) is therefore |v0| = (γ + Ω)x0. In
retrospect, the A ≥ 0 condition is makes sense, because the A term dominates for
large t. Note that when Ω = 0 (critical damping), we correctly obtain the result for
Exercise 4.26.

4.28. Ratio of maxima

In the undamped case, the initial conditions x(0) = x0 and v(0) = 0 give x(t) =
x0 cos(ωt). The velocity is then v(t) = −ωx0 sin(ωt), and so the maximum speed is
ωx0.

In the critically damped case, you can show that the initial conditions x(0) = x0

and v(0) = 0 give x(t) = x0e
−γt(1 + γt). The velocity is then v(t) = −γ2x0e

−γtt.
Taking the derivative to maximize this yields t = 1/γ. Plugging this back in gives
a maximum speed of γx0/e. And since γ = ω for critical damping, we obtain the
desired ratio of e.

4.29. Resonance

Let wd → x for ease of notation. We want to minimize the function f(x) = (ω2 −
x2)2 + (2γx)2. Taking the derivative gives

0 = 2(ω2−x2)(−2x)+8γ2x =⇒ 0 = −ω2 +x2 +2γ2 =⇒ ωd ≡ x =
√

ω2 − 2γ2.
(110)

But if this is imaginary, then the slope of f(x) is never zero (except when x = 0),
so the minimum occurs at either x = 0 or x = ∞. But f(x) → ∞ for x → ∞, so
the minimum must be at x = 0.

4.30. No damping force

The F = ma equation can be written in the form, mẍ + kx = Fd cos ωdt =⇒
ẍ + ω2x = F cos ωdt, where F ≡ Fd/m. Plugging in x(t) = A cos ωdt + B sin ωdt
gives

−ω2
d(A cos ωdt + B sin ωdt) + ω2(A cos ωdt + B sin ωdt) = F cos ωdt. (111)

Matching up the coefficients of sin and cos gives B = 0 and A = F/(ω2 − ω2
d). We

have two cases:

ω > ωd =⇒ x(t) =
F

ω2 − ω2
d

cos ωdt =⇒ φ = 0, (112)

ωd > ω =⇒ x(t) =
F

ω2
d − ω2

(− cos ωdt) =
F

ω2
d − ω2

cos(ωdt− π) =⇒ φ = π.

Intuitively, it makes sense (see the discussion of φ on page 114 in the text) that for
small ωd, the system is in phase with the driving force; and for large ωd, the system
is exactly out of phase with the driving force. If ωd = ω, then we have resonance
with no damping, so the system diverges.

4.31. Springs and one wall

If “1” and “2” stand for the left and right masses, respectively, the F = ma equations
are

mẍ1 = −kx1 − k(x1 − x2),

mẍ2 = −k(x2 − x1). (113)
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So we have

(
x1

x2

)
=

(
A
B

)
eiαt =⇒

(
−α2 + 2ω2 −ω2

−ω2 −α2 + ω2

)(
A
B

)
eiαt = 0.

(114)
Setting the determinant equal to zero gives α2 = ω2(3 ±√5)/2, which can also be
written as α2 = ω2[(

√
5± 1)/2]2. The “+” root gives B = −(

√
5 − 1)A/2, and the

“−” root gives B = (
√

5 + 1)A/2. So the normal modes are

(
x1

x2

)
∝

(
−2√
5− 1

)
cos

(√
5 + 1

2
ωt + φ

)
, and

(
x1

x2

)
∝

(
2√

5 + 1

)
cos

(√
5− 1

2
ωt + β

)
. (115)

4.32. Springs between walls

If “1,” “2,” and “3” stand for the left, middle, and right masses, respectively, the
F = ma equations are

mẍ1 = −kx1 − k(x1 − x2),

mẍ2 = −k(x2 − x1)− k(x2 − x3),

mẍ3 = −k(x3 − x2)− kx3. (116)

So we have

(
x1

x2

x3

)
=

(
A
B
C

)
eiαt (117)

=⇒
( −α2 + 2ω2 −ω2 0

−ω2 −α2 + 2ω2 −ω2

0 −ω2 −α2 + 2ω2

)(
A
B
C

)
eiαt = 0.

Setting the determinant equal to zero gives

(−α2 +2ω2)(α4− 4α2ω2 +2ω4) = 0 =⇒ α2 = 2ω2, or α2 = (2±
√

2)ω2. (118)

Substituting these values of α2 back into the matrix equation to find the relations
between A, B, and C gives the three normal modes,

(
1
0
−1

)
cos

(√
2ωt + φ

)
,




1

−√2
1


 cos

(√
2 +

√
2 ωt + β

)
,

and




1√
2

1


 cos

(√
2−√2 ωt + γ

)
. (119)

Intuitively, these all make qualitative sense. And the first one additionally makes
quantitative sense, because the middle mass is essentially a brick wall.

4.33. Beads on angled rails

From Fig. 5, the force on the left bead, along the rail, is k` cos φ = k(x − y cos θ).

l

x

x-y cosθ

y
θ

φ

Figure 5

Similarly for the right bead. So the F = ma equations are

mẍ = −kx + ky cos θ,

mÿ = −ky + kx cos θ. (120)
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Adding and subtracting these equations gives

m(ẍ + ÿ) = −k(1− cos θ)(x + y) =⇒ x + y = A cos
(√

1− cos θ ωt + φ1

)

m(ẍ− ÿ) = −k(1 + cos θ)(x− y) =⇒ x− y = B cos
(√

1 + cos θ ωt + φ2

)
.

(121)

Adding and subtracting these equations to solve for x and y gives

(
x
y

)
= A′

(
1
1

)
cos

(√
1− cos θ ωt+φ1

)
+B′

(
1
−1

)
cos

(√
1 + cos θ ωt+φ2

)
,

(122)
where A′ = A/2 and B′ = B/2. The normal modes are obtained by setting either
A′ or B′ equal to zero. Snapshots of the spring in each of these modes are shown in
Fig. 6 and Fig. 7. The first mode should reproduce the result of Exercise 4.16. And

Figure 6

Figure 7

indeed, since the angle there was defined to be 2θ, the result of this exercise gives a
frequency of

√
1− cos 2θ ω =

√
2ω sin θ, in agreement with Exercise 4.16.

4.34. Coupled and damped

The F = ma equations are

mẍ1 = −kx1 − k(x1 − x2)− bẋ1,

mẍ2 = −kx2 − k(x2 − x1)− bẋ2. (123)

Adding and subtracting these equations gives

m(ẍ1 + ẍ2) + b(ẋ1 + ẋ2) + k(x1 + x2) = 0,

m(ẍ1 − ẍ2) + b(ẋ1 − ẋ2) + 3k(x1 − x2) = 0. (124)

These are uncoupled equations for the quantities x1 + x2 and x1 − x2. Assuming
underdamping, the solutions are the standard ones (with γ ≡ b/2m and ω ≡

√
k/m

as usual):

x1 + x2 = e−γtA cos(ω1t + φ1), where ω1 =
√

ω2 − γ2,

x1 − x2 = e−γtB cos(ω2t + φ2), where ω2 =
√

3ω2 − γ2. (125)

Adding and subtracting these equations to solve for x1 and x2 gives

(
x1

x2

)
= A′

(
1
1

)
e−γt cos(ω1t + φ1) + B′

(
1
−1

)
e−γt cos(ω2t + φ2), (126)

where A′ = A/2 and B′ = B/2. This reduces to the result for the example in Section
4.5 if γ = 0.

4.35. Coupled and driven

The F = ma equations are

mẍ1 = −kx1 − k(x1 − x2) + Fd cos(2ωt),

mẍ2 = −kx2 − k(x2 − x1) + 2Fd cos(2ωt). (127)

Adding and subtracting these equations gives

m(ẍ1 + ẍ2) + k(x1 + x2) = 3Fd cos(2ωt),

m(ẍ1 − ẍ2) + 3k(x1 − x2) = −Fd cos(2ωt). (128)

These are uncoupled equations for the quantities x1+x2 and x1−x2. The particular
solution for both of these will involve only cos(2ωt) (that is, no sin term), due to
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the absence of any ẋ terms. Plugging A cos(2ωt) into each equation gives (with
F ≡ Fd/m)

x1 + x2 =
−F

ω2
cos(2ωt), x1 − x2 =

F

ω2
cos(2ωt). (129)

Adding and subtracting these equations to solve for x1 and x2 gives

x1(t) = 0, x2(t) =
−F

ω2
cos(2ωt). (130)

Note that x2 can be written as (−Fd/k) cos(2ωt). Since x1 = 0, this mean that
relative to the equilibrium, the middle spring applies a force on the left mass equal
to −Fd cos(2ωt). This exactly cancels the Fd cos(2ωt) driving force on it, so it just
sits there, consistent with the fact that x1 = 0. Also, the total force on the right mass
is 2Fd cos(2ωt) from the driving force, plus 2k(Fd/k) cos(2ωt) from the two springs
touching it. So the total force on it is −(4k)x2. It is therefore effectively attached
to a spring with spring constant 4k, which yields a frequency of 2ω, consistent with
the driving force.
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Chapter 5

Conservation of energy and
momentum

5.32. Cart in a valley

The final h2 equals the initial h1. The sand has kinetic energy after it leaks, so be
careful not to incorrectly apply conservation of energy and say that because the final
potential energy of the sand is less than at the start, the cart must end up with a
larger potential energy and thus go higher.

The result h2 = h1 follows from the fact that the velocity of the cart is unchanged
by the leaking, so at all times the cart has the same velocity as a non-leaking cart
on a parallel track. Equivalently, since the sand applies no force to the cart when it
leaks, the force along the ground at any instant is mg sin θ, and so the acceleration
along the ground at any instant is g sin θ, independent of m.

5.33. Walking on a escalator

Yes, you do work on the elevator. Your feet apply a force, and they move. So there
is a nonzero F · d. Equivalently, the escalator does negative work on you (since the
stairs apply a force up, but they’re moving down). So your internal energy decreases;
you’re using up the energy from the meal you ate.

Note that in the escalator frame, you are not doing any work on the escalator (and
likewise it isn’t doing any work on you), because your feet and the stairs aren’t
moving. You are simply turning internal energy from your dinner into potential
energy.

5.34. Lots of work

In the person’s frame, the friction force at your feet does the same amount of work
on you, so the total work done on you is zero.

5.35. Spring energy

The velocity is v(t) = −Aω sin(ωt + φ), so we have

E =
1

2
kx2 +

1

2
mv2 =

1

2
kA2 cos2(ωt + φ) +

1

2
mA2ω2 sin2(ωt + φ)

=
1

2
kA2 cos2(ωt + φ) +

1

2
mA2 k

m
sin2(ωt + φ)

=
1

2
kA2

(
cos2(ωt + φ) + sin2(ωt + φ)

)

=
1

2
kA2, (131)

which is constant, as desired.

39
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5.36. Damping work

The F = ma equation, −kx− bẋ = mẍ, gives −bẋ = kx + mẍ. The total work done
by the damping force by the time the mass ends up at x = 0 with v = 0 is therefore

W =

∫ 0

x0

Fd dx =

∫ 0

x0

(−bẋ) dx =

∫ 0

x0

(kx + mẍ) dx

=

∫ 0

x0

kx dx +

∫ 0

v0

mv
dv

dx
dx = −1

2
kx2

0 − 1

2
mv2

0 , (132)

as desired.

5.37. Heading to infinity

Conservation of energy gives mv2/2+V (x) = E =⇒ v(x) =
√

2/m
√

E + Axn. For

large x, we have v ≈ Bxn/2 (where B =
√

2A/m, but this isn’t important). So we
have

dx

dt
≈ Bxn/2 =⇒

∫ ∞

x0

dx

Bxn/2
≈

∫ T

0

dt = T. (133)

If n ≤ 2, this integral diverges, so T is infinite. But if n > 2, the integral converges,
so T is finite.

If you want to be more rigorous with the “≈” sign above, then you can say that for
any E (even negative E) there is some X for which if x > X then (1/2)Bxn/2 <
v < 2Bxn/2. The factors of 2 are irrelevant as far as the divergence of the above
integral goes. The left inequality here says that T is finite if n > 2, and the right
inequality says that T is infinite if n ≤ 2.

5.38. Work in different frames

(a) The acceleration is a = F/m, so d = (1/2)at2 = (F/2m)t2. The work is
W = Fd = F (F/2m)t2. And ∆K = mv2/2 = m(at)2/2 = m(Ft/m)2/2. So
W = F 2t2/2m = ∆K, as desired.

(b) The initial speed is V , so d = V t + (1/2)(F/m)t2. The work is W = Fd =
FV t + F (F/2m)t2. The final speed is V + (F/m)t, so

∆K =
m

2

(
(V + Ft/m)2 − V 2

)
=

m

2

(
2V Ft/m + F 2t2/m2

)

= FV t + F 2t2/2m, (134)

which equals W , as desired.

5.39. Roller coaster

The radial F = ma equation at the top of the loop is N + mg = mv2/R. So
the normal force is N = mv2/R − mg. We want N ≥ 0 =⇒ v2 ≥ gR. But if
h is the difference in height between the starting point and the top of the loop,
then conservation of energy gives mv2/2 = mgh =⇒ v2 = 2gh. Therefore, 2gh ≥
gR =⇒ h ≥ R/2.

5.40. Pendulum and peg

The radius of the circle is L − d, so as in Exercise 5.39 we need v2 ≥ g(L − d) at
the top of the circle. But the top of the circle is a distance L − 2(L − d) = 2d − L
below the starting point, so conservation of energy gives v2 = 2g(2d−L) at the top.
Therefore, 2g(2d− L) ≥ g(L− d) =⇒ d ≥ 3L/5.

5.41. Circling around a cone

Let θ be the half angle at the tip. During the circular motion, the vertical component
of the normal force is mg, so the horizontal component is mg/ tan θ. The radial
F = ma equation is then

mg

tan θ
=

mv2

r
=⇒ v2 =

gr

tan θ
=⇒ v2 = gh, (135)
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where h = r/ tan θ is the height of the circle above the tip.

If H is the initial height of the particle above the tip, then conservation of energy
during the initial downward motion gives

mg(H − h) =
mv2

2
=⇒ mg(H − h) =

m(gh)

2
=⇒ H

h
=

3

2
. (136)

5.42. Hanging spring

(a) The sum of the gravitational and spring potential energies is V (y) = mgy +
(1/2)ky2 (remember that y is negative).

(b) The minimum occurs where 0 = dV/dy = mg + ky =⇒ y0 = −mg/k. The
value of the potential at this point is −m2g2/2k. And V (y) = 0 at both y = 0
and y = −2mg/k. So the plot of V (y) is shown in Fig. 8.

mg

m2g2____
2k

-

___
k

-

Figure 8

(c) Just substitute y = z + y0 = z −mg/k into V (y). Or complete the square:

V (y) =
k

2

(
y2 +

2mgy

k

)

=
k

2

(
y +

mg

k

)2

− k

2
· m2g2

k2

=
k

2
(y − y0)

2 − m2g2

2k

=⇒ V (z) =
1

2
kz2 − m2g2

2k
. (137)

Up to a constant (which is irrelevant), this is simply (1/2)kz2, which has no
mention of gravity. And equilibrium point, z = 0, corresponds to y = y0.

5.43. Removing the friction

(a) We are concerned with the point where friction takes on its maximum value,
namely µmg cos θ, down along the plane. If x0 is the desired compression
distance, then balancing the forces along the plane gives

kx0 = mg sin θ + µmg cos θ =⇒ x0 =
mg

k
(sin θ + µ cos θ). (138)

(b) We want the speed to be zero when the spring it as its relaxed length. So
we want the loss in the spring potential to equal the gain in the gravitational
potential. That is, (1/2)kx2

0 = mg(x0 sin θ). So

1

2
kx0 = mg sin θ =⇒ sin θ + µ cos θ = 2 sin θ =⇒ µ = tan θ. (139)

Incidentally, this is the minimum value of µ that allows the block to remain at rest
when the spring is at its relaxed length.

5.44. Spring and friction

(a) The vertical forces balance at equilibrium, so if d is the compression distance,
then kd = mg =⇒ d = mg/k.

(b) For a given half-oscillation, let di and df be the initial and final distances (so
they’re defined to be positive) from equilibrium. The loss in potential energy
shows us as heat (work done by friction), so

1

2
kd2

i − 1

2
kd2

f = µmg(di+df) =⇒ 1

2
k(di−df) = µmg =⇒ df = di− 2µmg

k
.

(140)
Since µ = 1/8, the distance decreases by mg/4k after each half oscillation.
Note that this is an additive answer, and not a multiplicative one. If you
used mg/k instead of di, you would have obtained df = 3mg/4k for the first
half-oscillation, so you wouldn’t be able to tell if the change was an additive
−mg/4k term or a multiplicative 3/4 one.
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(c) It takes four decreases of mg/4k to bring the initial mg/k distance down to
zero.

5.45. Keeping contact

Conservation of energy gives the speed of the mass at the top of the circle (assuming
that contact is maintained):

Etop = Ebottom =⇒ 1

2
mv2 + mg(2R) +

1

2
k(2R− `)2 =

1

2
k`2

=⇒ mv2 = 4kR`− 4kR2 − 4mgR. (141)

The radial F = ma equation at the top is (with downward positive) mg + k(2R −
`) + N = mv2/R. The mass remains in contact with the circle if N ≥ 0, which is
equivalent to mv2/R ≥ mg + k(2R− `). Using the above expression for mv2 at the
top, this becomes

4k`− 4kR− 4mg ≥ mg + 2kR− k` =⇒ ` ≥ mg

k
+

6R

5
. (142)

Remark: Let’s check some limits. If g = 0 (for example, if the circle lies on a horizontal

table), or if m is small or k is big (so that mg/k ¿ R), then we have ` ≥ 6R/5, which isn’t

obvious to me. If R is small compared with mg/k, then we have ` ≥ mg/k. In this case,

the mass hardly has any time to get moving (because R is so small), so the speed at the

top of the circle is essentially zero. The upward spring force (which is essentially k`) must

therefore at least balance the downward mg force. Hence ` ≥ mg/k. ♣
5.46. Spring and hoop

(a) There is zero kinetic energy at the top and bottom, so conservation of energy
gives 0 = (1/2)k(2R)2 −mg(2R) =⇒ k = mg/R.

(b) Let θ be the angle up from the bottom of the hoop. Then the length of
the spring is 2R cos(θ/2). So the spring force is 2kR cos(θ/2). The radial
component of this is canceled by the normal force. The tangential component
is

2kR cos(θ/2) · sin(θ/2) = kR sin θ = mg sin θ, (143)

where we have used the k from part (a). But this mg sin θ tangential force is
exactly equal to (but opposite of) the tangential component of gravity. There-
fore, the net tangential force on the bead is zero at all times, so the speed is
v0, independent of θ.

Alternatively, you can use conservation of energy:

1

2
mv2

0 +
1

2
k(2R)2 −mgR =

1

2
mv2 +

1

2
k
(
2R cos(θ/2)

)2 −mgR cos θ. (144)

This can be simplified to

1

2
mv2 =

1

2
mv2

0 + (kR2 −mgR)(1− cos θ). (145)

The second term is zero because k = mg/R, so we have v = v0 at all times.

5.47. Constant ẋ

By conservation of energy, the bead’s speed at any time is given by (note that y is
negative here)

1

2
mv2 + mgy =

1

2
mv2

0 =⇒ v =
√

v2
0 − 2gy . (146)

The horizontal component of the velocity is ẋ = v cos θ, where θ is the (negative)
angle the wire makes with the horizontal. The slope of the wire is tan θ = dy/dx ≡ y′,
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which yields cos θ = 1/
√

1 + y′2. The requirement ẋ = v0, which is equivalent to
v cos θ = v0, may therefore be written as

√
v2
0 − 2gy√
1 + y′2

= v0. (147)

Squaring both sides and solving for y′ ≡ dy/dx (and picking the negative solution)
yields dy/dx = −√−2gy/v0. Separating variables and integrating gives

∫ −dy√−y
=

√
2g

v0

∫
dx =⇒ 2

√−y =

√
2g

v0
x, (148)

where the constant of integration has been set to zero, because (x, y) = (0, 0) is a
point on the curve. Therefore,

y = −gx2

2v2
0

. (149)

So we have a parabola. In retrospect, this is clear, because we know that projectile
motion yields constant x0. And projectile motion (with initial horizontal velocity)
has the parabolic form, y = −gt2/2 = −g(x/v0)

2/2.

Note: We lost the y = 0 solution when we divided by
√

y above. This caused us
to miss the dy/dx = 0 possibility. Physically, if we want the horizontal speed to be
constant, then we need the horizontal component of the normal force to be zero at
all times. That is, N sin θ = 0. This can be true either because N = 0 (as in the
projectile case) or θ = 0 (as in the y = 0 case).

5.48. Over the pipe

(a) Imagine reversing the motion and releasing the ball from (nearly) rest at the
top. Then conservation of energy gives the ball’s speed when it hits the ground
as v =

√
2g(h + r). This motion is reversible, so you simply have to throw

the ball up at the same speed and angle with which it hit the ground (and
the same position, of course). Note that from Problem 5.3, the ball comes in
contact with the pipe at an angle cos θ = 2/3 from the top.

(b) The key is that the radius of curvature at the top of the parabolic projectile
motion must be at least r. (A parabola lies outside the circle that it “matches
up with” at a point.) The radius of curvature is determined by a⊥ = v2/r,
where a⊥ is the acceleration perpendicular to the direction of motion. But
a⊥ = g at the top. Therefore, we need v ≥ √

gr at the top. So you should
throw the ball sideways from the top with this speed, and then determine the
velocity and location where it hits the ground, and then reverse this motion to
throw it back up over the pipe. Conservation of energy gives the speed at the
ground as

1

2
mv2 =

1

2
m(gr) + mg(h + r) =⇒ v =

√
g(2h + 3r). (150)

5.49. Pendulum projectile

If the length of the string is `, then conservation of energy says that the speed when
the string is cut is v0 =

√
2g` cos θ. The standard projectile result gives the distance

as
2v2

0 sin θ cos θ

g
=

2(2g` cos θ) sin θ cos θ

g
. (151)

We therefore want to maximize the function f(θ) = sin θ cos2 θ. Setting the deriva-
tive equal to zero gives tan θ = 1/

√
2 =⇒ θ ≈ 35.3◦
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5.50. Centered projectile motion

The tension is zero at the top, so F = ma there gives mv2
t /R = mg =⇒ vt =

√
gR.

At an angle θ down from the top, conservation of energy gives

1

2
mv2 =

1

2
mv2

t + mgR(1− cos θ)

=⇒ v2 = (gR) + 2gR(1− cos θ) = gR(3− 2 cos θ). (152)

The time to reach the top of the projectile motion is t = v sin θ/g. The horizontal
distance traveled in this time is (v cos θ)t = v2 sin θ cos θ/g. We want this to equal
R sin θ, so

(
gR(3− 2 cos θ)

)
sin θ cos θ

g
= R sin θ =⇒ 2 cos2 θ − 3 cos θ + 1 = 0. (153)

Therefore, cos θ = 1/2 =⇒ θ = 60◦. (The cos θ = 1 root corresponds to the top
of the circle.) You can show that the maximum height is R/4 above the top of the
circle.

5.51. Beads on a hoop

Let N be the normal force from the hoop on each bead, with inward positive. Then
the radial F = ma equation is N+mg cos θ = mv2/R, where θ is the angle down from
the top. But conservation of energy gives v2 = 2gR(1−cos θ), so N = mg(2−3 cos θ).
Therefore, by Newton’s 3rd law, the bead pulls out on the hoop with a force N =
mg(2− 3 cos θ), which is positive if cos θ < 2/3. The total upward component of the
normal forces from the two beads is Fy = 2N cos θ = 2mg(2− 3 cos θ) cos θ. Setting
the derivative equal to zero to find the maximum gives cos θ = 1/3. Plugging this
back into Fy gives a maximum upward force of (2/3)mg. So the hoop will never rise
up if (2/3)mg ≤ Mg =⇒ m ≤ (3/2)M .

5.52. Stationary bowl

Let θ be the angle through which the particle has fallen. Then conservation of energy
gives v =

√
2gR sin θ. The radial F = ma equation is N −mg sin θ = mv2/R, with

positive N inward. So N = 3mg sin θ.

The vertical component of the particle’s force on the bowl is N sin θ = 3mg sin2 θ,
so the normal force between the bowl and the table is Nt = Mg + 3mg sin2 θ. The
horizontal component of the particle’s force on the bowl is N cos θ = 3mg sin θ cos θ.
The friction force must be equal to this if the bowl doesn’t slip. But the friction
force must be less than or equal to µNt = (1)Nt, so we have

3mg sin θ cos θ ≤ Mg + 3mg sin2 θ =⇒ 3m(sin θ cos θ − sin2 θ) ≤ M. (154)

This must be true for all θ, so we need to maximize the function f(θ) = sin θ cos θ−
sin2 θ to find the angle that is most likely to violate the inequality. Using the double-
angle formulas, this can be written as f(θ) = (sin 2θ + cos 2θ)/2− 1/2. Taking the
derivative, we see that the maximum occurs at tan 2θ = 1 =⇒ θ = 22.5◦. Plugging
this back into Eq. (154) gives

3m

(
1√
2
− 1

2

)
≤ M =⇒ m ≤ (2

√
2 + 2)M

3
≈ (1.61)M. (155)

5.53. Leaving the hemisphere

Assume that the particle slides off to the right. Let vx and vy be its horizontal
and vertical velocities, with rightward and downward taken to be positive, respec-
tively. Let Vx be the velocity of the hemisphere, with leftward taken to be positive.
Conservation of momentum gives

mvx = MVx =⇒ Vx =
(

m

M

)
vx. (156)
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Consider the moment when the particle is located at an angle θ down from the top
of the hemisphere. Locally, it is essentially on a plane inclined at angle θ, so the
three velocity components are related by

vy

vx + Vx
= tan θ =⇒ vy = tan θ

(
1 +

m

M

)
vx. (157)

To see why this is true, look at things in the frame of the hemisphere. In this
frame, the particle moves to the right with speed vx + Vx, and downward with
speed vy. Equation (157) represents the constraint that the particle remains on the
hemisphere, which is inclined at an angle θ at the given location.

We’ll now apply conservation of energy. In terms of θ, the particle has fallen a
distance R(1− cos θ), so conservation of energy gives

1

2
m(v2

x + v2
y) +

1

2
MV 2

x = mgR(1− cos θ). (158)

Using Eqs. (156) and (157), we can solve for v2
x to obtain

v2
x =

2gR(1− cos θ)

(1 + r)
(
1 + (1 + r) tan2 θ

) , where r ≡ m

M
. (159)

This function of θ starts at zero for θ = 0 and increases as θ increases. It then
achieves a maximum value before heading back down to zero at θ = π/2. However,
vx cannot actually decrease, because there is no force available to pull the particle
to the left. So what happens is that vx initially increases due to the nonzero normal
force that exists while contact remains. But then vx reaches its maximum, which
corresponds to the normal force going to zero and the particle losing contact with
the hemisphere. The particle then sails through the air with constant vx. Our goal,
then, is to find the angle θ for which the v2

x in Eq. (159) is maximum. Setting the
derivative equal to zero gives

0 =
(
1 + (1 + r) tan2 θ

)
sin θ − (1− cos θ)(1 + r)

2 tan θ

cos2 θ

=⇒ 0 =
(
1 + (1 + r) tan2 θ

)
cos3 θ − 2(1 + r)(1− cos θ)

=⇒ 0 = cos3 θ + (1 + r)(cos θ − cos3 θ)− 2(1 + r)(1− cos θ)

=⇒ 0 = r cos3 θ − 3(1 + r) cos θ + 2(1 + r). (160)

This is the desired equation that determines θ. It is a cubic equation, so in general
it can’t be solved easily for θ. But in the special case of r = 1, we have

0 = cos3 θ − 6 cos θ + 4. (161)

By inspection, cos θ = 2 is an (unphysical) solution, so we find

(cos θ − 2)(cos2 θ + 2 cos θ − 2) = 0. (162)

The physical root of the quadratic equation is

cos θ =
√

3− 1 ≈ 0.732 =⇒ θ ≈ 42.9◦. (163)

Remark: Let’s look at a few special cases of the r ≡ m/M value. In the limit r → 0 (in
other words, the hemisphere is essentially bolted down), Eq. (160) gives

cos θ = 2/3 =⇒ θ ≈ 48.2◦, (164)

in agreement with the result from Problem 5.3. In the limit r →∞, Eq. (160) reduces to

0 = cos3 θ − 3 cos θ + 2 =⇒ 0 = (cos θ − 1)2(cos θ + 2). (165)

Therefore, θ = 0. In other words, the hemisphere immediately gets squeezed out very fast
to the left.

For other values of r, we can solve Eq. (160) either by using the formula for the roots of
a cubic equation (very messy), or by simply doing things numerically. A few numerical
results are:
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r cos θ θ

0 .667 48.2◦
1/2 .706 45.1◦
1 .732 42.9◦
2 .767 39.9◦
10 .858 30.9◦
100 .947 18.8◦
1000 .982 10.8◦
∞ 1 0◦

5.54. Tetherball

Let ` and θ be the length of the string in the air and the angle it makes with the
pole, as functions of time. The two facts we will use to solve this problem are: (1)
the radial F = ma equation, and (2) the conservation of energy statement.

Approximating the motion at any time by a horizontal circle (of radius ` sin θ), we
see that since the vertical force applied by the string is mg, the horizontal force is
mg tan θ. Therefore, the radial F = ma equation is

mv2

` sin θ
= mg tan θ. (166)

Conservation of energy says that the change in kinetic plus the change in potential
is zero. We’ll write the change in kinetic simply as d(mv2/2) for now. We claim
that the change in potential is given by mg` sin θ dθ. This can be seen as follows.

Put a mark on the string a small distance d` down from the contact point with the
pole. After a short time, this mark will become the contact point. The height of
this mark will not change (to first order, at least) during this process. This is true
because initially the mark is a height d` cos θ below the initial contact point. And it
is still (to first order) this far below the initial contact point when the mark becomes
the contact point, because the angle is still very close to θ, so any errors will be of
order d` dθ.

The change in height of the ball relative to this mark (whose height is essentially
constant) is due to the ` − d` length of string in the air swinging up through an
angle dθ. Multiplying by sin θ to obtain the vertical component of this arc, we see
that the change in height is ((` − d`)dθ) sin θ. This equals ` sin θ dθ, to first order,
as we wanted to show. Therefore, conservation of energy gives

1

2
d(mv2) + mg` sin θ dθ = 0. (167)

We will now use Eqs. (166) and (167) to solve for ` in terms of θ. Substituting the
v2 from Eq. (166) into Eq. (167) gives

d(` sin θ tan θ) + 2` sin θ dθ = 0

=⇒ (d` sin θ tan θ + ` cos θ tan θ dθ + ` sin θ sec2 θ dθ) + 2` sin θ dθ = 0

=⇒ d`
sin2 θ

cos θ
+ 3` sin θ dθ + `

sin θ

cos2 θ
dθ = 0

=⇒
∫

d`

`
= −

∫
3 cos θ dθ

sin θ
−

∫
dθ

sin θ cos θ

=⇒ ln ` = −3 ln(sin θ) + ln
(

cos θ

sin θ

)
+ C

=⇒ ` = A
cos θ

sin4 θ
, where A = L

(
sin4 θ0

cos θ0

)
(168)

is determined by the initial condition, namely ` = L when θ = θ0. Note that this
result implies that θ = π/2 when the ball hits the pole (that is, when ` = 0).
Plugging this expression for ` back into Eq. (167) and integrating gives

∫
d(v2) = −2gA

∫
cos θ

sin3 θ
dθ. (169)
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Therefore,

∆(v2) =
gA

sin2 θ

∣∣∣
π/2

θ0

= gL

(
sin4 θ0

cos θ0

)(
1− 1

sin2 θ0

)
= −gL cos θ0 sin2 θ0. (170)

The initial speed is given by Eq. (166) with ` = L, so v2
i = gL sin2 θ0/ cos θ0. Hence,

v2
f = v2

i −∆(v2) = gL
sin2 θ0

cos θ0
− gL cos θ0 sin2 θ0

= gL sin2 θ0

(
1

cos θ0
− cos θ0

)

= gL
sin4 θ0

cos θ0
. (171)

Comparing this with v2
i = gL sin2 θ0/ cos θ0, we obtain

vf

vi
= sin θ0. (172)

5.55. Projectile between planets

If the planets’ centers are located at x = −2R and x = 2R, then the potential as a
function of x is

V (x) = − GmM

|x + 2R| −
GmM

|x− 2R| . (173)

Between the planets, the maximum V occurs at x = 0, where the value is V (0) =
−GmM/R. The value at x = R is V (R) = −(4/3)GmM/R. So the projectile
has to gain a potential of GmM/3R to make it over the “bump” in the middle.

Conservation of energy therefore gives mv2/2 = GmM/3R =⇒ v =
√

2GM/3R.

5.56. Spinning quickly

Consider a pebble on the planet’s surface. The radial F = ma equation is Fgrav−N =
mv2/R, where N is the normal force. We need N ≥ 0 in order for the planet to stay
together. Therefore, mv2/R ≤ Fgrav = GmM/R2. Hence

m(2πR/T )2

R
≤ Gm(4πR3ρ/3)

R2
=⇒

√
3π

Gρ
≤ T. (174)

Note that R doesn’t appear in this answer, so our pebble could actually be anywhere
in the planet. The planet will break apart everywhere if T is smaller than

√
3π/Gρ.

For the earth, ρ = 5500 kg/m3, and G = 6.67 · 10−11 m3/kg s2, so Tmin ≈ 5070 s ≈
84.5min. (This is also the period of a low-orbit satellite, because it has N = 0.)

5.57. A cone

(a) The force due to a little mass dm a distance x away from the tip has magnitude
Gm(dM)/x2. Consider a thin ring around the cone, located at a slant distance
x away from the tip. If we look at all the bits of mass in this ring, then the
horizontal components of their forces cancel from diametrically opposite points.
So we’re left with only the vertical components, which bring in a factor of cos θ.
So the total force due to the ring is Gm(Mring) cos θ/x2.

The mass of the ring is Mring = σ(2πr dx) = 2πσ(x sin θ) dx. Integrating over
all the rings from x = 0 to x = L gives a total force of

F =

∫ L

0

Gm(2πσx sin θ dx) cos θ

x2
= 2πσGm sin θ cos θ

∫ L

0

dx

x
. (175)

But this integral diverges, so the force is infinite.
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(b) This only difference is that now the integral starts at L/2 instead of zero. So
we have

F = 2πσGm sin θ cos θ

∫ L

L/2

dx

x
= 2πσGm sin θ cos θ (ln 2). (176)

Since sin θ cos θ = (1/2) sin 2θ, this force is maximized when 2θ = 90◦ =⇒ θ =
45◦.

5.58. Sphere and cones

(a) There is no change in speed inside the shell. The potential energy at the surface
of the shell is

V (R) = −GmM

R
= −Gm(4πR2σ)

R
= −4πGmRσ. (177)

Conservation of energy then gives 0 = mv2/2− 4πGmRσ =⇒ v =
√

8πGRσ.

(b) Let’s find the potential energy at the tip of the cones, due to one of the cones.
We’ll slice the cone into rings and then integrate. Consider a thin ring around
the cone, located at a slant distance x away from the tip. The radius r of the
ring is given by r/x = R/L =⇒ r = xR/L. So

dV = −Gm dM

x
= −Gm

(
2π(xR/L) dx σ

)

x
= −2πGm(R/L)σ dx. (178)

Integrating from x = 0 to x = L simply gives V = −2πGmRσ. We need to
double this because there are two cones, so we end up with the same potential
of −4πGmRσ as in part (a), which means that we obtain the same speed of
v =

√
8πGRσ, independent of L.

5.59. Ratio of potentials

In the first picture, the big square can be built up from four of the small ones (with
the mass at the corner of each), so A = 4.

In the second picture, consider a tiny patch of area in the small square. This
patch gives some contribution to the potential energy of m. Now consider the
corresponding patch in the big square. What is the contribution of this patch to the
potential energy of m? Well, the larger patch has four times the area (and hence
mass) as the smaller patch, because areas are proportional to lengths squared. But it
is also twice as far from m, compared with how far the smaller patch is from m in the
small square. So if the smaller patch contributes Gm(dM)/r to the potential in the
smaller square, then the larger patch contributes Gm(4dM)/2r to the potential in
the larger square. This is twice as much, and this relation holds for all corresponding
patches, so B = 2.

Putting the two pictures together then tells us that a mass at the center of a given
square has twice the (negative) potential that a mass at a corner of the same square
has.

5.60. Solar escape velocity

Let v0 ≈ 30 km/s be the orbital speed of the earth. Let the desired speed with respect

to the earth be v. The escape velocity from just the earth is ve =
√

2GMe/Re ≈
11.2 km/s. The escape velocity from the sun, starting at the location of the earth’s

orbit (but excluding the orbital motion of the earth), is vs =
√

2GMs/Res ≈
42 km/s, where Res is the earth-sun distance.

After the object has escaped the earth’s gravitational field, conservation of energy
gives the speed with respect to the earth as

√
v2 − 2GMe/Re =

√
v2 − v2

e . The
speed with respect to the sun at this point is then (assuming that the object is
wisely fired along the direction of the earth’s orbital motion)

√
v2 − v2

e + v0. By
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conservation of energy, this speed must equal (at least) the vs escape velocity from
the sun. So the desired velocity is given by

√
v2 − v2

e + v0 = vs =⇒ v =
√

v2
e + (vs − v0)2 ≈ 16.4 km/s. (179)

Remark: There is a common incorrect way to solve this problem: The object needs to

have mv2
e/2 energy to escape the earth, and then an additional mv2

s /2 energy to escape

the sun. The total initial energy (in the sun’s frame) is m(v + v0)2/2 (assuming that the

object is fired along the direction of the earth’s orbital motion), so apparently we need

m(v + v0)2/2 = mv2
e/2 + mv2

s /2 =⇒ v =
√

v2
e + v2

s − v0 ≈ 13.5 km/s. The error is

this reasoning is that in the frame of the sun (in which the earth is initially moving at

speed v0), the earth picks a non-negligible amount of energy, thereby invalidating the above

conservation of energy argument. When a small object “collides” with a large one (here,

the object is undergoing a “collision” with the earth via the gravitational force), the only

frame in which the large object picks up a negligible amount of energy is the frame in

which it is initially at rest (you can explicitly verify this for a standard one-dimensional

collision with masses m ¿ M). We tacitly used this fact in our two sub-reasonings in the

correct argument above (first with the earth, and then with the sun). For more discussion

on this problem, see Hendel, A. Z. (1983), “Solar escape,” American Journal of Physics,

51, 746-748. ♣
5.61. Spherical shell

(a) For 0 ≤ r ≤ R1, the force is zero. For R1 ≤ r ≤ R2, the force is F (r) =
−GmMr/r2, where Mr is the mass inside radius r. Mass is proportional to
volume, so Mr = M(r3 −R3

1)/(R3
2 −R3

1). Therefore,

F (r) = − GmM

R3
2 −R3

1

(
r − R3

1

r2

)
. (180)

For R2 ≤ r ≤ ∞, the force is simply F (r) = −GmM/r2. Note that these
three forms of F (r) agree at the transition points at R1 and R2, as they must.
A rough plot of F (r) is shown in Fig. 9. You can show that F (r) is indeed R1 R2

R2
2

F(r)

r

GmM_____

Figure 9
concave downward for R1 < r < R2 by calculating the second derivative.

(b) Assuming that V (∞) = 0, the potential energy at r = 0 is, with R2 = 2R1 ≡
2R,

V (0) = −
∫ 0

∞
F dr

=

∫ R2

∞

GmM

r2
dr +

∫ R1

R2

GmM

R3
2 −R3

1

(
r − R3

1

r2

)
dr +

∫ 0

R1

(0) dr

= −GmM

2R
+

GmM

(2R)3 −R3

(
r2

2
+

R3

r

)∣∣∣∣
R

2R

= −9GmM

14R
. (181)

Conservation of energy then gives the speed at the center via

mv2

2
− 9GmM

14R
= 0 =⇒ v =

√
9GM

7R
. (182)

5.62. Orbiting stick

The total force on the stick is
∫ 3R

R

−GM(ρ dr)

r2
= −2GMρ

3R
. (183)
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So Fnet = maCM gives

2GMρ

3R
=

(2Rρ)v2
CM

2R
=⇒ vCM =

√
2GM

3R
=⇒ T =

2π(2R)

vCM
= 2

√
6 π

√
R3

GM
.

(184)
For a point particle moving in a circle of radius 2R, F = ma gives

GmM

(2R)2
=

mv2

2R
=⇒ v =

√
GM

2R
=⇒ T =

2π(2R)

v
= 4

√
2 π

√
R3

GM
. (185)

So Tstick/Tpoint =
√

3/2.

5.63. Speedy travel

The gravitational force at radius r is, with Mr being the mass inside radius r,

Fg =
GmMr

r2
=

Gm(4πr3ρ/3)

r2
=

4

3
πGmρr. (186)

The component of this force along the tube is (see Fig. 10)

r
R

θ

x

Figure 10

Fg cos θ = Fg · x

r
=

4

3
πGmρx. (187)

So F = ma along the tube yields

ẍ = −
(

4πGρ

3

)
x =⇒ ω =

√
4πGρ

3
. (188)

So we have simple harmonic motion with frequency ω. The period is T = 2π/ω =√
3π/Gρ. For the earth, ρ = 5500 kg/m3, and G = 6.67 · 10−11 m3/kg s2, so T ≈

5070 s ≈ 84min. It therefore takes about 42 minutes to get to the other end,
independent of whether the other end is on the other side of the earth, or on the
other side of the room (neglecting many real-world effects, of course).

5.64. Mine shaft

(a) The gravitational force is GMrm/r2, where Mr is the mass inside your radius.
We want this increase as r decreases. Equivalently, we want it to decrease as
r increases. In other words,

d

dr

(
GMrm

r2

)
< 0 =⇒ r2 dMr

dr
−Mr(2r) < 0. (189)

Since your location is within the crust of the earth, we have dMr/dr = 4πr2ρc.
And Mr is essentially equal to (4/3)πr3ρavg, because the crust is thin compared
with the radius of the earth. So we have

r2(4πr2ρc)−
(

4

3
πr3ρavg

)
(2r) < 0 =⇒ ρc <

2

3
ρavg. (190)

(b) From Problem 5.13, the attractive force due to a large sheet is 2πσGm (which
happens to be independent of the distance from the sheet), where σ is the
density per unit area, which equals ρx here. Let the bottom of the sheet be
located at a radius R (assumed to be essentially equal to the radius of the
earth). Then the net downward force just below the sheet is larger than the
net downward force just above it if

GMm

R2
− 2π(ρx)Gm >

GMm

(R + x)2
+ 2π(ρx)Gm

=⇒ M

R2

(
1− 1

(1 + x/R)2

)
> 4πρx

=⇒
(

4

3
πR3ρavg

)
1

R2

(
2x

R

)
> 4πρx

=⇒ 2

3
ρavg > ρ, (191)
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where we have used 1/(1 + ε)2 ≈ (1 − ε)2 ≈ 1 − 2ε to go from the second to
third line.

(c) Since F ∝ Mr/r2, we want Mr ∝ r2. That is,

∫ r

0

4πx2ρ(x) dx ∝ r2, (192)

for any r up to the radius of the planet. This proportionality holds if ρ(x) ∝
1/x, so this is the desired form of ρ.

If we want to be more rigorous, we can set the derivative of the force equal to
zero, which gives

0 =
d

dr

(
Mr

r2

)

=⇒ 0 = r2 dMr

dr
−Mr(2r)

=⇒ 0 = r2
(
4πr2ρ(r)

)
−

(∫ r

0

4πx2ρ(x) dx

)
(2r)

=⇒ 0 = r3ρ(r)− 2

∫ r

0

x2ρ(x) dx. (193)

The left-hand side is a constant (which just happens to be zero), so we can set
the derivative with respect to r equal to zero again. This gives 3r2ρ + r3ρ′ −
2r2ρ = 0 =⇒ ρ = −rρ′. That is, ρ = −r(dρ/dr). Separating variables and
integrating yields ln ρ = − ln r + C =⇒ ρ = k/r, where k ≡ eC is a constant
of integration.

Alternatively, in the third line above, write Mr as Ar2 (where A is some
constant) instead of the integral shown. This quickly gives ρ(r) ∝ 1/r.

5.65. Space elevator

(a) F = ma gives

Gm(4πR3ρ/3)

r2
= mrω2 =⇒ η3 ≡

(
r

R

)3

=
4πGρ

3ω2
. (194)

Using ρ = 5500 kg/m3, ω = 2π/(1 day) = 7.3 · 10−5 s−1, and G = 6.67 ·
10−11 m3/kg s2, we obtain η ≈ 6.6.

(b) If σ is the rope’s mass density per unit length, the total force on it is

∫ η′R

R

GM(σ dr)

r2
=

GMσ

R

(
1− 1

η′

)
. (195)

So Fnet = maCM gives

G(4πR3ρ/3)σ

R

(
1− 1

η′

)
= mrCMω2 =

(
(η′ − 1)Rσ

)(
η′ + 1

2
R

)
ω2

=⇒ 8πGρ

3ω3
= η′2 + η′. (196)

as desired. Plugging in the various quantities and solving the quadratic equa-
tion gives η′ ≈ 23.5.

Note that if η = 1, then η′2 + η′ = 2 and so η′ = 1 also, which makes sense,
because the rope is essentially a point mass at the surface of the earth. If η is
large, then η′ ∝ η3/2 roughly.

The tension in the rope is maximum at r = ηR = (6.6)R, because from part
(a) this is the point where the atoms in the rope would happily move in a circle,
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without the need for forces from nearby atoms. The tension at this point is
what holds down all the rope above it and holds up all the rope below it. If
we move up a little bit, then the tension there doesn’t need to hold as much
rope down. And if we move down a little bit, then the tension there doesn’t
need to hold as much rope up.

5.66. Force from a straight wire

(a) Let x be the coordinate along the wire relative to the point on the wire closest
to m. We care only about the force components perpendicular to the wire
(the parallel ones cancel out), so this brings in a factor of `/

√
x2 + `2. The

attractive force from the wire therefore has magnitude

F =

∫ ∞

−∞

Gm(σ dx)

x2 + `2

(
`√

x2 + `2

)
. (197)

Letting x = ` tan θ (or you could just parameterize the wire in terms of θ to
begin with), a little algebra gives

F =
Gmσ

`

∫ π/2

−π/2

cos θ dθ =
2Gmσ

`
. (198)

(b) Potential energy is a scalar, so we don’t have to worry about components.
Adding up the potential due to all the bits of the wire gives

V = −
∫ ∞

−∞

Gm(σ dx)√
x2 + `2

. (199)

For large x, this goes like
∫

dx/x, which diverges. So let’s cut off the integral
at x = ±X. Letting y ≡ x/`, and looking up the integral, we have

VX = −
∫ X

−X

Gmσ dx

`
√

1 + (x/`)2
= −

∫ X/`

−X/`

Gmσ dy√
1 + y2

(200)

= −2Gmσ ln
(
y +

√
1 + y2

)∣∣∣
X/`

0

= −2Gmσ ln

(
X

`
+

√
1 +

X2

`2

)

≈ −2Gmσ ln
(

2X

`

)
−→ 2Gmσ ln

(
`

X

)
.

In the last step, we have noted that the “2” in the argument of the log simply
produces an additive constant in V , and is thus irrelevant (but we have kept
the X, because the argument of the log should be dimensionless). So we have

F = −dV

d`
= −2Gmσ

(
X

`

)
1

X
= −2Gmσ

`
, (201)

in agreement with part (a), where we found only the magnitude of F .

5.67. Maximal gravity

Assume that the material has been shaped and positioned so that the field at P is
maximum. Let this field point in the x direction. The key to this problem is to
realize that all the small elements of mass dm on the surface of the material must
give equal contributions to the x component of the field at P . If this were not the
case, then we could simply move a tiny piece of the material from one point on
the surface to another, thereby increasing the field at P , in contradiction to our
assumption that the field at P is maximum.
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Label the points on the surface by their distance r from P , and by the angle θ
that the line of this distance subtends with the x axis. Then a small mass dm on
the surface provides an x component of the gravitational field (force per unit mass)
equal to

Fx =
G dm

r2
cos θ. (202)

Since we want this contribution to not depend on the location of the mass dm on
the surface, we must have r2 ∝ cos θ. The surface may therefore be described by
the equation,

r2 = a2 cos θ, (203)

where the constant a2 depends on the volume of the material.

Equation (203) gives the general form of the desired shape, but let’s see exactly what
it looks like. It exhibits cylindrical symmetry around the x axis, so let’s consider
a cross section in the x-y plane. In terms of x and y (with x2 + y2 = r2 and
cos θ = x/r), Eq. (203) becomes

r3 = a2x =⇒ r2 = a4/3x2/3 =⇒ y2 = a4/3x2/3 − x2. (204)

To get a sense of what shape this curve takes, note that dy/dx = ∞ at both x = 0
and x = a (the point on the surface furthest from P ). So the surface is smooth and
has no cusps. We can calculate the volume in terms of a, and we find

V =

∫ a

0

πy2 dx =

∫ a

0

π(a4/3x2/3 − x2) dx =
4π

15
a3. (205)

Since the diameter of a sphere of volume V is (6V/π)1/3, we see that a sphere with
the same volume would have a diameter of (8/5)1/3a ≈ 1.17a. Hence, our shape
is squashed by a factor of (5/8)1/3 ≈ 0.85 along the x direction, compared with a
sphere of the same volume.

We may also calculate the maximum height in the y direction. You can show that
it occurs at x = 3−3/4a ≈ 0.44a and has a value of 2(4/27)1/4a ≈ 1.24a. Hence, our
shape is stretched by a factor of 2(4/27)1/4/(8/5)1/3 ≈ 1.24/1.17 ≈ 1.06 in the y
direction, compared with a sphere of the same volume. Cross sections of our shape
and a sphere with the same volume are shown in Fig. 11.

d

d = 1.17 a

0.85 d = a

1.06 d = 1.24 a P

Figure 11

5.68. Maximum P and E of rocket

The speed as a function of mass m is v = u ln(M/m) = −u ln(m/M). The momen-
tum is therefore p = −mu ln(m/M). Taking the derivative with respect to m, we
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see that the maximum occurs at ln(m/M) = −1 =⇒ m = M/e. The maximum
momentum is Mu/e.

The energy is (1/2)mu2 ln2(m/M). Taking the derivative with respect to m, we
see that the maximum occurs at ln(m/M) = −2 =⇒ m = M/e2. The maximum
energy is 2Mu2/e2. Note that the maximum energy occurs at a later time than the
maximum momentum. This is because the velocity matters more in mv2/2 than it
does in mv, so it is worth it to lose some mass (up to a point) if it means increasing
the velocity.

5.69. Speedy rockets

The strategy is to simply put a little rocket on top of the first one. Then the final
speed of the little rocket is the sum of the u ln 10 limits for each rocket, which gives
2u ln 10. This is the same as having one rocket with a fuel-to-container ratio of 99,
which is huge. The point of using these “stages” is that if you ditch the container
of the big rocket after its fuel is used up, then the little rocket doesn’t have to keep
accelerating it.

5.70. Snow on a sled, quantitative

(a) Because you sweep the snow off, the mass of the sled is always M (plus perhaps
the mass of a new snowflake before it is swept). Sweeping the snow in the stated
manner doesn’t change v, so we just need to see what happens when snow hits
the sled. By conservation of momentum, Mv = (M +σ dt)(v+dv) =⇒ σv dt =
−M dv, to first order. Therefore,

− σ

M

∫ t

0

dt =

∫ v

V0

dv

v
=⇒ − σt

M
= ln

(
v

V0

)
=⇒ v(t) = V0e

−σt/M . (206)

(b) By conservation of momentum, the speed is always v = V0, because the change
in the snow’s momentum is zero; it starts at rest and ends at rest, at least
along the direction of the sled’s motion.

(c) The mass of the sled at time t is M + σt, so conservation of momentum gives

MV0 = (M + σt)v =⇒ v =
V0

1 + σt
M

. (207)

As we saw in Section 5.5.1, (b) is the fastest, and (a) is the slowest because it
decreases exponentially with t, whereas (c) decreases only like 1/t.

5.71. Leaky bucket

(a) The given rate of leaking implies that the mass of the bucket at time t is
m = M(1− bt), for t ≤ 1/b. Therefore, F = ma gives −T = M(1− bt)(dv/dt).
Separating variables and integrating gives

−T

M

∫ t

0

dt

1− bt
=

∫ v

0

dv =⇒ v(t) =
T

bM
ln(1− bt). (208)

This equation is valid for t < 1/b, provided that the bucket hasn’t hit the wall
yet. Integrating v(t) to obtain x(t) gives (using

∫
ln y = y ln y − y)

x(t) = L− T

b2M
− T

b2M

(
(1− bt) ln(1− bt)− (1− bt)

)
, (209)

where the constant of integration has been chosen so that x = L when t = 0.

(b) The mass at time t is m = M(1 − bt). Using Eq. (208), the kinetic energy at
time t is (with z ≡ 1− bt)

E =
1

2
mv2 =

1

2
(Mz)

(
T

bM
ln z

)2

=
T 2

2b2M
z ln2 z. (210)
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Taking the derivative to find the maximum, we obtain

z =
1

e2
=⇒ Emax =

2T 2

e2b2M
. (211)

(c) The mass at time t is m = M(1− bt). Using Eq. (208), the momentum at time
t is (with z ≡ 1− bt)

p = mv = (Mz)
(

T

bM
ln z

)
=

T

b
z ln z. (212)

Taking the derivative to find the maximum magnitude, we obtain

z =
1

e
=⇒ |p|max =

T

eb
. (213)

(d) We want x = 0 when m = M(1 − bt) becomes zero. So we want x = 0 when
t = 1/b. Equation (209) then gives

0 = L− T

b2M
=⇒ b =

√
T

ML
. (214)

Remark: This is the only combination of M , T , and L that has the units of b,

namely t−1. But we needed to do the calculation to show that the numerical factor

is 1. Intuitively, this special value of b should increase with T and decrease with L.

The dependence on M is not as obvious, because if M is increased, then on one hand

more mass needs to be leaked, but on the other hand there is more time to do the

leaking, because the acceleration is smaller. But if b increases with T then it must

decrease with M , from dimensional analysis. ♣

5.72. Throwing a brick

Let V be the initial speed. Then the standard projectile result for the horizontal
distance traveled in the air is

dair =
2V 2 sin θ cos θ

g
. (215)

To find the distance traveled along the ground, we must determine the horizontal
speed just after the impact has occurred. The normal force N from the ground
is what reduces the vertical speed from V sin θ to zero during the impact. So we
have

∫
N dt = mV sin θ, where the integral runs over the time of the impact. But

this normal force (when multiplied by µ to give the horizontal friction force) also
produces a sudden decrease in the horizontal speed during the time of the impact.
So we have

m∆vx = −
∫

(µN) dt = −µmV sin θ =⇒ ∆vx = −µV sin θ. (216)

(We have neglected the effect of the mg gravitational force during the short time of
the impact, because it is much smaller than the N impulsive force.) Therefore, the
brick begins its sliding motion with a speed equal to

v = V cos θ − µV sin θ. (217)

Note that this is true only if tan θ ≤ 1/µ. If θ is larger than this, then the horizontal
speed simply becomes zero, and the brick moves no farther.

The friction force from this point on is µmg, so the acceleration is a = −µg. The
distance traveled along the ground before coming to rest is the usual v2/2a (which
you can derive), which gives

dground =
(V cos θ − µV sin θ)2

2µg
. (218)
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We want to find the angle that maximizes the total distance, dtotal = dair + dground.
From Eqs. (215) and (218) we have

dtotal =
V 2

2µg

(
4µ sin θ cos θ + (cos θ − µ sin θ)2

)

=
V 2

2µg
(cos θ + µ sin θ)2. (219)

Taking the derivative with respect to θ, we see that the maximum total distance is
achieved when

tan θ = µ. (220)

But the above analysis is valid only if tan θ ≤ 1/µ (from the comment after Eq.
(217)). We therefore see that if:

• µ ≤ 1, then the optimal angle is given by tan θ = µ. The brick continues
to slide after the impact. From Eq. (219) the maximum distance is dtotal =
(1 + µ2)V 2/(2µg).

• µ > 1, then the optimal angle is θ = 45◦. The brick stops during the impact,
and θ = 45◦ gives the maximum value for the dair expression in Eq. (215),
which is V 2/g.

Technically, to be rigorous: the maximum occurs either (1) at tan θ = µ, or (2) at
the boundary of the region of validity, namely tan θ = 1/µ, or (3) at the maximum
of dair in the case of tan θ > 1/µ, for which the brick stops when it hits the ground.
You can show that this gives the above two results.

5.73. A 1-D collision

(a) Let the final lab-frame velocities be v2 and v1. We have two equations in two
unknowns:

Conservation of p : (2m)v −mv = (2m)v2 + mv1, (221)

Conservation of E :
1

2
(2m)v2 +

1

2
mv2 =

1

2
(2m)v2

2 +
1

2
mv2

1 .

Solving for v1 in the first equation and substituting into the second gives a
quadratic equation in v2 with the solution v2 = −v/3 (and also the trivial
solution v2 = v). Either equation then gives v1 = 5v/3.

Alternatively, you can use the linear “relative velocity” statement (Theorem
5.3), v2 − v1 = −(v − (−v)), instead of the quadratic energy statement.

(b) The velocity of the CM is vCM = (2mv −mv)/(3m) = v/3. So the velocities
of 2m and m in the CM frame are v − (v/3) = 2v/3 and −v − (v/3) =
−4v/3, respectively. These velocities simply reverse signs during the collision,
to become −2v/3 and 4v/3. Adding on the velocity of the CM to get back
to the lab frame gives velocities of v2 = −2v/3 + v/3 = −v/3 and v1 =
4v/3 + v/3 = 5v/3, in agreement with part (a).

5.74. Perpendicular vectors

If v is the initial velocity of m, then conservation of momentum and energy give

mv = mv1 + 2mv2,

1

2
m(v · v) =

1

2
m(v1 · v1) +

1

2
2m(v2 · v2). (222)

Substituting the v from the first equation into the second gives

(v1 + 2v2) · (v1 + 2v2) = v1 · v1 + 2v2 · v2

=⇒ v1 · v1 + 4v1 · v2 + 4v2 · v2 = v1 · v1 + 2v2 · v2

=⇒ v2 · (2v1 + v2) = 0. (223)
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In other words, v2 is perpendicular to 2v1 + v2 (or 2v1 + v2 = 0, if the collision is
1-D).

5.75. Three pool balls

The two right balls come out at 30◦ angles with respect to the direction of the initial
motion (that is, they come out along the lines joining their centers to the center of
the left ball). Let their speeds be v2, and let the velocity of the left ball be v1, with
positive directed to the right. Then conservation of E and px give

1

2
mv2 =

1

2
mv2

1 + 2 · 1

2
mv2

2 , and mv = mv1 + 2 ·mv2

√
3

2
. (224)

Solving this system of equations gives v1 = −v/5 and v2 = (2
√

3/5)v (in addition
to the solution consisting of the initial values). So the middle ball actually bounces
back to the left.

5.76. Seven pool balls

After the first collision, ball A moves at a 30◦ angle above rightward, so from the
example in Section 5.7.2, the middle ball moves at a 60◦ angle below rightward,
with speed v sin 30◦. But this means that it is now heading directly between balls
B and C, so we have exactly the same situation as at the start, except that now the
speed of the middle ball is decreased by a factor of sin 30◦ = 1/2. We can continue
this process for all six collisions, so after the middle ball collides with ball F , it (the
middle ball) comes out heading directly to the right with speed v(1/2)6 = v/64.

5.77. Midair collision

From the example in Section 5.7.2, if the ball is deflected upward at an angle θ, then
its speed right after the collision is v0 = v cos θ. So the standard expression for the
range of projectile motion gives

d =
2v2

0 sin θ cos θ

g
=

2(v cos θ)2 sin θ cos θ

g
=

2v2 sin θ cos3 θ

g
. (225)

Taking the derivative of this to find maximum gives tan θ = 1/
√

3 =⇒ θ = 30◦.
This yields dmax = 3

√
3v2/8g, which is about 65% of the v2/g result for a ball simply

thrown with speed v at a 45◦ angle.

5.78. Maximum number of collisions

In an elastic collision between identical balls, the velocities of the balls simply switch.
You can show this by using conservation of energy and momentum, or you can just
note that this final setup does indeed satisfy conservation of energy and momentum
with the initial conditions, so it must be what happens. This switching means that
the balls effectively just pass through each other.

So an equivalent question is: If N balls are constrained to move on N parallel tracks
(one ball on each track), what is the maximum number of times that the balls can
pass each other? If the velocities are arranged properly (the velocity of each ball
needs to be greater than the velocity of any ball to the right of it), then each ball
can pass every other ball. So the answer is simply the number of pairs among N
balls, which is

(
N
2

)
= N(N − 1)/2.

5.79. Triangular room

The ball bounces off the wall at the same angle at which it hits the wall, so if we
“reflect” the room across the wall, then it’s just like the ball passes through the wall
in a straight line. And then when it reaches the other wall, we can reflect the room
across that wall, so the ball effectively continues in a straight line through that wall,
and so on. So we have the setup shown in Fig. 12. If the ball bounces n times, then

θθ
θ θ/2

θ/2

Figure 12

from the figure we see that θ/2 + (n − 1)θ < 180◦, but θ/2 + nθ ≥ 180◦. These
inequalities can be rewritten as n < 180◦/θ +1/2 and n ≥ 180◦/θ− 1/2. So n is the
greatest integer less than 180◦/θ + 1/2 (or equivalently, the smallest integer greater
than or equal to 180◦/θ − 1/2).
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5.80. Equal angles

(a) Let the final speed of 2m be v. Then conservation of py says that the speed of
m must be 2v. Conservation of energy gives

1

2
(2m)v2

0 =
1

2
(2m)v2 +

1

2
(m)(2v)2 =⇒ v =

v0√
3

. (226)

Conservation of px then gives

(2m)v0 = [(2m)v + m(2v)] cos θ =⇒ (2m)v0 = 4m

(
v0√
3

)
cos θ

=⇒ cos θ =

√
3

2
=⇒ θ = 30◦.

(227)

(b) From conservation of py, the speed of m is now nv. So conservation of energy
gives

1

2
(nm)v2

0 =
1

2
(nm)v2 +

1

2
(m)(nv)2 =⇒ v =

v0√
n + 1

. (228)

Conservation of px then gives

(nm)v0 = [(nm)v + m(nv)] cos θ =⇒ (nm)v0 = 2nm

(
v0√
n + 1

)
cos θ

=⇒ cos θ =

√
n + 1

2
. (229)

We need cos θ < 1. Therefore, we must have n < 3. (For n = 3, both masses
move directly forward, which technically satisfies the “equal angle” condition,
with θ = 0. But a head-collision for any n > 1 will result in equal angles of
θ = 0, so this case isn’t so exciting.) Interestingly, if n ≈ 0, then θ ≈ 60◦.

5.81. Right angle in billiards

If v is the initial speed of the ball in the lab frame, then in the CM frame both
balls head toward each other with speed v/2. The collision in the CM frame simply
changes the direction of the balls’ velocities; the speeds stay the same. So the final
velocities in the CM frame look like those shown in Fig.13, where θ can be any angle.

θ

θ

v/2

v/2

CM frame

velocities

Figure 13

To shift back to the lab frame, we need to add on the velocity of the CM, which is
v/2 to the right. So the final velocities in the lab frame are shown in Fig.14. Because

θ

v/2

v/2

v/2

A

V
CM

B

lab frame

velocities

CM frame

velocities

Figure 14

of the three equal v/2 lengths in the figure, we can draw a circle as shown. The
angle between the lab-frame velocities is therefore 90◦, because the line connecting
points A and B is a diameter.

5.82. Equal vx’s

Lab frame: Conservation of px yields vx = v/(n+1) for both masses. Conservation
of py says that if mass nm has a y speed of vy, then mass m has a y speed of nvy

in the opposite direction. So conservation of energy gives

1

2
mv2 =

1

2
m

((
v

n + 1

)2

+ (nvy)2
)

+
1

2
(nm)

((
v

n + 1

)2

+ v2
y

)
. (230)

Solving for vy gives vy = v/(n + 1). But this is the same as vx, so the mass nm
comes off at a 45◦ angle, independent of n.

CM frame: The vx’s in the CM frame must be equal, because they both differ
from the vx’s in the lab frame (which we are assuming are equal) by vCM. But
in the CM frame the velocities point in opposite directions. Therefore, vx = 0 for
both masses in the CM frame. So both masses come out along the (plus or minus)
y axis in the CM frame. The speed of the CM with respect to the lab frame is
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vCM = v/(n+1). This is therefore the initial vx speed (and hence the final vy speed,
because the collision doesn’t change the speeds of the masses in the CM frame) of
the mass nm in the CM frame. Shifting back to the lab frame by adding on vCM,
we see that mass nm has vx = vy = v/(n + 1), so it comes off at a 45◦ angle.

5.83. Maximum vy

The vy speeds of the masses in the CM frame are the same as what they are in the lab
frame. So we equivalently want to maximum the vy of m in the CM frame. But since
the initial and final speeds of m in the CM frame are fixed (namely, Mv/(M + m)),
the only thing we have the freedom to vary is the angle of m’s final velocity. So vy

is clearly maximized when the velocity points in the y direction in the CM frame.
But then we have exactly the same situation as in Exercise 5.82, so m comes off at
θ = 45◦, independent of the ratio M/m.

5.84. Bouncing between rings

Let v be the speed right after a bounce. The projectile motion must cover a hori-
zontal distance of 2R(1−cos θ) between bounces, so equating this with the standard
result for the projectile range gives

2v2 sin θ cos θ

g
= 2R(1− cos θ) =⇒ v2 =

gR(1− cos θ)

sin θ cos θ
(231)

=⇒ vx = v cos θ =

√
gR cos θ(1− cos θ)

sin θ
.

Note that vx goes to zero for both θ → 0 (using the small-angle approximations for
sin and cos) and θ → 90◦. So it must reach a maximum somewhere in between.
∆px = 2mvx, so to maximize ∆px we want to maximize vx. Setting the derivative
equal to zero (and using sin2 θ = 1−cos2 θ) yields cos3 θ−2 cos θ+1 = 0. Fortunately,
this cubic has the obvious root of cos θ = 1. The other physical root is cos θ =
(−1 +

√
5)/2. The root of 1 is not the one we want, because vx → 0 for θ → 0. So

the maximum occurs at

cos θ =
−1 +

√
5

2
=⇒ θ ≈ 51.8◦. (232)

5.85. Bouncing between surfaces

This question is equivalent to: For what f(x) is the vx right after a bounce inde-
pendent of x0? If we look at a contact point on the right half of the curve, we see
that

vx

vy
= −f ′(x0). (233)

The displacement to the following bounce at −x0 is −2x0 = vxt = vx(2vy/g).
Therefore,

vxvy = −gx0. (234)

Multiplying the previous two equations gives

vx = −
√

gx0f ′(x0), (235)

where we have picked the negative root because we’re dealing with the right half of
the curve. For vx to be independent of x0 we must have

f ′(x) ∝ 1

x
=⇒

∫
df ∝

∫
dx

x
=⇒ f(x) = a ln(x) + b, (236)

where a and b are arbitrary constants (with a > 0). The curve therefore takes a log
shape. This means that it goes to −∞ for x → 0, so it doesn’t look like the curve
shown in the statement of the problem.
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5.86. Drag force on a sphere

Consider a particle that makes contact with the sphere at an angle θ with respect to
the line of motion. In the frame of the heavy sphere (see Fig. 15), the particle comes

sphere frame

θ

θ
θ

V

V

Figure 15

in with velocity −V and then bounces off with a horizontal velocity component of
V cos 2θ. So in this frame (and hence also in the lab frame), the particle increases
its horizontal momentum by mV (1 + cos 2θ). The sphere must therefore lose this
momentum.

The area on the sphere that lies between θ and θ + dθ (which is a vertical ring
of radius R sin θ) sweeps out volume at a rate V (2πR sin θ)(R dθ) cos θ. The cos θ
factor here gives the projection orthogonal to the direction of motion. The force on
the sphere (that is, the rate of change in momentum) is therefore

F =

∫ π/2

0

n(2V πR2 sin θ cos θ) ·mV (1 + cos 2θ) dθ

= 2πnmR2V 2

∫ π/2

0

sin θ cos θ(1 + cos 2θ) dθ

= 2πnmR2V 2

∫ π/2

0

(
sin 2θ

2
+

sin 4θ

4

)
dθ

= 2πnmR2V 2
(
−cos 2θ

4
− cos 4θ

16

) ∣∣∣∣
π/2

0

= πnmR2V 2 ≡ πρR2V 2, (237)

where ρ is the mass density per unit volume. Note that the average force per cross-
sectional area, F/(πR2), equals ρV 2. This is smaller than the results for the sheet
and cylinder in Problems 5.21 and 5.22 as it should be, because the particles bounce
off in a more sideways manner from the sphere.

5.87. Balls in a semicircle

(a) Let µ ≡ M/N be the mass of each ball in the semicircle. We need the deflection
angle in each collision to be θ = π/N . However, if the ratio µ/m is too small,
then this angle of deflection is not possible. From Problem 5.24, the maximal
angle of deflection in each collision is given by sin θ = µ/m. Since we want
θ = π/N here, the sin θ ≤ µ/m condition becomes (using sin θ ≈ θ)

θ ≤ µ

m
=⇒ π

N
≤ M/N

m
=⇒ π ≤ M

m
. (238)

(b) Referring to the solution to Problem 5.24, we see that m’s speed after the first
bounce is obtained from Fig. 16. From the right triangle, the speed after the

mV
m+µ

µV

m+µ

____

____V

θmax

f

Figure 16
bounce is

Vf = V

√
m2 − µ2

m + µ
. (239)

To first order in the small quantity µ/m, this equals

Vf ≈ mV

m + µ
≈ V

(
1− µ

m

)
. (240)

The same reasoning holds for each successive bounce, so the speed decreases
by a factor of (1− µ/m) after each bounce. In the minimum M/m case found
in part (a), we have

µ

m
=

M/N

m
=

(πm)/m

N
=

π

N
. (241)

Therefore, the ratio of m’s final speed to initial speed is

Vfinal

Vinitial
≈

(
1− π

N

)N

≈ e−π. (242)
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This is a nice result, if there ever was one! Since e−π is roughly equal to 1/23,
only about 4% of the initial speed remains.

5.88. Block and bouncing ball

(a) Consider one of the collisions. Let it occur at a distance ` from the wall, and
let v and V be the speeds of the ball and block, respectively, after the collision.
We claim that the quantity `(v − V ) is invariant. That is, it is the same for
each collision. This can be seen as follows.

The time to the next collision is given by V t + vt = 2` (because the sum of
the distances traveled by the two objects is 2`). Therefore, the next collision
occurs at a distance `′ from the wall, where

`′ = `− V t = `− 2`V

V + v
=

`(v − V )

v + V
. (243)

Therefore,

`′(v + V ) = `(v − V ). (244)

We will now make use of the fact that in an elastic collision, the relative speed
before the collision equals the relative speed after the collision (Theorem 5.3).
The relative speed before the next collision is v+V (toward each other), because
m still has speed v after the bounce off the wall. And if v′ and V ′ are the speeds
after the next collision, then the relative speed after the next collision is v′−V ′

(away from each other). Therefore, v + V = v′ − V ′. Using this in Eq. (244)
gives

`′(v′ − V ′) = `(v − V ), (245)

as we wanted to show.

What is the value of this invariant? After the first collision, the block continues
to move at speed V0, up to corrections of order m/M . And the ball acquires a
speed of 2V0, up to corrections of order m/M . (This can be seen by working
in the frame of the heavy block, or equivalently by using v + V = v′− V ′ with
V ′ ≈ V = V0 and v = 0.) Therefore, the invariant `(v− V ) is essentially equal
to L(2V0 − V0) = LV0.

Let Lmin be the closest distance to the wall. When the block reaches this
closest point, its speed is (essentially) zero. Hence, all of the initial kinetic

energy of the block now belongs to the ball. Therefore, v = V0

√
M/m, and

our invariant tells us that LV0 = Lmin(V0

√
M/m− 0). Thus,

Lmin = L

√
m

M
. (246)

(b) (This solution is due to Slava Zhukov) With the same notation as in part (a),
conservation of momentum in a given collision gives

MV −mv = MV ′ + mv′. (247)

This equation, along with the v + V = v′ − V ′ equation from Theorem 5.3,1

allows us to solve for V ′ and v′ in terms of V and v. The result, in matrix
form, is (

V ′

v′

)
=

(
M−m
M+m

−2m
M+m

2M
M+m

M−m
M+m

)(
V
v

)
. (248)

1Alternatively, you can use conservation of energy, but that is a quadratic statement in the
velocities, which makes things messy.
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The eigenvectors and eigenvalues of this transformation are

A1 =

(
1

−i
√

M
m

)
, λ1 =

(M −m) + 2i
√

Mm

M + m
≡ eiθ,

A2 =

(
1

i
√

M
m

)
, λ2 =

(M −m)− 2i
√

Mm

M + m
≡ e−iθ,

(249)

where

θ ≡ arctan

(
2
√

Mm

M −m

)
≈ 2

√
m

M
. (250)

The initial conditions are(
V
v

)
=

(
V0

0

)
=

V0

2
(A1 + A2). (251)

Therefore, the speeds after the nth bounce are given by
(

Vn

vn

)
=

V0

2
(λn

1 A1 + λn
2 A2)

=
V0

2

(
einθ

(
1

−i
√

M
m

)
+ e−inθ

(
1

i
√

M
m

))

= V0

(
cos nθ√
M
m

sin nθ

)
. (252)

As a double check, these speeds do indeed result in conservation of energy, as
you can verify.

Let the block reach its closest approach to the wall on the Nth bounce. Then
VN = 0, so Eq. (252) tells us that Nθ = π/2. Using the definition of θ from
Eq. (250), the relation N = (π/2)/θ becomes

N =
π/2

arctan 2
√

Mm
M−m

≈ π

4

√
M

m
. (253)

Remark: This solution is exact, up to the second line in Eq. (253), where we finally
used M À m. We can use the first line of Eq. (253) to determine the relation
between m and M for which the Nth bounce leaves the block exactly at rest at its
closest approach to the wall. For this to happen, we need the N in Eq. (253) to be
an integer. Letting m/M ≡ r, we can rewrite the first line in Eq. (253) as

2
√

r

1− r
= tan

π

2N
. (254)

With α ≡ π/2N , this becomes

2
√

r

1− r
=

√
1− cos2 α

cos α
. (255)

Squaring both sides and solving the resulting quadratic equation for r gives

r =
1− cos α

1 + cos α
. (256)

(The other root is the inverse of this, but we need r < 1.) If we want the block to

come to rest after N = 1 bounce, then α = π/2 gives r = 1, which is correct. If we

want N = 2, then α = π/4 gives r = 3 − 2
√

2 ≈ 0.172. If we want N = 3, then

α = π/6 gives r = 7 − 4
√

3 ≈ 0.072. For large N , we can use cos α ≈ 1 − α2/2 to

obtain r ≈ π2/(16N2). This also follows immediately from the second line in Eq.

(253). ♣
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5.89. Slowing down, speeding up

By conservation of momentum, the speed of the plate-plus-mass system after the
collision is Mv/(M + m). So the energy required to bring this mass of M + m back
up to speed v is

1

2
(M + m)

(
v2 −

(
Mv

M + m

)2
)

=
m(2M + m)v2

2(M + m)
. (257)

For M À m, this reduces to mv2. Naively, you might think that an energy of only
mv2/2 would be required to bring the system back up to speed v, because you might
think that you effectively just need to give m a speed v. And indeed, if you had
first given m a sideways speed of v (which would require an energy of mv2/2), and
then released it right over M , it would happily join up with M , and both would sail
along at speed v. So in this scenario an energy of only mv2/2 would be required.
But the point is that if you drop the ball vertically, as stated in the problem, then
there is an inevitable generation of mv2/2 worth of heat by the time m comes to rest
with respect to M . (This is most easily seen in the frame of the heavy M , where
the initial mv2/2 kinetic energy of m is all converted into heat by the time it comes
to rest on M .) Therefore, since mv2/2 of energy is converted from “mechanical”
energy into heat, we need to add this much extra energy back into the system. The
total necessary energy is therefore mv2/2 + mv2/2 = mv2.

Also, in the limit m À M , Eq. (257) reduces to mv2/2, which makes sense, because
we essentially just have to bring m up to speed v.

5.90. Pulling a chain back

Let x be the distance your hand has moved. Then only x/2 of the chain is moving,
due to the “doubling up” effect. The speed of this part of the chain is the same as
the speed of your hand, which is ẋ. So the momentum of the chain is p = (σx/2)ẋ.
Therefore, your force is

F =
dp

dt
=

σ

2
(ẋ2 + xẍ). (258)

At the instant before the chain is straightened out, we have x = 2L. So the general
kinematic relation v =

√
2ad gives ẋ = 2

√
aL. Hence,

F =
σ

2

(
(4aL) + (2L)a

)
= 3σLa. (259)

Once the chain is straightened out, we simply have F = ma = σLa. So your force
abruptly drops by a factor of 3 right when the chain straightens out.

5.91. Falling chain

First solution: At time t, the distance the heap has fallen is gt2/2. Therefore,
the length left in the heap is L − gt2/2. The heap is moving with speed gt, so its
momentum is p = σ(L− gt2/2)(−gt), with upward taken to be positive. This is the
momentum of the entire chain, because only the heap is moving, of course.

The net force on the entire chain is Fhand − σLg, so F = dp/dt gives

Fhand − σLg =
d

dt
(−σLgt + σg2t3/2) = −σLg + (3/2)σg2t2. (260)

Therefore, Fhand = (3/2)σg2t2. This holds until the chain straightens out at gt2/2 =

L =⇒ t =
√

2L/g, at which point Fhand abruptly drops from 3σLg to σLg.

Second solution: Fhand is responsible for holding up the straight part, which
weighs σ(gt2/2)g, and also for stopping the atoms that join the straight part. In
a time dt, a mass of dm = σ dx = σv dt joins the straight part. This mass had
momentum p = (σv dt)v downward, and then it comes to rest, so dp = +σv2 dt.
Hence, dp/dt = σv2 = σ(gt)2. This much additional force must be supplied by your
hand, so the total force you apply is Fhand = σ(gt2/2)g + σ(gt)2 = (3/2)σg2t2.
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5.92. Pulling a chain down

Let x be the length of chain that you have pulled down. Then the momentum of the
chain is p = (σx)ẋ, with downward taken to be positive. So dp/dt = σ(ẋ2 + xẍ). If
Fh is the downward force your hand applies, then the net force on the moving part
of the chain is Fh + σxg downward. Therefore, F = dp/dt on the moving part gives
(using x = at2/2)

Fh + σxg = σẋ2 + σxẍ

=⇒ Fh = σ(at)2 + σ(at2/2)a− σ(at2/2)g

=⇒ Fh = (σat2/2)(3a− g). (261)

If a = g/3, then Fh = 0.

5.93. Raising a chain

Let y be the height of the top of the chain, and let F (y) be the desired force applied
by your hand. Consider the moving part of the chain. The net force on this part is
F − (σy)g, with upward taken to be positive. The momentum is (σy)ẏ. Equating
the net force on the moving part with the rate of change in its momentum gives2

F − σyg =
d(σyẏ)

dt

= σyÿ + σẏ2. (262)

But ÿ = 0, and ẏ = v. Therefore,

F = σyg + σv2. (263)

The work that you do is the integral of this force from y = 0 to y = L. Since v is
constant, we have

W =

∫ L

0

(σyg + σv2) dy =
σL2g

2
+ σLv2. (264)

The final potential energy of the chain is (σL)g(L/2), because the center of mass is
raised by a distance L/2. This equals the first term in Eq. (264). The final kinetic
energy is (σL)v2/2. This accounts for half of the last term. The missing energy,
(σL)v2/2, is converted into heat.

5.94. Downhill dustpan

The mass of the dustpan (plus dust) is essentially σx, where x is the distance
traveled down the plane. The momentum of the dustpan is p = (σx)ẋ =⇒ dp/dt =
σ(ẋ2 +xẍ). The force on the dustpan along the plane is F = (σx)g sin θ. Therefore,
F = dp/dt gives σxg sin θ = σ(ẋ2 + xẍ) =⇒ xg sin θ = ẋ2 + xẍ. The only possible
quantities that x can depend on are g, θ, t, and the dustpan’s initial speed, position,
and mass. But the last three of these are zero, so there can be no dependence on
them. So by dimensional analysis, x must take the form at2/2, where a is g times
some function of θ. The xg sin θ = ẋ2 + xẍ equation therefore becomes

(at2/2)g sin θ = (at)2 + (at2/2)a =⇒ a =
g sin θ

3
. (265)

This is the same factor of 3 as in Exercise 5.92.

2If you instead want to use the entire chain as your system, then Eq. (262) will still look the
same, because the net force is the same (the extra weight of the chain on the floor is canceled by
normal force from the floor), and the momentum is the same (only the moving part has nonzero
p).
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5.95. Heap and block

First solution: Conservation of momentum gives the block’s speed at position x
via

MV0 = (M + σx)v =⇒ v(x) =
MV0

M + σx
. (266)

The tension at point P is what is responsible for getting the new atoms in the chain
moving. Let y be the infinitesimal length of (moving) chain to the left of P . The
momentum of this piece is (σy)ẏ. Therefore, the force at P is

F =
dp

dt
= σẏ2 + σyÿ. (267)

But the last term here is negligible, because y is essentially zero. So we have

F = σv2 = σ
(

MV0

M + σx

)2

. (268)

Second solution: Alternatively, the tension at point P is what is responsible for
slowing down the mass to the right of P , which is M + σx. Since point P doesn’t
move on the chain, this mass doesn’t change, so we can just use F = ma = m dv/dt.
Therefore,

F = (M + σx)
d

dt

(
MV0

M + σx

)
= (M + σx)

−MV0

(M + σx)2
· σ · dx

dt
= −σv2, (269)

as in the first solution. We have the negative sign here because we’re considering
the effect of the tension on the mass to the right of point P .

5.96. Touching the floor

We will divide the solution into the calculations of (1) the frequency of oscillations,
(2) the energy loss per oscillation, and (3) the amplitude as a function of time.

Frequency of oscillations: In the equilibrium position, the upward force from
the spring balances the downward force from gravity on the part of the chain that
is in the air. If the chain is displaced by y (with upward taken to be positive),
then the force from the spring changes by −ky (the spring pulls up a little less, if
y is positive), while the gravitational force changes by −(σy)g (gravity pulls down
a little more, if y is positive). The net force on the chain in the air is therefore
F = −(k + σg)y. This part of the chain has mass M = σL; this mass changes
slightly, on the order of σy, but this effect is negligible here. F = ma therefore gives

−(k + σg)y = (σL)ÿ, (270)

and so the frequency of oscillations is

ω =

√
k + σg

σL
=

√
k

M
+

g

L
. (271)

Remark: A common incorrect answer for the frequency is ω =
√

k/M . The g/L term

definitely belongs in the correct answer, as can be seen by considering the limit k → 0.

(That is, we have a very weak spring which is stretched, say, a kilometer. And a chain of,

say, 1 meter hangs from the end.) The spring force doesn’t vary much with distance, so

it always pulls up with a force of essentially Mg = (Lσ)g. If the chain is displaced by y,

then the gravitational force equals −(L + y)σg. The net force is therefore −(σg)y. F = ma

then gives −(σg)y = (Lσ)ÿ. Hence ω =
√

g/L, which is independent of k (even though

the spring force is not negligible; the point is that it is essentially constant). The chain will

simply bounce up and down, with a frequency determined by its length. ♣
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Energy loss per oscillation: The position of the chain, relative to the equi-
librium position, is essentially a slowly decreasing sinusoidal function. Se we can
write

x(t) = A(t) cos(ωt). (272)

Note that ω, whose value is given in Eq. (271), is independent of the amplitude A.

The energy loss during the downward motion is fairly straightforward. When a piece
of the chain with mass dm hits the floor, it loses a kinetic energy of (1/2)(dm)v2. In
a short time dt, we have dm = |σv dt|. So the loss is |(1/2)σv3 dt|. Equation (272)
gives v(t) = −ωA(t) sin(ωt), so the change in energy during the downward half of
the oscillation is

∆Edown = −1

2

∫ π/ω

0

σω3A3 sin3(ωt) dt. (273)

Letting θ ≡ ωt, and then using

∫ π

0

sin3 θ dθ =

∫ π

0

(1− cos2 θ) sin θ dθ =

(
− cos θ +

cos3 θ

3

)∣∣∣∣
π

0

=
4

3
, (274)

gives (using the fact that A is essentially constant throughout a given oscillation)

∆Edown = −2

3
σω2A3. (275)

The energy loss during the upward motion is a little trickier, but the answer turns
out to be the same as for the downward motion. When a piece of the chain with mass
dm abruptly joins the moving part of the chain, there is an inevitable energy loss.
This loss may be calculated as follows. Let a mass dm join the chain at the instant
the chain is moving at speed v. Then it gains a kinetic energy of (1/2)(dm)v2. It
also gains a momentum of dP = (dm)v. The work that the tension does in bringing
it up to this speed is W =

∫
F dx =

∫
Fv dt. The chain is moving at an essentially

constant speed v for this short period of time. Hence,

W = v

∫
F dt = v(dP ) = (dm)v2. (276)

We therefore conclude that half of this work goes into kinetic energy of the mass,
and half is lost to heat. The loss to heat is thus (1/2)(dm)v2 = (1/2)(σv dt)v2 =
(1/2)σv3 dt, which is the same as in the downward case. The total change in energy
per oscillation is therefore

∆E = ∆Edown + ∆Eup = −4

3
σω2A3. (277)

Amplitude as a function of time: The total energy of the system (relative to
equilibrium) when the amplitude is A equals the kinetic energy of the chain when
it passes through equilibrium, which is E = (1/2)Mv2 = (1/2)Mω2A2. Hence,
dE = Mω2A dA. The number of oscillations in a time dt is ω dt/2π. Therefore, Eq.
(277) gives (using M ≈ σL)

(σL)ω2A dA = −
(

ω dt

2π

)(
4

3
σω2A3

)

=⇒ dA

A2
= −

(
2ω

3πL

)
dt. (278)

Integrating this from the start to a time t, and using A(0) ≡ b, gives

∫ A

b

dA′

A′2
= − 2ω

3πL

∫ t

0

dt′ =⇒ 1

b
− 1

A
= − 2ωt

3πL
=⇒ A(t) =

1
1
b

+ 2ωt
3πL

. (279)
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Remark: For large t, this reduces to

A(t) ≈ 3πL

2ωt
, (280)

which is independent of the initial amplitude b. The 1/t behavior implies that the total
distance the chain travels barely diverges to infinity as t → ∞. In terms of the number
of oscillations undergone, which is n = ωt/2π (remember that ω is independent of the
amplitude), Eq. (280) may be written as

A(n) ≈ 1

n

(
3L

4

)
(for large t). ♣ (281)
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Chapter 6

The Lagrangian method

6.25. Spring on a T

If the `-rod makes an angle of ωt with the x axis, then the coordinates of the mass
are

x = ` cos ωt− r sin ωt =⇒ ẋ = ω(−` sin ωt− r cos ωt)− ṙ sin ωt

y = ` sin ωt + r cos ωt =⇒ ẏ = ω(` cos ωt− r sin ωt) + ṙ cos ωt. (282)

In calculating v2 = ẋ2 + ẏ2, many terms combine or cancel (as you can verify), so
we end up with the fairly concise Lagrangian,

L =
1

2
m

(
ω2(`2 + r2) + ṙ2 + 2ω`ṙ

)
− 1

2
kr2. (283)

You can also derive the kinetic energy here by applying the law of cosines to the
velocity due to the spinning, ω

√
`2 + r2, and the velocity along the rod, ṙ. The

equation of motion is

mr̈ = mω2r − kr =⇒ r̈ +
(

k

m
− ω2

)
r = 0. (284)

We have three possibilities:

ω <

√
k

m
=⇒ r(t) = A cos(ω0t + φ), where ω0 ≡

√
k

m
− ω2 ,

ω >

√
k

m
=⇒ r(t) = Beαt + Ce−αt, where α ≡

√
ω2 − k

m
,

ω =

√
k

m
=⇒ r(t) = Dt + E. (285)

In view of these three cases, the special value of ω is
√

k/m. Basically, if ω >
√

k/m,
then in the rotating frame the centrifugal force (see Chapter 10) wins out over the
spring force, so we have exponentially growing motion instead of oscillator motion.

6.26. Spring on a T, with gravity

We’ll use the results from Exercise 6.25. The only new ingredient here is the grav-
itational potential energy, which is V = mgy = mg(` sin ωt + r cos ωt). So the
Lagrangian is

L =
1

2
m

(
ω2(`2 + r2) + ṙ2 + 2ω`ṙ

)
− 1

2
kr2 −mg(` sin ωt + r cos ωt). (286)

69



70 CHAPTER 6. THE LAGRANGIAN METHOD

The equation of motion is

mr̈ = mω2r − kr −mg cos ωt

=⇒ r̈ + ω2
0r = −g cos ωt, where ω0 ≡

√
k

m
− ω2 . (287)

This is the equation for a driven (undamped) oscillator. The driving force is the
component of gravity along the rod. Guessing a solution of the form A cos ωt +
B sin ωt, or simply invoking the results from Chapter 4, gives A = g/(ω2 − ω2

0) =
g/(2ω2 − k/m), and B = 0. So the entire solution (including the homogeneous

solution from Exercise 6.25, under the assumption that ω <
√

k/m) is

r(t) =

(
g

2ω2 − k/m

)
cos ωt + C cos(ω0t + φ). (288)

We see that the motion goes to infinity if ω =
√

k/2m. In this case, we have an
undamped driven oscillator at resonance.

6.27. Coffee cup and mass

The Lagrangian is (up to an additive constant)

L =
1

2
Mṙ2 +

1

2
mṙ2 +

1

2
mr2θ̇2 −Mgr + mgr sin θ. (289)

The equations of motion are then

(M + m)r̈ = mrθ̇2 −Mg + mg sin θ,

rθ̈ = −2ṙθ̇ + g cos θ. (290)

A Maple program that determines the smallest value of r is the following. It includes
a counter, i, that yields the total time of the process.

r:=1: # initial r value

r1:=0: # initial r speed

q:=0: # initial angle

q1:=0: # initial angular speed

e:=.00001: # small time interval

g:=10: # value of g

k:=.1: # value of m/M

i:=0: # initial value of counter

while r1<.000001 do # do process while r1 is negative

i:=i+1: # count steps (to get final time)

r2:=(k*r*q1^2-g+k*g*sin(q))/(1+k): # the first E-L equation

q2:=(-2*r1*q1+g*cos(q))/r: # the second E-L equation

r:=r+e*r1: # how r changes

r1:=r1+e*r2: # how r1 changes

q:=q+e*q1: # how q changes

q1:=q1+e*q2: # how q1 changes

end do: # stop the process

r; # print value of r

i*e; # print value of i*e (final time)

q; # print value of q

This program yields a final r value of about 0.208, a total time of 0.478, and a
final θ value of 5.35 rad ≈ 306◦. Concerning the general dependence of these three
quantities on m, M , g, and r0 (the initial r value), dimensional analysis says that

they must take the forms, θ = f1(m/M), r = f2(m/M)r0, and t = f3(m/M)
√

r0/g.
You can play around with various values of the parameters to show that these
relations are true.
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6.28. Three falling sticks

Let θ1(t), θ2(t), and θ3(t) be defined as in Fig. 17. As noted in the solution to

θ

θ

1

2 m

m

θ3m

Figure 17

Problem 6.2, it is advantageous to use the small-angle approximations first, and
then take derivatives to find the speeds. This strategy shows that all of the masses
initially move essentially horizontally. Using sin θ ≈ θ, we have

x1 ≈ −rθ1 =⇒ x1 ≈ −rθ̇1,

x2 ≈ −2rθ1 + rθ2 =⇒ x2 ≈ −2rθ̇1 + rθ̇2,

x3 ≈ −2rθ1 + 2rθ2 − rθ3 =⇒ x3 ≈ −2rθ̇1 + 2rθ̇2 − rθ̇3. (291)

Using cos θ ≈ 1− θ2/2, we have (up to additive constants in the y’s)

y1 = r cos θ1 −→ −r

(
θ2
1

2

)
,

y2 = 2r cos θ1 + r cos θ2 −→ −r

(
θ2
1 +

θ2
2

2

)
,

y3 = 2r cos θ1 + 2r cos θ2 + r cos θ3 −→ −r

(
θ2
1 + θ2

2 +
θ2
3

2

)
. (292)

The ẏ values are irrelevant, because their squares will be 4th order in the θ’s. The
Lagrangian is therefore

L =
1

2
m(ẋ2

1 + ẋ2
2 + ẋ2

3)−mg(y1 + y2 + y3) (293)

=
1

2
mr2

(
9θ̇2

1 + 5θ̇2
2 + θ̇2

3 − 12θ̇1θ̇2 + 4θ̇1θ̇3 − 4θ̇2θ̇3

)
+ mgr

(
5

2
θ2
1 +

3

2
θ2
2 +

1

2
θ2
3

)
.

The equations of motion obtained from varying θ1, θ2, and θ3 are, respectively,

9θ̈1 − 6θ̈2 + 2θ̈3 =
5g

r
θ1,

−6θ̈1 + 5θ̈2 − 2θ̈3 =
3g

r
θ2,

2θ̈1 − 2θ̈2 + θ̈3 =
g

r
θ3. (294)

At the instant the sticks are released, we have θ1 = θ2 = 0 and θ3 = ε. Solving Eqs.
(294) for θ̈1, θ̈2, and θ̈3 gives the initial angular accelerations,

θ̈1 =
2gε

r
, θ̈2 =

6gε

r
, θ̈3 =

9gε

r
. (295)

6.29. Cycloidal pendulum

(a) The given parametrization of the cycloid yields

(x, y) = R(θ−sin θ, −1+cos θ) =⇒ (dx, dy) = R dθ(1−cos θ,− sin θ). (296)

Therefore,

tan α =
dx

|dy| =
1− cos θ

sin θ
= tan(θ/2) =⇒ θ = 2α. (297)

(b) In terms of θ, the differential arclength along the cycloid is given by

ds2 = dx2 + dy2 = R2dθ2(2− 2 cos θ) = 4R2dθ2 sin2(θ/2). (298)

In terms of α, the differential arclength is therefore

ds = 2R sin(θ/2) dθ = 4R sin α dα. (299)
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So the length along the cycloid is
∫

ds =

∫ α

0

4R sin α dα = −4R cos α

∣∣∣
α

0
= 4R(1− cos α). (300)

Since the total length of the string is 4R, this means that the length in the air
is ` = 4R cos α.

(c) In terms of α, the position of the contact point is R(2α− sin 2α, −1+cos 2α),
and the position of the mass relative to the contact point is

`(sin α,− cos α) = 4R cos α(sin α,− cos α) = R(2 sin 2α,−2− 2 cos 2α). (301)

So the total position of the mass is

(x, y) = R(2α + sin 2α,−3− cos 2α)

=⇒ (ẋ, ẏ) = 2Rα̇(1 + cos 2α, sin 2α)

=⇒ ẋ2 + ẏ2 = 4R2α̇2(2 + 2 cos 2α). (302)

The Lagrangian is then

L =
m

2
(ẋ2 + ẏ2)−mgy = 4mR2α̇2(1 + cos 2α) + mgR(3 + cos 2α). (303)

(d) The E-L equation (d/dt)(∂L/∂α̇) = (∂L/∂α) gives

d

dt

(
8mR2α̇(1 + cos 2α)

)
= −8mR2α̇2 sin 2α− 2mgR sin 2α

=⇒ 4Rα̈(1 + cos 2α)− 8Rα̇2 sin 2α = −4Rα̇2 sin 2α− g sin 2α

=⇒ α̈(1 + cos 2α)− α̇2 sin 2α = −(g/4R) sin 2α

=⇒ α̈(2 cos2 α)− α̇2(2 sin α cos α) = −(g/4R)2 sin α cos α

=⇒ α̈ cos α− α̇2 sin α = −(g/4R) sin α

=⇒ d2

dt2
(sin α) = −(g/4R) sin α

=⇒ sin α = A cos
(√

g

4R
t + φ

)
, (304)

as desired.

(e) The tangential speed around the instantaneous contact point is v = `α̇ =
(4R cos α)α̇. So the tangential F = ma equation is

−mg sin α = m
d

dt
(4Rα̇ cos α) =⇒ − g

4R
sin α =

d2

dt2
(sin α), (305)

as above. Note that the tangential acceleration is not `α̈ = (4R cos α)α̈. It is
dv/dt, which includes an extra term involving α̇2.

6.30. Dropped ball

The action is

L = m

∫ 1

0

[
1

2
mẏ2 −mgy

]
dt

= m

∫ 1

0

[
1

2

(
− gt + ε(2t− 1)

)2 − g
(
− gt2/2 + ε(t2 − t)

)]
dt. (306)

The term of first order in ε is

mε

∫ 1

0

[
(−gt)(2t− 1)− g(t2 − t)

]
dt = mgε

∫ 1

0

[
−3t2 + 2t

]
dt = −1+1 = 0. (307)
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6.31. Explicit minimization

The velocity is ẏ = a2(2t− T ), so the action is

L = m

∫ T

0

(
1

2
a2
2

(
4t2 − 4Tt + T 2

)
− ga2

(
t2 − Tt

))
dt

= m
(

1

2
a2
2T

3
(

4

3
− 2 + 1

)
− ga2T

3
(

1

3
− 1

2

))

=
mT 3

6
(a2

2 + ga2). (308)

Taking the derivative to minimize this function of a2 gives a2 = −g/2.

6.32. Always a minimum

Let y0(t) be the function that yields the stationary value of the action. (We know
that y(t) = −gt2/2 + a1t + a0, but this won’t be important.) Consider the function
y(t) = y0(t) + f(t), where f(t) vanishes at the endpoints, but is otherwise arbitrary
(not necessarily infinitesimal). Then

Sy =

∫ (
1

2
m

(
ẏ0 + ḟ

)2 −mg(y0 + f)
)

dt

=

∫ (
1

2
my2

0 −mgy0

)
dt +

∫ (
mẏ0ḟ −mgf

)
dt +

∫
1

2
mḟ2 dt

= Sy0 −m

∫
f(ÿ0 + g) dt +

1

2
m

∫
ḟ2 dt, (309)

where we have integrated by parts to obtain the last line. The middle term here is
zero, because we are assuming that y0 makes the action stationary (that is, there is
no first-order dependence on f). The last term is always greater than or equal to
zero, so the action for y is always at least as large as the action for y0, as we wanted
to show.

6.33. Second-order change

Dropping the dt’s from the integrals, we have

dS

da
=

∫
∂L

∂x
β +

∂L

∂ẋ
β̇ =⇒

d2S

da2
=

∫
d

da

(
∂L

∂x

)
β +

d

da

(
∂L

∂ẋ

)
β̇

=

∫ (
∂

∂x

(
∂L

∂x

)
β +

∂

∂ẋ

(
∂L

∂x

)
β̇
)

β +
(

∂

∂x

(
∂L

∂ẋ

)
β +

∂

∂ẋ

(
∂L

∂ẋ

)
β̇
)

β̇

=

∫ (
∂2L

∂x2
β2 + 2

∂2L

∂x∂ẋ
ββ̇ +

∂2L

∂ẋ2
β̇2

)
. (310)

6.34. ẍ dependence

We have
dS

da
=

∫ (
∂L

∂x
β +

∂L

∂ẋ
β̇ +

∂L

∂ẍ
β̈
)

dt. (311)

We can integrate the middle term by parts as usual. Integrating the last term by
parts twice gives

∫
∂L

∂ẍ
β̈ =

∂L

∂ẍ
β̇ −

∫
d

dt

(
∂L

∂ẍ

)
β̇

=
∂L

∂ẍ
β̇ −

(
d

dt

(
∂L

∂ẍ

)
β −

∫
d2

dt2

(
∂L

∂ẍ

)
β

)
. (312)
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Putting it all together gives

dS

da
=

∫ t2

t1

β

(
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+

d2

dt2

(
∂L

∂ẍ

))
dt+β

(
∂L

∂ẋ
− d

dt

(
∂L

∂ẍ

)) ∣∣∣
t2

t1

+
∂L

∂ẍ
β̇

∣∣∣
t2

t1

.

(313)
The boundary term involving β is zero, because β is assumed to vanish at the
endpoints. But the boundary term involving β̇ is not necessarily zero, because
the derivative is not assumed to be zero at the endpoints. The proposed result is
therefore not valid.

6.35. Constraint on a circle

Let the constraining potential be V (r). Then the Lagrangian is

L =
1

2
m(ṙ2 + r2θ̇2)− V (r). (314)

The equations of motion are

d

dt
(mṙ) = −dV

dr
+ mrθ̇2, and

d

dt
(mr2θ̇) = 0. (315)

Using r = R =⇒ ṙ = r̈ = 0, the first of these equations gives

F = −dV

dr
= −mrθ̇2 = −mR

(
v

R

)2

=
mv2

R
. (316)

6.36. Atwood’s machine

Let `1 and `2 be the lengths of string in the air, and let L = `1+`2. If η ≡ `1+`2−L,
then the Lagrangian is

L =
1

2
m1

˙̀2
1 +

1

2
m2

˙̀2
2 + m1g`1 + m2g`2 − V (η). (317)

Using F = −dV/dη, and also the definition of η, the equations of motion are

m1
῭
1 = m1g − dV

dη
· ∂η

∂`1
=⇒ m1

῭
1 = m1g + F,

m2
῭
2 = m2g − dV

dη
· ∂η

∂`2
=⇒ m2

῭
2 = m2g + F. (318)

The condition `1+`2 = L implies ῭
1 = −῭

2. Multiplying the first equation of motion
by m2, the second by m1, and then adding gives F = −2m1m2g/(m1 + m2). The
negative sign means that the force points against the direction of increasing η. In
other words, it points up on both masses.

6.37. Cartesian coordinates

The first time derivative gives (xẋ + yẏ)/
√

x2 + y2 = 0. Taking another derivative
gives

(x2 + y2)(ẋ2 + ẏ2 + xẍ + yÿ)− (xẋ + yẏ)2 = 0. (319)

Multiplying this out, and then using
√

x2 + y2 = R, gives

R2(xẍ + yÿ) + (xẏ − yẋ)2 = 0. (320)

Using mẍ = F (x/R) and mÿ = −mg + F (y/R) to eliminate the ẍ and ÿ in Eq.
(320) gives

R2

(
x
(

Fx

mR

)
+ y

(
Fy

mR
− g

))
+ (xẏ − yẋ)2 = 0

=⇒ F = mg
y

R
− m

R3
(xẏ − yẋ)2. (321)

Finally, using x = R sin θ =⇒ ẋ = Rθ̇ cos θ, and y = R cos θ =⇒ ẏ = −Rθ̇ sin θ,
gives F = mg cos θ −mRθ̇2, as desired.
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6.38. Constraint on a curve

The true Lagrangian is L = (m/2)(ẋ2 + ẏ2) − V (η), where η is the distance from
the curve. The equations of motion are

mẍ = −dV

dη
· ∂η

∂x
=⇒ mẍ = F

∂η

∂x
,

mÿ = −dV

dη
· ∂η

∂y
=⇒ mÿ = F

∂η

∂y
. (322)

For a point on the curve, we have

y = f(x) =⇒ ẏ = f ′ẋ =⇒ ÿ = f ′ẍ + f ′′ẋ2. (323)

Plugging the ẍ and ÿ from the E-L equations into this, and solving for F , gives

F =
mf ′′ẋ2

∂η/∂y − f ′ ∂η/∂x
. (324)

We must now determine ∂η/∂x and ∂η/∂y. If θ is the angle the curve makes with
the x axis at a given point, then the slope there is f ′(x) = tan θ. Consider a point
(x, y) near the curve (we’ll assume that this point is to the left of the curve, but the
other side proceeds similarly). If you imagine varying only x, and then only y, you
can see that the distance to the curve changes according to

∂η

∂x
= − sin θ = − f ′√

1 + f ′2
, and

∂η

∂y
= cos θ =

1√
1 + f ′2

. (325)

So Eq. (324) becomes

F =
mf ′′ẋ2

√
1 + f ′2

. (326)

But ẋ = v cos θ = v/
√

1 + f ′2, so we finally have

F =
mf ′′v2

(1 + f ′2)3/2
. (327)

Note: for the special case of the bottom point on a circle of radius R, we have f ′ = 0.
And you can show that f ′′ = 1/R. So the above result reduces to F = mv2/R, as
it should.

6.39. Bead on stick, using F = ma

(a) There is no force in the r direction, so the first of Eqs. (3.51) gives (using
θ̇ = ω) r̈ = rω2. Multiplying through by ṙ and integrating yields
∫

r̈ṙ dt = ω2

∫
rṙ dt =⇒ 1

2
ṙ2 =

1

2
r2ω2 + C =⇒ 1

2
mṙ2 − 1

2
mr2ω2 = E,

(328)
where E ≡ mC is a constant of integration.

(b) Since θ̈ = 0, the second of Eqs. (3.51) gives (using θ̇ = ω) Fθ = 2mωṙ. So the
work done on the bead is

W =

∫ θ

θ0

Fθ(r dθ) =

∫ t

t0

(2mωṙ)r(ω dt) = mr2ω2
∣∣∣
r

r0

. (329)

Since W = ∆K = K −K0, the kinetic energy is

K = K0 + W = K0 + mr2ω2 −mr2
0ω2 ≡ mr2ω2 + E, (330)

where E ≡ K0 −mr2
0ω2 (which isn’t the energy). Therefore,

1

2
mṙ2 +

1

2
mr2ω2 = mr2ω2 + E =⇒ 1

2
mṙ2 − 1

2
mr2ω2 = E. (331)
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6.40. Atwood’s machine

The height of the left mass is −(x + y)/2, so the Lagrangian is

L =
1

2
(4m)

(
ẋ + ẏ

2

)2

+
1

2
(5m)ẋ2 +

1

2
(3m)ẏ2

−
(
4mg

(−x− y

2

)
+ 5mgx + 3mgy

)

= m(3ẋ2 + mẋẏ + 2mẏ2)−mg(3x + y). (332)

This is invariant under the transformation x → x + ε and y → y − 3ε, so we can
use Noether’s theorem with Kx = 1 and Ky = −3. The conserved momentum is
therefore

P =
∂L

∂ẋ
Kx +

∂L

∂ẏ
Ky = m(6ẋ + ẏ)(1) + m(ẋ + 4ẏ)(−3) = m(3ẋ− 11ẏ). (333)

This P is constant. In particular, if the system starts at rest, then ẋ always equals
(11/3)ẏ.

6.41. Spring and a wheel

Let x be the coordinate of the center of the wheel. Then the top of the wheel
moves by 2x (for small oscillations), so this is how much the spring stretches. The
Lagrangian is therefore L = (1/2)Mẋ2− (1/2)k(2x)2, and the equation of motion is

Mẍ = −4kx. So the frequency is ω =
√

4k/M = 2
√

k/M . This is independent of
the radius R.

6.42. Spring on a spoke

Let r be the length of the spring, and let θ be the angle through which the wheel
has rolled, relative to the position where the spring is vertical. Then the coordinates
of the mass, relative to the original center of the wheel, are

x = Rθ − r sin θ =⇒ ẋ = Rθ̇ − rθ̇ cos θ − ṙ sin θ,

y = R− r cos θ =⇒ ẏ = rθ̇ sin θ − ṙ cos θ. (334)

A little algebra gives

ẋ2 + ẏ2 = R2θ̇2 + r2θ̇2 + ṙ2 − 2Rrθ̇2 cos θ − 2Rṙθ̇ sin θ. (335)

The last term is third order in small quantities, so we can ignore it. And we can set
cos θ ≈ 1 in the fourth term. So the Lagrangian is

L = (m/2)(R2θ̇2 + r2θ̇2 + ṙ2 − 2Rrθ̇2)− (k/2)r2 + mgr cos θ

= (m/2)
(
(R− r)2θ̇2 + ṙ2

)
− (k/2)r2 + mgr cos θ. (336)

The equation of motion obtained by varying θ is

m
d

dt

(
(R− r)2θ̇

)
= −mgr sin θ

=⇒ (R− r)2θ̈ − 2(R− r)ṙθ̇ = −gr sin θ

=⇒ (R− r)2θ̈ ≈ −grθ, (337)

where we have ignored the ṙθ̇ term because it is second order in small quantities.
(This happens to be the torque equation around the contact point on the ground.)
For small oscillations, r is essentially constant, so we end up with a simple-harmonic-
oscillator equation of motion. The frequency of small oscillations for the angle θ is√

gr/(R− r).
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The equation of motion obtained by varying r is

d

dt
(mṙ) = m(r −R)θ̇2 − kr + mg cos θ

=⇒ r̈ ≈ −kr

m
+ g,

=⇒ d2

dt2

(
r − mg

k

)
= − k

m

(
r − mg

k

)
, (338)

where we have set cos θ ≈ 1 and ignored the second-order θ̇2 terms. (This is the
radial F = ma equation.) We see that the quantity r −mg/k undergoes oscillatory

motion with frequency
√

k/m. Note that the equilibrium value of r is r0 = mg/k,

so this frequency may be written as
√

g/r0.

Equating the two frequencies we have found gives

√
gr0

R− r0
=

√
g

r0
=⇒ r0 =

R

2
. (339)

6.43. Oscillating hoop

If the hoop has rotated through an angle α counterclockwise, then the positions of
the two masses are

(x, y)1 = R
(
− sin(θ − α), − cos(θ − α)

)
,

(x, y)2 = R
(
sin(θ + α), − cos(θ + α)

)
. (340)

The masses move along a circle, so the speed of each is Rα̇ (which you could also
obtain by calculating ẋ2 + ẏ2). The Lagrangian is therefore

L = 2(m/2)R2α̇2 + mgR
(
cos(θ − α) + cos(θ + α)

)

= mR2α̇2 + 2mgR cos θ cos α. (341)

The equation of motion is

2mR2α̈ = −2mgR cos θ sin α =⇒ α̈ ≈ −
(

g cos θ

R

)
α =⇒ ω =

√
g cos θ

R
. (342)

Note that if θ = 0, then ω =
√

g/R, as it should. And if θ = 90◦, then ω = 0, which
makes sense.

6.44. Oscillating hoop with a pendulum

The positions of the masses are

(x, y)1 = R
(
− sin(45◦ − θ), − cos(45◦ − θ)

)
, (343)

(x, y)2 = R
(
sin(45◦ + θ) +

√
2 sin α, − cos(45◦ + θ)−

√
2 cos α

)
.

The left mass moves along a circle, so its speed is Rθ̇. Calculating ẋ2
2 + ẏ2

2 for the
right mass (or using the law of cosines), we have

v2
1 = R2θ̇2, and v2

2 = R2θ̇2 + 2R2α̇2 + 2
√

2R2θ̇α̇ cos(45◦ + θ − α). (344)

The Lagrangian is therefore

L = (m/2)
(
2R2θ̇2 + 2R2α̇2 + 2

√
2R2θ̇α̇ cos(45◦ + θ − α)

)

+mg
(
R cos(45◦ − θ) + R cos(45◦ + θ) +

√
2R cos α

)
. (345)
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To second order in small quantities, we can set θ̇α̇ cos(45◦ + θ − α) ≈ θ̇α̇ cos 45◦.
Also, cos(45◦ − θ) + cos(45◦ + θ) = 2 cos 45◦ cos θ. Keeping only the second-order
terms, and ignoring additive constants, we have

L = mR2(θ̇2 + α̇2 + θ̇α̇)−mgR(θ2 + α2)/
√

2. (346)

The equations of motion are

2Rθ̈ + Rα̈ = −
√

2gθ,

Rθ̈ + 2Rα̈ = −
√

2gα. (347)

Adding and subtracting these gives

d2

dt2
(θ + α) = −

(√
2g

3R

)
(θ + α),

d2

dt2
(θ − α) = −

(√
2g

R

)
(θ − α). (348)

The normal coordinates are therefore

θ + α = A1 cos(ω1t + φ1), where ω1 =

√√
2g

3R
,

θ − α = A2 cos(ω2t + φ2), where ω2 =

√√
2g

R
. (349)

Adding and subtracting these yields the angles, which when written in vector nota-
tion are

(
θ
α

)
= B1

(
1
1

)
cos(ω1t + φ1) + B2

(
1
−1

)
cos(ω2t + φ2), (350)

where the B’s are half the A’s. If B2 = 0, we have the normal mode (θ, α) ∝ (1, 1)
with frequency ω1. And if B1 = 0, we have the normal mode (θ, α) ∝ (1,−1) with
frequency ω2. It makes sense that the frequency of the second mode is larger than
the frequency of the first.

6.45. Mass sliding on a rim

Let x be the horizontal coordinate of M , and let θ be the angle of m along the hoop,
measured counterclockwise from the bottom of the hoop. Then the position and
velocity of m are

(x, y)m = (x + R sin θ, R−R cos θ)

=⇒ (ẋ, ẏ)m = (ẋ + Rθ̇ cos θ, Rθ̇ sin θ). (351)

The square of the speed is then v2
m = ẋ2 + 2Rẋθ̇ cos θ + R2θ̇2. To second order, we

may set cos θ ≈ 1 here. So the Lagrangian is

L = (M/2)ẋ2 + (m/2)(ẋ2 + 2Rẋθ̇ + R2θ̇2) + mgR cos θ. (352)

The equations of motion are

(M + m)ẍ + mRθ̈ = 0, and ẍ + Rθ̈ ≈ −gθ, (353)

where we have used sin θ ≈ θ. To find the normal modes, we can use the determinant
method. Or we can just solve for ẍ in the first equation and plug into the second,
which gives

θ̈ = −
(

M + m

M

)
g

R
θ =⇒ θ(t) = A cos(ωt + φ), where ω =

√
M + m

M

√
g

R
.

(354)
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The corresponding x is

x(t) = −
(

MR

M + m

)
θ = −

(
MR

M + m

)
A cos(ωt + φ). (355)

In this mode, the two masses move in opposite directions.

The other solution to Eq. (354) is θ = 0 identically (this solution would pop out of
the determinant method). Such a solution is usually a trivial solution, but in this
problem both equations of motion give ẍ = 0 =⇒ x(t) = Dt + E. So in this mode,
the wheel moves at a constant rate, with the mass always at the bottom point.

6.46. Mass sliding on a rim, with a spring

(a) Let θ be the clockwise angle through which the wheel has rotated, relative to
the position where the spring’s contact point is on the ground. And let α be
the clockwise angle subtended by the spring. Then the position and velocity
of the mass on the end of the spring are

(x, y) =
(
Rθ −R sin(θ + α), R−R cos(θ + α)

)
(356)

=⇒ (ẋ, ẏ) =
(
Rθ̇ −R(θ̇ + α̇) cos(θ + α), R(θ̇ + α̇) sin(θ + α)

)
.

Neglecting higher-order terms, you can show that v2 = ẋ2 + ẏ2 = R2α̇2. In
retrospect this concise result makes sense, because a rolling wheel’s contact
point with the ground is essentially at rest (so changes in θ lead to no motion
of the mass).

The horizontal position of the center of the wheel is Rθ, so the Lagrangian is

m

2
R2θ̇2 +

m

2
R2α̇2 + mgR cos(θ + α)− k

2
(Rα)2. (357)

For small angles, using sin ε ≈ ε, the equations of motion turn out to be

θ̈ +
g

R
(θ + α) = 0, and α̈ +

g

R
(θ + α) +

k

m
α = 0. (358)

With ω2
g ≡ g/R and ω2

k ≡ k/m, we can try the solution,

(
θ
α

)
=

(
A
B

)
eiβt (359)

=⇒
(
−β2 + ω2

g ω2
g

ω2
g −β2 + ω2

g + ω2
k

)(
A
B

)
=

(
0
0

)
.

Setting the determinant equal to zero yields

β2 =
1

2

(
ω2

k + 2ω2
g ±

√
ω4

k + 4ω4
g

)
. (360)

The two possibilities for the absolute value of β here are the frequencies of the
two normal modes.

If ωg = 0, then β = 0 or β = ωk. The first of these gives α(t) = 0 and
θ(t) = At + B (because both θ and α have second derivatives equal to zero,
and Eq. (360) yields B = 0). In this mode, the wheel rolls uniformly, with
the mass always at the same spot on the rim. Of course, this holds only for a
short time while θ is small, and then it breaks down. The second solution for
β gives θ(t) = 0 and α(t) = A cos(ωkt + φ). In this mode, the wheel doesn’t
roll. The spring simply oscillates back and forth in a line along the bottom of
the wheel.

If ωk = 0, then β = 0 or β =
√

2ωg. The first of these gives θ(t) = −α(t) =
At + B. The wheel rolls at a constant rate, with the mass always at the
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bottom point. This agrees with the second mode we found in the previous
exercise (θ is defined differently here). This result actually holds even if θ
and α become large, because the sum θ + α was the angle that we assumed
was small in the calculation above. The second solution for β gives α(t) =
θ(t) = A cos(

√
2ωgt + φ). This frequency agrees with the first mode we found

in the previous exercise (with M = m). And due to our definitions of θ and
α, the fact that they have the same sign here means that the masses move in
opposite directions relative to the point where the spring is attached to the
rim (which is essentially a stationary point as far as horizontal motion goes,
for small oscillations). This agrees with Exercise 6.45.

(b) If ωg = ωk, then Eq. (360) gives

β2 =
1

2
ω2

k(3±
√

5) =⇒ β = ±ωk

√
5± 1

2
. (361)

Using Eq. (360), the “+” root for β2 gives (θ, α) ∝ (2,
√

5 + 1). And the “−”
root gives (θ, α) ∝ (2, −√5 + 1). Due to our definitions of θ and α, the fact
that they have the same sign in the first mode means that the masses move in
opposite directions relative to the point where the spring is attached to the rim
(which is essentially a stationary point as far as horizontal motion goes). In
the second mode, they move in the same direction, but the mass at the center
moves farther.

6.47. Vertically rotating hoop

The Lagrangian is the same as in Problem 6.12, except that now we have to subtract
off the potential energy, mgh = mg(R sin ωt + r sin(ωt + θ). Following the solution
to Problem 6.12, the equation of motion is

rθ̈ + Rω2 sin θ = −g cos(ωt + θ). (362)

If we expand the term on the right-hand side and use the small-angle approximations,
it becomes −g cos ωt + gθ sin ωt. For small θ, the second term here is negligible
compared with the first, so we have

rθ̈ + Rω2θ ≈ −g cos ωt. (363)

This is the equation for an undamped driven oscillator. Trying a solution of the
form θ(t) = A cos ωt + B sin ωt (which quickly gives B = 0) yields

θ(t) = −
(

g

ω2(R− r)

)
cos ωt. (364)

If r = R, the system is on resonance, and the amplitude become large. Equation
(364) says that the amplitude goes to infinity, but of course long before it goes to
infinity the small-angle approximations break down and the solution become invalid.
Note that if R > r then θ and ωt have opposite signs, and if R < r then they have
the same sign.



Chapter 7

Central forces

7.8. Wrapping around a pole

Energy is conserved, because the tension in the string is always perpendicular to
the puck’s motion, so it does no work. The speed is therefore always v0. Note that
the angular momentum around the center of the pole is not conserved, because the
tension is not a central force. It points tangential to the pole, not toward the center,
because the pole has a nonzero radius (otherwise the puck wouldn’t get drawn in).
In the language of Chapter 8, there is a nonzero torque (relative to the center of the
pole) on the puck.

7.9. String through a hole

Angular momentum is conserved, because the tension is a central force. Therefore,
mv0` = mvr =⇒ v = (`/r)v0, which increases as r decreases. Note that energy is
not conserved, because you do work on the system. Equivalently, the tension does
work on the block, because there is a component of the block’s motion that points
in the radial direction.

7.10. Power-law spiral

The given information r = Cθk yields (using θ̇ = L/mr2)

ṙ = kCθk−1θ̇ = kC
(

r

C

)(k−1)/k (
L

mr2

)
=

kL

mr

(
C

r

)1/k

. (365)

Plugging this into Eq. (7.9) gives

m

2

(
kL

mr

)2 (
C

r

)2/k

+
L2

2mr2
+ V (r) = E = 0. (366)

Therefore,

V (r) = − L2

2mr2

(
1 + k2

(
C

r

)2/k
)

. (367)

7.11. Circular orbit

F = ma gives

GmM

r2
=

mv2

r
= mrω2 =⇒ GM

r3
= ω2 =

(
2π

T

)2

=⇒ T 2 =
4π2r3

GM
, (368)

as desired, because the semi-major axis of a circle is simply the radius.

7.12. Falling into the sun

First solution: If the earth had an infinitesimal tangential speed, then the path
would technically be an infinitesimally thin ellipse instead of a straight line. A thin
ellipse has its foci very near its ends, so the sun (which is at a focus) is essentially

81
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at the other end of the ellipse. This means that the major axis equals the radius R
of the earth’s original orbit. We’re looking for the time to fall in, which is half of
the period T of the elliptical orbit. So the desired time t is

t =
T

2
=

1

2

√
4π2(R/2)3

GMS
. (369)

Using the values of G, MS, and R from Appendix J, we obtain t ≈ 65 days.

Second solution: A quicker method, which doesn’t use the data from the Ap-
pendix, is to note that if the 2’s were removed from the result in Eq. (369), then
we would simply obtain the period of the earth’s (nearly) circular orbit, which we
know is 1 year. Therefore t = (365 days)/4

√
2 ≈ 65 days.

7.13. Intersecting orbits

We want the smallest distance that m gets to the CM (which is a1−c1) to equal the
largest distance that 2m gets from the CM (which is a2 + c2). But all the lengths
associated with m are twice those associated with 2m. So we want

a1 − c1 = a2 + c2 =⇒ 2a2 − 2c2 = a2 + c2 =⇒ a2 = 3c2. (370)

The eccentricity (of both orbits) is therefore c/a = 1/3.

7.14. Impact parameter

(a) If θ is the angle that the asymptote makes with the horizontal, then in Fig. 7.9
we have b = c sin θ. But c is also the distance from the origin to the intersection
of the asymptotes, so the distance from the origin to each asymptote (which
is the impact parameter) is also c sin θ. Hence, the impact parameter equals b.

(b) Using k ≡ L2/mα and ε ≡
√

1 + 2EL2/mα2, we have

b ≡ k√
ε2 − 1

=
L2/mα√
2EL2/mα2

=
L√
2mE

=
mv0b

′
√

2m(mv2
0/2)

= b′. (371)

7.15. Closest approach

(a) If v and ` are the speed and distance at closest approach, then conservation of L
gives mv0b = mv`. And conservation of E gives mv2

0/2−0 = mv2/2−GmM/`.
Solving for v in the first equation and substituting into the second, and solving
the resulting quadratic, gives

` = −GM

v2
0

+

√
G2M2

v4
0

+ b2 . (372)

Checks: v0 →∞ =⇒ ` → b, and v0 → 0 =⇒ ` → 0.

(b) From Fig. 7.9, the distance of closest approach is

c− a =
kε

ε2 − 1
− k

ε2 − 1
=

k

ε + 1
. (373)

Using

k ≡ L2

mα
=

(mv0b)
2

m(GMm)
=

v2
0b2

GM
, (374)

and

ε ≡
√

1 +
2EL2

mα2
=

√
1 +

(mv2
0)(mv0b)2

m(GMm)2
=

√
1 +

v4
0b2

G2M2
, (375)

you can show (by rationalizing the denominator) that k/(ε + 1) reduces to the
answer in part (a).
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7.16. Skimming a planet

The energy for a parabola is E = 0, so at closest approach we have

1

2
m(Rω)2 − GMm

R
= 0 =⇒ ω2 =

2G(4πR3ρ/3)

R3
=⇒ ω =

√
8πGρ

3
. (376)

For the earth, the numerical value turns out to be ω ≈ 1.8 · 10−3 s−1. The speed is
then Rω ≈ 11, 200m/s, which is the escape velocity, consistent with the fact that
E = 0.

7.17. Parabola L

(a) The energy for a parabola is E = 0, so at closest approach (which is the focal
length) we have

1

2
mv2− GMm

`
= 0 =⇒ v =

√
2GM

`
=⇒ L = mv` = m

√
2GM`. (377)

(b) k = L2/mα. But k/2 is the focal length `. So

L =
√

mαk =
√

m(GMm)(2`) = m
√

2GM`. (378)

(c) Let point P be the intersection of the x axis with the tangent line to the
parabola at the point (x, x2/4`). We claim that P is the point (x/2, 0). To see
this, let d be the distance from P to the point (x, 0). Then y/d = (x2/4`)/d is
the slope of the parabola at the point (x, x2/4`). But the slope is dy/dx = x/2`.
Therefore, (x2/4`)/d = x/2` =⇒ d = x/2. So P is a distance x − x/2 = x/2
from the origin.

This tangent line is nearly vertical, so the impact parameter is essentially
b = x/2. Since y À x, the speed at the point (x, x2/4`) is essentially given by

mv2/2 ≈ GMm/y =⇒ v ≈
√

2GM/y. So the angular momentum is

L = mvb ≈ m

√
2GM

x2/4`
· x

2
= m

√
2GM`. (379)

7.18. Circle to parabola

If the thrust points in the tangential direction, then the location of the thrust is
the location of closest approach for the parabola. The distance of closest approach
is given by the general form, rmin = L2/mα(1 + ε). Right before the thrust, the
orbit is a circle, so we have r = L2

i /mα(1 + 0). Right after the thrust, the orbit is
a parabola, so we have r = L2

f /mα(1 + 1). Therefore, L2
f = 2L2

i =⇒ (mrvf)
2 =

2(mrvi)
2 =⇒ vf =

√
2vi. So f =

√
2.

Alternatively, for a circular orbit, we have U = −2K. This can be seen in various
ways, for example, F = ma =⇒ GMm/r2 = mv2/r =⇒ −GMm/r = −2(mv2/2).
That is, U = −2K, as desired. The total energy is therefore E = U +K = U−U/2 =
U/2 (which is negative). To turn the orbit into a parabola, we must bring the energy
up to E = 0. Since U doesn’t change during the thrust, we need to double the kinetic
energy to make E = U + K = U − 2(U/2) = 0. Doubling K ∝ v2 requires f =

√
2.

Note that this second solution makes no mention of the direction of the thrust, so
the f =

√
2 result holds for any direction.

The distance of closest approach for the parabola is rmin = L2
f /mα(1 + 1). If the

thrust points in the radial direction, then L doesn’t change, so rmin = (L2
i /mα)/2,

which is half of the circle’s radius at which the thrust occurred. Note that this result
is independent of whether the thrust points radially inward or outward.
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7.19. Zero potential

We have

1

r
=

mα

L2
(1 + ε cos θ), where ε ≡

√
1 +

2EL2

mα2
. (380)

Taking the α → limit gives

1

r
≈ mα

L2

(√
2EL2

mα2
cos θ

)
=⇒ r ≈ L√

2mE cos θ
. (381)

The angle θ is measured from the point of closest approach. If we define the x
axis to contain this point, then we have x = r cos θ = L/

√
2mE, which is constant.

Therefore, we have a straight line.

7.20. Ellipse axes

Major axis: Setting θ equal to 0 and 180◦ in Eq. (7.25) gives (with k ≡ L2/mα)
rmin = k/(1 + ε) and rmax = k/(1− ε). Therefore, the semi-major axis has length

a =
1

2

(
k

1 + ε
+

k

1− ε

)
=

k

1− ε2
, (382)

in agreement with Eq. (7.33).

Minor axis: We want to maximize y = r sin θ ∝ sin θ/(1 + ε cos θ). Taking the
derivative gives cos θ0 = −ε. Therefore, the semi-minor axis has length

b = ymax = r sin θ0 =
k

1 + ε cos θ0
· sin θ0 =

k

1− ε2
·
√

1− ε2 =
k√

1− ε2
, (383)

in agreement with Eq. (7.33).

7.21. Repulsive potential

The potential is V (r) = α/r = −(−α)/r, so the basic change is that the α in Section
7.4 is now negative. Therefore, if the r in Eq. (7.25) is to be positive, we must have
1 + ε cos θ < 0. For this to be possible, we need ε > 1, which means that we can
have only hyperbolas.

Note that k ≡ L2/mα is now negative. The center of the hyperbola (the intersection
of the asymptotes) has an x value of kε/(ε2− 1), which is negative. So the left focus
has an x value of 2kε/(ε2−1), as shown in Fig. 18. From above, we need cos θ < −1/ε,
which means that the left branch of the hyperbola is the relevant one. The right
branch is unphysical. It was introduced in the squaring operation that led to Eq.
(7.32). The x value at closest approach to the origin is

x0 =
kε

ε2 − 1
+ a =

kε

ε2 − 1
+

k

ε2 − 1
=

k

ε− 1
. (384)

Therefore, rmin = |x0| = −x0 = k/(1− ε), which is positive because both k and 1− ε
are negative. This result agrees with Eq. (7.27) when θ = 180◦.

y

x

this branch

doesn't exist

hyperbolic path

or particle

x =
kε

ε2-1
____

x =
2kε
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Figure 18



Chapter 8

Angular momentum, Part I
(Constant L̂)

8.26. Swinging stick

When the pivot is removed, the CM of the stick has fallen a distance L/2, so con-
servation of energy gives

mg
L

2
=

1

2
Ipivotω

2 =⇒ mg
L

2
=

1

2

(
1

3
mL2

)
ω2 =⇒ ω =

√
3g

L
. (385)

The speed of the CM is therefore vCM = ω(L/2) =
√

3gL/2. The CM then undergoes
simple vertical projectile motion, so it reaches a height h = v2

CM/2g = (3/8)L above
the location of the (removed) pivot.

Alternatively, having found ω, we can use conservation of energy instead of projectile
motion:

mg
L

2
= mgh +

1

2
ICMω2 =⇒ mg

L

2
= mgh +

1

2

(
1

12
mL2

)
3g

L
=⇒ h =

3L

8
.

(386)

The time to the top of the motion is t = vCM/g =
√

3L/4g. The angle at this time

is θ = ωt =
√

3g/L
√

3L/4g = 3/2 radians, which is about 86◦. So the stick isn’t
quite vertical.

Remark: You can show that if the pivot is instead removed when the stick is at an angle

θ below the horizontal, then the angle the stick makes with respect to the horizontal at the

moment the CM is at the top of its projectile motion is (3/2)(1 + sin θ) cos θ − θ. You can

then show that this is maximized when θ ≈ 13.2◦, in which case the resulting angle with

respect to the horizontal is about 89.6◦, which is just short of vertical. ♣
8.27. Atwood’s with a cylinder

The two F = ma equations are mg − T = ma1 and mg − T = ma2. Hence,
a1 = a2 ≡ a. Let d be the common distance the objects have fallen at a given time,
and let v be their common speed. The length of the string in the air increases at
a rate 2v, and since this increase comes from the unrolling of the cylinder, we have
ωr = 2v. So conservation of energy gives

2mgd =
1

2
mv2 +

(
1

2
mv2 +

1

2

(
mr2

2

)(
2v

r

)2
)

=⇒ v =
√

gd. (387)

But the standard result for constant acceleration is v =
√

2ad. Therefore, a = g/2.
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8.28. Board and cylinders

The “top” point (the point farthest from the plane) on each cylinder moves twice
as far as the center, because vtop = vcenter + rω and the nonslipping condition on
the plane is vcenter = rω. Let d and v be the distance and speed of the board down
the plane. Then d/2 and v/2 are the corresponding values for the cylinders. We
can treat the two cylinders as one combined cylinder of mass m, so conservation of
energy gives (using I = mr2/2 and ω = (v/2)/r for the cylinder)

mgd sin θ + mg
d

2
sin θ =

1

2
mv2 +

(
1

2
m

(
v

2

)2

+
1

2

(
mr2

2

)(
v/2

r

)2
)

. (388)

This gives v =
√

(24/11)gd sin θ. But the standard result for constant acceleration

is v =
√

2ad. Therefore, a = (12/11)g sin θ. This is greater than the g sin θ result
for an object sliding down a plane, so we see that the effect of the cylinders is to
drag the board down the plane faster than it would want to go by itself.

8.29. Moving plane

Let D, d, and h be the plane’s leftward distance, the ball’s rightward distance,
and the ball’s downward distance, respectively. Conservation of momentum gives
MD = md =⇒ d = DM/m. With respect to the plane, the ball moves sideways a
distance D+d and downward a distance h. The condition that it stays on the plane
is therefore h/(D + d) = tan θ =⇒ h = (1 + M/m)D tan θ.

Taking the derivative of the preceding relations, we see that if V is the speed of the
plane, then ux = V M/m and uy = (1 + M/m)V tan θ are the velocity components
of the ball. The relative speed of the ball and plane is (V + ux)/ cos θ = V (1 +
M/m)/ cos θ, so the angular speed of the ball is ω = V (1 + M/m)/(r cos θ).

Conservation of energy therefore gives

mgh =
1

2
MV 2 +

1

2
m(u2

x + u2
y) +

1

2
Iω2

=⇒ mgD tan θ
(
1 +

M

m

)
=

1

2
MV 2 +

1

2
m

(
V 2

(
M

m

)2

+ V 2
(
1 +

M

m

)2

tan2 θ

)

+
1

2
(βmr2)

V 2(1 + M/m)2

r2 cos2 θ
. (389)

Solving for V , and then using the standard result for constant acceleration, V =√
2AD, gives

A =
mg tan θ

M + (M + m)(tan2 θ + β/ cos2 θ)
. (390)

The M À m limit yields A = mg sin θ cos θ/M(1+β). From above, the acceleration
of the ball down the plane is then a ≈ A(M/m)/ cos θ = g sin θ/(1+β), which agrees
with the result of Exercise 8.37. Also, if β = 0, you can show that A reduces to the
result of Problem 3.8.

8.30. Semicircle CM

xCM = 0 by symmetry. Let θ be the angle measured from one of the ends. Then

yCM =

∫
y dm

M
=

∫ π

0
(R sin θ)(ρR dθ)

ρπR
=

R

π
(− cos θ)

∣∣∣
π

0
=

2R

π
. (391)

This is higher than halfway up, because a given dy has more mass the higher it is,
due to the larger tilt.

8.31. Hemisphere CM

xCM = 0 by symmetry. Let θ be the angle measured up from the base. The volume
of a pancake slice is (area)(height) = π(R cos θ)2(R dθ cos θ), where the cos θ factor
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comes from the fact that we want the vertical height, and not the tilted distance
along the hemisphere. So

yCM =

∫
y dm

M
=

∫ π/2

0
(R sin θ)(ρπR3 cos3 θ dθ)

ρ(2/3)πR3
(392)

=
3R

2

∫ π/2

0

cos3 θ sin θ dθ =
3R

2

(− cos4 θ

4

)∣∣∣
π/2

0
=

3R

8
.

This is lower than halfway up, because a given dy has more mass the lower it is, due
to the larger radius.

8.32. A cone

Let H be the height of the cone. Consider a pancake slice a distance y from the tip.
The radius is given by r/y = R/H =⇒ r = yR/H. The moment of inertia of this
thin pancake is dI = (dm)r2/2 = (ρπr2 dy)r2/2 = (1/2)ρπ(yR/H)4dy. Integrating
over the whole cone gives

I =

∫
dI =

∫ H

0

ρπR4y4dy

2H4
=

ρπR4H

10
(393)

But the mass density is ρ = M/(πR2H/3), so I = (3/10)MR2.

8.33. A sphere

First solution: As in Exercise 8.31, the mass of a thin disk is given by dm =
ρπ(R cos θ)2(R dθ cos θ), so its moment of inertia is

dI =
1

2
(dm)r2 =

1

2
ρπ(R cos θ)2(R dθ cos θ) · (R cos θ)2. (394)

Integrating over the whole sphere gives

I =

∫
dI =

ρπR5

2

∫ π/2

−π/2

cos5 θ dθ. (395)

Writing cos5 θ as cos θ(1 − sin2 θ)2, multiplying this out and integrating, and then
using ρ = M/(4πR3/3), gives I = (2/5)MR2.

Second solution: Alternatively, we can integrate over y instead of θ. The mass
of a disk is dm = ρπr2dy = ρπ(R2 − y2) dy, so its moment of inertia is

dI =
1

2
(dm)r2 =

1

2
ρπ(R2 − y2) dy · (R2 − y2). (396)

Integrating this from y = −R to y = R and using ρ = M/(4πR3/3) gives I =
(2/5)MR2.

8.34. A triangle, the slick way

Let Icenter
` be the desired moment of inertia, let Ivertex

` be the moment around a
parallel axis through a vertex, and let Icenter

2` be the moment through the center for
a triangle with side 2`. Then we have three equations:

Icenter
2` = 2Icenter

` + 2Ivertex
` ,

Icenter
2` = 16Icenter

` ,

Ivertex
` = Icenter

` + m
(

`

2

)2

. (397)

The first equation comes from breaking up the big triangle into four of the small
ones. The second equation comes from a scaling argument: a corresponding patch
in the big triangle has four times the area (and hence mass) as the one in the small
triangle, and it is also twice as far from the axis, so the factor in

∫
r2dm is 22 ·4 = 16.

The third equation comes from the parallel-axis theorem. Solving for Icenter
` gives

Icenter
` = m`2/24.
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8.35. Fractal triangle

This exercise is similar to the previous one. The three equations are now:

Icenter
2` = Icenter

` + 2Ivertex
` ,

Icenter
2` = 12Icenter

` ,

Ivertex
` = Icenter

` + m
(

`

2

)2

. (398)

The first equation comes from breaking up the big triangle into three of the small
ones (the fourth small triangle is missing, because there is empty space in the middle
of the big one). The second equation comes from a scaling argument: a correspond-
ing patch in the big triangle has three times the area (and hence mass) as the one in
the small triangle (the 3 comes from the fact that the big triangle consists of three
of the small ones, instead of four as in the previous exercise), and it is also twice as
far from the axis, so the factor in

∫
r2dm is 22 · 3 = 12. The third equation comes

from the parallel-axis theorem. Solving for Icenter
` gives Icenter

` = m`2/18. This is
larger than the answer to the previous exercise because the mass is generally farther
from the axis here.

8.36. Swinging your arms

Yes, it helps. Consider the total L of your entire body relative to your feet (note
that the friction force at your feet provides no torque around your feet). If you are
starting to fall, this means that the torque from gravity is increasing your total L
in the “falling down” direction. If you swing your arms to give them an L in this
same direction, then the L of the rest of your body must increase in the “upward”
direction, compared with what it would have been if you hadn’t swung your arms
(because your total L, neglecting the effect of gravity, is constant). In other words,
your body can begin to swing upward, provided that you swing your arms fast
enough and the torque from gravity hasn’t already become too large. If the upward
effect is large enough, you can end up vertical, and all is well. Of course, it still
might make you look silly.

Note that it is the change in L that matters. If someone hands you a fan that is
already rotating at a constant speed, then it won’t help at all. But if you are able
to turn a knob and have the speed of the fan increase indefinitely with sufficient
acceleration, then technically you could hover in a very tilted position.

8.37. Rolling down the plane

Let the friction force Ff be positive up the plane. Then we have

F = ma =⇒ mg sin θ − Ff = ma,

τ = Iα =⇒ Ffr = (βmr2)α,

No slipping =⇒ a = αr. (399)

The last two equations give Ff = βma. Plugging this into the first equation gives
a = g sin θ/(1 + β). This checks for β = 0.

8.38. Coin on a plane

The method of Exercise 8.37, with β = 1/2, gives a = (2/3)g sin θ. The friction
force is then Ff = (1/3)mg sin θ. Therefore,

Ff ≤ µN =⇒ 1

3
mg sin θ ≤ µmg cos θ =⇒ tan θ ≤ 3µ. (400)

8.39. Accelerating plane

The friction force needs to be mg sin θ up the plane in order to balance the gravita-
tional force down the plane. Therefore,

τ = Iα =⇒ (mg sin θ)R =
(

2

5
mR2

)
α =⇒ α =

5g sin θ

2R
. (401)
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The nonslipping condition says that the acceleration of the plane is a = αR. So
a = (5/2)g sin θ. In general, the answer is a = (1/β)g sin θ, if I = βmR2.

Remark: Note the following incorrect reasoning: If the plane were at rest, then from

Exercise 8.37 we would have a = (5/7)g sin θ. The plane should therefore be accelerated

upward with this a, in order to cancel out the downward a and thereby keep the ball at

rest. The reason why this reasoning is incorrect is that in the accelerating reference frame

of the plane, there is an additional fictitious force (see Chapter 10) pulling the ball down

the plane, causing it to have a net downward acceleration with respect to the ground. The

moral is that you need to be very careful when using accelerating frames. Another way to

see why this reasoning is incorrect is to consider the I ≈ 0 limit (all the mass is located at

the center of the ball). In this case, there is essentially no friction force between the ball

and the plane (because FfR = Iα ≈ 0), so accelerating the plane upward will not help at

all in keeping the ball up. To keep it up, you need to produce a huge α (and hence a huge

a of the plane) in order to make Iα (and hence Ff) non-negligible. ♣
8.40. Bowling ball on paper

Let the friction force be Ff . Then we have

F = ma =⇒ Ff = ma =⇒ a =
Ff

m
,

τ = Iα =⇒ Ffr =
(

2

5
mr2

)
α =⇒ rα =

5

2
· Ff

m
=

5a

2
,

No slipping =⇒ a = a0 − rα =⇒ a0 = a +
5a

2
. (402)

Therefore, a0 = (7/2)a =⇒ a = (2/7)a0. The no-slipping equation above comes
from the fact that the a of the ball with respect to the ground equals the a0 of the
paper with respect to the ground, minus the backwards αr acceleration of the ball
with respect to the paper, due to the rolling. It is here that the no-slipping condition
(between the ball and the paper) comes in.

8.41. Spring and cylinder

Let the friction force be Ff , with positive to the right. Let positive a and α be
defined to be rightward and clockwise, respectively. Then we have

F = ma =⇒ Ff − kx = ma,

τ = Iα =⇒ −Ffr =
(

1

2
mr2

)
α,

No slipping =⇒ a = rα. (403)

The second and third equations give Ff = −(1/2)ma. The first equation then gives

−kx = (3/2)ma =⇒ ẍ = −(2k/3m)x. So the frequency is ω =
√

2k/3m. This is

less than the
√

k/m result for a sliding object, because the friction force partially
cancels the spring force. Alternatively, there is “wasted” energy in the rotational
motion.

8.42. Falling quickly

We have

τ = Iα =⇒ (mgx + mgL) = (mx2 + mL2)α =⇒ α =
g(x + L)

(x2 + L2)
. (404)

Taking the derivative to maximize this gives x2+2xL−L2 = 0, and so x = (
√

2−1)L.
Once the stick has started to fall, the torque will include a factor of sin θ. But the
x dependence is the same, so for any angle the above value of x yields the largest α.
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8.43. Maximum frequency

Let the pivot be a distance x from the center. Using the parallel-axis theorem,
τ = Iα gives

−mgx sin θ =
(

mL2

12
+mx2

)
α =⇒ α =

−gx sin θ

L2/12 + x2
=⇒ θ̈ ≈ −

(
gx

L2/12 + x2

)
θ.

(405)
Maximizing the quantity in parentheses (which is ω2) gives x = L/2

√
3. This is

larger than L/4, so the pivot is closer to the end than to the center. The maximum

frequency turns out to be
√√

3g/L, which is about 7% larger than the frequency of√
3g/2L for the case where the pivot is located at the end (as you can show).

8.44. Massive pulley

Let T1 and T2 be the tensions in the left and right parts of the string, respectively.
Then the force and torque equations are

T1 −mg = ma, (2m)g − T2 = (2m)a, (T2 − T1)r =
(

mr2

2

)
α. (406)

The nonslipping condition is a = rα, so the last equation becomes T2 − T1 = ma/2.
Adding this to the first and second equations gives g = 7a/2 =⇒ a = 2g/7.

8.45. Atwood’s with a cylinder

Let a1 and a2 be the accelerations of the block and cylinder, respectively, with
downward positive for both. The nonslipping condition is a1 + a2 = rα, because
both sides of this equation represent the second derivative of the total length of
string in the air.

The F = ma equations are mg−T = ma1 and mg−T = ma2. Hence, a1 = a2 ≡ a,
and so 2a = rα from above. The τ = Iα equation is Tr = (mr2/2)α =⇒ T =
m(rα)/2. But rα = 2a, so T = ma. Plugging this into either of the F = ma
equations gives a = g/2 downward for both masses.

8.46. Board and cylinders

As in Exercise 8.28, the accelerations of the board and cylinder are related by ab =
2ac. We can treat the two cylinders as one effective cylinder of mass m. Let F1 be
the friction force from the plane on the cylinder, with upward positive. Let F2 be
the friction force from the cylinder on the board, with downward positive (so F2 is
also the friction force from the board on the cylinder, with upward positive). With
ac ≡ a, the various force and torque equations are

F2 + mg sin θ = m(2a),

mg sin θ − F1 − F2 = ma,

(F1 − F2)r =
(

mr2

2

)
α =⇒ F1 − F2 =

ma

2
, (407)

where we have used the nonslipping condition, rα = ma. Eliminating F1 and F2

gives a = (6/11)g sin θ. So ab = 2a = (12/11)g sin θ.

8.47. The spool

Let Ff be the friction force from the ground, with leftward positive. Then the force
and torque equations are (using α = a/R)

T cos θ − Ff = ma, and FfR− Tr = I(a/R). (408)

Plugging the Ff from the first equation into the second gives

a =
T (R cos θ − r)

mR + I/R
. (409)
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If cos θ > r/R, the spool moves to the right. If cos θ < r/R, it moves to the left. If
cos θ = r/R, it doesn’t move at all, assuming that µ is sufficiently large. (We have
assumed that T sin θ < mg, so that the spool stays on the ground.) These three
different results can easily be seen by looking at where the line of the tension passes
relative to the contact point on the ground, and by considering the torque around
this point. For example, in the cos θ = r/R case the line passes through the contact
point, so there is no torque around this point, so the spool doesn’t move.

8.48. Stopping the coin

The friction force is Ff = µmg, so the deceleration is µg. The standard result of
v =

√
2ad (running time backwards) then gives

v =
√

2µgd. (410)

τ = Iα gives α = τ/I = (µmg)r/(mr2/2) = 2µg/r in the clockwise direction.

The time is t = v/a =
√

2d/µg. Since the final angular speed is zero, we have
(with counterclockwise ω taken to be positive, as indicated in the statement of the
exercise)

−ω + αt = 0 =⇒ ω =
2µg

r

√
2d

µg
=

2
√

2µgd

r
. (411)

8.49. Measuring g

(a) τ = Iα gives

−mg` sin θ = Iθ̈ =⇒ θ̈ = −
(

mg`

I

)
θ =⇒ ω =

√
mg`

I
. (412)

Therefore,

2π

T
=

√
mg`

I
=⇒ g =

4π2I

m`T 2
. (413)

(b) What two values of ` yield a given T? From part (a), we have

2π

T
=

√
mg`

ICM + m`2
=⇒ `2 −

(
gT 2

4π2

)
` +

ICM

m
= 0. (414)

The sum of the two roots, which we have defined to be L, is the negative of
the coefficient of `. So

L =
gT 2

4π2
=⇒ g =

4π2L

T 2
. (415)

Since it is very easy to measure L and T with a ruler and a stopwatch, this
method provides a simple way of calculating g.

8.50. Pulling a cylinder

Let T ′ be the tension in the part of the string connected to the mass. Let ac and am

be the rightward and leftward accelerations of the cylinder and mass, respectively.
Let positive α be clockwise. Then the various equations are

F = mac =⇒ T + T ′ = mac,

F = mam =⇒ T ′ = mam,

τ = Iα =⇒ (T − T ′)r =
(

mr2

2

)
α,

No slipping =⇒ αr = ac + am. (416)

The last equation comes from the fact that both sides represent the relative accelera-
tion of the cylinder and the mass. The last two equations give T−T ′ = m(ac+am)/2.
This can quickly be combined with the first two equations to eliminate T ′ and ac.
The result is am = T/4m.
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8.51. Coin and plank

Let F ′ be the friction force from the plank on the coin, with rightward positive. Let
ap and ac be the rightward accelerations of the plank and coin, respectively. Let
positive α be counterclockwise. Then the various equations are

F = map =⇒ F − F ′ = map,

F = mac =⇒ F ′ = mac,

τ = Iα =⇒ F ′R =
(

mR2

2

)
α,

No slipping =⇒ αR = ap − ac. (417)

The last equation comes from the fact that both sides represent the relative accel-
eration of the plank and the coin. The last two equations give F ′ = m(ap − ac)/2.
This can quickly be combined with the first two equations to eliminate F ′. The
result is ac = F/4m and ap = 3F/4m.

Equating the positions of the cylinder and the left end of the plank at time t gives

1

2

(
F

4m

)
t2 = −L +

1

2

(
3F

4m

)
t2 =⇒ t =

√
4mL

F
. (418)

Plugging this t back in, we see that the coin moves a distance L/2.

8.52. Cylinder, board, and spring

Let the x of the board be defined positive to the right, and let the θ of the cylinder
be defined positive clockwise. Let F be the friction force from the cylinder on the
board, with positive to the right. Then the various equations are

F = mab =⇒ F − kx = mab,

F = mac =⇒ −F = mac,

τ = Iα =⇒ FR =
(

mR2

2

)
α,

No slipping =⇒ αR = ac − ab. (419)

The last equation comes from the fact that both sides represent the relative accel-
eration of the coin and the board. We want to eliminate α, ac, and F in order to
solve for ac ≡ ẍ in terms of x. The second and third equations give Rα = −2ac.
Plugging this into the fourth equation gives ac = ab/3. The second equation then
gives F = −mab/3. Plugging this into the first equation finally gives

4

3
mab = −kx =⇒ ẍ = −

(
3k

4m

)
x =⇒ ω =

√
3k

4m
. (420)

8.53. Swirling around a cone

Let H be the height of the platform, and let y be the maximum height the particle
reaches. By conservation of energy during the motion down to the platform, the
speed at the platform is v0 =

√
2gH. The velocity at the highest point in the

swirling motion is horizontal; let the magnitude be vf . If β is the half-angle of the
cone, then conservation of Lz and E from the platform up to the maximum height
give

mv0(H tan β) = mvf(y tan β) =⇒ vf = (H/y)v0

mv2
0

2
+ mgH =

mv2
f

2
+ mgy =⇒ v2

0 − v2
f = 2g(y −H). (421)

Plugging the vf from the first equation into the second gives

v2
0(1−H2/y2) = 2g(y −H) =⇒ (2gH)(y −H)(y + H) = 2g(y −H)y2. (422)
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This simplifies to

0 = y2 −Hy −H2 =⇒ y =

(√
5 + 1

2

)
H ≈ (1.618)H. (423)

8.54. Raising a hoop

Let θ be the angle of the bead down from the top. Conservation of energy gives
v =

√
2gR(1− cos θ). The radial F = ma equation is (with inward N taken to be

positive) N + mg cos θ = mv2/R =⇒ N = mg(2 − 3 cos θ). By Newton’s 3rd law,
the bead pulls out on the hoop with this force. Relative to the corner, this force
has a lever arm of R cos θ. The hoop won’t rise up off the ground if the torque from
gravity is always at least as large as the torque from this force, that is,

MgR ≥ mg(2− 3 cos θ)(R cos θ) =⇒ 1

(2− 3 cos θ) cos θ
≥ m

M
. (424)

We need this to be true for all θ, so we need to find the minimum value of the
left-hand side (in the range, 0 < cos θ < 2/3). Taking the derivative yields cos θ =
1/3 =⇒ 3 ≥ m/M .

8.55. Block and Cylinder

Let F be the friction force between the plane and cylinder, and let N be the normal
force between the block and cylinder. Then N is also the friction force between the
block and cylinder, because µ = 1. The various equations are

Cylinder F = ma along plane =⇒ mg sin θ + N − F = ma,

Block F = ma along plane =⇒ mg sin θ −N = ma,

Cylinder τ = Iα =⇒ FR−NR = Iα

=⇒ (F −N)R = βmR2(a/R)

=⇒ F −N = βma. (425)

Adding the first and last equations gives a = (g sin θ)/(1 + β). This is the same
as the acceleration for a lone cylinder, because the only difference in that case is
that there is no N , but this doesn’t affect the sum of the first and third equations
above. The effects of the block on the cylinder (positive for the force, negative for
the torque) cancel.

If the friction force between the block and the cylinder (namely N) is large enough,
the cylinder will lift the right side of the block off the plane. In the cutoff case where
this starts to happen, only the left corner of the block is in contact with the plane.
The rest of the block is hovering an infinitesimal distance above the plane. Let N ′

be the normal force at the left corner. Then F = ma perpendicular to the plane
gives N ′ = mg cos θ−N . And τ = Iα around the center of the block gives N ′ = N .
So in the cutoff case we have N = mg cos θ−N =⇒ N = (1/2)mg cos θ. But using
our result for a in the second equation above gives N = [β/(1 + β)]mg sin θ. So the
cutoff case has

β

1 + β
mg sin θ =

1

2
mg cos θ =⇒ tan θmax =

1 + β

2β
. (426)

The bottom face will stay on the plane if θ is less than or equal to this angle. In
the case of a ring (with β = 1), we have θmax = 45◦ (but remember that we’ve
assumed µ = 1 throughout this problem). For β → 0, we have θmax → π/2, which
makes sense (there is hardly any N or F , because the acceleration of the system is
essentially equal to g sin θ).
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8.56. Falling and sliding stick

(a) Let 2r be the length of the stick, and let θ be the angle the stick makes with
the vertical at a later time. Then the hight of the CM is y = r cos θ, which
gives ẏ = −rθ̇ sin θ and ÿ = −rθ̈ sin θ − rθ̇2 cos θ.

Let N be the normal force from the rail. Then the F = ma and τ = Iα
(around the center of the stick) equations are N−mg = mÿ and Nr sin θ = Iθ̈,
respectively. Plugging the N from the second equation into the first, and using
the ÿ from above, gives (with I = m`2/12 = mr2/3)

(mr2/3)θ̈

r sin θ
−mg = m(−rθ̈ sin θ − rθ̇2 cos θ) =⇒ θ̈ =

sin θ(g/r − θ̇2 cos θ)

1/3 + sin2 θ
.

(427)
Therefore,

N =
(mr2/3)θ̈

r sin θ
=

mg
(
1− (r/g)θ̇2 cos θ

)

1 + 3 sin2 θ
. (428)

When θ = 90◦, we have N = mg/4, independent of θ̇ (and hence θ0).

(b) There are no horizontal forces, so the CM falls in a vertical line. Conservation
of energy therefore gives

mgr(1− cos θ) =
1

2
mẏ2 +

1

2
Iω2

=
1

2
m(−rθ̇ sin θ)2 +

1

2

(
1

3
mr2

)
θ̇2. (429)

Solving for θ̇ and then using the N from Eq. (428) gives

θ̇2 =
6g(1− cos θ)

r(1 + 3 sin2 θ)
=⇒ N =

mg

1 + 3 sin2 θ

(
1− 6 cos θ(1− cos θ)

1 + 3 sin2 θ

)

=
mg(4− 6 cos θ + 3 cos2 θ)

(1 + 3 sin2 θ)2
, (430)

where we have used sin2 θ = 1 − cos2 θ. When θ = π, we have N = 13 mg,
as desired. Checks: θ = 0 =⇒ N = mg, and θ = π/2 =⇒ N = mg/4, as
expected.

(c) Letting c ≡ cos θ and s ≡ sin θ, and writing the s in the denominator of N in
terms of c (so that N is a function of c only), we see that N is minimum when

0 =
d

dc

(
4− 6c + 3c2

(4− 3c2)2

)

=⇒ 0 = (4− 3c2)2(−6 + 6c)− (4− 6c + 3c2)2(4− 3c2)(−6c)

=⇒ 0 = (4− 3c2)(−1 + c) + 2c(4− 6c + 3c2)

=⇒ 0 = 3c3 − 9c2 + 12c− 4. (431)

Solving this numerically gives cos θ ≈ 0.4767 =⇒ θ ≈ 61.5◦. The correspond-
ing minimum value of N is (0.165)mg, as desired.

8.57. Tower of cylinders

First solution: Both cylinders in a given row move in the same manner, so we
can simply treat them as one cylinder with mass m = 2M (we’ll assume that the
planks are somehow constrained not to tilt). Let the forces that the planks exert
on the cylinders be labeled as shown in Fig. 19. “F” is the force on a given cylinder

F

G

F

G

n
an

αn

n

n +1

n +1

Figure 19

from the plank below it, and “G” is the force from the plank above it, with positive
directions defined as shown (it will turn out that half of the F ’s and G’s will be
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negative). Note that by Newton’s third law we have Fn+1 = Gn, because the planks
are massless.

Our strategy will be to solve for the linear and angular accelerations of each cylinder
in terms of the accelerations of the cylinder below it. Since we want to solve for two
quantities, we will need to produce two equations relating the accelerations of two
successive cylinders. One equation will come from a combination of F = ma, τ = Iα,
and Newton’s third law. The other will come from the nonslipping condition.

With the positive directions for a and α defined as in the figure, F = ma on the nth
cylinder gives

Fn −Gn = man, (432)

and τ = Iα on the nth cylinder gives

(Fn + Gn)R =
1

2
mR2αn =⇒ Fn + Gn =

1

2
mRαn (433)

Solving the previous two equations for Fn and Gn gives

Fn =
1

2

(
man +

1

2
mRαn

)
,

Gn =
1

2

(
−man +

1

2
mRαn

)
. (434)

But we know that Fn+1 = Gn. Therefore,

an+1 +
1

2
Rαn+1 = −an +

1

2
Rαn. (435)

We will now use the fact that the cylinders don’t slip with respect to the planks. The
acceleration of the plank above the nth cylinder is an−Rαn. But the acceleration of
this same plank, viewed as the plank below the (n + 1)st cylinder, is an+1 + Rαn+1.
Therefore,

an+1 + Rαn+1 = an −Rαn. (436)

Equations (435) and (436) are a system of two equations in the two unknowns, an+1

and αn+1, in terms of an and αn. Solving for an+1 and αn+1 gives

an+1 = −3an + 2Rαn,

Rαn+1 = 4an − 3Rαn. (437)

We can write this in matrix form as(
an+1

Rαn+1

)
=

(
−3 2

4 −3

)(
an

Rαn

)
. (438)

We therefore have
(

an

Rαn

)
=

(
−3 2

4 −3

)n−1 (
a1

Rα1

)
. (439)

Consider now the eigenvectors and eigenvalues of the above matrix (call it M). That
is, consider a vector V (the eigenvector) that simply gets taken into a multiple of
itself (the eigenvalue, call it λ) when acted on by M . In other words, MV = λV .
The eigenvalues are found via (see Appendix E)

∣∣∣∣
−3− λ 2

4 −3− λ

∣∣∣∣ = 0 =⇒ λ± = −3± 2
√

2. (440)

The eigenvectors are then

V+ =

(
1√
2

)
, for λ+ = −3 + 2

√
2,

V− =

(
1

−√2

)
, for λ− = −3− 2

√
2. (441)
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The reason we found these eigenvectors is that if we write the initial vector V ≡
(a1, Rα1) as V = b+V+ + b−V−, then we have MnV = b+λn

+V+ + b−λn
−V−. The

critical thing to now note is that |λ−| > 1, so λn
− → ∞ as n → ∞. This means

that if the initial (a1, Rα1) vector has any component along the V− vector, then
the (an, Rαn) vectors will head to infinity. This violates conservation of energy.
Therefore, the (a1, Rα1) vector must be proportional to V+.1 That is, Rα1 =

√
2a1.

Combining this with the fact that the given acceleration a of the bottom plank
equals a1 + Rα1, we obtain

a = a1 +
√

2a1 =⇒ a1 =
a√

2 + 1
= (

√
2− 1)a. (442)

Remark: Consider the general case where the cylinders have a moment of inertia of the
form I = βMR2. Using the above arguments, you can show that Eq. (438) becomes

(
an+1

Rαn+1

)
=

1

1− β

( −(1 + β) 2β
2 −(1 + β)

)(
an

Rαn

)
. (443)

And you can show that the eigenvectors and eigenvalues are

V+ =

( √
β

1

)
, for λ+ =

−1 + 2
√

β − β

1− β
=

√
β − 1√
β + 1

,

V− =

( √
β

−1

)
, for λ− =

−1− 2
√

β − β

1− β
=

√
β + 1√
β − 1

. (444)

As above, we cannot have the exponentially growing solution, so we must have only the V+

solution. We therefore have Rα1 = a1/
√

β. Combining this with the fact that the given
acceleration a of the bottom plank equals a1 + Rα1, we obtain

a = a1 +
a1√

β
=⇒ a1 =

( √
β

1 +
√

β

)
a. (445)

You can verify that all of these results agree with the β = 1/2 results obtained above.

Let’s now consider a few special cases of the

λ+ =

√
β − 1√
β + 1

(446)

eigenvalue, which gives the ratio of the accelerations in any level to the ones in the level
below.

• If β = 0 (all the mass of a cylinder is located at the center), then we have λ+ = −1.
In other words, the accelerations have the same magnitudes but different signs from
one level to the next. The cylinders simply spin in place while their centers remain
fixed. The centers are indeed fixed, because a1 = 0, from Eq. (445).

• If β = 1 (all the mass of a cylinder is located on the rim), then we have λ+ = 0. In
other words, there is no motion above the first level. The lowest cylinder basically rolls
on the bottom side of the (stationary) plank right above it. Its acceleration is a1 =
a/2, from Eq. (445). The top point on the lowest cylinder is always instantaneously
at rest, which is exactly what happens in the simple system of a lone hoop on top of
a plank (as you can verify), so the hoop doesn’t care whether or not there is anything
else on top of it.

• If β →∞ (the cylinders have long massive extensions that extend far out beyond the
rim), then we have λ+ = 1. In other words, all the levels have equal accelerations.

This fact, combined with the Rα1 = a1/
√

β ≈ 0 result, shows that there is no
rotational motion at any level, and the whole system simply moves to the right as an
essentially rigid object with acceleration a1 = a, from Eq. (445). ♣

1This then means that the (an, Rαn) vectors head to zero as n →∞, because |λ+| < 1. Also,
the accelerations change sign from one level to the next, because λ+ is negative.
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Second solution: This solution doesn’t use eigenvectors and eigenvalues. Con-
sider the ratio of the acceleration of a given plank to the force that this plank exerts
on the cylinder above it. Since any plank can be considered to be the bottom plank
of an infinite system, and since accelerations depend linearly on forces, this ratio is
the same for all levels. We will use this fact for the first two levels to determine Rα1

in terms of a1.

From the Eq. (434) in the first solution, the force that the bottom plank exerts on
the bottom cylinder is

F1 =
1

2

(
ma1 +

1

2
mRα1

)
, (447)

directed to the right. Also, with the sign conventions in Fig. 19, the acceleration of
the bottom plank (call it A1, which is simply the given quantity a) is

A1 = a1 + Rα1, (448)

directed to the right.

From the Eq. (434) in the first solution, the force that the second plank exerts on
the second cylinder is

F2 = G1 =
1

2

(
−ma1 +

1

2
mRα1

)
, (449)

directed to the right. (This quantity turns out to be negative, so the force is actually
directed to the left.) Also, the acceleration of the second plank is

A2 = a1 −Rα1, (450)

directed to the right.

Equating the ratio of the accelerations to the forces at the two levels gives

a1 + Rα1

1
2

(
ma1 + 1

2
mRα1

) =
a1 −Rα1

1
2

(
−ma1 + 1

2
mRα1

) . (451)

This simplifies to (Rα1)
2 = 2a2

1, or

Rα1 =
√

2a1. (452)

Eq. (448) then reproduces the result in Eq. (442) from the first solution.

8.58. Pendulum collision

Let ω be the angular speed right before the collision. Let M and V be the mass and
final speed of the ball. Then for the collision, conservation of L (around the pivot)
and E give

(
m`2

3

)
ω =

(
m`2

3

)
ω

2
+ MV `,

1

2

(
m`2

3

)
ω2 =

1

2

(
m`2

3

)(
ω

2

)2

+
1

2
MV 2. (453)

Solving for V in the first equation and plugging into the second gives M = m/9.

The angular speed ω is determined by conservation of energy through the quarter
rotation:

mg
`

2
=

1

2

(
m`2

3

)
ω2 =⇒ ω =

√
3g

`
. (454)

Plugging this (along with M = m/9) into either of the above equations gives V =
(3
√

3/2)
√

g`.
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8.59. No final rotation

Let vb and vs be the final velocities of the ball and stick, with rightward and leftward
taken to be positive, respectively. Conservation of p, E, and L (around a dot on the
table where the initial center of the stick is) give

0 = Mvb −mvs,

1

2

(
m`2

12

)
ω2

0 =
(
0 +

1

2
mv2

s

)
+

1

2
Mv2

b,

(
m`2

12

)
ω0 = (0 + 0) + Mvb

`

2
. (455)

(We have noted that in general the stick’s contributions come from both the motion
of the CM and the motion relative to the CM.) Using the first and third equations
to write vb and vs in terms of ω0, the second equation gives M = m/2.

8.60. Same final speeds

Let v be the common final speed. Let ω be the final angular speed of the stick.
Then conservation of p, E, and L (around a dot on the table where the center of
the stick is when the collision occurs) give

mv0 = 2mv,

1

2
mv2

0 =
(

1

2
(Am`2)ω2 +

1

2
mv2

)
+

1

2
mv2,

0 = −(Am`2)ω + mv
`

2
. (456)

The first equation gives v = v0/2, and then the third equation gives ω = v/2A` =
v0/4A`. Plugging these into the second equation yields A = 1/8.

8.61. Perpendicular deflection

Let vx and vy be the final velocity components of the center of the dumbbell, with
rightward and downward positive, respectively. The moment of inertia of the dumb-
bell around its center is 2m(`/2)2 = m`2/2. Conservation of px, py, E, and L
(around a dot on the table where the initial center of the stick is) give

MV0 = 0 + (2m)vx =⇒ vx =
MV0

2m
,

0 = Mu− (2m)vy =⇒ vy =
Mu

2m
,

1

2
MV 2

0 =
1

2
Mu2 +

(
1

2
(2m)(v2

x + v2
y) +

1

2

(
m`2

2

)
ω2

)
,

MV0
`

2
=

(
m`2

2

)
ω =⇒ ω =

MV0

m`
. (457)

Plugging the vx, vy, and ω from the first, second, and fourth equations into the third
gives

u = V0

√
2m− 2M

2m + M
. (458)

So we need m ≥ M for this setup to be possible (although the case of equality leads
to M being at rest).

8.62. Glancing off a stick

Since there is no force in the y direction on the mass (because the stick is frictionless),
the y speed of the mass remains v0/

√
2, and the CM of the stick ends up moving

only in the x direction. Let v be the resulting speed of the CM, and let ω be the
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resulting angular velocity. Conservation of px, L (around a dot on the table where
the initial center of the stick is), and E give

(km)
v0√
2

= mv =⇒ v =
kv0√

2
,

(km)
v0√
2
· `

2
=

1

12
m`2ω =⇒ ω =

3
√

2kv0

`
,

1

2
(km)v2

0 =
1

2
(km)

(
v0√
2

)2

+
[
1

2
· 1

12
m`2ω2 +

1

2
mv2

]

=⇒ 1

4
kv2

0 =
1

24
`2ω2 +

1

2
v2. (459)

Plugging the values of v and ω from the first two equations into the last gives
k/4 = k2 =⇒ k = 1/4.

8.63. Sticking to a dumbbell

The moment of inertia around the CM of the resulting system (which is `/3 from
the end) is I = 2m(`/3)2 + m(2`/3)2 = 2m`2/3. Conservation of L (around a dot
on the table coinciding with the CM of the system right at the collision) then gives
mv(`/3) = (2m`2/3)ω =⇒ ω = v/(2`).

After half of a revolution, we must subtract off the rotational motion from the CM
motion. By conservation of p, the CM moves with speed v/3. So the velocity of the
2m end is

v2m = vCM − ωr =
v

3
−

(
v

2`

)(
`

3

)
=

v

6
. (460)

8.64. Colliding sticks

We’ll use conservation of L around a dot on the table where the pivot was. Note
that the initial speed of the center of the moving stick is ω(`/2). So the initial
p is mω`/2. By conservation of p (valid, because the pivot is removed), this is
also the final p. The double-stick CM is ` − x/2 from the origin, so the final L is
rp = (`−x/2)(mω`/2) (plus zero contribution from rotation). But the initial L was
(m`2/3)ω. So conservation of L gives

m`2ω

3
=

(
`− x

2

)(
mω`

2

)
=⇒ x =

2`

3
. (461)

You can also use conservation of L around the CM of the double-stick system. If
the double-stick isn’t rotating, then the final L is zero. So demanding that the two
contributions to the initial L (from rotation and CM motion) cancel leads to the
above result, as you can show.

8.65. Lollipop

(a) Pick the origin to be the spot on the ice that corresponds to the initial top end
of the stick. The initial angular momentum around this origin is (mR2/2)ω +
mvR. From the parallel-axis theorem, the moment of inertia of the lollipop
around the top end of the stick is

I = Istick + Ipuck = m(2R)2/3 + (mR2/2 + mR2) = (17/6)mR2. (462)

Let Ω be the final angular speed of the lollipop. Then conservation of L around
the origin gives

(mR2/2)ω + mvR = (17/6)mR2Ω + 0 =⇒ Ω =
6(v + Rω/2)

17R
, (463)

where the zero comes from the fact that the lollipop’s CM (which is located
at the top end of the stick) is moving directly away from the origin. We are
given v = Rω, so we have Ω = 9ω/17.
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(b) Both the initial and final energies have translational and rotational parts. Con-
servation of p quickly gives the final CM speed of the lollipop as v/2, so the
magnitude of the energy loss, ∆E = Ei − Ef , is

∆E =

[
1

2

(
1

2
mR2

)
ω2 +

1

2
mv2

]

−
[

1

2

(
17

6
mR2

)(
6(v + Rω/2)

17R

)2

+
1

2
(2m)

(
v

2

)2

]

=
m

68
(5v2 − 12vRω + 14R2ω2). (464)

Using v = Rω, this becomes ∆E = (7/68)mR2ω2.

(c) Setting d(∆E)/dv equal to zero gives 0 = 10v − 12Rω =⇒ v = (6/5)Rω, as
desired. The minimum ∆E turns out to be mR2ω2/10, which is only slightly
smaller than the result in part (b).

8.66. Pencil on a plane

(a) The main point is that when the pivot point of the pencil changes (when a
new spoke hits the plane), the speed of the axis changes suddenly and kinetic
energy is lost, because only the velocity component perpendicular to the new
spoke survives from the previous velocity, which was perpendicular to the old
spoke. (Equivalently, in the collision where a new spoke hits the plane, angular
momentum is conserved around the point of impact.) The loss in kinetic energy
is proportional to the square of the velocity right before the change of spoke.
When the speed has increased to a magnitude where this loss in kinetic energy
equals the gain from the change in potential energy, the pencil will not go any
faster.

(b) Let’s solve this problem for a general number of spokes, N , and then let N = 6.
Let v0 be the speed of the axis right before a new spoke hits, and let β ≡ 2π/N .
Then the speed of the axis right after the new spoke hits is v0 cos β, because
this is the component of the old velocity that is perpendicular to the new spoke.

The length of a “side” of the pencil is 2r sin(β/2), so equating the change in
potential energy during an Nth of a rotation with the kinetic energy loss due
to the changing of the contact spoke (because these two quantities will balance
in the “steady” state) gives

(mv2
0/2)(1− cos2 β) = mg

(
2r sin(β/2)

)
sin θ. (465)

Therefore, in the steady state the maximum speed v0 of the axis is given by

v2
0 =

4gr sin(β/2) sin θ

sin2 β
. (466)

For N = 6 and β = π/3, this yields

v2
0 = (8/3)gr sin θ. (467)

If conditions have been set up so that a nonzero v0 exists, then it must be this
(assuming that contact is always maintained with the plane).

(c) If θ < β/2, then right after the pivot point changes, the axis must actually move
upward before falling down along the plane. For a nonzero v0 to exist, the axis
must be moving fast enough to get over this “bump” (remember that an initial
kick to the pencil is allowed). Assuming θ < β/2, the height that the axis must
climb is r

(
1− cos(β/2− θ)

)
. The speed at which the axis starts this climb is
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v0 cos β. Therefore, we must have (1/2)m(v0 cos β)2 > mgr
(
1− cos(β/2− θ)

)
.

Using the expression for v0 in Eq. (466), this gives

2 sin(β/2) sin θ cos2 β

sin2 β
> 1− cos(β/2− θ). (468)

For N = 6 and β = π/3, this becomes
√

3

2
cos θ > 1− 5

6
sin θ. (469)

Squaring and solving for sin θ gives

sin θ >
15− 6

√
3

26
. (470)

(The other root doesn’t satisfy θ < β/2 = 30◦.) This minimum θ is approxi-
mately 10.2◦.

(d) The axis of the pencil moves in a circular arc around the pivot point. The
gravitational force along the contact spoke must account (at least) for the cen-
tripetal acceleration of the axis. The maximal centripetal acceleration occurs
right before the pivot point changes, and it equals mv2

0/r. The minimal gravi-
tational force along the spoke also occurs right before the pivot point changes,
and it equals mg cos(θ + β/2). Using the expression for v0 in Eq. (466), the
requirement mv2

0/r ≤ mg cos(θ + β/2) becomes

4 sin(β/2) sin θ

sin2 β
≤ cos(θ + β/2) =⇒ tan θ ≤ sin2 β

4 + sin2 β
cot(β/2). (471)

For N = 6 and β = π/3, this gives

tan θ ≤ 3
√

3

19
, (472)

which yields θ <∼ 15.3◦. There is therefore a window of only about 5.1◦ (or
5.09◦, to be a little more exact) for which the pencil has a nonzero terminal
(average) velocity while remaining in contact with the plane at all times.

8.67. Striking a pool ball

∆L = h∆p, where h is the distance the strike is above the center. This gives
(2/5)mr2ω = h(mv). But the non-slipping condition is v = rω. Therefore, h = 2r/5,
which is 7r/5 above the table.

8.68. Center of percussion

∆L = x∆p, where x is the distance from the strike to the center. This gives
(1/12)mL2ω = x(mv) =⇒ ω = 12xv/L2. But we want the backward speed of the
end (relative to the CM) due to the rotation, which is (L/2)ω, to cancel the forward
speed v from the CM motion. Using the ω from above, this yields

L

2

(
12xv

L2

)
= v =⇒ x =

L

6
. (473)

This is the distance from the center, so the blow should occur 2L/3 from your hand.

8.69. Another center of percussion

∆L = x∆p, where x is the distance from the strike to the center. This gives
(1/24)mL2ω = x(mv) =⇒ ω = 24xv/L2. But we want the backward speed
(L/

√
3)ω from the rotation (since L/

√
3 is the distance from the center to the ver-

tex) to cancel the forward speed v from the CM motion. Using the ω from above,
this yields

L√
3

(
24xv

L2

)
= v =⇒ x =

√
3L

24
. (474)

The distance from the vertex is therefore L(1/
√

3 +
√

3/24) = 3
√

3L/8. This is 3/4
of the whole altitude (

√
3L/2) from the vertex to the opposite side.
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8.70. Not hitting the pole

Let the moment of inertia around the center be βm`2. We know that ∆L = r∆p,
where r is the distance from the strike to the center. Hence, βm`2ω = (`/2)(mv) =⇒
ω = v/(2β`). The stick won’t hit the pole if it moves a distance of at least `/2 by
the time it rotates through an angle of π/2, which is t = (π/2)/ω. So we need

vt > `/2 =⇒ v

(
π/2

v/(2β`)

)
> `/2 =⇒ β >

1

2π
. (475)

Note that a uniform stick has a β of only 1/12, so it will hit the pole.

8.71. Pulling the paper

Since the friction force from the paper is always applied at the same lever arm, we
have ∆L = r∆p at any time, in particular at the instant the ball comes off the
paper. If L0 and p0 are the values at this instant, then L0 = rp0.

After the ball comes off the paper, it will stop rotating after the friction force from
the table has provided an angular impulse of −L0 = −rp0. But since this friction
force is also always applied at the same lever arm, we again have ∆p = ∆L/r, and
so ∆p = (−rp0)/r = −p0. In other words, the ball is now at rest translationally in
addition to rotationally, as we wanted to show.

Yes, it is possible for the ball to end up where it started. Let’s assume that you pull
rightward for a time tr and then leftward for a time tl. And assume for simplicity
(although this is by no means necessary) that you pull fast enough so that the ball
is always slipping, which means that the friction on the paper always takes the same
value µkmg.

A continuity argument shows that it is indeed possible for the ball to end up where
it started. If tr is nonzero and tl = 0, then the ball ends up to the right, because
the velocity at all times is greater than or equal to zero. Likewise, if tl is nonzero
and tr = 0, then the ball ends up to the left. So by continuity, there must be some
particular ratio of tr and tl for which the ball ends up where it started.

As a specific example, let’s look at the case where the coefficients of friction on the
paper and the table are equal. If you pull to the right for a time T and then to the
left for a time 2T (at which point you arrange for the ball to come off the paper),
then the ball will end up where it started. You can work this out with equations,
or you can just note that the graphs of a, v, and x look like those shown in Fig. 20.

T 2T 3T 4T
t

a

t

v

t

x

on paper

on table

Figure 20

The displacement is the area under the v vs. t graph, which we see is zero.

8.72. Up, down, and twisting

∆L = r∆p, where r is the distance from the strike to the center. Hence, (1/12)m`2ω =
(`/2)(mv) =⇒ ω = 6v/`. The total time for the CM to return to its original height
is T = 2v/g. We want ωT = nπ, where n is an integer. This gives

(
6v

`

)(
2v

g

)
= nπ =⇒ v2 =

nπ`g

12
. (476)

The maximum height of the CM is

ymax =
v2

2g
=

nπ`g/12

2g
=

(
nπ

24

)
`. (477)

8.73. Doing work

(a) The acceleration is a = F/m, so v = at = Ft/m, and d = at2/2 = Ft2/2m.
The work equals the final kinetic energy, because

Fd =
1

2
mv2 ⇐⇒ F

(
Ft2

2m

)
=

1

2
m

(
Ft

m

)2

, (478)

which is indeed true.
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(b) The CM has the same acceleration as in part (a), because of the general fact
that Fext = maCM. So the final CM speed is still Ft/m. The angular acceler-
ation is α = τ/I = (F`/2)/(m`2/12) = 6F/m`, so the final angular speed is
ω = 6Ft/m`. The distance your hand moves can be broken up into the linear
and rotational distances:

d =
1

2
at2 +

`

2
· 1

2
αt2 =

1

2

(
F

m

)
t2 +

`

2
· 1

2

(
6F

m`

)
t2 =

2Ft2

m
. (479)

The work equals the final kinetic energy, because

Fd =
1

2
mv2 +

1

2
Iω2 ⇐⇒ F

(
2Ft2

m

)
=

1

2
m

(
Ft

m

)2

+
1

2

(
m`2

12

)(
6Ft

m`

)2

,

(480)
which is indeed true.

8.74. Bouncing between bricks

The center of the stick moves a distance L− 2(`/2) sin θ between bounces, so if t is
the time between bounces, then we must have

vt = L− ` sin θ, and ωt = 2θ. (481)

But

∆L = r∆p =⇒ ∆L =
(
(`/2) cos θ

)
∆p =⇒ 2Iω = (`/2) cos θ (2mv). (482)

Writing v and ω in terms of t, this becomes

2
(

m`2

12

)(
2θ

t

)
=

`

2
cos θ · 2m

(
L− ` sin θ

t

)
=⇒ `θ

3
= cos θ(L− ` sin θ). (483)

This is the desired implicit equation. If L À `, then θ ≈ 90◦, which makes sense. If
L ¿ `, then θ ≈ 0 (otherwise the right-hand side of Eq. (483) would be negative),
so we have `θ/3 ≈ (1)(L− `θ) =⇒ θ ≈ 3L/4`. The closest distance from the center
to each wall is then (`/2) sin θ ≈ 3L/8. So the center moves a distance of only L/4
between bounces. This is shown in Fig. 21.

Figure 21

In the case of n additional half revolutions (let’s assume that the stick hits the bricks
low enough so that it doesn’t run into them as it rotates), the only change is that
ω is now given by ωt = 2θ + nπ. So the implicit equation that determines θ is

`

6
(2θ + nπ) = cos θ(L− ` sin θ) =⇒ L

`
=

2θ + nπ

6 cos θ
+ sin θ. (484)

This is minimum when θ = 0, which makes sense because the lever arm is larger,
and also the stick doesn’t have to do any extra rotation beyond nπ. For θ = 0 we
obtain L/` = nπ/6.

8.75. Repetitive bouncing

If we want the ball to move back and forth along the same parabola, we need vx and
ω to switch signs at each bounce (because reflecting the motion through the vertical
axis of the parabola yields the same motion). So the result of Problem 8.20 gives

7(−vx) = 3vx − 4Rω,

7(−Rω) = −10vx − 3Rω. (485)

Both of these equations give 5vx = 2Rω. (The reason they give consistent results is
that −1 is an eigenvalue of the transformation matrix.)
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8.76. Bouncing under a table

The bounce off the underside of the table has the transformation,
(

v′x
Rω′

)
=

1

7

(
3 4
10 −3

)(
vx

Rω

)
. (486)

To obtain this, you can redo the procedure in Problem 8.20, or you can just make
the substitution ω → −ω. (Imagine reflecting the whole setup through the hori-
zontal plane of the table. This doesn’t affect vx, but it interchanges clockwise and
counterclockwise motion.) We want vx and ω to switch signs during the bounce off
the table, which gives

7(−vx) = 3vx + 4Rω,

7(−Rω) = 10vx − 3Rω. (487)

Both of these equations give 5vx = −2Rω. So after the bounce, we have (vx, Rω) ∝
(−2, 5). For the return bounce off the floor, we can use the original transformation
to obtain

(
v′x

Rω′

)
∝ 1

7

(
3 −4
−10 −3

)(
−2
5

)
=

1

7

(
−26
5

)
. (488)

The initial quantities are the negatives of these, so you want to throw the ball with
(vx, Rω) ∝ (26,−5). Note that since the ω here is negative, you need to throw the
ball with “forward” spin (because we defined counterclockwise ω to be positive in
Problem 8.20) instead of the more natural backspin.

Remark: From the remark in the solution to Problem 8.20, and from the above reasoning
involving ω → −ω, it follows that the matrices for the bounce off the floor and the table,
relevant to a general moment if inertia I = βmr2, are, respectively,

1

1 + β

(
1− β −2β
−2 −(1− β)

)
and

1

1 + β

(
1− β 2β

2 −(1− β)

)
. (489)

Using the above method, you can show that the ball retraces its path if (vx, Rω) ∝
(
β(3−

β), 1 − 3β
)
. This reduces to the above result if β = 2/5. Interestingly, if β = 1/3 (which

corresponds to a wheel with massive spokes and a massless rim), then you should throw

the ball with no spin. For values of β smaller than 1/3, you should throw the ball with

backspin. ♣
8.77. Bouncing under a table again

Let V stand for the vector (v, Rω) (we’ll drop the subscript x on the v). Then from
Problem 8.20 and Exercise 8.76, we know that the matrices that transform V at a
bounce off the floor and off the underside of the table are, respectively,

F =
1

7

(
3 −4
−10 −3

)
and T =

1

7

(
3 4
10 −3

)
. (490)

Let V = (v, Rω) represent the initial values. Then the velocity after the first bounce
off the floor is the first component of the vector FV. The velocity after the bounce
off the underside of the table is then the first component of the vector TFV. And
finally the velocity after the second bounce off the floor is the first component of
the vector FTFV. The total horizontal displacement after the whole process is
therefore the first component of the vector

Vt1 + FVt2 + TFVt2 + FTFVt1. (491)

You can show that

TF =
1

49

(
−31 −24
60 −31

)
and FTF =

1

343

(
−333 52
130 333

)
. (492)
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So the condition that the total displacement equal zero is

0 = t1

(
v − 333

343
v +

52

343
Rω

)
+ t2

(
3

7
v − 4

7
Rω − 31

49
v − 24

49
Rω

)

=
t1

343
(10v + 52Rω) +

t2
49

(−10v − 52Rω)

=
1

343
(t1 − 7t2)(10v + 52Rω). (493)

We therefore see that the ball comes back to your hand if Rω = −5v/26 (in which
case the ball returns along the same path, as we found in Exercise 8.76), or if t1 = 7t2
(for any v and Rω), as we wanted to show. In the special case where you throw
the ball downward very fast (so that gravity doesn’t have much time to act), this
condition is equivalent to the height of your hand being 7 times the height of the
table.

Remark: The fact that there exists a solution of the form t1 = kt2 for some k, independent

of v and Rω, actually isn’t so surprising if we use the result of Problem 8.20 while considering

the most general form that the total displacement can take. The total displacement equals

the sum of the products of the v’s at the various stages times either t1 or t2. But since the v’s

at later stages are functions of the initial velocities, v and Rω, the most general possible form

of the displacement is d = Avt1 + Bvt2 + CRωt1 + DRωt2, where A, B, C, D are constants

determined by the two transformation matrices, F and T . But from Problem 8.20, we know

that d = 0 if Rω = −(5/26)v, and this holds for any values of t1 and t2. This implies that

(5v + 26Rω) is a factor of d. That is, d must take the form, d = (at1 + bt2)(5v + 26Rω).

Since d can be factored in this way, we see that if we want d = 0, then in addition to the

Rω = −(5/26)v solution, there is always another solution, t1 = −(b/a)t2. ♣

From the remark in the solution to Problem 8.20, and from the reasoning in Exercise
8.76, the matrices F and T relevant to a general moment if inertia I = βmr2 are

F =
1

1 + β

(
1− β −2β
−2 −(1− β)

)
and T =

1

1 + β

(
1− β 2β

2 −(1− β)

)
.

(494)
Performing the matrix multiplication in Eq. (491) by your method of choice, and
simplifying, we see that the condition that the total displacement equal zero is

0 =
2

(1 + β)3

(
(3β − 1)t1 − (β + 1)t2

)(
(3β − 1)v + (−β + 3)βRω

)
. (495)

For β = 2/5, this reduces to the result in Eq. (493). For β = 1, it yields 0 =
(t1− t2)(v +Rω), which gives the t1 = t2 condition, as desired. If β ≤ 1/3, then the
coefficient of t1 is negative (or zero if β = 1/3), which means that t1 and t2 would
have to have opposite signs (or t2 = 0 if β = 1/3, but this would mean that the
table is located right on the floor) if the first factor in Eq. (495) is to be zero. But
these times are positive by definition. So the only way to make the displacement
equal to zero if β ≤ 1/3 is for the second factor to be zero, which corresponds to the
path retracing itself (see the remark in the solution to Exercise 8.76).
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Chapter 9

Angular momentum, Part II
(General L̂)

9.31. Rolling wheel

The point on the wheel that is in contact with the ground does not look blurred,
because it is instantaneously at rest. However, although this is the only point on
the wheel that is at rest, there are other locations in the picture where the spokes
do not appear blurred.

The characteristic of a point in the picture where a spoke does not appear blurred
is that the point lies (essentially) on the spoke during the entire duration of the
camera’s exposure. (The point need not, however, correspond to the same atom on
the spoke.) At a given time, consider a spoke in the lower half of the wheel. A short
time later, the spoke will have moved, but it will intersect its original position. The
spoke will not appear blurred at this intersection point. We must therefore find the
locus of these intersections.

First solution: We may consider the wheel to be rotating around the instanta-
neous contact point on the ground. A spoke is not blurred at a given point if the
spoke moves parallel to itself at this point. This happens where the spoke is per-
pendicular to the line from this point to the contact point. These points therefore
lie on a circle whose diameter is the (lower) vertical radius of the wheel, as shown
in Fig. 22.

Figure 22

Second solution: Consider a spoke that at a given time makes an angle θ with
the horizontal, and then look at the same spoke an infinitesimal time later, after the
wheel has rotated through an angle dθ. The spoke is not blurred at the point where
the original spoke intersects the new one. The center of the wheel moves distance
R dθ during this time, so the two positions of the spoke are shown in Fig. 23. From

old

n
ew

R dθ

dθ

θ

l

Figure 23
the law of sines, we have

`

sin θ
=

R dθ

sin(dθ)
=⇒ ` ≈ R sin θ. (496)

These lengths ` describe a circle whose diameter is the (lower) vertical radius of the
wheel, as shown in Fig. 24.

θ

θ

R sinθ

Figure 24

9.32. Inertia tensor

The given identity yields

r× (ω × r) = ω(r · r)− r(r · ω)

= (ω1, ω2, ω3)(x
2 + y2 + z2)− (x, y, z)(xω1 + yω2 + zω3)

107
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=
(
ω1(y

2 + z2)− ω2xy − ω3zx
)
x̂

+
(
ω2(z

2 + x2)− ω3yz − ω1xy
)
ŷ

+
(
ω3(x

2 + y2)− ω1zx− ω2yz
)
ẑ. (497)

9.33. Tennis racket theorem

We’ll assume that I1 > I2 > I3. Conservation of L2 and E tell us that the quantities

I2
1ω2

1 + I2
2ω2

2 + I2
3ω2

3 = L2, and

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = 2E (498)

are constant. Eliminating ω1 by multiplying the second equation by I1 and sub-
tracting it from the first gives

I2(I2 − I1)ω
2
2 + I3(I3 − I1)ω

2
3 = L2 − 2I1E. (499)

Because I1 > I2 > I3, both coefficients on the left-hand side are negative. Multiply-
ing through by −1, we obtain an equation of the form, Aω2

2 + Bω3
3 = C, where A

and B (and hence C) are positive. We therefore have an ellipse in the ω2-ω3 plane.
Hence, ω2 and ω3 are bounded; if they both start small, then they must always
remain small. Likewise, if we eliminate ω3, we obtain an ellipse in the ω1-ω2 plane.
However, if we eliminate ω2, we obtain

I1(I1 − I2)ω
2
1 + I3(I3 − I2)ω

2
3 = L2 − 2I2E. (500)

The two coefficients on the left-hand side now have opposite sings, so we have a
hyperbola in the ω1-ω3 plane. Therefore, ω1 and ω3 are free to become large.

9.34. Moments for a cube

From the example in Section 9.2.1, the inertia tensor is

I = m`2

(
2/3 −1/4 −1/4

−1/4 2/3 −1/4
−1/4 −1/4 2/3

)
. (501)

The procedure in Appendix E gives, with η ≡ 2/3− λ,

0 =

∣∣∣∣∣
η −1/4 −1/4

−1/4 η −1/4
−1/4 −1/4 η

∣∣∣∣∣ = η
(
η2 − 1

16

)
− 1

2

(
1

16
+

η

4

)
. (502)

This simplifies to 32η3−6η−1 = 0. Fortunately, η = 1/2 is a root of this cubic. And
then η = −1/4 is a double root of the resulting quadratic. Recalling λ ≡ 2/3 − η,
the principle moments are λ = 1/6, and λ = 11/12 twice. Using the procedure
in Appendix E, you can show that the λ = 1/6 moment corresponds to the vector
(1,1,1), which is the diagonal line from the origin to the opposite corner. And the
λ = 11/12 moment corresponds to any vector in the plane perpendicular to (1,1,1).

9.35. Tilted moments

(a) From Eq. (9.94) we have y′ = −x sin θ + y cos θ. Therefore (dropping the dm’s
in the integrals),

Ix′ =

∫
y′2 = sin2 θ

∫
x2 + cos2 θ

∫
y2 − 2 sin θ cos θ

∫
xy

= Iy sin2 θ + Ix cos2 θ − 0, (503)

where the zero follows from the fact that x and y are principal axes.
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(b) We must calculate
∫

`2 dm, where ` is the distance from a point in the body
to the line containing the unit vector u ≡ (α, β, γ). For a point located at a
general vector r, we have ` = r sin θ, where θ is the angle between r and u.
But from Eq. (B.9) we have |r× u| = |r||u| sin θ = r sin θ = `. Since this cross
product equals

∣∣∣∣∣
x̂ ŷ ẑ
x y z
α β γ

∣∣∣∣∣ = (yγ − zβ, zα− xγ, xβ − yα), (504)

we therefore have (dropping the dm in the integral)

Iu =

∫
`2 =

∫
(yγ − zβ)2 + (zα− xγ)2 + (xβ − yα)2

=

∫
α2(y2 + z2) + β2(x2 + z2) + γ2(x2 + y2)

= α2Ix + β2Iy + γ2Iz, (505)

where we have used the fact that the cross terms, such as γβ
∫

yz, vanish due
to the assumption that the coordinate axes are principal axes.

9.36. Quadrupole

(a) The potential given in Eq. (9.98) can be written as

V (R) = −GM

R

∫
dm√

1 +
(

r2

R2 − 2r cos β
R

)

= −GM

R

∫ (
1− 1

2

(
r2

R2
− 2r cos β

R

)
+

3

8

(
r2

R2
− 2r cos β

R

)2

− · · ·
)

dm

≈ −GM

R

∫ (
1 +

r cos β

R
+

r2

R2

(
3

2
cos2 β − 1

2

))
dm, (506)

where we have dropped terms of order (r/R)3 and higher. We now note that
the integral of r cos β dm equals zero, because r cos β is the projection along the
vector R of the position of a point in the body, and so this integral gives the
position of the CM along the vector R, which is zero because we are assuming
that the CM is at the origin. Equation 506 therefore yields

V (R) ≈ −GMm

R
− GM

2R3

∫
r2(3 cos2 β − 1) dm, (507)

as desired. To produce Eq. (9.100), we’ll use cos2 β = 1 − sin2 β to rewrite
V (R) as

V (R) ≈ −GMm

R
− GM

2R3

∫
(2r2 − 3(r sin β)2) dm. (508)

Now, if (x1, x2, x3) are the coordinates along a given set of three orthogonal
axes, then we have

2r2 = 2(x2
1 + x2

2 + x2
3) = (x2

2 + x2
3) + (x2

1 + x2
3) + (x2

1 + x2
2). (509)

Using this, along with the fact that r sin β is the distance from a given point
in the body to the axis along the R vector, Eq. (508) becomes

V (R) ≈ −GMm

R
− GM

2R3
(I1 + I2 + I3 − 3IR), (510)

as desired.
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(b) If R makes an angle θ with x̂3, then if we use Eq. (505) with (α, β, γ) =
(sin θ, 0, cos θ) (or more generally, with α2 + β2 = sin2 θ), we see that the IR

in Eq. (510) equals (α2 + β2)I + γ2I3 = I sin2 θ + I3 cos2 θ. So we have

I1 + I2 + I3 − 3IR = 2I + I3 − 3
(
I(1− cos2 θ) + I3 cos2 θ

)

= (I3 − I)(1− 3 cos2 θ), (511)

which yields the desired result.

9.37. Sphere and points

Let the x axis be along the line joining the two masses, and let the y axis be
perpendicular to this, in the plane of the paper. These are principal axes, and in
their basis the initial L (which is also the final L) is L = (2/5)mR2ω(cos θ, sin θ). The
principal moments are Ix = (2/5)mR2 and Iy = (2/5)mR2+2(m/2)R2 = (7/5)mR2.
The ω vector in the principal basis is therefore

ω =

(
Lx

Ix
,
Ly

Iy

)
=

(
ω cos θ,

2

7
ω sin θ

)
. (512)

So if α is the angle that ω makes with the x axis, then tan α = (2/7) tan θ. The
angle that ω makes with the vertical is therefore

θ − α = θ − tan−1
(

2

7
tan θ

)
. (513)

If you want to maximize this, taking the derivative yields

0 = 1− 1

1 + (4/49) tan2 θ
· 2

7
· 1

cos2 θ
, (514)

which leads to sin2 θ = 7/9. The resulting maximum angle with the vertical axis is
about 33.7◦.

9.38. Striking a triangle

The CM is halfway between B and D. The L (relative to the CM) due to the
impulse is therefore L = r×p = (2a,−a, 0)× (0, 0,−P ) = P (a, 2a, 0). The principal
moments are Ix = (3m)a2 + 3(ma2) = 6ma2 and Iy = 2 ·m(2a)2 = 8ma2 (Iz won’t
matter here). So the angular velocity right after the blow is

ω =

(
Lx

Ix
,

Ly

Iy
, 0

)
=

(
Pa

6ma2
,

2Pa

8ma2
, 0

)
=

P

12ma
(2, 3, 0). (515)

The velocities relative to the CM are then (note that positive z is out of the page)

uA = ω × rA =
P

12ma
· a

∣∣∣∣∣
x̂ ŷ ẑ
2 3 0
−2 −1 0

∣∣∣∣∣ =
P

12m
(0, 0, 4),

uB = ω × rB =
P

12ma
· a

∣∣∣∣∣
x̂ ŷ ẑ
2 3 0
0 −1 0

∣∣∣∣∣ =
P

12m
(0, 0,−2),

uC = ω × rC =
P

12ma
· a

∣∣∣∣∣
x̂ ŷ ẑ
2 3 0
2 −1 0

∣∣∣∣∣ =
P

12m
(0, 0,−8),

uD = ω × rD =
P

12ma
· a

∣∣∣∣∣
x̂ ŷ ẑ
2 3 0
0 1 0

∣∣∣∣∣ =
P

12m
(0, 0, 2). (516)



111

Adding on the velocity of the CM, which is (P/6m)(0, 0,−1), gives total velocities
of

vA =
P

6m
(0, 0, 1),

vB =
P

6m
(0, 0,−2),

vC =
P

6m
(0, 0,−5),

vD =
P

6m
(0, 0, 0). (517)

So initially D doesn’t move.

9.39. Striking another triangle

The CM is a distance mh/(M +m) above the base. The L (relative to the CM) due
to the impulse is therefore

L = r× p =
(

b

2
, − mh

M + m
, 0

)
× (0, 0,−P ) = P

(
mh

M + m
,

b

2
, 0

)
. (518)

The principal moments are

Ix = M
(

mh

M + m

)2

+ m
(

Mh

M + m

)2

=
mMh2

M + m
, and Iy =

Mb2

12
. (519)

So the angular velocity right after the blow is

ω =

(
Lx

Ix
,

Ly

Iy
, 0

)
=

P

M

(
1

h
,

6

b
, 0

)
. (520)

The velocity of m relative to the CM is then (note that positive z is out of the page)

um = ω × rm =
P

M

∣∣∣∣∣∣
x̂ ŷ ẑ

1/h 6/b 0
0 Mh

M+m
0

∣∣∣∣∣∣
=

P

M + m
(0, 0, 1). (521)

Adding on the velocity of the CM, which is (P/(M + m))(0, 0,−1), yields a total
velocity for m of zero.

9.40. Sticking sticks

Because the CM’s of the sticks aren’t moving, the total L relative to any point is
simply the sum of the L’s around the CM’s, which gives

L =
(

m`2ω

12
,

m`2ω

12
, 0

)
. (522)

The CM of the total system is `/4 below the intersection. So the principal moments
relative to the CM are

Ix = m
(

`

4

)2

+

(
m`2

12
+ m

(
`

4

)2
)

=
5

24
m`2, and Iy =

1

12
m`2. (523)

The angular velocity right after the blow is

ω =

(
Lx

Ix
,

Ly

Iy
, 0

)
= ω(2/5, 1, 0) ∝ (2, 5, 0). (524)

So ω points upward with a slope of 5/2. Since the CM doesn’t move, the point on
the T that lies on ω will be at rest. Since the CM is `/4 below the intersection, the
point on the top stick that is (2/5)(`/4) = `/10 to the right of the intersection will
be instantaneously at rest.
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9.41. Circling stick again

With the CM as the origin, let the x axis be perpendicular to the stick in the plane
of the paper, and let the y axis be along the stick. Then Ix = (1/12)m`2 and Iy = 0.
Since ω = ω(sin θ, cos θ, 0), we have

L = (Ixωx, Iyωy, Izωz) =
(
(1/12)m`2ω sin θ, 0, 0

)
, (525)

which points up to the right. The horizontal component brings in a factor of cos θ,
and then we must multiply by ω to obtain

∣∣∣∣
dL

dt

∣∣∣∣ = (L cos θ)ω =
1

12
m`2ω2 sin θ cos θ, (526)

and it points into the page.

Now we must find the torque. Gravity provides no torque around the CM. The
vertical force from the pivot is mg (because the CM has no vertical acceleration),
so it provides a torque of mg(`/2) sin θ into the page. The horizontal force from the
pivot is mrω2 = m(`/2) sin θ ω2 (to provide the centripetal acceleration of the CM),
so it provides a torque of m(`/2) sin θ ω2 · (`/2) cos θ out of the page. Therefore,
τ = dL/dt gives

mg
(

`

2

)
sin θ −m

(
`

2

)2

ω2 sin θ cos θ =
1

12
m`2ω2 sin θ cos θ =⇒ ω =

√
3g

2` cos θ
,

(527)
in agreement with the result in section 9.4.2.

9.42. Pivot and string

With the pivot as the origin, let the x axis be perpendicular to the stick in the plane
of the paper, and let the y axis be along the stick. Then Ix = (1/3)m`2 and Iy = 0.
Since ω = ω(sin θ, cos θ, 0), we have

L = (Ixωx, Iyωy, Izωz) =
(
(1/3)m`2ω sin θ, 0, 0

)
, (528)

which points up to the right. The horizontal component brings in a factor of cos θ,
and then we must multiply by ω to obtain

∣∣∣∣
dL

dt

∣∣∣∣ = (L cos θ)ω =
1

3
m`2ω2 sin θ cos θ, (529)

and it points into the page.

The torque from the tension is T` cos θ into the page. Therefore, τ = dL/dt gives

T` cos θ =
1

3
m`2ω2 sin θ cos θ =⇒ T =

1

3
m`ω2 sin θ. (530)

Interestingly, this approaches the value of m`ω2/3 as θ → 90◦ (both the lever arm
and the required torque become very small). But if θ actually equals 90◦, then T
can take on any value, due to the cos θ term in Eq. (530).

The net force (tension plus pivot) on the stick is mrω2 = m(`/2) sin θ ω2 to the
right, to provide the centripetal acceleration of the CM. This means that the force
from the pivot must be (1/6)m`ω2 sin θ, directed to the right.

You can also use the CM as the origin, but then the torque equation includes both
the tension and the pivot force. Combining this with the force equation yields two
equations in two unknowns.

9.43. Rotating sheet

In the notation in Fig. 25, we have

θ

x

a

b

y

ω

Figure 25
L = (Ixωx, Iyωy, Izωz) =

(
1

12
mb2ω cos θ,

1

12
ma2ω sin θ, 0

)
. (531)
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The horizontal component of L is therefore

L⊥ = Ly cos θ − Lx sin θ =
1

12
mω sin θ cos θ(a2 − b2), (532)

directed to the left. |dL/dt| equals ωL⊥, directed out of the page. Writing sin θ and
cos θ in terms of a and b, the torque is then

τ =

∣∣∣dL
dt

∣∣∣ = ωL⊥ =
1

12
mω2 b√

a2 + b2

b√
a2 + b2

(a2 − b2) =
mω2

12
· ab(a2 − b2)

a2 + b2
,

(533)
directed out of the page. Given a fixed area, ab = A, the torque equals (using
m = ρA, and b = A/a)

τ =
ρω2A2

12
· a2 − A2

a2

a2 + A2

a2

. (534)

This approaches ±ρω2A2/12 = ±mω2A/12 as a → ∞ and a → 0. These two cases
correspond to tall thin rectangles tilted slightly to the right and left, respectively.
In both cases, L is essentially horizontal, so its magnitude is essentially Ly, which
has the finite value of

Ly =
1

12
ma2ω sin θ =

1

12
mωa(a sin θ) ≈ 1

12
mωab =

1

12
mωA. (535)

Interestingly, you can show that if you rotate the rectangle by 90◦ but spin it around
the same vertical axis, the same torque is required. For a given area, the angular
momentum goes to infinity if a → ∞ or a → 0, but it points nearly vertically, and
the horizontal component turns out to have the same finite value.

9.44. Rotating axle

The horizontal component of L is L⊥ = 2Iω. The vertical component of L doesn’t
change, so we can ignore it. Hence, |dL/dt| = ΩL⊥ = 2IΩω, directed into the page.
If N1 and N2 are the normal forces acting on the left and right wheels, respectively,
then the torque is (`/2)(N1 −N2), directed into the page. So we have

τ =

∣∣∣dL
dt

∣∣∣ =⇒ `

2
(N1 −N2) = 2IΩω =⇒ Ω =

`

4Iω
(N1 −N2). (536)

But N1 + N2 = 2mg, so the maximal Ω is achieved when N1 = 2mg and N2 = 0, in
which case we have Ω = mg`/(2Iω). If the wheels are solid disks with I = mr2/2,
this reduces to Ω = g`/(r2ω).

9.45. Stick on a ring

(a) Let Ω be the frequency of the motion. The moment of inertia relative to the
CM (around the axis perpendicular to the stick, in the plane of the paper) is
m(2r)2/12 = mr2/3. The component of the angular frequency along this axis
is Ω cos θ, so the angular momentum has magnitude L = (mr2/3)Ω cos θ, and
it points up to the right at the instant shown in the statement of the problem.
Multiplying by sin θ to get the horizontal component yields |dL/dt| = ΩL⊥ =
(mr2/3)Ω2 sin θ cos θ, and it points into the page.

The vertical force from the ring is mg (because the CM has no vertical ac-
celeration), which gives a torque of mg(r cos θ) out of the page. The CM
moves in a circle of radius r − r cos θ, so the horizontal force from the ring
is m(r − r cos θ)Ω2, which gives a torque of m(r − r cos θ)Ω2(r sin θ) into the
page. So we have

τ =

∣∣∣dL
dt

∣∣∣ =⇒ m(r − r cos θ)Ω2(r sin θ)−mg(r cos θ) =
1

3
mr2Ω2 sin θ cos θ

=⇒ Ω =

√
g cos θ

r sin θ
(
1− 4

3
cos θ

) . (537)
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We need cos θ < 3/4 for Ω to be real. So we must have θ > 41.4◦ for the
motion to be possible.

(b) The only change from part (a) is that the horizontal force from the ring is now
m(R− r cos θ)Ω2. This leads to

Ω =

√
g cos θ

sin θ
(
R− 4

3
r cos θ

) . (538)

We need r cos θ < (3/4)R for Ω to be real. For θ → 0, this becomes r/R < 3/4.

Remark: In the setup where the stick swings around below the ring, with its top
end running along the ring, you can go through the calculation, or you can just let
θ → −θ in the above results. With β being the magnitude of the angle below the
horizontal, the results are (a) cos β > 3/4 =⇒ β < 41.4◦, and (b) r/R > 3/4.

Putting the part (a) results together for a stick of length 2r, we see that if θ is the

signed angle that runs from 90◦ down to −90◦, then the motion is possible for 90◦

down to 41.4◦, then not possible for 41.4◦ down to 0◦, then possible again for for

0◦ (although 0◦ requires an infinite Ω) down to −41.4◦, then finally not possible for

−41.4◦ down to −90◦ (although −90◦ is technically possible with Ω = 0). ♣

9.46. Slightly wobbling

After the strike, the total L has a magnitude that is still essentially equal to I3ω3.
Using the fact that I3 = 2I for a coin, Eq. (9.55) gives the frequency of the wobbling
as

ω̃ =
L

I
≈ I3ω3

I
= 2ω3. (539)

Therefore, since ω3 is half of ω̃, the coin makes half a turn in the time it takes it to
do one wobble and return to its original plane (during this time, the x3 axis traces
out a cone around the slightly-tilted fixed L vector). So Abe ends up facing the
other way.

9.47. Original orientation

The ω-L-x3 plane rotates with frequency ω̃ = L/I, from Eq. (9.55). Relative to
this plane, the coin rotates around x3 with frequency Ω = (I3 − I)ω3/I (backward,
because Eq. (9.47) gives the forward frequency of the plane relative to the coin). We
need these two frequencies to be rational multiples of each other. More precisely,
the time it takes the plane of the coin to make n complete wobbles (at which point
the ω-L-x3 plane is back to its original position) equals the time it takes the coin
to make m rotations with respect to the ω-L-x3 plane if

n

L/I
=

m

(I3 − I)ω3/I
=⇒ n√

(Iω⊥)2 + (I3ω3)3
=

m

(I3 − I)ω3
. (540)

Using I3 = 2I, this becomes n2ω2
3 = m2ω2

⊥+4m2ω2
3 . Since ω⊥ is nonzero, the right-

hand side is greater than 4(1)2ω2
3 . Therefore, n is greater than 2. So let’s try n = 3.

Then m must equal 1, in which case we have 9ω2
3 = ω2

⊥ + 4ω2
3 =⇒ ω⊥ =

√
5ω3.

So n = 3 is the answer to the problem. (Note that in the limit ω⊥ → 0, the values
n = 2 and m = 1 yield an approximate solution. But the problem asks for an exact
solution.)

9.48. Seeing tails

The x3 axis precesses around L, so if we want x3 to dip down to just barely below the
horizontal, then L must point at (barely beyond) a 45◦ angle from the vertical. So
we want L⊥ = L3. Your angular impulse yields the change in angular momentum,
that is, R

∫
F dt = L⊥. Therefore, in the cutoff case where the underside barely

becomes visible, we have

R

∫
F dt = L3 = I3ω3 =⇒

∫
F dt =

(1/2)mR2ω3

R
=

1

2
mRω3. (541)
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Now let’s find how far the CM moves. Your impulse gives the CM a speed v =
(1/m)

∫
F dt = Rω3/2. The frequency of precession of the x3 axis is (using I3 = 2I)

ω̃ =
L

I
=

√
2L3

I
=

√
2I3ω3

I
= 2

√
2ω3. (542)

The time for x3 to dip down to the horizontal is half the period of the precessional
motion, so t = (1/2)(2π/ω̃) = π/(2

√
2ω3). During this time, the CM moves a

distance

vt =
(

Rω3

2

)(
π

2
√

2ω3

)
=

πR

4
√

2
, (543)

which is independent of ω3.

9.49. Flipping a coin

The initial situation is shown in Fig. 26. The initial ω points slightly above the

ω3

3

L
ω

x

ω

Figure 26horizontal (or slightly below, if ω3 is negative, but this leads to the same result).
Since I3 = 2I for a flat disk, the initial L points upward at an angle θ, where

θ ≈ tan θ =
I3ω3

Iω⊥
=

2ω3

ω⊥
. (544)

The x3 axis precesses in a cone around the fixed vector L. Our goal is to determine
the fraction of the time that the x3 axis lies above the horizontal plane. This is
equivalent to determining the fraction of the “base” circle of the cone that lies above
the horizontal plane. A side view of the cone is shown in Fig.27. The excess fraction

θ

θ

L
l

l sin θ

l cos θ

d = l sin2 θ

l

horizontal
   plane

(side view)

Figure 27

(above 1/2) of the time that the x3 axis lies above the horizontal plane is due to the
length d (multiplied by 2 for the two “sides” of the cone) in the figure. If we give
the cone an arbitrary slant height `, then from the figure we have d = ` sin2 θ. (The
circle is slightly curved at the sides, so the length along the circle is actually slightly
longer than this, but the error is negligible for small θ.) The entire circumference
of the base circle is 2π` cos θ, so the fraction of the time that the x3 axis lies above
the horizontal plane is (using sin θ ≈ θ and cos θ ≈ 1)

π` cos θ + 2` sin2 θ

2π` cos θ
≈ 1

2
+

θ2

π
≈ 1

2
+

4ω2
3

πω2
⊥

, (545)

as desired.

9.50. Dipping low

After the strike, β ≡ tan−1(ω⊥/ω3) is the angle that ω makes with x3, and α ≡
tan−1(Iω⊥/I3ω3) is the angle that L makes with x3; see Fig. 28. So ω makes an

x3

ω

L

α−β
β

α−β
α

Figure 28

angle α− β with L (which is fixed). Note that since I > I3, we have α > β. When
ω precesses down to the other side of L, it makes an angle α + (α − β) = 2α − β
with the vertical. Using the above values of α and β, we have

2α− β = 2 tan−1
(

Iω⊥
I3ω3

)
− tan−1

(
ω⊥
ω3

)
= 2 tan−1(3x)− tan−1(x), (546)

where x ≡ ω⊥/ω3. Setting the derivative of this function of x equal to zero gives

6/(1+9x2)−1/(1+x2) = 0, and so x =
√

5/3 =⇒ ω⊥ =
√

5/3 ω3. The associated

largest value of 2α − β is 2 tan−1(
√

15 ) − tan−1(
√

5/3 ) ≈ 98.8◦, in other words,
about 9◦ below the horizontal.

Remark: In the general case where I = nI3, the solution for the above x is x =√
(2n− 1)/(n2 − 2n). So for n → ∞ (that is, a thin stick), ω⊥ should be very small.

The initial ω vector points nearly vertically, but the L vector points nearly horizontally

(because I is so large), so ω ends up swinging down to nearly the negative vertical direction

as it traces out a very wide (nearly planar) cone. If n is only slightly greater than 2, then

ω⊥ should be very large. Both L and the initial ω point nearly horizontally, so ω always

points nearly horizontally as it traces out a very thin cone. If n ≤ 2, then there is no local

maximum of the angle 2α − β. The maximum is achieved at ω⊥ = ∞, and ω is always

essentially horizontal. These results are consistent with the results of Problem 9.16. ♣
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9.51. Rolling lollipop

The nonslipping condition says that rω3 = RΩ =⇒ ω3 = ΩR/r (the x3 axis is
along the direction of the stick). The horizontal component of L is therefore L⊥ =
I3ω3 = (2mr2/5)(ΩR/r) = (2/5)mrRΩ. The vertical component doesn’t change, so
|dL/dt| = ΩL⊥ = (2/5)mrRΩ2, directed out of the page. The torque around the
pivot is (N −mg)R out of the page, so τ = |dL/dt| gives N = mg + (2/5)mrΩ2.

9.52. Horizontal ω

The total ω vector is horizontal if the vertical component of the ω′ vector in the
precessing frame cancels the (positive) vertical Ωẑ vector. This means that ω′

must point down to the right with vertical component −Ω, and so the horizontal
component is Ω tan θ. The total ω vector (namely ω′ + Ωẑ) is therefore Ω tan θ
sideways (to the right). The components of ω along the principal axes are then
ω1 = ω cos θ = Ωtan θ cos θ and ω3 = ω sin θ = Ω tan θ sin θ. The total horizontal
component of L is the sum of the horizontal components of L1 and L2, which gives

L⊥ = I(Ω tan θ cos θ) cos θ + I3(Ω tan θ sin θ) sin θ. (547)

This yields |dL/dt| = ΩL⊥ = Ω2 tan θ(I cos2 θ + I3 sin2 θ), directed into the page.
The torque is mg` sin θ, directed into the page. So τ = |dL/dt| gives

Ω =

√
mg` cos θ

I cos2 θ + I3 sin2 θ
. (548)

Note that for a uniform stick of length L (with I = mL2/3 and I3 = 0, and ` = L/2),

this reduces to Ω =
√

3g/2L cos θ, which is the result obtained in the problem in
Section 9.4.2. Basically, this is the Ω for a stick, and we can make ω′ be whatever it
needs to be to make ω horizontal, because ω′ is irrelevant due to the stick’s I3 = 0.

If the top is up above the horizontal, as shown in Fig. 29, then we need ω′ to point

CM

Ω

θ l 

Figure 29

down to the left. So the horizontal ω now points to the left. This means that dL/dt
points out of the page. But the torque is still into the page. Therefore, the motion
is impossible.

9.53. Sliding lollipop

(a) Let T be the tension in the stick, and let θ be the angle the stick makes with the
horizontal. Then the Fx equation is T cos θ = mRΩ2 =⇒ T = mRΩ2/ cos θ.
And the Fy equation is N −mg − T sin θ = 0. Therefore,

N = mg + mRΩ2 tan θ = mg + mrΩ2. (549)

The reason why we don’t need to use τ = dL/dt is that L (relative to the CM)
points up, which means that it doesn’t change. So the tension can’t provide a
torque, which means that it must point along the stick. We therefore basically
have a point mass attached to a string.

(b) τ = dL/dt around the CM gives 0 = 0. So let’s use the pivot as the origin.
The angular velocity vector is Ωẑ, so in the usual notation the components are
ω2 = Ωcos θ and ω3 = Ω sin θ. Using the parallel-axis theorem, the horizontal
component of L points to the left with magnitude

L⊥ = I2ω2 sin θ − I3ω3 cos θ (550)

=
(

2

5
mr2 + m(r2 + R2)

)
(Ω cos θ) sin θ −

(
2

5
mr2

)
(Ω sin θ) cos θ

= mΩ(r2 + R2) sin θ cos θ. (551)

dL/dt points out of the page with magnitude ΩL⊥. Relative to the pivot, the
torque is (N −mg)R, directed out of the page. So τ = |dL/dt| gives

(N −mg)R = mΩ2(r2 + R2)
r√

r2 + R2

R√
r2 + R2

=⇒ N = mg + mrΩ2.

(552)
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9.54. Rolling wheel and axle

(a) The nonslipping condition is Ω(r/ sin θ) = ω′r =⇒ ω′ = Ω/ sin θ, where ω′ is
the frequency in the frame that precesses around with the axle (at frequency Ω).
The ω′ vector points up to the right along the axle. When adding this to the
precessional frequency of −Ωẑ to obtain the total ω, the vertical components
cancel, because the vertical component of ω′ is (Ω/ sin θ) sin θ = Ω. So the
result is a horizontal ω. The (horizontal) length of ω is (Ω/ sin θ) cos θ =
Ω/ tan θ, as desired.

Alternatively, consider the wheel to be the circular base of a cone. All points
on the cone that lie along the ground are instantaneously at rest, so ω must
point horizontally along this line. To find its magnitude, note that the speed
of the center of the wheel, when considered to be rotating around the vertical
axis, is Ω(` cos θ), where ` is the length of the axle. But when considered to
be rotating around the horizontal ω vector, the center has speed ω(` sin θ).
Equating these two expressions gives ω = Ω/ tan θ.

(b) Let’s use the pivot as the origin. The angular velocity vector is ωx̂, so in the
usual notation the components are ω2 = ω sin θ and ω3 = ω cos θ. Using the
parallel-axis theorem, the horizontal component of L points to the right with
magnitude

L⊥ = I2ω2 sin θ + I3ω3 cos θ (553)

=
(

1

4
mr2 + m`2

)
(ω sin θ) sin θ +

(
1

2
mr2

)
(ω cos θ) cos θ.

dL/dt points out of the page with magnitude ΩL⊥. Relative to the pivot, the
torque is N(`/ cos θ)−mg` cos θ, directed out of the page. So τ = |dL/dt| gives
(using ω = Ω/ tan θ)

N =
cos θ

`

(
mg` cos θ +

mΩ2

tan θ

(
r2 sin2 θ

4
+ `2 sin2 θ +

r2 cos2 θ

2

))

= mg cos2 θ +
cos θ

r/ tan θ
· mΩ2

tan θ

(
r2 sin2 θ

4
+

(
r

tan θ

)2

sin2 θ +
r2 cos2 θ

2

)

= mg cos2 θ + mrΩ2 cos θ
(

sin2 θ

4
+ cos2 θ +

cos2 θ

2

)

= mg cos2 θ + mrΩ2
(

1

4
cos θ sin2 θ +

3

2
cos3 θ

)
. (554)

If the axle is sitting at rest (that is, Ω = 0), then we have N = mg cos2 θ, which
you can quickly derive from scratch by doing a statics problem and balancing
the torques around the pivot. For a given r, the term involving Ω is maximum
for θ → 0 and decreases to zero as θ → π/2.

9.55. Ball under a cone

NOTE TO INSTRUCTOR: The level of this exercise should be increased to four
stars, and it should now read:

A hollow ball (with I = (2/3)mR2) rolls without slipping on the inside surface
of a fixed cone, whose tip points upward, as shown in Fig. 9.69. The angle at
the vertex of the cone is 60◦. Initial conditions have been set up so that the
contact point on the cone traces out a horizontal circle of radius ` at frequency
Ω, while the contact point on the ball traces out a circle of radius R/2. Assume
that the coefficient of friction is arbitrarily large. What is the frequency of
precession, Ω? Show that the condition on ` for the setup to be possible is
` > (3

√
3/4)R. If we instead have a solid ball with I = (2/5)mR2, find Ω and

show that the condition on ` is (5
√

3/2)R > ` > (5
√

3/8)R. What about a
general I = βmR2? There is a special value of β; what is it, and why is it
special?



118 CHAPTER 9. ANGULAR MOMENTUM, PART II (GENERAL L̂)

(The reason for the change is that I had forgotten to demand that the ball remain in
contact with the cone.)

The nonslipping condition is Ω` = ω′(R/2) =⇒ ω′ = 2`Ω/R, where ω′ is the
frequency of the ball’s spinning in the frame that precesses around with the center
of the ball (at frequency Ω). For the purposes of calculating dL/dt, we can say
ω = ω′ and ignore the Ωẑ part of ω, because Ωẑ gives a vertical contribution to
L (but only because the vertical axis of the ball is also a principal axis), which
therefore doesn’t change.

The diameter of the contact-point circle on the sphere is R, so you can show that
the plane of this circle is tilted at 30◦ with respect to the horizontal. The L arising
from ω′ therefore points down to the left, at 30◦ with respect to the vertical, with
magnitude L = Iω′ = (2mR2/3)(2`Ω/R) = (4/3)mR`Ω. To obtain the horizon-
tal component, we must multiply by sin 30◦. So |dL/dt| = ΩL⊥ = (2/3)mR`Ω2,
directed out of the page.

We must now find the torque, which comes from the friction force Ff , which is
directed up toward the tip of the cone. The easiest way to find Ff is to use F = ma
along the surface of the cone. The center of the ball travels in a circle of radius
` − R cos 30◦, so the acceleration is m(` − R cos 30◦)Ω2 to the left. F = ma along
the surface therefore gives

Ff −mg sin 60◦ =
(
m(`−R cos 30◦)Ω2

)
cos 60◦

=⇒ Ff =

√
3mg

2
+

m

2

(
`−

√
3

2
R

)
Ω2. (555)

The torque is RFf , directed out of the page. So τ = |dL/dt| gives

R

(√
3mg

2
+

m

2

(
`−

√
3

2
R

)
Ω2

)
=

2

3
mR`Ω2 =⇒ Ω =

√
6
√

3g

2` + 3
√

3R
. (556)

For ` À R, this reduces to Ω ≈
√

3
√

3g/`, independent of R.

To find the necessary relation between ` and R, note that the ball must in fact
remain in contact with the cone. That is, the normal force must be greater than
zero. The F = ma equation perpendicular to the surface of the cone is

N + mg cos 60◦ =
(
m(`−R cos 30◦)Ω2

)
sin 60◦, (557)

so the condition that N is positive can be written as

0 <
(
m(`−R cos 30◦)Ω2

)
sin 60◦ −mg cos 60◦

=⇒ mg

2
<

√
3

2
m

(
`−

√
3

2
R

)(
6
√

3g

2` + 3
√

3R

)

=⇒ 2` + 3
√

3R < 18

(
`−

√
3

2
R

)

=⇒ 3
√

3

4
R < `, (558)

as desired.

If we instead have a solid sphere, then the only change is that the “2/3” in |dL/dt|
becomes “2/5”, so the modified Eq. (556) yields

Ω =

√
10
√

3g

−2` + 5
√

3R
. (559)
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We therefore need ` < (5
√

3/2)R for Ω to be real. In addition, you can show that
the condition N > 0 becomes (the only change in Eq. (558) comes in the Ω2)

−2` + 5
√

3R < 30

(
`−

√
3

2
R

)
=⇒ 5

√
3

8
R < `. (560)

Combining these results gives (5
√

3/8)R < ` < (5
√

3/2)R, as desired.

For a general moment of inertia I = βmR2, the “2/3” in |dL/dt| becomes a “β”, so
the modified Eq. (556) yields

Ω =

√
2
√

3g

(4β − 2)` +
√

3R
. (561)

If β ≥ 1/2, then any value of ` is allowed. But if β < 1/2, then we need ` <√
3R/(2− 4β) for Ω to be real. In addition, you can show that the condition N > 0

becomes (again, the only change in Eq. (558) comes in the Ω2)

(4β − 2)` +
√

3R < 6`− 3
√

3R =⇒
√

3R

2− β
< `. (562)

Combining these results gives:

if β <
1

2
, then

√
3R

2− β
< ` <

√
3R

2− 4β
,

if β ≥ 1

2
, then

√
3R

2− β
< ` < ∞. (563)

β = 1/2 is therefore the desired special value of β, below which there is a finite
upper bound on `. You can check that Eqs. (561) and (563) reduce properly in the
β = 2/3 and β = 2/5 cases above.

Remarks:

1. From Eq. (563), we see that for any (nonzero) value of β, there exists a window of
allowed ` values. But if β → 0, then the window is very small, and ` is constrained to
be essentially equal to

√
3R/2, which means that the ball barely fits in the cone and

the CM hardly moves.

2. You can show that at the lower limit on ` in Eq. (563) (when N → 0), the frequency Ω

equals
√

2(2− β)g/3βR. As ` increases from this lower limit, we see from Eq. (561)

that if β < 1/2, then Ω is an increasing function of ` and goes to infinity at the upper
limit on ` in Eq. (563). And if β > 1/2, then Ω is a decreasing function of ` and goes
to zero as ` →∞. If β = 1/2, then Ω is independent of `.

3. Technically, β = 2 is another special value of β, because for β ≥ 2 the motion isn’t
possible, since the lower bound on ` in Eq. (563) is infinite. However, any value
of β larger than 2/3 would require massive extensions beyond the radius R, so we
wouldn’t actually have a sphere rolling on a cone. But the setup is still possible if we
remove all of the cone except for a thin strip near the circle of contact points, and also
use a massless sphere (which rolls along the strip) supplemented with point masses
on the ends of massless extensions at, say, the six vertices of an octahedron. If one
diagonal of the octahedron is oriented along the line perpendicular to the circle of
contact points on the ball, then the extensions won’t run into the strip, so the motion
is perfectly physical. ♣

9.56. Ball in a cone

For concreteness, we’ll assume that the plane of the contact circle (represented by
the chord in Fig. 30) is tilted downward from the contact point, so that the angular

φ
θ

φ
β

L

r

Ff

R

Figure 30

momentum has a rightward horizontal component when the ball is at the position
shown (assuming that it is heading into the paper at this instant). This is the
scenario that will allow for large Ω. But an upward-tilting contact circle is also
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possible (which simply corresponds to the β in the figure being negative). In this
case, the friction force will need to point up the plane, instead of downward as shown,
to provide the required torque. In what follows, it will be convenient to work with
the angle φ ≡ 90◦ − θ.

The nonslipping condition is Ω` = ω′r =⇒ ω′ = Ω`/r, where ω′ is the frequency
in the frame that precesses around with the center of the ball (at frequency Ω).
For the purposes of calculating dL/dt, we can say ω = ω′ and ignore the Ωẑ part
of ω, because Ωẑ gives a vertical contribution to L (but only because the vertical
axis of the ball is also a principal axis), which therefore doesn’t change. The L
arising from ω′ points down to the right with magnitude L = Iω′ = I(Ω`/r). Let
β ≡ φ − sin−1(r/R) be the angle that L makes with the vertical. Then |dL/dt| =
ΩL sin β = IΩ2(`/r) sin β, directed into the page.

We must now find the torque, which comes from the friction force Ff , which is
directed down toward the tip of the cone. The easiest way to find Ff is to use
F = ma along the surface of the cone. The center of the ball travels in a circle of
radius (essentially) `, so the acceleration is m`Ω2 to the left. F = ma along the
plane therefore gives

mg sin φ + Ff = m`Ω2 cos φ. (564)

The torque is RFf , directed into the page. So τ = |dL/dt| gives (with I = ηmR2,
where η = 2/5 in this problem)

R
(
m`Ω2 cos φ−mg sin φ

)
=

IΩ2` sin β

r
=⇒ Ω =

√
g sin φ

`
(
cos φ− η(R/r) sin β

) ,

(565)
where φ, β, and η are defined above. Given φ, η, g, `, and R, this Ω is a function of
r (or equivalently β, since r and β are related via the above definition of β). We see
that it is possible for the ball to move around the cone infinitely fast if r is chosen
so that cos φ = (η/x) sin β, where x ≡ r/R. Using the definition of β, this condition
yields

cos φ =
η

x
sin(φ− sin−1 x)

=⇒ x cos φ = η sin φ cos(sin−1 x)− η cos φ sin(sin−1 x)

=⇒ x cos φ = η sin φ
√

1− x2 − η cos φ x

=⇒ x(1 + η) cos φ = η sin φ
√

1− x2. (566)

Squaring and solving for x gives

r

R
= x =

√
η2

η2 + (1 + η)2 cot2 φ
=

√
η2

η2 + (1 + η)2 tan2 θ
. (567)

In the problem at hand we have η = 2/5, so

r

R
=

√
1

1 + (49/4) tan2 θ
(568)

is the desired value of r/R that leads to an infinite value of Ω.

Remarks:

1. In the limit θ ≈ 0 (that is, a very thin cone), Eq. (568) reduces to r/R ≈ 1, which
makes sense. The contact circle is essentially a horizontal great circle.

In the limit θ ≈ 90◦ (that is, a nearly flat plane), Eq. (568) reduces to r/R ≈ 0.
The circle of contact points is very small, but the ball can still roll around the cone
arbitrarily fast (assuming that there is sufficient friction). This isn’t entirely intuitive.
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2. What value of φ allows the largest tilt angle of the contact circle, that is, the largest
β? From Eq. (565), we must have sin β < (1/η)(r/R) cos φ. But from the definition
of β, we have r/R = sin(φ− β). Therefore,

η sin β < sin(φ− β) cos φ

=⇒ η sin β < (sin φ cos β − cos φ sin β) cos φ

=⇒ tan β <
sin φ cos φ

η + cos2 φ
. (569)

Taking the derivative of the right-hand side with respect to φ, and going through
some algebra, we find that the maximum allowed β can be achieved when cos2 φ =
η/(1 + 2η). If η = 2/5, this gives cos φ =

√
2/3 =⇒ φ ≈ 61.9◦. You can then show

that the maximum β is given by tan βmax = 1/
(
2
√

η(1 + η)
)
, which looks nicer when

written as sin βmax = 1/(1 + 2η). If η = 2/5, then sin βmax = 5/9 =⇒ βmax ≈ 33.7◦.

3. Let’s consider three special cases for the contact circle, namely, a horizontal circle, a
great circle, and a vertical circle.

(a) Horizontal circle: In this case, we have β = 0, so Eq. (565) gives

Ω2 =
g tan φ

`
. (570)

L points vertically, which means that dL/dt is zero, which means that the torque
is zero, which means that the friction force is zero. Therefore, the ball moves
around the cone with the same speed as a particle sliding without friction. You
can show from scratch that such a particle does indeed have Ω2 = g tan φ/`.
The horizontal contact-point circle (β = 0) is the cutoff case between the sphere
moving faster or slower than a sliding particle.

(b) Great circle: In this case, we have r = R and β = −(90◦ − φ). Hence,
sin β = − cos φ, and Eq. (565) gives

Ω2 =
g tan φ

`(1 + η)
. (571)

This reduces to the sliding-particle case when η = 0, as it should.

(c) Vertical circle: In this case, we have r = R cos φ and β = −90◦, so Eq. (565)
gives

Ω2 =
g tan φ

`
(
1 + η/ cos2 φ

) . (572)

Again, this reduces to the sliding-particle case when η = 0, as it should. But for
φ → 90◦ (thin cone), Ω goes to zero, whereas in the other two cases above, Ω
goes to ∞. ♣

9.57. Nutation loops

From Eq. (9.92), we have dφ/dt = Ωs+kΩs cos ωt (we’ll drop the “n” subscript on ω).
This is zero when the curve is vertical (since φ is on the horizontal axis), so we have
cos ωt = −1/k at the touching points. Let α ≡ cos−1(−1/k), with π/2 < α < π.
The curve is vertical at ωt = α, and it then loops up (because Eq. (9.92) says that
dθ/dt is negative due to our definition that α is in the second quadrant) to the left
and then back down and is vertical again at ωt = 2π−α. It then loops down to the
right and repeats the process, being vertical again at ωt = 2π + α on the upswing,
and then at ωt = 4π−α on the downswing. Two adjacent loops touch each other if
the α and 4π−α values of φ are equal. Writing φ(t) as φ(t) = (Ωs/ω)(ωt+k sin ωt),
the condition that φ(ωt = α) equals φ(ωt = 4π − α) can be written as

α + k sin α = (4π − α) + k sin(4π − α) =⇒ α + k sin α = 2π. (573)

Using the definition of α, this becomes cos−1(−1/k)+
√

k2 − 1 = 2π. The numerical
solution is k ≈ 4.6033.
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Chapter 10

Accelerating frames of
reference

10.16. Swirling down a drain

No. The Coriolis effect is tiny and is washed out by the motion arising from the
initial speeds of the water molecules. To see this, let’s figure out the rough size
of the Coriolis effect. Ignoring the sin θ factor, the Coriolis force is 2mωv, so the
acceleration is 2ωv. A typical sideways deflection distance is therefore

(1/2)at2 ≈ ωvt2 = ω(vt)t ≈ ω(d)t, (574)

where d is roughly the distance traveled. You can show that the earth’s ω is about
7.3 · 10−5 s−1. And we’ll take d ≈ 10−1 m and t ≈ 10 s. This gives a deflection
distance on the order of 10−4 m = 0.1mm, which is far smaller than the size of the
drain. Even the tiniest initial velocities (caused by convection currents, etc.) will
wash out this effect. A minuscule speed of 10−5 m/s will give the same deflection of
10−4 m over the time of 10 s.

The swirling you see is caused by the initial velocities, combined with conservation
of angular momentum. If you manage to get the initial velocities very close to zero,
then you might see a tiny Coriolis vortex. But this is definitely not responsible for
any swirling you see day to day.

The Coriolis effect does cause hurricanes to swirl because (1) the speeds involved are
larger, so the Coriolis acceleration is larger, and (2) the time scale is longer (days
or weeks), so there is more time for the force to act. The deflection causes a low
pressure system, which the air then circles around. So the direction of the spinning
is opposite to what you might naively expect from considering the orientation of the
Coriolis deflection.

10.17. Magnitude of geff

In Fig. 31, the tall thin right triangle is essentially isosceles, so the length of geff is

eff

g
g

Rω2sin θ

Rω2sin2 θ

θ
θ

Figure 31

essentially geff ≈ g −Rω2 sin2 θ.

10.18. Oscillations across the equator

Let θ be the angle away from the equator. The relevant part of mgeff is the centrifu-
gal force, which has magnitude mRω2 cos θ. The component of this along the wire
toward the equator is (mRω2 cos θ) sin θ. So for small θ, F = ma in the tangential
direction gives

−mRω2θ = mRθ̈ =⇒ θ̈ = −ω2θ. (575)

This is a simple harmonic oscillator equation, so we see that the frequency of the
motion is the same ω as the earth’s frequency. Note that this is quite a bit smaller

123
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than the frequency for the motion along a chord (or any size), which from Exercise
5.63 has a period of only 84 minutes.

The simple result of ω can be seen in the following way. Imagine a puck free to slide
on a frictionless spinning sphere, and look at things from an inertial frame. If the
puck is released from a point near the equator, it will simply travel around in the
path of a tilted great circle, with the same period that the sphere has. But from the
point of view of the earth, the puck may as well be sliding back and forth along a
wire across the equator.

10.19. Circular pendulum

(a) The free-body diagram is shown in Fig. 32. The F = ma equations are

θ T cos θ

T sin θ

mg

T

Figure 32

∑
Fy = may =⇒ T cos θ −mg = 0 =⇒ T =

mg

cos θ
,

∑
Fx = max =⇒ T sin θ = mrω2 = m(` sin θ)ω2. (576)

Using the T from the first equation in the second gives ω =
√

g/(` cos θ).

(b) The free-body diagram is shown in Fig. 33. We now have the additional cen-θ T cos θ

T sin θ

mg

mrω2

T

Figure 33

trifugal force. And also there is zero acceleration in the rotating frame. So the
F = ma equations are

∑
Fy = may =⇒ T cos θ −mg = 0,

∑
Fx = max =⇒ T sin θ −mrω2 = 0. (577)

These are equivalent to the equations in part (a), so the result is the same.

10.20. Spinning bucket

Since the water doesn’t move along the surface, the net force along the surface must
be zero. Therefore, since the normal force is perpendicular to the surface, the sum
of the gravitational plus centrifugal forces must be also. The sum of these forces
is the vector (mrω2,−mg). The direction perpendicular to this is therefore along
the vector (mg, mrω2). In other words, the slope of the surface of the water is
(mrω2)/mg. So we have

dy

dr
=

rω2

g
=⇒ y =

ω2r2

2g
+ C. (578)

We therefore have a parabola. Interestingly, you can show (by considering the
volume of the water) that if you spin the bucket at the speed that makes the height
of the water in the middle be zero, then the height at the bucket’s wall will be twice
the original height.

10.21. Corrections to gravity

The Coriolis force is 2mωv eastward. But v ≈ gt, so the eastward acceleration
is 2ωgt. Integrating this gives an eastward speed of ωgt2. This eastward speed
produces a Coriolis force directed radially outward with magnitude

2mω(ωgt2) = 4mω2
(

gt2

2

)
= 4mω2d. (579)

So the total correction to geff is ω2d−4ω2d = −3ω2d. The negative sign means that
geff is smaller by this amount.
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10.22. Bug on a hoop

(a) The angular momentum around the rotation axis comes from the bug’s motion
around the axis (due to ω) and not from the motion along the hoop (due to
Ω). At the instant shown in the problem, the bug is a distance R sin θ from the
axis, so its speed into the page is (R sin θ)ω. The L around the axis is therefore
L = rp = (R sin θ)(mRω sin θ) = mR2ω sin2 θ. Therefore (using θ̇ = Ω),

dL/dt = 2mR2ω sin θ cos θ θ̇ = 2mR2ωΩsin θ cos θ. (580)

The torque on the bug around the rotation axis is due to F⊥ and not the
other components of F. The torque around the axis is τ = F⊥(R sin θ), with
positive τ corresponding to F⊥ pointing into the page. So τ = dL/dt around
the rotation axis gives

F⊥(R sin θ) = 2mR2ωΩsin θ cos θ =⇒ F⊥ = 2mRωΩcos θ. (581)

(b) In the rotating frame of the hoop, the Coriolis force Fcor = −2mω × v points
out of the page with magnitude 2mωv sin(90◦ − θ), because ω makes an angle
of 90◦ − θ with the tangent to the hoop. Since v is the speed along the hoop,
which is RΩ, we have Fcor = 2mω(RΩ) cos θ, directed out of the page.

In the rotating frame, the net force perpendicular to the plane of the hoop must
be zero, because otherwise the bug would accelerate off the hoop. So there
must be a force (normal or friction) equal and opposite to Fcor. Therefore,
F⊥ = 2mωRΩcos θ, directed into the page, in agreement with part (a).

Note that gravity is actually irrelevant in this problem, because it would pro-
vide no torque around the rotation axis (assuming that the axis is vertical).

10.23. Maximum normal force

We’ll work in the rotating frame of the hoop. If x is the distance from the rotation
axis, then the centrifugal force is Fcent = mω2x. The potential energy associated
with this force is V (x) = −mω2x2/2. Conservation of energy in the rotating frame
therefore gives mv2/2 = mω2x2/2 =⇒ v = ωx. Note that there is no potential
energy associated with the Coriolis force because this force does no work.

With θ defined as in Fig. 34, the Coriolis force is

R

ω

θ

Figure 34

Fcor = 2mωv sin θ = 2mω(ωx) sin θ = 2mω(ωR cos θ) sin θ, (582)

directed out of the page. In the rotating frame, the net force perpendicular to the
plane of the hoop must be zero, because otherwise the bead would accelerate off
the hoop. So there must be a normal force equal and opposite to Fcor. Therefore,
N⊥ = 2mω2R cos θ sin θ = mω2R sin 2θ. The magnitude of this is maximum at
θ = ±45◦.

Let Nr be the (inward) radial component of the normal force. Then the net inward
radial force is Nr − Fcent cos θ, so the radial F = ma equation is Nr −mω2x cos θ =
mv2/R. Using v = ωx and x = R cos θ, this gives Nr = 2mω2R cos2 θ. The total
normal force is therefore

N = (Nr, N⊥) = 2mω2R(cos2 θ, cos θ sin θ) = 2mω2R cos θ(cos θ, sin θ). (583)

The magnitude of this is 2mω2R cos θ.
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10.24. Projectile with Coriolis

NOTE TO INSTRUCTOR: This exercise should be changed to:

At a polar angle θ, a projectile is fired eastward with speed v0 at an angle α
above the ground. Show that the southward (in the northern hemisphere) and
eastward deflections due to the Coriolis force are (to first order in ω)

dsouth = (4ωv3
0/g2) cos θ cos α sin2 α,

deast = (4ωv3
0/g2) sin θ

(
cos2 α sin α− (1/3) sin3 α)

)
.

Hint: The first term in deast arises because the flight time is modified due to
the vertical component of the Coriolis force.

(The reason for the change is that I had forgotten that the vertical component of the
Coriolis force modifies the flight time.)

Southward deflection: If x and y are the eastward and vertical directions, then
to leading order we have vx = v0 cos α. This velocity component leads to a Coriolis
force of 2mωvx directed away from the earth’s axis. The horizontal component (that
is, the component along the ground) of this force points in the southern direction
(assuming that we’re in the northern hemisphere) and has magnitude 2mωvx cos θ.
The acceleration in the southern direction is therefore as = 2ω(v0 cos α) cos θ. To
leading order, the time of flight is the usual t = 2v0 sin α/g, so the southern deflection
is

dsouth =
1

2
ast

2 =
1

2
(2ωv0 cos α cos θ)

(
2v0 sin α

g

)2

=
4ωv3

0

g2
cos θ cos α sin2 α. (584)

Eastward deflection: To leading order, we have vy = v0 sin α − gt. This
velocity component leads to a Coriolis force in the eastward direction equal to
−2mωvy sin θ = 2mω(v0 sin α − gt) sin θ, where the minus sign indicates that the
force is actually directed westward. The eastward acceleration is therefore ae =
−2ω(v0 sin α − gt) sin θ. Integrating this twice, and using t = 2v0 sin α/g (which is
correct to zeroth order in ω), gives an eastward deflection of

d = −2ω sin θ

(
v0(sin α)t2

2
− gt3

6

)
= −4ωv3

0

3g2
sin θ sin3 α. (585)

There is, however, another effect that we need to consider in calculating the eastward
deflection. We saw above that the vx component of the velocity produces a Coriolis
force directed away from the earth’s axis. We dealt with the horizontal component of
this force in calculating the southward deflection above. But there is also a vertical
component, with magnitude 2mωvx sin θ. This vertical force modifies the freefall
acceleration g, which in turn modifies the time of flight, which in turn modifies the
eastward distance traveled. And it turns out that this effect is first order in ω, just
like the above effects.

Since the vertical Coriolis force is 2mω(v0 cos α) sin θ directed upward, the net ver-
tical acceleration is g − 2ωv0 cos α sin θ. (There is also a contribution from the
centrifugal force, but this is second order in ω.) The time of flight is therefore

t =
2v0 sin α

g − 2ωv0 cos α sin θ

=
2v0 sin α

g
(
1− (1/g)2ωv0 cos α sin θ

)

≈ 2v0 sin α

g

(
1 +

2ωv0 cos α sin θ

g

)
. (586)
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The total eastward distance is then given by vxt = (v0 cos α)t. The term not involv-
ing ω in this product is the standard projectile range, namely (2v2

0/g) sin α cos α.
The extra term is (4ωv3

0/g2) sin θ cos2 α sin α. This is the additional eastward deflec-
tion due to the increased flight time; it is first order in ω, as promised. Combining
this with the result in Eq. (585), we see that the total eastward deflection is

deast =
4ωv3

0

g2
sin θ

(
cos2 α sin α− 1

3
sin3 α)

)
. (587)

Remark: If xeast is the distance the projectile would travel if the earth weren’t spinning,

then the total distance traveled with the earth spinning is given by d2
total = (xeast +

deast)2 + d2
south. The d2

south term is of order ω2 and is therefore negligible. So the leading

order correction to dtotal is simply deast. Therefore, the spinning of the earth increases

the range of the projectile if deast > 0. From Eq. (587), we see that this is the case if

tan α <
√

3 ⇐⇒ α < 60◦. ♣

10.25. Free-particle motion

In the rotating frame, the force on the particle is F = mrω2r̂+2mωvv̂⊥, where v̂⊥ is
the unit vector perpendicular to v, with the orientation determined by ω×v (more
precisely, v̂⊥ = −ω̂ × v̂). So the force is F = mω2(x, y) + 2mω(ẏ,−ẋ). F = ma
then gives m(ẍ, ÿ) = mω2(x, y) + 2mω(ẏ,−ẋ), which yields the desired equations.

Plugging the given forms for x(t) and y(t) into the F = ma equations yields a fairly
large mess, but you can show that it all works out. If you want a slightly sneakier
method that does’t involve taking second derivatives, you can show that the given
forms of x(t) and y(t) yield

ẋ = ωy + B cos ωt + D sin ωt,

ẏ = −ωx−B sin ωt + D cos ωt. (588)

Taking the derivative of the first equation and subtracting ω times the second yields
the first of Eqs. (10.41). And taking the derivative of the second equation and
adding ω times the first yields the second of Eqs. (10.41).

10.26. Coin on a turntable

(a) The position of a point in the coin is r = rCM + r′, where rCM is the position
of the center of the coin, and r′ is the position relative to the center. When
integrating over the entire coin to obtain the ω × (ω × r) contributions to the
centrifugal force, the r′ part of r yields a net force of zero, because for every
r′ vector there is a −r′ vector, so the contributions cancel in pairs.

Likewise, if we write v = vCM + v′, then the v′ part of v yields a net force
of zero in the ω × v contributions to the Coriolis force, because for every v′

vector there is a −v′ vector, so the contributions cancel in pairs.

So as far as the total force is concerned, we can treat the coin like a point mass
at its center. The centrifugal force is then mrω2 outward. And the speed of
the center of the coin (in the frame of the turntable) is v = rω, so the Coriolis
force is 2mω(rω) = 2mrω2 inward (as you can show). There is no friction force
from the turntable (because there is no friction force needed in the original lab
frame), so the net force is 2mrω2−mrω2 = mrω2 inward. But dp/dt = maCM,
which equals mv2/r = mrω2, directed inward. Hence, F = dp/dt.

(b) Let’s first look at the torque (relative to the CM) due to the centrifugal force.
This involves integrating

r′ ×
(
ω × (ω × r)

)
= r′ ×

(
ω ×

(
ω × (rCM + r′)

))
(589)

over the entire coin. The term involving rCM yields a net torque of zero,
because for every r′ vector there is a −r′ vector, so the contributions cancel
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in pairs. The other term, r′ ×
(
ω × (ω × r′)

)
, also yields a net torque of

zero, because if you work out the triple cross product, you can show that the
contributions cancel in pairs, but now with the r′ pairs being associated with
reflections across the vertical axis of the coin (and also the horizontal axis). In
short, the centrifugal force exhibits a symmetry across the vertical axis of the
coin, so it won’t make the coin spin one way or the other. The same argument
holds with the horizontal axis.

Now let’s look at the torque (relative to the CM) due to the Coriolis force.
This involves integrating

r′ × (ω × v) = r′ ×
(
ω × (vCM + v′)

)
(590)

over the entire coin. As above, the term involving vCM yields a net torque of
zero. But the r′ × (ω × v′) term in fact yields a nonzero torque around the
CM. The basic reason for this is that although the vertical component of v′

yields zero Coriolis force (and hence torque), the horizontal component of v′

yields an inward force in the top half of the coin and an outward force in the
bottom half, so this results in a nonzero torque. Let’s be quantitative:

Since we’ve stripped off vCM, we can consider the coin to be spinning in place
in the turntable frame, for the purposes of calculating the Coriolis torque. Let
the frequency of this spinning be ωc. Let R be the radius of the coin, and let r
be the radial position of a point within the coin (in contrast with the use of r in
part (a)). Consider a mass dm in the upper right quarter of the coin, at radius r
and angle θ away from the vertical, as shown in Fig.35. The horizontal compo-

θ
θ

v'
r

R

cω
turntable's ω

coin

   side view from 

center of turntable

Figure 35

nent of v′ is rωc cos θ. This yields a Coriolis force of 2(dm)ω(rωc cos θ), directed
out of the page. The torque relative to the CM is then (2(dm)ωrωc cos θ)r,
directed at an angle θ downward in the plane of the coin. You can show that
the vertical components of the torque contributions in the upper right quarter
of the coin cancel those in the upper left quarter, so we need only deal with the
horizontal component, which is (2(dm)ωrωc cos θ)r cos θ, directed to the right.
You can also show that the horizontal components of the torque in the bottom
half of the coin are likewise directed to the right. Therefore, since all four
quarters of the coin give the same horizontal contributions, we’ll just integrate
over the upper right quarter and multiply by 4. Since dm = ρr dr dθ, the total
torque points horizontally to the right with magnitude

τ = 4

∫ R

0

∫ π/2

0

2(ρr dr dθ)ωωcr
2 cos2 θ. (591)

Using the fact that the average value of cos2 θ is 1/2 (or just doing the integral),
we obtain

τ = 8ρωωc

(
1

2
· π
2

)(
R4

4

)
=

1

2
(ρπR2)R2ωcω =

(
1

2
mR2

)
ωcω = (Iωc)ω. (592)

But this equals |dL/dt|, because the horizontal component of L has magnitude
Iωc, and it swings around with frequency ω. And the direction is correct,
because dL/dt points to the right. Note that ωc can actually be arbitrary,
because nowhere did we use the nonslipping condition. In other words, the
coin can be spinning with an arbitrary ωc on a frictionless turntable, as long
as its center is at rest in the lab frame.

10.27. Precession viewed from rotating frame

Let ` be the length of the rod. Let the wheel rotate clockwise when viewed from the
pivot. In the lab frame, only the horizontal component of L changes, so τ = dL/dt
gives

mg` = (Iω′)Ω =⇒ mg` = mR2ω′Ω =⇒ ω′Ω =
g`

R2
. (593)
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The precession is counterclockwise when view from above. So the Ω in Ωẑ is positive
here.

In the rotating frame, the solution to Exercise 10.26 (with a slight change in nota-
tion) tells us that the horizontal torque due to the Coriolis force on a little mass
dm is (2(dm)Ωrω′ cos θ)r cos θ, directed to the right when viewed from the pivot. In
this problem, all the mass is on the rim, so we have r = R and dm = ρR dθ. So the
total torque is

τ = 4

∫ π/2

0

2(ρR dθ)Ωω′R2 cos2 θ. (594)

Using the fact that the average value of cos2 θ is 1/2 (or just doing the integral), we
obtain

τ = (2πρR)R2Ωω′ = mR2Ωω′, (595)

directed to the right. But Ωω′ = g`/R2 from above, so we have τ = mg`. This
cancels the mg` gravitational torque (which points to the left when viewed from the
pivot), as desired.

10.28. Maximum tangential force

The tidal force is

F =
GMm

R3
(2x,−y) =

GMmr

R3
(2 cos θ,− sin θ). (596)

To obtain the tangential component (with clockwise defined to be positive), we need
to take the sum of sin θ times the x component plus − cos θ times the y compo-
nent. Equivalently, we can just take the dot product of F with the unit vector
(sin θ,− cos θ) pointing in the clockwise radial direction. This gives

Ftan =
GMmr

R3
(2 cos θ,− sin θ) · (sin θ,− cos θ)

=
GMmr

R3
(2 cos θ sin θ + sin θ cos θ)

=
3GMmr

2R3
sin 2θ. (597)

This has a maximum magnitude at 45◦ (and −45◦, etc.).

10.29. Bead on a hoop

(a) The work done by gravity is essentially equal to (GMm/R2)r, so we have

mv2/2 = GMmr/R2 =⇒ v =
√

2GMr/R2.

(b) From the solution to Exercise 10.28, the tangential component of the tidal force
is equal to (3GMmr/2R3) sin 2θ. So in the accelerating frame of the hoop, the
work done on the bead is

W =
3GMmr

2R3

∫ 0

π/2

sin 2θ (−r dθ) =
3GMmr2

2R3
. (598)

Equating this with mv2/2 gives v =
√

3GMr2/R3. This is smaller than the

answer to part (a) by the order of
√

r/R. The time for this process, however,
can be made arbitrarily large by starting the bead arbitrarily close to the top
of the hoop.

10.30. Facing the planet

The transverse component (the y component in Eq. (10.35)) of the tidal force in the
hoop’s frame points radially inward and takes the form, Ftidal = −(GMmr/R3)r̂,
as shown in the first picture in Fig. 36. Since the hoop always “faces” the planet,
the hoop rotates around its vertical z axis with the same frequency as the orbiting
motion. This orbiting frequency is given by Rω2 = GM/R2 =⇒ ω2 = GM/R3.



130 CHAPTER 10. ACCELERATING FRAMES OF REFERENCE

So the centrifugal force in the rotating frame of the hoop is Fcent = myω2ŷ =
(GMmy/R3)ŷ, as shown in the second picture. But this exactly cancels the y
component of the tidal force (because the y component brings in a factor of y/r), so
we are left with only the z component of the tidal force. Since this brings in a factor
of z/r, we therefore have Ftotal = −(GMmz/R3)ẑ, as shown in the third picture.

tidal centrifugal

view from the planet (the hoop is heading to the left)

total

z

y

Figure 36

Near the front point on the hoop (the left point in these pictures), we have

F = ma =⇒ −GMmz

R3
= mz̈. (599)

Therefore, Ω =
√

GM/R3 is the frequency of small oscillations around the front
point. Interestingly, this equals the orbiting frequency ω we found above. (The
bead simply orbits around the planet in a slightly tilted great circle, without actually
needing the hoop to constrain its motion.)

10.31. Roche limit

The longitudinal tidal force pulling the sand off the rock has magnitude Ft =
(2GMµr/d3), where µ is the mass of a given grain of sand, r is the radius of the
rock, and d is the distance from the planet. The gravitational force attracting the
sand to the rock is Fg = Gmµ/r2, where m is the mass of the rock. These are equal
when

2G
(

4
3
πR3ρp

)
µr

d3
=

G
(

4
3
πr3ρr

)
µ

r2
=⇒ d = R

(
2ρp

ρr

)1/3

. (600)

10.32. Roche limit with rotation

In the rotating frame of the rock, there is a centrifugal force pulling the sand off the
rock, in addition to the tidal force considered in Exercise 10.31. The points closest
and farthest from the planet are where these two forces add the most constructively.
The frequency of the rotation is the same as the frequency of the orbiting, which
is found via F = ma as mω2d = GMm/d2 =⇒ ω2 = GM/d3. So the total force
directed radially outward from the rock (at the closest and farthest points from the
planet) in the rotating frame of the rock is

Ftidal + Fcent =
2GMµr

d3
+ µrω2 =

2GMµr

d3
+ µr

(
GM

d3

)
=

3GMµr

d3
. (601)

So the only change from Exercise 10.31 is that the “2” is now a “3.” The desired
form for d then follows.
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11.29. Effectively speed c

If L is the distance between the planets, then L = cT where T = 1year. The time in
the planets’ frame is L/v, so the time on the captain’s watch is L/γv. We therefore
want

cT

γv
= T =⇒

√
1− β2

β
= 1 =⇒ β =

1√
2

=⇒ v =
c√
2

. (602)

Alternatively, in the rocket frame, the length is L/γ, so the time is L/γv, which
agrees with above.

11.30. A passing train

In the ground frame, the train’s length is L′ = L/γ = 15 cs/(5/4) = 12 cs. The time
it takes for the train to pass the person is therefore L′/v = 12 cs/(3c/5) = 20 s.

In the train frame, it takes the person a time t = L/v = 15 cs/(3c/5) = 25 s to pass
the train. But the person’s watch is running slow, so the time elapsed on the watch
is t/γ = 25 s/(5/4) = 20 s, in agreement with the above result.

The general answer to this problem is L/γv. Logically, the two solutions above differ
in that one uses length contraction and the other uses time dilation. Mathematically,
they differ simply in the order in which the divisions by γ and v occur.

11.31. Overtaking a train

B must have proper length γL = (5/3)L if it is to have length L in A’s frame. So in
B’s frame, B has length (5/3)L, and A has length L/γ = (3/5)L. As measured by
B, the distance that A must travel between the moment when the fronts coincide
and the moment when the backs coincide is the difference in the lengths of the trains
(in B’s frame). So A must travel a distance (5/3)L − (3/5)L = (16/15)L. It does
this at speed 4c/5, so the time in B’s frame is (16L/15)/(4c/5) = 4L/3c.

11.32. Walking on a train

(a) The train has length 4L/5 in the ground frame. The distance it travels between
the moment when its front end coincides with the near end of the tunnel and
the moment when its back end coincides with the far end of the tunnel equals
the sum of the lengths of the train and the tunnel, which is 4L/5 + L = 9L/5.
It covers this distance at speed 3L/5, so the time is 3L/c.

(b) The person moves a distance L during this time, so her speed is c/3.

(c) A ground observer sees the person’s watch run slow by a factor γ1/3 = 3/(2
√

2),

so the time on her watch is (3L/c)/γ1/3 = 2
√

2L/c.
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11.33. Simultaneous waves

Bob sees Alice’s clock run slow, so his clock reads γT when (as measured by him)
her clock reads T . So he waves when his clock says γT . But Alice sees Bob’s clock
run slow, so her second wave is at γ(γT ) = γ2T . Bob then waves at γ(γ2T ) = γ3T ,
and then Alice waves at γ(γ3T ) = γ4T , and so on. So Alice waves at T , γ2T , γ4T ,
etc., and Bob waves at γT , γ3T , γ5T , etc. Note that these successive delays have
nothing to do with the delay between the waves happening and the observers seeing
the waves.

11.34. Here and there

If the setup is to be possible, then in the train frame the person must run the length
of the train, L, in a time Lv/c2 (or slightly less). His speed with respect to the train
must therefore be at least L/(Lv/c2) = c2/v. But c2/v = c(c/v) > c, which is an
impossible speed. Therefore, it is not possible for the person to perform the stated
task, so you will not see him simultaneously at both the front and the back. This is
good, because we could produce all sorts of paradoxes if someone were actually at
two places at once in a given frame (imagine a brick wall being constructed between
the “two” people, and a bucket of paint being dropped on one of them).

11.35. Photon on a train

In the ground frame, the photon starts a distance L/γ behind the front of the train.
It must close this gap at a relative speed of c − v. The time elapsed in the ground
frame is therefore (L/γ)/(c − v). But the ground frame sees the train clocks run
slow, so only (L/γ2)/(c − v) elapses on the train clocks. As viewed in the ground
frame, when the photon is released next to the back clock that reads zero, the front
clock reads −Lv/c2. So the reading on the front clock when the photon hits it is

−Lv

c2
+

L

γ2(c− v)
= −Lv

c2
+

L
(
1− v2

c2

)

c
(
1− v

c

) = −Lv

c2
+

L

c

(
1 +

v

c

)
=

L

c
. (603)

11.36. Triplets

We’ll solve the entire problem from A’s point of view. In A’s frame, B travels a total
distance of 2L at speed 4c/5, so the total time in A’s frame is (2L)/(4c/5) = 5L/2c.

A sees B’s clock run slow by a factor γ4/5 = 5/3. So the total reading on B’s clock
is (3/5)(5L/2c) = 3L/2c.

To find C’s total time, we need to find his return speed. The total time of C’s journey
in A’s frame must be 5L/2c, so we must have L/(3c/4)+L/v = 5L/2c =⇒ v = 6c/7.
Looking at C’s out and back trips, A says that C’s clock advances by

1

γ3/4

(
L

3c/4

)
+

1

γ6/7

(
L

6c/7

)
=

√
7

4

(
4L

3c

)
+

√
13

7

(
7L

6c

)
=

(√
7

3
+

√
13

6

)
L

c
. (604)

This is approximately equal to (1.48)(L/c). So C is the youngest, and A is the oldest.
The person who travels at the most non-uniform rate is always the youngest.

11.37. Seeing the light

(a) In A’s frame, B’s clock runs slow, so he travels for a time γT before he sends
out the signal. He is therefore a distance v(γT ) away from A at this point.
The photon then takes a time vγT/c to get back to A. So the total time in
A’s frame is

γT +
γvT

c
= γT (1 + β) =

T (1 + β)√
1− β2

= T

√
1 + β

1− β
. (605)

(b) In B’s fame, when he sends out the signal, A is a distance vT away. The
photon must close this gap at a relative speed of c− v (because A is receding
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from B at speed v), which takes a time vT/(c−v). The total time in B’s frame
is therefore T + vT/(c − v) = cT/(c − v). But B sees A’s clock run slow, so
the time on A’s clock is only

1

γ

(
cT

c− v

)
=

T
√

1− β2

1− β
= T

√
1 + β

1− β
, (606)

in agreement with the result in part (a).

11.38. Two trains and a tree

(a) In the ground frame, the trains have length L/γ, so the process takes a time
L/γv. The train clocks run slow, so they advance by only L/γ2v. But the rear
clocks start the process at Lv/c2, so their reading is

Lv

c2
+

L

γ2v
=

Lv

c2
+

L

v

(
1− v2

c2

)
=

L

v
. (607)

(b) In the frame of a train, the tree must simply travel the length of the train at
speed v. So the time is L/v. Since the rear clock starts at zero, it therefore
reads L/v when the tree passes it.

(c) In the frame of a train, the velocity-addition formula tells us that you see the
other train moving at speed 2v/(1+v2) (we’ll drop the c2 here). So you see its
rear clock start with the reading 2Lv/(1 + v2). The γ factor associated with
this speed is (1 + v2)/(1 − v2), as you can verify. So the other train’s clocks
run slow by this factor, compared with the time of L/v in your fame. So the
final reading on the other rear clock is

2Lv

1 + v2
+

(
1− v2

1 + v2

)
L

v
=

L

v
. (608)

11.39. Twice simultaneous

Let the front clock on the train read zero when it passes the tree. Then the back
clock reads Lv/c2 when the ball is thrown from the back, due to the simultaneity in
the ground frame.

Now consider things in the train frame. The tree passes the front at t = 0, and
then the ball is thrown from the back at a time Lv/c2 later. The tree has traveled a
distance v(Lv/c2) during this time. So the tree must cover the remaining distance
of L−Lv2/c2 at speed v during the time it takes the ball to travel the length of the
train L at speed u, due to the desired simultaneity in the train frame. Hence,

L− Lv2/c2

v
=

L

u
=⇒ u =

v

1− v2/c2
≡ γ2

vv. (609)

We need u < c, so

v

1− v2/c2
< c =⇒ v2

c2
+

v

c
− 1 < 0 =⇒ v <

√
5− 1

2
. (610)

11.40. People clapping

Consider things from your frame. The western person’s clock reads “noon−Lv/c2”
when he passes you, because you see the eastern clock ahead by Lv/c2. The two
people and the tree continue to fly past you, and then after a time γ(Lv/c2) (the
γ comes from the fact that you see the people’s clocks run slow), the western clock
finally reads noon and the western person claps. The tree is next to you at this
instant. Everything has traveled a distance v(γLv/c2) during this time, so this
is the distance between the western person and the tree in your frame. But this



134 CHAPTER 11. RELATIVITY (KINEMATICS)

distance is length contracted from what it is in the ground frame, so in the ground
frame it is γ2Lv2/c2. Plugging in v = 4c/5, this equals 16L/9. So in the ground
frame, the tree is 7L/9 to the east of the eastern person. Note that if v = c/

√
2, the

tree would be right at the eastern person.

11.41. Photon, tree, and house

(a) In the ground frame, the front of the train has a head start of L/γ on the
photon. The photon closes this gap at a relative speed of c− v, so the time is
t = (L/γ)/(c− v). The distance the photon travels is therefore

ct =
Lc

γ(c− v)
=

L
√

1− β2

1− β
= L

√
1 + β

1− β
. (611)

So the tree and the house are this far apart in the ground frame.

(b) In the train frame, the above distance is length contracted down to

1

γ
· L

√
1 + β

1− β
= L

√
1− β2

√
1 + β

1− β
= L

(
1 +

v

c

)
. (612)

So the tree and the house are this far apart in the train frame. This means
that the house starts a distance Lv/c beyond the front of the train. Therefore,
the time it takes the house to meet the front of the train is (Lv/c)/v = L/c.
But this equals the time it takes the photon to travel the length L of the train
and hit the front, as we wanted to show.

11.42. Tunnel fraction

In the tunnel frame, things are straightforward. The sum of the distances, vt and
ct, must equal L, so t = L/(c + v). The person therefore travels a distance vt =
Lv/(c + v), which is a fraction f = v/(c + v) along the tunnel.

Now consider the person’s frame. First, let’s assume that in the tunnel frame, clocks
at the ends of the tunnel read zero when the person enters the tunnel and the photon
is simultaneously emitted. Then in the train frame, the start of the process looks
like the situation in Fig. 37. Because the rear clock is ahead, the photon is emitted

Lv

c2
__

v

-
0

(person frame) 

tunnel

photon emitted

Figure 37

before the tunnel reaches the person (which happens when the clock at the near end
of the tunnel reads zero, which it doesn’t yet).

What is the distance from the near end of the tunnel to the person at this time?
The left clock must advance by Lv/c2 by the time it reaches him. This takes a time
of γ(Lv/c2) in the person’s frame, due to time dilation. The tunnel therefore travels
a distance v(γLv/c2) during this time. So this is the initial distance between the
near end of the tunnel and the person.

The total distance the photon travels to reach the person is the length of the train
(which is L/γ) plus the above distance, which gives

L

γ
+

γLv2

c2
= γL

(
1

γ2
+

v2

c2

)
= γL

((
1− v2

c2

)
+

v2

c2

)
= γL. (613)

(If you imagine the person holding a long ruler, you can also derive this result via a
length contraction argument.) The total time of the process in the person’s frame
is therefore γL/c. During this time, the tunnel travels a distance v(γL/c). The
length of the tunnel that is beyond the person is therefore γLv/c − γLv2/c2 (that
is, the distance traveled minus the initial distance from the tunnel to the person).
The fraction of the tunnel that is beyond the person is therefore

f =
γLβ − γLβ2

L/γ
= γ2(β − β2) =

β(1− β)

1− β2
=

β

1 + β
=

v

c + v
, (614)

in agreement with the result obtained by working in the tunnel frame.
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11.43. Overlapping trains

In A’s frame, when the rear of B passes the front of A, the situation is shown in
Fig. 38. We need to find the three question marks in the figure. The velocity-

v' = ?

A

L

L' = ?

B

00

0?

(A's frame)

Figure 38

addition formula gives v′ = 2v/(1 + v2), where we have dropped the c’s. You can
show that the γ factor associated with this speed is γ′ = (1 + v2)/(1 − v2). So
L′ = L/γ′ = L(1− v2)/(1 + v2). Also, A sees the front clock on B behind the back
clock by Lv′/c2. So the front clock on B reads −2Lv/(1 + v2).

How much time does it take in A’s frame for the front of B to meet the back of
A? B must travel a distance L− L(1− v2)/(1 + v2) = 2Lv2/(1 + v2) at a speed of
2v/(1 + v2), so the time is Lv, or Lv/c2 with the c’s. The rear clock on A started
at zero, so it therefore reads Lv/c2 when the front of B passes it, as we wanted to
show.

What about the front clock on B? Since A sees it tick slowly, the time elapsed on
it is only Lv/γ′ = Lv(1− v2)/(1+ v2). But it started at −2Lv/(1+ v2), so the time
it reads when it passes the back of A is

− 2Lv

1 + v2
+

Lv(1− v2)

1 + v2
=

Lv(−1− v2)

1 + v2
= −Lv −→ −Lv

c2
, (615)

as we wanted to show.

11.44. Bouncing stick

Assume that a series of clocks are lined up along the stick, and assume that in the
ground frame they all read zero when the stick bounces. In the frame of someone
running by at speed v, the rear clock on the stick is ahead of all the other clocks,
so it will reach zero and bounce off the ground first. Clocks along the stick will
successively reach zero and the stick will bounce at those points, until finally the
clock at the front end reads zero and that end bounces. Snapshots of the stick
therefore look like the ones shown in Fig. 39.

v

Figure 39

There is nothing wrong with the stick having a sharp bend in it. The stick doesn’t
break in the ground frame, so it doesn’t break in the person’s frame, either. The
sharp bend doesn’t imply any severe forces in the stick. The molecules in the stick
think everything is perfectly normal; they have no clue that someone in running by
to the left and that the stick is bent in this person’s frame.

If we want to get quantitative, we can figure out the angle the stick makes with the
horizontal. Let’s go back to the ground frame for a moment. Let the vertical speed
be u (assume that this is essentially constant; ignore the vertical acceleration near
the ground). Then in the ground frame, the clocks run slow by a factor γu. So a
clock that reads −Lv/c2 takes a time of γu(Lv/c2) to reach the ground. During this
time, it travels a vertical distance of u(γuLv/c2). So this is the height above the
ground of a clock that reads −Lv/c2. Now go back to the person’s frame. There
is no transverse length contraction, so when the back of the stick hits the ground
(when its clock reads zero) and the front clock reads −Lv/c2, the front end is a
height γuLuv/c2 above the ground. The horizontal distance between the ends is
L/γv,1 so the angle that the stick makes with the horizontal in the person’s frame

1This is true because you can imagine the ends of the stick sliding down along rails that are a
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is given by

tan θ =
γuLuv/c2

L/γv
=

γuγvuv

c2
. (616)

11.45. Through the hole?

The stick does indeed end up on the other side of the sheet. The lab-frame reasoning
is correct. The naive stick-frame reasoning is incorrect because from the argument
in the solution to Exercise 11.44, the hole is tilted in the stick frame, and this tilt
is enough to outweigh the contraction of the hole. The process in shown in Fig. 40.
(It’s an interesting optical illusion, but the stick in this figure is indeed horizontal.)

v

(side view)

hole stick

Figure 40

Let’s be quantitative. The sheet doesn’t collide with the stick if the hole travels the
necessary horizontal distance before it travels the vertical span of its tilt. You can
show that this is equivalent to (L−L/γv)/v < (L/γv)(tan θ)/(u/γv), where θ is the
angle of the tilt (we have used the transverse velocity-addition formula to obtain
the vertical speed u/γv in the person’s frame). Using the θ from Exercise 11.44, this
condition becomes

L− L/γv

v
<

(L/γv)(γuγvuv/c2)

u/γv
⇐⇒ 1− 1

γv
< γuγv(v2/c2). (617)

Since γuγv ≥ 1, this condition is satisfied if

1− 1

γv
<

v2

c2
⇐⇒ 1− v2

c2
<

1

γv
⇐⇒ 1− v2

c2
<

√
1− v2

c2
. (618)

Since this is always true, the above condition is always satisfied, and the hole does
indeed pass around the stick.

11.46. Short train in a tunnel

As in Problem 11.6, the main point is that the deactivation signal takes a nonzero
time to reach the bomb. Since we are trying to find the largest possible value of r
for which the bomb does not explode, we will assume here that the signal travels
with speed c (because this gives the signal the best chance of getting to the bomb
in time).

Train frame: The situation is shown in Fig. 41. The train has length r`, andv

rl

tunnel
train

sensor bomb

(train frame)

l/γ

Figure 41

the tunnel has length `/γ. If the bomb is not to explode, the signal must travel
from the back of the train to the front of the train before the far end of the tunnel
reaches the front of the train. The former takes a time r`/c. The latter takes a time
(`/γ − r`)/v. So if the bomb is not to explode, we must have

r`

c
<

`(1/γ − r)

v
=⇒ r(1 + β) <

√
1− β2 =⇒ r <

√
1− β

1 + β
. (619)

fixed distance L apart in the ground frame. This distance is length contracted down to L/γv in the
person’s frame, and the ends of the stick are always located on the rails (this is a frame-independent
statement).
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This is smaller than the naive answer of r <
√

1− β2 obtained by simply saying
that in the frame of the train the length of the train is less than the length of the
tunnel. If you want, you can invert Eq. (619) and say that given r, we must have

β <
√

(1− r2)/(1 + r2) in order for the bomb not to explode.

Tunnel frame: The situation is shown in Fig. 42. The train has length r`/γ, and

l

v

(tunnel frame)

rl/γ

Figure 42
the tunnel has length `. If the bomb is not to explode, the signal must travel from
the back of the train to the front of the train before the front of the train reaches
the far end of the tunnel. This happens if and only if a light pulse emitted from the
near end of the tunnel (at the instant the back of the train goes by) reaches the far
end of the tunnel before the front of the train does (we’re phrasing things this way
because it’s easier to work with a fixed finish line rather than a moving target). The
former takes a time `/c. The latter takes a time (`− r`/γ)/v. So if the bomb is not
to explode, we must have

`

c
<

`(1− r/γ)

v
=⇒ r

√
1− β2 < 1− β =⇒ r <

√
1− β

1 + β
, (620)

in agreement with the result in the train frame.

11.47. Successive L.T.’s

The first L.T., from S to S′, is (dropping the c’s)

x′ = γ1(x + v1t), t′ = γ1(t + v1x). (621)

The second L.T., from S′ to S′′, is

x′′ = γ2(x
′ + v2t

′), t′′ = γ2(t
′ + v2x

′). (622)

Note that the γ factor associated with the speed u = (v1 + v2)/(1 + v1v2) is

γu =
1√

1−
(

v1+v2
1+v1v2

)2
=

1 + v1v2√
(1− v2

1)(1− v2
2)

= γ1γ2(1 + v1v2). (623)

If we plug the first transformation into the expression for x′′ in the second transfor-
mation, we obtain

x′′ = γ2

(
γ1(x + v1t) + v2

(
γ1(t + v1x)

))

= γ1γ2

(
(1 + v1v2)x + (v1 + v2)t

)

= γ1γ2(1 + v1v2)
(
x +

v1 + v2

1 + v1v1
· t

)

= γu(x + ut). (624)

The calculation for t′′ is the same, except with x and t interchanged everywhere. So
we do indeed end up with an L.T. with speed u.

11.48. Loss of simultaneity

(a) The L.T. from the train frame to the ground frame is

∆xg = γ(∆x′t + v∆t′t) = γ(L + 0) = γL,

∆tg = γ
(
∆t′t + (v/c2)∆x′t

)
= γ

(
0 + (v/c2)

)
L = γLv/c2. (625)

(b) Ground frame: For simplicity, let’s say that the train has length L and that
the events happen at the ends of the train when clocks there read zero. Then
in the ground frame, when the event happens at the back of the train, the
clock at the front reads only −Lv/c2. Due to time dilation, it takes a time of
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γ(Lv/c2) in the ground frame for the front clock to advance to zero. So the
time separation between the events is γLv/c2, in agreement with above.

During this time, the front of the train travels a distance v(γLv/c2). Since the
train has length L/γ, the total separation between the events in the ground
frame is

L

γ
+

γLv2

c2
= γL

(
1

γ2
+

v2

c2

)
= γL

((
1− v2

c2

)
+

v2

c2

)
= γL, (626)

in agreement with above.

Train frame: In the train frame, the ground is length contracted as it rushes
by. So if two people stand a proper distance γL away from each other on the
ground, then they will match up with the ends of the train when they pass
it. Assuming that things are timed right, the events will happen right at the
people. Therefore, the separation is γL in the ground frame.

A clock at the trailing person is Lgv/c2 ahead of the clock at the leading
person, where Lg is the distance in the ground frame, which we just found to
be γL. So the readings on the clocks differ by γLv/c2.

11.49. Some γ’s

The velocity-addition formula gives the speed as (u ± v)/(1 ± uv), where we have
dropped the c’s. The γ factor associated with this speed is

γ =
1√

1−
(

u±v
1±uv

)2
=

1± uv√
(1− u2)(1− v2)

= γuγv(1± uv). (627)

11.50. Slanted time dilation

Since the x speed in the original frame is zero, the transverse velocity addition
formula gives the vertical speed in your frame as u/γv. And the horizontal speed is

simply v. So the speed of the clock with respect to you is
√

v2 + (u/γv)2. The γ
factor associated with this speed is (dropping the c’s)

γ =
1√

1− v2 − (u/γv)2
=

1√
1− v2 − u2(1− v2)

=
1√

1− u2
√

1− v2
= γuγv.

(628)

11.51. Pythagorean triples

The relativistic addition or subtraction is

a
h
± b

h

1± ab
h2

=
(a± b)h

h2 ± ab
. (629)

The numerator and denominator are two lengths in a Pythagorean triple, because

(h2 ± ab)2 −
(
(a± b)h

)2
= h4 + a2b2 − (a2 + b2)h2 = a2b2, (630)

where we have used the given information that a2 + b2 = h2. So the other leg is ab,
for both the addition and subtraction cases. The associated γ factor is

γ =
1√

1−
(

(a±b)h

h2±ab

)2
=

h2 ± ab

ab
. (631)

(You can show that this is consistent with the result of Exercise 11.49.) As an exam-
ple, the initial triple (3, 4, 5) gives the addition and subtraction triples, (35, 12, 37)
with γ = 37/12, and (5, 12, 13) with γ = 13/12.
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11.52. Running away

In A’s frame, the mark on the ground starts a distance (4/5)L away from A and
moves toward her at speed 3c/5. So the time this takes is (4L/5)/(3c/5) = 4L/3c.
In A’s frame, B’s speed is

V =
3c
5

+ 3c
5

1 +
(

3
5

)2
=

15c

17
. (632)

So B travels a distance (15c/17)(4L/3c) = (20/17)L by the time the mark reaches
A. If we work with a general v instead of 3c/5, the answer to the problem is
2L/(γ(1 + v2)). Note that this is less than 2L/γ, so B has not yet reached a mark
at −L at this time.

11.53. Angled photon

Using v′x = c cos θ and v′y = c sin θ, the velocity-addition formulas give the velocity
components in S as

vx =
v + c cos θ

1 + (v/c) cos θ
, and vy =

c sin θ

γv

(
1 + (v/c) cos θ

) . (633)

So we have

v2
x + v2

y =

(
v + c cos θ

1 + (v/c) cos θ

)2

+

(
v + c sin θ

γv

(
1 + (v/c) cos θ

)
)2

=
c2

(c + v cos θ)2

(
(v + c cos θ)2 +

(
1− v2

c2

)
(c sin θ)2

)

=
c2

(c + v cos θ)2

(
v2(1− sin2 θ) + 2vc cos θ + c2(cos2 θ + sin2 θ)

)

=
c2

(c + v cos θ)2

(
v2 cos2 θ + 2vc cos θ + c2

)

= c2. (634)

11.54. Running on a train

(a) The speed of the person, as viewed by someone on the ground, is (v1 +v2)/(1+
v1v2). So the relative speed of the person and the front of the train, as viewed
by the ground, is

v1 + v2

1 + v1v2
− v1 =

v2(1− v2
1)

1 + v1v2
. (635)

The initial separation, in the ground frame, between the person and the front
of the train is L/γ1. So the time it takes the person to close this gap is

t =
L
√

1− v2
1

v2(1− v2
1)/(1 + v1v2)

=
L(1 + v1v2)

v2

√
1− v2

1

=
γ1L(1 + v1v2)

v2
. (636)

(b) In the person’s frame, the train has length L/γ2, and it moves with speed v2.
So the time on the person’s clock is L/(γ2v2). (Alternatively, the time in the
train frame is simply L/v2, but the train sees the person’s clock run slow by
γ2.) The γ factor between the person and the ground is

γ =
1√

1−
(

v1+v2
1+v1v2

)2
=

1 + v1v2√
(1− v2

1)(1− v2
2)

= γ1γ2(1 + v1v2). (637)

So time dilation gives the time in the ground frame as

γ1γ2(1 + v1v2)
(

L

γ2v2

)
=

γ1L(1 + v1v2)

v2
. (638)
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11.55. Velocity addition

(a) The relative speed of the ball and the front of the train, as viewed by the
ground, is V − v1. The initial separation, in the ground frame, between the
ball and the front is L/γ1. So the time it takes the ball to close this gap is
t = (L/γ1)/(V − v1).

(b) In the ball’s frame, the train has length L/γ2, and it moves with speed v2. So
the time on the ball’s clock is L/(γ2v2). (Alternatively, the time in the train
frame is simply L/v2, but the train sees the ball’s clock run slow by γ2.) But
the ground sees the ball’s clock run slow by γV , so the time in the ground
frame is γV (L/γ2v2).

Setting these two results equal gives

γV L

γ2v2
=

L

γ1(V − v1)

=⇒ (V − v1)
√

1− v2
2 = v2

√
1− v2

1

√
1− V 2. (639)

Squaring and simplifying gives

(1− v2
1v2

2)V 2 − 2v1(1− v2
2)V + v2

1 − v2
2 = 0. (640)

The quadratic formula gives, after a good deal of simplification, V = (v1 ±
v2)/(1 ± v1v2). We want the “+” sign. The “−” sign was introduced in the
squaring operation; you can show that it is the result we would have obtained
if we had thrown the ball from the front to the back.

11.56. Velocity addition again

(a) Let the ball leave the back of the train when a clock at the back reads zero.
Then by looking at things in the train frame, we quickly see that the ball
reaches the front of the train when a clock at the front reads L/u. These two
statements are frame-independent facts (because the ball is located at the same
place as the clock in each case), so they are true in the ground frame also.

Therefore, in the ground frame, the process looks like this: When the ball
is thrown, the rear clock reads zero (from above), and hence the front clock
reads −Lv/c2 (from the rear-clock-ahead effect). And when the ball reaches
the front, the front clock reads L/u (from above), and hence the rear clock
reads L/u+Lv/c2 (from the rear-clock-ahead effect). We therefore see that in
the ground frame, each individual clock on the train advances by L/u + Lv/c2

during the process, instead of the naive value of L/u. So time dilation from
the train frame (using either clock) to the ground frame gives the time of the
process in the ground frame as tg = γv(L/u + Lv/c2).

Remark: The point here is that we applied time dilation to a single clock, which is

exactly how time dilation should be applied. The error in the naive γu(L/u) reasoning

is that it uses the rear clock at the start, and the front clock at the end. So it uses

two different clocks, which isn’t legal because of the Lv/c2 difference in readings of

the two clocks. This is all consistent, of course, with the statement that time dilation

holds only if the two events happen at the same place in the frame you’re looking at,

because otherwise the loss-of-simultaneity Lv/c2 comes into play. ♣

(b) In the ball’s frame, the train has length L/γu, and it moves with speed u. So
the time on the ball’s clock is L/(γuu). (Alternatively, the time in the train
frame is simply L/u, but the train sees the ball’s clock run slow by γu.) But
the ground sees the ball’s clock run slow by γV , so the time in the ground
frame is tg = γV (L/γuu). Time dilation is legal here because we’re looking at
a single clock. Equivalently, the ball is (of course) always at the same place in
the ball’s frame.
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(c) Equating the above two expressions for tg gives

γv(L/u + Lv/c2) = γV (L/γuu) =⇒ γuγv(1 + uv/c2) = γV , (641)

as desired. Inverting both sides, squaring, solving for V 2, and dropping the
c’s, gives

V 2 = 1− (1− u2)(1− v2)

(1 + uv)2
=⇒ V =

u + v

1 + uv
. (642)

as desired.

11.57. Bullets on a train

By working in the train frame, the time elapsed on the rear clock between firings
of the bullets is simply L/u, where L is the proper length of the train. Now look
at the setup in the ground frame. Applying time dilation to the rear clock tells us
that the time between firings of the bullets in the ground frame is γv(L/u). The
speed of the bullets in the ground frame is given by the velocity-addition formula,
so the distance traveled (in the ground frame) by the previous bullet by the time
the next one is fired is

(
(u + v)/(1 + uv)

)
(γvL/u). But during this time, the back

of the train has traveled v(γvL/u). The separation between the previous bullet and
the next one is therefore

(
u + v

1 + uv
− v

)(
γvL

u

)
=

γvL(1− v2)

1 + uv
. (643)

To obtain the fraction along the train, we need to divide this distance by the length
of the train in the ground frame, namely L/γv. The fraction is therefore

f =
γvL(1− v2)/(1 + uv)

L/γv
=

1

1 + uv
. (644)

Since 0 ≤ uv < 1, we have 1 ≥ f > 1/2. The fact that the fraction is larger than
1/2 means that the number of bullets in flight is at most 2.

11.58. Time dilation and Lv/c2

In the ground frame, the watch must close the initial gap of L/γv that the front of
the train had, at a relative speed of (u + v)/(1 + uv) − v. The time in the ground
frame is therefore

tg =
L/γv

u+v
1+uv

− v
=

L(1 + uv)

u
√

1− v2
. (645)

Compared with this time, the front clock runs slow by a factor of γv, and the watch
runs slow by the γ factor associated with the speed (u + v)/(1 + uv), which you can
show is γuγv(1+ uv). The difference in the elapsed times on the front clock and the
watch is therefore

∆Tfront −∆Twatch =
L(1 + uv)

u
√

1− v2

(
1

γv
− 1

γuγv(1 + uv)

)

=
L

u

(
1 + uv − 1

γu

)

=
Lv

c2
+

L

u

(
1− 1

γu

)
, (646)

where we have put the c’s back in to make the units correct. For small u, we have
1/γu =

√
1− u2/c2 ≈ 1− u2/2c2, so ∆Tfront −∆Twatch ≈ Lv/c2 + Lu/2c2. Since u

is assumed to be small (more precisely, u ¿ v), the second term here is negligible,
so the front clock gains essentially Lv/c2 more time than the watch, as we wanted
to show.

Since the front clock started Lv/c2 behind the watch, this means that they end up
showing the same time when the watch reaches the front, as desired. The point here
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is that no matter how small u is, the result for ∆Tfront−∆Twatch is nonzero because
u appears at first order in the γ factor associated with (u + v)/(1 + uv), while it
appears only at second order in γu. The difference between the γ factors is therefore
first order in u, and this difference combines with the 1/u factor in the time to yield
a nonzero result.

Note that the result in Eq. (646) makes sense for non-small u too, because it implies
that the final readings on the front clock and the watch differ by (L/u)(1 − 1/γu).
This is clear from the train-frame calculation which gives the difference as (L/u)−
(L/u)/γu, due to the time dilation of the watch.

11.59. Passing a train

A’s frame: In the ground frame, the train has length 4L/5, and the relative speed
of C and B is 4c/5− 3c/5 = c/5. The time it takes C to traverse the length of the
train is therefore ∆tA = (4L/5)/(c/5) = 4L/c. The distance between the events
equals C’s speed times this time, which gives ∆xA = (4c/5)(4L/c) = 16L/5.

B’s frame: The distance is simply ∆xB = L. From the velocity-addition formula,
B sees C move with speed (4c/5− 3c/5)/(1− 4/5 · 3/5) = 5c/13. The time it takes
C to travel the distance L is therefore ∆tB = L/(5c/13) = 13L/5c.

C’s frame: The distance is ∆xC = 0, of course, because both events happen right
at C. C sees the train move with speed 5c/13, so it is length contracted down to
12L/13. The time it takes to pass C is therefore ∆tC = (12L/13)/(5c/13) = 12L/5c.
(This can also be obtained by applying the appropriate time-dilation factor from A’s
frame or B’s frame, namely 3/5 or 12/13, respectively.)

The value of c2∆t2 − ∆x2 is indeed the same in all three frames because (up to
factors of L2)

42 − (16/5)2 = (13/5)2 − 12 = (12/5)2 − 02. (647)

11.60. Passing trains

(a) A sees B moving at speed 2v/(1 + v2), which has an associated γ factor of
(1 + v2)/(1 − v2). In A’s frame, B must travel the sum of the lengths of the
two trains at speed 2v/(1 + v2), so the time is

∆tA =
L + 1−v2

1+v2 · 2L
2v

1+v2

=
L(3− v2)

2v
. (648)

(b) Similar reasoning holds in B’s frame, so the time is

∆tB =

1−v2

1+v2 · L + 2L
2v

1+v2

=
L(3 + v2)

2v
. (649)

(c) In the ground frame, the ends are initially 3L
√

1− v2 apart due to length
contraction. They move toward each other at a relative speed of 2v, so the
time is

∆tg =
3L
√

1− v2

2v
. (650)

(d) For A, we have ∆xA = L, because the two events are located at the ends of
the train (remember, it is the distance between the events that we want here,
not the distance that the other train travels). Therefore (ignoring the c’s),

∆t2A −∆x2
A =

(
L(3− v2)

2v

)2

− L2 =
L2

4v2
(9− 10v2 + v4). (651)

For B, we have ∆xB = 2L. Therefore,

∆t2B −∆x2
B =

(
L(3 + v2)

2v

)2

− (2L)2 =
L2

4v2
(9− 10v2 + v4). (652)
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For the ground, we have ∆xg = (L/2)
√

1− v2, because the meeting of the
backs is midway between the initial positions of the backs, which means that
it is (3L/2)

√
1− v2 from each, or (L/2)

√
1− v2 away from the initial position

of the fronts. Therefore,

∆t2g −∆x2
g =

(
3L
√

1− v2

2v

)2

−
(

L
√

1− v2

2

)2

=
L2

4v2
(9− 10v2 + v4). (653)

These three results are the same, as desired.

11.61. Throwing on a train

(a) In the train frame, the distance is simply d = L. And the time is t = L/(c/2) =
2L/c.

(b) i. The velocity of the ball with respect to the ground is (with u = c/2 and
v = 3c/5)

Vg =
u + v

1 + uv
c2

=
c
2

+ 3c
5

1 + 1
2
· 3

5

=
11c

13
. (654)

The length of the train in the ground frame is L/γ3/5 = 4L/5. Therefore,
at time t the position of the ball is Vgt, and the position of the front of
the train is 4L/5 + vt. These two positions are equal when

(Vg − v)t =
4L

5
=⇒ t =

4L
5

11c
13
− 3c

5

=
13L

4c
. (655)

Equivalently, this time is obtained by noting that the ball closes the initial
head start of 4L/5 that the front of the train had, at a relative speed of
Vg − v. The distance the ball travels is d = Vgt = (11c/13)(13L/4c) =
11L/4.

ii. In the train frame, the space and time intervals are xt = L and tt = 2L/c,
from part (a). The γ factor between the frames is γ3/5 = 5/4, so the
Lorentz transformations give the coordinates in the ground frame as

xg = γ(xt + vtt) =
5

4

(
L +

3c

5

(
2L

c

))
=

11L

4
,

tg = γ(tt + vxt/c2) =
5

4

(
2L

c
+

3c
5

L

c2

)
=

13L

4c
, (656)

in agreement with the above results.

(c) In the ball frame, the train has length L/γ1/2 =
√

3L/2. Therefore, the time it

takes the train to fly past the ball at speed c/2 is t = (
√

3L/2)/(c/2) =
√

3L/c.
And the distance is d = 0, of course, because the ball doesn’t move in the ball
frame.

(d) The values of c2t2 − x2 in the three frames are:

Train frame: c2t2 − x2 = c2(2L/c)2 − L2 = 3L2.

Ground frame: c2t2 − x2 = c2(13L/4c)2 − (11L/4)2 = 3L2.

Ball frame: c2t2 − x2 = c2(
√

3L/c)2 − (0)2 = 3L2.

These are all equal, as they should be.

(e) The relative speed of the ball frame and the ground frame is 11c/13. Therefore,
since γ11/13 = 13/4

√
3, the times are indeed related by

tg = γtb ⇐⇒ 13L

4c
=

13

4
√

3

(√
3L

c

)
, which is true. (657)
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(f) The relative speed of the ball frame and the train frame is c/2. Therefore,
since γ1/2 = 2/

√
3, the times are indeed related by

tt = γtb ⇐⇒ 2L

c
=

2√
3

(√
3L

c

)
, which is true. (658)

(g) The relative speed of the train frame and the ground frame is 3c/5. Therefore,
since γ3/5 = 5/4, the times are not related by a simple time-dilation factor,
because

tg 6= γtt ⇐⇒ 13L

4c
6= 5

4

(
2L

c

)
. (659)

We don’t obtain an equality here because time dilation is legal to use only if
the two events happen at the same place in one of the frames. Mathematically,
the Lorentz transformation ∆t = γ

(
∆t′ + (v/c2)∆x′

)
leads to ∆t = γ∆t′ only

if ∆x′ = 0. In this problem, the “ball leaving back” and “ball hitting front”
events happen at the same place in the ball frame, but in neither the train
frame nor the ground frame. Equivalently, neither the train frame nor the
ground frame is any more special than the other, as far as these two events are
concerned. So if someone insisted on trying to use time dilation, he would have
a hard time deciding which side of the equation the γ should go on. When
used properly, the γ goes on the side of the equation associated with the frame
in which the two events happen at the same place.

11.62. Time dilation via Minkowski

Consider first the case where someone in S looks at a clock at rest in S′ flying by
at speed v. The worldline of the clock is the ct′ axis of S′. Let one second on the
clock correspond to the interval AB shown in Fig. 43. As viewed by S, event C

θ

ct ct'

x

x'

A

BC

clock's worldline

Figure 43

is simultaneous with event B, so our goal is to find the number of ct units in the
interval AC. Due to the unit size of the ct′ axis, the length of AB on the paper is√

(1 + β2)/(1− β2). The length of AC is therefore

AC = (AB) cos θ =

√
1 + β2

1− β2
· 1√

1 + β2
=

1√
1− β2

≡ γ. (660)

In other words, as measured by S, one second on the S′ clock equals γ seconds on
the S clock. So t = γt′, as desired.

Now consider the case where someone in S′ looks at a clock at rest in S flying
by at speed v. The worldline of the clock is the ct axis of S. Let one second on
the clock correspond to the interval AB shown in Fig. 44. As viewed by S′, event

θ

θ

ct ct'

x

x'

A

B

D
C

clock's worldine

Figure 44

C is simultaneous with event B, so our goal is to find the number of ct′ units in
the interval AC. If AC has length ` on the paper, then CD = ` sin θ =⇒ BD =
` sin θ tan θ, which gives

AB = AD −BD = ` cos θ − ` sin θ tan θ = ` cos θ(1− tan2 θ) =
`(1− β2)√

1 + β2
. (661)

Therefore, ` = (AB)
√

1 + β2/(1 − β2). So if AB corresponds to one second in
frame S (so that the length of AB on the paper is 1), then the length of AC on

the paper is ` =
√

1 + β2/(1 − β2). But due to the unit size of the ct′ axis, one

second in S′ corresponds to a length of
√

(1 + β2)/(1− β2) on the paper. Since AC

is 1/
√

1− β2 times this unit length, we see that AC corresponds to 1/
√

1− β2 ≡ γ
seconds in S′. In other words, as measured by S′, one second on the S clock equals
γ seconds on the S′ clock. So t′ = γt, as desired.
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11.63. Lv/c2 via Minkowski

Consider first the case where someone in S looks at the S′ train (with proper length
L) flying by at speed v. The worldlines of the ends of the train are shown in

Fig. 45. If segment AC has length ` on the paper, then ` = L
√

(1 + β2)/(1− β2),

θ
θ

ct ct'

x

x'

A B

C

D

l

rear

end

front

end

Figure 45

due to the unit size on the x′ axis. CD then has length ` sin θ, so CB has length
` sin θ/ cos θ = ` tan θ = `(v/c). But the ct′ axis is stretched by the same factor

as the x′ axis, so CB/
√

(1 + β2)/(1− β2) equals the (negative) time, ct′, that the
front clock in S′ reads relative to the rear clock, as measured simultaneously in S.
So we have

ct′ =
`(v/c)√

(1 + β2)/(1− β2)
=⇒ t′ =

Lv

c2
, (662)

as desired.

Now consider the case where someone in S′ looks at the S train (with proper length
L) flying by at speed v (to the left). The worldlines of the ends of the train are
shown in Fig. 46. This case is simpler. The length of AB on the paper is simply L,

θ

ct ct'

x

x'

A BL

E

front

end

rear

end

Figure 46

so BE has length ` tan θ = L(v/c). But BE equals the (positive) time, ct, that the
rear clock in S reads relative to the front clock, as measured simultaneously in S′.
So we have ct = Lv/c =⇒ t = Lv/c2, as desired.

11.64. Simultaneous waves again

Let u be the speed at which the observer (C) sees Alice and Bob move in opposite
directions. Then the velocity addition formula says that u is given by 2u/(1+u2) = v.
As viewed by C, the axes of Alice’s and Bob’s frames are shown in Fig. 47.
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Cct
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Let Alice make her first wave at event A1. Bob’s first wave at B1 (which occurs
simultaneously with A1, as measured by Bob) is obtained by drawing a line through
A1 parallel to the xB axis. Since the xB axis is perpendicular to the ctA axis (due
to the plethora of θ angles in the figure), we obtain the right angle shown.

Similarly, Alice’s second wave at A2 (which occurs simultaneously with B1, as mea-
sured by Alice) is obtained by drawing a line through B1 parallel to the xA axis.
Since the xA axis is perpendicular to the ctB axis, we obtain the right angle shown.

Continuing in this manner, we can locate all subsequent waves. Since the angle
between the ctA and ctB axes is 2θ, we have PB1 = PA1/ cos 2θ, and PA2 =
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PB1/ cos 2θ, and so on. We are given that PA1 corresponds to a time T , so Alice’s
waves occur at times T/(cos 2θ)m, where m is even. And Bob’s waves occur at times
T/(cos 2θ)n, where n is odd. (We have used the fact that the unit sizes on the ctA

and ctB axes are equal.) We must now determine cos 2θ. Using tan θ = u, we have

cos 2θ = cos2 θ − sin2 θ = cos2 θ(1− tan2 θ) =
1− tan2 θ

1 + tan2 θ
=

1− u2

1 + u2
. (663)

But this equals 1/γv, because

γv =
1√

1− v2
=

1√
1−

(
2u

1+u2

)2
=

1 + u2

1− u2
. (664)

So with γ ≡ γv, Alice waves at T , γ2T , γ4T , etc., and Bob waves at γT , γ3T , γ5T ,
etc.

11.65. Short train in a tunnel again

As in Problem 11.6, the main point is that the deactivation signal takes a nonzero
time to reach the bomb. Since we are trying to find the largest possible value of r
for which the bomb does not explode, we will assume here that the signal travels
with speed c (because this gives the signal the best chance of getting to the bomb
in time).

Train frame: In this frame, Fig. 48 shows the cutoff case where the photon andθ
θ

ends of

tunnel

ends of

train

l/γ-rlrl
A

B C

D

Figure 48

the far end of the tunnel reach the front of the train at the same time (at event D).
AC is the contracted length of the tunnel, which is `/γ. The 45◦ slope of the light’s
worldline implies that the length of BD is r`, so right triangle BCD gives

r` tan θ = `/γ− r` =⇒ r`v = `/γ− r` =⇒ r(1+ v) = 1/γ =⇒ r =

√
1− v

1 + v
.

(665)

Tunnel frame: In this frame, Fig. 49 shows the cutoff case where the photon and

θ

θ

ends of

tunnel

ends of

train

l-rl/γrl/γ
A

B C

D

Figure 49

the front of the train reach the far end of the tunnel at the same time (at event D).
AB is the contracted length of the train, which is r`/γ. The 45◦ slope of the light’s
worldline implies that the length of CD is `, so right triangle BCD gives

` tan θ = `− r`/γ =⇒ `v = `− r`/γ =⇒ r = γ(1− v) =

√
1− v

1 + v
. (666)

11.66. Transverse Doppler

Consider the emission of the particular photon that eventually hits your eye at the
moment the source is at its closest approach to you. Because we are assuming that
this photon ends up on the y axis at the same time that the source ends up on
the y axis, the x component of the photon’s velocity must be v. In other words,
v/c = sin θ, where θ is shown in Fig. 50. The component of the source’s velocity

v

c

x

y

θ

Figure 50

along the direction of the photon’s velocity is then u = v sin θ = v2/c.

The distance the photon travels by the time the next photon is emitted is (using
time dilation) c∆t = c(γ∆t′), where ∆t′ = 1/f ′ is the time between emissions in
the source’s frame. The source has also moved a distance u(γ∆t′) = (v2/c)(γ∆t′)
closer to you during this time, at which point it emits the next photon. So the two
successive photons have distances to you that differ by d = c(γ∆t′)− (v2/c)(γ∆t′).
The time between the photons hitting you is therefore

∆T =
d

c
=

c(γ∆t′)− (v2/c)(γ∆t′)
c

=
(1− β2)∆t′√

1− β2
=

√
1− β2

f ′
. (667)

The frequency you measure is therefore f = 1/∆T = f ′/
√

1− β2, as desired.
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11.67. Twin paradox via Doppler

(a) A’s frame: Consider the last redshifted photon sent out by A (or more
accurately, the last photon that B observes to be redshifted). Then this photon
arrives at the star right when B does. So the length of time Tr for which A
emits redshifted photons is given by Tr + L/c = L/v =⇒ Tr = L/v − L/c.
Since the total time in A’s frame is 2L/v, the remaining time, which is the
length of time Tb for which A emits blueshifted photons, is given by Tb =
2L/v − Tr = L/v + L/c. The numbers of red and blueshifted photons that A
sends out are therefore

nr =
1

t

(
L

v
− L

c

)
, and nb =

1

t

(
L

v
+

L

c

)
. (668)

Using the longitudinal Doppler result, the time that B measures between red-
shifted photons is tr = t

√
(1 + β)/(1− β). And similarly for blueshifted pho-

tons. The total time that B measures is TB = nrtr + nbtb, which gives

TB =
L

vt

(
1− v

c

)
· t

√
1 + β

1− β
+

L

vt

(
1 +

v

c

)
· t

√
1− β

1 + β
=

2L

v

√
1− β2. (669)

But TA = 2L/v, so we have TB = TA

√
1− β2 ≡ TA/γ, as desired.

B’s frame: B receives redshifted photons on the way out (which takes a
time TB/2) and blueshifted photons on the way back (which also takes a time
TB/2). So the numbers of red and blueshifted photons that B receives are

nr =
TB/2

t
√

1+β
1−β

, and nb =
TB/2

t
√

1−β
1+β

. (670)

The total number of photons that B receives is therefore N = nr + nb =
TB/(t

√
1− β2). But this N must also equal the number of photons that A

sends out, which is TA/t. Equating these two expressions for N gives TB =

TA

√
1− β2 ≡ TA/γ, as desired.

(b) A’s frame: Consider the last redshifted photon sent out by B (or more
accurately, the last photon that A observes to be redshifted). Then this photon
is sent out by B right when he reaches the star. Therefore, the length of time
Tr for which A observes redshifted photons is Tr = L/v + L/c. Since the total
time in A’s frame is 2L/v, the remaining time, which is the length of time Tb for
which A receives blueshifted photons, is given by Tb = 2L/v−Tr = L/v−L/c.
The numbers of red and blueshifted photons that A receives are therefore

nr =
L
v

(
1 + v

c

)

t
√

1+β
1−β

=
L
√

1− β2

vt
, and nb =

L
v

(
1− v

c

)

t
√

1−β
1+β

=
L
√

1− β2

vt
.

(671)
These are equal, as they should be, because B sends out the same number
of photons on the way out and the way back. The total number emitted
by B is nr + nb = 2L

√
1− β2/vt, and so the total time in B’s frame is

TB = 2L
√

1− β2/v. But TA = 2L/v, so we have TB = TA

√
1− β2 ≡ TA/γ,

as desired.

B’s frame: B emits redshifted photons on the way out (which takes a time
TB/2) and blueshifted photons on the way back (which also takes a time TB/2).
So the numbers of red and blueshifted photons that B emits are simply nr =
nb = (TB/2)/t. The total time as measured by A is therefore

TA = nrtr + nbtb =
TB

2t
· t

√
1 + β

1− β
+

TB

2t
· t

√
1− β

1 + β
=

TB√
1− β2

. (672)



148 CHAPTER 11. RELATIVITY (KINEMATICS)

We therefore have TB = TA

√
1− β2 ≡ TA/γ, as desired.

11.68. Time of travel

(a) Let t and t′ be the times in the earth frame and spaceship frame, respectively.
Our strategy will be to find v(t) and then use

∫
v dt = L. From Problem 11.28,

we have v(t′) = c tanh(at′/c) and at/c = sinh(at′/c). Therefore,

v = c
sinh(at′/c)

cosh(at′/c)
=

c sinh(at′/c)√
1 + sinh2(at′/c)

=
at√

1 + (at/c)2
. (673)

So
∫

v dt = L gives

∫ T

0

at dt√
1 + (at/c)2

= L =⇒ c2

a

√
1 +

(
at

c

)2
∣∣∣∣
T

0

= L

=⇒ L =
c2

a

(√
1 +

(
aT

c

)2

− 1

)
. (674)

Solving for T gives

T =

√
2L

a
+

L2

c2
. (675)

For small L, we have T ≈
√

2L/a =⇒ L ≈ aT 2/2, as expected. For large L,
we have T ≈ L/c =⇒ L ≈ cT , as expected.

(b) In the spaceship frame, the distance traveled by an object that is at rest in
the earth frame is v(t′) dt′. This corresponds to a proper length of γv(t′) dt′

in the earth frame, due to length contraction. We must therefore have L =∫ T ′

0
γv(t′) dt′. But

v(t′) = c tanh(at′/c) =⇒ γ =
1√

1− β2
= cosh(at′/c). (676)

Hence,

L =

∫ T ′

0

cosh(at′/c) · c tanh(at′/c) dt′

=

∫ T ′

0

c sinh(at′/c) dt′

=
c2

a

(
cosh(aT ′/c)− 1

)
. (677)

This is an implicit equation that determines T ′ in terms of L. Note that it is
equivalent to Eq. (674), because cosh(at′/c) =

√
1 + (at/c)2 (see Eq. (673)).

If L is small, then T ′ is small, so cosh(aT ′/c) ≈ 1 + (aT ′/c)2/2, which gives
L ≈ (c2/a)(a2T ′2/2c2) = aT ′2/2, as expected. If L is large, then T ′ is

large, so cosh(aT ′/c) ≈ (1/2)eaT ′/c, which gives L ≈ (c2/2a)eaT ′/c =⇒ T ′ ≈
(c/a) ln(2aL/c2).



Chapter 12

Relativity (Dynamics)

12.20. Energy of two masses

The total energy in the original frame is 2γV Mc2. In the new frame, the γ factors
associated with the relativistic addition and subtraction of u from V are γuγV (1±
uV ), from Eq. (12.24). So the total energy in the new frame is

E = γuγV (1 + uV )Mc2 + γuγV (1− uV )Mc2 = γu(2γV Mc2). (678)

The energy is therefore larger in the new frame by a factor γu.

12.21. System of particles

Let the CM move with velocity v with respect to the lab frame. Then the Lorentz
transformation for the total momentum is pCM

total = γv(plab
total − (v/c2)Elab

total). The
minus sign here is due to the fact that the CM frame sees the lab frame move with
velocity −v. Using pCM

total = 0, we find v/c2 = plab
total/Elab

total. This takes exactly the
same form as the familiar v/c2 = p/E expression for one particle.

If we have general 3-D motion, then we can use the above reasoning with a Lorentz
transformation in the x direction to show that the x component of the velocity of
the CM is given by vx/c2 = plab

x,total/Elab
total. Likewise for vy and vz. (Alternatively, if

you want to, you can first transform to a frame where px is zero, and then transform
from this frame to another one where py is zero (keeping px zero), and then finally
transform from this frame to another one where pz is zero (keeping px and py zero).
You can show that the result will be a frame moving with respect to the original lab
frame with the above vx, vy, and vz.)

12.22. CM frame

(a) Let the moving and stationary masses be labeled 1 and 2, respectively. Then

E1 = γ3/5mc2 = (5/4)mc2, p1 = γ3/5m(3c/5) = (3/4)mc,

E2 = γ0mc2 = mc2, p2 = 0. (679)

(b) If v is the speed of the CM with respect to the lab frame, then the CM sees
the stationary mass (and hence also the moving mass, because they have the
same m) approaching it at speed v. Therefore, the relativistic addition of v
with itself equals the relative speed of the masses (as viewed by either one),
which we know is 3c/5. Hence,

2v

1 + v2
=

3

5
=⇒ 3v2 − 10v + 3 = 0 =⇒ (3v − 1)(v − 3) = 0 (680)

So the speed of the CM is v = c/3 (since v = 3c isn’t allowed). Alternatively,
you can find v by demanding that the relativistic subtraction of v from 3c/5
(which is how fast the CM sees mass 1 head toward it) equals v (which is how
fast the CM sees mass 2 head toward it).
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(c) In the CM frame, the speeds of both masses are c/3. Since γ1/3 = 3/2
√

2, we
have

E1 = E2 = (3/2
√

2)mc2, p1 = −p2 = (3/2
√

2)m(c/3) = mc/2
√

2. (681)

(d) The following statements are in fact all true:

ECM
1 = γ1/3

(
Elab

1 − vplab
1

)
⇐⇒ 3mc2

2
√

2
=

3

2
√

2

(
5

4
mc2 − c

3
· 3

4
mc

)
,

pCM
1 = γ1/3

(
plab
1 − (v/c2)Elab

1

)
⇐⇒ mc

2
√

2
=

3

2
√

2

(
3mc

4
− c

3
· 5mc2/4

c2

)
,

ECM
2 = γ1/3

(
Elab

2 − vplab
2

)
⇐⇒ 3mc2

2
√

2
=

3

2
√

2

(
mc2 − 0

)
, (682)

pCM
2 = γ1/3

(
plab
2 − (v/c2)Elab

2

)
⇐⇒ − mc

2
√

2
=

3

2
√

2

(
0− c

3
· mc2

c2

)
.

(e) With lab-frame quantities on the left and CM-frame quantities on the right,
we have

Mass 1 :

(
5mc2

4

)2

−
(

3mc

4

)2

c2 = m2c4 =

(
3mc2

2
√

2

)2

−
(

mc

2
√

2

)2

c2.

Mass 2 : (mc2)2 − 02 = m2c4 =

(
3mc2

2
√

2

)2

−
(
− mc

2
√

2

)2

c2. (683)

Total :

(
5mc2

4
+ mc2

)2

−
(

3mc

4

)2

c2 =
9m2c4

2
=

(
3mc2

2
√

2
+

3mc2

2
√

2

)2

− 02.

12.23. Transformations for 2-D motion

Equations (11.36) and (11.38) give

ux =
u′x + v

1 + u′xv
, and uy =

u′y
γv(1 + u′xv)

. (684)

These yield

u2
x + u2

y =
(u′x + v)2 + u′2y (1− v2)

(1 + u′xv)2
. (685)

Therefore,

γu =
1√

1− u2
=

1 + u′xv√
(1 + u′xv)2 −

(
(u′x + v)2 + u′2y (1− v2)

)

=
1 + u′xv√

(1− u′2x − u′2y )(1− v2)

= γu′γv(1 + u′xv). (686)

So in frame S, we have (putting the c’s back in)

E = γumc2 = γu′γv(1 + u′xv/c2)mc2 = γv(E′ + vp′x), (687)

px = γumux = γu′γv(1 + u′xv/c2)
m(u′x + v)

1 + u′xv/c2
= γv(p′x + vE′/c2),

py = γumuy = γu′γv(1 + u′xv/c2)
mu′y

γv(1 + u′xv/c2)
= γu′mu′y = p′y.
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12.24. Photon and mass collision

Conservation of energy and momentum give the energy and momentum of the re-
sulting particle as (dropping the c’s) E+m and E, respectively. The very important
relation then gives

M2 = E2
M − p2

M = (E + m)2 − E2 =⇒ M =
√

2Em + m2, (688)

or M =
√

2Em/c2 + m2 with the c’s. If E ¿ mc2, then M ≈ m, as expected.

To find the velocity, v = p/E gives v = E/(E + m), or v = Ec/(E + mc2) with the
c’s. This can also be written as v = c/(1 + mc2/E). If E ¿ mc2, then v ≈ 0, as
expected. And if E À mc2, then v ≈ c, as expected.

12.25. A decay

If E is the energy of the photon, then conservation of energy and momentum give
(dropping the c’s) M = E + γm and 0 = E − γmv, respectively. Combining these
yields M = γmv + γm. Therefore,

M = m
(1 + v)√
1− v2

=⇒ m = M

√
1− v

1 + v
−→ M

√
c− v

c + v
. (689)

The energy of the photon is then

E = γmv =
1√

1− v2

√
1− v

1 + v
Mv =

Mv

1 + v
−→ Mc2v

c + v
. (690)

If v ¿ c, then m ≈ M and E ≈ 0, as expected. And if v ≈ c, then m ≈ 0 and
E ≈ Mc2/2; we essentially have two photons traveling in opposite directions.

12.26. Three photons

Let the forward photon have energy E, and let the other two have energy E′ (their
energies are indeed equal, because their py’s must be equal and opposite). Then
conservation of energy gives γm = 2E′ + E, and conservation of momentum gives
γmv = E − 2E′ cos 60◦ = E − E′. Solving these two equations for E and E′ gives

E =
m

3

1 + 2v√
1− v2

−→ mc2

3

1 + 2v/c√
1− (v/c)2

,

E′ =
m

3

√
1− v

1 + v
−→ mc2

3

√
c− v

c + v
. (691)

If v = 0, then E = E′ = mc2/3, as expected. If v ≈ c, then E ≈ γmc2 and E′ ≈ 0,
which makes sense.

12.27. Perpendicular photon

Let the resulting photon have energy E′. Then conservation of energy gives the
energy of M as E + M − E′. And conservation of px and py give the components
of M ’s momentum as E and −E′, respectively. The very important relation for M
then yields

(E + M − E′)2 = (E2 + E′2) + M2 =⇒ E′ =
EM

E + M
−→ EMc2

E + Mc2
. (692)

If E ≈ 0, then E′ ≈ E (M is basically a brick wall and picks up no energy). If
E À Mc2, then E′ ≈ Mc2 (not obvious).

12.28. Another perpendicular photon

The initial energy and momentum of the system are (5/3)mc2+mc2 = (8/3)mc2 and
(5/3)m(4c/5) = (4/3)mc, respectively. Conservation of energy then gives the energy
of M as EM = (8/3)mc2 − E. And conservation of px and py give the components
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of M ’s momentum as (4/3)mc and −E/c, respectively. The very important relation
for M then yields (dropping the c’s)

(
(8/3)m− E

)2
=

(
(4m/3)2 + E2

)
+ M2

=⇒ M =
√

(16/3)m(m− E)

→
√

(16/3)m(m− E/c2). (693)

We must therefore have E ≤ mc2 for this setup to be possible. In the limit E → 0,
we have M = 4m/

√
3. This is just the result for a 1-D collision in which the two

m’s combine to form a mass M , as you can show.

12.29. Decay into photons

Let E be the energy of the bottom photon. Then conservation of energy gives
the energy of the top photon as γm − E. And conservation of px and py give the
components of its momentum as γmv and E, respectively. Since E2 = p2 for a
photon, we have

(γm−E)2 = (γmv)2 + E2 =⇒ γ2m2(1− v2) = 2γmE =⇒ E = m/2γ. (694)

We want

py

px
=

1

2
=⇒ m/2γ

γmv
=

1

2
=⇒ 1

γ2
= v =⇒ v2 + v − 1 = 0 (695)

Putting the c’s back in, we find v/c = (−1 +
√

5)/2 (the other root is smaller than
−1).

12.30. Maximum mass

The energy of the resulting particle is E. Let its mass be M and its momentum be
pf . Then the very important relation gives E2 = p2

f + M2. Since E is given, M is
maximum when pf = 0. That is, the initial momenta are equal and opposite. Call
them p. Then the sum of the energies of the photon and initial mass is

E = p +
√

p2 + m2 =⇒ (E − p)2 = p2 + m2 =⇒ p =
E2 −m2

2E
. (696)

The energy of the photon is therefore

Eγ = p =
E2 −m2

2E
−→ E2 −m2c4

2E
. (697)

The energy of the mass is then

Em = E − Eγ =
E2 + m2c4

2E
. (698)

If m ≈ 0, then Eγ ≈ Em ≈ E/2 (we essentially have two photons). If m ≈ E/c2,
then Eγ ≈ 0 and Em ≈ E (both momenta are small).

12.31. Equal angles

Conservation of py says that the y components of the two final momenta are equal
and opposite. The equality of the two angles then implies that the px components
are equal. Conservation of px then says that both px’s are equal to E/2. Both
momenta therefore have magnitude E/(2 cos θ).

Conservation of energy gives the final energy of m as Em = E + m − E/(2 cos θ).
The very important relation applied to m then gives

(
E + m− E

2 cos θ

)2

=
(

E

2 cos θ

)2

+ m2 =⇒ cos θ =
E + m

E + 2m
−→ E + mc2

E + 2mc2
.

(699)
In the limit E ¿ mc2, we have cos θ ≈ 1/2 =⇒ θ ≈ 60◦ (not obvious). In the limit
E À mc2, we have cos θ ≈ 1 =⇒ θ ≈ 0◦.



153

12.32. Pion-muon race

We are given γmc2 = 10 GeV for both particles. Using mπc2 ≈ 137 MeV and
mµc2 ≈ 105.7 MeV, we find γπ ≈ 73.0 and γµ ≈ 94.6. Now,

γ ≡ 1/
√

1− v2/c2 =⇒ v = c
√

1− 1/γ2 ≈ c(1− 1/2γ2), (700)

for reasonably large γ. The difference in the two speeds is therefore ∆v ≈ c(1/2γ2
π−

1/2γ2
µ). The total time is essentially t ≈ (100m)/c, so the distance the pion lags

behind the muon after this time is

∆d = t∆v ≈ 100m

c
· c

(
1

2(73.0)2
− 1

2(94.6)2

)
≈ 3.8 · 10−3 m = 3.8mm. (701)

12.33. Higgs production

(a) Let the proton mass be m and the Higgs mass be km, where k ≈ 100 here. If
the incoming proton has energy E, then the total energy and momentum are
E + m and

√
E2 −m2, respectively. So the very important relation applied to

the Higgs gives

(E + m)2 = (E2 −m2) + (km)2 =⇒ E = (k2/2− 1)m. (702)

The amount of energy that must be added to the rest energy of the incoming
proton is therefore ∆E = (k2/2 − 2)m. Note that ∆E = 0 if k = 2, as
expected. Note also that ∆E behaves quadratically with k. If k ≈ 100, then
∆E ≈ 5000 mc2 ≈ 5000 GeV.

(b) The Higgs has zero momentum in this case, so each proton must simply have
an energy km/2 to make a total energy of km. The amount of energy that
must be added to the two rest energies is therefore ∆E = (k − 2)m. Again,
∆E = 0 if k = 2, as expected. But note that ∆E now behaves linearly with
k. If k ≈ 100, then ∆E ≈ 100 mc2 ≈ 100 GeV. We see that a much smaller
amount of energy is required for the creation of a heavy particle if the two
initial particles have equal and opposite momenta. This way the final particle
has no wasted kinetic energy.

12.34. Maximum energy

(a) We have

(PM − Pm)2 = P 2
µ =⇒ M2 + m2 − 2PM · Pm = E2

µ − p2
µ. (703)

Since M is initially at rest, we have PM ·Pm = MEm. The quantity E2
µ−p2

µ is
an invariant, so in particular it equals the square of the energy (call it Eµ,CM)
in the CM frame, where the momentum is zero. Therefore, Eq. (703) gives
Em = (M2 + m2 − E2

µ,CM)/2M . So to maximize Em, we want to minimize
Eµ,CM. But the minimum energy in the CM frame is µ (or µc2, with the c’s),
and it is achieved when all the particles are at rest; any nonzero motion would
add kinetic energy to this µc2. (If the particles are at rest in the CM frame,
this means that they simply form a blob in any other frame.) The maximum
Em is therefore

Emax
m =

M2 + m2 − µ2

2M
. (704)

(b) If m represents the electron, and if µ represents the proton and the neutrino,
then from Eq. (704), the maximum energy that the electron can have is (in
MeV)

(939.6)2 + (0.5)2 − (938.3 + 0)2

2(939.6)
≈ 1.3. (705)
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If m represents the neutrino, and if µ represents the proton and the electron,
then the maximum energy that the neutrino can have is (in MeV)

(939.6)2 + (0)2 − (938.3 + 0.5)2

2(939.6)
≈ 0.8. (706)

In the first case, the proton is essentially at rest, the neutrino essentially doesn’t
exist, and the electron picks up the 1.3 MeV difference in the rest energies of the
neutron and proton. In the second case, the proton and electron are essentially
at rest, and the neutrino picks up the 0.8 MeV difference in the rest energies
of the neutron and proton-plus-electron.

12.35. Force and a collision

The energy of the accelerated particle right before the collision is m + Fx, so its
momentum is

p =
√

E2 −m2 =
√

(m + Fx)2 −m2 =
√

2mFx + F 2x2. (707)

From conservation of momentum, this is also the momentum of the resulting particle.
And from conservation of energy, the energy of the resulting particle is 2m + Fx.
The final mass is therefore M =

√
E2

f − p2
f , which gives

M =
√

(2m + Fx)2 − (2mFx + F 2x2) =
√

4m2 + 2mFx −→
√

4m2 + 2mFx/c2.
(708)

This can also be written as 2m
√

1 + Fx/2mc2. If x = 0, then M = 2m, as expected.

12.36. Pushing on a mass

(a) After a distance x, the energy of the mass is m + Fx, so its momentum is

p =
√

E2 −m2 =
√

(m + Fx)2 −m2 =
√

2mFx + F 2x2. (709)

Since the force is constant, we have

p = Ft =⇒ t =
p

F
=

√
2mFx + F 2x2

F
−→

√
2mFx + F 2x2/c2

F
. (710)

Checks: If x → ∞ then t ≈ x/c, which makes sense. If x ≈ 0, then t ≈√
2mx/F . This makes sense, because we can use F ≈ ma to write t ≈√
2mx/ma =⇒ x ≈ at2/2, as expected.

(b) For large x, we can approximate Eq. (710) by

t = x

√
1 +

2m

Fx
≈ x

(
1 +

m

Fx

)
−→ x

c
+

mc

F
. (711)

After this much time, the mass is at position x, but the photon is at position
ct = x + mc2/F . The mass is therefore a distance mc2/F behind the photon.

Alternatively, we can solve for x in terms of t. Equation (710) yields

F 2t2 = 2mFx + F 2x2 =⇒ x =
−2m±√4m2 + 4F 2t2

2F
. (712)

For large t, this gives x ≈ −m/F + t −→ −mc2/F + ct. The mass is therefore
a distance mc2/F behind the ct position of the photon.

12.37. Momentum paradox

The reasoning is not correct; the error is in the first sentence. In the lab frame,
the force on each mass does not point in the y direction (except right at the start).
It is fairly clear that there is an error somewhere, because the following (correct)
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reasoning shows that vx should remain constant. An observer riding along at con-
stant speed v initially sees the masses at rest. When the constraints are removed,
the observer sees the masses simply drawn vertically together. The masses have no
sideways motion out of the observer’s inertial frame, so they therefore maintain a
constant speed of v in the x direction with respect to the lab frame.

To see why the force is not vertical in the lab frame, consider the situation in the
instantaneous inertial frame of the top mass, at a general later time. Let the x′

axis of this frame lie along the relative velocity of the mass and the lab frame, and
let the y′ axis be perpendicular to this. (These axes are rotated with respect to
the original x and y axes of the lab frame, because the mass is heading diagonally
downward with respect to the lab frame. We are drawing the x′ axis horizontal here
for convenience.) In the frame of the mass, the string points at some nonzero angle
relative to the y′ axis. So we have the situation shown in Fig. 51. But this is the

v

x'

y'

S  (lab frame)

S'  (mass frame)

'θ

string

F'

a'

Figure 51

same as the (mirror image of the) setup in Fig. 12.10. Therefore, if we transform to
the lab frame, then as in Fig. 12.11 we have the situation shown in Fig. 52. We see

S

θ

'θ

φ

φ

tan

tan

tan

'θtan

θ

γ

γ

F
a

_1

=

=

v

x'

y'

'θ
string

Figure 52

that that the force from the string does not point along the string; it has a forward
component relative to the string (which itself is vertical in the lab frame). This
forward component in the x direction causes the px of each mass to increase, thus
invalidating the reasoning stated in the problem.

The increase of each mass’s px is consistent with the expression px = γmvx. The vx

component of the velocity remains constant, but the γ increases due to the increase
in vy, and thus in v =

√
v2

x + v2
y.

The increase of each mass’s px is also consistent with conservation of momentum.
Initially, the string has momentum, because there is energy stored in it. As time goes
by, the momentum of the string gets transferred to the momentum of the masses.

12.38. Rocket energy

Equation (12.67) gives the mass of the rocket as m = M
√

(1− v)/(1 + v). The
differential of this is

dm = − M dv√
1− v(1 + v)3/2

. (713)

This loss in mass (times c2) is the energy of the emitted photons in the rocket frame.
In the ground frame, this energy is decreased due to the Lorentz transformation (or

equivalently, the Doppler shift) by a factor
√

(1− v)/(1 + v). So in the ground
frame, the energy of the photons corresponding to the mass decrease dm is

dEγ =

√
1− v

1 + v
· M dv√

1− v(1 + v)3/2
=

M dv

(1 + v)2
. (714)

The total energy of the photons in the ground frame, by the time the rocket’s speed
is v, is therefore

Eγ =

∫ v

0

M dv

(1 + v)2
= − M

(1 + v)

∣∣∣∣
v

0

=
Mv

1 + v
. (715)

This energy of the photons equals the decrease in energy of the rocket. So the
remaining energy of the rocket is M −Mv/(1 + v) = M/(1 + v), as desired.

12.39. Two masses

We’ll work in terms of v ≡ 3c/5. Let x be the distance both masses have moved
by the time they collide. Then since the tension is constant, the energy of the front
mass is γm− Tx, and the energy of the rear mass is m + Tx. Demanding that the
momenta, which are given by p =

√
E2 −m2, add up to γmv gives

√
(γm− Tx)2 −m2 +

√
(m + Tx)2 −m2 = γmv. (716)

Putting the second square root on the right-hand side and squaring gives

2mTx(γ + 1) = 2γmv
√

(m + Tx)2 −m2. (717)
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Squaring again and solving for x gives

x =
2mγ2v2

T
(
(γ + 1)2 − γ2v2

) =
mγ2v2

T (γ + 1)
=

m(γ − 1)

T
. (718)

If v = 3c/5 then γ = 5/4, so we have x = m/4T at the collision.

Alternatively (and more quickly), conservation of E and p are both satisfied if the
masses reverse their roles at the collision, that is, if the front mass is now at rest
and the rear mass now has energy γm. Since this scenario conserves E and p, it
must be what happens. But if the front mass is at rest, then we have γm − Tx =
m =⇒ x = m(γ − 1)/T , as above.

12.40. Relativistic bucket

If x is the distance moved, then the bucket’s energy is E = Tx + ρx, and its
momentum is p = Tt. But v = p/E, so we have

dx

dt
=

Tt

Tx + ρx
=⇒

∫ x

0

x dx =
T

T + ρ

∫ t

0

t dt =⇒ x2

2
=

T

T + ρ
· t2

2
. (719)

So we have x/t =
√

T/(T + ρ). This holds at all times, so the speed is constant and
it has this value.
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4-vectors

13.5. Acceleration at rest

Using the chain rule, along with vy = vz = 0, we have

dv

dt
=

2(vxv̇x + vy v̇y + vz v̇z)

2
√

v2
x + v2

y + v2
z

=
vxv̇x + 0 + 0√

v2
x + 0 + 0

= v̇x ≡ ax. (720)

13.6. Linear acceleration

Let S be the lab frame and S′ be the particle’s frame. Then the 3-acceleration in S
is simply

a = (v̇, 0, 0). (721)

From Eq. (13.8), the 4-acceleration in S is then

A = (γ4vv̇, γ4v̇, 0, 0). (722)

The Lorentz transformation (with minus signs because S′ sees S move to the left)
then gives the 4-acceleration in the particle’s frame as

A′0 = γ(A0 − vA1) = γγ4(vv̇ − v · v̇) = 0,

A′1 = γ(A1 − vA0) = γγ4(v̇ − v · vv̇) = γ3v̇. (723)

Therefore, A′ = (0, γ3v̇, 0, 0). And since the velocity in S′ is zero, Eq. (13.8) says
that a′ equals the space part of A′, so we have

a′ = (γ3v̇, 0, 0). (724)

Combining this with Eq. (721) gives ax = a′x/γ3, in agreement with Eq. (13.26).

13.7. Linear force

Let S be the lab frame and S′ be the particle’s frame. From Eq. (13.11), the 3-force
in S is

f = m(γ3v̇, 0, 0). (725)

And from Eq. (13.10), the 4-force in S is

F = m(γ4vv̇, γ4v̇, 0, 0), (726)

which equals m times the A from Exercise 13.6. The Lorentz transformation (with
minus signs because S′ sees S move to the left) then gives the 4-force in the particle’s
frame as

F ′0 = γ(F0 − vF1) = γmγ4(vv̇ − v · v̇) = 0,

F ′1 = γ(F1 − vF0) = γmγ4(v̇ − v · vv̇) = mγ3v̇. (727)

157



158 CHAPTER 13. 4-VECTORS

Therefore, F ′ = m(0, γ3v̇, 0, 0), which equals m times the A′ from Exercise 13.6.
And since the velocity in S′ is zero, Eq. (13.10) says that f ′ equals the space part
of F ′, so we have

f ′ = m(γ3v̇, 0, 0). (728)

Combining this with Eq. (725) gives fx = f ′x, in agreement with Eq. (13.22).

13.8. Circular motion force

Let S be the lab frame and S′ be the particle’s frame. The acceleration in S is
a = (v2/r)ŷ, so from Eq. (13.11), the 3-force in S is

f = m(0, γv2/r, 0). (729)

And from Eq. (13.10), the 4-force in S is

F = m(0, 0, γ2v2/r, 0). (730)

The Lorentz transformation from S to S′ doesn’t change the y entry, so we have

F ′ = F = m(0, 0, γ2v2/r, 0). (731)

And since the velocity in S′ is zero, Eq. (13.10) says that f ′ equals the space part
of F ′, so we have

f ′ = m(0, γ2v2/r, 0). (732)

Combining this with Eq. (729) gives fy = f ′y/γ, in agreement with Eq. (13.22).

13.9. Same speed

From Eq. (13.38), we see that we want

v2 = 1− (1− v2)2

(1− v2 cos 2θ)2
=⇒ 1− v2 = (1− v2 cos 2θ)2

=⇒ v2 cos2 2θ − 2 cos 2θ + 1 = 0 =⇒ cos 2θ =
1−√1− v2

v2
. (733)

We have chosen the minus sign here because we need cos 2θ ≤ 1. For v ≈ 0, we have√
1− v2 ≈ 1− v2/2, which gives cos 2θ = 1/2 =⇒ 2θ = 60◦, as expected.

For v ≈ c (or v ≈ 1 without the c’s), we have cos 2θ ≈ (1−0)/1 = 1, so 2θ ≈ 0. This
limit isn’t as obvious, because it matters how close θ is to zero. If it is sufficiently
close to zero, then the relative speed is of course essentially zero. If we let v ≡ 1− ε,
then you can show that cos 2θ ≈ (1 − √2ε)/(1 − 2ε) ≈ (1 − √2ε). So this gives a
measure of the actual value of θ that leads to a relative speed of v (which is close
to c).

13.10. Doppler effect

The Lorentz transformations for the frames (call them each S′) traveling to the left
and to the right are, respectively,

(
E′

p′

)
=

(
γ ±γβ
±γβ γ

)(
E
p

)
. (734)

In the left-moving frame, we have
(

E′

p′

)
=

(
γ γβ
γβ γ

)(
p
p

)
= γ(1 + β)

(
p
p

)
=

√
1 + β

1− β

(
p
p

)
. (735)

And in the right-moving frame, we have
(

E′

p′

)
=

(
γ −γβ
−γβ γ

)(
p
p

)
= γ(1−β)

(
p
p

)
=

√
1− β

1 + β

(
p
p

)
. (736)

We see that the energies (and hence frequencies) pick up factors of
√

(1± β)/(1∓ β).
These are consistent with Eq. (11.51), because the β there could take on positive or
negative values; the β in this exercise is assumed to be positive.
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13.11. Three particles

The velocity 4-vector takes the form, V = γ(1,v). So we have VA = γ(1,−v, 0, 0)
and VB,C = γ(1, v/2,±√3v/2, 0). You can quickly show that the inner product of
any two of these equals γ2(1+v2/2). The inner products are all the same due to the
invariance of the inner product under rotations. Also, the above result must be the
value of the inner product in any frame due to the invariance of the inner product
under Lorentz transformations.

Now consider the setup in A’s frame. The velocity 4-vectors are V ′
A = (1, 0, 0, 0)

and V ′
B,C = γ′(1, v′ cos θ,±v′ sin θ, 0). We have two unknowns here, v′ and θ, so we

need two equations. We have

V ′
A · V ′

B = VA · VB =⇒ γ′ = γ2(1 + v2/2), and

V ′
B · V ′

C = VB · VC =⇒ γ′2
(
1− v′2(cos2 θ − sin2 θ)

)
= γ2(1 + v2/2). (737)

The easiest way to solve for θ is to equate the left-hand sides of these equations and
use v′2 ≡ 1− 1/γ′2. This gives

1

γ′
= 1− v′2 cos 2θ =⇒ 1− 1

γ′
=

(
1− 1

γ′2

)
cos 2θ. (738)

Canceling a factor of 1− 1/γ′ and using the value of γ′ from the first of Eqs. (737)
gives

cos 2θ =
1

1 + 1
γ′

=
1

1 + 1
γ2(1+v2/2)

=
1 + v2/2

2− v2/2
. (739)

For v ≈ 0, we have cos 2θ ≈ 1/2 =⇒ θ ≈ 30◦, as expected. For v ≈ 1, we have
cos 2θ ≈ 1 =⇒ θ ≈ 0, which makes sense, because the transverse component of the
velocity goes to zero in A’s frame.
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Chapter 14

General Relativity

14.12. Driving on a hill

Your clock runs slow by the SR factor of
√

1− v2/c2 and fast by the GR factor of
1 + g(h/2)/c2. We can use the average height here because the GR time dilation
effect is linear in h. Using the approximation

√
1− ε ≈ 1− ε/2, se see that we want

T = T

√
1− v2

c2

(
1 +

g(h/2)

c2

)

=⇒ 1 ≈
(

1− v2

2c2

)(
1 +

gh

2c2

)
=⇒ v2

2c2
≈ gh

2c2
, (740)

where we have dropped terms of order 1/c4. (More precisely, we have dropped the
(v2/2c2)(gh/2c2) term compared with gh/2c2, because we are assuming v2/c2 ¿ 1.)
We therefore find v ≈ √

gh.

14.13. Lv/c2 and gh/c2

If you initially stand at rest next to the front of the train (which will remain at
rest), and if you then accelerate toward the rear with acceleration g, then you will
see the rear clock running faster than your clock by a factor 1 + gL/c2, while the
front clock runs at at the same rate as your clock because you are standing right
next to it. After a time t, the time you see elapsed on the rear clock as (1+ gL/c2)t.
But v = gt, so this equals t + Lv/c2. In other words, you see the rear clock reading
Lv/c2 more than your clock (which reads the same as the front clock), as desired.

Note that although the Lv/c2 result holds for any v (see Problem 14.7), the above
reasoning is invalid for non-infinitesimal t because (among other things) v 6= gt, and
also the SR time-dilation effects become relevant when v2/c2 ∼ gL/c2.

14.14. Both points of view

(a) In A’s frame, A sees B move toward him at speed at, so A sees B’s clock run

slow by a factor
√

1− (at)2/c2 ≈ 1− a2t2/2c2. The total time that elapses on
B’s clock is therefore

TB =

∫ TA

0

(
1− a2t2

2c2

)
dt =

(
t− a2t3

6c2

)∣∣∣∣
TA

0

= TA

(
1− a2T 2

A

6c2

)
≈ TA

(
1− aL

3c2

)
, (741)

where we have used aT 2
A/2 ≈ L =⇒ TA ≈

√
2L/a inside the parentheses. Any

corrections to this relation will yield only higher order corrections to the result
that TB is smaller than TA by a factor 1 − aL/3c2. Additively the difference

is, to leading order, TA(aL/3c2) ≈
√

2L/a(aL/3c2) = L
√

2aL/3c2.
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(b) In B’s frame, B sees A move toward him at speed at, but A is also effectively
high up in an gravitational field. So B sees A’s clock run slow by the SR
factor

√
1− (at)2/c2 ≈ 1 − a2t2/2c2, and fast by the GR factor 1 + ah/c2 ≈

1 + a(L − at2/2)/c2. The product of these two factors is (to order 1/c2)
1 + aL/c2 − a2t2/c2. The total time that elapses on A’s clock is therefore

TA =

∫ TB

0

(
1 +

aL

c2
− a2t2

c2

)
dt =

(
t
(
1 +

aL

c2

)
− a2t3

3c2

)∣∣∣∣
TB

0

= TB

(
1 +

aL

c2
− a2T 2

B

3c2

)
≈ TB

(
1 +

aL

3c2

)
, (742)

where we have used aT 2
B/2 ≈ L =⇒ TB ≈

√
2L/a inside the parentheses.

As in part (a), any corrections to this relation will yield only higher order
corrections to the result that TA is larger than TB by a factor 1 + aL/3c2.

Additively the difference is, to leading order, TB(aL/3c2) ≈
√

2L/a(aL/3c2) =

L
√

2aL/3c2, in agreement with part (a).

14.15. Opposite circular motion

(a) By symmetry, the clocks must have the same readings at all times in the lab
frame.

(b) In the lab frame, we have the situation shown in Fig. 53. So in B’s translating

v

r

r
θ

B

A

v

Figure 53

(but not rotating) frame, the speed of A is obtained by the vector addition in
Fig. 54 (adding the vectors nonrelativistically is fine here, to leading order).

v

θ

v
u

Figure 54

From the law of cosines, the magnitude of A’s speed is given by u2 = v2 +v2−
2v2 cos(180◦ − θ) = 2v2(1 + cos θ).

In Fig. 53, B accelerates upward (radially) with acceleration a = v2/r. And
A is at a height r(1− cos θ) “above” B in the effective gravitational field that
B is in. Therefore, combining the SR and GR time-dilation effects, B sees A’s
clock run at a rate (dropping terms of order 1/c4, if we had kept the c’s in)

√
1− u2(1 + ah) ≈ (1− u2/2)(1 + ah)

=
(
1− v2(1 + cos θ)

)(
1 + (v2/r)r(1− cos θ)

)

≈ 1 + v2
(
− (1 + cos θ) + (1− cos θ)

)

= 1− 2v2 cos θ. (743)

But the integral of cos θ over 2π (or even just π) is zero. So on average A gains
no time on B.

(c) In B’s rotating frame, the speed of A is always 2v, so the SR time-dilation

factor is
√

1− (2v)2. But there is no GR time-dilation effect, because A and
B are at the same height in the effective gravitational field. So the result
appears to be that B always sees A’s clock run slow, which would imply that
A’s clock reads less than B’s when they meet up again. Clearly, there must be
an error somewhere in this reasoning, but it is tricky to find out where.

The resolution to the paradox is that it happens to be impossible to create a set
of consistently synchronized clocks in a rotating frame. More precisely, if you
try to work your way around the circle and set up successively synchronized
clocks (as viewed in the rotating frame) as you go along, then you will end up
with an inevitable discontinuity when you get back to where you started.

In more detail: when we say that A’s clock runs slow by a factor
√

1− (2v)2,
what we really mean is that it runs slow relative to a set of synchronized clocks
in the rotating frame as it passes by them. So by the end of a full revolution,
A’s clock is indeed behind the last clock in the circle (the clock right next to



163

the starting clock, which is B). But the point is that this last clock is ahead
of B’s clock, due to the discontinuity mentioned above. And it turns out that
A’s clock does in fact read the same as B’s clock, with the “last” clock ahead
of them both.

Quantitatively: if we have a series of adjacently synchronized clocks set up
in the clockwise rotating frame of B, and if we look at them from an inertial
frame, then any two successive clocks can be considered to be the two ends
of a short train. So we will see the rear clock ahead by `v/c2 (the length-
contraction of ` is a higher-order effect which we can ignore). This holds for all
adjacent pairs of clocks around the circle, so if we imagine looking at successive
clocks clockwise around the circle, the last clock (which is right next to the
starting clock, B) must be (2πR)v/c2 behind the starting clock. This is the
quantitative expression for the discontinuity mentioned above.

Now, as A travels around the circle, he is moving is the opposite direction,
that is, counterclockwise. So as viewed from the inertial frame, the last clock
be passes is (2πR)v/c2 ahead of the first clock, by the above discontinuity.

The SR time-dilation effect is
√

1− (2v)2 ≈ 1 − 2v2, so the fractional time
that A loses relative to the synchronized clocks right next to him is 2v2/c2.
Since he is moving at speed 2v in the rotating frame, the total time is t =
2πR/(2v). The time he loses relative to the synchronized clocks is therefore
(2v2/c2)(2πR/2v) = 2πRv/c2. So his clock ends up this much time behind
the last clock. But from the previous paragraph, the last clock is precisely this
much time ahead of the starting clock (because he is moving counterclockwise).
So we see that A’s clock reads the same as the starting clock (assumed to be
B’s), as desired.

14.16. Various quantities

Using v = gt/
√

1 + g2t2, we find γ =
√

1 + g2t2. Therefore, dτ = dt/γ gives

τ =

∫
dt

γ
=

∫
dt√

1 + g2t2
=

sinh−1(gt)

g
=⇒ gt = sinh(gτ). (744)

Also,

v =
gt√

1 + g2t2
=

sinh(gτ)√
1 + sinh2(gτ)

= tanh(gτ). (745)

And

γ =
√

1 + g2t2 =
√

1 + sinh2(gτ) = cosh(gτ). (746)

14.17. Using rapidity

Using v = tanh(gτ), we have γ = 1/
√

1− tanh2(gτ) = cosh(gτ). Therefore, dt =
γ dτ gives

t =

∫
γ dτ =

∫
cosh(gτ) dτ =

sinh(gτ)

g
=⇒ gt = sinh(gτ). (747)

We then have

v = tanh(gτ) =
sinh(gτ)

cosh(gτ)
=

sinh(gτ)√
1 + sinh2(gτ)

=
gt√

1 + g2t2
. (748)

14.18. Speed in an accelerating frame

From Eq. (14.16) we have

x =
1

g

(
1 + g`

cosh(gτ)
− 1

)
=⇒

∣∣∣dx

dτ

∣∣∣ = (1 + g`)
sinh(gτ)

cosh2(gτ)
. (749)
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Setting the derivative (with respect to τ) equal to zero gives

cosh2(gτ) = 2 sinh2(gτ) =⇒ 1 + sinh2(gτ) = 2 sinh2(gτ)

=⇒ sinh(gτ) = 1 =⇒ cosh(gτ) =
√

2. (750)

The maximum value of the speed in Eq. (749) is therefore (1+g`)/2, or c(1+g`/c2)/2
with the c’s. Note that if g`/c2 > 1, then the maximum speed is larger than c. This
is fine; speeds in accelerating frames can exceed c.

14.19. Redshift, blueshift

(a) As in Section 14.3.2, let the ends of the rocket be at positions a and b. Consider
two clocks at positions x and x+ dx. The acceleration at x is gx = 1/x, so the
rear clock sees the front clock running at a rate 1+gx dx = 1+dx/x (to leading
order in dx, at least). If we line up a series of clocks separated by dx, then the
factor by which the clock at a sees the clock at b run fast equals the product
of all the time-dilation factors between successive clocks. This product is

f =
(
1 +

dx

x1

)(
1 +

dx

x2

)
· · ·

(
1 +

dx

xn

)

=⇒ ln f = ln
(
1 +

dx

x1

)
+ ln

(
1 +

dx

x2

)
+ · · ·+ ln

(
1 +

dx

xn

)

≈ dx

x1
+

dx

x2
+ · · ·+ dx

xn

≈
∫ b

a

dx

x
= ln

b

a
. (751)

Therefore f = b/a. This is the “very nice form” mentioned in the exercise.
Note that any errors of order dx2 in the above calculation are negligible in the
limit dx → 0.

We’ll now use the fact that b/a can be written as 1 + (b − a)/a. And since
b− a is the height h of the rocket, and ga = 1/a is the acceleration of the rear
of the rocket (which we’ll label as gr), we have f = 1 + grh, or 1 + grh/c2 with
the c’s, as desired.

(b) The same reasoning shows that the front clock sees the rear clock running slow
by a factor a/b, which equals 1 − (b − a)/b = 1 − gbh, or 1 − gfh/c2 with the
c’s. Written in the form a/b, this factor clearly produces a product of 1 when
multiplied by the factor b/a in part (a). If you want to start with the factors
written in terms of the g’s, then

(1 + grh)(1− gfh) =
(
1 +

b− a

a

)(
1− b− a

b

)
=

b

a
· a

b
= 1. (752)

14.20. Gravity and speed combined

Let S be the instantaneous inertial frame of the rocket at the given moment. Then
after an infinitesimal time t as measured in S, the Minkowski diagram from the
point of view of S is shown in Fig. 55. The x′ and ct′ axes are the axes of the
new instantaneous inertial frame of the rocket at time t. If the planet’s speed is
v, then standard time dilation says that the segment AD corresponds to t

√
1− v2

units of time in the planet’s frame. Therefore, since BC has length (gt)x, the
similar triangles ABD and ACE (we are using the fact that the x′ axis is essentially
horizontal) tell us that AE corresponds to (t + gtx)

√
1− v2 units of time in the

planet’s frame. During the infinitesimal time t, the rocket’s “now” axis sweeps
from the x axis up to the x′ axis. So a time t that elapses on the rocket’s clock
corresponds to a time t(1+gx)

√
1− v2 that elapses on the planet’s clock. Therefore,

dtp = dtr(1 + gx)
√

1− v2, as desired. (We have used the fact that the rocket’s time
is essentially equal to S’s time. This follows from the fact that any time dilation
effects between the rocket and S are second order in the infinitesimal time t.)
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Figure 55

Since the x′ axis is essentially horizontal, the length of the segment CE is essentially
` = (t + gtx) tan α = t(1 + gx)v. To first order in t, the unit size on the x′ axis is
the same as on the x axis (the difference is second order in β = gt; see Eq. (11.48)),
so the planet is now a distance ` farther away from the rocket. The speed of the
planet in the rocket’s accelerating frame is therefore `/t = (1 + gx)v, as desired.

14.21. Length contraction

From Eq. (14.21), the difference in speeds between the back and front ends of the
pencil in your accelerating frame is (putting the c’s back in) vrel = axv/c2, where x
is the length of the rocket in your frame. But v ≈ at, so the distance between the
ends decreases at a rate vrel = ax(at)/c2. The length x doesn’t change much during
the small time t, so we can set the x in vrel essentially equal to the initial length of
the pencil; call it `. So we have

dx

dt
= −a2`t

c2
=⇒

∫
dx = −

∫
a2`t dt

c2
=⇒ ∆x = −a2t2`

2c2
. (753)

The new length of the pencil is therefore `(1 − a2t2/2c2), as desired. If you want,
you can solve things without making the above assumption that x ≈ `. The integral
will now yield a log. Exponentiating and then approximating the exponential gives
the same result (to order t2).

14.22. Accelerating stick’s length

Let z label each point on the stick according to its initial position; so a ≤ z ≤ b.
Since the acceleration of any point is given by g = 1/z, the position in the lab

frame (relative to P ) of a point indexed by z can be written as x =
√

1 + g2t2/g =√
z2 + t2. Therefore, at a given time t, the separation between two points that have

a difference dz in their z values is dx = z dz/
√

z2 + t2. Also, the speed of a point
indexed by z is v = dx/dt = t/

√
z2 + t2. The γ factor associated with this speed is

γ = 1/
√

1− v2 =
√

z2 + t2/z. An inertial observer knows that an interval dx in his
frame corresponds to a proper length γ dx, so at an arbitrary time he says that the
proper length of the entire stick is

∫ x2

x1

γ dx =

∫ b

a

(√
z2 + t2

z

)(
z dz√
z2 + t2

)
=

∫ b

a

dz = b− a, (754)

as desired.

14.23. Maximum proper time

Substituting y = y0 + ξ into the action in Eq. (14.15) gives

Sξ =

∫ (
(m/2)(ẏ2

0 + 2ẏ0ξ̇ + ξ̇2)−mg(y0 + ξ)
)
dt. (755)
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Integrating the ẏ0ξ̇ term by parts and dropping the boundary term gives

Sξ =

∫ (
(m/2)ẏ2

0 −mgy0

)
dt +

∫
ξ(−mÿ0 −mg) dt +

∫
(m/2)ξ̇2 dt. (756)

The middle term here is zero, because we are assuming that y0 leads to a stationary
action (that is, no first-order dependence in ξ). Therefore, since the third term is
always greater than or equal to zero, we see that Sξ ≥ S0. That is, S0 is a minimum.

14.24. Symmetric twin non-paradox

Let the twins be labeled A and B. We’ll work in A’s frame. First, there is the SR
time dilation. A sees B move with a speed of essentially 2v, so A sees B’s clock run
slow by a factor 1/γ ≈

√
1− (2v)2 ≈ 1 − 2v2. Since the total time is essentially

2`/v, A sees B lose a time of (2v2)(2`/v) = 4v` due to the SR time dilation.

But there is also the GR time-dilation effect at the turnaround. If the turnaround
takes a time t, then the acceleration is a = 2v/t (because the velocity goes from
−v to +v). So A sees B’s clock run fast by a factor 1 + a(2`) = 1 + (2v/t)(2`).
This happens for a time t, so A sees B gain a time of t(4v`/t) = 4v` due to the GR
time dilation. The time lost therefore equals the time gained, and the clocks end up
showing the same reading, as desired.


