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2 Manifolds

5 Manifolds

Problem 5.1. (a) It is clear that h is bijective and that it restricts to a homeomorphism
]=¢0[U[0,d] =] —c0[U]0,d].
Furthermore, if 0 < ¢ < min{c, d}, then h restricts to a homeomorphism
1 —&60[U{A}U]0, e[ =] — ¢ ¢

Thus h is a bijective local homeomorphism, hence a homeomorphism.

(b) It follows from (a) that S is locally Euclidean of dimension 1. Let & be a countable basis
for R\ {0} c S, and let B4 = {Ia(—-c,d) | c,d € Q"}, B = {Ig(—c,d) | c,d € Q*}. Then
BUBAUPBpg is a countable basis for S. Finally, note that S is not Hausdorff since A, B € S cannot
be separated by disjoint open sets, as given ¢, ¢’,d,d’ > 0, the point p = min{d,d’}/2 € S belongs
to the intersection Ix(—c,d) N Ig(—c’,d’).
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5 Manifolds

Problem 5.2. Let M be the sphere with a hair (at g) in R*. Assume that ¢ € M has a neighbourhood
U homeomorphic to some open subset V. C R” for some n. Let ¢: U — V be a homeomorphism.
Without loss of generality we may assume that U is a connected ball B,(q) "M. Then U \ {q} is a
disjoint union of two open connected subsets U; and U,, where U; is homeomorphic to an interval
I ¢ Rand U; is homeomorphic to a punctured ball B’ ¢ R2. Now, ¢ restricts to a homeomorphism
Uy — ¢(Uy). Since U; c U is open, ¢(U;) € R" is open, so n = 1 by the theorem on invariance
of dimension. On the other hand, ¢ also restricts to a homeomorphism U, — ¢(U,), where
¢(Up) € R™ is open, so n = 2. This contradiction shows that there is no such U and ¢.

Problem 5.3. We have

$s(Uis) = ga(U1 NU) = {(x,2) € R? | x > 0,x* +2° < 1}

¢10 ¢;1(x, z2) =¢1(x, V1 —x2 —2%,2) = (V1 —x2 —2z2,z) forall (x,2) € ¢4(Upa),

¢1 o ¢Zl is C* on ¢4(U14).
Similarly,
$1(Uie) = {(y,2) €R* | 2 < 0,9" +2° < 1}
and
B0 d (y,2) =p1(N1—y? = 22,y,z) = (W1 —y2 — 2% y) forall (y,2) € ¢ (Us),
50 ¢ 0 ¢ is C* on ¢ (Us).
Problem 5.4. Since M is a manifold, there exists a chart (Up,, ¢o,) about p. Then

¢zx1 |UalﬁU: Vo NU — ¢a1 (sz1 N U)

is a homeomorphism with ¢, (V, NU) C R” open, and it is compatible with all the charts in the
maximal atlas. By maximality, it must belong to this atlas, so U,, N U = Uy, for some a;. Then
Uy, is a coordinate open set such that p € U,, Cc U.

Problem 5.5. Each ¢, X i/; is a homeomorphism with image @o X /i (Uy X Vi) = o (Uy) X ¥:(V5)
an open subset of R™ x R". Furthermore, each transition map

(¢a1 X ¢i1) ° (¢0{2 X ¢iz)_1 = (¢0(1 o ‘bo_czl) X (])bl'l o ¢;1)
is C*. Hence the collection
{(Ug X Viypo X Ui | Uy X V; = R™ xR™)}

is an atlas on M X N.
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6 Smooth Maps on a Manifold

Problem 6.1. (a) Since i/ oid™! = ¢/: R — R is not C*, the chart (R, ) is not compatible with
the chart (R, id), so the two differentiable structures are distinct.

(b) Let F: R — R’ be defined by F(x) = x*. Then F is a bijection and
YoFoid™(x)=yoF(x) = y(x*) = x
for all x € R, so F is C*. Similarly,
idoF o y(x) =idoF 1 (x?) = id(x) = x
forall x € R, so F~1is C*. Hence, F is a diffeomorphism from R onto R’.

Problem 6.2. Let p € M and let (U, ¢) be a chart about p € M. Let (V, ) a chart about gp € N.
Then (U X V, ¢ X ¢) is a chart about (p, qo) € M X N, and

(¢ x ) oig 097 (p) = (4087 (p).¥(q0) = (p".¥(q0))
for all p” € U x V, which is C*. It follows that the inclusion iz, : M — M X N is C*.
Problem 6.3. We are (GL(V), ¢.) and (GL(V), ¢,,). We want to compute ¢, o ¢_! and ¢, o ¢
Given [a;'.] € GL(n,R), the automorphism nge_l([a;'.]) = L of V is such that L(e;) = 3; a;'.e,' for all
j=1,...,n. Then ¢,(L) = [b’;] is such that L(uy) = X bfuk forallt=1,...,n.
Let ci, df € R be the scalars such that

uf:chej forall £=1,...,n and e,~=deuk forall i=1,...,n,
J k
Then

L(u) = Z CiL(ej) = Z ci (Z a§ (Z dlkuk)) = Z c?a?dfuk forall £=1,...,n.
k

J J i i,jk

Therefore

Py © 45;1([“;-]1‘,1') = lz cja;.df] ,

Lj ki
s0 ¢, 0 ¢! is C*. Similarly, it follows that ¢, o ¢! is C*, so (GL(V), #) and (GL(V), ¢,) are com-
patible. Thus (GL(V), ¢,) and (GL(V), ¢.) belong to the same maximal atlas, so they determine

the same differentiable structure on GL(V).

Problem 6.4. Define F: R* — R3 by F(x,y,z) = (x,x* + y*> + z° — 1,z). Then F can serve as a
local coordinate system about p = (x,y,z) € R® if and only if it is a local diffeomorphism at p. By
the Inverse Function Theorem this is equivalent to the condition

o(F', F?, F®) 1 00
— 7~ =det|2x 2y 2z|=2y#0.
9(x.y,2) 0 0 1

It follows that F can serve as a coordinate system precisely at the points not on the y-axis.
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Problem 7.1. If x € f(f~!(B)), then x = f(y) for some y € f~!(B), so that x = f(y) € BN f(X).
Conversely, if x € BN f(X) and x = f(y) fory € X, theny € f1(B), so x = f(y) € f(f1(B)).
If f is surjective, we have f(X) = Y and thus f(f~(B)) =BnN f(X) =BNY = B.

Problem 7.2. We follow the hint. The function f is continuous by Proposition 7.1, and is clearly
bijective. Since H? is compact, so is H?/~ . Finally, $?/~ is Hausdorff by Problem 7.4. Thus, f
is a continuous bijection from the compact space H?/~ onto the Hausdorff space 5%/~ so it is a
homeomorphism by Corollary A.36.

Problem 7.3. We shall prove that if ~ is an open equivalence relation on a topological space S,
then S/~ is Hausdorff if and only if the graph R of ~ is closed in § X S.

We follow the hint. First assume that S/~ is Hausdorff. Then the diagonal A in (§/~) X (S/~)
is closed by Corollary 7.8. Let z: S — S/~ be the projection map. As 7 is continuous, so is
aXm:SXS — (S/~) x (S/~). Thus R = (n X m)"1(A) is closed in S x S. Conversely, assume
that R is closed in S X S. Let [x] # [y] € S/~ . Then (x,y) ¢ R. As (S X S) \ R is open, there
exist open neighbourhoods U of x and V of y respectively such that (x,y) e UXV c (§xS) \ R.
As 7 is open, m(U) and (V) are open neighbourhoods of [x] and [y] respectively in S/~ . If
[z] € 7(U) N n(V), then [z] = [x’] = [y’] for some x” € U and y’ € V, which is impossible as
UXxV c(SxS)\R. Thus z(U) and n(V) are disjoint. We deduce that S/~ is Hausdorff.

Problem 7.4. (a) For proving a map is open, it suffices to check that the images of basic open
sets are open, if we have fixed a basis for the topology of the domain. Let z: S — 5"/~ be the
projection map. Consider the basis for S” consisting of balls S N B(x, €) centred at points x € S
with radii ¢ < 1/2. If U = S" N B(x, ¢) is one of these balls, then 77! (7 (U)) = S* N (B(x,¢) U
B(—x,¢)) is open in S%, hence 7(U) is open in S?/~ . It follows that ~ is an open relation.

(b) For a subset A C S", write —A = {a € S" | —a € A}. Let R denote the graph of ~ and let
(x,y) € (SXS)\R. Then [x] # [y]. Since S” is Hausdorf}, there exist neighbourhoods U of x and V
of y respectively such that U, —U, V and -V are pairwise disjoint. Then (x,y) € UXV C (SXS)\R.
Thus R is closed, and it follows from Theorem 7.7 that S/~ is Hausdorff.

Problem 7.5. Given g € G, note that the map ry: S — S given by s +— sg is a homeomorphism
with inverse r;-1. Let U be open in S. Then, for g € G, the set r;(U) is open in G. Thus

a2 (U)) = | ry(U)

geG

is open in G. By definition of quotient topology, it follows that z(U) is open in S/G. We conclude
that r is an open map.

Problem 7.6. Let p: R — R/2xZ denote the projection. Consider the subsets

Vi={[t]eR/2xZ | —n<t<n} and Vi={[t]eR/272Z]|0<t <27}
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of R/2x7Z. Note that
p (V) = U 127n — m, 27 (n+1) — x|

nez

is open in R, so V; is open in R/2xZ. Similarly, V; is open. Now, note that each restriction p; =
ply1(vyy: p~H(Vi) = Vi of p is again a quotient map. Consider the map

Yl p N (V) >R, te>t—2xn if t €]2an—m2n(n+1) - x[.

Then ¢/] is constant on the fibres of p;, so by Proposition 7.1 it induces a well-defined continuous
map ¥;1: V; — R given by ¢;([t]) = t, where —7 < t < x. The map ¢; is a homeomorphism
onto its image ¥;1(V;) =] — &, [ with inverse given by ¢ + [¢]. Similarly, we have a well-
defined continuous map »: Vo, — R given by ¢»([t]) = ¢, where 0 < ¢ < 2x, and ¢, is a
homeomorphism onto its image ]0, 2. Thus (V3, ;) and (V,, ) are charts on R/27Z. Moreover,
1(VinVy) =10, [ = ¢o(Vi N V;) and

¢2 o]ﬁl_l: ]O’”[_)]Oﬁﬂ[
is the identity, and similarly for 1 o ¢;*. Thus {(V1, ¢1), (V2, ¥2)} is a C* atlas on R/27Z.

Problem 7.7. (a) Recall from Example 5.7 that
U={e"eC|-n<t<n}, U={"eC|0<t<2m}

and ¢,: U, — R for & = 1,2 are given by the formula ¢/;(e!’) = t in their respective domains.
Recall also that
A={e"" |- <t<0} and B={e"]|0<t<m}.

Consider the C* atlas {(V1, 1), (V2, ¥2) } on R/277Z given in the solution of Problem 7.6, and let
p: R — R/277Z denote the projection. Note that 5: S — R/2nZ is given by '’ > [t]. Consider
the charts (U, ¢1) and (V3,¢1). Then ¢1((¢)"'(V1) N V1)) = ¢1(U1) =] — 7, [, and /; 0 ¢ o $;!
is given by t > ¢ in this domain, so it is C*. Similarly, 15 o ¢ o ¢, is the C* map 10, 27[ — R,
t — t. Now consider the charts (U, ¢1) and (Vz, i/»). Then ¢1(($)*1(VZ) NUy)) = $1(B) =]0, x|,
and 0 d o ¢, is given by ¢ > ¢ in this domain, so it is C*. Similarly for the charts (Us, ¢;) and
(V1, ¥1). We deduce that ¢ is C.

(b) This is analogous to part (a). Considering the atlas {(V3, Y1), (Va, ¥2) } for R/277Z and the
atlas {(Uy, ¢1), (U, ¢3)} for S, all composites ¢; o F o r,bj_l, for i, j = 1, 2, are the identities in their
respective domains.

(c) Note that the maps 5: S! — R/2nZ and F: R/27Z — S of parts (a) and (b) are inverses
to each other and C*. Therefore F is a diffeomorphism.

Problem 7.8. (a) We follow the hint: that ~ is an open equivalence relations follows from Problem
7.5.

5 Solutions by positr6n0802



7 Quotients

(b) We follow the hint: since F(k, n) is second countable (being a subspace of R™¥) and ~ is
open by part (a), it follows that G(k,n) = F(k,n)/~ is second countable by Corollary 7.10.

(c) We follow the hint. Two matrices A = [a1 ak] and B = [bl bk] in F(k,n)
are equivalent if and only if all (k + 1) X (k + 1) minors of [A B] are zero (recall Problem
B.1). Let (A,B) € (S x S) \ R. Then there is some (k + 1) X (k + 1) minor of [A B] which is
non-zero, say corresponding to the rows iy, ..., ix4; and columns jy, ..., jki1. Since the function
F(k,n) x F(k,n) — R taking (C, D) to the (k+1) X (k+ 1) minor of [C D] corresponding to the
rOWS iy, . . ., ig+1 and columns jy, . . ., jr4+1 is continuous, it follows that in some neighbourhood U of
(A, B) in F(k, n)xF(k, n), for all pairs (C, D) € U the (k+1)x(k+1) minor of [C D] corresponding
to the the rows iy, ..., iry; and columns jj, ..., jrsq is non-zero, so that U c (S x S) \ R. It follows
that R is closed in S X S.

(d) Since the graph R in F(k, n) X F(k, n) of the equivalence relation ~ is closed and ~ is open
by part (a), it follows from Theorem 7.7 that G(k, n) = F(k, n)/~ is Hausdorff.

(e) Suppose that i = 1 and j = 2. Let A € Vi, so that A, is non-singular by assumption. If
g € GL(2,R), then

Ag = [Alzg} )

A13g

and A;,g is non-singular. Thus Ag € V;, for all g € GL(2,R). It is clear that a similar proof works
in the case that i and j are not 1 and 2 respectively.

(f) Let A, B € Vi3 and suppose that A ~ B. Then there exists g € GL(2, R) such that
Alzg} [312]
Ag = = s
g [Awg By

$12(B) = B3uBy; = (As49)(A129) ™" = AsuAy; = p1a(A).
Thus, by Proposition 7.1 we have a well-defined continuous map ¢o: U, — R>? given by

$12([A]) = A3sA7;. On the other hand, we have a map : R*? — Uy, given by sending g € R¥*
to the class of

.

ql’

It is clear that ¢;5 0y is the identity map of R?*2. Since every element of U;; has a representative of

and hence

I
the form [g] , it follows that iy o @15 is the identity on U;,. We deduce that ¢1, is a homeomorphism.

(g) For all i, j, the homeomorphism ¢;;: U;; — R*? is given by ¢;; = Ak[Al._jl, where {k, £} =
{1,2,3,4} \ {i, j}. By definition, we have

i f[a ]\ _ e dl[t o' 1 [c d|[b o] 1 [cb-da d
| | R ] O | PO et PR | R et
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b} such that det [clz

d 0] = b —a # 0. This is C* being a

and this is defined precisely for all [Z b

polynomial on the entries of [Z Z} .

(h) By definition, an element of GL(2,4) = F(2,4)/~ is a class of a 4 X 2 matrix of rank 2.
For any such matrix A, we must have A;; non-singular for some i # j by Problem B.1. Thus
{Uij | 1 <i < j < 4} is an open cover of G(2,4) and the (Ujj, ¢;;) defined are charts on G(2,4).
They are all pairwise C*-compatible by a similar computation as that of (g), since any transition
function is a polynomial in the entries.

Problem 7.9. We follow the hint. By Exercise 7.11, we have a homeomorphism RP" ~ S"/~
where S™/~ is the quotient of S” which identifies antipodal points. Since S™ is compact, so is
S™/~ . Therefore, RP" is compact.

Please send comments, suggestions and corrections by e-mail, or at website.
https://positron0802.wordpress.com
positron0802@mail.com

7 Solutions by positr6n0802


https://positron0802.wordpress.com

	Manifolds
	Manifolds
	Smooth Maps on a Manifold
	Quotients


