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2 Manifolds

5 Manifolds

Problem 5.1. (a) It is clear that ℎ is bijective and that it restricts to a homeomorphism

] − 2, 0[ ∪ [0, 3] → ] − 2, 0[ ∪ [0, 3] .

Furthermore, if 0 < Y < min{2, 3}, then ℎ restricts to a homeomorphism

] − Y, 0[ ∪ {�} ∪ ]0, Y [→ ] − Y, Y [.

Thus ℎ is a bijective local homeomorphism, hence a homeomorphism.
(b) It follows from (a) that ( is locally Euclidean of dimension 1. Let ℬ be a countable basis

for R \ {0} ⊂ (, and let ℬ� = {�� (−2, 3) | 2, 3 ∈ Q+}, ℬ� = {�� (−2, 3) | 2, 3 ∈ Q+}. Then
ℬ∪ℬ�∪ℬ� is a countable basis for (. Finally, note that ( is not Hausdor� since�, � ∈ ( cannot
be separated by disjoint open sets, as given 2, 2 ′, 3, 3 ′ > 0, the point ? = min{3, 3 ′}/2 ∈ ( belongs
to the intersection �� (−2, 3) ∩ �� (−2 ′, 3 ′) .
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5 Manifolds

Problem5.2. Let" be the sphere with a hair (at@) inR3.Assume that@ ∈ " has a neighbourhood
* homeomorphic to some open subset + ⊂ R= for some =. Let q : * → + be a homeomorphism.
Without loss of generality we may assume that* is a connected ball �Y (@) ∩". Then* \ {@} is a
disjoint union of two open connected subsets*1 and*2,where*1 is homeomorphic to an interval
� ⊂ R and*1 is homeomorphic to a punctured ball �′ ⊂ R2. Now, q restricts to a homeomorphism
*1 → q (*1) . Since *1 ⊂ * is open, q (*1) ⊂ R= is open, so = = 1 by the theorem on invariance
of dimension. On the other hand, q also restricts to a homeomorphism *2 → q (*2), where
q (*1) ⊂ R= is open, so = = 2. This contradiction shows that there is no such* and q.

Problem 5.3. We have

q4(*14) = q4(*1 ∩*4) = {(G, I) ∈ R2 | G > 0, G2 + I2 < 1}.

As

q1 ◦ q−14 (G, I) = q1(G,
√
1 − G2 − I2, I) = (

√
1 − G2 − I2, I) for all (G, I) ∈ q4(*14),

q1 ◦ q−14 is �∞ on q4(*14) .
Similarly,

q1(*16) = {(~, I) ∈ R2 | I < 0, ~2 + I2 < 1}

and

q6 ◦ q−11 (~, I) = q1(
√
1 − ~2 − I2, ~, I) = (

√
1 − ~2 − I2, ~) for all (~, I) ∈ q1(*16),

so q6 ◦ q−11 is �∞ on q1(*16) .

Problem 5.4. Since " is a manifold, there exists a chart (*U1, qU1) about ?. Then

qU1 |*U1∩* : +U ∩* → qU1 (+U1 ∩* )

is a homeomorphism with qU1 (+U1 ∩* ) ⊂ R= open, and it is compatible with all the charts in the
maximal atlas. By maximality, it must belong to this atlas, so *U1 ∩ * = *U2 for some U2. Then
*U2 is a coordinate open set such that ? ∈ *U2 ⊂ * .

Problem 5.5. Each qU ×k8 is a homeomorphism with image qU ×k8 (*U ×+8) = qU (*U ) ×k8 (+8)
an open subset of R< × R= . Furthermore, each transition map

(qU1 ×k81) ◦ (qU2 ×k82)−1 = (qU1 ◦k−1U2 ) × (k81 ◦k
−1
82
)

is �∞. Hence the collection

{(*U ×+8 , qU ×k8 | *U ×+8 → R< × R=)}

is an atlas on " × # .
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6 Smooth Maps on a Manifold

Problem 6.1. (a) Since k ◦ id−1 = k : R → R is not �∞, the chart (R,k ) is not compatible with
the chart (R, id), so the two di�erentiable structures are distinct.

(b) Let � : R→ R′ be de�ned by � (G) = G3. Then � is a bijection and

k ◦ � ◦ id−1(G) = k ◦ � (G) = k (G3) = G
for all G ∈ R, so � is �∞. Similarly,

id ◦�−1 ◦k (G) = id ◦�−1(G1/3) = id(G) = G
for all G ∈ R, so �−1 is �∞. Hence, � is a di�eomorphism from R onto R′.
Problem 6.2. Let ? ∈ " and let (* ,q) be a chart about ? ∈ ". Let (+ ,k ) a chart about @0 ∈ # .
Then (* ×+ , q ×k ) is a chart about (?, @0) ∈ " × #, and

(q ×k ) ◦ 8@0 ◦ q−1(? ′) = (q ◦ q−1(? ′),k (@0)) = (? ′,k (@0))
for all ? ′ ∈ * ×+ , which is �∞. It follows that the inclusion 8@0 : " → " × # is �∞.
Problem 6.3. We are (GL(+ ), q4) and (GL(+ ), qD). We want to compute qD ◦ q−14 and q4 ◦ q−1D .

Given [089 ] ∈ GL(=,R), the automorphism q−14 ( [089 ]) = ! of + is such that !(4 9 ) =
∑
8 0
8
948 for all

9 = 1, . . . , =. Then qD (!) = [1:ℓ ] is such that !(Dℓ ) =
∑
: 1

:
ℓ D: for all ℓ = 1, . . . , =.

Let 2 9
ℓ
, 3:8 ∈ R be the scalars such that

Dℓ =
∑
9

2
9

ℓ
4 9 for all ℓ = 1, . . . , = and 48 =

∑
:

3:8 D: for all 8 = 1, . . . , =,

Then

!(Dℓ ) =
∑
9

2
9

ℓ
!(4 9 ) =

∑
9

2
9

ℓ

(∑
8

089

(∑
:

3:8 D:

))
=

∑
8, 9,:

2
9

ℓ
0893

:
8 D: for all ℓ = 1, . . . , =.

Therefore

qD ◦ q−14 ( [089 ]8, 9 ) =
[∑
8, 9

2
9

ℓ
0893

:
8

]
:,ℓ

,

so qD ◦q−14 is�∞. Similarly, it follows that q4 ◦q−1D is�∞, so (GL(+ ), q4) and (GL(+ ), qD) are com-
patible. Thus (GL(+ ), qD) and (GL(+ ), q4) belong to the same maximal atlas, so they determine
the same di�erentiable structure on GL(+ ).
Problem 6.4. De�ne � : R3 → R3 by � (G,~, I) = (G, G2 + ~2 + I2 − 1, I) . Then � can serve as a
local coordinate system about ? = (G,~, I) ∈ R3 if and only if it is a local di�eomorphism at ?. By
the Inverse Function Theorem this is equivalent to the condition

m(� 1, � 2, � 3)
m(G,~, I) = det


1 0 0
2G 2~ 2I
0 0 1

 = 2~ ≠ 0.

It follows that � can serve as a coordinate system precisely at the points not on the ~-axis.
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Problem 7.1. If G ∈ 5 (5 −1(�)), then G = 5 (~) for some ~ ∈ 5 −1(�), so that G = 5 (~) ∈ � ∩ 5 (- ) .
Conversely, if G ∈ � ∩ 5 (- ) and G = 5 (~) for ~ ∈ -, then ~ ∈ 5 −1(�), so G = 5 (~) ∈ 5 (5 −1(�)).
If 5 is surjective, we have 5 (- ) = . and thus 5 (5 −1(�)) = � ∩ 5 (- ) = � ∩ . = �.

Problem 7.2. We follow the hint. The function 5 is continuous by Proposition 7.1, and is clearly
bijective. Since � 2 is compact, so is � 2/∼ . Finally, (2/∼ is Hausdor� by Problem 7.4. Thus, 5
is a continuous bijection from the compact space � 2/∼ onto the Hausdor� space (2/∼, so it is a
homeomorphism by Corollary A.36.

Problem 7.3. We shall prove that if ∼ is an open equivalence relation on a topological space (,
then (/∼ is Hausdor� if and only if the graph ' of ∼ is closed in ( × (.

We follow the hint. First assume that (/∼ is Hausdor�. Then the diagonal Δ in ((/∼) × ((/∼)
is closed by Corollary 7.8. Let c : ( → (/∼ be the projection map. As c is continuous, so is
c × c : ( × ( → ((/∼) × ((/∼). Thus ' = (c × c)−1(Δ) is closed in ( × (. Conversely, assume
that ' is closed in ( × (. Let [G] ≠ [~] ∈ (/∼ . Then (G,~) ∉ '. As (( × () \ ' is open, there
exist open neighbourhoods* of G and+ of ~ respectively such that (G,~) ∈ * ×+ ⊂ (( × () \ '.
As c is open, c (* ) and c (+ ) are open neighbourhoods of [G] and [~] respectively in (/∼ . If
[I] ∈ c (* ) ∩ c (+ ), then [I] = [G ′] = [~ ′] for some G ′ ∈ * and ~ ′ ∈ + , which is impossible as
* ×+ ⊂ (( × () \ '. Thus c (* ) and c (+ ) are disjoint. We deduce that (/∼ is Hausdor�.

Problem 7.4. (a) For proving a map is open, it su�ces to check that the images of basic open
sets are open, if we have �xed a basis for the topology of the domain. Let c : (= → (=/∼ be the
projection map. Consider the basis for (= consisting of balls (= ∩ �(G, Y) centred at points G ∈ (=
with radii Y < 1/2. If * = (= ∩ �(G, Y) is one of these balls, then c−1(c (* )) = (= ∩ (�(G, Y) ∪
�(−G, Y)) is open in (2, hence c (* ) is open in (2/∼ . It follows that ∼ is an open relation.

(b) For a subset � ⊂ (=, write −� = {0 ∈ (= | −0 ∈ �}. Let ' denote the graph of ∼ and let
(G,~) ∈ ((×()\'. Then [G] ≠ [~] . Since (= is Hausdor�, there exist neighbourhoods* of G and+
of~ respectively such that* ,−* ,+ and−+ are pairwise disjoint. Then (G,~) ∈ * ×+ ⊂ ((×()\'.
Thus ' is closed, and it follows from Theorem 7.7 that (/∼ is Hausdor�.

Problem 7.5. Given 6 ∈ �, note that the map A6 : ( → ( given by B ↦→ B6 is a homeomorphism
with inverse A6−1 . Let* be open in (. Then, for 6 ∈ �, the set A6 (* ) is open in �. Thus

c−1(c (* )) =
⋃
6∈�

A6 (* )

is open in�. By de�nition of quotient topology, it follows that c (* ) is open in (/�. We conclude
that c is an open map.

Problem 7.6. Let ? : R→ R/2cZ denote the projection. Consider the subsets

+1 = {[C] ∈ R/2cZ | −c < C < c} and +1 = {[C] ∈ R/2cZ | 0 < C < 2c}
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7 Quotients

of R/2cZ. Note that
?−1(+1) =

⋃
=∈Z
]2c= − c, 2c (= + 1) − c [

is open in R, so +1 is open in R/2cZ. Similarly, +2 is open. Now, note that each restriction ?8 =
? |?−1 (+8 ) : ?−1(+8) → +8 of ? is again a quotient map. Consider the map

k ′1 : ?
−1(+8) → R, C ↦→ C − 2c= if C ∈ ]2c= − c, 2c (= + 1) − c [.

Thenk ′1 is constant on the �bres of ?1, so by Proposition 7.1 it induces a well-de�ned continuous
map k1 : +8 → R given by k8 ( [C]) = C, where −c < C < c. The map k1 is a homeomorphism
onto its image k1(+1) = ] − c, c [ with inverse given by C ↦→ [C] . Similarly, we have a well-
de�ned continuous map k2 : +2 → R given by k2( [C]) = C, where 0 < C < 2c, and k2 is a
homeomorphism onto its image ]0, 2c [. Thus (+1,k1) and (+2,k2) are charts onR/2cZ.Moreover,
k1(+1 ∩+2) = ]0, c [ = k2(+1 ∩+2) and

k2 ◦k−11 : ]0, c [→ ]0, c [

is the identity, and similarly fork1 ◦k−12 . Thus {(+1,k1), (+2,k2)} is a �∞ atlas on R/2cZ.

Problem 7.7. (a) Recall from Example 5.7 that

*1 = {48C ∈ C | −c < C < c}, *2 = {48C ∈ C | 0 < C < 2c},

and qU : *U → R for U = 1, 2 are given by the formula k1(48C ) = C in their respective domains.
Recall also that

� = {48C | −c < C < 0} and � = {48C | 0 < C < c}.

Consider the�∞ atlas {(+1,k1), (+2,k2)} onR/2cZ given in the solution of Problem 7.6, and let
? : R→ R/2cZ denote the projection. Note that q : (1 → R/2cZ is given by 48C ↦→ [C] . Consider
the charts (*1, q1) and (+1,k1). Then q1((q)−1(+1) ∩*1)) = q1(*1) = ] − c, c [, and k1 ◦ q ◦ q−11
is given by C ↦→ C in this domain, so it is �∞. Similarly, k2 ◦ q ◦ q−12 is the �∞ map ]0, 2c [→ R,
C ↦→ C . Now consider the charts (*1, q1) and (+2,k2) . Then q1((q)−1(+2) ∩*1)) = q1(�) = ]0, c [,
andk1 ◦q ◦q−12 is given by C ↦→ C in this domain, so it is�∞. Similarly for the charts (*2, q1) and
(+1,k1) . We deduce that q is �∞.

(b) This is analogous to part (a). Considering the atlas {(+1,k1), (+2,k2)} for R/2cZ and the
atlas {(*1, q1), (*2, q2)} for (1, all composites q8 ◦ � ◦k−19 , for 8, 9 = 1, 2, are the identities in their
respective domains.

(c) Note that the maps q : (1 → R/2cZ and � : R/2cZ → (1 of parts (a) and (b) are inverses
to each other and �∞. Therefore � is a di�eomorphism.

Problem7.8. (a) We follow the hint: that∼ is an open equivalence relations follows from Problem
7.5.
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7 Quotients

(b) We follow the hint: since � (:, =) is second countable (being a subspace of R=×: ) and ∼ is
open by part (a), it follows that � (:, =) = � (:, =)/∼ is second countable by Corollary 7.10.

(c) We follow the hint. Two matrices � =
[
01 · · · 0:

]
and � =

[
11 · · · 1:

]
in � (:, =)

are equivalent if and only if all (: + 1) × (: + 1) minors of
[
� �

]
are zero (recall Problem

B.1). Let (�, �) ∈ (( × () \ '. Then there is some (: + 1) × (: + 1) minor of
[
� �

]
which is

non-zero, say corresponding to the rows 81, . . . , 8:+1 and columns 91, . . . , 9:+1. Since the function
� (:, =) × � (:, =) → R taking (�, �) to the (: + 1) × (: + 1) minor of

[
� �

]
corresponding to the

rows 81, . . . , 8:+1 and columns 91, . . . , 9:+1 is continuous, it follows that in some neighbourhood* of
(�, �) in � (:, =)×� (:, =), for all pairs (�, �) ∈ * the (:+1)×(:+1)minor of

[
� �

]
corresponding

to the the rows 81, . . . , 8:+1 and columns 91, . . . , 9:+1 is non-zero, so that* ⊂ (( × () \ '. It follows
that ' is closed in ( × (.

(d) Since the graph ' in � (:, =) × � (:, =) of the equivalence relation ∼ is closed and ∼ is open
by part (a), it follows from Theorem 7.7 that � (:, =) = � (:, =)/∼ is Hausdor�.

(e) Suppose that 8 = 1 and 9 = 2. Let � ∈ +12, so that �12 is non-singular by assumption. If
6 ∈ GL(2,R), then

�6 =

[
�126

�136

]
,

and �126 is non-singular. Thus �6 ∈ +12 for all 6 ∈ GL(2,R). It is clear that a similar proof works
in the case that 8 and 9 are not 1 and 2 respectively.

(f) Let �, � ∈ +12 and suppose that � ∼ �. Then there exists 6 ∈ GL(2,R) such that

�6 =

[
�126

�136

]
=

[
�12
�13

]
,

and hence
q̃12(�) = �34�−112 = (�346) (�126)−1 = �34�

−1
12 = q̃12(�).

Thus, by Proposition 7.1 we have a well-de�ned continuous map q12 : *12 → R2×2 given by
q12( [�]) = �34�

−1
12 . On the other hand, we have a mapk : R2×2 → *12 given by sending 6 ∈ R2×2

to the class of [
�

6

]
.

It is clear thatq12◦k is the identity map ofR2×2. Since every element of*12 has a representative of

the form
[
�

6

]
, it follows thatk ◦q12 is the identity on*12.We deduce thatq12 is a homeomorphism.

(g) For all 8, 9, the homeomorphism q8 9 : *8 9 → R2×2 is given by q8 9 = �:ℓ�−18 9 , where {:, ℓ} =
{1, 2, 3, 4} \ {8, 9}. By de�nition, we have

q12◦q−123
( [
0 1

2 3

] )
= q12

©«

1 0
0 1

2 3

0 1


ª®®®¬ =

[
2 3

0 1

] [
1 0
0 1

]−1
=

1
1 − 0

[
2 3

0 1

] [
1 0
−0 1

]
=

1
1 − 0

[
21 − 30 3

−0 1

]
,
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and this is de�ned precisely for all
[
0 1

2 3

]
such that det

[
1 0
0 1

]
= 1 − 0 ≠ 0. This is �∞ being a

polynomial on the entries of
[
0 1

2 3

]
.

(h) By de�nition, an element of �!(2, 4) = � (2, 4)/∼ is a class of a 4 × 2 matrix of rank 2.
For any such matrix �, we must have �8 9 non-singular for some 8 ≠ 9 by Problem B.1. Thus
{*8 9 | 1 ≤ 8 < 9 ≤ 4} is an open cover of � (2, 4) and the (*8 9 , q8 9 ) de�ned are charts on � (2, 4) .
They are all pairwise �∞-compatible by a similar computation as that of (g), since any transition
function is a polynomial in the entries.

Problem 7.9. We follow the hint. By Exercise 7.11, we have a homeomorphism R%= ≈ (=/∼
where (=/∼ is the quotient of (= which identi�es antipodal points. Since (= is compact, so is
(=/∼ . Therefore, R%= is compact.

Please send comments, suggestions and corrections by e-mail, or at website.
https://positron0802.wordpress.com
positron0802@mail.com
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