Solutions to An Introduction to Manifolds

Chapter 2 - Manifolds Loring W. Tu

Solutions by positrón0802 https://positron0802.wordpress.com

1 January 2021

Contents

2	Manifolds		
	5	Manifolds	1
	6	Smooth Maps on a Manifold	3
	7	Quotients	4

2 Manifolds

5 Manifolds

Problem 5.1. (a) It is clear that h is bijective and that it restricts to a homeomorphism

$$]-c,0[\cup [0,d] \to]-c,0[\cup [0,d].$$

Furthermore, if $0 < \varepsilon < \min\{c, d\}$, then h restricts to a homeomorphism

$$]-\varepsilon,0[\cup\{A\}\cup]0,\varepsilon[\to]-\varepsilon,\varepsilon[.$$

Thus h is a bijective local homeomorphism, hence a homeomorphism.

(b) It follows from (a) that S is locally Euclidean of dimension 1. Let \mathcal{B} be a countable basis for $\mathbb{R} \setminus \{0\} \subset S$, and let $\mathcal{B}_A = \{I_A(-c,d) \mid c,d \in \mathbb{Q}^+\}$, $\mathcal{B}_B = \{I_B(-c,d) \mid c,d \in \mathbb{Q}^+\}$. Then $\mathcal{B} \cup \mathcal{B}_A \cup \mathcal{B}_B$ is a countable basis for S. Finally, note that S is not Hausdorff since $A, B \in S$ cannot be separated by disjoint open sets, as given c, c', d, d' > 0, the point $p = \min\{d, d'\}/2 \in S$ belongs to the intersection $I_A(-c,d) \cap I_B(-c',d')$.

Problem 5.2. Let M be the sphere with a hair (at q) in \mathbb{R}^3 . Assume that $q \in M$ has a neighbourhood U homeomorphic to some open subset $V \subset \mathbb{R}^n$ for some n. Let $\phi: U \to V$ be a homeomorphism. Without loss of generality we may assume that U is a connected ball $B_{\varepsilon}(q) \cap M$. Then $U \setminus \{q\}$ is a disjoint union of two open connected subsets U_1 and U_2 , where U_1 is homeomorphic to an interval $I \subset \mathbb{R}$ and U_1 is homeomorphic to a punctured ball $B' \subset \mathbb{R}^2$. Now, ϕ restricts to a homeomorphism $U_1 \to \phi(U_1)$. Since $U_1 \subset U$ is open, $\phi(U_1) \subset \mathbb{R}^n$ is open, so n = 1 by the theorem on invariance of dimension. On the other hand, ϕ also restricts to a homeomorphism $U_2 \to \phi(U_2)$, where $\phi(U_1) \subset \mathbb{R}^n$ is open, so n = 2. This contradiction shows that there is no such U and ϕ .

Problem 5.3. We have

$$\phi_4(U_{14}) = \phi_4(U_1 \cap U_4) = \{(x, z) \in \mathbb{R}^2 \mid x > 0, x^2 + z^2 < 1\}.$$

As

$$\phi_1 \circ \phi_4^{-1}(x, z) = \phi_1(x, \sqrt{1 - x^2 - z^2}, z) = (\sqrt{1 - x^2 - z^2}, z)$$
 for all $(x, z) \in \phi_4(U_{14})$,

 $\phi_1 \circ \phi_4^{-1}$ is C^{∞} on $\phi_4(U_{14})$.

Similarly,

$$\phi_1(U_{16}) = \{(y, z) \in \mathbb{R}^2 \mid z < 0, y^2 + z^2 < 1\}$$

and

$$\phi_6 \circ \phi_1^{-1}(y, z) = \phi_1(\sqrt{1 - y^2 - z^2}, y, z) = (\sqrt{1 - y^2 - z^2}, y)$$
 for all $(y, z) \in \phi_1(U_{16})$,

so $\phi_6 \circ \phi_1^{-1}$ is C^{∞} on $\phi_1(U_{16})$.

Problem 5.4. Since *M* is a manifold, there exists a chart $(U_{\alpha_1}, \phi_{\alpha_1})$ about *p*. Then

$$\phi_{\alpha_1}|_{U_{\alpha_1}\cap U}\colon V_{\alpha}\cap U\to \phi_{\alpha_1}(V_{\alpha_1}\cap U)$$

is a homeomorphism with $\phi_{\alpha_1}(V_{\alpha_1} \cap U) \subset \mathbb{R}^n$ open, and it is compatible with all the charts in the maximal atlas. By maximality, it must belong to this atlas, so $U_{\alpha_1} \cap U = U_{\alpha_2}$ for some α_2 . Then U_{α_2} is a coordinate open set such that $p \in U_{\alpha_2} \subset U$.

Problem 5.5. Each $\phi_{\alpha} \times \psi_i$ is a homeomorphism with image $\phi_{\alpha} \times \psi_i(U_{\alpha} \times V_i) = \phi_{\alpha}(U_{\alpha}) \times \psi_i(V_i)$ an open subset of $\mathbb{R}^m \times \mathbb{R}^n$. Furthermore, each transition map

$$(\phi_{\alpha_1} \times \psi_{i_1}) \circ (\phi_{\alpha_2} \times \psi_{i_2})^{-1} = (\phi_{\alpha_1} \circ \psi_{\alpha_2}^{-1}) \times (\psi_{i_1} \circ \psi_{i_2}^{-1})$$

is C^{∞} . Hence the collection

$$\{(U_{\alpha} \times V_i, \phi_{\alpha} \times \psi_i \mid U_{\alpha} \times V_i \to \mathbb{R}^m \times \mathbb{R}^n)\}$$

is an atlas on $M \times N$.

6 Smooth Maps on a Manifold

Problem 6.1. (a) Since $\psi \circ id^{-1} = \psi \colon \mathbb{R} \to \mathbb{R}$ is not C^{∞} , the chart (\mathbb{R}, ψ) is not compatible with the chart (\mathbb{R}, id) , so the two differentiable structures are distinct.

(b) Let $F: \mathbb{R} \to \mathbb{R}'$ be defined by $F(x) = x^3$. Then F is a bijection and

$$\psi \circ F \circ id^{-1}(x) = \psi \circ F(x) = \psi(x^3) = x$$

for all $x \in \mathbb{R}$, so F is C^{∞} . Similarly,

$$id \circ F^{-1} \circ \psi(x) = id \circ F^{-1}(x^{1/3}) = id(x) = x$$

for all $x \in \mathbb{R}$, so F^{-1} is C^{∞} . Hence, F is a diffeomorphism from \mathbb{R} onto \mathbb{R}' .

Problem 6.2. Let $p \in M$ and let (U, ϕ) be a chart about $p \in M$. Let (V, ψ) a chart about $q_0 \in N$. Then $(U \times V, \phi \times \psi)$ is a chart about $(p, q_0) \in M \times N$, and

$$(\phi \times \psi) \circ i_{q_0} \circ \phi^{-1}(p') = (\phi \circ \phi^{-1}(p'), \psi(q_0)) = (p', \psi(q_0))$$

for all $p' \in U \times V$, which is C^{∞} . It follows that the inclusion $i_{q_0} \colon M \to M \times N$ is C^{∞} .

Problem 6.3. We are $(GL(V), \phi_e)$ and $(GL(V), \phi_u)$. We want to compute $\phi_u \circ \phi_e^{-1}$ and $\phi_e \circ \phi_u^{-1}$. Given $[a_j^i] \in GL(n, \mathbb{R})$, the automorphism $\phi_e^{-1}([a_j^i]) = L$ of V is such that $L(e_j) = \sum_i a_j^i e_i$ for all $j = 1, \ldots, n$. Then $\phi_u(L) = [b_\ell^k]$ is such that $L(u_\ell) = \sum_k b_\ell^k u_k$ for all $\ell = 1, \ldots, n$.

Let $c_{\ell}^{j}, d_{i}^{k} \in \mathbb{R}$ be the scalars such that

$$u_{\ell} = \sum_{j} c_{\ell}^{j} e_{j}$$
 for all $\ell = 1, ..., n$ and $e_{i} = \sum_{k} d_{i}^{k} u_{k}$ for all $i = 1, ..., n$,

Then

$$L(u_{\ell}) = \sum_{j} c_{\ell}^{j} L(e_{j}) = \sum_{j} c_{\ell}^{j} \left(\sum_{i} a_{j}^{i} \left(\sum_{k} d_{i}^{k} u_{k} \right) \right) = \sum_{i,j,k} c_{\ell}^{j} a_{j}^{i} d_{i}^{k} u_{k} \text{ for all } \ell = 1,\ldots,n.$$

Therefore

$$\phi_u \circ \phi_e^{-1}([a_j^i]_{i,j}) = \left[\sum_{i,j} c_\ell^j a_j^i d_i^k\right]_{k,\ell},$$

so $\phi_u \circ \phi_e^{-1}$ is C^{∞} . Similarly, it follows that $\phi_e \circ \phi_u^{-1}$ is C^{∞} , so $(GL(V), \phi_e)$ and $(GL(V), \phi_u)$ are compatible. Thus $(GL(V), \phi_u)$ and $(GL(V), \phi_e)$ belong to the same maximal atlas, so they determine the same differentiable structure on GL(V).

Problem 6.4. Define $F: \mathbb{R}^3 \to \mathbb{R}^3$ by $F(x, y, z) = (x, x^2 + y^2 + z^2 - 1, z)$. Then F can serve as a local coordinate system about $p = (x, y, z) \in \mathbb{R}^3$ if and only if it is a local diffeomorphism at p. By the Inverse Function Theorem this is equivalent to the condition

$$\frac{\partial(F^1, F^2, F^3)}{\partial(x, y, z)} = \det \begin{bmatrix} 1 & 0 & 0 \\ 2x & 2y & 2z \\ 0 & 0 & 1 \end{bmatrix} = 2y \neq 0.$$

It follows that F can serve as a coordinate system precisely at the points not on the y-axis.

7 Quotients

Problem 7.1. If $x \in f(f^{-1}(B))$, then x = f(y) for some $y \in f^{-1}(B)$, so that $x = f(y) \in B \cap f(X)$. Conversely, if $x \in B \cap f(X)$ and x = f(y) for $y \in X$, then $y \in f^{-1}(B)$, so $x = f(y) \in f(f^{-1}(B))$. If f is surjective, we have f(X) = Y and thus $f(f^{-1}(B)) = B \cap f(X) = B \cap Y = B$.

Problem 7.2. We follow the hint. The function f is continuous by Proposition 7.1, and is clearly bijective. Since H^2 is compact, so is H^2/\sim . Finally, S^2/\sim is Hausdorff by Problem 7.4. Thus, f is a continuous bijection from the compact space H^2/\sim onto the Hausdorff space S^2/\sim , so it is a homeomorphism by Corollary A.36.

Problem 7.3. We shall prove that if \sim is an open equivalence relation on a topological space S, then S/\sim is Hausdorff if and only if the graph R of \sim is closed in $S \times S$.

We follow the hint. First assume that S/\sim is Hausdorff. Then the diagonal Δ in $(S/\sim)\times(S/\sim)$ is closed by Corollary 7.8. Let $\pi\colon S\to S/\sim$ be the projection map. As π is continuous, so is $\pi\times\pi\colon S\times S\to (S/\sim)\times (S/\sim)$. Thus $R=(\pi\times\pi)^{-1}(\Delta)$ is closed in $S\times S$. Conversely, assume that R is closed in $S\times S$. Let $[x]\neq [y]\in S/\sim$. Then $(x,y)\notin R$. As $(S\times S)\setminus R$ is open, there exist open neighbourhoods U of X and X of X respectively such that X is open, X is open.

Problem 7.4. (a) For proving a map is open, it suffices to check that the images of basic open sets are open, if we have fixed a basis for the topology of the domain. Let $\pi: S^n \to S^n/\sim$ be the projection map. Consider the basis for S^n consisting of balls $S^n \cap B(x, \varepsilon)$ centred at points $x \in S^n$ with radii $\varepsilon < 1/2$. If $U = S^n \cap B(x, \varepsilon)$ is one of these balls, then $\pi^{-1}(\pi(U)) = S^n \cap (B(x, \varepsilon) \cup B(-x, \varepsilon))$ is open in S^2 , hence $\pi(U)$ is open in S^2/\sim . It follows that \sim is an open relation.

(b) For a subset $A \subset S^n$, write $-A = \{a \in S^n \mid -a \in A\}$. Let R denote the graph of \sim and let $(x,y) \in (S \times S) \setminus R$. Then $[x] \neq [y]$. Since S^n is Hausdorff, there exist neighbourhoods U of X and Y of X respectively such that X and X are pairwise disjoint. Then X is closed, and it follows from Theorem 7.7 that X is Hausdorff.

Problem 7.5. Given $g \in G$, note that the map $r_g \colon S \to S$ given by $s \mapsto sg$ is a homeomorphism with inverse $r_{g^{-1}}$. Let U be open in S. Then, for $g \in G$, the set $r_g(U)$ is open in G. Thus

$$\pi^{-1}(\pi(U)) = \bigcup_{g \in G} r_g(U)$$

is open in G. By definition of quotient topology, it follows that $\pi(U)$ is open in S/G. We conclude that π is an open map.

Problem 7.6. Let $p: \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$ denote the projection. Consider the subsets

$$V_1 = \{[t] \in \mathbb{R}/2\pi\mathbb{Z} \mid -\pi < t < \pi\}$$
 and $V_1 = \{[t] \in \mathbb{R}/2\pi\mathbb{Z} \mid 0 < t < 2\pi\}$

of $\mathbb{R}/2\pi\mathbb{Z}$. Note that

$$p^{-1}(V_1) = \bigcup_{n \in \mathbb{Z}}]2\pi n - \pi, 2\pi(n+1) - \pi[$$

is open in \mathbb{R} , so V_1 is open in $\mathbb{R}/2\pi\mathbb{Z}$. Similarly, V_2 is open. Now, note that each restriction $p_i = p|_{p^{-1}(V_i)} : p^{-1}(V_i) \to V_i$ of p is again a quotient map. Consider the map

$$\psi'_1: p^{-1}(V_i) \to \mathbb{R}, \quad t \mapsto t - 2\pi n \text{ if } t \in]2\pi n - \pi, 2\pi(n+1) - \pi[.$$

Then ψ_1' is constant on the fibres of p_1 , so by Proposition 7.1 it induces a well-defined continuous map $\psi_1 \colon V_i \to \mathbb{R}$ given by $\psi_i([t]) = t$, where $-\pi < t < \pi$. The map ψ_1 is a homeomorphism onto its image $\psi_1(V_1) =] - \pi, \pi[$ with inverse given by $t \mapsto [t]$. Similarly, we have a well-defined continuous map $\psi_2 \colon V_2 \to \mathbb{R}$ given by $\psi_2([t]) = t$, where $0 < t < 2\pi$, and ψ_2 is a homeomorphism onto its image $]0, 2\pi[$. Thus (V_1, ψ_1) and (V_2, ψ_2) are charts on $\mathbb{R}/2\pi\mathbb{Z}$. Moreover, $\psi_1(V_1 \cap V_2) =]0, \pi[= \psi_2(V_1 \cap V_2)$ and

$$\psi_2 \circ \psi_1^{-1} \colon \]0, \pi[\to]0, \pi[$$

is the identity, and similarly for $\psi_1 \circ \psi_2^{-1}$. Thus $\{(V_1, \psi_1), (V_2, \psi_2)\}$ is a C^{∞} atlas on $\mathbb{R}/2\pi\mathbb{Z}$.

Problem 7.7. (a) Recall from Example 5.7 that

$$U_1 = \{e^{it} \in \mathbb{C} \mid -\pi < t < \pi\}, \quad U_2 = \{e^{it} \in \mathbb{C} \mid 0 < t < 2\pi\},$$

and $\phi_{\alpha} \colon U_{\alpha} \to \mathbb{R}$ for $\alpha = 1, 2$ are given by the formula $\psi_1(e^{it}) = t$ in their respective domains. Recall also that

$$A = \{e^{it} \mid -\pi < t < 0\}$$
 and $B = \{e^{it} \mid 0 < t < \pi\}.$

Consider the C^{∞} atlas $\{(V_1, \psi_1), (V_2, \psi_2)\}$ on $\mathbb{R}/2\pi\mathbb{Z}$ given in the solution of Problem 7.6, and let $p \colon \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$ denote the projection. Note that $\overline{\phi} \colon S^1 \to \mathbb{R}/2\pi\mathbb{Z}$ is given by $e^{it} \mapsto [t]$. Consider the charts (U_1, ϕ_1) and (V_1, ψ_1) . Then $\phi_1((\overline{\phi})^{-1}(V_1) \cap U_1)) = \phi_1(U_1) =] - \pi, \pi[$, and $\psi_1 \circ \overline{\phi} \circ \phi_1^{-1}$ is given by $t \mapsto t$ in this domain, so it is C^{∞} . Similarly, $\psi_2 \circ \overline{\phi} \circ \phi_2^{-1}$ is the C^{∞} map $]0, 2\pi[\to \mathbb{R}, t \mapsto t$. Now consider the charts (U_1, ϕ_1) and (V_2, ψ_2) . Then $\phi_1((\overline{\phi})^{-1}(V_2) \cap U_1)) = \phi_1(B) =]0, \pi[$, and $\psi_1 \circ \overline{\phi} \circ \phi_2^{-1}$ is given by $t \mapsto t$ in this domain, so it is C^{∞} . Similarly for the charts (U_2, ϕ_1) and (V_1, ψ_1) . We deduce that $\overline{\phi}$ is C^{∞} .

- (b) This is analogous to part (a). Considering the atlas $\{(V_1, \psi_1), (V_2, \psi_2)\}$ for $\mathbb{R}/2\pi\mathbb{Z}$ and the atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$ for S^1 , all composites $\phi_i \circ F \circ \psi_j^{-1}$, for i, j = 1, 2, are the identities in their respective domains.
- (c) Note that the maps $\overline{\phi} \colon S^1 \to \mathbb{R}/2\pi\mathbb{Z}$ and $F \colon \mathbb{R}/2\pi\mathbb{Z} \to S^1$ of parts (a) and (b) are inverses to each other and C^{∞} . Therefore F is a diffeomorphism.

Problem 7.8. (a) We follow the hint: that \sim is an open equivalence relations follows from Problem 7.5.

- (b) We follow the hint: since F(k, n) is second countable (being a subspace of $\mathbb{R}^{n \times k}$) and \sim is open by part (a), it follows that $G(k, n) = F(k, n)/\sim$ is second countable by Corollary 7.10.
- (c) We follow the hint. Two matrices $A = \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix}$ and $B = \begin{bmatrix} b_1 & \cdots & b_k \end{bmatrix}$ in F(k,n) are equivalent if and only if all $(k+1) \times (k+1)$ minors of $\begin{bmatrix} A & B \end{bmatrix}$ are zero (recall Problem B.1). Let $(A,B) \in (S \times S) \setminus R$. Then there is some $(k+1) \times (k+1)$ minor of $\begin{bmatrix} A & B \end{bmatrix}$ which is non-zero, say corresponding to the rows i_1, \ldots, i_{k+1} and columns j_1, \ldots, j_{k+1} . Since the function $F(k,n) \times F(k,n) \to \mathbb{R}$ taking (C,D) to the $(k+1) \times (k+1)$ minor of $\begin{bmatrix} C & D \end{bmatrix}$ corresponding to the rows i_1, \ldots, i_{k+1} and columns j_1, \ldots, j_{k+1} is continuous, it follows that in some neighbourhood U of (A,B) in $F(k,n) \times F(k,n)$, for all pairs $(C,D) \in U$ the $(k+1) \times (k+1)$ minor of $\begin{bmatrix} C & D \end{bmatrix}$ corresponding to the the rows i_1, \ldots, i_{k+1} and columns j_1, \ldots, j_{k+1} is non-zero, so that $U \subset (S \times S) \setminus R$. It follows that R is closed in $S \times S$.
- (d) Since the graph R in $F(k, n) \times F(k, n)$ of the equivalence relation \sim is closed and \sim is open by part (a), it follows from Theorem 7.7 that $G(k, n) = F(k, n)/\sim$ is Hausdorff.
- (e) Suppose that i=1 and j=2. Let $A\in V_{12}$, so that A_{12} is non-singular by assumption. If $g\in \mathrm{GL}(2,\mathbb{R})$, then

$$Ag = \begin{bmatrix} A_{12}g \\ A_{13}g \end{bmatrix},$$

and $A_{12}g$ is non-singular. Thus $Ag \in V_{12}$ for all $g \in GL(2,\mathbb{R})$. It is clear that a similar proof works in the case that i and j are not 1 and 2 respectively.

(f) Let $A, B \in V_{12}$ and suppose that $A \sim B$. Then there exists $g \in GL(2, \mathbb{R})$ such that

$$Ag = \begin{bmatrix} A_{12}g \\ A_{13}g \end{bmatrix} = \begin{bmatrix} B_{12} \\ B_{13} \end{bmatrix},$$

and hence

$$\widetilde{\phi}_{12}(B) = B_{34}B_{12}^{-1} = (A_{34}q)(A_{12}q)^{-1} = A_{34}A_{12}^{-1} = \widetilde{\phi}_{12}(A).$$

Thus, by Proposition 7.1 we have a well-defined continuous map $\phi_{12}\colon U_{12}\to\mathbb{R}^{2\times 2}$ given by $\phi_{12}([A])=A_{34}A_{12}^{-1}$. On the other hand, we have a map $\psi\colon\mathbb{R}^{2\times 2}\to U_{12}$ given by sending $g\in\mathbb{R}^{2\times 2}$ to the class of

$$\begin{bmatrix} I \\ g \end{bmatrix}$$
.

It is clear that $\phi_{12} \circ \psi$ is the identity map of $\mathbb{R}^{2\times 2}$. Since every element of U_{12} has a representative of the form $\begin{bmatrix} I \\ g \end{bmatrix}$, it follows that $\psi \circ \phi_{12}$ is the identity on U_{12} . We deduce that ϕ_{12} is a homeomorphism.

(g) For all i, j, the homeomorphism $\phi_{ij} \colon U_{ij} \to \mathbb{R}^{2 \times 2}$ is given by $\phi_{ij} = A_{k\ell} A_{ij}^{-1}$, where $\{k, \ell\} = \{1, 2, 3, 4\} \setminus \{i, j\}$. By definition, we have

$$\phi_{12} \circ \phi_{23}^{-1} \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \phi_{12} \left(\begin{bmatrix} 1 & 0 \\ a & b \\ c & d \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}^{-1} = \frac{1}{b-a} \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b & 0 \\ -a & 1 \end{bmatrix} = \frac{1}{b-a} \begin{bmatrix} cb-da & d \\ -a & 1 \end{bmatrix},$$

and this is defined precisely for all $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $\det \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} = b - a \neq 0$. This is C^{∞} being a polynomial on the entries of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

(h) By definition, an element of $GL(2,4) = F(2,4)/\sim$ is a class of a 4×2 matrix of rank 2. For any such matrix A, we must have A_{ij} non-singular for some $i \neq j$ by Problem B.1. Thus $\{U_{ij} \mid 1 \le i < j \le 4\}$ is an open cover of G(2,4) and the (U_{ij},ϕ_{ij}) defined are charts on G(2,4). They are all pairwise C^{∞} -compatible by a similar computation as that of (g), since any transition function is a polynomial in the entries.

Problem 7.9. We follow the hint. By Exercise 7.11, we have a homeomorphism $\mathbb{R}P^n \approx S^n/\sim$ where S^n/\sim is the quotient of S^n which identifies antipodal points. Since S^n is compact, so is S^n/\sim . Therefore, $\mathbb{R}P^n$ is compact.

Please send comments, suggestions and corrections by e-mail, or at website.

https://positron0802.wordpress.com positron0802@mail.com