# Solutions to <br> An Introduction to Manifolds 

Chapter 2 - Manifolds

Loring W. Tu

Solutions by positrón0802
https://positron0802.wordpress.com
1 January 2021

## Contents

2 Manifolds 1
5 Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
6 Smooth Maps on a Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
7 Quotients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

## 2 Manifolds

## 5 Manifolds

Problem 5.1. (a) It is clear that $h$ is bijective and that it restricts to a homeomorphism

$$
]-c, 0[\cup[0, d] \rightarrow]-c, 0[\cup[0, d] .
$$

Furthermore, if $0<\varepsilon<\min \{c, d\}$, then $h$ restricts to a homeomorphism

$$
]-\varepsilon, 0[\cup\{A\} \cup] 0, \varepsilon[\rightarrow]-\varepsilon, \varepsilon[.
$$

Thus $h$ is a bijective local homeomorphism, hence a homeomorphism.
(b) It follows from (a) that $S$ is locally Euclidean of dimension 1 . Let $\mathscr{B}$ be a countable basis for $\mathbb{R} \backslash\{0\} \subset S$, and let $\mathscr{B}_{A}=\left\{I_{A}(-c, d) \mid c, d \in \mathbb{Q}^{+}\right\}, \mathscr{B}_{B}=\left\{I_{B}(-c, d) \mid c, d \in \mathbb{Q}^{+}\right\}$. Then $\mathscr{B} \cup \mathscr{B}_{A} \cup \mathscr{B}_{B}$ is a countable basis for $S$. Finally, note that $S$ is not Hausdorff since $A, B \in S$ cannot be separated by disjoint open sets, as given $c, c^{\prime}, d, d^{\prime}>0$, the point $p=\min \left\{d, d^{\prime}\right\} / 2 \in S$ belongs to the intersection $I_{A}(-c, d) \cap I_{B}\left(-c^{\prime}, d^{\prime}\right)$.

Problem 5.2. Let $M$ be the sphere with a hair (at $q$ ) in $\mathbb{R}^{3}$. Assume that $q \in M$ has a neighbourhood $U$ homeomorphic to some open subset $V \subset \mathbb{R}^{n}$ for some $n$. Let $\phi: U \rightarrow V$ be a homeomorphism. Without loss of generality we may assume that $U$ is a connected ball $B_{\varepsilon}(q) \cap M$. Then $U \backslash\{q\}$ is a disjoint union of two open connected subsets $U_{1}$ and $U_{2}$, where $U_{1}$ is homeomorphic to an interval $I \subset \mathbb{R}$ and $U_{1}$ is homeomorphic to a punctured ball $B^{\prime} \subset \mathbb{R}^{2}$. Now, $\phi$ restricts to a homeomorphism $U_{1} \rightarrow \phi\left(U_{1}\right)$. Since $U_{1} \subset U$ is open, $\phi\left(U_{1}\right) \subset \mathbb{R}^{n}$ is open, so $n=1$ by the theorem on invariance of dimension. On the other hand, $\phi$ also restricts to a homeomorphism $U_{2} \rightarrow \phi\left(U_{2}\right)$, where $\phi\left(U_{1}\right) \subset \mathbb{R}^{n}$ is open, so $n=2$. This contradiction shows that there is no such $U$ and $\phi$.

Problem 5.3. We have

$$
\phi_{4}\left(U_{14}\right)=\phi_{4}\left(U_{1} \cap U_{4}\right)=\left\{(x, z) \in \mathbb{R}^{2} \mid x>0, x^{2}+z^{2}<1\right\} .
$$

As

$$
\phi_{1} \circ \phi_{4}^{-1}(x, z)=\phi_{1}\left(x, \sqrt{1-x^{2}-z^{2}}, z\right)=\left(\sqrt{1-x^{2}-z^{2}}, z\right) \quad \text { for all }(x, z) \in \phi_{4}\left(U_{14}\right),
$$

$\phi_{1} \circ \phi_{4}^{-1}$ is $C^{\infty}$ on $\phi_{4}\left(U_{14}\right)$.
Similarly,

$$
\phi_{1}\left(U_{16}\right)=\left\{(y, z) \in \mathbb{R}^{2} \mid z<0, y^{2}+z^{2}<1\right\}
$$

and

$$
\phi_{6} \circ \phi_{1}^{-1}(y, z)=\phi_{1}\left(\sqrt{1-y^{2}-z^{2}}, y, z\right)=\left(\sqrt{1-y^{2}-z^{2}}, y\right) \quad \text { for all }(y, z) \in \phi_{1}\left(U_{16}\right),
$$

so $\phi_{6} \circ \phi_{1}^{-1}$ is $C^{\infty}$ on $\phi_{1}\left(U_{16}\right)$.
Problem 5.4. Since $M$ is a manifold, there exists a chart $\left(U_{\alpha_{1}}, \phi_{\alpha_{1}}\right)$ about $p$. Then

$$
\left.\phi_{\alpha_{1}}\right|_{U_{\alpha_{1}} \cap U}: V_{\alpha} \cap U \rightarrow \phi_{\alpha_{1}}\left(V_{\alpha_{1}} \cap U\right)
$$

is a homeomorphism with $\phi_{\alpha_{1}}\left(V_{\alpha_{1}} \cap U\right) \subset \mathbb{R}^{n}$ open, and it is compatible with all the charts in the maximal atlas. By maximality, it must belong to this atlas, so $U_{\alpha_{1}} \cap U=U_{\alpha_{2}}$ for some $\alpha_{2}$. Then $U_{\alpha_{2}}$ is a coordinate open set such that $p \in U_{\alpha_{2}} \subset U$.

Problem 5.5. Each $\phi_{\alpha} \times \psi_{i}$ is a homeomorphism with image $\phi_{\alpha} \times \psi_{i}\left(U_{\alpha} \times V_{i}\right)=\phi_{\alpha}\left(U_{\alpha}\right) \times \psi_{i}\left(V_{i}\right)$ an open subset of $\mathbb{R}^{m} \times \mathbb{R}^{n}$. Furthermore, each transition map

$$
\left(\phi_{\alpha_{1}} \times \psi_{i_{1}}\right) \circ\left(\phi_{\alpha_{2}} \times \psi_{i_{2}}\right)^{-1}=\left(\phi_{\alpha_{1}} \circ \psi_{\alpha_{2}}^{-1}\right) \times\left(\psi_{i_{1}} \circ \psi_{i_{2}}^{-1}\right)
$$

is $C^{\infty}$. Hence the collection

$$
\left\{\left(U_{\alpha} \times V_{i}, \phi_{\alpha} \times \psi_{i} \mid U_{\alpha} \times V_{i} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}\right)\right\}
$$

is an atlas on $M \times N$.

## 6 Smooth Maps on a Manifold

Problem 6.1. (a) Since $\psi \circ \mathrm{id}^{-1}=\psi: \mathbb{R} \rightarrow \mathbb{R}$ is not $C^{\infty}$, the chart $(\mathbb{R}, \psi)$ is not compatible with the chart $(\mathbb{R}, \mathrm{id})$, so the two differentiable structures are distinct.
(b) Let $F: \mathbb{R} \rightarrow \mathbb{R}^{\prime}$ be defined by $F(x)=x^{3}$. Then $F$ is a bijection and

$$
\psi \circ F \circ \mathrm{id}^{-1}(x)=\psi \circ F(x)=\psi\left(x^{3}\right)=x
$$

for all $x \in \mathbb{R}$, so $F$ is $C^{\infty}$. Similarly,

$$
\operatorname{id} \circ F^{-1} \circ \psi(x)=\operatorname{id} \circ F^{-1}\left(x^{1 / 3}\right)=\operatorname{id}(x)=x
$$

for all $x \in \mathbb{R}$, so $F^{-1}$ is $C^{\infty}$. Hence, $F$ is a diffeomorphism from $\mathbb{R}$ onto $\mathbb{R}^{\prime}$.
Problem 6.2. Let $p \in M$ and let $(U, \phi)$ be a chart about $p \in M$. Let $(V, \psi)$ a chart about $q_{0} \in N$. Then $(U \times V, \phi \times \psi)$ is a chart about $\left(p, q_{0}\right) \in M \times N$, and

$$
(\phi \times \psi) \circ i_{q_{0}} \circ \phi^{-1}\left(p^{\prime}\right)=\left(\phi \circ \phi^{-1}\left(p^{\prime}\right), \psi\left(q_{0}\right)\right)=\left(p^{\prime}, \psi\left(q_{0}\right)\right)
$$

for all $p^{\prime} \in U \times V$, which is $C^{\infty}$. It follows that the inclusion $i_{q_{0}}: M \rightarrow M \times N$ is $C^{\infty}$.
Problem 6.3. We are $\left(\mathrm{GL}(V), \phi_{e}\right)$ and $\left(\mathrm{GL}(V), \phi_{u}\right)$. We want to compute $\phi_{u} \circ \phi_{e}^{-1}$ and $\phi_{e} \circ \phi_{u}^{-1}$. Given $\left[a_{j}^{i}\right] \in \operatorname{GL}(n, \mathbb{R})$, the automorphism $\phi_{e}^{-1}\left(\left[a_{j}^{i}\right]\right)=L$ of $V$ is such that $L\left(e_{j}\right)=\sum_{i} a_{j}^{i} e_{i}$ for all $j=1, \ldots, n$. Then $\phi_{u}(L)=\left[b_{\ell}^{k}\right]$ is such that $L\left(u_{\ell}\right)=\sum_{k} b_{\ell}^{k} u_{k}$ for all $\ell=1, \ldots, n$.

Let $c_{\ell}^{j}, d_{i}^{k} \in \mathbb{R}$ be the scalars such that

$$
u_{\ell}=\sum_{j} c_{\ell}^{j} e_{j} \text { for all } \ell=1, \ldots, n \quad \text { and } \quad e_{i}=\sum_{k} d_{i}^{k} u_{k} \text { for all } i=1, \ldots, n
$$

Then

$$
L\left(u_{\ell}\right)=\sum_{j} c_{\ell}^{j} L\left(e_{j}\right)=\sum_{j} c_{\ell}^{j}\left(\sum_{i} a_{j}^{i}\left(\sum_{k} d_{i}^{k} u_{k}\right)\right)=\sum_{i, j, k} c_{\ell}^{j} a_{j}^{i} d_{i}^{k} u_{k} \text { for all } \ell=1, \ldots, n
$$

Therefore

$$
\phi_{u} \circ \phi_{e}^{-1}\left(\left[a_{j}^{i}\right]_{i, j}\right)=\left[\sum_{i, j} c_{\ell}^{j} a_{j}^{i} d_{i}^{k}\right]_{k, \ell}
$$

so $\phi_{u} \circ \phi_{e}^{-1}$ is $C^{\infty}$. Similarly, it follows that $\phi_{e} \circ \phi_{u}^{-1}$ is $C^{\infty}$, so ( $\left.\operatorname{GL}(V), \phi_{e}\right)$ and (GL(V), $\phi_{u}$ ) are compatible. Thus $\left(\mathrm{GL}(V), \phi_{u}\right)$ and $\left(\mathrm{GL}(V), \phi_{e}\right)$ belong to the same maximal atlas, so they determine the same differentiable structure on $\mathrm{GL}(V)$.
Problem 6.4. Define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $F(x, y, z)=\left(x, x^{2}+y^{2}+z^{2}-1, z\right)$. Then $F$ can serve as a local coordinate system about $p=(x, y, z) \in \mathbb{R}^{3}$ if and only if it is a local diffeomorphism at $p$. By the Inverse Function Theorem this is equivalent to the condition

$$
\frac{\partial\left(F^{1}, F^{2}, F^{3}\right)}{\partial(x, y, z)}=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 2 y & 2 z \\
0 & 0 & 1
\end{array}\right]=2 y \neq 0
$$

It follows that $F$ can serve as a coordinate system precisely at the points not on the $y$-axis.

## 7 Quotients

Problem 7.1. If $x \in f\left(f^{-1}(B)\right)$, then $x=f(y)$ for some $y \in f^{-1}(B)$, so that $x=f(y) \in B \cap f(X)$. Conversely, if $x \in B \cap f(X)$ and $x=f(y)$ for $y \in X$, then $y \in f^{-1}(B)$, so $x=f(y) \in f\left(f^{-1}(B)\right)$. If $f$ is surjective, we have $f(X)=Y$ and thus $f\left(f^{-1}(B)\right)=B \cap f(X)=B \cap Y=B$.

Problem 7.2. We follow the hint. The function $f$ is continuous by Proposition 7.1, and is clearly bijective. Since $H^{2}$ is compact, so is $H^{2} / \sim$. Finally, $S^{2} / \sim$ is Hausdorff by Problem 7.4. Thus, $f$ is a continuous bijection from the compact space $H^{2} / \sim$ onto the Hausdorff space $S^{2} / \sim$, so it is a homeomorphism by Corollary A.36.

Problem 7.3. We shall prove that if $\sim$ is an open equivalence relation on a topological space $S$, then $S / \sim$ is Hausdorff if and only if the graph $R$ of $\sim$ is closed in $S \times S$.

We follow the hint. First assume that $S / \sim$ is Hausdorff. Then the diagonal $\Delta$ in $(S / \sim) \times(S / \sim)$ is closed by Corollary 7.8. Let $\pi: S \rightarrow S / \sim$ be the projection map. As $\pi$ is continuous, so is $\pi \times \pi: S \times S \rightarrow(S / \sim) \times(S / \sim)$. Thus $R=(\pi \times \pi)^{-1}(\Delta)$ is closed in $S \times S$. Conversely, assume that $R$ is closed in $S \times S$. Let $[x] \neq[y] \in S / \sim$. Then $(x, y) \notin R$. As $(S \times S) \backslash R$ is open, there exist open neighbourhoods $U$ of $x$ and $V$ of $y$ respectively such that $(x, y) \in U \times V \subset(S \times S) \backslash R$. As $\pi$ is open, $\pi(U)$ and $\pi(V)$ are open neighbourhoods of $[x]$ and [ $y]$ respectively in $S / \sim$. If $[z] \in \pi(U) \cap \pi(V)$, then $[z]=\left[x^{\prime}\right]=\left[y^{\prime}\right]$ for some $x^{\prime} \in U$ and $y^{\prime} \in V$, which is impossible as $U \times V \subset(S \times S) \backslash R$. Thus $\pi(U)$ and $\pi(V)$ are disjoint. We deduce that $S / \sim$ is Hausdorff.

Problem 7.4. (a) For proving a map is open, it suffices to check that the images of basic open sets are open, if we have fixed a basis for the topology of the domain. Let $\pi: S^{n} \rightarrow S^{n} / \sim$ be the projection map. Consider the basis for $S^{n}$ consisting of balls $S^{n} \cap B(x, \varepsilon)$ centred at points $x \in S^{n}$ with radii $\varepsilon<1 / 2$. If $U=S^{n} \cap B(x, \varepsilon)$ is one of these balls, then $\pi^{-1}(\pi(U))=S^{n} \cap(B(x, \varepsilon) \cup$ $B(-x, \varepsilon))$ is open in $S^{2}$, hence $\pi(U)$ is open in $S^{2} / \sim$. It follows that $\sim$ is an open relation.
(b) For a subset $A \subset S^{n}$, write $-A=\left\{a \in S^{n} \mid-a \in A\right\}$. Let $R$ denote the graph of $\sim$ and let $(x, y) \in(S \times S) \backslash R$. Then $[x] \neq[y]$. Since $S^{n}$ is Hausdorff, there exist neighbourhoods $U$ of $x$ and $V$ of $y$ respectively such that $U,-U, V$ and $-V$ are pairwise disjoint. Then $(x, y) \in U \times V \subset(S \times S) \backslash R$. Thus $R$ is closed, and it follows from Theorem 7.7 that $S / \sim$ is Hausdorff.

Problem 7.5. Given $g \in G$, note that the map $r_{g}: S \rightarrow S$ given by $s \mapsto s g$ is a homeomorphism with inverse $r_{g^{-1}}$. Let $U$ be open in $S$. Then, for $g \in G$, the set $r_{g}(U)$ is open in $G$. Thus

$$
\pi^{-1}(\pi(U))=\bigcup_{g \in G} r_{g}(U)
$$

is open in $G$. By definition of quotient topology, it follows that $\pi(U)$ is open in $S / G$. We conclude that $\pi$ is an open map.
Problem 7.6. Let $p: \mathbb{R} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ denote the projection. Consider the subsets

$$
V_{1}=\{[t] \in \mathbb{R} / 2 \pi \mathbb{Z} \mid-\pi<t<\pi\} \quad \text { and } \quad V_{1}=\{[t] \in \mathbb{R} / 2 \pi \mathbb{Z} \mid 0<t<2 \pi\}
$$

of $\mathbb{R} / 2 \pi \mathbb{Z}$. Note that

$$
\left.p^{-1}\left(V_{1}\right)=\bigcup_{n \in \mathbb{Z}}\right] 2 \pi n-\pi, 2 \pi(n+1)-\pi[
$$

is open in $\mathbb{R}$, so $V_{1}$ is open in $\mathbb{R} / 2 \pi \mathbb{Z}$. Similarly, $V_{2}$ is open. Now, note that each restriction $p_{i}=$ $\left.p\right|_{p^{-1}\left(V_{i}\right)}: p^{-1}\left(V_{i}\right) \rightarrow V_{i}$ of $p$ is again a quotient map. Consider the map

$$
\left.\psi_{1}^{\prime}: p^{-1}\left(V_{i}\right) \rightarrow \mathbb{R}, \quad t \mapsto t-2 \pi n \text { if } t \in\right] 2 \pi n-\pi, 2 \pi(n+1)-\pi[
$$

Then $\psi_{1}^{\prime}$ is constant on the fibres of $p_{1}$, so by Proposition 7.1 it induces a well-defined continuous $\operatorname{map} \psi_{1}: V_{i} \rightarrow \mathbb{R}$ given by $\psi_{i}([t])=t$, where $-\pi<t<\pi$. The map $\psi_{1}$ is a homeomorphism onto its image $\left.\psi_{1}\left(V_{1}\right)=\right]-\pi, \pi[$ with inverse given by $t \mapsto[t]$. Similarly, we have a welldefined continuous map $\psi_{2}: V_{2} \rightarrow \mathbb{R}$ given by $\psi_{2}([t])=t$, where $0<t<2 \pi$, and $\psi_{2}$ is a homeomorphism onto its image $] 0,2 \pi\left[\right.$. Thus $\left(V_{1}, \psi_{1}\right)$ and $\left(V_{2}, \psi_{2}\right)$ are charts on $\mathbb{R} / 2 \pi \mathbb{Z}$. Moreover, $\left.\psi_{1}\left(V_{1} \cap V_{2}\right)=\right] 0, \pi\left[=\psi_{2}\left(V_{1} \cap V_{2}\right)\right.$ and

$$
\left.\psi_{2} \circ \psi_{1}^{-1}:\right] 0, \pi[\rightarrow] 0, \pi[
$$

is the identity, and similarly for $\psi_{1} \circ \psi_{2}^{-1}$. Thus $\left\{\left(V_{1}, \psi_{1}\right),\left(V_{2}, \psi_{2}\right)\right\}$ is a $C^{\infty}$ atlas on $\mathbb{R} / 2 \pi \mathbb{Z}$.
Problem 7.7. (a) Recall from Example 5.7 that

$$
U_{1}=\left\{e^{i t} \in \mathbb{C} \mid-\pi<t<\pi\right\}, \quad U_{2}=\left\{e^{i t} \in \mathbb{C} \mid 0<t<2 \pi\right\}
$$

and $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$ for $\alpha=1,2$ are given by the formula $\psi_{1}\left(e^{i t}\right)=t$ in their respective domains. Recall also that

$$
A=\left\{e^{i t} \mid-\pi<t<0\right\} \quad \text { and } \quad B=\left\{e^{i t} \mid 0<t<\pi\right\}
$$

Consider the $C^{\infty}$ atlas $\left\{\left(V_{1}, \psi_{1}\right),\left(V_{2}, \psi_{2}\right)\right\}$ on $\mathbb{R} / 2 \pi \mathbb{Z}$ given in the solution of Problem 7.6, and let $p: \mathbb{R} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ denote the projection. Note that $\bar{\phi}: S^{1} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ is given by $e^{i t} \mapsto[t]$. Consider the charts $\left(U_{1}, \phi_{1}\right)$ and $\left(V_{1}, \psi_{1}\right)$. Then $\left.\left.\phi_{1}\left((\bar{\phi})^{-1}\left(V_{1}\right) \cap U_{1}\right)\right)=\phi_{1}\left(U_{1}\right)=\right]-\pi, \pi\left[\right.$, and $\psi_{1} \circ \bar{\phi} \circ \phi_{1}^{-1}$ is given by $t \mapsto t$ in this domain, so it is $C^{\infty}$. Similarly, $\psi_{2} \circ \bar{\phi} \circ \phi_{2}^{-1}$ is the $C^{\infty}$ map $] 0,2 \pi[\rightarrow \mathbb{R}$, $t \mapsto t$. Now consider the charts $\left(U_{1}, \phi_{1}\right)$ and $\left(V_{2}, \psi_{2}\right)$. Then $\left.\left.\phi_{1}\left((\bar{\phi})^{-1}\left(V_{2}\right) \cap U_{1}\right)\right)=\phi_{1}(B)=\right] 0, \pi[$, and $\psi_{1} \circ \bar{\phi} \circ \phi_{2}^{-1}$ is given by $t \mapsto t$ in this domain, so it is $C^{\infty}$. Similarly for the charts $\left(U_{2}, \phi_{1}\right)$ and $\left(V_{1}, \psi_{1}\right)$. We deduce that $\bar{\phi}$ is $C^{\infty}$.
(b) This is analogous to part (a). Considering the atlas $\left\{\left(V_{1}, \psi_{1}\right),\left(V_{2}, \psi_{2}\right)\right\}$ for $\mathbb{R} / 2 \pi \mathbb{Z}$ and the atlas $\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ for $S^{1}$, all composites $\phi_{i} \circ F \circ \psi_{j}^{-1}$, for $i, j=1,2$, are the identities in their respective domains.
(c) Note that the maps $\bar{\phi}: S^{1} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ and $F: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow S^{1}$ of parts (a) and (b) are inverses to each other and $C^{\infty}$. Therefore $F$ is a diffeomorphism.

Problem 7.8. (a) We follow the hint: that $\sim$ is an open equivalence relations follows from Problem 7.5.
(b) We follow the hint: since $F(k, n)$ is second countable (being a subspace of $\mathbb{R}^{n \times k}$ ) and $\sim$ is open by part (a), it follows that $G(k, n)=F(k, n) / \sim$ is second countable by Corollary 7.10.
(c) We follow the hint. Two matrices $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{k}\end{array}\right]$ and $B=\left[\begin{array}{lll}b_{1} & \cdots & b_{k}\end{array}\right]$ in $F(k, n)$ are equivalent if and only if all $(k+1) \times(k+1)$ minors of $\left[\begin{array}{ll}A & B\end{array}\right]$ are zero (recall Problem B.1). Let $(A, B) \in(S \times S) \backslash R$. Then there is some $(k+1) \times(k+1)$ minor of $\left[\begin{array}{ll}A & B\end{array}\right]$ which is non-zero, say corresponding to the rows $i_{1}, \ldots, i_{k+1}$ and columns $j_{1}, \ldots, j_{k+1}$. Since the function $F(k, n) \times F(k, n) \rightarrow \mathbb{R}$ taking $(C, D)$ to the $(k+1) \times(k+1)$ minor of $\left[\begin{array}{ll}C & D\end{array}\right]$ corresponding to the rows $i_{1}, \ldots, i_{k+1}$ and columns $j_{1}, \ldots, j_{k+1}$ is continuous, it follows that in some neighbourhood $U$ of $(A, B)$ in $F(k, n) \times F(k, n)$, for all pairs $(C, D) \in U$ the $(k+1) \times(k+1)$ minor of $\left[\begin{array}{ll}C & D\end{array}\right]$ corresponding to the the rows $i_{1}, \ldots, i_{k+1}$ and columns $j_{1}, \ldots, j_{k+1}$ is non-zero, so that $U \subset(S \times S) \backslash R$. It follows that $R$ is closed in $S \times S$.
(d) Since the graph $R$ in $F(k, n) \times F(k, n)$ of the equivalence relation $\sim$ is closed and $\sim$ is open by part (a), it follows from Theorem 7.7 that $G(k, n)=F(k, n) / \sim$ is Hausdorff.
(e) Suppose that $i=1$ and $j=2$. Let $A \in V_{12}$, so that $A_{12}$ is non-singular by assumption. If $g \in \operatorname{GL}(2, \mathbb{R})$, then

$$
A g=\left[\begin{array}{l}
A_{12} g \\
A_{13} g
\end{array}\right]
$$

and $A_{12} g$ is non-singular. Thus $A g \in V_{12}$ for all $g \in G L(2, \mathbb{R})$. It is clear that a similar proof works in the case that $i$ and $j$ are not 1 and 2 respectively.
(f) Let $A, B \in V_{12}$ and suppose that $A \sim B$. Then there exists $g \in \operatorname{GL}(2, \mathbb{R})$ such that

$$
A g=\left[\begin{array}{l}
A_{12} g \\
A_{13} g
\end{array}\right]=\left[\begin{array}{l}
B_{12} \\
B_{13}
\end{array}\right],
$$

and hence

$$
\widetilde{\phi}_{12}(B)=B_{34} B_{12}^{-1}=\left(A_{34} g\right)\left(A_{12} g\right)^{-1}=A_{34} A_{12}^{-1}=\widetilde{\phi}_{12}(A)
$$

Thus, by Proposition 7.1 we have a well-defined continuous map $\phi_{12}: U_{12} \rightarrow \mathbb{R}^{2 \times 2}$ given by $\phi_{12}([A])=A_{34} A_{12}^{-1}$. On the other hand, we have a map $\psi: \mathbb{R}^{2 \times 2} \rightarrow U_{12}$ given by sending $g \in \mathbb{R}^{2 \times 2}$ to the class of

$$
\left[\begin{array}{l}
I \\
g
\end{array}\right]
$$

It is clear that $\phi_{12} \circ \psi$ is the identity map of $\mathbb{R}^{2 \times 2}$. Since every element of $U_{12}$ has a representative of the form $\left[\begin{array}{l}I \\ g\end{array}\right]$, it follows that $\psi \circ \phi_{12}$ is the identity on $U_{12}$. We deduce that $\phi_{12}$ is a homeomorphism.
(g) For all $i, j$, the homeomorphism $\phi_{i j}: U_{i j} \rightarrow \mathbb{R}^{2 \times 2}$ is given by $\phi_{i j}=A_{k \ell} A_{i j}^{-1}$, where $\{k, \ell\}=$ $\{1,2,3,4\} \backslash\{i, j\}$. By definition, we have
$\phi_{12} \circ \phi_{23}^{-1}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\phi_{12}\left(\left[\begin{array}{ll}1 & 0 \\ a & b \\ c & d \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{ll}c & d \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ a & b\end{array}\right]^{-1}=\frac{1}{b-a}\left[\begin{array}{ll}c & d \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}b & 0 \\ -a & 1\end{array}\right]=\frac{1}{b-a}\left[\begin{array}{cc}c b-d a & d \\ -a & 1\end{array}\right]$,
and this is defined precisely for all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that det $\left[\begin{array}{ll}1 & 0 \\ a & b\end{array}\right]=b-a \neq 0$. This is $C^{\infty}$ being a polynomial on the entries of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(h) By definition, an element of $G L(2,4)=F(2,4) / \sim$ is a class of a $4 \times 2$ matrix of rank 2. For any such matrix $A$, we must have $A_{i j}$ non-singular for some $i \neq j$ by Problem B.1. Thus $\left\{U_{i j} \mid 1 \leq i<j \leq 4\right\}$ is an open cover of $G(2,4)$ and the $\left(U_{i j}, \phi_{i j}\right)$ defined are charts on $G(2,4)$. They are all pairwise $C^{\infty}$-compatible by a similar computation as that of $(\mathrm{g})$, since any transition function is a polynomial in the entries.

Problem 7.9. We follow the hint. By Exercise 7.11, we have a homeomorphism $\mathbb{R} P^{n} \approx S^{n} / \sim$ where $S^{n} / \sim$ is the quotient of $S^{n}$ which identifies antipodal points. Since $S^{n}$ is compact, so is $S^{n} / \sim$. Therefore, $\mathbb{R} P^{n}$ is compact.

Please send comments, suggestions and corrections by e-mail, or at website.
https://positron0802.wordpress.com
positron0802@mail.com

