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5 Limits

5.1 Limits: de�nition and examples

Exercise 5.1.33. This was done in Exercise 0.14(a).

Exercise 5.1.34. We will show that if � is an equaliser then it is not necessarily a pullback. If the
above square is a pullback then it has the following universal property:

∀� ′

� -

- . .

∃!ℎ

∀9

∀:
8

8

6

5

If the maps : and 9 are equal, then ℎ indeed exists and is unique since � is a coequaliser. However,
we do not expect this to be true if : ≠ 9 in general. Indeed, consider for instance the category
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5.1 Limits: de�nition and examples

Set, - = {1, 2}, . = {1} and 5 , 6 the unique possible maps. Then the pullback is (- ×-, pr1, pr2),
and the equaliser is (-, 1- ) . Since - × - is not isomorphic to -, these are not equal.

On the other hand, the converse does hold: if the given square is a pullback then (�, 8) is
the equaliser of 5 and 6. To show this, consider the diagram above which illustrates the universal
property of the pullback. By taking: and 9 to be equal, we see that for any � ′ and a map 8 ′ : � ′→ -

such that 5 8 ′ = 68 ′, there is a unique map ℎ : � ′→ � such that 8ℎ = 8 ′. Hence (�, 8) is the equaliser
of 5 and 6.

Exercise 5.1.35. (This is also Mac Lane’s Exercise III.4.8.)
Assume we have a commutative diagram

� � �

� � �

5

9 :

6

;

ℎ 8

in some category � such that the right-hand square is a pullback.
First assume that the left-hand square is also a pullback. Let � be an object together with

maps C1 : � → �, C2 : � → � such that 8ℎC1 = ;C2. We want to �nd a unique ? : � → � �tting in a
commutative diagram as below:

�

� � �

� � � .

C1

C2

?

5

9 :

6

;

ℎ 8

Since the right-hand square is a pullback there is a unique ? ′ : � → � such that :? ′ = ℎC1 and
6? ′ = C2. Then, since the left-hand square is a pullback there is a unique ? : � → � such that
9? = C1 and ? ′ = 5 ?. Then ? satis�es 9? = C1 and 65 ? = C2, and is unique as such. We deduce that
the outer rectangle is a pullback.

Now assume that the outer rectangle is a pullback. Let � be an object of � and C1 : � → �,

C2 : � → � be such that :C2 = ℎC1. We want to �nd a unique ? : � → � �lling the diagram

�

� � �

� � � .

C1

C2
?

5

9 :

6

;

ℎ 8
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5.1 Limits: de�nition and examples

Since ;6C2 = 8:C2 = 8ℎC1 and the right-hand square is a pullback, there exists a unique ? ′ : � → �

such that 6? ′ = 6C2 and :? ′ = ℎC1. As C2 satis�es these equations, we have that ? ′ = C2. Now, since
the outer rectangle is a pullback there exists a unique ? : � → � such that 65 ? = 6C2 and 9? = C1.

Then 65 ? = 6C2 and : 5 ? = ℎ9? = ℎC1, i.e. 5 ? satis�es the equations for ? ′, and hence 5 ? = C2 by
uniqueness. It follows that the left-hand square is a pullback.

Exercise 5.1.36. (a) Note that (�
?� ◦ℎ−−−→ � (� ))� ∈I is a cone on �. Indeed, if �

D−→ � in I then
�D ◦ ?� ◦ℎ = ? � ◦ℎ since ! is a cone. By the universal property of the limit, there is precisely one
map ℎ̃ : � → ! such that ?� ◦ ℎ̃ = ?� ◦ ℎ for all � ∈ I. Since both ℎ and ℎ′ satisfy this condition, it
follows that ℎ = ℎ′.

(b) A diagram � : I → Set is a pair of sets -,. . Its limit is the product - × . together with
the projections pr- , pr. . A map 1 → - × . is an element (G,~) ∈ - × . . Thus (a) in this case
means that given (G,~), (G ′, ~ ′) ∈ - × ., if G = G ′ and ~ = ~ ′ then (G,~) = (G ′, ~ ′) .

Exercise 5.1.37. Let ! denote the given set

{(G� )� ∈I | G� ∈ � (� ) for all � ∈ I and (�D) (G� ) = G � for all �
D−→ � in I},

and ? � : ! → � (� ) be given by ? � ((G� )� ∈I) = G � for all � ∈ I. First note that (!
?�−→ � (� ))� ∈I is a

cone on � by de�nition. Now let (�
5�−→ � (� ))� ∈I be any cone on �. We need to show that there

is a unique map ℎ : � → ! such that 5� = ? � ◦ ℎ for all � ∈ I. Suppose such ℎ exists. Given 0 ∈ �
write ℎ(0) = (ℎ� (0))� ∈I. Then, for all � ∈ I, 5� (0) = ? � ◦ ℎ(0) = ℎ � (0). This shows that if ℎ exists
then it is unique. Moreover, de�ne ℎ : � → ! by ℎ(0) = (5� (0))� ∈I. Note that 5� (0) ∈ � (� ) for
each � , and if �

D−→ � is an arrow in I we have (�D) (5� (0)) = 5� (0) since ℎ is a cone on �. Thus ℎ
well-de�ned, and moreover satis�es 5� = ? � ◦ ℎ for all � ∈ I. It follows that (!

?�−→ � (� ))� ∈I is a
limit cone.

Exercise 5.1.38. (a) First note that (!
?�−→ � (� ))� ∈I is a cone on �. Indeed, if �

D−→ � is an arrow in
I we have ? � = pr� ◦? = �D ◦ pr� ◦? = �D ◦ ?� as (!, ?) is the equaliser of B and C . Now suppose

that (�
5�−→ � (� ))� ∈I is an arbitrary cone on �. We shall �nd a unique map ℎ : � → ! such that

5� = ?� ◦ ℎ for all � ∈ I. The family (5� )� ∈I induces a unique map 5 : � → ∏
� ∈I � (� ) such that

pr� ◦5 = 5� for all � ∈ I. Given �
D−→ � an arrow in I then pr� ◦5 = 5� = �D ◦ 5� = �D ◦ pr� ◦5 , so

5 is a map such that B ◦ 5 = C ◦ 5 . Since (!, ?) is an equaliser there is a unique map ℎ : � → !

such that ? ◦ ℎ = 5 , and this last equation is equivalent to satisfying ?� ◦ ℎ = 5� for all � ∈ I. We
conclude that (!

?�−→ � (� ))� ∈I is a limit cone on �.
(b) Existence of a terminal object is equivalent to existence of the empty product. Assuming

binary products, we have all �nite products by iteration. Hence the same proof above as in (a)
applies, assuming the category I to be �nite.

Exercise 5.1.39. (This is also Mac Lane’s Exercise III.4.10.)
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5.1 Limits: de�nition and examples

Denote by ∗ the terminal object of the category �. Given two objects -,. of �, consider the
pullback square

� -

. ∗ .

?-

?.

We claim that (�, ?- , ?. ) is the product of - and . . Indeed,� ∈ � and a pair of maps 5- : �→ -

and 5. : � → ., then the respective compositions with - → ∗ and . → ∗ are equal since ∗ is
terminal, so there is a unique map 5 : � → � such that ?- ◦ 5 = 5- and ?. ◦ 5 = 5. . That is,
(�, ?- , ?. ) satis�es the universal property of the product.

Now, given parallel arrows 5 , 6 : - → ., consider the following pullback diagram

� -

- - × . .

4

4′ (1- ,5 )

(1- ,6)

Then 4 = 4 ′ and 4 : � → - is the equaliser of 5 and 6 (see Exercise 5.1.34.)
Thus our category has all binary products, equalisers and a terminal object, so it has all �nite

limits by Proposition 5.1.26(b) (proved in Exercise 5.1.38(b)).

Exercise 5.1.40. (a) Monics in Set are precisely the injective maps (Example 5.1.30). Now< : - →
� and<′ : - ′ → � are isomorphic in Monic(�) if and only if there exists maps 5 : - → - ′ and
6 : - ′ → - such that 5 6 = 1. , 65 = 1- and <′5 = <, <6 = <′. These conditions are equi-
valent to existence of a bijection 5 : - → - ′ such that <′5 = <. If such 5 exists then < and
<′ have the same image since 5 is a bijection. Conversely, if < and <′ have the same image,
then they are bijections onto the subset<(- ) = <(- ′) of �. Then we can de�ne 5 : - → - ′ by
5 (G) =<−1(<(G)), and this is a bijection such that<′5 =<.

It follows that an isomorphism class of objects in Monic(�) corresponds precisely to a subset
of �, namely the image of any representative of the class.

(b) Monics in each of these categories are precisely the injective morphisms, and the same
proof as before applies, since the map 5 (G) =<−1(<(G)) de�ned at the end is indeed a morphism
in the respective category. Therefore subobjects of Grp, Ring and Vect: are subgroups, subrings
and subspaces respectively.

(c) As in the category of sets, a map 5 in Top is monic if and only if it is injective. Now, for
� ∈ Top and monics < : - → �, <′ : - ′ → � representing objects of Monic(�), a map from
< to<′ is a homeomorphism 5 : - → - ′ such that<′5 = <. In this case 5 : - → - ′ given by
5 (G) =<−1(<(G)) may not be continuous. Hence subobjects of� are not its subspaces. They are
subsets* ⊂ � equipped with a topology �ner than the subspace topology inherited from �.

Exercise 5.1.41. (This is also (the dual of) Mac Lane’s Exercise III.4.4.)
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5.2 Colimits: de�nition and example

First assume that 5 is monic and consider the diagram

- -

- . .

1-

1- 5

5

Suppose we are given arrows 6,6′ : / → -, such that 5 ◦ 6 = 5 ◦ 6′. We must show there is a
unique ℎ : / → - such that 1- ◦ ℎ = 6 and 1- ◦ ℎ = 6′. But 5 is monic, so ℎ = 6 = 6′ works.

Conversely, assume the diagram above is a pullback and let 6,6′ : / → - be such that 5 ◦6 =

5 ◦ 6′. Then there is a unique ℎ : / → - such that 1- ◦ ℎ = 6 and 1- ◦ ℎ = 6′, so 6 = 6′.

Exercise 5.1.42. (This is also Mac Lane’s Exercise III.4.5.)
Let6,6′ : . → - ′ be arrows such that<′◦6 =<′◦6′. Then<◦ 5 ′◦6 = 5 ◦<′◦6 = 5 ◦<′◦6′ =

<◦ 5 ′◦6′, so 5 ′◦6 = 5 ′◦6′ as< is monic. Since the square is a pullback and<◦ 5 ′◦6 = 5 ◦<′◦6,
there is a unique ℎ : . → - ′ such that<′ ◦ ℎ = <′ ◦ 6 and 5 ′ ◦ ℎ = 5 ′ ◦ 6. Both 6 and 6′ satisfy
the equations for ℎ, so 6 = 6′. It follows that<′ is monic.

5.2 Colimits: de�nition and example

Exercise 5.2.21. First assume that B = C . Consider -
1-−−→ - . Then B1- = C1- . Moreover, any map

/
4−→ - satis�es the condition B4 = C4, and given any such map then 4 is the unique map / → -

such that 1-4 = 4. Thus (-, 1- ) is the equaliser of B and C . Similarly, (., 1. ) is the coequaliser of
B and C .

Now suppose that the equaliser (/, 4) of B and C is an isomorphism. Then B4 = C4 and B =

B44−1 = C44−1 = C . Similarly, if the coequaliser of B and C is an isomorphism then B = C .

Exercise 5.2.22. (a) By Example 5.2.9, the coequaliser of 5 and 1- is the quotient -/∼ where ∼
is the equivalence relation generated by 5 (G) ∼ G for all G ∈ -, together with the quotient map
- → -/∼ . This is -/∼ where G ∼ ~ if there exists = ≥ 1 such that 5 = (G) = ~ or 5 = (~) = G .

(b) In Top, the coequaliser is again the quotient -/∼ as before, equipped with the quotient
topology. Let \ ∈ [0, 2c] be irrational and consider the map 5 : (1 → (1 given by 48C ↦→ 48 (C+\ ) .
Let : : - → . be the coequaliser of 5 and 1- , where . = -/∼ is the quotient of - by the relation
generated by 5 (G) ∼ G for all G ∈ - . Then . is uncountable, for each equivalence class [G] is
countable. Let * ⊂ . be a non-empty open set, and [G] ∈ * . Since :−1(* ) is open in -, there
exists Y > 0 such that �(G, Y) ∩ (1 ⊂ :−1(* ) . Then �(I, Y) ∩ (1 ⊂ :−1(* ) for all I ∈ - such that
[I] = [G] . Now, let I ∈ - be arbitrary. As \ is irrational, the set � = {5 = (G ′) | = ∈ Z} is dense
in -, so there exists F ∈ � ∩ �(G, Y) ∩ (1. Then [F] = [I] and F ∈ :−1(* ), so : (I) = : (F) ∈ * .
Thus :−1(* ) = -, so* = . . It follows that . has the indiscrete topology.

Exercise 5.2.23. (a) Let 8 denote the inclusion (N, +, 0) ↩−→ (Z, +, 0) . Let (", +" , 0" ) be a monoid
and 5 , 6 : (Z, +, 0) → (", +" , 0" ) morphisms of monoids such that 5 8 = 68. Then 5 (=) = 6(=)
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5.2 Colimits: de�nition and example

for all = ≥ 0. Let = < 0. Then 0" = 5 (0) = 5 (= − =) = 5 (=) +" 5 (−=), and similarly 0" =

5 (−=) +" 5 (=), so 5 (=) is the inverse of 5 (−=) in ". Similarly 6(=) is the inverse of 6(−=) in ".
Since inverses are unique and 5 (−=) = 6(−=), we have 5 (=) = 6(=). Thus 5 (=) = 6(=) for all
= < 0 and therefore 5 = 6.

(b) (This is also Mac Lane’s Exercise I.5.4.) Let 8 denote the inclusion Z ↩−→ Q. Let ' be a
ring and i,k : Q → ' be morphisms such that i8 = k8. Then i = k on Z. If @ ∈ Z \ {0} then
1 = i (1) = i

(
@

@

)
= i (@)i

(
1
@

)
, soi

(
1
@

)
= i (@)−1 = k (@)−1 = k

(
1
@

)
. Thusi

(
?

@

)
= i (?)i (@)−1 =

k (?)k (@)−1 = k
(
?

@

)
for all ?

@
∈ Q, so i = k . It follows that 8 is epic (and not surjective!).

Exercise 5.2.24. (a) Epics in Set are precisely the surjective maps (Example 5.2.18). In general,
a surjective function 5 : - → . induces an equivalence relation on - given by G ∼ G ′ if 5 (G) =
5 (G ′). Given epics 4 : � → -, 4 ′ : � → - ′, an isomorphism from 4 to 4 ′ is a map 5 : - → - ′

such that 5 4 = 4 ′ and there is a map 6 : - ′ → - with 64 ′ = 4 and 65 = 1, 5 6 = 1. This amounts
to a bijection 5 : - → - ′ such that 5 4 = 4 ′. So assume there is such bijection. Let 0, 0′ ∈ �.
Then 4 (0) = 4 (0′) =⇒ 5 4 (0) = 5 4 (0′) =⇒ 4 ′(0) = 4 ′(0′), and similarly (using 5 −1) 4 ′(0) =
4 ′(0′) =⇒ 4 (0) = 4 (0′). Thus the equivalence relations induced on � by 4 and 4 ′ coincide.
Conversely, assume that 4 (0) = 4 (0′) ⇐⇒ 4 ′(0) = 4 ′(0′) for all 0, 0′ ∈ �. De�ne 5 : - → - ′ by
5 (G) = 4 ′(0) where 0 is any preimage of G under 4. This is well-de�ned by assumption, and is a
bijection such that 5 4 = 4 ′. Thus 4 and 4 ′ are isomorphic in Epic(�) .

We deduce that the quotient objects of� are in canonical one-to-one correspondence with the
equivalence relations of �, namely a quotient object represented by some 4 : �→ - corresponds
to the equivalence relation on � such that 0 ∼ 0′ if and only if 4 (0) = 4 (0′).

(b) (The proof that epic =⇒ surjective on Grp can be found in Mac Lane’s Exercise I.5.5.)
An epimorphism�

i
−→ � induces an isomorphism ĩ : �/keri → �. Two epimorphisms�

i
−→ �,

�
k
−→ � ′ are isomorphic in Epic(�) if and only if there is an isomorphism \ : � → � ′ such that

\i = k . If there is such \ then keri = kerk .Conversely, if keri = kerk, let \ = (k̃ )−1ĩ : � → � ′.
Then \ is an isomorphism, and is given byi (6) ↦→ k (6) for6 ∈ �, so \i = k . Thusi,k ∈ Epic(�)
are isomorphic if and only if keri = kerk . Hence the correspondence i ↔ keri is one-to-one
between quotient objects of� and normal subgroups of�. (Any kernel is normal, and any normal
subgroup # of � is the kernel of � → �/# .)

Exercise 5.2.25. (a) Let< : �→ � be a morphism.
First suppose that < is split monic and let 4 : � → � be such that 4< = 1� . Consider the

maps <4, 1� : � → �. Then <4< = <1� = 1�<. Moreover, if ℎ : � → � is a map such that
<4ℎ = 1�ℎ = ℎ, then 4ℎ : � → � satis�es <(4ℎ) = ℎ, and if ℎ′ : � → � satis�es <ℎ′ = ℎ then
ℎ′ = 4<ℎ′ = 4ℎ. Thus< is the equaliser of the maps<4 : � → � and 1� : � → �, so it is regular
monic.

Now assume that< is regular monic, and let� be an object and 5 , 6 : � → � maps of which<
is an equaliser. Suppose that ℎ,ℎ′ : - → � are maps such that<ℎ =<ℎ′. Since< is an equaliser,
given any map : : - → � such that 5 : = 6: then there exists a unique ℎ̃ : - → � such that
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5.2 Colimits: de�nition and example

<ℎ̃ = :. Taking : = <ℎ = <ℎ′ then both ℎ and ℎ′ satisfy the condition for ℎ̃, so ℎ = ℎ′ by
uniqueness. Thus< is monic.

(b) Let i : � → � be monic in Ab, that is, i is a monomorphism. Consider � = �/imi, and
the maps c : � → �, 0 : � → �, where c is the projection. Then ci = 0i = 0, and is universal
as such. Indeed, if k : - → � is a homomorphism such that ck = 0, then k (- ) ⊂ i (�), and we
can de�ne a map \ : - → � by \ (G) = 0 if k (G) = i (0). This is well-de�ned since i is injective.
Moreover, it is the unique map with the property i\ = k . Thus i : � → � is the equaliser of
c : � → imi and 0 : � → �. It follows that all monics in Ab are regular monics.

To show that not all monics in Ab are split monics consider i : Z → Z given by i (1) = 2.
Then i is a monomorphism, but there is no k : Z → Z such that ki = 1Z. Indeed, any such k
would send 2 to 1, which is not possible.

(c) We will show that the regular monics inTop are precisely the embeddings, i.e. the injective
maps which are homeomorphisms onto their image. Let ℎ : - → . be regular monic in Top. In
particular it is monic, i.e. it is injective. Let ℎ : - → ℎ(- ) be obtained from ℎ by restricting
its codomain. Let 5 , 6 : . → / be maps of which ℎ is an equaliser. Consider the inclusion map
8 : ℎ(- ) ↩−→ . . Then 5 8 = 68, so there is a unique : : ℎ(- ) → - such that 8 = ℎ: = 8ℎ:. As 8 is
monic, it follows that ℎ: = 1ℎ (- ) . Thus, the inverse function : : ℎ(- ) → - of ℎ is continuous, so
ℎ is an embedding. Conversely, assume that ℎ : - → . is an embedding. Consider the pushout

- .

. / .

ℎ

ℎ 6

5

By the construction of pushouts in Top, / = . q ./∼ where an element ℎ(G) ∈ . in the �rst
summand is identi�ed with the same element ℎ(G) ∈ . in the second summand, and 5 , 6 are the
inclusions. The equaliser of 5 , 6 is then the inclusion . ′→ . of the subspace . ′ of . where both
5 and 6 are equal, i.e. ℎ(- ) −→ . . Since ℎ is an embedding this is the same as ℎ : - → . .

Exercise 5.2.26. A regular epic is thus a map which is a coequaliser, and a split epic is a map
with a right inverse. As in Exercise 5.2.25(a), split epic =⇒ regular epic =⇒ epic.

(a) Let 5 : � → � be map in a category. If 5 is an isomorphism, then the equations 5 −1 5 = 1
and 5 5 −1 = 1 imply that 5 is split epic and split monic, in particular monic and regular epic.
Conversely, assume that 5 is both monic and regular epic. Let 6, ℎ : � → � be maps of which 5 is
a coequaliser. Then 5 6 = 5 ℎ, so 6 = ℎ as 5 is monic. By Exercise 5.2.21, 5 is an isomorphism

(b) It su�ces to prove that epic =⇒ split epic in Set. Assume 5 : �→ � is epic in Set, i.e. 5
is surjective. By the axiom of choice it follows that 5 has a section, that is, there exists 6 : � → �

such that 5 6 = 1� . Thus 5 is split epic.
(c) In Top the epimorphisms are precisely the surjective (continuous) maps. Let - ∈ Top and

suppose that - ′ ∈ Top is another space with the same underlying set as -, but whose topology
is strictly �ner. Then the identity - ′ → - is a map in Top, and is epic, but is is not split since
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5.2 Colimits: de�nition and example

the identity - → - ′ is not continuous. It follows from (b) that Top does not satisfy the axiom of
choice.

In Grp the epics are precisely the surjections (c.f. Exercise 5.2.24 and Mac Lane’s Exercise
I.5.5.) Consider the quotient map c : Z ∗ Z → Z ⊕ Z of the free group Z ∗ Z on two generators
onto its abelianisation Z ⊕ Z. Then c is epic, but is not split. Indeed, no map Z ⊕ Z→ Z ∗ Z is as
since Z ⊕ Z is countable and Z ∗ Z is uncountable. It follows from (b) that Grp does not satisfy
the axiom of choice.

Exercise 5.2.27. First we analyse stability under pullbacks. By Exercise 5.1.42, monics are stable
under pullbacks. Now consider the category generated by the graph

• •

• • •

0

1 2

4

5

6

with the relations 5 4 = 64, 41 = 20 and 5 41 = 641. Then 4 is the equaliser of 5 and 6, the square is
a pullback, but 0 is not an equaliser, as can be check. It follows that regular monics are not stable
under pullbacks. Finally, note that split monics are not stable under pullbacks either: let - and .
be disjoint empty subsets of a set / . Then

∅ -

. /

is a pullback on Set, where - ↩−→ / is split monic but ∅ ↩−→ . is not.
Next, epics are not stable under pullbacks. Consider the category Haus of Hausdor� topolo-

gical spaces. If � ⊂ � is an inclusion of a dense subspace in Haus, it is epic, for if two maps into
a Hausdor� space agree on a dense subset, they are equal. It follows that in the pullback diagram

∅ Q

R \ Q R

in Haus the map Q←−↪ R is epic, but ∅ → R\Q is clearly not. Now, an example similar to the one
of regular monics above (where now 5 and 6 are maps into the left-bottom corner) shows that
regular epics are not stable under pullbacks either.

Finally, note that split epics are stable under pullbacks. Indeed, let

, .

- /

5 ′

6′ 6

5
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5.3 Interactions between functors and limits

be a pullback square in some category, where 5 is split epic. Then there exists B : / → - a right
inverse of 5 . Then the maps 1. : . → . and B6 : . → - satisfy 61. = 5 B6, so by the universal
property of the pullback there is a map B ′ : . →, such that 5 ′B ′ = 1. . Thus 5 ′ is split epic.

Now we analyse stability under composition. If 5 and 6 are monic and ℎ1, ℎ2 are maps such
that 5 6ℎ1 = 5 6ℎ2, we have 6ℎ1 = 6ℎ2 since 5 is monic, and in turn ℎ1 = ℎ2 since 6 is monic. Thus
monics are stable under composition. Dually, epics are stable under composition too.

Finally, regular monics are not stable under compositions. Consider the full subcategory
FHaus of Haus spanned by the functionally Hausdor� spaces (or completely Hausdor� spaces):
those spaces - such that for any G,~ ∈ -, there exists a continuous map 5 : [0, 1] → - such that
5 (0) = G and 5 (1) = ~. Let� = {1/= | = ∈ Z+}, � = �∪{0}, and� the subspace whose underlying
set isR and having basis �∪{R\�} for its topology, where � is a basis for the standard topology
on R. Then it can be prove that the inclusions� ⊂ � and � ⊂ � are regular monics in FHaus, but
their composition is not. Details would take us too far into analysis and hence are omitted. Since
regular epics in a category � are precisely regular monics in �

op, it follows that regular epics are
not stable under composition either.

5.3 Interactions between functors and limits

Exercise 5.3.8. Let � : � ×� be given on objects by � (-,. ) = - × . (for our previously made
choice). For a morphism (5 , 6) : (-,. ) → (- ′, . ′) in �×� de�ne � (5 , 6) : - ×. → - ′×. ′ to be
the unique map- ×. → - ′×. ′ induced by the maps 5 ◦?-,.1 : - ×. → - ′, 6◦?-,.2 : - ×. → . ′

using the universal property of the product - ′ ×. ′. Then clearly � (1- , 1. ) = 1-,. . Consider two
maps (5 , 6) : (-,. ) → (- ′, . ′) and (ℎ, :) : (- ′, . ′) → (- ′′, . ′′) in � ×�. Then � (ℎ5 , 6:) is the
unique map - ×. → - ′′×. ′′ such that ?-

′′,. ′′

1 ◦ � (ℎ5 , :6) = ℎ ◦ 5 ◦?-,.1 and ?-
′′,. ′′

2 ◦ � (ℎ5 , :6) =
: ◦ 6 ◦ ?-,.2 . Since ?-

′′,. ′′

1 ◦ � (ℎ, :) = ℎ ◦ ?-
′,. ′

1 we have

?
- ′′,. ′′

1 ◦ � (ℎ, :) ◦ � (5 , 6) = ℎ ◦ ?-
′,. ′

1 ◦ � (5 , 6) = ℎ ◦ 5 ◦ ?-,.1 .

Similarly ?-
′′,. ′′

2 ◦ � (ℎ, :) ◦ � (5 , 6) = : ◦ 6 ◦ ?-,.1 . By uniqueness it follows that � (ℎ5 , 6:) =

� (ℎ, :) ◦ � (5 , 6) . Thus � is indeed a functor.

Exercise 5.3.9. Given �,-,. ∈ � de�ne

i�,-,. : �(�,- × . ) → �(�,- ) ×�(�,. )
5 ↦→ (pr- ◦5 , pr. ◦5 ) .

Then i�,-,. is bijective with inverse given by (6, ℎ) ↦→ 5 , where 5 is the unique map �→ - ×.
induced by the universal property of the product. Given 6 : �′ → �, ℎ : - → - ′ and : : . → . ′

consider the diagram

�(�,- × . ) �(�,- ) ×�(�,. )

�(�′, - ′ × . ′) �(�′, - ′) ×�(�′, - ′) .

i�,-,.

6∗ (ℎ×:)∗ (6∗ℎ∗,6∗:∗)

i�′,- ′,. ′
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5.3 Interactions between functors and limits

For any 5 : �→ - × . we have

(6∗ℎ∗, 6∗:∗) ◦ i�,-,. (5 ) = (ℎ ◦ pr- ◦5 ◦ 6, : ◦ pr. ◦5 ◦ 6)

and
i�′,- ′,. ′ ◦ 6∗(ℎ × :)∗(5 ) = (pr- ′ ◦(ℎ × :) ◦ 5 ◦ 6, pr. ′ ◦(ℎ × :) ◦ 5 ◦ 6) .

Thus, proving naturality of i reduces to proving commutativity of the diagrams

- × . - ′ × . ′

- - ′ ,

pr-

ℎ×:

pr- ′

ℎ

- × . - ′ × . ′

. . ′ .

pr.

ℎ×:

pr. ′

:

But ℎ × : is by de�nition the unique map such that the above diagrams commute. It follows that
i�,-,. is an isomorphism �(�,- × . ) � �(�,- ) ×�(�,. ) natural in �,-,. ∈ �.

Exercise 5.3.10. Let � : � → ℬ create limits. Let � : I → � be a diagram. Then, for any limit
cone (�

@�−→ �� (� ))� ∈I on ��, there is a unique cone (�
?�−→ � (� ))� ∈I on � such that � (�) = � and

� (?� ) = @� for all � ∈ I, and the cone (�
?�−→ � (� ))� ∈I is a limit cone. In particular, if (�

?�−→ � (� ))� ∈I
is a cone on � such that (� (�)

� (?� )−−−−→ �� (� ))� ∈I is a limit cone on ��, then (�
?�−→ � (� ))� ∈I is

the unique cone given by the property of creating limits, and hence it is a limit cone. Therefore �
re�ects limits.

Exercise 5.3.11. (a) If � : I→ Set is a diagram then

! = lim→I� � {(G� )� ∈I | G� ∈ � (� ) for all � ∈ I and (�D) (G� ) = G � for all �
D−→ � in I}

is the limit cone on � with projections !
? �−−→ � (� ) given by ? � ((G� )� ∈I) = G � for all � ∈ I. This

formula was given in Example 5.1.22 and proven in Exercise 5.1.37.
Let � : I → Grp be a diagram in Grp and (�

@�−→ *� (� ))� ∈I be a limit cone on *� in Set.
Then

�′ = {(G� )� ∈I | G� ∈ *� (� ) for all � ∈ I and (*�D) (G� ) = G � for all �
D−→ � in I} ∈ Set

is also a limit cone on *� with projections �′
@′
�−−→ *� (� ) given by @′

�
((G� )� ∈I) = G � for all � ∈ I,

so there is a unique isomorphism ℎ : � → �′ such that @′
�
ℎ = @ � for all � ∈ I.

Endow the set �′ with a canonical group structure as a subgroup of
∏
8∈I � (� ) ∈ Grp, call

this group �′, and let ? ′
�
: �′ → � (� ), for � ∈ I, denote the projection homomorphism whose

underlying set function is @′
�
. Now, the bijection ℎ : � → �′ endows � with a group structure, and

call this group �, so that ℎ : � → �′ is an isomorphism of groups. For � ∈ I, let ? � : � → � (� )
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be the projection, so that its underlying set function is @ � . Then * (�) = � and * (? ′
�
) = ?� for all

� ∈ I, and clearly (�, (? ′
�
)� ∈I) is unique as such.

It remains to show that (�
?′
�−→ � (� ))� ∈I is a limit cone on �. So let (�

5�−→ � (� ))� ∈I be a cone

on �. Then (* (�)
* (5� )−−−−→ *� (� ))� ∈I is a cone on*�, so there is a unique map 6 : * (�) → � such

that ?�6 = * (5� ) for all � ∈ I. What we must prove is that 6 is a group homomorphism as a map
� → �. But composing with ℎ gives a map ℎ6 : * (�) → �′ which is the unique one given by
the universal property. This ℎ6 is a group homomorphism when viewed as a map � → �′. Since
we de�ned the group structure on � declaring ℎ to be an isomorphism of groups, it follows that
6 : � → � is indeed a homomorphism, and is of course the unique such that ? ′

�
6 = 5� for all � ∈ I.

Thus (�
?′
�−→ � (� ))� ∈I is a limit cone on �. We conclude that* : Grp→ Set creates limits.

(b) The above proof works when Grp is replaced by Ab, Ring or Vect: .

Exercise 5.3.12. Let � : I→ � be a diagram. Then there exists a limit cone (�
@�−→ �� (� ))� ∈I on

��. Since � creates limits there is a unique cone (�
?�−→ � (� ))� ∈I such that � (�) = �, � (?� ) = @�

for all � ∈ I, and (�
?�−→ � (� ))� ∈I is a limit cone on �. It follows � has limits of shape I.

Now suppose (�
?�−→ � (� ))� ∈I is a limit cone on �. There exists a limit cone (�

@�−→ �� (� ))� ∈I
on ��, and a unique cone (�′

?′
�−→ � (� ))� ∈I such that � (�′) = �, � (? ′

�
) = @� for all � ∈ I, and (�′

?′
�−→

� (� ))� ∈I is a limit cone on �. Thus there is a unique isomorphism ℎ : �′ → � such that ?�ℎ = ? ′
�

for all � ∈ I. Then � (ℎ) : � → � (�) is an isomorphism. Consider the cone (� (�)
� (?� )−−−−→ �� (� ))� ∈I.

Given any cone (�
5�−→ �� (� ))� ∈I, there is a unique 5 : � → � such that @� 5 = 5� for all � ∈ I. Then

� (ℎ) 5 : � → � (�) satis�es � (?� )� (ℎ) 5 = � (? ′
�
) 5 = 5� for all � ∈ I. Moreover, if ℎ′ : � → � (�)

satis�es � (?� )ℎ′ = 5� for each � then � (ℎ)−1ℎ′ satis�es @�� (ℎ)−1ℎ′ = � (? ′
�
ℎ−1)ℎ′ = � (?� )ℎ′ = 5� ,

so we must have � (ℎ)−1ℎ′ = 5 by uniqueness of 5 , i.e. ℎ′ = � (ℎ) 5 is unique. It follows that

(� (�)
� (?� )−−−−→ �� (� ))� ∈I is a limit cone on ��. We conclude that � preserves limits.

Exercise 5.3.13. (a) Let ( ∈ Set be arbitrary and let 5 : � → �′ be epic in ℬ. Then� (5 ) : � (�) →
� (�′) is epic in Set. By Exercise 5.2.26(b), � (5 ) has a right inverse, say ℎ : � (�′) → � (�) . Then
the induced map� (5 )∗ : Set((,� (�)) → Set((,� (�′)) has a right inverse, namelyℎ∗ : Set((,� (�′)) →
Set((,� (�)) . In particular, � (5 )∗ is surjective.

Since � a � there is an isomorphism i(,� : ℬ(� ((), �) → �((,� (�)) natural in ( ∈ Set and
� (�), so that we have a commutative square

ℬ(� ((), �) Set((,� (�))

ℬ(� ((), �′) Set((,� (�′)) .

5∗

i(,�

� (5 )∗

i(,�′

Since i(,�, i(,�′ are isomorphisms and� (5 )∗ is surjective, it follows that ℬ(� ((), 5 ) is surjective,
i.e. it is epic. Therefore � (() is projective. We conclude that � (() is projective for all sets (.
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(b) Recall that a map in Ab is epic if and only if it is surjective (Example 5.2.19). Consider
Z/2Z ∈ Ab. Then the unique non-trivial map 5 : Z→ Z/2Z is epic in Ab, but 5∗ : Ab(Z/2,Z) →
Ab(Z/2Z,Z/2Z) is not epic, for Ab(Z/2Z,Z) = 0 and Ab(Z/2Z,Z/2Z) � Z/2Z. Thus Z/2Z is not
projective in Ab.

(c) Let : be a vector space and* ∈ Vect: arbitrary. Let 5 op :, → + be epic in Vectop
:
, that is,

5 : + →, is monic (i.e. injective) in Vect: .We shall prove that 5 ∗ : Vect: (,,* ) → Vect: (+ ,* )
is surjective. Given a linear map ! : + → * we need !̃ :, → * such that the diagram

+

, *

5
!

!̃

commutes. Taking a basis {E8}8∈� for + then {5 (E8)}8∈� is linear independent in,, so extends to
a basis for, . Then we may de�ne !̃ by sending each 5 (E8) to !(E8) and all other basis elements
to 0. Thus* is injective. Since* was arbitrary, it follows that every :-vector space is injective.

Now considerZ ∈ Ab and 5 : Z→ Q the inclusion map, which is monic. Then 5 ∗ : Ab(Q,Z) →
Ab(Z,Z) is not epic, for Ab(Q,Z) = 0 and Ab(Z,Z) = Z. It follows that Z is not injective in Ab.

Please send comments, suggestions and corrections by e-mail, or at website.
https://positron0802.wordpress.com
positron0802@mail.com
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