Solutions to exercises from Chapter 2 of
Lawrence C. Evans’ book ‘Partial Differential
Equations’

Stimeyye Yilmaz
Bergische Universitat Wuppertal
Wuppertal, Germany, 42119

February 21, 2016

1

Write down an explicit formula for a function v solving the initial
value problem

u+b-Du+cu=0in R" x (0, 00)
u=gonR"x {t=0}

Solution. We use the method of characteristics; consider a solution to the
PDE along the direction of the vector (b,1): z(s) = u(x +bs,t+s). We have
2(s) = wy(x+bs, t+)+b- Du(x+bs,t+s) = —cu(x+bs,t+s) = —cz(s), thus
the PDE reduces to an ODE. The characteristic curves can be parametrized
by (xo+bs, to+s); and all the characteristic curves are parallel to each other.
Given any (g, tp) in R™ x (0,00), we have u(xg,ty) = u(xg — btg,0)e % =
g(xg — btg)e " and this is an explicit formula for the solutions to the PDE.
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Prove that Laplace’s equation Au = 0 is rotation invariant; that is,
if O is an orthogonal n X n matrix and we define

v(z) :=u(Ox) (zeR"),
then Av =0.
Proof. By chain rule we have
D,.v(x) = X}_ Dy, u(Ox)os,

then
D:Eﬂj v(x) = E?:lzzlemkmzU(Ox)aikoﬂ'

Since O is orthogonal, OOT = I, that is,

[ itk =1
OROTZN 0 itk A1

Thus
Av =% 50 3 Dy, 0, u(Ox) 04,05 = Au = 0.
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Modify the proof of the mean value formulas to show for n > 3 that

o=f se Ll
( ) aB(0,r) n(n — 2)a(n) B(O,r)( |:L‘|"_2 7”"_2)

provided

—Au = f in B°(0,7r)
u=gon dB(0,r)

Proof. Define

o(s) = ]gB(m) u(y)dS(y) = ]iB(m) ulz + 52)d5(2)



we shall have

'(s) = w(x + sz) - zdS(z) = y—=
)=, Durrs) s = Deasw)

ou s ][ 9 s
— —dS VuydyZ—][ Au(y)dy
]£B ;Es ay ( ) n B(JT,S) ( ) n B(x,s) ( )

We have ¢(r) —

/ ¢ I/6 2][ dy ds

:/: (%][ / ( / (y)dy>ds

_ n(2—1l)oz(n)((sn1_2 /B LG )dy)e_ / (8n1_2 /63(075) F(9)dy)ds)
~nln —12)oz(n) (B /B(W) Aoy + = /B 0L

+ / <5n12 /a o f(y)dy)d8>

Now notice that ]

/ fy)dy < C
€ B(0,¢)

o1
[ G=] dyds—// -
o S dB(0,s) dB(0,s)

= dx
2
/BO,T |x|n
As € — 0 we have

1 / | f(z)
fydy+/ / fydyds—>/ —dux
"2 /B0, @) e (5"’2 8B(0,5) (1)) By "2

and ¢(e) — u(0). We have thus demonstrated

and
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0= S YY) s — ——) fdu.
#0) ]iB(o,r)g +n(n—2)a(n) /B(O’T)(|:L=|n—2 rn_Q)f x
4

Give a direct proof that if u € C?(U) N CW) is harmonic within a
bounded open set U, then maxg u = maxgy u.

Proof. Define u. := u + €|z|?. Suppose u, is achieveing maximum in U
at an interior point o, then D(u.(xo)) =0 and H = D;;(u.(xo)) is negative
definite. Yet, A(u.) = 2¢ > 0, a contradiction, as the Laplacian is the trace
of the Hessian. Letting ¢ — 0, we can conclude that u cannot attain an
interior maximum.

5

We say v € C?(U) is subharmonic if

—Av <0in U.

(a) Prove for subharmonic

v(z) < ][ vdy for all B(z,r) C U.
B(z,r)

(b) Prove that therefore maxy v = maxyy v.

(c) Let ¢ : R — R be smooth and convex. Assume u is harmonic
and v := ¢(u). Prove v is subharmonic.

(d) Prove v := |Du|? is subharmonic, whenever u is harmonic.

Solution. (a) We set

f(r):= ]gB(m) u(y)dS(y) = ]([93(071) u(z +rz)dS(2).



Taking derivative we have
f(r)= ][ Du(z +rz) - 2dS(z)
8B(0,1)

and consequently using Green’s formula we have

Yy
— D .
7 ]iB(O’D u(y)
ou
.

= - ][ Au(y)dy >0
" JoB(z,r)

This means that f(r) is non-decreasing, therefore given r > 0

(2)

u(z) = limf(t) = lim u(y)dS(y)

< ]([BB(x,r) u(y)dS(y)

%) < / T( / M) ds

u() < ][ L

(b) Assume the subharmonic function v attains maximum at xo € U°, for
any ball B(xo,r) C Uy we have by ( ) v(zg) < fB (z0.r) v(y)dy. Yet, v(xg) >

v(y) for any y € B(xo, ), thus v(zo) fB(Ior y)dy, and v(zg) = v(y) for

any y € B(zg,r). We can choose r so that OU N 0B(zg,r) = {x1}. We have

thus shown that maxv = maxuw.
xelU zedU

(¢) As ¢ is convex and smooth, ¢ > 0; and Au = 0. Hence

And this implies

—Ad(u Zcb (t1a,)> + ¢+ tpz,) <0,

we can conclude that ¢(u) is subharmomc.
(d) If w is harmonic then Au = 0, thus Au,, = (Au),, = 0, hence Du is
harmonic. Since |Dul? is convex with respect to Du, the result follows from

(c).
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Let U be a bounded open subset of R". Prove that there exists a
constant C, depending only on U, such that

max |u| < C(max |g| + max | f])
U ou U

where u is a smooth solution of

—Au=finU
u =g on OU.

(Hint: —A(u+ %/\) <0, for A\ := maxg |f].)

Solution. We consider the function v(z) = wu(z) + %)\, where \ =
maxg | f|. Indeed v is a subharmonic function since

[

—Av:—A(u+§—nA) < (f = max|f) <0

The weak maximum principle holds for subharmonic functions-

max v < maxv = maxuv

U U ou
(wt ) < e 28— + Cmax|f]
= max |\u —_ maxu max — max maX
au 2n ouU ou  2n ou g

where C is some constant depending on U.
Replacing u by —u, we can conclude that there exists some constant C'
depending on U, such that

< .
mgx|u| < C’(I%%x\g\ +mgx\f])

7

Use Poisson’s formula for the ball to prove

r+ |x|

r—|z]
(r =+ lz))m

n—2



whenever v is positive and harmonic in B°(0,r). This is an explicit
form of Harnack’s inequality.

Solution. We recall Poisson’s formula for a ball

u(z) = ﬂ/{9 9) dS(y)

nw(n)r Jopom 12—yl

=) I asg),

B 1T —y["

therefore,
n=2(.2 _ .2 u(0) w(z) < r2(r2 — |22 u(0)
R o) Sule) <0 = et
n—2 T — |IL‘| u ulx n—o T |J]| u
e

Prove Theorem 15 in section 2.2.4. (Hint: Since u = 1 solves (44)
for ¢ = 1, the theory automatically implies faB(o 0 K(z,y)dS(y) =1
for each z € B°(0,1).)

Let’s recall theorem 15 in section 2.2.4. (Poisson’s formula for a ball)

Assume g € C(0B(0,r)) and define u by

u(z) = ﬂ/@ Ly)dg_

na(n)r Jogon 12—yl

Then

(i) w € C=(B°(0, 7))

(ii) Au =0 in B(0,r), and

(iii) limxo_,xou(a;) = g(2°) for each point 2° € 9B(0,r).

z€BO(0,r)

Proof. (1) For each fixed z, the mapping y — G(x,y) is harmonic, except
for z = y. As G(z,y) = G(y,x), x — G(x,y) is harmonic, except for x = y.
Thus x — %(m,y) = K(z,y) for z,y € B°(0,r).

n



(2) Note that we have

2 2
— 1
1= 2 / ——dS
na(n)r Jogon 12—yl

for x € B%(0,r). And as g is bounded, u is likewise bounded. Since x
K (z,y) is smooth, for x # y, we can verify that u € C*(B%(0,r)) with

Aulz) = / o K gl =0

(3) Now fix 2° € 9B(0,7),e > 0. Choose d > 0 such that |g(y)—g(z°)| < e
if |y —2°| < 8,y € 9B(0,r). Then if |z — 2°| < §,2 € BY(0,r),

o) = 9@ < | [ Kl lae) - o)
aB(0,r)
<[ K@l g

/ K(e.)lgle) — o(a")dy| = 1+
&B(0,r)/B(20,5)

We have [ < €faB(0,r) K(z,y)dy = e. Furthermore if |z — 2°| < % and
ly — 2% > 4, we have |y — 2°| < |y — 2|+ & < |y — 2| + 1|y — 2°|. Hence

1
ly ==l > Sly - z°).

Thus

J < 2|\g|| 1 / K(z,y)dy
0B(0,r)/B(x9,6)
2n+1 2 2 oo
< 2007 — )l / ly — 2° "y — 0
na(n)r 8B(0,r)/B(20,5)

J’_
asx—>x0 .

Combining this two estimates we can conclude that lim,_,ou(z) = g(z°)
z€BY(0,r)

for each point z° € dB(0,r).
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Au =0 in R?

Let u be the solution of
u = g on ORY

given by Poisson’s formula

for the half-space. Assume g is bounded and g(z) = |z| for z €

OR%, |z| < 1. Show Du is not bounded near z = 0. (Hint: Estimate
u(Aepn)—u(0) )
s

Solution. We recall Poisson’s formula for the half-space

u(z) = —2n /8 9W) g5y,

na(n) Jows o —yl"

u(Aen)—u(0) :

Notice that u(0) = g(0) = 0; following the hint we estimate 5

! u(dey) —u _ % v
)\< (Aen) (O>) na(n) /f9R1 ( 2 + ’y‘2>)”ds<y)'

We consider the integral

2en ’y‘ ds
na(n) /aRzmﬂyg} (V2 +1y»)" g

1
r
=n—-1anh—-1 / — " dr
Y G ey
1
1
:(n—l)a(n—l)/ —zdr
o r((A\r)2+1)"?
thus the integral diverges. Hence }\ir%w cannot be bounded, which
%

implies Du - €, is unbounded at 0. Therefore Du is unbounded at 0.

10

(Reflection principle)
(a) Let U* denote the open half-ball {z € R"||z| < 1,7, > 0}.
Assume v € C*(U*) is harmonic in UT, with v =0 on 90U Nz, = 0.

Set
o(z) = { e u(z) if z, >0

ey X1, — ) if z, <0

9



for € U = B%(0,1). Prove v € C*(U) and thus v is harmonic within
U.

(b) Now assume only that « € C?(U*) N C(U). Show that v is
harmonic within U. (Hint: Use Poisson’s formula for the ball.)

Solution. (a) Apparently v(z) is of class C? in each of Ut and U™ =
B(0,1)/U+. We can check that for i # n

lm Oy,q,v(T1, T, ..., Tp) = Opyu, V(T1, T, ..., 0)
xn—0"

= Op,z, (21, T2, ..., 0) = lim Oy, v(x1, To, ..., Ty);
Tn—071
while 0,,,,v(x1, Z2,...,0) = 0, and all other derivatives which do not involve
x,, vanishes. So we can assure that D?v exists and is continuous in U.
Since v(z) = w(z) in U and v(z) = —u(xq, 29, ..., —x,) if 2, < 0. And
we have already known that « is harmonic in U*t. Given any x with x,, < 0,
we have v(x) satisfies a local version of mean value theorem-

o(z) = ]gw o(y)dy

for small enough 6 > 0. The local mean value property is equivalent to
harmonicity. Finally, if z,, = 0, we also have

v(z) = ][ v(y)dy + ][ v(y)dy =0
0BT (z,9) OB~ (z,d)

since v(z) = —v(x1, 29, ..., —x,). We therefore can conclude that v(z) is a
harmonic function in U.

(b) Now assume that u is merely continuous on the boundary, we would
like to find a harmonic function w such that w = v on 9B(0,1) by the
Poisson’s formula for the ball-

S e i /a W gs(y),

na(n)r B(0,1) |z —y|"

we shall see that w(z) = 0 on x,, = 0. Therefore, w = u on U™ and by the
maximum principle we have v —w = 0 throughout U t.Sow =wvin U+ and
we can similarly show w = v in U~. Therefore, v is harmonic within U.

10
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(Kelvin transform for Laplace’s equation) The Kelvin transform
Ku = u of a function v : R" — R is

u(z) = w(@)|z"* = u(z/|z) |, (z # 0),

where T = z/|z|?. Show that if u is harmonic, then so is 4. (Hint:
First show that D,z(D,z)" = |z|*I. The mapping © — T is conformal,
meaning angle preserving.)

Proof. We denote ¢ (z) = z, and compute

0
8961-

(5”- 2.1’1'1']'

W@) = - W,

P

where 9;; is Kronecker’s delta symbol. We write D,z in coordinate free

expression:

T
TT
_9

D:cj: |l’|_2(] |Z’|2)’

thus D,z(D,z)" = |z|™*(I — 4|z|2z2” + 4|z|txaz2®) = |2| 741
We now calculate At; since careful computations shall show that

I o= =20z "z + 20,2;) + 8|z| Cala;.

TiTs

Thus, Ay =n(2 — n)#

Hence

A(u(z/|z)|z]>) = A(|z]* ) u(z) + 2DuDz(D]e>™)"
+|z[* " Du - Az + |z|* "Tr((Dz)" D*uDz).
Note that the first term is 0 for x # 0; and the last term is also 0 as
Tr((Dz)" D*uDz) = |z|~*Au = 0. While we have

T
2DuDi(D|>")" = 2Du(|z|"2(I - 2%))(2 —n)lz| "z
T
=2(n—2)|z|*"Du-x = —|z|* "Du - AZ.

Therefore the Kelvin transform preserves harmonic functions.

11
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Suppose u is smooth and solves u; — Au =0 in R™ x (0, c0).

(a) Show wuy(z,t) := u(\z, \*t) also solves the heat equation for
each \ e R.

(b) Use (a) to show v(z,t) := x- Du(z,t) + 2tu,(z,t) solves the heat
equation as well.

Proof. (a) We compute to show that the dilation of u also satisfies the
heat equation, since

0 0
aﬂA(I’,t) = EU(/\CC, AQt) = )\2ut
and
wﬂ)\(l',t) = Ug;x; -

We see that uy solves the heat equation.
(b) Differentiating uy with respect to A we shall have

(%\u,\ =z - Du(Az, \*t) + 2t uy( Az, \*t).
Now let A = 1 we then see that

0

L =1 Du(x,t) + 2tu(z,t) = v(x, t).

Since u is smooth, the mixed partials are equal under exchanges of orders of
differentiation. And u) solves the heat equation, that is

(UA)t - A(U)\) = 0.

We differentiate both sides with respect to A and conclude that v(z,t) is also
a solution to the heat equation.

13

Assume n =1 and u(z,t) = v(\/%)
(a) Show u; = u,, if and only if v" —|—§v/ = (0. Show that the general
solution is

12



v(z) = c/ e *ds + d.
0

(b) Differentiate u(zx,t) = v(%) with respect to x and select the
constant ¢ properly to obtain the fundamental solution ¢ for n = 1.
Explain why this procedure produces the fundamental solution.
(Hint: What is the initial condition for u?)

Solution. (a) Differentiate v we have u; = %xt‘gvl and ug, = %v". By the

heat equation we get v" + ﬁiv, = 0. Vice versa, if v satisfies the ODE then

u solves the heat equation. We solve the ODE, notice that (e%v(z)/)/ =0,
then the solution shall be

v(z) = c/ e *ds +d.
0

(b) The initial condition is the d—distribution. Differentiate u(x,t) = v(2)

22
with respect to z we have u,(z,t) = e~ 4, which should also be a solution
to the heat equation. Since the integral of d—function is 1,

oo 52
1= c/ e~ Tds = 2c\/T,

o

22
;VG mustlhave c= #, thus ®(z,t) = ﬁe_ﬂ is the fundamental solution
orn =1

14

Write down an explicit formula for a solution of
ur — Au~+cu = fin R" x (0, 00)
u=gonR" x {t=0}
where ¢ € R.
Solution. First we consider the homogeneous equation with initial bound-
ary data
vy — Av+cv =01in R" x (0,00)
v=~honR" x {t =0}

13



We take the Fourier transform with respect to the spacial variable and
the equation shall become an ODE

0y + |€]*0+ v = 0 in R™ x (0, 00)
=nhonR"x {t =0}

Solving the ODE- v = e_(|5|2_c)th/(g), then taking the inverse Fourier
transform we have

ect _ (@—y)?
?)(l’,t) = W . e 4t h(y)dy

By Duhamel’s principle we conclude that the solution to the non-homogeneous
problem is

(0= s [ S g
u Qj, - (47Tt)n/2 Rne g y) y

t e—c(t—s) ey
+/ W/ e 19 f(y,s)dyds.
O n

15

Given g : [0,00) — R, with ¢(0) = 0, derive the formula

_z2

u(zx,t) = eit=9g(s)ds

I

for a solution of the initial/boundary value problem

U — Uz = 0 in Ry x (0, 00)
u=0onR" x {t=0}
u=gon {r=0}x][0,00)

(Hint: Let v(x,t) := u(z,t) — g(t) and extend v to {z < 0} by odd
reflection.)

14



Solution. We follow the hint and extend our function v(z,t) := u(z,t) —
g(t) by odd extension to {x < 0} : v(z,t) := g(t) — u(—=x,t). Then our
problem becomes

UVt — Vg = — 0t in R—i— X (0,00)
Uy — Vge = g in R_ X (0, 00)
v=0onR x {t =0}

Apply the formula for the solution to the heat equation we have

v(z,t) = /OO O(x —y,t)0dy

// Oz —y,t — s)g (s)dyds
+/0 /Oocb(m—y,t—S)gl(s)dyds
_/Ot/oooq)(x—y,t—s)g'(s)dyder/Ot/:cp(x_y,t_s)g'(s)dyds
_/Ot/oo <I>(m—y,t—8)g/(s)dyds+2/t/0 O(a —y,t — s)g (s)dyds
/ d5+2// Oz —y,t — 5)g (s)dyds

We denote h(s f O(z —y,t — s)dy and z := \7”(:—)8) and compute-
h 0 e (4(t ys)
(5)_/ (47T(t—8 1/2 y \/—/
4(t s)
T 2
h'(s) = — e 1t=9
4/m(t — s)”

and continue

v(x,t) = —g(t) + Q[h(s)g(s)]g — 2/0 g(s)h (s)ds

_ 2

eit=s) g(s)ds.

T 1
t) +
\/47r/o (t —s)3/2

15



Therefore we have

a2

ei= g(s)ds.

u(z, t) =v(x,t) + g(t

x t 1
):m/o (e
16

Give a direct proof that if U is bounded and u € C?(Ur)NC(Ur) solves

the heat equation, then maxu = maxu. (Hint: Define u, := u — et for
Ur T

€ > 0, and show u, cannot attain its maximum over Uy at a point

in UT)

Proof. We denote Uy := U x (0,T] and I'y := U x {0} U (OU x [0, T)).

Claim: if Au — u; > 0 in Uy, then maxu = maxu.
UT 1_‘T

First we consider the case where Au — u; > 0. For any € € (0,7T) ex-
sists a point (zo,ty) € Ur—, such that u(zo,ty) = maxg, _u(z,t) since u is
continuous and Up_. is compact. If (xo,t0) € Ur—_e by derivative tests we
have Au(zg,to) < 0,ut(xo,t9) = 0 and Vu(zg,tp) = 0, a contradiction to
Au — uy > 0. Hence we must have (zg,ty) € I'r_.. Letting ¢ — 0 we have
maxu = maxu.

Ur I'r

Now we consider the case where Au — u; > 0. For € > 0, we define a

function u(z,t) := u(x,t) — €t, notice that
Aue = Au=uy > (ug — €) = (Ue)y.

So we have by our previous reasoning that maxu, = AU Letting ¢ — 0,
UT T

we have the desired conclusion.

17

We say v € C}(Ur) is a subsolution of the heat equation if
v — Av <0

in UT-

16



(a) Prove for a subsolution v that

2
(x,t) < // yl dyds
47.71 x’tr )

for all E(x,t;r) C Uy.

(b) Prove that therefore maxg, v = maxp, v.

(c) Let ¢ : R — R be smooth and convex. Assume u solves the
heat equation and v := ¢(u). Prove v is a subsolution.

(d) Prove v := |Dul? + u? is a subsolution, whenever u solves the
heat equation.

Proof. (a) Without loss of generality, we shift (z,t) to (0,0), and upon
mollifying if necessary, we assume that u is smooth. We write E(r) =
E(0,0,;7). We define the function

// dyds = // u(ry, r’s) dyds.
T 4

We shall use an identity: [, ‘y—dyds = 4. We calculate ¢ (r) :

2
¢I(T):// Z Uy, Y |y! —|—2rus|yT|dyds

1)11

\y!2 oru Y qud
,mﬂ o Zyw T 2rus T —dyds

=1

=A+B

Also, let us introduce a function ¢ := § log(—4ms) -+~ ‘y| +nlogr and since

O(y,—s) = r~" on JE(r) we have ¢ = 0 on JE(r). We utilize the formula
to write

1 // -
rrtl B(r) ; Y
1 n
=~ //E(T) dnug) + 4 Zl Usy, Yidyds;

17



due to integral by parts and the fact that ¢» = 0 on OF(r). Integrating by
parts with respect to s, we discover

1 n
B=— // —4nug) + 4 Z Uy, Yi¥sdyds
" E(r) i=1
1 - n !y|
= //;(T) —4nug + 4; uyyl( 55 )dyds
1 2n
= //E(T) —4nug) — - ; uy,yidyds — A

Consequently since u; — Au < 0,

¢(r)=A+B

—4 Aup — — yidyd
o Z 1 // 4”%1% Uy yzdyds =0

Hence ¢(r) is non-decreasing; and therefore

1 y2
= — “dyds >
y= //(T) u(y, 3) 2 yas =

. 1 !y\2
> = —
111%¢(t) u(0,0)(%m& tn//(t) > dyds) 4u(0,0).

2 2
_// |y|dd_// |y|dyd5
E(t) s? E(1) s?

(b) Suppose that there exists some point (g, ty) € Ur such that u(xg, tg) =

M := maxu. Then for sufficiently small r > 0 we have E(xg,ty;r) C Ur; and
Ur

we have

1 _ 2
M = u(zg, ty) < —// u(y,s)Mdyds <M
" E(zo,to;r) (to - 8)

18



since

2
// 70—y ——5dyds = 1.
aC() to; T to - S)

We shall have for all (y,s) € E(xzo,to;7), u(y, s) = u(zo, to)-
Draw any line segment L in Ur connecting (g, ty) with some other point
(Yo, $0) € Ur with sq < tg. Consider

ro := min{s < sglu(z,t) = M for all points (x,t) € L,s <t <ty}.

Since u is continuous, the minimum is attained. Assume ry > sg. Then
u(zo,70) = M for some point (zg,79) on LNUr and so u = M on E(zg,70;7)
for sufficiently small r. Since E(zg,7o;7) contains L N{rg —o <t < ry} for
some small ¢ > 0, we have a contradiction. Thus ry = so and hence u = M
on L.

(c) A direct computation shall show that

Oi(p(u)) — A(p(w) = ¢ (u; — Au) — ¢ | Dul*.

As ¢ is convex, we have ¢" > 0. Thus 0;(¢(u)) — A(¢p(u)) < 0.

(d) If u solves the heat equation, then w; and Du each solves the heat
equation; by part (c), (u;)* and |Du|? are two subsolutions. Since the heat
equation is linear, we simply apply superposition principle to conclude.

18

(Stoke’s rule) Assume u solves the initial value problem

u — Au =0 in R" x (0, 00)
u=0,u; =h on R" x {t =0}

Show that v := u; solves

'Utt—A/U:OianX(0,00)
v=nh,v,=0o0on R" x {t =0}

This is Stoke's rule.
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Solution. Suppose that u solves

Utt—AUZOiHRnX(O,OO)
u=0,uy = honR" x {t =0},

we differentiate the wave equation with respect to time and we have
Ut — Aut = 0, that iS, Vgt — Av = 0,

where v := uy.
On R™ x {t = 0} since u = 0 so Au = 0, therefore v; = uy = Au = 0.
Hence v := u; solves the initial value problem

’Utt—A’U:OiHRnX(0,00)
v=h,v; =0 on R" x {t = 0}.
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(a) Show the general solution of the PDE u,, =0 is
u(z,y) = F(z) + G(y)

for arbitrary functions F,G.

(b) Using the change of variables £ = x+t,n = x—t, show uy—Au =
0 if and only if ug, = 0.

(c) Use (a) and (b) to derive D’Alembert’s formula.

(d) Under what conditions on the initial data g, h is the solution
u a right-moving wave? A left-moving wave?

Solution. (a) It is obvious by integrating with respect to z and y.

(b) Since u(x,t) = u(:$2,551), differentiate we get ug, = L(Au — uy).
Hence ug, = 0 iff u solves the wave equation.

(c) The general solution is given by u = F'(§)+G(n) = F(x+t)+G(x—t).
From the initial condition we have F(z) + G(z) = g(x) and F'(z) — G (z) =
h(z).

Integrating the second the equation F(z) — G(x) = fom h(y)dy, then
F(z) = L(g9(z) + [} h(y)dy) and G(z) = 3(g(z) — [, h(y)dy). We then
arrive at D’Alembert’s formula

u(z,t) = %(g(a: +t)+g(x — t)) + % /: h(y)dy.
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g(z + fo dy = 0, the solution is a right-moving wave;
if G(x) = g(2) f y)dy = O the wave is moving towards the left.

20

Assume that for some attenuation function o = «(r) and delay
function 5 = 5(r) > 0, there exist for all profiles ¢ solutions of the
wave equation in (R" — {0}) x R having the form

u(z, 1) = a(r)o(t = 5(r)).

Here r = |z| and we assume [3(0) = 0. Show that this is possible only
if n =1 or 3, and compute the form of the functions «, (.

Proof. Setting v(r,t) := wu(x,t) we obtain the n—dimentional radially
symmetric wave equation

n—1

Vpp + Uy = Uy (RW).

r

If distortionless radially symmetric wave propagation is possible, then given
any reasonable ¢ the function v(r,t) = a(r)é(t — B(r)) is a solution of (RW).
Computing partial derivatives

Vit = a¢//
Up = O/¢ - Oé(élﬁl
U =0a'¢—2d¢ B —ad (B) —agf’

Plugging these into (RW) we have

" ! ’ / 1" / ’ " n - ]. ! / / 1"
a¢p—20¢8 —ap (B)°—apf + (ap—app)=ag
The only possible way the above equation holds for all reasonable ¢ is
that the coefficients of ¢, ¢ ,¢" to equal to zero. Equating the coefficients
gives ' =1, thus 8" = 0; plugging this into the equation gives

1 12 _1/
2a+—a—0 o+ =0 (*)
T

21



The solutions to (x) are of the form Kr? where K and p are constants.
Plugging this ansatz for « into (1) and (2) gives

2p+n—1=0, plp—1)+pn—1)=0 (xx)

Equations (%) have solutions only for p = 1 or 3. Moreover, when p = 1,
we have a(r) = 1.
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(a) Assume E = (E',E* E®) and B = (B!, B% B?) solve Maxwell’s
E, = curlB, B; = —curlE
divB = divE = 0.

Show E; — AE=0,B; — AB =0.

(b) Assume that v = (u',u? u?®) solves the evolution equations of
linear elasticity w; — pAu — (A + p)D(divu) =0 in R? x (0, 00).

Show w := divu and w := curlu each solve wave euqations but
with differing speeds of propagation.

equations

Proof. (a) Taking curl on both sides of the equations and computing
carefully we have the identity Vx E, = V(V-B)—AB = —AB, and VX B, =
AFE — V(V - E) = AFE by the divergence free condition. Differentiating
both sides of the equations with respect to time we have E; = V x B; and
By = —V x E;. We have thus shown that £;; — AE =0, and By — AB = 0.

(b) Taking divergence of the equation we have

divug — p(Adivu) — (A + p)div(D(divu)) = 0,

that is wy — (20 + A)Aw = 0.
Taking curl of the equation we have

curluy — pA(curlu) — (A 4 p)curl(D(divu)) = 0,

that is vy — pAv = 0.

22

Let u denote the density of particles moving to the right with speed
one alone the real line and let v denote the density of particles

22



moving to the left with speed one. If at rate d > 0 right-moving
particles randomly become left-moving, and vice versa, we have
ur + uy = d(v — u)
v — v, = d(u —v).

Show that both w := u and w := v solve the telegraph equation
Wy + 2dwy — Wyy = 0.

the system of PDE

Proof. Differentiating both sides of the equations with respect to ¢, and
to x we have

Ugp + Uy = d(Ut - Ut), Vit — Vgt = d(ut - Ut)-

Uty + Ugy = d(Ux - u:v); Vtg — VUga = d(u:): - Ux>~

Subtracting and using the equations we have

U — Ugy = AUy — Vp + Uy — uy) = d(u — v+ v — u) — 2duy = —2duy.
Adding and using the equations we have

Vgt — Vg = d(—0p — U + Uy + uy) = d(u — v+ v —u) — 2dv, = —2duvy.

Hence both u and v solve the telegraph equation.
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Let S denote the square lying in R x (0, c0) with corners at the points
—1 for (z,t) e SN{t >z + 2}
(0,1),(1,2),(0,3),(—1,2). Define f(x,t) := 1 for (z,t) e SN{t <z +2}
0 otherwise.
Uy — Uz = f in R x (0, 00)

Describe the shape
u=0,u; =0 on R x {t =0}.

Assume u solves {

of u for ¢t > 3.

Solution. By Duhamel’s principle, the solution to the nonhomogeneous
wave equation is given by

t T+s
u(z,t) = %/0 /x_s f(y,t — s)dyds (%)
2

3



See Fig. 2 attached - at time 77, u(x,77) = 0 at any point which is not be-
tween P, and P,. For example, the double integral (%) vanishes when taken
over triangles AQ1A;B; and AQqAsBy because of the nature of this par-
ticular function f(z,t). The force affects u(x,t) only in the shaded comet
shaped region; at times 7T} and 75 the shape of the string is illustrated by
the broken lines superimposed on Fig.2. The pointed pulse travels with unit
speed in the positive z-direction. The solution is called a ”"one way wave”.
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(Equipartition of energy) Let u solve the initial-value problem for
the wave equation in one dimension:

U — Uz = 0 in R x (0, 00)
u=g, uy =honRx {t =0}

Suppose g, h have compact support. The kinetic energy is k(t) :=
3 [7 ul(z,t)dz and the potential energy is p(t) := 5 [*°_u2(z,t)dz.
Prove

(a) k(t) + p(t) is constant in ¢, (b) k(t) = p(t) for all large enough
times t.
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Proof. Take derivative of k(t) andp(t), we have

a 1 o0 o0
ke(t) = a§/ uf(z,t)dr :/ uy - ugde

o0

1 o0 [ee] oo
pe(t) = %5/ ul(z,t)dz = / Uy * Ugpdx = —/ Au - uydz.

Hence, ki(t) + pi(t) = [o_ s - (uy — ugy)dz = 0 which implies that k(t) +
p(t) is constant over ¢. D’Alembert’s formula gives us the explicit solution
Hg(x+t)+g(z—t)]+1 f“t y)dy and thus k(t) =+ [T (hz+1t)—

hz—1))?— (g (x+t)+g (v — t) +h(z+t)+h(x— )) ]da:. Since both g and
h are compactly supported, for large enough ¢ the above integral vanishes.
As t — oo, we have k(t) — p(t) = 0, that is k() = p(t) for all large enough

times t.

25



