Solutions to exercises from Chapter 2 of Lawrence C. Evans' book 'Partial Differential Equations'

Sümeyye Yilmaz Bergische Universität Wuppertal Wuppertal, Germany, 42119

February 21, 2016

1

Write down an explicit formula for a function u solving the initial value problem

$$u_t + b \cdot Du + cu = 0 \text{ in } \mathbb{R}^n \times (0, \infty)$$
$$u = g \text{ on } \mathbb{R}^n \times \{t = 0\}$$

Solution. We use the method of characteristics; consider a solution to the PDE along the direction of the vector (b,1): z(s) = u(x+bs,t+s). We have $\dot{z}(s) = u_t(x+bs,t+s) + b \cdot Du(x+bs,t+s) = -cu(x+bs,t+s) = -cz(s)$, thus the PDE reduces to an ODE. The characteristic curves can be parametrized by (x_0+bs,t_0+s) ; and all the characteristic curves are parallel to each other. Given any (x_0,t_0) in $\mathbb{R}^n \times (0,\infty)$, we have $u(x_0,t_0) = u(x_0-bt_0,0)e^{-ct_0} = g(x_0-bt_0)e^{-ct_0}$; and this is an explicit formula for the solutions to the PDE.

Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$v(x) := u(Ox) \quad (x \in \mathbb{R}^n),$$

then $\Delta v = 0$.

Proof. By chain rule we have

$$D_{x_i}v(x) = \sum_{k=1}^n D_{x_k}u(Ox)o_{ik},$$

then

$$D_{x_i x_j} v(x) = \sum_{l=1}^n \sum_{k=1}^n D_{x_k x_l} u(Ox) o_{ik} o_{jl}.$$

Since O is orthogonal, $OO^T = I$, that is,

$$o_{ik}o_{il} = \begin{cases} 1 \text{ if } k = l \\ 0 \text{ if } k \neq l. \end{cases}$$

Thus

$$\Delta v = \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} D_{x_{k}x_{l}} u(Ox) o_{ik} o_{il} = \Delta u = 0.$$

3

Modify the proof of the mean value formulas to show for $n \ge 3$ that

$$u(0) = \int_{\partial B(0,r)} g dS + \frac{1}{n(n-2)\alpha(n)} \int_{B(0,r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f dx,$$

provided

$$-\Delta u = f \text{ in } B^{0}(0, r)$$

$$u = g \text{ on } \partial B(0, r)$$

Proof. Define

$$\phi(s) := \int_{\partial B(x,s)} u(y) dS(y) = \int_{\partial B(0,1)} u(x+sz) dS(z)$$

we shall have

$$\phi'(s) = \int_{\partial B(0,1)} Du(x+sz) \cdot z dS(z) = \int_{\partial B(x,s)} D(y) \frac{y-z}{s} dS(y)$$
$$= \int_{\partial B(x,s)} \frac{\partial u}{\partial \nu} dS(y) = \frac{s}{n} \int_{B(x,s)} \nabla^2 u(y) dy = \frac{s}{n} \int_{B(x,s)} \Delta u(y) dy$$

We have $\phi(r) - \phi(\epsilon) =$

$$\begin{split} \int_{\epsilon}^{r} \phi'(s) \mathrm{d}s &= \int_{\epsilon}^{r} \left(\frac{s}{n} \int_{B(0,s)} \Delta u(y) \mathrm{d}y \right) \mathrm{d}s \\ &= \int_{\epsilon}^{r} \left(\frac{s}{n} \int_{B(0,s)} f(y) \mathrm{d}y \right) \mathrm{d}s = \int_{\epsilon}^{r} \left(\frac{1}{n\alpha(n)s^{n-1}} \int_{B(0,s)} f(y) \mathrm{d}y \right) \mathrm{d}s \\ &= \frac{1}{n(2-n)\alpha(n)} \left(\left(\frac{1}{s^{n-2}} \int_{B(0,s)} f(y) \mathrm{d}y \right) \Big|_{\epsilon}^{r} - \int_{\epsilon}^{r} \left(\frac{1}{s^{n-2}} \int_{\partial B(0,s)} f(y) \mathrm{d}y \right) \mathrm{d}s \right) \\ &= \frac{1}{n(n-2)\alpha(n)} \left(\left(-\frac{1}{r^{n-2}} \int_{B(0,r)} f(y) \mathrm{d}y + \frac{1}{\epsilon^{n-2}} \int_{B(0,\epsilon)} f(y) \mathrm{d}y \right) \\ &+ \int_{\epsilon}^{r} \left(\frac{1}{s^{n-2}} \int_{\partial B(0,s)} f(y) \mathrm{d}y \right) \mathrm{d}s \right) \end{split}$$

Now notice that

$$\frac{1}{\epsilon^{n-2}} \int_{B(0,\epsilon)} f(y) \mathrm{d}y \le C\epsilon^2;$$

and

$$\int_0^r \left(\frac{1}{s^{n-2}} \int_{\partial B(0,s)} f(y) dy\right) ds = \int_0^r \int_{\partial B(0,s)} \frac{f(y)}{s^{n-2}} dy ds$$
$$= \int_{B(0,r)} \frac{f(x)}{|x|^{n-2}} dx$$

As $\epsilon \to 0$ we have

$$\frac{1}{\epsilon^{n-2}} \int_{B(0,\epsilon)} f(y) dy + \int_{\epsilon}^{r} \left(\frac{1}{s^{n-2}} \int_{\partial B(0,s)} f(y) dy \right) ds \to \int_{B(0,r)} \frac{f(x)}{|x|^{n-2}} dx$$

and $\phi(\epsilon) \to u(0)$. We have thus demonstrated

$$u(0) = \int_{\partial B(0,r)} g dS + \frac{1}{n(n-2)\alpha(n)} \int_{B(0,r)} (\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}) f dx.$$

4

Give a direct proof that if $u \in C^2(U) \cap C^{\bar{U}}$ is harmonic within a bounded open set U, then $\max_{\bar{U}} u = \max_{\partial U} u$.

Proof. Define $u_{\epsilon} := u + \epsilon |x|^2$. Suppose u_{ϵ} is achieveing maximum in \bar{U} at an interior point x_0 , then $D(u_{\epsilon}(x_0)) = 0$ and $H = D_{ij}(u_{\epsilon}(x_0))$ is negative definite. Yet, $\Delta(u_{\epsilon}) = 2\epsilon \geq 0$, a contradiction, as the Laplacian is the trace of the Hessian. Letting $\epsilon \to 0$, we can conclude that u cannot attain an interior maximum.

5

We say $v \in C^2(\bar{U})$ is subharmonic if

$$-\Delta v < 0$$
 in U .

(a) Prove for subharmonic

$$v(x) \le \int_{B(x,r)} v dy$$
 for all $B(x,r) \subset U$.

- (b) Prove that therefore $\max_{\bar{U}} v = \max_{\partial U} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v := \phi(u)$. Prove v is subharmonic.
 - (d) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic.

Solution. (a) We set

$$f(r) := \int_{\partial B(x,r)} u(y) dS(y) = \int_{\partial B(0,1)} u(x+rz) dS(z).$$

Taking derivative we have

$$f'(r) = \int_{\partial B(0,1)} Du(x+rz) \cdot z dS(z)$$

and consequently using Green's formula we have

$$f'(r) = \int_{\partial B(0,1)} Du(y) \cdot \frac{y-x}{r} dS(z)$$
$$= \int_{\partial B(x,r)} \frac{\partial u}{\partial \nu} dS(y)$$
$$= \frac{r}{n} \int_{\partial B(x,r)} \Delta u(y) dy \ge 0$$

This means that f(r) is non-decreasing, therefore given r > 0

$$u(x) = \lim_{t \to 0} f(t) = \lim_{t \to 0} \int_{\partial B(x,t)} u(y) dS(y)$$
$$\leq \int_{\partial B(x,t)} u(y) dS(y)$$

And this implies

$$\alpha(n)r^n u(x) \le \int_0^r \left(\int_{\partial B(x,s)} u(y) dS(y) \right) ds$$
$$u(x) \le \int_{B(x,r)} u(y) dy$$

- (b) Assume the subharmonic function v attains maximum at $x_0 \in U^0$, for any ball $B(x_0,r) \subset U_0$ we have by (a) $v(x_0) \leq \int_{B(x_0,r)} v(y) dy$. Yet, $v(x_0) \geq v(y)$ for any $y \in B(x_0,r)$, thus $v(x_0) = \int_{B(x_0,r)} v(y) dy$, and $v(x_0) = v(y)$ for any $y \in B(x_0,r)$. We can choose r so that $\partial \bar{U} \cap \partial B(x_0,r) = \{x_1\}$. We have thus shown that $\max_{x \in \bar{U}} v = \max_{x \in \partial U} v$.
 - (c) As ϕ is convex and smooth, $\phi'' \geq 0$; and $\Delta u = 0$. Hence

$$-\Delta \phi(u) = -(\sum_{i=1}^{n} \phi'' \cdot (u_{x_i})^2 + \phi' \cdot u_{x_i x_i}) \le 0,$$

we can conclude that $\phi(u)$ is subharmonic.

(d) If u is harmonic then $\Delta u = 0$, thus $\Delta u_{x_i} = (\Delta u)_{x_i} = 0$, hence Du is harmonic. Since $|Du|^2$ is convex with respect to Du, the result follows from (c).

Let U be a bounded open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on U, such that

$$\max_{\bar{U}}|u| \leq C(\max_{\partial U}|g| + \max_{\bar{U}}|f|)$$

where u is a smooth solution of

$$\begin{cases} -\Delta u = f \text{ in } U \\ u = g \text{ on } \partial U. \end{cases}$$

(Hint:
$$-\Delta(u+\frac{|x|^2}{2n}\lambda) \leq 0$$
, for $\lambda := \max_{\bar{U}} |f|$.)

Solution. We consider the function $v(x) := u(x) + \frac{|x|^2}{2n}\lambda$, where $\lambda = \max_{\bar{U}} |f|$. Indeed v is a subharmonic function since

$$-\Delta v = -\Delta \left(u + \frac{|x|^2}{2n}\lambda\right) \le \left(f - \max_{\bar{U}}|f|\right) \le 0.$$

The weak maximum principle holds for subharmonic functions-

$$\begin{aligned} \max_{\bar{U}} u &\leq \max_{\bar{U}} v = \max_{\partial U} v \\ &= \max_{\partial U} \left(u + \frac{|x|^2}{2n} \lambda \right) \leq \max_{\partial U} u + \max_{\partial U} \frac{|x|^2}{2n} \lambda = \max_{\partial U} g + \mathsf{C} \max_{\bar{U}} |f| \end{aligned}$$

where C is some constant depending on U.

Replacing u by -u, we can conclude that there exists some constant C depending on U, such that

$$\max_{\bar{U}} |u| \le C \Big(\max_{\partial U} |g| + \max_{\bar{U}} |f| \Big).$$

7

Use Poisson's formula for the ball to prove

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \le u(x) \le r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0)$$

whenever u is positive and harmonic in $B^0(0,r)$. This is an explicit form of Harnack's inequality.

Solution. We recall Poisson's formula for a ball

$$u(x) = \frac{r^2 - |x|^2}{n\omega(n)r} \int_{\partial B(0,r)} \frac{g(y)}{|x - y|^n} dS(y)$$

= $r^{n-2} (r^2 - |x|^2) \int_{\partial B(0,r)} \frac{g(y)}{|x - y|^n} dS(y),$

therefore,

$$r^{n-2}(r^2 - |x|^2) \frac{u(0)}{(r+|x|)^n} \le u(x) \le r^{n-2}(r^2 - |x|^2) \frac{u(0)}{(r-|x|)^n},$$
$$r^{n-2} \frac{r - |x|}{(r+|x|)^{n-1}} u(0) \le u(x) \le r^{n-2} \frac{r + |x|}{(r-|x|)^{n-1}} u(0).$$

8

Prove Theorem 15 in section 2.2.4. (Hint: Since $u \equiv 1$ solves (44) for $g \equiv 1$, the theory automatically implies $\int_{\partial B(0,1)} K(x,y) dS(y) = 1$ for each $x \in B^0(0,1)$.)

Let's recall theorem 15 in section 2.2.4. (Poisson's formula for a ball) Assume $g \in C(\partial B(0,r))$ and define u by

$$u(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0,r)} \frac{g(y)}{|x - y|^n} dS.$$

Then

- (i) $u \in C^{\infty}(B^0(0,r))$
- (ii) $\Delta u = 0$ in B(0, r), and
- (iii) $\lim_{x \to x^0} u(x) = g(x^0)$ for each point $x^0 \in \partial B(0, r)$.

Proof. (1) For each fixed x, the mapping $y \mapsto G(x,y)$ is harmonic, except for x=y. As $G(x,y)=G(y,x), \ x\mapsto G(x,y)$ is harmonic, except for x=y. Thus $x\mapsto \frac{\partial G}{\partial y_n}(x,y)=K(x,y)$ for $x,y\in B^0(0,r)$.

(2) Note that we have

$$1 = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0,r)} \frac{1}{|x - y|^n} dS$$

for $x \in B^0(0,r)$. And as g is bounded, u is likewise bounded. Since $x \mapsto K(x,y)$ is smooth, for $x \neq y$, we can verify that $u \in C^{\infty}(B^0(0,r))$ with

$$\Delta u(x) = \int_{\partial B(0,r)} \Delta_x K(x,y) g(y) dS = 0$$

(3) Now fix $x^0 \in \partial B(0,r)$, $\epsilon > 0$. Choose $\delta > 0$ such that $|g(y) - g(x^0)| \le \epsilon$ if $|y - x^0| < \delta, y \in \partial B(0,r)$. Then if $|x - x^0| < \frac{\delta}{2}, x \in B^0(0,r)$,

$$|u(x) - g(x^0)| \le \left| \int_{\partial B(0,r)} K(x,y) [g(x) - g(x^0)] dy \right|$$

$$\le \left| \int_{\partial B(0,r) \cap B(x^0,\delta)} K(x,y) [g(x) - g(x^0)] dy \right| +$$

$$\left| \int_{\partial B(0,r) / B(x^0,\delta)} K(x,y) [g(x) - g(x^0)] dy \right| := I + J$$

We have $I \leq \epsilon \int_{\partial B(0,r)} K(x,y) dy = \epsilon$. Furthermore if $|x-x^0| \leq \frac{\delta}{2}$ and $|y-x^0| \geq \delta$, we have $|y-x^0| \leq |y-x| + \frac{\delta}{2} \leq |y-x| + \frac{1}{2}|y-x^0|$. Hence

$$|y - x| \ge \frac{1}{2}|y - x^0|.$$

Thus

$$J \le 2\|g\|_{L^{\infty}} \int_{\partial B(0,r)/B(x^{0},\delta)} K(x,y) dy$$

$$\le \frac{2^{n+1}(r^{2} - |x|^{2})\|g\|_{L^{\infty}}}{n\alpha(n)r} \int_{\partial B(0,r)/B(x^{0},\delta)} |y - x^{0}|^{-n} dy \to 0$$

as $x \to x^{0+}$.

Combining this two estimates we can conclude that $\lim_{x \to x^0} u(x) = g(x^0)$ for each point $x^0 \in \partial B(0,r)$.

Let u be the solution of $\begin{cases} \Delta u = 0 \text{ in } \mathbb{R}^n_+ \\ u = g \text{ on } \partial \mathbb{R}^n_+ \end{cases}$ given by Poisson's formula for the half-space. Assume g is bounded and g(x) = |x| for $x \in \partial \mathbb{R}^n_+, |x| \leq 1$. Show Du is not bounded near x = 0. (Hint: Estimate $\frac{u(\lambda e_n) - u(0)}{\lambda}$.)

Solution. We recall Poisson's formula for the half-space

$$u(x) = \frac{2x_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x - y|^n} dS(y).$$

Notice that u(0) = g(0) = 0; following the hint we estimate $\frac{u(\lambda e_n) - u(0)}{\lambda}$:

$$\frac{1}{\lambda} \Big(u(\lambda e_n) - u(0) \Big) = \frac{2e_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+} \frac{|y|}{\left(\sqrt{(\lambda^2 + |y|^2)} \right)^n} dS(y).$$

We consider the integral

$$\frac{2e_n}{n\alpha(n)} \int_{\partial \mathbb{R}^n_+ \cap \{|y| \le 1\}} \frac{|y|}{\left(\sqrt{(\lambda^2 + |y|^2)}\right)^n} dS(y)$$

$$= (n-1)\alpha(n-1) \int_0^1 \frac{r}{\left(\sqrt{\lambda^2 + r^2}\right)^n} r^{n-2} dr$$

$$= (n-1)\alpha(n-1) \int_0^1 \frac{1}{r((\lambda/r)^2 + 1)^{n/2}} dr$$

thus the integral diverges. Hence $\lim_{\lambda \to 0} \frac{u(\lambda e_n) - u(0)}{\lambda}$ cannot be bounded, which implies $Du \cdot \vec{e_n}$ is unbounded at 0. Therefore Du is unbounded at 0.

10

(Reflection principle)

(a) Let U^+ denote the open half-ball $\{x \in \mathbb{R}^n | |x| < 1, x_n > 0\}$. Assume $u \in C^2(\overline{U^+})$ is harmonic in U^+ , with u = 0 on $\partial U^+ \cap x_n = 0$. Set

$$v(x) := \begin{cases} u(x) & \text{if } x_n \ge 0 \\ -u(x_1, ..., x_{n-1}, -x_n) & \text{if } x_n < 0 \end{cases}$$

for $x \in U = B^0(0,1)$. Prove $v \in C^2(U)$ and thus v is harmonic within U.

(b) Now assume only that $u \in C^2(U^+) \cap C(\overline{U})$. Show that v is harmonic within U. (Hint: Use Poisson's formula for the ball.)

Solution. (a) Apparently v(x) is of class C^2 in each of $\overline{U^+}$ and $U^-:=B(0,1)/\overline{U^+}$. We can check that for $i\neq n$

$$\lim_{x_n \to 0^-} \partial_{x_i x_n} v(x_1, x_2, ..., x_n) = \partial_{x_i x_n} v(x_1, x_2, ..., 0)$$

= $\partial_{x_i x_n} u(x_1, x_2, ..., 0) = \lim_{x_n \to 0^+} \partial_{x_i x_n} v(x_1, x_2, ..., x_n);$

while $\partial_{x_n x_n} v(x_1, x_2, ..., 0) = 0$, and all other derivatives which do not involve x_n vanishes. So we can assure that $D^2 v$ exists and is continuous in U.

Since v(x) = u(x) in U^+ and $v(x) = -u(x_1, x_2, ..., -x_n)$ if $x_n < 0$. And we have already known that u is harmonic in U^+ . Given any x with $x_n < 0$, we have v(x) satisfies a local version of mean value theorem-

$$v(x) = \int_{\partial B(x,\delta)} v(y) dy$$

for small enough $\delta > 0$. The local mean value property is equivalent to harmonicity. Finally, if $x_n = 0$, we also have

$$v(x) = \int_{\partial B^{+}(x,\delta)} v(y) dy + \int_{\partial B^{-}(x,\delta)} v(y) dy = 0$$

since $v(x) = -v(x_1, x_2, ..., -x_n)$. We therefore can conclude that v(x) is a harmonic function in U.

(b) Now assume that u is merely continuous on the boundary, we would like to find a harmonic function w such that w = v on $\partial B(0,1)$ by the Poisson's formula for the ball-

$$w(x) = \frac{r^2 - |x|^2}{n\alpha(n)r} \int_{\partial B(0,1)} \frac{v(y)}{|x - y|^n} dS(y),$$

we shall see that w(x) = 0 on $x_n = 0$. Therefore, w = u on ∂U^+ and by the maximum principle we have u - w = 0 throughout U^+ . So $w \equiv v$ in $\overline{U^+}$ and we can similarly show $w \equiv v$ in $\overline{U^-}$. Therefore, v is harmonic within U.

11

(Kelvin transform for Laplace's equation) The Kelvin transform $\mathcal{K}u = \bar{u}$ of a function $u : \mathbb{R}^n \to \mathbb{R}$ is

$$\overline{u}(x) := u(\overline{x})|\overline{x}|^{n-2} = u(x/|x|^2)|x|^{2-n}, (x \neq 0),$$

where $\bar{x} = x/|x|^2$. Show that if u is harmonic, then so is \bar{u} . (Hint: First show that $D_x \bar{x} (D_x \bar{x})^T = |x|^4 I$. The mapping $x \to \bar{x}$ is conformal, meaning angle preserving.)

Proof. We denote $\psi(x) = \bar{x}$, and compute

$$\frac{\partial}{\partial x_i}\psi^j(x) = \frac{\delta_{ij}}{|x|^2} - \frac{2x_i x_j}{|x|^4},$$

where δ_{ij} is Kronecker's delta symbol. We write $D_x \bar{x}$ in coordinate free expression:

$$D_x \bar{x} = |x|^{-2} (I - 2\frac{xx^T}{|x|^2}),$$

thus $D_x \bar{x} (D_x \bar{x})^T = |x|^{-4} (I - 4|x|^{-2} x x^T + 4|x|^{-4} x x^T x x^T) = |x|^{-4} I$. We now calculate $\Delta \psi$; since careful computations shall show that

$$\psi_{x_i x_i}^j = -2|x|^{-4}(x_j + 2\delta_{ij}x_i) + 8|x|^{-6}x_i^2x_j.$$

Thus, $\Delta \psi = n(2-n)\frac{x}{|x|^4}$. Hence

$$\Delta \left(u(x/|x|^2)|x|^{2-n} \right) = \Delta \left(|x|^{2-n} \right) u(\bar{x}) + 2DuD\bar{x} \left(D|x|^{2-n} \right)^T + |x|^{2-n}Du \cdot \Delta \bar{x} + |x|^{2-n}\mathrm{Tr} \left((D\bar{x})^T D^2 u D\bar{x} \right).$$

Note that the first term is 0 for $x \neq 0$; and the last term is also 0 as $\text{Tr}((D\bar{x})^T D^2 u D\bar{x}) = |x|^{-4} \Delta u = 0$. While we have

$$2DuD\bar{x}(D|x|^{2-n})^{T} = 2Du(|x|^{-2}(I - 2\frac{xx^{T}}{|x|^{2}}))(2-n)|x|^{-n}x$$
$$= 2(n-2)|x|^{-2-n}Du \cdot x = -|x|^{2-n}Du \cdot \Delta \bar{x}.$$

Therefore the Kelvin transform preserves harmonic functions.

Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.

- (a) Show $u_{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
- (b) Use (a) to show $v(x,t) := x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well.

Proof. (a) We compute to show that the dilation of u also satisfies the heat equation, since

$$\frac{\partial}{\partial t}u_{\lambda}(x,t) = \frac{\partial}{\partial t}u(\lambda x, \lambda^{2}t) = \lambda^{2}u_{t}$$

and

$$\frac{\partial^2}{\partial x_i^2} u_{\lambda}(x,t) = \lambda^2 u_{x_i x_i}.$$

We see that u_{λ} solves the heat equation.

(b) Differentiating u_{λ} with respect to λ we shall have

$$\frac{\partial}{\partial \lambda} u_{\lambda} = x \cdot Du(\lambda x, \lambda^2 t) + 2t\lambda u_t(\lambda x, \lambda^2 t).$$

Now let $\lambda = 1$ we then see that

$$\frac{\partial}{\partial \lambda} u_{\lambda} = x \cdot Du(x, t) + 2tu_t(x, t) = v(x, t).$$

Since u is smooth, the mixed partials are equal under exchanges of orders of differentiation. And u_{λ} solves the heat equation, that is

$$(u_{\lambda})_t - \Delta(u_{\lambda}) = 0.$$

We differentiate both sides with respect to λ and conclude that v(x,t) is also a solution to the heat equation.

13

Assume n = 1 and $u(x, t) = v(\frac{x}{\sqrt{t}})$.

(a) Show $u_t = u_{xx}$ if and only if $v'' + \frac{z}{2}v' = 0$. Show that the general solution is

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

(b) Differentiate $u(x,t)=v(\frac{x}{\sqrt{t}})$ with respect to x and select the constant c properly to obtain the fundamental solution Φ for n=1. Explain why this procedure produces the fundamental solution. (Hint: What is the initial condition for u?)

Solution. (a) Differentiate v we have $u_t = \frac{1}{2}xt^{-\frac{3}{2}}v'$ and $u_{xx} = \frac{1}{t}v''$. By the heat equation we get $v'' + \frac{x}{2\sqrt{t}}v' = 0$. Vice versa, if v satisfies the ODE then u solves the heat equation. We solve the ODE, notice that $(e^{\frac{z^2}{4}}v(z)')' = 0$, then the solution shall be

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

(b) The initial condition is the δ -distribution. Differentiate u(x,t)=v(z) with respect to x we have $u_x(x,t)=\frac{c}{\sqrt{t}}e^{-\frac{x^2}{4t}}$, which should also be a solution to the heat equation. Since the integral of δ -function is 1,

$$1 = c \int_{-\infty}^{\infty} e^{-\frac{s^2}{4}} ds = 2c\sqrt{\pi},$$

we must have $c = \frac{1}{2\sqrt{\pi}}$, thus $\Phi(x,t) = \frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}$ is the fundamental solution for n=1.

14

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = g \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

where $c \in \mathbb{R}$.

Solution. First we consider the homogeneous equation with initial boundary data

$$\begin{cases} v_t - \Delta v + cv = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ v = h \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

We take the Fourier transform with respect to the spacial variable and the equation shall become an ODE

$$\begin{cases} \widehat{v_t} + |\xi|^2 \widehat{v} + c\widehat{v} = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ \widehat{v} = \widehat{h} \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Solving the ODE- $\widehat{v}=e^{-(|\xi|^2-c)t}\widehat{h(\xi)}$, then taking the inverse Fourier transform we have

$$v(x,t) = \frac{e^{-ct}}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{(x-y)^2}{4t}} h(y) dy.$$

By Duhamel's principle we conclude that the solution to the non-homogeneous problem is

$$u(x,t) = \frac{e^{-ct}}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{(x-y)^2}{4t}} g(y) dy$$
$$+ \int_0^t \frac{e^{-c(t-s)}}{(4\pi (t-s))^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{(x-y)^2}{4(t-s)}} f(y,s) dy ds.$$

15

Given $g:[0,\infty)\to\mathbb{R}$, with g(0)=0, derive the formula

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} g(s) ds$$

for a solution of the initial/boundary value problem

$$\begin{cases} u_t - u_{xx} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty) \\ u = 0 \text{ on } \mathbb{R}^+ \times \{t = 0\} \\ u = g \text{ on } \{x = 0\} \times [0, \infty) \end{cases}$$

(Hint: Let v(x,t) := u(x,t) - g(t) and extend v to $\{x < 0\}$ by odd reflection.)

Solution. We follow the hint and extend our function v(x,t) := u(x,t) - g(t) by odd extension to $\{x < 0\} : v(x,t) := g(t) - u(-x,t)$. Then our problem becomes

$$\begin{cases} v_t - v_{xx} = -g_t \text{ in } \mathbb{R}_+ \times (0, \infty) \\ v_t - v_{xx} = g_t \text{ in } \mathbb{R}_- \times (0, \infty) \\ v = 0 \text{ on } \mathbb{R} \times \{t = 0\} \end{cases}$$

Apply the formula for the solution to the heat equation we have

$$v(x,t) = \int_{-\infty}^{\infty} \Phi(x-y,t) 0 \mathrm{d}y$$

$$- \int_{0}^{t} \int_{0}^{\infty} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s$$

$$+ \int_{0}^{t} \int_{-\infty}^{0} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s$$

$$= - \int_{0}^{t} \int_{0}^{\infty} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s + \int_{0}^{t} \int_{-\infty}^{0} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s$$

$$= - \int_{0}^{t} \int_{-\infty}^{\infty} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s + 2 \int_{0}^{t} \int_{-\infty}^{0} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s$$

$$= - \int_{0}^{t} g'(s) \mathrm{d}s + 2 \int_{0}^{t} \int_{-\infty}^{0} \Phi(x-y,t-s) g'(s) \mathrm{d}y \mathrm{d}s$$

We denote $h(s) := \int_{-\infty}^{0} \Phi(x-y,t-s) dy$ and $z := \frac{(x-y)}{\sqrt{4(t-s)}}$ and compute-

$$h(s) = \int_{-\infty}^{0} \frac{e^{-\frac{(x-y)^2}{4(t-s)}}}{(4\pi(t-s))^{1/2}} dy = \frac{1}{\sqrt{\pi}} \int_{\frac{x}{\sqrt{4(t-s)}}}^{\infty} e^{-z^2} dz$$

$$h'(s) = -\frac{x}{4\sqrt{\pi}(t-s)^{3/2}}e^{-\frac{x^2}{4(t-s)}};$$

and continue

$$v(x,t) = -g(t) + 2[h(s)g(s)]_0^t - 2\int_0^t g(s)h'(s)ds$$
$$= -g(t) + \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} g(s)ds.$$

Therefore we have

$$u(x,t) = v(x,t) + g(t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} g(s) ds.$$

16

Give a direct proof that if U is bounded and $u \in C_1^2(U_T) \cap C(\bar{U}_T)$ solves the heat equation, then $\max_{\bar{U}_T} u = \max_{\bar{\Gamma}_T} u$. (Hint: Define $u_{\epsilon} := u - \epsilon t$ for $\epsilon>0$, and show u_{ϵ} cannot attain its maximum over \bar{U}_{T} at a point in U_T .)

Proof. We denote $U_T := U \times (0,T]$ and $\Gamma_T := U \times \{0\} \cup (\partial U \times [0,T])$. Claim: if $\Delta u - u_t \ge 0$ in U_T , then $\max_{\bar{U}_T} u = \max_{\Gamma_T} u$.

First we consider the case where $\Delta u - u_t > 0$. For any $\epsilon \in (0,T)$ exsists a point $(x_0, t_0) \in \overline{U_{T-\epsilon}}$ such that $u(x_0, t_0) = \max_{\bar{U}_{T-\epsilon}} u(x, t)$ since u is continuous and $U_{T-\epsilon}$ is compact. If $(x_0,t_0)\in U_{T-\epsilon}$ by derivative tests we have $\Delta u(x_0,t_0) \leq 0$, $u_t(x_0,t_0) = 0$ and $\nabla u(x_0,t_0) = 0$, a contradiction to $\Delta u - u_t > 0$. Hence we must have $(x_0, t_0) \in \Gamma_{T-\epsilon}$. Letting $\epsilon \to 0$ we have $\max_{\bar{U}_T} u = \max_{\Gamma_T} u.$ Now we consider the case where $\Delta u - u_t \geq 0$. For $\epsilon > 0$, we define a

function $u_{\epsilon}(x,t) := u(x,t) - \epsilon t$, notice that

$$\Delta u_{\epsilon} = \Delta u = u_t > (u_t - \epsilon) = (u_{\epsilon})_t.$$

So we have by our previous reasoning that $\max_{\bar{U}_T} u_{\epsilon} = \max_{\Gamma_T} u_{\epsilon}$. Letting $\epsilon \to 0$, we have the desired conclusion.

17

We say $v \in C_1^2(U_T)$ is a subsolution of the heat equation if

$$v_t - \Delta v < 0$$

in U_T .

(a) Prove for a subsolution v that

$$v(x,t) \le \frac{1}{4r^n} \iint_{E(x,t;r)} v(y,s) \frac{|x-y|^2}{(t-s)^2} dy ds$$

for all $E(x,t;r) \subset U_T$.

- (b) Prove that therefore $\max_{\bar{U}_T} v = \max_{\Gamma_T} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u solves the heat equation and $v := \phi(u)$. Prove v is a subsolution.
- (d) Prove $v := |Du|^2 + u_t^2$ is a subsolution, whenever u solves the heat equation.

Proof. (a) Without loss of generality, we shift (x,t) to (0,0), and upon mollifying if necessary, we assume that u is smooth. We write E(r) = E(0,0,r). We define the function

$$\phi(r) := \frac{1}{4r^n} \iint_{E(r)} u(y, s) \frac{y^2}{s^2} dy ds = \iint_{E(1)} u(ry, r^2 s) \frac{y^2}{s^2} dy ds.$$

We shall use an identity: $\iint_{E(1)} \frac{|y|^2}{|s|^2} dy ds = 4$. We calculate $\phi'(r)$:

$$\phi'(r) = \iint_{E(1)} \sum_{i=1}^{n} u_{y_i} y_i \frac{|y|^2}{s^2} + 2r u_s \frac{|y|^2}{s} dy ds$$

$$= \frac{1}{r^{n+1}} \iint_{E(r)} \sum_{i=1}^{n} u_{y_i} y_i \frac{|y|^2}{s^2} + 2r u_s \frac{|y|^2}{s} dy ds$$

$$=: A + B$$

Also, let us introduce a function $\psi := \frac{n}{2} \log(-4\pi s) + \frac{|y|^2}{4s} + n \log r$ and since $\Phi(y, -s) = r^{-n}$ on $\partial E(r)$ we have $\psi = 0$ on $\partial E(r)$. We utilize the formula to write

$$\begin{split} B &= \frac{1}{r^{n+1}} \iint_{E(r)} 4u_s \sum_{i=1}^n y_i \psi_{y_i} \mathrm{d}y \mathrm{d}s \\ &= -\frac{1}{r^{n+1}} \iint_{E(r)} 4nu_s \psi + 4 \sum_{i=1}^n u_{sy_i} y_i \psi \mathrm{d}y \mathrm{d}s; \end{split}$$

due to integral by parts and the fact that $\psi = 0$ on $\partial E(r)$. Integrating by parts with respect to s, we discover

$$B = \frac{1}{r^{n+1}} \iint_{E(r)} -4nu_s \psi + 4 \sum_{i=1}^n u_{y_i} y_i \psi_s dy ds$$

$$= \frac{1}{r^{n+1}} \iint_{E(r)} -4nu_s \psi + 4 \sum_{i=1}^n u_{y_i} y_i \left(-\frac{n}{2s} - \frac{|y|^2}{4s^2} \right) dy ds$$

$$= \frac{1}{r^{n+1}} \iint_{E(r)} -4nu_s \psi - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds - A.$$

Consequently since $u_t - \Delta u \leq 0$,

$$\phi'(r) = A + B$$

$$\geq \frac{1}{r^{n+1}} \iint_{E(r)} -4n\Delta u \psi - \frac{2n}{s} \sum_{i=1}^{n} u_{y_i} y_i dy ds$$

$$= \sum_{i=1}^{n} \frac{1}{r^{n+1}} \iint_{E(r)} 4n u_{y_i} \psi_{y_i} - \frac{2n}{s} u_{y_i} y_i dy ds = 0$$

Hence $\phi(r)$ is non-decreasing; and therefore

$$\begin{split} \phi(r) &= \frac{1}{4r^n} \iint_{E(r)} u(y,s) \frac{y^2}{s^2} \mathrm{d}y \mathrm{d}s \geq \\ &\geq \lim_{t \to 0} \phi(t) = u(0,0) \Big(\lim_{t \to 0} \frac{1}{t^n} \iint_{E(t)} \frac{|y|^2}{s^2} \mathrm{d}y \mathrm{d}s \Big) = 4u(0,0). \end{split}$$

As

$$\frac{1}{t^n} \iint_{E(t)} \frac{|y|^2}{s^2} dy ds = \iint_{E(1)} \frac{|y|^2}{s^2} dy ds.$$

(b) Suppose that there exists some point $(x_0, t_0) \in U_T$ such that $u(x_0, t_0) = M := \max_{\bar{U}_T} u$. Then for sufficiently small r > 0 we have $E(x_0, t_0; r) \subset U_T$; and we have

$$M = u(x_0, t_0) \le \frac{1}{4r^n} \iint_{E(x_0, t_0; r)} u(y, s) \frac{|x_0 - y|^2}{(t_0 - s)^2} dy ds \le M$$

since

$$\frac{1}{4r^n} \iint_{E(x_0, t_0; r)} \frac{|x_0 - y|^2}{(t_0 - s)^2} dy ds = 1.$$

We shall have for all $(y, s) \in E(x_0, t_0; r)$, $u(y, s) = u(x_0, t_0)$.

Draw any line segment L in U_T connecting (x_0, t_0) with some other point $(y_0, s_0) \in U_T$ with $s_0 < t_0$. Consider

$$r_0 := \min\{s \le s_0 | u(x,t) = M \text{ for all points } (x,t) \in L, s \le t \le t_0\}.$$

Since u is continuous, the minimum is attained. Assume $r_0 > s_0$. Then $u(z_0, r_0) = M$ for some point (z_0, r_0) on $L \cap U_T$ and so $u \equiv M$ on $E(z_0, r_0; r)$ for sufficiently small r. Since $E(z_0, r_0; r)$ contains $L \cap \{r_0 - \sigma \le t \le r_0\}$ for some small $\sigma > 0$, we have a contradiction. Thus $r_0 = s_0$ and hence $u \equiv M$ on L.

(c) A direct computation shall show that

$$\partial_t(\phi(u)) - \Delta(\phi(u)) = \phi'(u_t - \Delta u) - \phi''|Du|^2.$$

As ϕ is convex, we have $\phi'' \geq 0$. Thus $\partial_t(\phi(u)) - \Delta(\phi(u)) \leq 0$.

(d) If u solves the heat equation, then u_t and Du each solves the heat equation; by part (c), $(u_t)^2$ and $|Du|^2$ are two subsolutions. Since the heat equation is linear, we simply apply superposition principle to conclude.

18

(Stoke's rule) Assume u solves the initial value problem

$$\begin{cases} u_{tt} - \Delta u = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = 0, u_t = h \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

Show that $v := u_t$ solves

$$\begin{cases} v_{tt} - \Delta v = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ v = h, v_t = 0 \text{ on } \mathbb{R}^n \times \{t = 0\} \end{cases}$$

This is Stoke's rule.

Solution. Suppose that u solves

$$\begin{cases} u_{tt} - \Delta u = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ u = 0, u_t = h \text{ on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

we differentiate the wave equation with respect to time and we have

$$u_{tt} - \Delta u_t = 0$$
, that is, $v_{tt} - \Delta v = 0$,

where $v := u_t$.

On $\mathbb{R}^n \times \{t=0\}$ since u=0 so $\Delta u=0$, therefore $v_t=u_{tt}=\Delta u=0$. Hence $v:=u_t$ solves the initial value problem

$$\begin{cases} v_{tt} - \Delta v = 0 \text{ in } \mathbb{R}^n \times (0, \infty) \\ v = h, v_t = 0 \text{ on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

19

(a) Show the general solution of the PDE $u_{xy} = 0$ is

$$u(x,y) = F(x) + G(y)$$

for arbitrary functions F, G.

- (b) Using the change of variables $\xi = x + t$, $\eta = x t$, show $u_{tt} \Delta u = 0$ if and only if $u_{\xi\eta} = 0$.
 - (c) Use (a) and (b) to derive D'Alembert's formula.
- (d) Under what conditions on the initial data g, h is the solution u a right-moving wave? A left-moving wave?

Solution. (a) It is obvious by integrating with respect to x and y.

- (b) Since $u(x,t) = u(\frac{\xi+\eta}{2}, \frac{\xi-\eta}{2})$, differentiate we get $u_{\xi\eta} = \frac{1}{4}(\Delta u u_{tt})$. Hence $u_{\xi\eta} = 0$ iff u solves the wave equation.
- (c) The general solution is given by $u = F(\xi) + G(\eta) = F(x+t) + G(x-t)$. From the initial condition we have F(x) + G(x) = g(x) and F'(x) G'(x) = h(x).

Integrating the second the equation $F(x) - G(x) = \int_0^x h(y) dy$, then $F(x) = \frac{1}{2} (g(x) + \int_0^x h(y) dy)$ and $G(x) = \frac{1}{2} (g(x) - \int_0^x h(y) dy)$. We then arrive at D'Alembert's formula

$$u(x,t) = \frac{1}{2} (g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy.$$

(d) If $F(z) = g(z) + \int_0^z h(y) dy = 0$, the solution is a right-moving wave; if $G(x) = g(z) - \int_0^z h(y) dy = 0$, the wave is moving towards the left.

20

Assume that for some attenuation function $\alpha = \alpha(r)$ and delay function $\beta = \beta(r) \geq 0$, there exist for all profiles ϕ solutions of the wave equation in $(\mathbb{R}^n - \{0\}) \times \mathbb{R}$ having the form

$$u(x,t) = \alpha(r)\phi(t-\beta(r)).$$

Here r = |x| and we assume $\beta(0) = 0$. Show that this is possible only if n = 1 or 3, and compute the form of the functions α, β .

Proof. Setting v(r,t) := u(x,t) we obtain the n-dimentional radially symmetric wave equation

$$v_{rr} + \frac{n-1}{r}v_r = v_{tt} \qquad (RW).$$

If distortionless radially symmetric wave propagation is possible, then given any reasonable ϕ the function $v(r,t) = \alpha(r)\phi(t-\beta(r))$ is a solution of (RW). Computing partial derivatives

$$v_{tt} = \alpha \phi''$$

$$v_r = \alpha' \phi - \alpha \phi' \beta'$$

$$v_{rr} = \alpha'' \phi - 2\alpha' \phi' \beta' - \alpha \phi'' (\beta')^2 - \alpha \phi' \beta''$$

Plugging these into (RW) we have

$$\alpha''\phi - 2\alpha'\phi'\beta' - \alpha\phi''(\beta')^2 - \alpha\phi'\beta'' + \frac{n-1}{r}(\alpha'\phi - \alpha\phi'\beta') = \alpha\phi''$$

The only possible way the above equation holds for all reasonable ϕ is that the coefficients of ϕ, ϕ', ϕ'' to equal to zero. Equating the coefficients gives $\beta' = 1$, thus $\beta'' = 0$; plugging this into the equation gives

$$2\alpha' + \frac{n-1}{r}\alpha = 0, \quad \alpha'' + \frac{n-1}{r}\alpha' = 0$$
 (*)

The solutions to (*) are of the form Kr^p where K and p are constants. Plugging this ansatz for α into (1) and (2) gives

$$2p + n - 1 = 0$$
, $p(p - 1) + p(n - 1) = 0$ (**)

Equations (**) have solutions only for p=1 or 3. Moreover, when p=1, we have $\alpha(r) = 1$.

21

(a) Assume $E=(E^1,E^2,E^3)$ and $B=(B^1,B^2,B^3)$ solve Maxwell's equations $\begin{cases} E_t = \mathbf{curl}B, B_t = -\mathbf{curl}E \\ \mathbf{div}B = \mathbf{div}E = 0. \end{cases}$ Show $E_{tt} - \Delta E = 0, B_{tt} - \Delta B = 0.$

(b) Assume that $u = (u^1, u^2, u^3)$ solves the evolution equations of linear elasticity $u_{tt} - \mu \Delta u - (\lambda + \mu) D(\mathbf{div}u) = 0$ in $\mathbb{R}^3 \times (0, \infty)$.

Show w := divu and w := curlu each solve wave eugations but with differing speeds of propagation.

Proof. (a) Taking curl on both sides of the equations and computing carefully we have the identity $\nabla \times E_t = \nabla(\nabla \cdot B) - \Delta B = -\Delta B$, and $\nabla \times B_t = -\Delta B$ $\Delta E - \nabla(\nabla \cdot E) = \Delta E$ by the divergence free condition. Differentiating both sides of the equations with respect to time we have $E_{tt} = \nabla \times B_t$ and $B_{tt} = -\nabla \times E_t$. We have thus shown that $E_{tt} - \Delta E = 0$, and $B_{tt} - \Delta B = 0$.

(b) Taking divergence of the equation we have

$$\operatorname{div} u_{tt} - \mu(\Delta \operatorname{div} u) - (\lambda + \mu)\operatorname{div}(D(\operatorname{div} u)) = 0,$$

that is $w_{tt} - (2\mu + \lambda)\Delta w = 0$.

Taking curl of the equation we have

$$\operatorname{curl} u_{tt} - \mu \Delta(\operatorname{curl} u) - (\lambda + \mu)\operatorname{curl}(D(\operatorname{div} u)) = 0,$$

that is $v_{tt} - \mu \Delta v = 0$.

22

Let u denote the density of particles moving to the right with speed one alone the real line and let v denote the density of particles

moving to the left with speed one. If at rate d > 0 right-moving particles randomly become left-moving, and vice versa, we have the system of PDE $\begin{cases} u_t + u_x = d(v - u) \\ v_t - v_x = d(u - v). \end{cases}$

Show that both w := u and w := v solve the telegraph equation $w_{tt} + 2dw_t - w_{xx} = 0.$

Proof. Differentiating both sides of the equations with respect to t, and to x we have

$$u_{tt} + u_{xt} = d(v_t - u_t), v_{tt} - v_{xt} = d(u_t - v_t).$$

$$u_{tx} + u_{xx} = d(v_x - u_x), v_{tx} - v_{xx} = d(u_x - v_x).$$

Subtracting and using the equations we have

$$u_{tt} - u_{xx} = d(v_t - v_x + u_x - u_t) = d(u - v + v - u) - 2du_t = -2du_t.$$

Adding and using the equations we have

$$v_{tt} - v_{xx} = d(-v_t - v_x + u_x + u_t) = d(u - v + v - u) - 2dv_t = -2dv_t.$$

Hence both u and v solve the telegraph equation.

23

Let S denote the square lying in $\mathbb{R} \times (0, \infty)$ with corners at the points $(0,1),(1,2),(0,3),(-1,2). \ \, \text{Define} \ f(x,t) := \begin{cases} -1 \ \text{for} \ (x,t) \in S \cap \{t>x+2\} \\ 1 \ \text{for} \ (x,t) \in S \cap \{t< x+2\} \\ 0 \ \text{otherwise.} \end{cases}$ Assume u solves $\begin{cases} u_{tt} - u_{xx} = f \ \text{in} \ \mathbb{R} \times (0,\infty) \\ u = 0, u_t = 0 \ \text{on} \ \mathbb{R} \times \{t=0\}. \end{cases}$ Describe the shape of u for t>3.

of u for t > 3.

Solution. By Duhamel's principle, the solution to the nonhomogeneous wave equation is given by

$$u(x,t) = \frac{1}{2} \int_0^t \int_{x-s}^{x+s} f(y,t-s) dy ds$$
 (*)

See Fig. 2 attached - at time T_1 , $u(x, T_1) = 0$ at any point which is not between P_1 and P_2 . For example, the double integral (*) vanishes when taken over triangles $\triangle Q_1A_1B_1$ and $\triangle Q_2A_2B_2$ because of the nature of this particular function f(x,t). The force affects u(x,t) only in the shaded comet shaped region; at times T_1 and T_2 the shape of the string is illustrated by the broken lines superimposed on Fig.2. The pointed pulse travels with unit speed in the positive x-direction. The solution is called a "one way wave".

Fig. 2

24

(Equipartition of energy) Let u solve the initial-value problem for the wave equation in one dimension:

$$u_{tt} - u_{xx} = 0 \text{ in } \mathbb{R} \times (0, \infty)$$

$$u = g, \ u_t = h \text{ on } \mathbb{R} \times \{t = 0\}$$

Suppose g, h have compact support. The kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) \mathrm{d}x$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x,t) \mathrm{d}x$. Prove

(a) k(t) + p(t) is constant in t, (b) k(t) = p(t) for all large enough times t.

Proof. Take derivative of k(t) and p(t), we have

$$k_t(t) = \frac{\partial}{\partial t} \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx = \int_{-\infty}^{\infty} u_t \cdot u_{tt} dx$$

$$p_t(t) = \frac{\partial}{\partial t} \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx = \int_{-\infty}^{\infty} u_x \cdot u_{xt} dx = -\int_{-\infty}^{\infty} \Delta u \cdot u_t dx.$$

Hence, $k_t(t) + p_t(t) = \int_{-\infty}^{\infty} u_t \cdot (u_{tt} - u_{xx}) dx = 0$ which implies that k(t) + p(t) is constant over t. D'Alembert's formula gives us the explicit solution $\frac{1}{2}[g(x+t)+g(x-t)]+\frac{1}{2}\int_{x-t}^{x+t}h(y)dy$ and thus $k(t)-p(t)=\frac{1}{8}\int_{-\infty}^{\infty}[(h(x+t)-h(x-t))^2-(g'(x+t)+g'(x-t)+h(x+t)+h(x-t))^2]dx$. Since both g and h are compactly supported, for large enough t the above integral vanishes. As $t \to \infty$, we have k(t)-p(t)=0, that is k(t)=p(t) for all large enough times t.