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Write down an explicit formula for a function u solving the initial
value problem

ut + b ·Du+ cu = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}

}

Solution. We use the method of characteristics; consider a solution to the
PDE along the direction of the vector (b, 1): z(s) = u(x+ bs, t+ s). We have
ż(s) = ut(x+bs, t+s)+b·Du(x+bs, t+s) = −cu(x+bs, t+s) = −cz(s), thus
the PDE reduces to an ODE. The characteristic curves can be parametrized
by (x0 +bs, t0 +s); and all the characteristic curves are parallel to each other.
Given any (x0, t0) in Rn × (0,∞), we have u(x0, t0) = u(x0 − bt0, 0)e−ct0 =
g(x0− bt0)e−ct0 ; and this is an explicit formula for the solutions to the PDE.
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Prove that Laplace’s equation ∆u = 0 is rotation invariant; that is,
if O is an orthogonal n× n matrix and we define

v(x) := u(Ox) (x ∈ Rn),

then ∆v = 0.

Proof. By chain rule we have

Dxiv(x) = Σn
k=1Dxku(Ox)oik,

then
Dxixjv(x) = Σn

l=1Σn
k=1Dxkxlu(Ox)oikojl.

Since O is orthogonal, OOT = I, that is,

oikoil =

{
1 if k = l

0 if k 6= l.

Thus
∆v = Σn

i=1Σn
k=1Σn

l=1Dxkxlu(Ox)oikoil = ∆u = 0.

3

Modify the proof of the mean value formulas to show for n ≥ 3 that

u(0) =

 
∂B(0,r)

gdS +
1

n(n− 2)α(n)

ˆ
B(0,r)

(
1

|x|n−2
− 1

rn−2
)fdx,

provided

−∆u = f in B0(0, r)

u = g on ∂B(0, r)

}

Proof. Define

φ(s) :=

 
∂B(x,s)

u(y)dS(y) =

 
∂B(0,1)

u(x+ sz)dS(z)
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we shall have

φ
′
(s) =

 
∂B(0,1)

Du(x+ sz) · zdS(z) =

 
∂B(x,s)

D(y)
y − z
s

dS(y)

=

 
∂B(x,s)

∂u

∂ν
dS(y) =

s

n

 
B(x,s)

∇2u(y)dy =
s

n

 
B(x,s)

∆u(y)dy

We have φ(r)− φ(ε) =

ˆ r

ε

φ
′
(s)ds =

ˆ r

ε

( s
n

 
B(0,s)

∆u(y)dy
)

ds

=

ˆ r

ε

( s
n

 
B(0,s)

f(y)dy
)

ds =

ˆ r

ε

( 1

nα(n)sn−1

ˆ
B(0,s)

f(y)dy
)

ds

=
1

n(2− n)α(n)

(( 1

sn−2

ˆ
B(0,s)

f(y)dy
)∣∣∣∣r
ε

−
ˆ r

ε

( 1

sn−2

ˆ
∂B(0,s)

f(y)dy
)
ds
)

=
1

n(n− 2)α(n)

((
− 1

rn−2

ˆ
B(0,r)

f(y)dy +
1

εn−2

ˆ
B(0,ε)

f(y)dy
)

+

ˆ r

ε

( 1

sn−2

ˆ
∂B(0,s)

f(y)dy
)
ds
)

Now notice that
1

εn−2

ˆ
B(0,ε)

f(y)dy ≤ Cε2;

and ˆ r

0

( 1

sn−2

ˆ
∂B(0,s)

f(y)dy
)
ds =

ˆ r

0

ˆ
∂B(0,s)

f(y)

sn−2
dyds

=

ˆ
B(0,r)

f(x)

|x|n−2
dx

As ε→ 0 we have

1

εn−2

ˆ
B(0,ε)

f(y)dy +

ˆ r

ε

( 1

sn−2

ˆ
∂B(0,s)

f(y)dy
)
ds→

ˆ
B(0,r)

f(x)

|x|n−2
dx

and φ(ε)→ u(0). We have thus demonstrated
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u(0) =

 
∂B(0,r)

gdS +
1

n(n− 2)α(n)

ˆ
B(0,r)

(
1

|x|n−2
− 1

rn−2
)fdx.

4

Give a direct proof that if u ∈ C2(U) ∩ C(Ū) is harmonic within a
bounded open set U , then maxŪ u = max∂U u.

Proof. Define uε := u + ε|x|2. Suppose uε is achieveing maximum in Ū
at an interior point x0, then D(uε(x0)) = 0 and H = Dij(uε(x0)) is negative
definite. Yet, ∆(uε) = 2ε ≥ 0, a contradiction, as the Laplacian is the trace
of the Hessian. Letting ε → 0, we can conclude that u cannot attain an
interior maximum.

5

We say v ∈ C2(Ū) is subharmonic if

−∆v ≤ 0 in U.

(a) Prove for subharmonic

v(x) ≤
 
B(x,r)

vdy for all B(x, r) ⊂ U.

(b) Prove that therefore maxŪ v = max∂U v.
(c) Let φ : R 7→ R be smooth and convex. Assume u is harmonic

and v := φ(u). Prove v is subharmonic.
(d) Prove v := |Du|2 is subharmonic, whenever u is harmonic.

Solution. (a) We set

f(r) :=

 
∂B(x,r)

u(y)dS(y) =

 
∂B(0,1)

u(x+ rz)dS(z).
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Taking derivative we have

f
′
(r) =

 
∂B(0,1)

Du(x+ rz) · zdS(z)

and consequently using Green’s formula we have

f
′
(r) =

 
∂B(0,1)

Du(y) · y − x
r

dS(z)

=

 
∂B(x,r)

∂u

∂ν
dS(y)

=
r

n

 
∂B(x,r)

∆u(y)dy ≥ 0

This means that f(r) is non-decreasing, therefore given r > 0

u(x) = lim
t→0

f(t) = lim
t→0

 
∂B(x,t)

u(y)dS(y)

≤
 
∂B(x,r)

u(y)dS(y)

And this implies

α(n)rnu(x) ≤
ˆ r

0

( ˆ
∂B(x,s)

u(y)dS(y)
)
ds

u(x) ≤
 
B(x,r)

u(y)dy

(b) Assume the subharmonic function v attains maximum at x0 ∈ U0, for
any ball B(x0, r) ⊂ U0 we have by (a) v(x0) ≤

ffl
B(x0,r)

v(y)dy. Yet, v(x0) ≥
v(y) for any y ∈ B(x0, r), thus v(x0) =

ffl
B(x0,r)

v(y)dy, and v(x0) = v(y) for

any y ∈ B(x0, r). We can choose r so that ∂Ū ∩ ∂B(x0, r) = {x1}. We have
thus shown that max

x∈Ū
v = max

x∈∂U
v.

(c) As φ is convex and smooth, φ
′′ ≥ 0; and ∆u = 0. Hence

−∆φ(u) = −(
n∑
i=1

φ
′′ · (uxi)2 + φ

′ · uxixi) ≤ 0,

we can conclude that φ(u) is subharmonic.
(d) If u is harmonic then ∆u = 0, thus ∆uxi = (∆u)xi = 0, hence Du is

harmonic. Since |Du|2 is convex with respect to Du, the result follows from
(c).
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Let U be a bounded open subset of Rn. Prove that there exists a
constant C, depending only on U, such that

max
Ū
|u| ≤ C(max

∂U
|g|+ max

Ū
|f |)

where u is a smooth solution of{
−∆u = f in U

u = g on ∂U.

(Hint: −∆(u+ |x|2
2n
λ) ≤ 0, for λ := maxŪ |f |.)

Solution. We consider the function v(x) := u(x) + |x|2
2n
λ, where λ =

maxŪ |f |. Indeed v is a subharmonic function since

−∆v = −∆
(
u+
|x|2

2n
λ
)
≤ (f −max

Ū
|f |) ≤ 0.

The weak maximum principle holds for subharmonic functions-

max
Ū

u ≤ max
Ū

v = max
∂U

v

= max
∂U

(
u+
|x|2

2n
λ
)
≤ max

∂U
u+ max

∂U

|x|2

2n
λ = max

∂U
g + Cmax

Ū
|f |

where C is some constant depending on U.
Replacing u by −u, we can conclude that there exists some constant C

depending on U, such that

max
Ū
|u| ≤ C

(
max
∂U
|g|+ max

Ū
|f |
)
.

7

Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0)

6



whenever u is positive and harmonic in B0(0, r). This is an explicit
form of Harnack’s inequality.

Solution. We recall Poisson’s formula for a ball

u(x) =
r2 − |x|2

nω(n)r

ˆ
∂B(0,r)

g(y)

|x− y|n
dS(y)

= rn−2(r2 − |x|2)

 
∂B(0,r)

g(y)

|x− y|n
dS(y),

therefore,

rn−2(r2 − |x|2)
u(0)

(r + |x|)n
≤ u(x) ≤ rn−2(r2 − |x|2)

u(0)

(r − |x|)n
,

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0).

8

Prove Theorem 15 in section 2.2.4. (Hint: Since u ≡ 1 solves (44)
for g ≡ 1, the theory automatically implies

´
∂B(0,1)

K(x, y)dS(y) = 1

for each x ∈ B0(0, 1).)

Let’s recall theorem 15 in section 2.2.4. (Poisson’s formula for a ball)
Assume g ∈ C(∂B(0, r)) and define u by

u(x) =
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

g(y)

|x− y|n
dS.

Then
(i) u ∈ C∞(B0(0, r))
(ii) ∆u = 0 in B(0, r), and
(iii) limx→x0

x∈B0(0,r)

u(x) = g(x0) for each point x0 ∈ ∂B(0, r).

Proof. (1) For each fixed x, the mapping y 7→ G(x, y) is harmonic, except
for x = y. As G(x, y) = G(y, x), x 7→ G(x, y) is harmonic, except for x = y.
Thus x 7→ ∂G

∂yn
(x, y) = K(x, y) for x, y ∈ B0(0, r).
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(2) Note that we have

1 =
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

1

|x− y|n
dS

for x ∈ B0(0, r). And as g is bounded, u is likewise bounded. Since x 7→
K(x, y) is smooth, for x 6= y, we can verify that u ∈ C∞(B0(0, r)) with

∆u(x) =

ˆ
∂B(0,r)

∆xK(x, y)g(y)dS = 0

.
(3) Now fix x0 ∈ ∂B(0, r), ε > 0. Choose δ > 0 such that |g(y)−g(x0)| ≤ ε

if |y − x0| < δ, y ∈ ∂B(0, r). Then if |x− x0| < δ
2
, x ∈ B0(0, r),

|u(x)− g(x0)| ≤
∣∣∣ ˆ

∂B(0,r)

K(x, y)[g(x)− g(x0)]dy
∣∣∣

≤
∣∣∣ ˆ

∂B(0,r)∩B(x0,δ)

K(x, y)[g(x)− g(x0)]dy
∣∣∣+∣∣∣ˆ

∂B(0,r)/B(x0,δ)

K(x, y)[g(x)− g(x0)]dy
∣∣∣ := I + J

We have I ≤ ε
´
∂B(0,r)

K(x, y)dy = ε. Furthermore if |x − x0| ≤ δ
2

and

|y − x0| ≥ δ, we have |y − x0| ≤ |y − x|+ δ
2
≤ |y − x|+ 1

2
|y − x0|. Hence

|y − x| ≥ 1

2
|y − x0|.

Thus

J ≤ 2‖g‖L∞
ˆ
∂B(0,r)/B(x0,δ)

K(x, y)dy

≤ 2n+1(r2 − |x|2)‖g‖L∞
nα(n)r

ˆ
∂B(0,r)/B(x0,δ)

|y − x0|−ndy → 0

as x→ x0+
.

Combining this two estimates we can conclude that limx→x0
x∈B0(0,r)

u(x) = g(x0)

for each point x0 ∈ ∂B(0, r).
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Let u be the solution of

{
∆u = 0 in Rn

+

u = g on ∂Rn
+

given by Poisson’s formula

for the half-space. Assume g is bounded and g(x) = |x| for x ∈
∂Rn

+, |x| ≤ 1. Show Du is not bounded near x = 0. (Hint: Estimate
u(λen)−u(0)

λ
.)

Solution. We recall Poisson’s formula for the half-space

u(x) =
2xn
nα(n)

ˆ
∂Rn+

g(y)

|x− y|n
dS(y).

Notice that u(0) = g(0) = 0; following the hint we estimate u(λen)−u(0)
λ

:

1

λ

(
u(λen)− u(0)

)
=

2en
nα(n)

ˆ
∂Rn+

|y|(√
(λ2 + |y|2)

)ndS(y).

We consider the integral

2en
nα(n)

ˆ
∂Rn+∩{|y|≤1}

|y|(√
(λ2 + |y|2)

)ndS(y)

= (n− 1)α(n− 1)

ˆ 1

0

r(√
λ2 + r2

)n rn−2dr

= (n− 1)α(n− 1)

ˆ 1

0

1

r
(
(λ/r)2 + 1

)n/2 dr

thus the integral diverges. Hence lim
λ→0

u(λen)−u(0)
λ

cannot be bounded, which

implies Du · ~en is unbounded at 0. Therefore Du is unbounded at 0.
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(Reflection principle)
(a) Let U+ denote the open half-ball {x ∈ Rn||x| < 1, xn > 0}.

Assume u ∈ C2(U+) is harmonic in U+, with u = 0 on ∂U+ ∩ xn = 0.
Set

v(x) :=

{
u(x) if xn ≥ 0

−u(x1, ..., xn−1,−xn) if xn < 0
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for x ∈ U = B0(0, 1). Prove v ∈ C2(U) and thus v is harmonic within
U.

(b) Now assume only that u ∈ C2(U+) ∩ C(U). Show that v is
harmonic within U. (Hint: Use Poisson’s formula for the ball.)

Solution. (a) Apparently v(x) is of class C2 in each of U+ and U− :=
B(0, 1)/U+. We can check that for i 6= n

lim
xn→0−

∂xixnv(x1, x2, ..., xn) = ∂xixnv(x1, x2, ..., 0)

= ∂xixnu(x1, x2, ..., 0) = lim
xn→0+

∂xixnv(x1, x2, ..., xn);

while ∂xnxnv(x1, x2, ..., 0) = 0, and all other derivatives which do not involve
xn vanishes. So we can assure that D2v exists and is continuous in U .

Since v(x) = u(x) in U+ and v(x) = −u(x1, x2, ...,−xn) if xn < 0. And
we have already known that u is harmonic in U+. Given any x with xn < 0,
we have v(x) satisfies a local version of mean value theorem-

v(x) =

 
∂B(x,δ)

v(y)dy

for small enough δ > 0. The local mean value property is equivalent to
harmonicity. Finally, if xn = 0, we also have

v(x) =

 
∂B+(x,δ)

v(y)dy +

 
∂B−(x,δ)

v(y)dy = 0

since v(x) = −v(x1, x2, ...,−xn). We therefore can conclude that v(x) is a
harmonic function in U .

(b) Now assume that u is merely continuous on the boundary, we would
like to find a harmonic function w such that w = v on ∂B(0, 1) by the
Poisson’s formula for the ball-

w(x) =
r2 − |x|2

nα(n)r

ˆ
∂B(0,1)

v(y)

|x− y|n
dS(y),

we shall see that w(x) = 0 on xn = 0. Therefore, w = u on ∂U+ and by the
maximum principle we have u−w = 0 throughout U+. So w ≡ v in U+ and
we can similarly show w ≡ v in U−. Therefore, v is harmonic within U.
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(Kelvin transform for Laplace’s equation) The Kelvin transform
Ku = ū of a function u : Rn → R is

u(x) := u(x̄)|x̄|n−2 = u(x/|x|2)|x|2−n, (x 6= 0),

where x̄ = x/|x|2. Show that if u is harmonic, then so is ū. (Hint:
First show that Dxx̄(Dxx̄)T = |x|4I. The mapping x→ x̄ is conformal,
meaning angle preserving.)

Proof. We denote ψ(x) = x̄, and compute

∂

∂xi
ψj(x) =

δij
|x|2
− 2xixj
|x|4

,

where δij is Kronecker’s delta symbol. We write Dxx̄ in coordinate free
expression:

Dxx̄ = |x|−2(I − 2
xxT

|x|2
),

thus Dxx̄(Dxx̄)T = |x|−4(I − 4|x|−2xxT + 4|x|−4xxTxxT ) = |x|−4I.
We now calculate ∆ψ; since careful computations shall show that

ψjxixi = −2|x|−4(xj + 2δijxi) + 8|x|−6x2
ixj.

Thus, ∆ψ = n(2− n) x
|x|4 .

Hence

∆
(
u(x/|x|2)|x|2−n

)
= ∆

(
|x|2−n

)
u(x̄) + 2DuDx̄

(
D|x|2−n

)T
+|x|2−nDu ·∆x̄+ |x|2−nTr

(
(Dx̄)TD2uDx̄

)
.

Note that the first term is 0 for x 6= 0; and the last term is also 0 as
Tr
(
(Dx̄)TD2uDx̄

)
= |x|−4∆u = 0. While we have

2DuDx̄
(
D|x|2−n

)T
= 2Du

(
|x|−2(I − 2

xxT

|x|2
)
)
(2− n)|x|−nx

= 2(n− 2)|x|−2−nDu · x = −|x|2−nDu ·∆x̄.

Therefore the Kelvin transform preserves harmonic functions.

11



12

Suppose u is smooth and solves ut −∆u = 0 in Rn × (0,∞).
(a) Show uλ(x, t) := u(λx, λ2t) also solves the heat equation for

each λ ∈ R.
(b) Use (a) to show v(x, t) := x ·Du(x, t) + 2tut(x, t) solves the heat

equation as well.

Proof. (a) We compute to show that the dilation of u also satisfies the
heat equation, since

∂

∂t
uλ(x, t) =

∂

∂t
u(λx, λ2t) = λ2ut

and
∂2

∂x2
i

uλ(x, t) = λ2uxixi .

We see that uλ solves the heat equation.
(b) Differentiating uλ with respect to λ we shall have

∂

∂λ
uλ = x ·Du(λx, λ2t) + 2tλut(λx, λ

2t).

Now let λ = 1 we then see that

∂

∂λ
uλ = x ·Du(x, t) + 2tut(x, t) = v(x, t).

Since u is smooth, the mixed partials are equal under exchanges of orders of
differentiation. And uλ solves the heat equation, that is

(uλ)t −∆(uλ) = 0.

We differentiate both sides with respect to λ and conclude that v(x, t) is also
a solution to the heat equation.

13

Assume n = 1 and u(x, t) = v( x√
t
).

(a) Show ut = uxx if and only if v
′′
+ z

2
v
′
= 0. Show that the general

solution is
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v(z) = c

ˆ z

0

e−s
2/4ds+ d.

(b) Differentiate u(x, t) = v( x√
t
) with respect to x and select the

constant c properly to obtain the fundamental solution Φ for n = 1.
Explain why this procedure produces the fundamental solution.
(Hint: What is the initial condition for u?)

Solution. (a) Differentiate v we have ut = 1
2
xt−

3
2v
′
and uxx = 1

t
v
′′
. By the

heat equation we get v
′′

+ x
2
√
t
v
′

= 0. Vice versa, if v satisfies the ODE then

u solves the heat equation. We solve the ODE, notice that (e
z2

4 v(z)
′
)
′

= 0,
then the solution shall be

v(z) = c

ˆ z

0

e−s
2/4ds+ d.

(b) The initial condition is the δ−distribution. Differentiate u(x, t) = v(z)

with respect to x we have ux(x, t) = c√
t
e−

x2

4t , which should also be a solution
to the heat equation. Since the integral of δ−function is 1,

1 = c

ˆ ∞
−∞

e−
s2

4 ds = 2c
√
π,

we must have c = 1
2
√
π
, thus Φ(x, t) = 1√

4πt
e−

x2

4t is the fundamental solution
for n = 1.

14

Write down an explicit formula for a solution of{
ut −∆u+ cu = f in Rn × (0,∞)

u = g on Rn × {t = 0}

where c ∈ R.

Solution. First we consider the homogeneous equation with initial bound-
ary data {

vt −∆v + cv = 0 in Rn × (0,∞)

v = h on Rn × {t = 0}

13



We take the Fourier transform with respect to the spacial variable and
the equation shall become an ODE{

v̂t + |ξ|2v̂ + cv̂ = 0 in Rn × (0,∞)

v̂ = ĥ on Rn × {t = 0}

Solving the ODE- v̂ = e−(|ξ|2−c)tĥ(ξ), then taking the inverse Fourier
transform we have

v(x, t) =
e−ct

(4πt)n/2

ˆ
Rn
e−

(x−y)2
4t h(y)dy.

By Duhamel’s principle we conclude that the solution to the non-homogeneous
problem is

u(x, t) =
e−ct

(4πt)n/2

ˆ
Rn
e−

(x−y)2
4t g(y)dy

+

ˆ t

0

e−c(t−s)

(4π(t− s))n/2

ˆ
Rn
e−

(x−y)2
4(t−s) f(y, s)dyds.

15

Given g : [0,∞)→ R, with g(0) = 0, derive the formula

u(x, t) =
x√
4π

ˆ t

0

1

(t− s)3/2
e
−x2

4(t−s) g(s)ds

for a solution of the initial/boundary value problem
ut − uxx = 0 in R+ × (0,∞)

u = 0 on R+ × {t = 0}
u = g on {x = 0} × [0,∞)

(Hint: Let v(x, t) := u(x, t)− g(t) and extend v to {x < 0} by odd
reflection.)
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Solution. We follow the hint and extend our function v(x, t) := u(x, t)−
g(t) by odd extension to {x < 0} : v(x, t) := g(t) − u(−x, t). Then our
problem becomes 

vt − vxx = −gt in R+ × (0,∞)

vt − vxx = gt in R− × (0,∞)

v = 0 on R× {t = 0}

Apply the formula for the solution to the heat equation we have

v(x, t) =

ˆ ∞
−∞

Φ(x− y, t)0dy

−
ˆ t

0

ˆ ∞
0

Φ(x− y, t− s)g′(s)dyds

+

ˆ t

0

ˆ 0

−∞
Φ(x− y, t− s)g′(s)dyds

= −
ˆ t

0

ˆ ∞
0

Φ(x− y, t− s)g′(s)dyds+

ˆ t

0

ˆ 0

−∞
Φ(x− y, t− s)g′(s)dyds

= −
ˆ t

0

ˆ ∞
−∞

Φ(x− y, t− s)g′(s)dyds+ 2

ˆ t

0

ˆ 0

−∞
Φ(x− y, t− s)g′(s)dyds

= −
ˆ t

0

g
′
(s)ds+ 2

ˆ t

0

ˆ 0

−∞
Φ(x− y, t− s)g′(s)dyds

We denote h(s) :=
´ 0

−∞Φ(x− y, t− s)dy and z := (x−y)√
4(t−s)

and compute-

h(s) =

ˆ 0

−∞

e−
(x−y)2
4(t−s)

(4π(t− s))1/2
dy =

1√
π

ˆ ∞
x√

4(t−s)

e−z
2

dz

h′(s) = − x

4
√
π(t− s)3/2

e−
x2

4(t−s) ;

and continue

v(x, t) = −g(t) + 2
[
h(s)g(s)

]t
0
− 2

ˆ t

0

g(s)h
′
(s)ds

= −g(t) +
x√
4π

ˆ t

0

1

(t− s)3/2
e
−x2

4(t−s) g(s)ds.
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Therefore we have

u(x, t) = v(x, t) + g(t) =
x√
4π

ˆ t

0

1

(t− s)3/2
e
−x2

4(t−s) g(s)ds.

16

Give a direct proof that if U is bounded and u ∈ C2
1(UT )∩C(ŪT ) solves

the heat equation, then max
ŪT

u = max
Γ̄T

u. (Hint: Define uε := u− εt for

ε > 0, and show uε cannot attain its maximum over ŪT at a point
in UT .)

Proof. We denote UT := U × (0, T ] and ΓT := Ū × {0} ∪ (∂U × [0, T ]).
Claim: if ∆u− ut ≥ 0 in UT , then max

ŪT
u = max

ΓT
u.

First we consider the case where ∆u − ut > 0. For any ε ∈ (0, T ) ex-
sists a point (x0, t0) ∈ UT−ε such that u(x0, t0) = maxŪT−ε u(x, t) since u is

continuous and UT−ε is compact. If (x0, t0) ∈ UT−ε by derivative tests we
have ∆u(x0, t0) ≤ 0, ut(x0, t0) = 0 and ∇u(x0, t0) = 0, a contradiction to
∆u − ut > 0. Hence we must have (x0, t0) ∈ ΓT−ε. Letting ε → 0 we have
max
ŪT

u = max
ΓT

u.

Now we consider the case where ∆u − ut ≥ 0. For ε > 0, we define a
function uε(x, t) := u(x, t)− εt, notice that

∆uε = ∆u = ut > (ut − ε) = (uε)t.

So we have by our previous reasoning that max
ŪT

uε = max
ΓT

uε. Letting ε → 0,

we have the desired conclusion.
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We say v ∈ C2
1(UT ) is a subsolution of the heat equation if

vt −∆v ≤ 0

in UT .

16



(a) Prove for a subsolution v that

v(x, t) ≤ 1

4rn

¨
E(x,t;r)

v(y, s)
|x− y|2

(t− s)2
dyds

for all E(x, t; r) ⊂ UT .
(b) Prove that therefore maxŪT v = maxΓT v.
(c) Let φ : R → R be smooth and convex. Assume u solves the

heat equation and v := φ(u). Prove v is a subsolution.
(d) Prove v := |Du|2 + u2

t is a subsolution, whenever u solves the
heat equation.

Proof. (a) Without loss of generality, we shift (x, t) to (0, 0), and upon
mollifying if necessary, we assume that u is smooth. We write E(r) =
E(0, 0, ; r). We define the function

φ(r) :=
1

4rn

¨
E(r)

u(y, s)
y2

s2
dyds =

¨
E(1)

u(ry, r2s)
y2

s2
dyds.

We shall use an identity:
˜
E(1)

|y|2
|s|2 dyds = 4. We calculate φ

′
(r) :

φ
′
(r) =

¨
E(1)

n∑
i=1

uyiyi
|y|2

s2
+ 2rus

|y|2

s
dyds

=
1

rn+1

¨
E(r)

n∑
i=1

uyiyi
|y|2

s2
+ 2rus

|y|2

s
dyds

=: A+B

Also, let us introduce a function ψ := n
2

log(−4πs)+ |y|
2

4s
+n log r and since

Φ(y,−s) = r−n on ∂E(r) we have ψ = 0 on ∂E(r). We utilize the formula
to write

B =
1

rn+1

¨
E(r)

4us

n∑
i=1

yiψyidyds

= − 1

rn+1

¨
E(r)

4nusψ + 4
n∑
i=1

usyiyiψdyds;

17



due to integral by parts and the fact that ψ = 0 on ∂E(r). Integrating by
parts with respect to s, we discover

B =
1

rn+1

¨
E(r)

−4nusψ + 4
n∑
i=1

uyiyiψsdyds

=
1

rn+1

¨
E(r)

−4nusψ + 4
n∑
i=1

uyiyi
(
− n

2s
− |y|

2

4s2

)
dyds

=
1

rn+1

¨
E(r)

−4nusψ −
2n

s

n∑
i=1

uyiyidyds− A.

Consequently since ut −∆u ≤ 0,

φ
′
(r) = A+B

≥ 1

rn+1

¨
E(r)

−4n∆uψ − 2n

s

n∑
i=1

uyiyidyds

=
n∑
i=1

1

rn+1

¨
E(r)

4nuyiψyi −
2n

s
uyiyidyds = 0

Hence φ(r) is non-decreasing; and therefore

φ(r) =
1

4rn

¨
E(r)

u(y, s)
y2

s2
dyds ≥

≥ lim
t→0

φ(t) = u(0, 0)
(

lim
t→0

1

tn

¨
E(t)

|y|2

s2
dyds

)
= 4u(0, 0).

As
1

tn

¨
E(t)

|y|2

s2
dyds =

¨
E(1)

|y|2

s2
dyds.

(b) Suppose that there exists some point (x0, t0) ∈ UT such that u(x0, t0) =
M := max

ŪT
u. Then for sufficiently small r > 0 we have E(x0, t0; r) ⊂ UT ; and

we have

M = u(x0, t0) ≤ 1

4rn

¨
E(x0,t0;r)

u(y, s)
|x0 − y|2

(t0 − s)2
dyds ≤M

18



since
1

4rn

¨
E(x0,t0;r)

|x0 − y|2

(t0 − s)2
dyds = 1.

We shall have for all (y, s) ∈ E(x0, t0; r), u(y, s) = u(x0, t0).
Draw any line segment L in UT connecting (x0, t0) with some other point

(y0, s0) ∈ UT with s0 < t0. Consider

r0 := min{s ≤ s0|u(x, t) = M for all points (x, t) ∈ L, s ≤ t ≤ t0}.

Since u is continuous, the minimum is attained. Assume r0 > s0. Then
u(z0, r0) = M for some point (z0, r0) on L∩UT and so u ≡M on E(z0, r0; r)
for sufficiently small r. Since E(z0, r0; r) contains L ∩ {r0 − σ ≤ t ≤ r0} for
some small σ > 0, we have a contradiction. Thus r0 = s0 and hence u ≡ M
on L.

(c) A direct computation shall show that

∂t(φ(u))−∆(φ(u)) = φ
′
(ut −∆u)− φ′′|Du|2.

As φ is convex, we have φ
′′ ≥ 0. Thus ∂t(φ(u))−∆(φ(u)) ≤ 0.

(d) If u solves the heat equation, then ut and Du each solves the heat
equation; by part (c), (ut)

2 and |Du|2 are two subsolutions. Since the heat
equation is linear, we simply apply superposition principle to conclude.

18

(Stoke’s rule) Assume u solves the initial value problem{
utt −∆u = 0 in Rn × (0,∞)

u = 0, ut = h on Rn × {t = 0}

Show that v := ut solves{
vtt −∆v = 0 in Rn × (0,∞)

v = h, vt = 0 on Rn × {t = 0}

This is Stoke′s rule.

19



Solution. Suppose that u solves{
utt −∆u = 0 in Rn × (0,∞)

u = 0, ut = h on Rn × {t = 0},

we differentiate the wave equation with respect to time and we have

utt −∆ut = 0, that is, vtt −∆v = 0,

where v := ut.
On Rn × {t = 0} since u = 0 so ∆u = 0, therefore vt = utt = ∆u = 0.

Hence v := ut solves the initial value problem{
vtt −∆v = 0 in Rn × (0,∞)

v = h, vt = 0 on Rn × {t = 0}.

19

(a) Show the general solution of the PDE uxy = 0 is

u(x, y) = F (x) +G(y)

for arbitrary functions F,G.
(b) Using the change of variables ξ = x+t, η = x−t, show utt−∆u =

0 if and only if uξη = 0.
(c) Use (a) and (b) to derive D’Alembert’s formula.
(d) Under what conditions on the initial data g, h is the solution

u a right-moving wave? A left-moving wave?

Solution. (a) It is obvious by integrating with respect to x and y.
(b) Since u(x, t) = u( ξ+η

2
, ξ−η

2
), differentiate we get uξη = 1

4
(∆u − utt).

Hence uξη = 0 iff u solves the wave equation.
(c) The general solution is given by u = F (ξ)+G(η) = F (x+t)+G(x−t).

From the initial condition we have F (x) +G(x) = g(x) and F
′
(x)−G′(x) =

h(x).
Integrating the second the equation F (x) − G(x) =

´ x
0
h(y)dy, then

F (x) = 1
2

(
g(x) +

´ x
0
h(y)dy

)
and G(x) = 1

2

(
g(x) −

´ x
0
h(y)dy

)
. We then

arrive at D’Alembert’s formula

u(x, t) =
1

2

(
g(x+ t) + g(x− t)

)
+

1

2

ˆ x+t

x−t
h(y)dy.
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(d) If F (z) = g(z) +
´ z

0
h(y)dy = 0, the solution is a right-moving wave;

if G(x) = g(z)−
´ z

0
h(y)dy = 0, the wave is moving towards the left.

20

Assume that for some attenuation function α = α(r) and delay
function β = β(r) ≥ 0, there exist for all profiles φ solutions of the
wave equation in (Rn − {0})× R having the form

u(x, t) = α(r)φ(t− β(r)).

Here r = |x| and we assume β(0) = 0. Show that this is possible only
if n = 1 or 3, and compute the form of the functions α, β.

Proof. Setting v(r, t) := u(x, t) we obtain the n−dimentional radially
symmetric wave equation

vrr +
n− 1

r
vr = vtt (RW ).

If distortionless radially symmetric wave propagation is possible, then given
any reasonable φ the function v(r, t) = α(r)φ(t−β(r)) is a solution of (RW ).
Computing partial derivatives

vtt = αφ
′′

vr = α
′
φ− αφ′β ′

vrr = α
′′
φ− 2α

′
φ
′
β
′ − αφ′′(β ′)2 − αφ′β ′′

Plugging these into (RW ) we have

α
′′
φ− 2α

′
φ
′
β
′ − αφ′′(β ′)2 − αφ′β ′′ + n− 1

r

(
α
′
φ− αφ′β ′

)
= αφ

′′

The only possible way the above equation holds for all reasonable φ is
that the coefficients of φ, φ

′
, φ
′′

to equal to zero. Equating the coefficients
gives β

′
= 1, thus β

′′
= 0; plugging this into the equation gives

2α
′
+
n− 1

r
α = 0, α

′′
+
n− 1

r
α
′
= 0 (∗)
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The solutions to (∗) are of the form Krp where K and p are constants.
Plugging this ansatz for α into (1) and (2) gives

2p+ n− 1 = 0, p(p− 1) + p(n− 1) = 0 (∗∗)

Equations (∗∗) have solutions only for p = 1 or 3. Moreover, when p = 1,
we have α(r) = 1.
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(a) Assume E = (E1, E2, E3) and B = (B1, B2, B3) solve Maxwell’s

equations

{
Et = curlB,Bt = −curlE

divB = divE = 0.

Show Ett −∆E = 0, Btt −∆B = 0.
(b) Assume that u = (u1, u2, u3) solves the evolution equations of

linear elasticity utt − µ∆u− (λ+ µ)D(divu) = 0 in R3 × (0,∞).
Show w := divu and w := curlu each solve wave euqations but

with differing speeds of propagation.

Proof. (a) Taking curl on both sides of the equations and computing
carefully we have the identity∇×Et = ∇(∇·B)−∆B = −∆B, and∇×Bt =
∆E − ∇(∇ · E) = ∆E by the divergence free condition. Differentiating
both sides of the equations with respect to time we have Ett = ∇× Bt and
Btt = −∇×Et. We have thus shown that Ett−∆E = 0, and Btt−∆B = 0.

(b) Taking divergence of the equation we have

divutt − µ(∆divu)− (λ+ µ)div(D(divu)) = 0,

that is wtt − (2µ+ λ)∆w = 0.
Taking curl of the equation we have

curlutt − µ∆(curlu)− (λ+ µ)curl(D(divu)) = 0,

that is vtt − µ∆v = 0.
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Let u denote the density of particles moving to the right with speed
one alone the real line and let v denote the density of particles

22



moving to the left with speed one. If at rate d > 0 right-moving
particles randomly become left-moving, and vice versa, we have

the system of PDE

{
ut + ux = d(v − u)

vt − vx = d(u− v).

Show that both w := u and w := v solve the telegraph equation
wtt + 2dwt − wxx = 0.

P roof. Differentiating both sides of the equations with respect to t, and
to x we have

utt + uxt = d(vt − ut), vtt − vxt = d(ut − vt).

utx + uxx = d(vx − ux), vtx − vxx = d(ux − vx).
Subtracting and using the equations we have

utt − uxx = d(vt − vx + ux − ut) = d(u− v + v − u)− 2dut = −2dut.

Adding and using the equations we have

vtt − vxx = d(−vt − vx + ux + ut) = d(u− v + v − u)− 2dvt = −2dvt.

Hence both u and v solve the telegraph equation.
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Let S denote the square lying in R×(0,∞) with corners at the points

(0, 1), (1, 2), (0, 3), (−1, 2). Define f(x, t) :=


−1 for (x, t) ∈ S ∩ {t > x+ 2}

1 for (x, t) ∈ S ∩ {t < x+ 2}
0 otherwise.

Assume u solves

{
utt − uxx = f in R× (0,∞)

u = 0, ut = 0 on R× {t = 0}.
Describe the shape

of u for t > 3.

Solution. By Duhamel’s principle, the solution to the nonhomogeneous
wave equation is given by

u(x, t) =
1

2

ˆ t

0

ˆ x+s

x−s
f(y, t− s)dyds (∗)
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See Fig. 2 attached - at time T1, u(x, T1) = 0 at any point which is not be-
tween P1 and P2. For example, the double integral (∗) vanishes when taken
over triangles 4Q1A1B1 and 4Q2A2B2 because of the nature of this par-
ticular function f(x, t). The force affects u(x, t) only in the shaded comet
shaped region; at times T1 and T2 the shape of the string is illustrated by
the broken lines superimposed on Fig.2. The pointed pulse travels with unit
speed in the positive x-direction. The solution is called a ”one way wave”.
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(Equipartition of energy) Let u solve the initial-value problem for
the wave equation in one dimension:

utt − uxx = 0 in R× (0,∞)

u = g, ut = h on R× {t = 0}

}
Suppose g, h have compact support. The kinetic energy is k(t) :=

1
2

´∞
−∞ u

2
t (x, t)dx and the potential energy is p(t) := 1

2

´∞
−∞ u

2
x(x, t)dx.

Prove
(a) k(t) + p(t) is constant in t, (b) k(t) = p(t) for all large enough

times t.
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Proof. Take derivative of k(t) andp(t), we have

kt(t) =
∂

∂t

1

2

ˆ ∞
−∞

u2
t (x, t)dx =

ˆ ∞
−∞

ut · uttdx

pt(t) =
∂

∂t

1

2

ˆ ∞
−∞

u2
x(x, t)dx =

ˆ ∞
−∞

ux · uxtdx = −
ˆ ∞
−∞

∆u · utdx.

Hence, kt(t) + pt(t) =
´∞
−∞ ut · (utt − uxx)dx = 0 which implies that k(t) +

p(t) is constant over t. D’Alembert’s formula gives us the explicit solution
1
2
[g(x+ t)+g(x− t)]+ 1

2

´ x+t

x−t h(y)dy and thus k(t)−p(t) = 1
8

´∞
−∞[(h(x+ t)−

h(x− t))2− (g
′
(x+ t) + g

′
(x− t) +h(x+ t) +h(x− t))2]dx. Since both g and

h are compactly supported, for large enough t the above integral vanishes.
As t → ∞, we have k(t) − p(t) = 0, that is k(t) = p(t) for all large enough
times t.
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