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Solutions to problems for Part 2

Sample Quiz Problems

Quiz Problem 1. Write down the equation for the thermal de Broglie wavelength. Explain its importance in the
study of classical and quantum gases.

Solution

λ =
h√

2πmkBT
(1)

This is of the form h/pT , where pT = (2πmkBT )1/2 is an average thermal momentum. Define the average interparticle
spacing of a gas Lc = (V/N)1/3. If λ > Lc quantum effects become important in the thermodynamics.

—————–

Quiz Problem 2. Why are the factors 1/N ! and 1/h3N introduced into the derivation of the partition function of
the ideal classical gas?

Solution
The factor 1/N ! is needed to account for the fact that when an intergration is carried out over all phase space for

N particles, all permutations of the particle identities is included. For indentical particles this must be removed. The
factor 1/h3N takes account of the Heisenberg uncertainty principle which states that the smallest phase space volume
that makes sense is (h̄/2)3. The fact that it is 1/h3 instead of 1/(h̄/2)3 for each particle is to reproduce the high
temperature behavior of quantum gases.

—————–

Quiz Problem 3. Explain why the heat capacity at constant volume of a nitrogen molecule is roughly 1.5NkB at
1K but 2.5NkB at room temperature. What are the expressions for the heat capacity at constant pressure for these
two cases?

Solution
At low temperatures only the translational degrees of freedom are active so we have kBT/2 of energy for each

of three degrees of freedom. The specific heat is then 3kBTN/2. Once the temperature is larger than the spacing
between rotational energy levels h̄2/2I where I is the moment of inertia, then the rotational degrees of freedom are
also active as we get two more degrees of freedom. Only two rotational degrees of freedom contribute as the moment
of inertia about the molecule axis is very small, so the level spacing is large and this mode is not active at room
temperature. The heat capacity at constant pressure is CP = CV +NkBT .

—————–

Quiz Problem 4. In modeling the earth’s atmosphere using the equilibrium isothermal model, the gas pressure
decreases exponentially with altitude. Explain how this is reconciled with the equilibrium condition of constant
pressure found in our discussion of thermodynamics in Part 1 of the course.

Solution
The condition that the pressure of a thermodynamic system such as a gas must be a constant applies when there

are no externally applied potentials in the system. An external potential such as a gravitational field or a harmonic
trapping potential as occurs in atom traps leads to a force and this force is balanced by a pressure gradient in the
gas. This leads to the condition of hydrostatic equilibrium like that as used in the analysis earth’s atmosphere.

—————–
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Quiz Problem 5. Discuss the assumptions used in the isothermal and adiabatic models of the atmosphere.

Solution
The isothermal model assumes that the atmostphere is at constant temperature which requires that thermal equi-

librium has been established in all regions of the atmosphere. The adiabatic model assumes that no heat flow occurs
in the gas and is justified by the argument that the thermal conductivity of air is very low. These models are clearly
limiting cases with the truth being somewhere between the two. Surprisingly the adiabatic model seems to fit the
behavior of the troposphere quite well.

—————–

Quiz Problem 6. What is the Curie law? Derive this law for the spin half Ising paramagnet.

Solution
The spin half Ising paramagnet has Hamiltonian,

H = −µsh
∑
i

Si (2)

where Si = ±1. The partition function and magnetization are then,

ZN = (2cosh(βµsh))N ; m =
∂(ln(ZN ))

∂(βh)
= Nµstanh(βµsh) (3)

The magnetic susceptibility is then,

χ =
∂m

∂h
= Nβµ2

ssech
2(βµsh)) ≈ Nµ2

s

kBT
(4)

which shows that in the limit h→ 0, the susceptibility behaves as C/T which is the Curie law.

—————–

Quiz Problem 7. Paramagnets and also the Ising model in one dimension exhibit a peak in their specific heat,
with the low temperature behavior being an approach to zero exponentially and at high temperature an approach to
zero as 1/T 2. Why is there a peak in the specific heat in these models. What can’t we use the rule kBT/2 per degree
of freedom to find the specific heat?

Solution
A peak in the heat capacity usually occurs in systems where there is a gap between the ground state energy and

the first excited state, though this is not the only mechanism for a peak in CV . If the gap is ∆, the the peak in
the specific heat occurs at roughly kBTc ≈ ∆, though the precise location depends on the system. The peak occurs
because at the temperature the first excited state begins to be populated leading to a rapid change in the internal
energy with temperature and this leads to an increase in the heat capacity

—————–

Quiz Problem 8. Explain the meaning of negative temperature in the Ising paramagnetic and how it can be used
to make a magnetic cooling device.

Solution Negative temperature occurs when ∂S/∂E is negative. For the Ising paramagnet this condition applies
in the energy regime E > 0 as the peak in the many body density of states is at E = 0. Magnetic cooling can
be produced by preparing a state in a polarized spin configuration followed by removing the field. Once the field
is removed, the system becomes more disordered and in doing so absorbs heat from its surroundings. This leads to
cooling, just as gas cooling is produced when a gas expands as in conventional gas cycle refridgeration.

—————–
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Quiz Problem 9. What is the meaning of the terms “spontaneous symmetry breaking” (or spontaneous magne-
tization) and “breaking of ergodicity” in the context of the two dimensional Ising model.

Solution In a ferromagnet there are two ground states: all up spins; or all down spins. At low temperatures, these
two states are separated by a large energy barrier that is impossible to overcome at zero applied field. This system
is non-ergodic as phase space is separated into to regions that are not connnected by any trajectories. Spontaneous
symmetry breaking refers to the fact that the system chooses between to states (either all up or all down) and so the
up down symmetry of the system is broken without the application of a symmetry breaking field.

—————–

Quiz Problem 10. State and give a physical explanation of the behavior of the chemical potential µ and the
fugacity z = eβµ as temperature T → 0, for both the non-relativistic and ultra-relativistic Bose gas.

Solution.
For the Bose gas as temperature goes to zero, the internal energy contribution dominates. As temperature goes to

zero all of the particles that are added go into the ground state, so the chemical potential goes to the ground state
energy. For the ideal gas case the ground state energy is zero, so the chemical potential goes to zero. The fugacity
therefore goes to one. This is true for both non-relativistic and ultra-relativistic gases. In the Bose condensed phase
the fugacity remains at one up to the BEC critical temperature.

—————–

Quiz Problem 11. Write down the starting expression in the derivation of the grand partition function, ΞB for
the ideal Bose gas, for a general set of energy levels εl, with degeneracy gl. Carry out the sums over the energy level
occupancies, nl and hence write down an expression for ln(ΞB).

Solution
For the case of Bose statistics the possibilities are nl = 0, 1, 2...∞ so we find

ΞB =
∏
l

(∑
nl

e−β(εl−µ)nl

)gl
=

M∏
l=1

(
1

1− e−β(εl−µ)

)gl
=

M∏
l=1

(
1

1− ze−βεl

)gl
(5)

where the sums are carried out by using the formula for a geometric progression. We thus find,

ln(ΞB) = −
M∑
l=1

glln
(
1− ze−βεl

)
(6)

< nl >= − 1

β

∂

∂εl
[ln(ΞB)] =

ze−βεl

1− ze−βεl
(7)

—————–

Quiz Problem 12. In the condensed phase, superfluids are often described in terms of a two fluid model. Based
on the analysis of the ideal Bose gas, explain the physical basis of the two fluid model.

Solution
The two fluid model considers that the Bose condensed phase is a superfluid while the particles in the excited states

behave as a normal fluid. The normal fluid exhibits dissipation and viscosity, while the superfluid has very low values
of viscosity and other remarkable properties such as phase coherence.

Quiz Problem 13. Why is the chemical potential of photons in a box, and also acoustic phonons in a crystal,
taken to be zero?

Solution.
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The lowest energy state of these systems is zero so any additional photons or phonons may be placed in this state.
This is explained by the fact that photons and phonons are massless bosons that can be created and destroyed, or
by arguing that we in essence have a Bose condensed phase of zero energy particles so µ = 0. A more subtle and
ultimately the full explanation is through an understanding of the interactions with the reservoir. In the case of
massive particles the reservoir contains a very large number of the same massive particles so the exchange with the
reservoir is through exchange of the same type of particle. In a photon or phonon gas, the reservoir is a system
of atoms where the photons or phonons may be absorbed and re-emitted as combinations of different photons or
phonons. For this reason the same amount of total free energy in the phonon or photon gas may be divided amongst
an arbitrary number of particles, so the chemical potential to add another particle must be zero.

—————–

Quiz Problem 14. Derive or write down the blackbody energy density spectrum in three dimensions.

Solution. The blackbody energy density spectrum follows from the equation for the energy of the photon gas in
three dimensions,

U = 2(
L

2π
)3

∫ ∞
0

dk 4πk2(h̄kc
e−βh̄kc

1− e−βh̄kc
= 2(

L

2πc
)3

∫ ∞
0

dω 4πω2(h̄ω)
e−βh̄ω

1− e−βh̄ω
(8)

where we used ω = kc. we then write,

U

V
=

∫
dω u(ω), where, u(ω) =

h̄

π2c3
ω3

eβh̄ω − 1

—————–

Quiz Problem 15. Write down and explain the relationship between the intensity of radiation emitted by a
blackbody (Stefan-Boltzmann law) and the energy density of a photon gas in the blackbody.

Solution. The relationship between the intensity and the energy density of blackbody radiation is,

I =
c

4

U

V
= σT 4 (10)

The factor c/4 is explained as follows: The factor of c converts the energy density of an EM wave into the intensity
of radiation crossing a surface whose surface normal is in the same direction as the direction of wave propagation.
The factor of 1/4 has two pieces. First we note that emission from the surface of a blackbody is isotropic so half of
the radiation is emitted back into the blackbody. Moreover, the amount of radiation emitted to the exterior is also in
all directions on a hemisphere. To find the radiation emitted in the normal direction, we take the component of the
electric field in the normal direction, leading to a factor of cos(θ). However the intensity is the square of the electric
field, so it comes with a factor of cos2(θ). The average of cos2(θ) leads to the second factor of 1/2.

—————–

Quiz Problem 16. Explain the physical origin of the cosmic microwave background (CMB) blackbody spectrum
of the universe. It is currently at a temperature of TCMB = 2.713K. If the universe is expanding at a constant rate
L(t) = H0t, where H0 is a constant what is the expected behavior of the temperature TCMB(t).

Solution. During the “photon epoque” of the early universe that is believed to have existed during the period from
10 seconds after the big bang to 377 thousand years after the big bang (that is believed to have occured roughly 13.7
billions years ago), the universe consisted of a gas of charged particles and photons that was equilibrated. At around
380 thousand years after the big bang, Hydrogen and Helium began to form, reducing the scattering of photons and
the universe became “transparent”. The cosmic microwave background is a remnant of the photon gas that existed
380 thousand years ago. Assuming that the photon gas making up the CMB has not changed significantly due to
scattering since that time, we can relate the temperature of the CMB to the size of the universe by assuming that the
energy in the photon gas is conserved, so that,

U = constant = L(t)3 π2k4
B

15h̄3c3
T 4 (11)

where L(t) is the size of the universe. We then find T ∝ L−3/4.
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—————–

Quiz Problem 17. Derive or write down the spectral energy density for blackbody radiation in a universe with
two spatial dimensions.

Solution. The blackbody energy density spectrum follows from the equation for the energy of the photon gas in
two dimensions,

U = 2(
L

2πc
)2

∫ ∞
0

dω 2πω(h̄ω)
e−βh̄ω

1− e−βh̄ω
= L2

∫
dω u(ω) (12)

Note that here I kept the two polarizations of light even though one of them is along the third direction. We then
have,

u(ω) =
h̄

πc2
ω2

eβh̄ω − 1

—————–

Quiz Problem 18. Derive or write down the Debye theory for the internal energy for phonons in a square lattice.
Derive the low and high temperature limits of the internal energy and specific heat for this system.

Solution. The energy density for the Debye model for the case of a square lattice comes from assuming that
phonons are an ideal Bose gas where there is one acoustic mode per atom. The chemical potential is taken to be zero,
so we have,

U = 2(
L

2π
)2

∫ kD

0

dk 2πk(h̄kvs)
e−βh̄kvs

1− e−βh̄kvs
(14)

where,

NA = (
L

2π
)2

∫ kD

0

2πk dk, so that kD =

(
4πNA
L2

)1/2

(15)

The factor of two in the front of the energy equation takes into account the fact that there are two phonon modes
for the square lattice. This is a rough approximation as only one of the the two modes has the dispersion relation
εp = pvs.

We define x = βpvs, and kBTD = h̄kDc leading to,

U

L2
= 4T (

T

TD
)2

∫ TD/T

0

dx
x2

ex − 1
(16)

In the low temperature and high temperature limits this reduces to,

CV
NkB

∼ (
T

TD
)2, T << TD; CV = 2NkB T >> TD (17)

—————–

Quiz Problem 19. On a graph, illustrate the behavior of the chemical potential µ and the fugacity z = eβµ of
Bose, Fermi and classical gases as a function of temperature. What is the chemical potential and fugacity of the the
Fermi and Bose gases as temperature T →∞ and as T → 0.

Solution
At low temperatures the chemical potential of quantum gases approaches the mean of the energy of the highest

occupied and lowest unoccupied energy levels. For Fermions with a negligible gap at the Fermi energy the chemical
potential at T = 0 is the same as the Fermi energy. For Bosons, all particles may be in the lowest energy level
and for gases this is close to zero for large volumes, so the chemical potential of the Bose gas is zero at T = 0,
V∞. At high temperatures the Bose and Fermi gases act like a classical gas so their chemical potential is given by,
µ = kBT ln(Nλ3/V ) to leading order. The fugacity of all three gases approaches zero at sufficiently high T , while at
low T the fugacity of the Bose gas approaches one while that of the Fermi gas diverges.
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—————–

Quiz Problem 20. Write down the starting expression in the derivation of the grand partition function, ΞF for
the ideal Fermi gas, for a general set of energy levels εl. Carry out the sums over the energy level occupancies, nl and
hence write down an expression for ln(ΞF ).

Solution

ΞF =
∑
n1

...
∑
nM

e−β
∑M

l=1
(εl−µ)nl =

M∏
l=1

(
1 + e−β(εl−µ)

)
=

M∏
l=1

(
1 + ze−βεl

)
(18)

where z = eβµ and each sum is over the possiblities nl = 0, 1 as required for Fermi statistics. We thus find,

ln(ΞF ) =

M∑
l=1

ln
(
1 + ze−βεl

)
(19)

—————–

Quiz Problem 21. White dwarf stars are stable due to electron degeneracy pressure. Explain the physical origin
of this pressure.

Solution
Even in the ground state, the internal energy of the Fermi gas is positive. This is due to the fact that only one

Fermion can be in each energy level so high energy states are occupied at zero temperature. As the density increase,
the Fermi energy or energy of the highest occupied state, increases. The pressure is the rate of change of the energy
with volume so the pressure increases with the density. This “degeneracy pressure” opposes gravitational collapse
and stabilizes white dwarf stars.

—————–

Quiz Problem 15. Explain the physical origins of the paramagnetic and diamagnetic contributions to the mag-
netization of the free electron gas.

Solution. The paramagnetic contribution to the magnetization of the free electron gas is the change in the spin
polarization due to the application of a magnetic field. The diamagnetic contribution to the magnetization is due to
changes in the electron orbitals due to the application of a magnetic field. The diamagnetic contribution can occur
even if there is no net spin. To a first approximation, we can add the paramagnetic and diamagnetic contributions.
When a paramagnetic contribution occurs, these two contributions are usually of opposite sign.

—————–

Assigned problems

Assigned Problem 1. From the density of states for an ideal monatomic gas Ω(E) given in Eq. (26) of the notes,
find the Sackur-Tetrode equation for the entropy, Eq. (27) of the notes.

Solution.

Ω(E) =
2π1/2V N

N !h3N

(2πmE)3N/2−1/2

( 3N
2 − 1)!

(20)

Using Stirling’s approximation and dropping constants, we have

kBln(Ω(E)) = kBN [ln(
V

h3
)− ln(N) + 1− 3

2
ln(

3N

2
) +

3

2
+

3

2
ln(2πmU)] = NkB

[
ln[

V

N

(
4πmU

3Nh2

)3/2

] +
5

2

]
(21)
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—————–

Assigned Problem 2. Using the canonical partition function for the ideal gas, show that,

(δE)2 = kBT
2Cv (22)

Solution.
From Part 1 page 28, and using the ideal classical gas expression ZN = V N/(N !λ3N ), we have,

δE2 =
∂2ln(Z)

∂β2
= δE2 =

∂2

∂β2
[ln(

V N (2πm)3N/2

N !h3N
− 3N

2
ln(β)] =

3

2
N(kBT )2 = kBT

2CV (23)

where CV = 3NkB/2 for the classical monatomic non-relativistic ideal gas in three dimensions.

—————–

Assigned Problem 3. Using the grand partition function of the ideal classical gas show that,

(δN)2 = NkBTρκT (24)

Solution. From Part 1 page 28, and using the expression for the grand partition function for the classical gas we
have,

(δN)2 = (kBT )2 ∂
2ln(Ξ)

∂µ2
= (kBT )2 V

λ3β2
eβµ =

V

λ3
eβµ =

PV

kBT
= N (25)

where we used (II.25) to write αz = ln(Ξ) = PV/kBT . Also the right hand side of Eq. (17) for the classical ideal gas
is,

NkBTρκT = kBT
N2

V
κT = kBT

N2

PV
= N (26)

where we used Eq. (II.17) for κT for the ideal gas

—————–

Assigned Problem 4
Consider a gas of N atoms in volume V . Each atom has one unpaired electron in its outer energy level that is a zero

angular momentum state, i.e. the ground state is l = 0 and has an unpaired electron. A magnetic field is applied to
this gas. Write down the canonical and grand canonical partition functions of this system taking into account center of
mass and spin degrees of freedom, assuming that the magnetic interaction is paramagnetic with no spin-orbit coupling.

Solution The translational and spin degrees of freedom do not interact, so the canonical partition function is
simply a product of the two subsystem canonical partition functions,

ZN =
V N

N !λ3N
(2cosh(βµsh))N (27)

The grand partition function is,

Ξ =
∑
N

zNZN = eαz where α =
V

λ3
2cosh(βµsh) (28)

—————–

Assigned Problem 5.
Consider a gas where each atom can have one of two energy levels ε0 and ε1. Find the average energy per particle

taking into account the ideal monatomic gas behavior and the two internal energy levels. Find the specific heat of
the system in the limits T → 0 and T →∞.
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Solution The canonical partition function is again a product of the two subsystem partitions functions so that,

ZN =
V N

N !λ3N
(e−βε0 + e−βε1)N (29)

so the internal energy is,

U = Un + Ui =
3

2
NkBT +N

ε0e
−βε0 + ε1e

−βε1

e−βε0 + e−βε1
(30)

where Un is the contribution from the nuclear or translational degrees of freedom while Ui is the contribution from
the internal degrees of freedom.

—————–

Assigned Problem 6.
Consider a dissociating system at thermal equilibrium, where,

A ⇐⇒ B +B (31)

Ignore the internal degrees of freedom of both species and take the mass of an A particle to be twice that of a B
particle. Given that N = 2NA +NB is fixed, that the volume is fixed, and that the binding energy of A is ε, find the
temperature dependence of NA and NB and find a simple expression for the ratio < NB >2 / < NA >.

Solution
In this system there is an exchange of particles between the subsystem consisting of B atoms and the subsystem A

consisting of diatomic molecules with 2 B atoms. If there are NA molecules and NB free atoms the canonical partition
functions for the two subsystems is,

ZA =
V NA

NA!λ3NA

A

eβεNA ; ZB =
V NB

NB !λ3NB

B

(32)

where ε is the binding energy of the molecule. The equilibrium condition is that the chemical potential of an atom of
B must be the same whether it is bound in a molecule or free. The chemical potential of a free B atom is,

µB =
∂

∂NB
(−kBT lnZB) = −kBT ln(

V

NBλ3
B

) (33)

while the chemical potential of an A dimer consisting of two bound B atoms is,

µA =
∂

∂NA
(−kBT lnZA) = −kBT ln(

V

NAλ3
A

)− ε (34)

At equilibrium a B atom has the same chemical potential whether it is free or bound into an A dimer. We then have
the condition,

µB =
1

2
µA (35)

and using this condition we find the relation,

N2
B

NA
=

V

8λ3
A

e−βε (36)

where we used mA = 2mB so that λ2
B = 2λ2

A. Using this relation in combination with the condition N = 2NA +NB ,
we can find the behavior of NB as a function of temperature by solving,

2N2
B

N −NB
=

V

8λ3
A

e−βε = x (37)

so that,

2N2
B + xNB − xN = 0; so NB =

1

4
[−x±

√
x2 + 8Nx] =

x

4
[−1±

√
1 + 8N/x] (38)
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The grand partition function may also be used to find the ratio < NB >2 / < NA >, by realizing that Ξ = ΞAΞB
and using,

ΞB =
∑
NB

zNB

B ZB(N) = Exp[zBV/λ
3
B ]; ΞA =

∑
NA

zNA

A ZA(N) = Exp[zAV/λ
3
B ] (39)

The average number of atoms of each type is given by,

< NB >=
∂ln(ΞB)

∂(βµB)
= eβµB

V

λ3
B

(40)

and

< NA >=
∂ln(ΞA)

∂(βµA)
= eβµAeβε

V

λ3
A

(41)

Now use the fact that µA = 2µB and take the ratio < NB >2 / < NA > to reproduce the result found earlier.

—————–

Assigned Problem 7.
Calculate the specific heat of the model defined by the Hamiltonian Eq. (51) of the text. Is there a peak in the

specific heat? Why or why not?

Solution The internal energy per spin of this model is −hm so that,

U = −µshN [coth(βµsh)− 1

βµsh
] (42)

Defining x = βµsh, we find the specific heat to be

Ch = µshkBN [
1

x2
− 1

sinh2(x)
] (43)

This increases monotonically with temperature and has no peak.

—————–

Assigned Problem 8.
Generalize the transfer matrix method for the one dimensional Ising model to the case of an applied field (i.e.

combine the Hamiltonians in Eq. (41) and (55)) and calculate the magnetic susceptibility at low field. Does it obey
a Curie law?

Solution It is convenient to write the Hamiltonian in the form,

H = −J
∑
i

SiSi+1 − µsh
∑
i

1

2
(Si + Si+1) (44)

as this makes the transfer matrix more symmetric. We then find,

T++ = eβJ+βµsh; T+− = e−βJ = T−+; T−− = eβJ−βµsh (45)

and we seek the largest eigenvalue of this matrix. Defining α = eβJ ; γ = eβµsh the characteristic equation for T̂ is,

λ2 − α(γ +
1

γ
) + α2 − 1

α2
= λ2 − 2eβJcosh(βµsh)λ+ 2sinh(2βJ) (46)

which has solutions,

λ± =
1

2
[2eβJcosh(βµsh)±

√
4e2βJcosh2(βµsh)− 8sinh(2βJ)] (47)
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which simplifies to,

λ± = eβJ [cosh(βµsh)±
√
sinh2(βµsh) + e−4βJ ] (48)

The eigenvalue with the plus sign dominates, so we find the magnetization using,

m =
M

N
=

1

N

∂

∂(βh)
ln(Z) =

∂

∂(βh)
ln

(
eβJ [cosh(βµsh) +

√
sinh2(βµsh) + e−4βJ ]

)
(49)

This simplifies to,

m(h, T ) = µs
Sinh(βhµs)

[Sinh2(βµsh) + e−4βJ ]1/2
→ βµ2

she
2βJ ; 1d Ising. (50)

where the latter from is correct in the small h limit. The magnetic susceptibility at small field is then

χ =
∂m

∂h
→ µ2

s

kBT
e2βJ as h→ 0 (51)

This diverges exponentially at low T due to the incipient phase transition in the 1D Ising model.

—————–

Assigned Problem 9.
Consider the Peierls argument for the two dimensional spin half Ising model on a square lattice, where the topological

excitation is a flat domain wall dividing a domain of up spins and down spins. Does this argument suggest that finite
temperature spontaneous symmetry breaking is possible in the two dimensional Ising model?

Solution
In the two dimensional Ising model the Peierls estimate of the difference in free energy between the ground state

and a state with one domain wall in it is,

δF = 2JL− kBT ln(L). (52)

Clearly the energy cost is larger than the entropy gain so the ordered state is stable.

—————–

Assigned Problem 10. Using the energy levels of a particle in a box and MB statistics to fill the energy levels,
derive the classical gas thermodynamics.

Solution
The grand partition function is given by,

ΞMB =
∏
i

Exp[gie
−β(εl−µ)] so ln(ΞMB) =

∑
i

gie
−β(εl−µ) (53)

Using the energy levels of a particle in a box and taking the continuum limit and setting gi = 1, this becomes,

ln(ΞMB) = (
L

2π
)3

∫ ∞
0

4πk2ze−βp
2/(2m) (54)

Using cartesian co-ordinates we find,

ln(ΞMB) = z(
L

h
)3

(∫ ∞
−∞

e−βp
2/(2m)

)3

= zV

(
2mπ

β

)3/2

(55)

so that,

ln(ΞMB) = z
V

λ3
(56)

as for the classical gas.



11

Assigned Problem 11. In lectures we showed that at high temperatures the equation of state of the Bose gas
reduces to the ideal classical gases. Derive the next term in the expansion of the equation of state of the ideal Bose
at high temperatures.

Solution. For the Bose case, expanding to second order gives

Nλ3

V
= g3/2(z) = z +

z2

2
√

2
≈ z1 +

z2
0

2
√

2
(57)

where z0 = Nλ3/V is the leading order solution, we then find,

z1 = z0 −
z2

0

2
√

2
(58)

We substitute this into the second order expansion of the equation of state,

P

kBT
=

1

λ3
[z +

z2

4
√

2
+ ...] ≈ 1

λ3
[z1 +

z2
1

4
√

2
+ ...] ≈ 1

λ3
[z0 −

z2
0

2
√

2
+ (

z0 − z20
2
√

2
)2

4
√

2
+ ...] (59)

keeping terms to order z2
0 gives,

P

kBT
=
z0

λ3
[1− z0(

1

2
√

2
− 1

4
√

2
) + ...] (60)

substituting z0 = Nλ3/V gives,

PV

NkBT
= 1− 1

4
√

2

λ3N

V
+ .... Bose gas (61)

The pressure is lower than the classical gas due to the effective attraction of Bosons.

—————–

Assigned Problem 12. Derive expressions for Ξ, PV , N/V and U for the non-relativistic Bose gas in one and
two dimensions. White general expressions that are valid in any dimension. Find the leading order terms in the high
temperature expansions for these quantities. Discuss the behavior of the non-relativistic Bose gas at low temperatures
in one and two dimensions. Is a finite temperature Bose condensation predicted ? Explain your reasoning.

Solution. For a Bose gas with dispersion relation εp = p2/2m in d dimensions

P

kBT
=

1

λd
gd/2+1(z)− 1

Ld
ln(1− z); N

Ld
=

1

λd
gd/2(z) +

1

Ld
z

1− z
;

U

Ld
=
d

2

kBT

λd
gd/2+1(z) (62)

These results are found from the integral forms in one and two dimensions below along with the three dimensional
result derived in lectures.

ln(ΞB) = − L

2πh̄

∫ ∞
0

2dpln(1− ze−βp
2/2m)− ln(1− z); 1− dimension (63)

and

ln(ΞB) = −(
L

2πh̄
)2

∫ ∞
0

2πpdpln(1− ze−βp
2/2m)− ln(1− z) 2− dimension (64)

A series expansion as carried out for these integrals and the similar forms for N/V and U lead to the results above.
To leading order in the fugacity of the equation for N/V , we find the chemical potential to be the same as that of the
ideal classical gas in d dimensions, i.e. z = N(λ/L)d. The dimensional dependence comes from the different powers
of the factor (L/h)d, and the factors of p in the integral. The integrals that are needed are,∫ ∞

0

xe−x
2ldx =

1

2l
;

∫ ∞
0

e−x
2ldx =

1

2
(
π

l
)1/2 (65)
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We then have,

PL

kBT
= ln(ΞB) =

L

2πh̄
(
2m

β
)1/2

∞∑
l=1

zl

l

∫ ∞
0

2dxe−x
2l − ln(1− z); 1− dimension (66)

and

PL2

kBT
= ln(ΞB) = (

L

2πh̄
)2(

2m

β
)

∞∑
l=1

zl

l

∫ ∞
0

2πxdxe−x
2l − ln(1− z); 2− dimensions (67)

which reduce to the expression given above for P/(kBT ).
At at any temperature, the chemical potential potential of the ideal non-relativistic Bose gas in dimensions less

than 2 + δ cannot be one in the thermodynamic limit, as,

gn(z) =
∑
l

zl

ln
(68)

diverges for z = 1 and n ≤ 1. Since z cannot approach one, the term z/(V (1− z)) approaches zero in the thermody-
namic limit, indicating that it is impossible for a finite fraction of the particles to be in the ground state. There is
therefore no BEC phase transition at finite temperature in one and two dimensional ideal non-relativistic Bose gases.

—————–

Assigned Problem 13. For the 3-D non-relativistic case, find the entropy of the ideal Bose gas in the condensed
phase T < Tc. Compare to the classical gas.

Solution. Using the thermodynamic relation, U = TS − PV + µN , we find,

TS = U + PV − µN =
5

2
PV − µN (69)

For the Bose gas at T < Tc where µ = 0, we have P/kBT = ζ(5/2)/λ3 and using PV = 2U/3 we find,

TS =
5

2
PV =

5

2

kBTV

λ3
ζ(5/2) (70)

The entropy of the Bose gas in the condensed phase is thus proportional to T 3/2, which goes to zero at low temperature.
The entropy of the classical gas is given by Eq. (16) of lecture notes part 2, so that,

S = NkB [ln(
V

Nλ3
) +

5

2
] (71)

The classical gas has higher entropy than the Bose gas in the condensed phase. In the condensed phase the number of
excited state particles grows at T 3/2 and only these particles contribute to the entropy of the Bose gas. The ground
state particles do not contribute to the entropy and as the temperature is reduced almost all particles are in the
ground state.

—————–

Assigned Problem 14. Show that a d − dimensional Bose gas with dispersion relation εp = cps obeys the
relation,

P =
s

d

U

Ld
(72)

Solution. The equations for a Bose gas with this dispersion relation in d dimensions is written as,

P

kBT
= − cd

hd

∫ ∞
0

dp pd−1ln(1− ze−βcp
s

);
U

Ld
=
cd
hd

∫ ∞
0

dp pd−1(cps)
ze−βcp

s

1− ze−βcps
(73)

Integrating the pressure equation by parts gives,

I1 = −
∫ ∞

0

dp pd−1ln(1− ze−βcp
s

) = −1

d
pdln(1− ze−βcp

s

)|∞0 +
sβ

d

∫ ∞
0

dp pd−1(cps)
ze−βcp

s

1− ze−βcps
(74)

The first term on the right hand side is zero and comparison of the remaining integral with the energy equation proves
relation (63).
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—————–

Assigned Problem 15. Find the thermodynamic properties, PV , U , S, CV , N of a photon gas in d dimensions.
Show that the entropy per photon is independent of temperature.

Solution. We use the relations,

N = 2

(
L

2πh̄

)d ∫ ∞
0

cdp
d−1dp

e−βpc

1− e−βpc
= 2cd

(
L

h

)d
(

1

βc
)d
∫ ∞

0

dx
xd−1

ex − 1
(75)

and

U = 2

(
L

2πh̄

)d ∫ ∞
0

cdp
d−1dp (pc)

e−βpc

1− e−βpc
= 2cdc

(
L

h

)d
(

1

βc
)d+1

∫ ∞
0

dx
xd

ex − 1
(76)

along with PV = sU/d, with s = 1 and the integral,∫ ∞
0

xs−1dx

ex − 1
= Γ(s)ζ(s), (77)

to find,

U = 2cdcd!ζ(d+ 1)

(
L

h

)d
(
kB
c

)d+1T d+1; N = 2cd(d− 1)!ζ(d)

(
L

h

)d
(
kB
c

)dT d (78)

We also have,

TS = U + PV − µN = (d+ 1)U/d ∝ T d+1 (79)

From this it is evident that both S and N are proportional to T d, so S/N is temperature independent. Also,

CV =
∂U

∂T
= 2(d+ 1)!ζ(d+ 1)cdc

(
L

h

)d
(
kB
c

)d+1T d (80)

—————–

Assigned Problem 16. Find the thermodynamic properties, U and CV for the Debye phonon model in d dimen-
sions.

Solution. We use the relation,

U = d

(
L

2πh̄

)d ∫ pd

0

cdp
d−1dp (pvs)

e−βpvs

1− e−βpvs
= dcdvs

(
L

h

)d
(
kB
vs

)d+1T d+1

∫ xD

0

dx
xd

ex − 1
(81)

where the factor of d in front ensures that we recover the high temperature equipartition result. xD = βpDvs and we
define the Debye temperature through kBTD = pDvs, so that xD = βkBTD = TD/T . We also use the integral,∫ ∞

0

xs−1dx

ex − 1
= Γ(s)ζ(s), (82)

to find that at low temperatures TD/T → ∞, so the behavior is like that of the photon gas in d dimensions, with
c→ vs, and multiplied by d/2 due to the difference in degeneracy (2 for photons, d for phonons). We then have ,

U = dcdvsd!ζ(d+ 1)

(
L

h

)d
(
kB
vs

)d+1T d+1; CV =
∂U

∂T
= d(d+ 1)!ζ(d+ 1)cdvs

(
L

h

)d
(
kB
vs

)d+1T d (83)

At high temperatures, the behavior is like that of a classical gas in a harmonic potential so that U = dNkBT,CV =
NdkB , and PV = 2U/d.
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—————–

Assigned Problem 17. Carry through the analysis of the Bose gas for the case of massive ultrarelativistic particles
where µ 6= 0. What is the lower critical dimension for a BEC transition in this case?

Solution. For the ultrarelativistic Bose gas, we use, εk = h̄kc, so that,

N =

(
L

2πh̄

)3 ∫ ∞
0

4πk2dk
ze−βh̄kc

1− ze−βh̄kc
+

z

1− z
(84)

which reduces to,

N =
V

2π2

1

(βh̄c)3

∫ ∞
0

dxx2ze−x
∞∑
l=0

zle−xl +
z

1− z
. (85)

where we used the expansion 1/(1− x) = 1 + x+ x2 + x3.... Using the integral,∫ ∞
0

dxxs−1e−lx =
1

ls

∫ ∞
0

ys−1e−ydy =
(s− 1)!

ls
→ (s = 3)

2

l3
(86)

N =
V

2π2

1

(βh̄c)3

∫ ∞
0

dx

∞∑
l=1

2zl

l3
+

z

1− z
. (87)

Since for z = 1, the series is convergent, there is the possibility of Bose condensation at finite temperature and by
setting z = 1 we find the critical condition,

N =
V

π2

1

(βh̄c)3
ζ(3) (88)

A similar calculation shows that in two dimensions the ultrarelativistic ideal Bose gas has a phase transition at finite
temperature while in one dimension a finite temperature BEC transition does not occur.

—————–

Assigned Problem 18. At high temperatures we found that the ideal quantum gases reduce to the ideal classical
gases. Derive the next term in the expansion of the equation of state of the ideal Fermi gas at high temperatures,
and verify that,

PV

NkBT
= 1 +

1

4
√

2

λ3N

V
+ .... Fermi gas (89)

The pressure of the ideal Fermi gas is higher than that of the classical gas at the same temperature and volume.
Why? Carry out a similar expansion for the Bose gas. Is the pressure higher or lower than the ideal classical gas at
the same values of T, V ? Why?

Solution. For the Bose case, expanding to second order gives

Nλ3

V
= g3/2(z) = z +

z2

2
√

2
≈ z1 +

z2
0

2
√

2
(90)

where z0 = Nλ3/V is the leading order solution, we then find,

z1 = z0 −
z2

0

2
√

2
(91)

We substitute this into the second order expansion of the equation of state,

P

kBT
=

1

λ3
[z +

z2

4
√

2
+ ...] ≈ 1

λ3
[z1 +

z2
1

4
√

2
+ ...] ≈ 1

λ3
[z0 −

z2
0

2
√

2
+ (

z0 − z20
2
√

2
)2

4
√

2
+ ...] (92)
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keeping terms to order z2
0 gives,

P

kBT
=
z0

λ3
[1− z0(

1

2
√

2
− 1

4
√

2
) + ...] (93)

substituting z0 = Nλ3/V gives,

PV

NkBT
= 1− 1

4
√

2

λ3N

V
+ .... Bose gas (94)

Analysis for the Fermi gas is the same, except that the sign on the correction term is positive. The Bose gas has
reduced pressure as compared to the classical gas at the same temperature, while the Fermi gas has higher pressure
than the classical case. This expansion can be extended to higher order and in general is written as,

PV

NkBT
=

∞∑
l=1

alα
l−1; where α =

λ3N

V
(95)

This expansion is valid when α is small, which means low density and/or high temperatures. In general expansions
of this type are called virial expansions and have played an important role in characterizing interactions in gases.
In classical gases the second virial coefficient a2 is determined by the strength of the pair interactions, as we shall
see in Part 3 of the course. Here the terms l > 1 are due to quantum effects. In real quantum gases, both quantum
effects and interactions can be important. Recall than our condition for quantum effects to be important was that the
interparticle spacing Lc < λ. When this is true α is significant and more terms are required in the virial expansion.

—————–

Assigned Problem 19. By expanding the denominator of the integral, 1/(1 + y) for small y = ze−x
2

show that,

f3/2(z) =
4

π1/2

∫ ∞
0

dx x2 ze−x
2

1 + ze−x2 =

∞∑
l=1

(−1)l+1zl

l3/2
(96)

Solution.
We use the expansion

1

1 + y
= (1− y + y2 − y3...); and

∫ ∞
0

x2e−ax
2

dx =

√
π

4a3/2
(97)

so that,

f3/2(z) =
4

π1/2

∫ ∞
0

dx x2 ze−x
2

1 + ze−x2 =

∞∑
l=1

(−1)l+1zl
∫ ∞

0

dx x2e−lx
2

=

∞∑
l=1

(−1)l+1zl

l3/2
(98)

—————–

Assigned Problem 20a. Derive expressions for Z, Ξ, PV , µ and U for the classical gas in one and two dimen-
sions. Are the results what you expect? How do they compare with the result in three dimensions. White general
expressions that are valid in any dimension.

Solution In d-dimensions, the partition functions are,

Z =
LdN

λdNN !
, Ξ = eαz α = (

L

λ
)d (99)

F = −kBT ln(Z) = −kBT ln(
LdN

λdNN !
) (100)

S = −
(
∂F

∂T

)
Ld,N

= kBln(
LdN

λdNN !
) +

d

2
NkB (101)



16

The internal energy is found by combining (31) and (32), so that,

U = F + TS =
d

2
NkBT (102)

The pressure is given by,

P = −
(
∂F

∂Ld

)
T,N

= kBT
N

Ld
=
kBNT

Ld
, (103)

which is the ideal gas law, while the chemical potential is,

µ =

(
∂F

∂N

)
T,Ld

= kBT ln(λdN/Ld) (104)

—————–

Assigned Problem 20b. Derive expressions for Ξ, PV , N/V and U for the Fermi gas in one and two dimensions.
Write general expressions that are valid in any dimension. Find the leading order terms in the high temperature
expansions for these quantities. Are the results what you expect? How do they compare with the result in three
dimensions, and with the classical gas.

Solution The relations for the non-relativistic Fermi gas are,

P

kBT
=

1

λd
fd/2+1(z);

N

Ld
=

1

λd
fd/2(z);

U

Ld
=
d

2

kBT

λd
fd/2+1(z) (105)

These results are found from the integrals,

ln(ΞF ) =
L

2πh̄

∫ ∞
0

2dpln(1 + ze−βp
2/2m); 1− dimension (106)

and

ln(ΞF ) = (
L

2πh̄
)2

∫ ∞
0

2πpdpln(1 + ze−βp
2/2m) 2− dimension (107)

These integrals and the analogous equations for N and V are expanded as in the three dimensional case. Following
the procedure given in the solution to problem 7, we have,

PL

kBT
= ln(ΞF ) =

L

2πh̄
(
2m

β
)1/2

∞∑
l=1

(−1)l+1zl

l

∫ ∞
0

2dxe−x
2l; 1− dimension (108)

and

PL2

kBT
= ln(ΞF ) = (

L

2πh̄
)2(

2m

β
)

∞∑
l=1

(−1)l+1zl

l

∫ ∞
0

2πxdxe−x
2l; 2− dimensions (109)

which reduce to the expression for P/kBT given in Eq. (42). The leading order expansion of fd/2(z) at high
temperature gives the chemical potential of the ideal classical gas in d dimensions so we recover the classical gas in d
dimensions at sufficiently high temperatures.

—————–

Assigned Problem 21. Discuss the behavior of the Fermi gas at zero temperature in one and two dimensions. Is
there different behavior as a function of dimension? Explain your reasoning.

Solution. We calculate the energy and degeneracy pressure to see if there is a dependence on dimension. We only
carry out the ground state calculation. The Fermi wavevector in one, two and three dimensions is given by,

kF1 =
πN

L
; kF2 = (

4πN

L2
)1/2; kF3 = (

6π2N

V
)1/3 (110)
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so the Fermi energy is given by,

εF1 =
h̄2

2mL2
(πN)2; εF2 =

h̄2

2mL2
(4πN); εF2 =

h̄2

2mL2
(6π2N)2/3; (111)

The internal energy is given by,

U = (
L

2π
)d
∫
ddk

h̄2k2

2m
(112)

In one two and three dimensions we find,

U1 =
1

3
NEF1; U2 =

1

2
NEF2; U3 =

3

5
NEF3 (113)

The degeneracy pressure is given by,

P = −
(
∂U

∂Ld

)
N,T

(114)

Since EF is proportional to 1/L2 doing the derivative with respect to L, L2 and L3 in one two and three dimensions,
leads to the following expressions for the degeneracy pressure,

P1 =
2

3L
NEF1; P2 =

1

2L2
NEF2; U3 =

2

5L3
NEF3. (115)

For fixed number of particles, the degeneracy pressure and internal energy are much higher for the one and two
dimensional cases, first because EF grows much more rapidly with N as the dimension is reduced and second because
the prefactor grows more slowly with L as the dimension is reduced. This results are expected as particles are more
confined in one and two dimensions, so the effect of Pauli exchange is stronger, so the total energy is expected to
grow more rapidly in lower dimension and the degeneracy pressure should be higher.

—————–

Assigned Problem 22. Show that a d − dimensional Fermi gas with dispersion relation εp = cps obeys the
relation,

P =
s

d

U

Ld
(116)

Solution. The equations for a Fermi gas with this dispersion relation in d dimensions is written as,

P

kBT
=
cd
hd

∫ ∞
0

dp pd−1ln(1 + ze−βcp
s

);
U

Ld
=
cd
hd

∫ ∞
0

dp pd−1(cps)
ze−βcp

s

1 + ze−βcps
(117)

Integrating the pressure equation by parts gives,

I1 =

∫ ∞
0

dp pd−1ln(1 + ze−βcp
s

) =
1

d
pdln(1 + ze−βcp

s

)|∞0 +
sβ

d

∫ ∞
0

dp pd−1(cps)
ze−βcp

s

1 + ze−βcps
(118)

The first term on the right hand side is zero and comparison of the remaining integral with the energy equation proves
the relation.

—————–

Quiz Problem 23. Find the leading order term in the temperature dependence of the internal energy and specific
heat of an three dimensional ultrarelativistic Fermi gas at low temperature.

Solution. The equations for U and N for the three-dimensional ultra-relativistic Fermi gas are,

N = 4π(
L

h
)3

∫ ∞
0

dp p2 ze−βpc

1 + ze−βpc
=

4π

(βc)3
(
L

h
)3

∫ ∞
0

dx x2 ze−x

1 + ze−x
(119)
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and

U = 4πc(
L

h
)3

∫ ∞
0

dp p3 ze−βpc

1 + ze−βpc
=

4πc

(βc)4
(
L

h
)3

∫ ∞
0

dx x3 ze−x

1 + ze−x
(120)

We may expand the integral at small z, but this is not useful at low temperature. Instead we carry out the Sommerfeld
expansion. Here we write it in more general form, generalizing Eq. (II.73) to,

Is =

∫ ∞
0

dx xs−1 ze−x

1 + ze−x
=

∫ ∞
0

dx xs−1 1

ex−ν + 1
=

1

s

∫ ∞
0

dx xs
ex−ν

(ex−ν + 1)2
(121)

Expanding xs about ν we have,

xs = (ν + (x− ν))s = f(0) + (x− ν)f ′(0) +
1

2
(x− ν)2f”(0) + .... (122)

where f(y) = (ν + y)s, so that f(0) = νs, f ′(0) = sνs−1, ′′(0) = s(s− 1)νs−2. so that

xs = (ν + (x− ν))s = νs + (x− ν)sνs−1 +
1

2
(x− ν)2s(s− 1)νs−2 + .... (123)

Following the procedure of Eq. (II.77) and (II.78), we then have,

Is =
1

s
[νsI0 + sνs−1I1 +

1

2
s(s− 1)νs−2I2 + ...); where In =

∫ ∞
−∞

dt
tnet

(et + 1)2
(124)

I0 = 1, while by symmetry In is zero for odd n. For even n > 0, In is related to the Reimann zeta function, through,

In = 2n(1− 21−n)(n− 1)!ζ(n), with ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
(125)

Since the odd integral I0 = 1, I1 = 0, I2 = π2/3, we find,

Is =
1

s
[νs +

π2

6
s(s− 1)νs−2 + ...] (126)

Up to a prefactor that is defined differently here, the expansion above is consistent with Eqs. (II.78) and (II.88) as
they must be. The expansions we need are then,

N

V
=

4π

(hβc)3

1

3
[ν3 + π2ν + ...] (127)

and

U

V
=

4πc

h3(βc)4

1

4
[ν4 + 2π2ν2 + ...] (128)

The leading order term in the expansion of the chemical potential is found using,

N

V
=

4π

(hβc)3

1

3
(βµ0)3 so βµ0 = hβc

(
3N

4πV

)1/3

(129)

The next correction is found using,

ν3
0 = (ν1)3 + π2ν0; so that ν1 = ν0(1− π2

3(ν0)2
) = βεF [1− π2

3
(
kBT

εF
)2 + ...]. (130)

where εF = µ0 = ν0/β. The internal energy expansion is,

U

V
=

πc

h3(βc)4
ν4[1 +

2

3
π2ν−2 + ...] ≈ πc

h3(βc)4
βε4F [1− 4π2

3
(
kBT

εF
)2 + ...][1 + 2π2βε−2

F + ...] (131)

—————–


