
Solutions to Problems in Solid State Physics II

Problem 2005-I

εh is the maximum energy of band 1 (follows from the specification of the
Fermi surface). The number of electronic states in one band, within the 1.

Brillouin zone, is twice the number of �k states, i.e. twice the number of unit
cells in the system. If εh < εc all states in band 1, and no states in band 2,
would be occupied by electrons at zero temperature, implying that

1) the system would be an insulator (or semiconductor).

The reciprocal lattice of an fcc is a bcc lattice. In the bcc reciprocal lattice
there are 8 equivalent (111) reciprocal lattice points lying at the corners of
the 1. Brillouin zone, each counting one eighth. This implies that there is,
effectively, one hole and one electron Fermi surface in one Brillouin zone. With
the use of the notation introduced on the figure, we have:

εF = εe +
(�ke)

2

2me
= εh −∆+

(�ke)
2

2me
, εF = εh −

(�kh)
2

2mh

. (1)

The number of holes (i.e. the number of missing electrons) in band 1 is equal
to the number of electrons occupying band 2, i.e.

n = p . (2)

and since both bands are parabolic, we may use Marder eq. (6.29) to obtain
the lengths of the two Fermi wave vectors:

ke = (3π2n)1/3 , and equivalently kh = (3π2p)1/3 . (3)

These equations are straightforwardly solved, and we get

2) εF = εh −
me

me +mh

∆ .

3) n = p =
1

3π2

(
2∆

�2

memh

me +mh

)3/2

.

According to Marder eqs. (6.77) and (6.23), the specific heat is

cV =
π2

3
k2BTD(εF ) , D(εF ) =

m

�3π2

√
2mεF =

mkF
�2π2

, (4)

in the case of a parabolic band, when T � εF/kB. In the present case, we need
to require T � ∆/kB, and adding the electron- and hole-like contributions,

D(εF ) =
meke
�2π2

+
mhkh
�2π2

=
me +mh

�2π2

(
2∆

�2

memh

me +mh

)1/2

(5)

the result is

4) γ = cV /T =
k2B
3�3

√
2memh(me +mh)∆ .
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The conductivity tensor for each of the two kinds of band electrons is isotropic
and according to Marder eqs. (17.55) and (17.57):

σe =
ne2τ

me
, σh =

pe2τ

mh

. (6)

The electrons in each band add independently of each other to the linear
response of the system, and the total conductivity is found to be

5) σ = σe + σh = ne2τ
me +mh

memh

=
e2τ

3π2�3

(
8∆3 memh

me +mh

)1/2

.

The individual Hall coefficients for the two bands are, (17.97):

Re = − 1

nec
, Rh =

1

pec
= −Re (7)

In the limit of |RBσ0| � 1, we get

σ =
σe

1 + (ReBσe)
2

(
1 ReBσe−ReBσe 1

)
+

σh
1 + (RhBσh)

2

(
1 RhBσh−RhBσh 1

)

�
(

0 (ReB)−1

−(ReB)−1 0

)
+

(
0 (RhB)−1

−(RhB)−1 0

)
(8)

Since in this limit σ �
(

0 (RB)−1

−(RB)−1 0

)
, the total Hall coefficient R is

6) R =

(
1

Re
+

1

Rh

)−1

= − 1

(n− p)ec
→ ±∞ .

The two Hall-current components “compensate” each other, so that the total
current vanishes in this two-band system.

In the case of ∆ = 0.1 meV and me = mh = 9.109389× 10−31 kg, the electron
density is

n =
1

3π2

(
2∆

�2

memh

me +mh

)3/2

=
1

3π2

(
2× 0.1× 1.602177 · 10−19 × 0.5× 9.109389 · 10−31

(1.054572 · 10−34)2

)3/2

m−3

or

7) n = 5.078× 1019 cm−3.

A small density when compared with the usual electron density in metals,
which is of the order of 1022 cm−3.
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Problem 2005-II

1) The Fermi surface determined by ε(�k) = εF is ellipsoidal

k2x
a2

+
k2y
a2

+
k2z
c2

= 1

with the semi-axes a =
√
2m1εF/� and c =

√
2m2εF /�.

2) According to, for instance, eq. (17.48) in Marder:

σ = e2τnM−1 =

⎛
⎜⎜⎜⎜⎝

ne2τ
m1

0 0

0 ne2τ
m1

0

0 0 ne2τ
m2

⎞
⎟⎟⎟⎟⎠

3) The application of the transformation defined by eq. (2) in the problem
text implies

ε(�k′) =
(�k′)2

2m1

and referring to (6.24) we get

D(ε) =
2

(2π)3

∫
d�k δ(ε− ε(�k)) =

2

(2π)3

√
m2

m1

∫
d�k′ δ(ε− ε(�k′))

=

√
m2

m1

m1

�3π2

√
2m1ε =

1

�3π2

√
2m2

1m2ε

4) By definition

�v′ =
1

�

∂ε(�k)

∂�k′
=

1

�

∂ε(�k)

∂�k

∂�k

∂�k′
=

(
vx, vy,

√
m2

m1
vz

)
= T −1�v

Writing the original semiclassical equation of motion, (16.12)

�(k̇x, k̇y, k̇z) = −e(Ex, Ey, Ez)−
e

c

(
vyBz−vzBy, vzBx−vxBz , vxBy−vyBx

)

then we get

��̇k′ = �

(
k̇x, k̇y,

√
m1

m2
k̇z

)
= −e

(
Ex, Ey,

√
m1

m2
Ez

)

− e

c

(
v′yBz −

√
m1

m2
v′zBy,

√
m1

m2
v′zBx − v′xBz,

√
m1

m2

{
v′xBy − v′yBx

})

which compares with eq. (3) in the problem text, when:

�E′ =
(
Ex, Ey,

√
m1

m2
Ez

)
= T �E
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and

�B′ =
(√

m1

m2
Bx,

√
m1

m2
By, Bz

)
=
∣∣∣T ∣∣∣T −1 �B ,

∣∣∣T ∣∣∣ =
√
m1

m2

5) Since
�j ′ = −ne〈�v′〉 = −ne〈T −1�v〉 = T −1�j

then
�j ′ = σ ′�E′ ⇒ T −1�j = σ ′T �E

or
σ = T σ ′T

6) The resistivity tensor, eq. (4) in the problem text, is valid for the isotropic
system, which means that

ρ ′ =

⎛
⎜⎝σ−1

1 0 0

0 σ−1
1 −RB′

0 RB′ σ−1
1

⎞
⎟⎠ , σ1 =

ne2τ

m1

, R = − 1

nec

For the x component B′ =
√

m1
m2

B, hence the result is

ρ = σ −1 = T −1 ρ ′ T −1 =

⎛
⎜⎜⎝
σ−1
1 0 0

0 σ−1
1 −RB

0 RB m2
m1

σ−1
1

⎞
⎟⎟⎠

At zero field, this result agrees with the previous one derived under point
2). The non-diagonal contribution, appearing when a magnetic field is
applied along the x axis, is the same as in the isotropic case, hence the
Hall coefficient is unchanged, R = − 1

nec . We may generalize the result and
conclude that the Hall coefficient, within the present approximations, is
independent of the mass tensor, if the magnetic field is applied along one
of the principal axes of the mass tensor.
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Problem 2005-III

1) Assuming �ve = vee
−iωt(x̂+i ŷ) then �E = (E/ve)�ve and �̇ve = −iω�ve. Using

the relation

(x̂+ i ŷ)× ẑ = i x̂− ŷ = i(x̂+ i ŷ) ⇒ �ve × �B = iB�ve

the equation-of-motion reads

−iωme�ve = −e

(
E

ve
+

iB

c

)
�ve −

me

τ
�ve ,

which is fulfilled identically, if

−iωme = −e

(
E

ve
+

iB

c

)
− me

τ
,

or if

ve = −i
eE

me

(
ω − ωe +

i
τ

) , ωe =
eB

mec
.

2) The equation-of-motion for the holes is the same as (1) after −e has been
replaced by e, and me and �ve by, respectively, mh and �vh. The correspond-
ing solution for the holes is then:

vh = i
eE

mh

(
ω + ωh +

i
τ

) , ωh =
eB

mhc
.

The conductivity is introduced via the equation

�j = −ne�ve + pe�vh = −ne(�ve −�vh) = σ �E

and we get

�j = −ne

⎛
⎝−i

eE

me

(
ω − ωe +

i
τ

) − i
eE

mh

(
ω + ωh +

i
τ

)
⎞
⎠ (x̂+ i ŷ) e−iωt

= ine2

⎛
⎝ 1

me

(
ω − ωe +

i
τ

) +
1

mh

(
ω + ωh +

i
τ

)
⎞
⎠ �E = σ(ω)�E

or

σ(ω) = i
e2n(me +mh)

(
ω + i

τ

)
memh

(
ω − ωe +

i
τ

) (
ω + ωh +

i
τ

)
(as meωe = mhωh).

3) In the case of ω = 0 and B = 0, or ωe = ωh = 0, the result is

σ(0) = ne2τ
me +mh

memh

=
ne2τ

me
+

ne2τ

mh

,
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which is just the obvious generalization of the simple Drude formula to
the case where both the electrons and holes contribute to the current.

4) In the limit (ωe, ωh) � ω � 1/τ we may neglect i/τ in the numerator and
ω + i/τ in the denominator of σ(ω), and the result is

σ(ω) = −i
e2n(me +mh)ω

memhωeωh

= −in(me +mh)
(
c

B

)2
ω

to leading order in ω.

5) According to eq. (20.14) in Marder, the relationship between the conduc-
tivity and the dielectric constant is

ε(ω) = 1 +
4πi

ω
σ(ω)

and hence in the present system

ε(ω) = 1 + 4πn(me +mh)
(
c

B

)2
� 4πn(me +mh)

(
c

B

)2
,

when assuming ε(ω) � 1. Introducing this into the equation determining
the dispersion relation of the transversely polarized light waves, ω2ε(ω) =
c2q2 (20.17 in Marder), the dispersion relation becomes:

ω = ω(q) =
B√

4πn(me +mh)
q ,

i.e. because ε(ω) is independent of ω, to leading order, these Alfvén waves
propagate with a constant velocity ω/q (without dispersion).

6) When using cgs units (as assumed here), B = 10 kG = 104 G corresponds
to H = 104 Oe, and since B = H then B2 = BH = 108 G × Oe, which
unit is equivalent to erg/cm3, hence

v =
ω(q)

q
=

B√
4πn(me +mh)

=

(
108

4π × 1019 × 2× 9× 10−28

)1/2

cm/s

= 2.1× 107 cm/s .

nearly 1500 times smaller than the velocity of light in vacuum.
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Problem 2006: The Ising model in a transverse field

1) From Heisenberg’s equation-of-motion we get,

dσz

dt
=

i

�
[H1, σ

z] = − i

�
Γ[σx, σz] = −2

�
Γ σy ⇒

d2σz

dt2
= −2iΓ

�2
[H1, σ

y] = −2iΓ

�2
[−Γ(2iσz)− µBH(−2iσx)]

(1)

or
d2σz

dt2
= −4Γ2

�2
σz +

4ΓµBH

�2
σx (2)

2) Introducing the |±〉 states by σz|±〉 = ±|±〉, the eigenstates at zero field
are | 0〉 = 1√

2
(|+〉+ |−〉) and | 1〉 = 1√

2
(|+〉 − |−〉), where H1| 0〉 = −Γ| 0〉 and

H1| 1〉 = Γ| 1〉. Using these eigenstates, the thermal expectation values are
〈σz〉 = 0 and 〈σx〉 = tanh(βΓ). Introducing H = H0e

−iωt we may solve the
thermal average of (2) by assuming 〈σz(t)〉 = σz0e

−iωt

d2〈σz(t)〉
dt2

= (−iω)2〈σz(t)〉 = −4Γ2

�2
〈σz(t)〉+ 4ΓµBH

�2
tanh(βΓ) (3)

to linear order in the field, in which case any time dependence of σx may be
neglected and the time derivation and thermal averaging may be interchanged.
When isolating nµB〈σz(t)〉 and dividing it by H we get

χ0(ω) = nµ2B
4Γ tanh(βΓ)

4Γ2 − (�ω)2
(4)

3) In the mean-field approximation σzi σ
z
j � σzi 〈σzj 〉+ σzj 〈σzi 〉 − 〈σzi 〉〈σzj 〉 and

H =
∑
i

HMF(i) =
∑
i

[
−Γσxi − µBHσzi − zJ〈σz〉 σzi + 1

2zJ〈σz〉2
]

(5)

If 〈σz〉 = 0 at zero field, then in the presence of the uniform (time-dependent)
field 〈σzi (t)〉 is the same for all sites, and nµB〈σz(t)〉 = χ0(ω)Heff(t) with
µBHeff(t) = µBH(t) + zJ〈σz(t)〉. Per definition, nµB〈σz(t)〉 = χ(ω)H(t) and
the combination of these equations leads to

nµB〈σz(t)〉 = χ(ω)H(t) = χ0(ω)

(
H(t) + zJ

χ(ω)H(t)

nµ2B

)

or

χ(ω) =
χ0(ω)

1− χ0(ω)
zJ
nµ2

B

(6)

4) The condition for the occurrence of a transition between the paramagnetic
and a ferromagnetic phase, where 〈σz〉 	= 0, is that χ(0) → ∞, or

χ0(0)
zJ

nµ2B
→ 1 ⇒ zJ

Γ
tanh

(
Γ

kBTC

)
= 1 (7)
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| tanhx| ≤ 1 and the critical condition that this equation has a solution is

Γ ≤ zJ or TC → 0 when Γ → zJ (8)

In the other limit, TC → zJ/kB when Γ → 0 (the simple Ising model).

The following figure shows kBTC/zJ as a function of Γ/zJ :

0 0.2 0.4 0.6 0.8 1
Γ/zJ 

0

0.2

0.4

0.6

0.8

1

k B
T

C
/z

J

5) From eq. (6) we get,

χ(ω) =
nµ2B4Γ tanh(βΓ)

4Γ2 − 4zJΓ tanh(βΓ)− (�ω)2
(9)

or that the excitation energies are

�ω = ±ε(T ) = ±2Γ
√
1− (zJ/Γ) tanh(βΓ) , T ≥ TC (10)

The square root is well-defined as long as T > TC and vanishes at T = TC.
In the high-temperature limit, �ω → ±2Γ, which are the energies of the non-
interacting system. In the ordered phase, one has to account for that 〈σz〉 is
non-zero, implying that the eigenstates | 0〉 and | 1〉 become mixed, and the
energy separation of the two levels becomes larger than 2Γ. As a consequence,
the excitation energies become non-zero below TC. The figure below shows
ε/Γ as a function of T/TC, both above and below TC, in the particular case of
Γ/zJ = 0.8, in which case kBTC/Γ = 0.91024:

0 1 2 3 4 5
T/TC

0.0

0.4

0.8

1.2

1.6

2.0

ε/
Γ
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Problem 2007: Surface plasmons

1) The relation between σ(ω) and ε(ω) is, Marder’s Eq. (20.14),

ε(ω) = 1 +
4πi

ω
σ(ω) = 1 +

4πi

ω

ne2τ

m

1

1− iωτ
= 1 +

ω2
p

ω

iτ

1− iωτ
(a1)

where we have used that, according to Marder’s Eq. (23.7), ω2
p =

4πne2

m
. In

the limit of ωτ � 1, ε(ω) becomes real and is determine by

ε(ω) = 1− ω2
p

ω2
, ωτ � 1 (a2)

2) The boundary condition �E1 × x̂ = �E2 × x̂ is fulfilled at x = 0, since
the y components are zero and the z components are equal, E1z(0, y, z) =
E2z(0, y, z). In the case of the x components at x = 0, then E1x = εE2x

or D1x = E1x = εE2x = D2x, showing that the normal component of �D is
continuous at the interface. When x 	= 0 we have

∇ · �E =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
A

(
λ+ 0 +

iλ

k
(ik)

)
eλx ei(kz−ωt) = 0 , x < 0

A

(
ελ

ε
+ 0 +

iλ

k
(ik)

)
eελx ei(kz−ωt) = 0 , x > 0

(a3)

as required. The solution (2) only describes a surface wave, if |�E| decreases
exponentially for increasing values of |x| (the opposite would be an improper
solution in any case). For x < 0 this is only the situation if λ > 0, and for
x > 0 the requirement is that ελ has to be negative. Hence the necessary
conditions are λ > 0 and ε < 0 .

3) The vector identity∇×∇×�E = ∇(∇·�E)−∇2�E implies∇×∇×�E = −∇2�E,

because ∇ · �E = 0 when x 	= 0. Inserting (2) in (3), we get

{
λ2 + (ik)2

}
�E1 =

(−iω)2

c2
�E1 , x < 0

{
(ελ)2 + (ik)2

}
�E2 =

(−iω)2

c2
ε �E2 , x > 0

(a4)

and the solution of these equations, with respect to λ and k, is

λ =
( −1

1 + ε

)1
2 ω

c
, k =

(
ε

1 + ε

)1
2 ω

c
(a5)

which solution is well-defined only if ε < −1 .

4) Introducing (a2) then the relation between k and ω in (a5) may be written

(kc)2 =
ε

1 + ε
ω2 =

ω2 − ω2
p

2ω2 − ω2
p
ω2 , ω2 < 1

2ω
2
p (a6)
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In the two limits we get (kc)2 � ω2 when ω � ωp, and kc → ∞ when

ω2 → ω2
p/2 , or

ω � kc if kc � ωp , ω � ωp√
2

if kc � ωp (a7)

The behaviour in the two limits plus a single point, as for instance kc =
0.907ωp for ω = 0.6ωp, determine the dispersion relation ω = ω(k) sketched
in the figure:

0 1 2
kc/ωp

0

1

ω
/ω

p

5) In the limit of kc � ωp then ε � −1, in which case (a5) shows that λ = k .
Introducing this condition in the expressions for the electric field vectors, we
get: �E1 = A(1, 0, i)e−k|x|ei(kz−ωt) and �E2 = A(−1, 0, i)e−k|x|ei(kz−ωt). Hence,

the surface is a mirror plane for the electrical field, �E1 ↔ �E2 when x → −x.

Both fields are circular polarized, where �E1 and
�E2 are respectively left-handed

and right-handed polarized. The total (average) field at x = 0 is longitudinal
polarized.

Using Marder’s Eq. (23.3), the plasma frequency of potassium is found to
be ωp = 6.50 · 1015 s−1 . The corresponding value of k = kp = ωp/c =

[6.50 · 1015/3 · 1018] Å−1
= 2.17 · 10−3 Å

−1
. The Fermi wave number is kF =

(3π2n)1/3 = 0.733 Å−1, and the ratio kp/kF = 2.96 · 10−3 � 1.

[It is not possible to excite surface plasmons by shining light on the sample.
The component of the wave vector along the surface of an incoming light
wave is always smaller or equal the length of the total wave vector. Hence
the resonance line of the incoming light always have a slope (phase velocity)
which is larger than, or equal, the long wavelength behaviour of the surface
plasmons, i.e. ωincoming > ω for a certain k component in the x = 0 plane. The
opposite is neither possible, i.e. the surface plasmons do not emit light waves.]
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Problem 2008: Thermodynamics of a superconductor

1) The free energy expression (2) predicts the magnetization along the direction
of the applied field to be

M = − 1

V

∂Gs

∂H0

= − 1

4π
H0 ⇒ B = H0 + 4πM = 0 (a1)

When the sample is a thin needle along the direction of the field, the internal
H-field is equal the applied one, and, as should be the case, B = 0 in the
interior of the superconductor. The field-independent term implies that Gs ≤
Gn as long as |H0| ≤ Hc, or that the superconducting phase is stable as long
as the applied field is smaller than the critical one.

2) The equations (2) and (3) predicts the entropy to be

Ss = −∂Gs

∂T
= V

Hc

4π

∂Hc

∂T
+ Sn = − V

2πTc
H2

c (0)
(
1− t2

)
t+ Sn (a2)

Ss is smaller than Sn as long as the superconducting phase is stable. [The
entropy changes discontinuously at the transition at Hc(T ) when T < Tc, i.e.
the transition is of first-order with a latent heat of Q = (Sn − Ss)T . At zero
field the entropy depends continuously on T , i.e. the transition is of second
order at Tc.] The heat capacity is

Cs = T
∂Ss

∂T
= t

∂Ss

∂t
=

V

2πTc
H2

c (0)
(
3t2 − 1

)
t + Cn (a3)

This result applies as long as t ≤ 1, when the applied field is zero.

3) Since the summation in equation (5) does not involve the spin degree of

freedom, the �k-sum is replaced by an energy integral, where the density of
states is the half of D(ε) defined by Marder in equations (6.13)-(6.19) and

U = −∑
�k

(E�k
− |ξ�k|)2
2E�k

= −V
∫ ∞
0

D(ε)

2

(√
(ε− εF )2 +∆2 − |ε− εF |

)2
2
√
(ε− εF )2 +∆2

dε

∆ � εF implies that D(ε) may be replaced by the constant D(εF ), and the
introduction of x = (ε− εF )/∆ then leads to

U = −1

4
V D(εF )∆

2
∫ ∞

−εF /∆

(√
x2 + 1− |x|

)2
√
x2 + 1

dx = −1

4
V D(εF )∆

2 (a4)

The lower limit of the integral may be replaced by −∞, in which case the
integral is twice the one given by equation (7).

4) The heat capacity makes a discontinuous jump at T = Tc, which according
to equation (a3) is

Cs − Cn =
V

πTc
H2

c (0) (a5)
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and from equations (2) and (a4) we have

H2
c (0) = −8π

V
U = 2πD(εF )∆

2 = 2πD(εF ) (αkBTc)
2 (a6)

when using the BCS relation ∆ = αkBTc. Neglecting the phonons, the spe-

cific heat of a normal metal is Cn/V = π2

3 D(εF )k
2
BT according to Marder’s

equation (6.77). From these relations we find at T = Tc

Cs − Cn

Cn
=

V

πTc
2πD(εF ) (αkBTc)

2

[
V
π2

3
D(εF )k

2
BTc

]−1

=
6α2

π2
� 1.89 (a7)

5) The heat capacity of the normal phase is Cn = γT or Cn/(γTc) = t when
T > Tc. It is then straightforwardly found that the relative heat capacity is

C

γTc
= t

[
1 +

1.89

2

(
3t2 − 1

)]
(a8)

when T ≤ Tc, as displayed below.
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T/Tc
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/(
γT

c)

[In the limit of t → 1, the BCS theory predicts Hc(T ) = AHc(0)(1− t), where
A � 1.737. Using this result instead of equation (3), the ratio above is being
multiplied by (A/2)2 and becomes equal to 12/[7ζ(3)] � 1.43 instead of 1.89.
In the other limit t → 0 the BCS theory predicts the heat capacity to vanish
∝ exp(−∆/kBT ) not linearly as found here.]

Using equation (6.31) in Marder and n = 0.1806 Å−3 the free-electron like
Fermi energy is found to be εF = 11.65 eV . The corresponding density-

of-states at the Fermi surface is, (6.33), D(εF ) = 0.02323 eV−1Å−3. The
BCS energy gap is ∆ = αkBTc = 1.764 × 8.617385 · 10−5 × 1.18 eV, or
∆ = 0.179 meV � 1.5 · 10−5 εF . Finally, H2

c (0) = 2πD(εF )∆
2 = 2π ×

0.02323
(
1.79 · 10−4

)2
eV Å−3 = 0.4677 · 10−8× 1.60218 · 10−12 · 1024 erg cm−3

implying Hc(0) = 86.6 Oe . Experimentally, γ = 1.48 γ(free) ⇒ Hc(0) =√
1.48 · 86.6 Oe = 105 Oe, which value is in agreement with experiments.
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Problem 2009: Transport due to electrons belonging to
a single band

1) It is straightforwardly found that

ε(�k) = εmin = 0 at �k = (0, 0, 0)

ε(�k) = εmax = 6E0 at �k =
π

a
(1, 1, 1)

(a1)

The first Brillouin zone is determined by:

−π

a
< kx <

π

a
, −π

a
< ky <

π

a
, −π

a
< kz <

π

a
(a2)

At the boundaries one or more components of �k are equal ±π/a, and the

smallest value of ε(�k) = εF, where this may occur, is

εF(threshold) = 2E0 (a3)

According to the 1. semiclassical rule the band index i is a constant of motion
(page 415 in Marder) allowing the contributions from the different bands to

be considered separately. The total current density �j = σtot
�E (using that σtot

is a scalar in the cubic case) is the sum of the individual contributions from
the different electrons and

σtot =
∑
i

σi (a4)

2) The inverse mass tensor is defined by Marder in eq. (16.28). In the present
case it is diagonal and (α = x, y, or z)

1

Mαα
=

1

�2

∂2ε(�k)

∂k2α
=

E0a
2

�2
cos(akα) =

1

m0

cos(akα) (a5)

when introducing m0 as defined in the text. This result implies that

Tr(M)−1 =
1

m0

[
cos(akx) + cos(aky) + cos(akz)

]
=

1

m0

[
3− ε(�k)

E0

]
(a6)

Introducing this result in Marder’s eq. (17.50) we get

m0

m∗ =
m0

3n

∫
[d�k]f�kTr(M

−1) =
1

3n

∫
[d�k]f�k

[
3− ε(�k)

E0

]
= 1− 〈ε〉

3E0

(a7)

3) In the limit ε(�k) ≤ εF � E0 then |akα| � 1 and cos(akα) � 1− 1
2(akα)

2 or

ε(�k) � E0

[
a2k2x
2

+
a2k2y
2

+
a2k2z
2

]
=

E0a
2k2

2
=

�
2k2

2m0

, k2 = k2x + k2y + k2z

(a9)
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Hence, in this limit the band electrons behave as free electrons with mass
m0 = �

2/(E0a
2). For a three dimensional gas of free electrons, the Fermi wave

number is kF = (3π2n)1/3, eq. (6.29) in Marder, and

εF =
�
2k2F
2m0

=
1

2
E0

(
3π2a3n

)2/3
(a10)

and, when T � TF, (see also problem 6.3 in Marder)

〈ε〉 = 1

n

∫
[d�k] θ(εF − ε(�k))ε(�k) =

1

n

2

(2π)3

∫ kF

0
dk 4πk2

�
2k2

2m0

=
�
2

nπ22m0

k5F
5

=
1

5

k3F
nπ2

εF =
3

5
εF =

3

10
E0

(
3π2a3n

)2/3 (a11)

The contribution of this band to the conductivity is then

σ =
ne2τ

m∗ =
e2τ

�2
E0a

2n
[
1− 1

10

(
3π2a3n

)2/3]
(a12)

4) Introducing the density of holes in the band p =
∫
[d�k](1− f�k

), then

n + p =
∫
[d�k] =

2

(2π)3

∫ π
a

−π
a

dkx

∫ π
a

−π
a

dky

∫ π
a

−π
a

dkz =
2

(2π)3

(
2π

a

)3
=

2

a3
(a13)

(as also obtained by elementary considerations). The case where n = 2/a3 is
then the one where the band is completely filled with electrons, p = 0 and
εF ≥ 6E0. Since the conductivity of a completely filled band is zero, then

〈ε〉 = 3E0, σ = 0 (a14)

The transformation �k �→ �k′ = π
a (1, 1, 1)−�k and ε(�k) �→ 6E0 − ε(�k′) leaves the

expression for the band energies unchanged. This symmetry shows that the
hole and the electron pictures are completely equivalent in the present case.
The holes in the limit of 0 < 6E0 − εF � E0, or n � p, behave in the same
way as the electrons in the limit 0 < εF � E0, or n � p, and

σ =
pe2τ

m∗ =
e2τ

�2
E0a

2p
[
1− 1

10

(
3π2a3p

)2/3]
, p =

2

a3
− n (a15)

replaces (a12) in this opposite limit.

According to eq. (a4), the Fermi surface does not touch the Brillouin zone
boundaries if 0 < εF < 2E0. In this energy interval the Fermi surface only
supports closed orbits. These closed orbits are lying on the outside of the
occupied states, i.e. they are “electron like”, and

R = − 1

nec
, 0 < εF < 2E0 (a16)

The electron-hole symmetry implies the presence of an equivalent closed Fermi
surface if replacing εF with 6E0− εF. This surface, centered around π

a (1, 1, 1),
only contains closed “hole-like” orbits on the outside of unoccupied states, and

R =
1

pec
, 4E0 < εF < 6E0, p =

2

a3
− n (a17)

[In the interval 2E0 < εF < 4E0, the Fermi surface involves open orbits, except
if the field is applied exactly along a cubic axis, but then the orbits are mixed
between being electron- and hole-like.]
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Problem 2010: Magnetic properties of band electrons

1) The number of states in a single band is 2 spin states times N different �k
states, and introducing n0 = N/V

V
∫ ∞

D(ε)dε = V
∫ W

0
Ddε = V DW = 2N ⇒ D =

2n0
W

(a1)

The number of electrons in the band is N , which determines the Fermi energy
ε0F

N = V
∫ ε0F

D(ε)dε = V
∫ ε0F

0

2n0
W

dε ⇒ ε0F =
W

2
(a2)

2) In the mean-field approximation, one or the other of the operators in prod-
ucts of two are being replaced by their thermal mean values. In the present
case,

n̂�k↑n̂�k′↓
∼= n̂�k↑〈n̂�k′↓〉+ 〈n̂�k↑〉n̂�k′↓ − 〈n̂�k↑〉〈n̂�k′↓〉 (a3)

and inserting this in (2) we get the results

E�k↑ = ε�k +
U

N

∑
�k

〈n̂�k′↓〉+ µBH ⇒ ∆↑ = U
n↓
n0

+ µBH

E�k↓ = ε�k +
U

N

∑
�k

〈n̂�k′↑〉 − µBH ⇒ ∆↓ = U
n↑
n0

− µBH

E0 = −U

N

∑
�k,�k′

〈n̂�k↑〉〈n̂�k′↓〉 = −N U
n↑n↓
n20

(a4)

The mean-field Hamiltonian is in the same form as that of a gas of independent
Fermions, and

〈n̂�kσ〉 = f�kσ =
1

e
β(E

�kσ
−µ)

+ 1
(a5)

β = 1/kBT and µ is determined by the condition that the total number of
electrons is N , i.e.

N =
∑
�k

(f�k↑ + f�k↓) = V (n↑ + n↓) ⇒ n↑ + n↓ = n0 (a6)

3) The electron energies are E�kσ
= ε�k

+∆σ implying that the spin-dependent

density of states is

Dσ(ε) =
1

V

∑
�k

δ(ε−ε�k−∆σ) =

⎧⎪⎨
⎪⎩

D

2
=

n0
W

∆σ < ε < W +∆σ

0 ε < ∆σ , W +∆σ < ε

(a7)

At zero temperature

nσ =
1

V

∑
�k

f�kσ =
∫ εF

Dσ(ε)dε =
∫ εF

∆σ

n0
W

dε =
εF −∆σ

W
n0 (a8)
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The Fermi energy is determined by

n0 = n↑ + n↓ =
2εF −∆↑ −∆↓

W
n0 ⇒ εF =

1

2
(W + U) (a9)

since ∆↑ +∆↓ = U according to (a4). Using the two same equations (a8) and

(a4), the polarization is found to be

n↓ − n↑ =
∆↑ −∆↓

W
n0 =

U

W
(n↓ − n↑) +

2n0
W

µBH (a10)

This equation of “self-consistency” is solved straightforwardly and the mag-
netic susceptibility is found to be

χ =
µB(n↓ − n↑)

H
=

2n0
W

1

1− U
W

µ2B (a11)

The coulomb interaction U implies an enhancement of the Pauli susceptibility,
D(εF )µ

2
B, by the factor [1− U/W ]−1 = [1−D(εF )U/2n0]

−1.

4) χ diverges when U → W , hence the critical value of U is Uc = W . When
U is smaller than the critical value, U < W , the energy density E/V at zero
field, as given by Eq. (7), is at its minimum when M = 0, and the minimum
energy density is E/V = n0(W +U)/4 = n0εF/2. The ground state is param-
agnetic and the magnetization is proportional to the field all the way up to its
saturation value Ms = n0µB. The saturation of the magnetization is achieved
when all electrons are in the same spin state (n↓ = n0 and n↑ = 0).

In the opposite case, when U > W , the coefficient to M2 in the energy density
(7) becomes negative and the energy is minimized when M2 is maximized,
i.e. |M | = Ms = n0µB in equilibrium (independent of the value of H). The
ground state is ferromagnetic and the energy density is E/V = n0W/2 at
H = 0. The magnetization is saturated at all values of H (the magnetization
vector is parallel to the field if H is non zero). The figure below shows the
density of states for the spin-up and spin-down electrons at H = 0, where
∆↓ = 0 and ∆↑ = U > W .

All the electrons are in the spin-down band and the band is completely filled,
W < εF < U . There are no empty states lying near by in energy and it
is not possible to accelerate the electrons by an electric field. Hence, the
paramagnetic metal becomes a ferromagnetic insulator when U > W . At non-
zero temperatures the spin-up states are going to be thermally populated and
M is reduced, but because of the gap the magnetization depends exponentially
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on temperature, Ms −M ∝ exp[−β(U − W )/2], in contrast to the T 3/2 law
predicted by the spin-wave theory for a normal Heisenberg ferromagnet. At
sufficiently high temperature, at T = TC , this “Stoner ferromagnet” becomes
a paramagnetic metal, though still with an enhanced Pauli susceptibility.

The figure below shows, as an example, the calculated magnetization curve in
the case of U = 2W .
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Skriftlig eksamen - April 2011

Answer to Problem 1: Ferromagnet

a) When J1 and J2 are positive, the ground state is the saturated ferro-
magnet, where 〈�si〉 = sẑ = 1

2 ẑ for all i. The ground state energy U is

U = −1
2N(z1J1 + z2J2)s

2 = −(6J1 + 3J2)
V

a3
(a1)

The fcc structure has 4 atoms per cubic unit cell, which implies N = 4V/a3.
The number of nearest neighbours is z1 = 12, and the number of next-nearest
neighbours is z2 = 6.

b) Applying an infinitesimal field along the z axis, only the z component
of the thermal average 〈�si〉 may be non zero. In this case, the mean-field
approximation implies

�si ·�sj MF
= �si · 〈�sj〉+ 〈�si〉 ·�sj − 〈�si〉 · 〈�sj〉
= (szi + szj − 〈sz〉)〈sz〉 = 1

4(σ
z
i + σzj − 〈σz〉)〈σz〉

(a2)

where σzi = 2szi may take on the values +1 or −1. Hence, within the mean-
field approximation, �si ·�sj is replaced by the same expression as derived from

the Ising interaction 1
4σiσj within the same approximation.

c) The mean-field transition temperature for the simple Ising model is
derived by Marder in Section 24.4 to be determined by kBT = zJ . For the
present system, this temperature is determined by the same expression except
that zJ is replaced by 1

4(z1J1 + z2J2), i.e.

TC =
(
3J1 +

3
2J2

)
/kB (a3)

Answer to Problem 2: Non-interacting spin-dimer system

a) The spin-operator sum is defined �S(i) = �s1(i) + �s2(i), where the spin
quantum number S for the total spin may take on the values 0 or 1.

[�S(i)]2 = [�s1(i)]
2+[�s1(i)]

2+2�s1(i) ·�s2(i) = 3
2 +2�s1(i) ·�s2(i) = S(S+1) (a4)

using [�s1(i)]
2 = [�s2(i)]

2 = s(s+1) = 3
4 , and the Hamiltonian for the ith dimer

may be written

H(i) = −J
[
1
2S(S + 1)− 3

4

]
− gµBHSz(i) (a5)

when defining the z axis to be parallel with the field. The eigenenergies are:

ε00 = 3
4J, S = 0, Sz = 0

ε1−1 = −1
4J + gµBH, S = 1, Sz = −1

ε10 = −1
4J, S = 1, Sz = 0

ε11 = −1
4J − gµBH, S = 1, Sz = 1

(a6)
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b) When J = 0 the system is 2N non-interacting s = 1
2 ions, and the

susceptibility is given by Curie’s law, eqs. (25.31) and (25.32) in Marder, i.e.

χ = (gµB)
2 2N

V

s(s+ 1)

3kBT
=

n(gµB)
2

4kBT
(a6)

c) When kBT � |J | and J > 0, then only the triplet S = 1 is populated
and the dimer system is equivalent to N non-interacting S = 1 ions. If J < 0
only the S = 0 singlet is populated and the system becomes non-magnetic:

χ1 = (gµB)
2N

V

S(S + 1)

3kBT
=

n(gµB)
2

3kBT
(J > 0)

χ0 = 0 (J < 0)

(a7)

Notice that χ = (3χ1 + χ0)/4.

Answer to Problem 3: Anisotropic band electrons

a) The constant energy surface in �k space at ε = εF, the Fermi surface, is
an ellipsoid with semi axes ai, i = 1, 2, 3:(

kx
a1

)2

+

(
ky
a2

)2

+

(
kz
a3

)2

= 1, ai =

√
2miεF

�
(a8)

b) According to, for instance, eq. (17.48) in Marder:

σ = ne2τM−1 = ne2τ

⎛
⎜⎜⎜⎝

1
m1

0 0

0 1
m2

0

0 0 1
m3

⎞
⎟⎟⎟⎠ (a9)

in the (x, y, z) coordinate system. Applying a field �E = E0(1, 1, 0), then the

current density is �j = σ�E = ne2τ(E0/m1, E0/m2, 0), which is a vector in the
(xy) plane making an angle φ with the x axis, where tanφ = m1/m2 .

c) Introducing a new vector variable

�k′ =
(√

m

m1

kx,

√
m

m2

ky,

√
m

m3

kz

)
⇒ ε(�k′) =

(��k′)2

2m
(a10)

then the density of states is [using eq. (6.23) in Marder]

D(ε) =
2

(2π)3

∫
d�k δ

(
ε− ε(�k)

)
=
(
m1m2m3

m3

) 1
2 2

(2π)3

∫
d�k′ δ

(
ε− ε(�k′)

)

=
(
m1m2m3

m3

)1
2

√
2m3ε

�3π2
=

√
2(m∗)3ε
�3π2

, m∗ = (m1m2m3)
1
3

(a11)
The Sommerfeld constant [eq. (6.77) in Marder] is γ = (π2/3)D(εF)kB. The

Fermi energy is εF = (�k′F)
2/2m, where k′F = (3π2n)1/3. Introducing this in

(a11) the result is D(εF) = m∗k′F/(�π)2 or

γ =
kB
�2

(
π2

9
m1m2m3n

) 1
3

(a12)


