Solutions to the Bethe-Salpeter Equation via Integral Representations

K. Bednar P. Tandy Kent State University HUGS @ Jefferson Lab

June 16, 2015

Introduction

- Introduction
- 2 Derivations of DSE and BSE
 - Dyson-Schwinger Equations
 - Bound States and Bethe-Salpeter Amplitude
 - Functional Approach
- Poles and Integral Reps
 - Poles in the Prop
 - Complex-conjugate poles
 - Kernel Representation
 - Nakanishi forms
 - Nakanishi Forms
 - Results
 - Future

Dyson-Schwinger Equations

Dressed 2-point function for quarks

$$iS(x-y) = \frac{\langle 0_H | T\psi_H(x)\overline{\psi}_H(y) | 0_H \rangle}{\langle 0_H | 0_H \rangle} = \langle 0_I | Te^{i\int \mathcal{L}_I}\psi_I(x)\overline{\psi}_I(y) | 0_I \rangle_c$$

- Wick's theorem and perturbation theory: $iS(x-y) = \sum_{n=1}^{\infty} \frac{i^{n}}{n!} \int d^{4}z ... \langle O|T \mathcal{L}_{int}(z_{1})...\psi(x)\overline{\psi}(y)|0\rangle_{c}$
- Non-perturbative approach

One-Particle Irreducible (1PI) Diagrams

Any diagram that cannot be split in two by removing a single line; let the sum of all 1PI diagrams be called self-energy

DSE Continued

$$S = S_0 + S_0 \Sigma S_0 + S_0 \Sigma S_0 \Sigma S_0 + ...$$

$$= S_0 + S_0 \Sigma (S_0 + S_0 \Sigma S_0 + ...)$$

$$= S_0 + S_0 \Sigma S$$

$$\rightarrow S^{-1} = S_0^{-1} + \Sigma$$

◆ロト ◆問 ト ◆差 ト ◆差 ト ・ 差 ・ からで

Bound States and Bethe-Salpeter Equation

- Bound states appear as poles in scattering amplitudes (on real axis for stable states, below for unstable states)¹
- By definition: $H|P,t\rangle = P^0|P,t\rangle \rightarrow |P,t\rangle = e^{-iP^0t}|P,0\rangle$
- So the bound state contribution to a completeness sum in an amplitude is $\langle f, t_f | P, t \rangle \langle P, t | i, t_i \rangle = \langle f | P \rangle e^{-i(t_f - t_i)E} \langle P | i \rangle$
- The fourier transform $t_f t_i \Rightarrow p^0$ generates a pole at $p^0 = E i\epsilon$
- $\int dt e^{-i(E-p_0)t} |\Gamma^*\rangle \langle \Gamma| = \frac{|\Gamma^*\rangle \langle \Gamma|}{p_0-E+i\epsilon}$

¹Paul Hoyer - Bound states - from QED to QCD arXiv: 1402,5005v1

Derivation of Bethe-Salpeter Equation

In order to find an expression for Γ , consider the (above) 4-pt function:

Two-Particle Irreducible (2PI) Diagrams

Any diagram that cannot be split in two by removing two (internal fermion) lines ^a

^aHuang, Quantum Field Theory Ch10

cont.

So the series for the four-point function is:

Becomes:

BSE

Assume the form $G \to \frac{\Gamma^*(P)\Gamma(P)}{P^0 - E_P}$

$$\left[\Gamma(p;P)\right]_{tu} = \lambda \int \frac{d^4k}{(2\pi)^4} K_{tu}^{rs}(p,k;P) \left[S(k_+)\Gamma(k;P)S(k_-)\right]_{sr}.$$

<ロ > ← □

Functional Derivation - Quick Look

Functional Derivation

$$0 = \int D\mu \frac{\delta}{\delta \overline{q}(x)} e^{-S_{QCD} + S_{sources}} \quad S_{sources} \sim (\overline{\xi}, q)$$

$$= \int (\frac{\delta S}{\delta \overline{q}(x)} [q, \overline{q}, w, \overline{w}, A] + \xi) e^{-S_{QCD} + S_{sources}}$$

$$= (-\frac{\delta S}{\delta \overline{q}(x)} [\frac{\delta}{\delta \overline{\xi}}, ...] + \xi) Z[\overline{\xi}, \xi, \overline{\eta}, \eta, \lambda]$$

Take another functional derivative and divide by Z:

$$0 = -(\gamma_{\mu}\delta_{\mu} + m + igt^{a}\gamma_{\mu}\frac{\delta}{\delta\lambda_{\mu}^{a}})\frac{\delta^{2}}{\delta\overline{\xi}(x)\delta\xi(y)}logZ + \delta(x-y)$$

Legendre transformation:

$$\Gamma[q,\overline{q},w,\overline{w},A] \doteq \int (\overline{\xi}q + \overline{q}\xi + \lambda A + \overline{\eta}w + \overline{w}\eta) - logZ$$

3 4 5

³Great discussion of effective action in Weinberg The Quantum Theory of Fields Vol II Ch 16

⁴full derivation in: Marco Viebach - Diplomarbeit - Dyson-Schwinger equation for the quark propagator at finite temperatures

⁵see also Ch10 of Itzykson+Zuber

Solving some things

In the BSE, $(k^{\pm})^2 = k^2 + P^2/4 \pm 2k \cdot q = k^2 - M^2/4 \pm ikMx$, if $P = (iM, \vec{0})$ in Euclidean metric ⁶

These poles suggest the propagators can be represented as:

$$S(p) = \sum_{n=1}^{N} \left\{ \frac{z_n}{i \not p + m_n} + \frac{z_n^*}{i \not p + m_n^*} \right\}$$

⁶Analytical properties of the quark propagator from a truncated Dyson-Schwinger equation in complex Euclidean space, Dorkin et al., PhysRevC.89:034005

7

Fit to Numerical Solution

Figure 1: σ_V for u quark in RL

Figure 2: σ_S for u quark in RL

QCD: Quarks and Gluons are Confined (postulate)

- Only color singlet states in the spectrum of Hqcd
- Allowed states in Euclidean field theory satisfy certain criteria
- One of which is the norm or spectral density must be positive, definite
- Osterwalder-Schrader axium 3 [Comm. Math. Phys. v42, 281 (1975)+]
- Latter is violated if there is an inflection pt in 2-pt fn vs k^2

CENT STATE

20

Hadron Physics from DSEs of QCD

9

Going Further - Kernel

Fit the LR-kernel to a similar form: $D(k^2) = \sum \frac{Z_i}{k^2 + m_i^2} + \frac{Z_i^*}{k^2 + (m_i^*)^2}$

4□ > 4□ > 4 = > 4 = > 9 < 0</p>

Fit Existing BSE Ampls, DSE solns for S(k) for Feyn Integral Method

$$\Gamma_{\pi}(\mathbf{q}^2,\mathbf{q}\cdot\mathbf{P}) = \gamma_5 \left\{ \mathbf{E}_{\pi}(\mathbf{q}^2,\mathbf{q}\cdot\mathbf{P}) + \not P \; \mathbf{F}_{\pi}(..) + \not \mathbf{q} \cdot \mathbf{P} \; \mathbf{G}_{\pi}(..) + \sigma : \mathbf{q} \mathbf{P} \; \mathbf{H}_{\pi}(..) \right\}$$

Use Nakanishi Representation (1965):- $\mathcal{F}=E, F, G, or H$

$$\mathcal{F}(\mathbf{q^2};\mathbf{q}\cdot\mathbf{P}) = \int_{-1}^1 d\alpha \, \int_0^\infty d\Lambda \, \big\{ \frac{\rho_{\rm IR}(\alpha;\Lambda)}{(\mathbf{q^2} + \alpha\mathbf{q}\cdot\mathbf{P} + \Lambda^2)^{m+n}} + \frac{\rho_{\rm UV}(\alpha;\Lambda)}{(\mathbf{q^2} + \alpha\mathbf{q}\cdot\mathbf{P} + \Lambda^2)^n} \big\}$$

cf. 7.1 of Peskin+Schroeder, where $\langle \Omega | T \phi(x) \phi(y) | \Omega \rangle$ is written in integral (Kallen-Lehmann spectral rep) form; ex: do the same for $\langle \Omega | T \phi(z) \phi(x) \phi(y) | \Omega \rangle$

4 D > 4 D > 4 D > 4 D > 2 9 9 9

- \bullet Now all of the elements of the BSE have the form $\frac{Num}{p^2+M^2}$
- Use Feynman parameters:

$$\frac{1}{A_1^{m_1} A_2^{m_2} \dots A_n^{m_n}} = \int_0^1 dx_1 \dots dx_n \delta(\sum x_i - 1) \frac{\prod x_i^{m_i - 1}}{\left[\sum x_i A_i\right]^{\sum m_i}} \frac{\Gamma[m_1 + \dots m_n]}{\Gamma(m_1) \dots \Gamma(m_n)}$$
(1)

- The result is a known Euclidean integral, and hence are left with a reduced-dimensional integral over Feynman parameters (poles are therefore not a problem)
- Eigenvalue equation $\lambda(P^2)E(k,P)=\int_q K(k-q)S(q_+)E(q,P)S(q_-)$ with solution $\lambda(P^2=-M^2)=1$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

Looking ahead

charm + bottom physics, investigation of exited hadrons, em form factors in timelike region, medium- and large- Q^2 spacelike form factors, finite temp., etc.

• Also, thanks to HUGS organizers, presenters, JLab staff, etc.