Solutions to the Bethe-Salpeter Equation via Integral Representations

K. Bednar P. Tandy Kent State University
HUGS @ Jefferson Lab

June 16, 2015

Introduction

(1) Introduction
(2) Derivations of DSE and BSE

- Dyson-Schwinger Equations
- Bound States and Bethe-Salpeter Amplitude
- Functional Approach
(3) Poles and Integral Reps
- Poles in the Prop
- Complex-conjugate poles
- Kernel Representation
- Nakanishi forms
- Nakanishi Forms
- Results
- Future

Dyson-Schwinger Equations

Dressed 2-point function for quarks
$i S(x-y)=\frac{\left\langle 0_{H}\right| T \psi_{H}(x) \bar{\psi}_{H}(y)\left|0_{H}\right\rangle}{\left\langle 0_{H} \mid 0_{H}\right\rangle}=\left\langle 0_{l}\right| T e^{i \int \mathcal{L}_{I}} \psi_{I}(x) \bar{\psi}_{l}(y)\left|0_{l}\right\rangle_{C}$
(1) Wick's theorem and perturbation theory:

$$
i S(x-y)=\sum_{n}^{\infty} \frac{i^{n}}{n!} \int d^{4} z \ldots\langle O| T \mathcal{L}_{\text {int }}\left(z_{1}\right) \ldots \psi(x) \bar{\psi}(y)|0\rangle_{c}
$$

(2) Non-perturbative approach

One-Particle Irreducible (1PI) Diagrams
Any diagram that cannot be split in two by removing a single line; let the sum of all 1 PI diagrams be called self-energy

DSE Continued

$$
\begin{aligned}
S= & S_{0}+S_{0} \Sigma S_{0}+S_{0} \Sigma S_{0} \Sigma S_{0}+\ldots \\
= & S_{0}+S_{0} \Sigma\left(S_{0}+S_{0} \Sigma S_{0}+\ldots\right) \\
= & S_{0}+S_{0} \Sigma S \\
& \rightarrow S^{-1}=S_{0}^{-1}+\Sigma
\end{aligned}
$$

Bound States and Bethe-Salpeter Equation

- Bound states appear as poles in scattering amplitudes (on real axis for stable states, below for unstable states) ${ }^{1}$
- By definition: $H|P, t\rangle=P^{0}|P, t\rangle \rightarrow|P, t\rangle=e^{-i P^{0} t}|P, 0\rangle$
- So the bound state contribution to a completeness sum in an amplitude is $\left\langle f, t_{f} \mid P, t\right\rangle\left\langle P, t \mid i, t_{i}\right\rangle=\langle f \mid P\rangle e^{-i\left(t_{f}-t_{i}\right) E}\langle P \mid i\rangle$
- The fourier transform $t_{f}-t_{i} \Rightarrow p^{0}$ generates a pole at $p^{0}=E-i \epsilon$
- $\int d t e^{-i\left(E-p_{0}\right) t}\left|\Gamma^{*}\right\rangle\langle\Gamma|=\frac{\left|\Gamma^{*}\right\rangle\langle\Gamma|}{p_{0}-E+i \epsilon}$

${ }^{1}$ Paul Hoyer - Bound states - from QED to QCD arXiv: 1402.5005 v 1

Derivation of Bethe-Salpeter Equation

In order to find an expression for Γ, consider the (above) 4-pt function:
Two-Particle Irreducible (2PI) Diagrams
Any diagram that cannot be split in two by removing two (internal fermion) lines ${ }^{a}$

${ }^{a}$ Huang, Quantum Field Theory Ch10

REDUCIBLE

cont.

So the series for the four-point function is:

Becomes:
 $=$

BSE

Assume the form $G \rightarrow \frac{\Gamma^{*}(P) \Gamma(P)}{P^{0}-E_{P}}$

$$
[\Gamma(p ; P)]_{t u}=\lambda \int \frac{d^{4} k}{(2 \pi)^{4}} K_{t u}^{r s}(p, k ; P)\left[S\left(k_{+}\right) \Gamma(k ; P) S\left(k_{-}\right)\right]_{s r} .
$$

Functional Derivation - Quick Look

Functional Derivation

$$
\begin{aligned}
0 & =\int D \mu \frac{\delta}{\delta \bar{q}(x)} e^{-S_{Q C D}+S_{\text {sources }}} \quad S_{\text {sources }} \sim(\bar{\xi}, q) \\
& =\int\left(\frac{\delta S}{\delta \bar{q}(x)}[q, \bar{q}, w, \bar{w}, A]+\xi\right) e^{-S_{Q C D}+S_{\text {sources }}} \\
& =\left(-\frac{\delta S}{\delta \bar{q}(x)}\left[\frac{\delta}{\delta \bar{\xi}}, \ldots\right]+\xi\right) Z[\bar{\xi}, \xi, \bar{\eta}, \eta, \lambda]
\end{aligned}
$$

Take another functional derivative and divide by Z :

$$
0=-\left(\gamma_{\mu} \delta_{\mu}+m+i g t^{a} \gamma_{\mu} \frac{\delta}{\delta \lambda_{\mu}^{a}}\right) \frac{\delta^{2}}{\delta \bar{\xi}(x) \delta \xi(y)} \log Z+\delta(x-y)
$$

Legendre transformation:
$\Gamma[q, \bar{q}, w, \bar{w}, A] \doteq \int(\bar{\xi} q+\bar{q} \xi+\lambda A+\bar{\eta} w+\bar{w} \eta)-\log Z$

${ }^{3}$ Great discussion of effective action in Weinberg The Quantum Theory of Fields Vol II Ch 16
${ }^{4}$ full derivation in: Marco Viebach - Diplomarbeit - Dyson-Schwinger equation for the quark propagator at finite temperatures
${ }^{5}$ see also Ch10 of Itzykson+Zuber

Solving some things

In the BSE, $\left(k^{ \pm}\right)^{2}=k^{2}+P^{2} / 4 \pm 2 k \cdot q=k^{2}-M^{2} / 4 \pm i k M x$, if $P=(i M, \overrightarrow{0})$ in Euclidean metric ${ }^{6}$

These poles suggest the propagators can be represented as:

$$
S(p)=\sum_{n=1}^{N}\left\{\frac{z_{n}}{i \not p+m_{n}}+\frac{z_{n}^{*}}{i \not p+m_{n}^{*}}\right\}
$$

[^0]

Fit to Numerical Solution

Figure 1: σ_{V} for u quark in RL

Figure 2: σ_{S} for u quark in RL

QCD: Quarks and Gluons are Confined (postulate)

- Only color singlet states in the spectrum of Hqcd
- Allowed states in Euclidean field theory satisfy certain criteria
- One of which is the norm or spectral density must be positive, definite
- Osterwalder-Schrader axium 3 [Comm. Math. Phys. v42, 281 (1975)+]
- Latter is violated if there is an inflection pt in 2-pt fn vs k^2

IENT STATE
20
Hadron Physics from DSEs of QCD

Going Further - Kernel

Fit the LR-kernel to a similar form: $D\left(k^{2}\right)=\sum \frac{Z_{i}}{k^{2}+m_{i}^{2}}+\frac{z_{i}^{*}}{k^{2}+\left(m_{i}^{*}\right)^{2}}$

Fit Existing BSE Ampls, DSE solns for $S(k)$ for Feyn Integral Method

$$
\boldsymbol{\Gamma}_{\pi}\left(\mathbf{q}^{2}, \mathbf{q} \cdot \mathbf{P}\right)=\gamma_{5}\left\{\mathbf{E}_{\pi}\left(\mathbf{q}^{2}, \mathbf{q} \cdot \mathbf{P}\right)+P \mathbf{F}_{\pi}(\ldots)+\not q \mathbf{q} \cdot \mathbf{P} \mathbf{G}_{\pi}(\ldots)+\sigma: \mathbf{q} \mathbf{P} \mathbf{H}_{\pi}(. .)\right\}
$$

Use Nakanishi Representation (1965) :- $\quad \mathcal{F}=\mathbf{E}, \mathbf{F}, \mathbf{G}$, or H

$$
\mathcal{F}\left(\mathbf{q}^{2} ; \mathbf{q} \cdot \mathbf{P}\right)=\int_{-1}^{1} d \alpha \int_{0}^{\infty} \mathbf{d} \boldsymbol{\Lambda}\left\{\frac{\rho_{\mathrm{IR}}(\alpha ; \boldsymbol{\Lambda})}{\left(\mathbf{q}^{2}+\alpha \mathbf{q} \cdot \mathbf{P}+\boldsymbol{\Lambda}^{2}\right)^{\mathbf{m}+\mathbf{n}}}+\frac{\rho_{\mathrm{UV}}(\alpha ; \boldsymbol{\Lambda})}{\left(\mathbf{q}^{2}+\alpha \mathbf{q} \cdot \mathbf{P}+\boldsymbol{\Lambda}^{2}\right)^{\mathbf{n}}}\right\}
$$

cf. 7.1 of Peskin+Schroeder, where $\langle\Omega| T \phi(x) \phi(y)|\Omega\rangle$ is written in integral (Kallen-Lehmann spectral rep) form; ex: do the same for $\langle\Omega| T \phi(z) \phi(x) \phi(y)|\Omega\rangle$

- Now all of the elements of the BSE have the form $\frac{N u m}{p^{2}+M^{2}}$
- Use Feynman parameters:

$$
\begin{equation*}
\frac{1}{A_{1}^{m_{1}} A_{2}^{m_{2}} \ldots A_{n}^{m_{n}}}=\int_{0}^{1} d x_{1} \ldots d x_{n} \delta\left(\sum x_{i}-1\right) \frac{\prod x_{i}^{m_{i}-1}}{\left[\sum x_{i} A_{i}\right]^{\sum m_{i}}} \frac{\Gamma\left[m_{1}+\ldots m_{n}\right]}{\Gamma\left(m_{1}\right) \ldots \Gamma\left(m_{n}\right)} \tag{1}
\end{equation*}
$$

- The result is a known Euclidean integral, and hence are left with a reduced-dimensional integral over Feynman parameters (poles are therefore not a problem)
- Eigenvalue equation $\lambda\left(P^{2}\right) E(k, P)=\int_{q} K(k-q) S\left(q_{+}\right) E(q, P) S\left(q_{-}\right)$ with solution $\lambda\left(P^{2}=-M^{2}\right)=1$

Pseudoscalar meson E-function

Looking ahead

 charm + bottom physics, investigation of exited hadrons, em form factors in timelike region, medium- and large- Q^{2} spacelike form factors, finite temp., etc.- Also, thanks to HUGS organizers, presenters, JLab staff, etc.

[^0]: ${ }^{6}$ Analytical properties of the quark propagator from a truncated Dyson-Schwinger equation in complex Euclidean space, Dorkin et al., PhysRevC.89.034005

