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Abstract 

During the solution of complex problems of the theory of 

elasticity, the problem of the chosen model adequacy to real 

processes comes to the fore. The existence of existence 

theorems for a rigorous mathematical study of boundary value 

problem solvability makes it easy to prove the convergence of 

numerical methods to an exact real solution. Therefore, a 

rigorous study of boundary value problem solvability, the 

proof of existence theorems is a very urgent problem in the 

theory of elasticity. By now, the solvability of boundary value 

problems for nonlinear partial differential equations 

describing the equilibrium state of shells in the framework of 

the simplest Kirchhoff - Love model has been studied 

sufficiently. Fundamental results in this area were obtained by 

I.I. Vorovich, N.F. Morozov and their students. At the same 

time, there is an increased interest in the study of nonlinear 

boundary value problem solvability for partial differential 

equations in the framework of more complex models that are 

not based on the Kirchhoff - Love hypothesis. This is 

explained not only by the relative development of the classical 

theory, but also by the significant expansion of the field 

concerning the engineering application of the theory. The 

need to study boundary value problems for more complex 

differential equations was pointed out by the Academician I.I. 

Vorovich and such problems were included in the list of 

unsolved problems in the mathematical theory of shells. This 

work is devoted to the study of a nonlinear boundary value 

problem solvability for shallow isotropic shells by S.P. 

Timoshenko with hinged edges. The research method consists 

in reducing the original boundary value problem to a single 

nonlinear operator equation in Sobolev space. The method is 

based on integral representations for displacements, which are 

constructed using general solutions of the inhomogeneous 

Cauchy - Riemann equation. Integral representations contain 

arbitrary holomorphic functions, which are found using 

explicit representations of solutions to the Riemann - Hilbert 

problem in the single circle. Finding holomorphic functions is 

one of the main and difficult moments of the proposed 

research. The integral representations constructed in this way 

make it possible to reduce the original problem to one 

nonlinear equation, the solvability of which is established 

using the principle of contracted mappings. 

Key words: the system of equilibrium equations, integral 

representations, contraction mapping principle, existence 

theorem.  

 

I. INTRODUCTION 

In this paper, they consider the following model of the theory of shallow shells by S.P. Tymoshenko: 

1) the relationship of deformation - displacement [1, pp. 168 – 170, 269]:  
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where   1,0,3,1,  kjik
ij  - the components of the deformations of the shell middle surface S0; )2,1( iwi  и  3w    - 

tangential and normal displacements of points S0;  2,1ii  - the angles of normal section rotation; 
2

,

1   - Cartesian 

coordinates of points of a flat bounded domain Ω with the boundary Г, homeomorphic  S0;  

2)  constitutive relations: ;3,1,,,;,,  nkjinkjiB kn
ijknij   hereinafter, the summation is carried out by the repeated 

Latin indices from 1 to 3, by the Greek ones - from 1 to 2, where  ;130

knknkn   ijknB  - the elastic characteristics of the 
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shell:  ,1 222221111  EBB   ,1 21122   EB    ,121212  EB   ;12223231313  EkBB  the rest 

;0ijknB const  - Poisson's ratio, constE  - Young's modulus,  constkk 21,  - the main curvatures; 

constk 2
 - shear coefficient; 

3) boundary conditions on Г:  

   )2(;011 w  

4) mass   321 ,, F  and surface  21,


F  forces act on the shell, and the forces   3
0

,sF  are applied at the shell 

boundary.   

Using the variational Lagrange principle, we obtain the equilibrium equations: 
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and the static boundary conditions on Г: 
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ijT  -  

the efforts,  
ijM - the moments:  
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232 ,,),2,1(),3,1( NPPjLiR ji   depend on external forces;  21321 ,,,, wwwa   - the vector of generalized 

displacements, consth   - shell thickness. 

Problem A. It is required to find a solution to the system (3) that satisfies the boundary conditions (2), (4).  

 

II. METHODS 

We will study the boundary value problem A in a generalized setting. Let the following conditions be satisfied: a) Ω is a simply 

connected domain with the boundary 
1 ,Г C  b)    ,2,21 hhLLF p    ,



pLF
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0
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here and below, everywhere .10,2  p   

During displacements, the equilibrium equations (3) take the following form 
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the boundary conditions on Γ are transformed to the following form 

        2 1 1 2

2 1

1 2 31 2 1 2
, (7)w w t d ds w w t d ds w t

   
         

       2 1 1 2
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The following designations are adopted in (6) - (9)  

  3 1 2 3 33 2 2 1 23 3 3 3 3 3 3
, 1,2,j j j j j j j j

j
j j jf f w k w w w w w w w R j

         
          

     

    

   

1 2 1 2

0 3 0 1 1 23

2 2 2 1 2

2 3 2 4 3 13 3 3 3

2 1 1

2 1 3 1 2 4 2 1

2 2

5 1 2 1

, , 1,2, 1 2, 1 2, (10)

( ) ( ) 2 ( ) 2 ( ) ( ) ,

, ( ) ( ) ( ) , , ,

2

j
j

j j j j jg g k g g w k w L j

w t P s k w t w t w t d ds w t w t d ds

t N s t t s s i s k k k k k k

k k k k k



   

     

     

     



         

       

        

            2 2 2 3 2

2 0 1 2, 6 1 / , 12 1 / , 1 .k k h h E Eh         

 

 

Definition. A generalized solution of the problem A is the 

vector of generalized displacements 

 1 2 3 1 2, , , ,a w w w       2

pW  , 2p  , almost 

everywhere satisfying the system (6) and pointwise boundary 

conditions (2), (7), (8), (9).
 

Currently, there is a large number of works devoted to the 

calculation of the strength of elastic structures taking into 

account geometric and (or) physical nonlinearity. This is due 

to the widespread use of elastic structures in aviation, space 

technology, shipbuilding, mechanical engineering and 

construction. In very rare cases, nonlinear problems are solved 

in a closed form. For this reason, a wide range of approximate 

computer methods is used to solve them. In the numerical 

solution of problems, the problem of the numerical solution 

convergence to the exact (real) solution of the problem always 

comes to the fore. As is known, the solution to this problem is 

based on a rigorous mathematical study of boundary value 

problem solvability and the proof of existence theorems. At 

one time, Professor S.G. Mikhlin noted that “the proof of the 

solution existence is a test of the chosen model adequacy” 

(The Journal “St. Petersburg University", No. 8, 2008). The 

existence of existence theorems makes it easy to prove the 

convergence of numerical methods to an exact real solution 

and contributes to a deep understanding of the studied 

mechanical phenomena. Therefore, a rigorous study of 

boundary value problem solvability, the proof of existence 

theorems and the development of the methods for finding 

solutions are a very urgent problem in the mathematical 

theory of elasticity.    

At present, the solvability of nonlinear boundary value 

problems in the theory of thin shallow elastic shells has been 

sufficiently studied in the framework of the simplest 

Kirchhoff-Love model. The issues of the existence of 

solutions to nonlinear problems within the framework of more 

general models of the theory of shells that are not based on the 

Kirchhoff-Love hypotheses were included in the well-known 

list of unsolved problems in the mathematical theory of shells 

by I.I. Vorovich and until recently remained open. Nowadays, 

there is a number of works devoted to the study of nonlinear 

problems in the framework of the Timoshenko shear model 

[2–9]. The studies in [2–9] are based on integral 

representations for generalized displacements containing 

arbitrary holomorphic functions, which are found in such a 

way that generalized displacements satisfy the given boundary 

conditions. Two approaches are used to construct them. The 

first approach is based on the use of explicit representations of 

solutions to the Riemann - Hilbert problems for holomorphic 

functions in the single circle. Therefore, a flat domain 

homeomorphic to the middle surface of the shell is either 

assumed from the very beginning to be the single circle [2–5], 

or is mapped conformally onto the single circle [6], [9]. In the 

second approach, the theory of one-dimensional singular 

integral equations [7], [8] is used to define holomorphic 

functions. In this paper, the method of conformal mapping is 

used to study a nonlinear problem for arbitrary shallow shells 

with other boundary conditions. 

 

III. RESULTS AND DISCUSSION 

Let's consider the system of the first two equations in (6), in which the deflection is assumed to be fixed temporarily. The general 

solution of the system (1) has the form [2]: 

1 2

0 2 1 2 1 1 2( ) ( ) [ ]( ), , ( ) 2, (11)z w iw z iTd Tf z z i f f if             

where  z1  С  ,  z2  1C   – arbitrary holomorphic functions; 
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 
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where  – arbitrary real constant. 

Let us find the holomorphic functions   , 1,2j z j   so that the tangential displacements 21 , ww
  

(11) satisfy the boundary 

conditions (2), (7). Following [6], for tangential displacements 21 , ww  under the condition of solvability of the form 

 2 2 1 2 0, (12)P s ds R d d 
 

    

we obtain the required representation 

0 0 3 0( ) ( ) , , (13)z H w z c z     

 0 3 0 3 3 2 3 1 3 3( ) [ ( ); ( )]( ) [ ( )] ( ) [ [ ( )]( ( )) ( )( )]( ),H w z H f w l w z l w z iTd l w Tf w z         
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
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via 1[ ] ( )Sd   the limit of the function 1[ ]( )Sd z  is denoted at z    within the domain Ω; )(z  – conformal 

mapping of a single circle 1: K  on the domain  ;  z   – the function inverse to )(z ;  dddtt ,/  

– the element of a circular arc 0,K с – an arbitrary real constant. 

We proceed to finding the functions 1 2,   from the last two equations in the system (6) that satisfy the conditions (2), (8) on Г. 

Let's note that the structure of the left-hand sides of the last two equations in (6) is the same as in the case of tangential 

displacements; they differ only in the right-hand sides. Therefore, for the angles of rotation 1 2,   with fixed right-hand sides, 

we immediately obtain a representation similar to (11): 

2 1 0 1[ ( ); ( )] , , (14)i H g l с z          

where the following designations are accepted 

2 1 1 2, ( ) ( ( ) ( )) 2, (15)i g g ig          

,)(~, 103

j
jjjj Lkgw j 
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2 2( )( ) ( ) / ( 1) ( )( ),l t t h g t     

1

2 3( )( ) Re{ [ ( )] ( ) / Re ( )( )}, ,h g t t Sd Tg t d ds Tg t t         

1с  – arbitrary real constants; the operator 0[ ( ); ( )]H g l   is defined by the formula in (13). 

In this case, the solvability condition must be satisfied. 

2 2 1 2 1 2

1 0 2( ( ) ) 0, (16)N s ds L d d k d d     
  

      

0c
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where  2N , 
2L  – the components of the external load, 

(1)

2 ( )pW    – the function introduced in the formula (15). 

Thus, under the conditions (12), (16), the problem A with fixed 3w , ( 1,2)j j   is solvable with respect to tangential 

displacements and angles of rotation; its solutions are given by the formulas (13), (14). 

For further research, we use the method of [2], [6]. Taking into account the solution of the system (6) with respect to tangential 

displacements and angles of rotation, the conditions (2), (7), (8), integral representations (13), (14) are developed for 

, ( 1,2)j jw j  . Now let us examine the third equation in (6). Before proceeding to it, we express the deflection 3w  and its 

derivatives through ( 1,2)j j  . Then, using the functions 2 1 3
, ( 1,2)jj ji w j


         , the generalized 

displacements , ( 1,2)j jw j  , 3w  are represented as        

,)()()( *0020100     
0 1

*( ) ( ) , (17)            

,)()( *3303033 wwwww    

where 

0 2 1 0( ) ( ) ( ) [ ( ); ( )], 1,2, (18)j j
j j jw iw H f j         
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nn
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                                 

2 2 2 2

0* 1 4 4 3 1 1 4 0( ) / 2 ( / 2) / 4 ,c k k c c c k c       
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2

1*31*1*2* ccwczizz    

jс ,  0,3j     arbitrary real constants. 

Further, using (17), the problem A is reduced to one nonlinear operator equation of the form 

0, (19)G  
 

where
 

G  – a nonlinear bounded operator in 
and for any

       W p

j j 1
2,1 , belonging to the ball   r

pW
1

, the estimate

     
.
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2121
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


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pp WW
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 is fair.  

In this case, a solvability condition of the following form appears 

1 1 2 2 3 1 1 2 2 3 1 2

1 2 1 2( ( ) ) ( ) 0,k T a k P P ds k R k R R d d     
 

        

1 11 2 12 1( ) ,T a T d ds T d ds    

which is performed by choosing the constant 2с . 

 

IV. CONCLUSIONS 

Suppose that the radius r of the ball and the external forces acting on the shell are such that the following conditions are satisfied: 

     
 11, 0 1 . (20)

pW
q G q r  
    
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Then the principle of squeezed mappings can be applied to the 

equation (19) [10, p. 146], according to which the equation 

(19) in the ball   1
( )Wp

r

   has a unique solution 

       122,
1 pW p .  

Thus, the following theorem is true. 

Theorem. Let the conditions a), b) from the problem A, and 
the inequality (20) be satisfied. Then, for the solvability of the 
geometrically nonlinear equilibrium problem A for shallow 
elastic shells of the Timoshenko type under boundary 
conditions (2), it is necessary and sufficient that the condition 
(12) be satisfied. If it is fulfilled, the problem has a 

generalized solution , 

.  
 

V. SUMMARY 

All existence theorems currently known in the nonlinear 

theory of elastic shells are obtained within the framework of 

the simplest Kirchhoff-Love model. In this case, topological 

and (or) variational methods were used in various energy 

spaces. At the same time, one of the founders of the 

mathematical theory of shells, the Academician I.I. Vorovich 

pointed out the need to obtain existence theorems within the 

framework of more complex models that do not rely on the 

Kirchhoff - Love hypothesis. The present study is devoted to 

the solvability of a nonlinear boundary value problem for 

partial differential equations in the framework of a more 

complex model, not based on the Kirchhoff - Love hypothesis. 

In this paper, the existence theorem is proved within the 

framework of the shear model by S.P. Tymoshenko. When 

passing to the model by S.P. Tymoshenko, the methods 

previously used in the Kirchhoff - Love model cease to work. 

This is primarily due to the impossibility of constructing 

energy spaces in which the coercivity inequalities are valid. 

Therefore, a new analytical method is used, which consists in 

studying the original system of five equilibrium equations in 

classical Sobolev spaces under given boundary conditions by 

reducing it to a single nonlinear operator equation. Analytical 

(explicit) solutions of shell deformation problem in a 

geometrically nonlinear formulation are developed. The 

solvability of boundary value problems describing the 

equilibrium state of shells in the framework of the simplest 

Kirchhoff - Love model is quite large. Therefore, 

consideration of this study provides a significant expansion of 

engineering application of the theory. Shell structures (various 

building structures, domes, etc.) require more and more 

reliable, accurate design data and often pose completely new 

challenges. Thus, in this paper, an existence theorem is proved 

and an analytical method is used for finding solutions of 

geometrically nonlinear, physically linear boundary value 

problems for elastic shallow isotropic homogeneous shells of 

the type by S.P. Timoshenko with a different version of hinge-

supported edges. The scientific novelty of the considered 

problem lies in the fact that, first, it is a new, unexplored 

problem of the mathematical theory of elasticity; secondly, a 

new method is proposed to solve it that makes it possible to 

study the solvability of such a class of problems within the 

framework of more general models for a wider class of elastic 

structures. The solution of the problem posed makes a 

significant contribution to the development of the 

mathematical theory of elasticity, and can be useful in 

creating new software packages for elastic structure 

calculation. 
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