
Jeremy Hamm
Cancer Surveillance & Outcomes (CSO)

Population Oncology

BC Cancer Agency

Solve the Rubik’s Cube

using Proc IML

Overview

 Rubik’s Cube basics

 Translating the cube into linear algebra

 Steps to solving the cube using proc IML

 Proc IML examples

The Rubik’s Cube

 3x3x3 cube invented in 1974 by Hungarian Erno
Rubik

– Most popular in the 80’s

– Still has popularity with speed-cubers

 43x1018 permutations of the Rubik’s Cube

– Quintillion

 Interested in discovering moves that lead to
permutations of interest

– or generalized permutations

 Generalized permutations can help solve the puzzle

The Rubik’s Cube

 Made up of

Edges and corners

 Pieces can permute

– Squares called facets

 Edges can flip

 Corners can rotate

Rubik’s Cube Basics

 Each move can be defined as a combination of
Basic Movement Generators

– each face rotated a quarter

turn clockwise

 Eg.

– Movement of front face ¼ turn clockwise is labeled as

move F

– ¼ turn counter clockwise is F-1

– 2 quarter turns would be F*F

or F2

Relation to Linear Algebra

The Rubik’s cube can

represented by a Vector,

numbering each facet

1-48 (excl centres).

Permutations occur

through matrix algebra

where the basic

movements are

represented by Matrices

Ax=b

Relation to Linear Algebra

 Certain facets are connected and will
always move together

 Facets will always move in a predictable
fashion

– Can be written as: F= (17,19,24,22)

(18,21,23,20)

(6,25,43,16)

(7,28,42,13)

(8,30,41,11)

Relation to Linear Algebra

 Therefore, if you can keep track of which
numbers are edges and which are corners,
you can use a program such as SAS to
mathematically determine moves which
are useful in solving the puzzle

– Moves that only permute or flip a few pieces

at a time such that it is easy to predict what

will happen

Useful Group Theory

 Notes:

– All moves of the Rubik’s cube are cyclical

where the order is the number of moves

needed to return to the original

 Eg. Movement F (front face ¼ turn)

 If done enough times, will return to original

position

 Enough times=4; F is Order 4

Proc IML

 Proc IML (interactive matrix language)
can be used to test Rubik’s Cube moves
using Matrix algebra to determine which
moves are useful for solving the puzzle

Intro to Proc IML

 Similar to proc SQL in use

Proc iml;

IML code …;

Quit;

 code will be able to run while in IML until you exit with a

‘quit;’ statement

– Useful for row and column calculations/summaries

 Good at do loops, simulations and linear algebra

 Not as awesome with character data

 As always, need to keep track of matrix/vector dimensions

Steps to Solve Cube

 Read in and Create list of moves to test

 Determine Order of each move

– How many moves in cycle

 Determine during cycle, if at any point:

– The edges are stable but corners move

 When and how many?

– The corners stay stable but edges move

 When and how many?

Solving in Proc IML

 Read data into proc IML

 Create functions in IML

 Operate on individual matrix cells

 Perform matrix operations

 Output data from IML

Importing Data

 ‘Use’ statement makes a SAS dataset available in
proc iml

– Can specify which variables you wish to import and

any ‘where’ statements for filtering

 ‘Read’ statement turns this dataset into a usable
matrix

– Default only includes numeric variables

– Rows and columns now numbered instead of named

as default

 Can read in names and refer to them

Example
Read in all rows

- Can specify specific row (point 5 = 5th row)

Specify variables to read

Example

 Read in pre-created movement generators in
matrix form

 Setup default libname

– All input and output data will come/go to this library

 Specify rows and columns to import

– We’re using all of them

Functions/macros in IML

 Functions can be created in proc IML

– Similar to macros

 Use ‘start’ and ‘end’ statements instead of %macro

and %mend

 Eg. start(variable(s))

function

end

– Function is applied with a

 Run <function name>(variable(s)) command

Example

 This function ‘Fill’ sets the movement
generators diagonal values to 1 if there are
no values in a row/column combination

Creating and operating on vectors and matrices

 Vectors can be created with () and {}
brackets

– () for continuous style values

 ST=(1:48)

– 1 2 3 4 … 48

– Starting position vector for each face of the cube

– {} for discrete style

 POS={2 3 2 3 3 2 …}

– Position vector for cube faces

• 2’s represent corners; 3’s represent edges

Creating and operating on vectors and matrices

 Matrices can be created discretely or with
functions

– A={1 2 3, 4 5 6} 2x3 matrix

 Functions include

– Identity matrix: I(3) = 3x3 identity matrix

– All one value: j(4, 3,0) = 4x3 matrix of 0’s

 Useful to create a matrix to fill in with list of

permuted faces in cube for each movement in

cycle

Matrix Operations

 Matrices can be operated on

– A*B=Matrix A times Matrix B

 Eg. F*R creates a single move from 2 movement

generators

– A**n = matrix A to the power of n

 Eg. F**3

– A//B = stack A and B (must have same #cols)

 Stack moves on top of each other to create list of

moves as matrices

– A||B = A beside B (must have same #rows)

Testing a Move

 To determine the order of a move:

– Isolate Movement matrix G from list as a 48x48 matrix

 Let d be the number of moves being examined

– Do i=1 to d by 48 will isolate moves 1 at a time

– Multiply G by ST vector (1:48) to get permutation (A=G*ST)

 Re-attach ST to A to identify starting position

– A=ST||A

 Do while (sum(A=ST)<48) will continue to cycle until every element
of A=every element of the starting position vector ST

– Run a count variable to enumerate the number of moves in the cycle

 The order

Testing a Move

Example

 G=F*R3

 Order=63

A= …

Summarizing a Move

 Matrix is created for each move which has
a 1 or 0 indicating whether a facet has been
permuted (compared to starting location)

 Can isolate corners and edges into vectors

Can specify columns and rows

using vectors.

Can summarize columns and/or

rows

Example

Position

vector

Corners permuted

Edges permuted

…

Summarizing a Move

 Create 7 column vector that identifies:

– Do either corners or edges stay stable in cycle

(1/0)

– If edges stable (1/0):

 What move in cycle does this occur?

 How many corners move?

– If corners stable (1/0):

 What move in cycle does this occur?

 How many edges move?

Summarizing a Move

Corners permuted

Edges permuted

•Stable edges at move number 7

•Stable corners at move number 9

Summary

Vector

Exporting results

 For each move and 7 column vector
generating describing the move:

– Stack vectors to create an Nx7 matrix

corresponding to all moves tested

 Can output as SAS dataset for further
anaylsis:

Jeremy Hamm
Cancer Surveillance & Outcomes (CSO)

Population Oncology

BC Cancer Agency

Questions?

