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Preface

It is in the study of classical mechanics that we first encounter many of the basic
ingredients that are essential to our understanding of the physical universe. The
concepts include statements concerning space and time, velocity, acceleration, mass,
momentum and force, and then an equation of motion and the indispensable law
of action and reaction – all set (initially) in the background of an inertial frame of
reference. Units for length, time and mass are introduced and the sanctity of the
balance of units in any physical equation (dimensional analysis) is stressed. Reference
is also made to the task of measuring these units – metrology, which has become such
an astonishing science/art.

The rewards of this study are considerable. For example, one comes to
appreciate Newton’s great achievement – that the dynamics of the classical universe
can be understood via the solutions of differential equations – and this leads on
to questions regarding determinism and the effects of even small uncertainties or
disturbances. One learns further that even when Newton’s dynamics fails, many of
the concepts remain indispensable and some of its conclusions retain their validity –
such as the conservation laws for momentum, angular momentum and energy, and the
connection between conservation and symmetry – and one discusses the domain of
applicability of the theory. Along the way, a student encounters techniques – such as
the use of vector calculus – that permeate much of physics from electromagnetism to
quantum mechanics.

All this is familiar to lecturers who teach physics at universities; hence the emphasis
on undergraduate and graduate courses in classical mechanics, and the variety of
excellent textbooks on the subject. It has, furthermore, been recognized that training
in this and related branches of physics is useful also to students whose careers will
take them outside physics. It seems that here the problem-solving abilities that physics
students develop stand them in good stead and make them desirable employees.

Our book is intended to assist students in acquiring such analytical and
computational skills. It should be useful for self-study and also to lecturers and
students in mechanics courses where the emphasis is on problem solving, and
formal lectures are kept to a minimum. In our experience, students respond well to this
approach. After all, the rudiments of the subject can be presented quite succinctly (as
we have endeavoured to do in Chapter 1) and, where necessary, details can be filled
in using a suitable text.

With regard to the format of this book: apart from the introductory chapter, it
consists entirely of questions and solutions on various topics in classical mechanics
that are usually encountered during the first few years of university study. It is
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suggested that a student first attempt a question with the solution covered, and
only consult the solution for help where necessary. Both analytical and numerical
(computer) techniques are used, as appropriate, in obtaining and analyzing solutions.
Some of the numerical questions are suitable for project work in computational physics
(see the Appendix). Most solutions are followed by a set of comments that are intended
to stimulate inductive reasoning (additional analysis of the problem, its possible ex-
tensions and further significance), and sometimes to mention literature we have found
helpful and interesting. We have included questions on bits of ‘theory’ for topics where
students initially encounter difficulty – such as the harmonic oscillator and the theory
of mechanical energy – because this can be useful, both in revising and cementing
ideas and in building confidence.

The mathematical ability that the reader should have consists mainly of the
following: an elementary knowledge of functions – their roots, turning points, asymp-
totic values and graphs – including the ‘standard’ functions of physics (polynomial,
trigonometric, exponential, logarithmic, and rational); the differential and integral
calculus (including partial differentiation); and elementary vector analysis. Also, some
knowledge of elementary mechanics and general physics is desirable, although the
extent to which this is necessary will depend on the proclivities of the reader.

For our computer calculations we use MathematicaR©, version 7.0. In each instance
the necessary code (referred to as a notebook) is provided in a shadebox in the text.
Notebooks that include the interactive Manipulate function are given in Chapters
6, 10, 11 and 13 (and are listed in the Appendix). They enable the reader to observe
motion on a computer screen, and to study the effects of changing relevant parameters.
A reader without prior knowledge of Mathematica should consult the tutorial
(‘First Five Minutes with Mathematica’) and the on-line Help. Also, various useful
tutorials can be downloaded from the website www.Wolfram.com. All graphs of
numerical results have been drawn to scale using Gnuplot.

In our analytical solutions we have tried to strike a balance between burdening the
reader with too much detail and not heeding Littlewood’s dictum that “ two trivialities
omitted can add up to an impasse”. In this regard it is probably not possible to satisfy
all readers, but we hope that even tentative ones will soon be able to discern footprints
in the mist. After all, it is well worth the effort to learn that (on some level) the rules
of the universe are simple, and to begin to enjoy “ the unreasonable effectiveness of
mathematics in the natural sciences” (Wigner).

Finally, we thank Robert Lindebaum and Allard Welter for their assistance with
our computer queries and also Roger Raab for helpful discussions.

Pietermaritzburg, South Africa O. L. de Lange

January 2010 J. Pierrus

www.Wolfram.com
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1

Introduction

The following outline of the rudiments of classical mechanics provides the background
that is necessary in order to use this book. For the reader who finds our presentation
too brief, there are several excellent books that expound on these basics, such as those
listed below.[1−4]

1.1 Kinematics and dynamics of a single particle

The goal of classical mechanics is to provide a quantitative description of the motion
of physical objects. Like any physical theory, mechanics is a blend of definitions and
postulates. In describing this theory it is convenient to first introduce the concept of
a point object (a particle) and to start by considering the motion of a single particle.

To this end one must make an assumption concerning the geometry of space. In
Newtonian dynamics it is assumed that space is three-dimensional and Euclidean.
That is, space is spanned by the three coordinates of a Cartesian system; the distance
between any two points is given in terms of their coordinates by Pythagoras’s
theorem, and the familiar geometric and algebraic rules of vector analysis apply. It
is also assumed – at least in non-relativistic physics – that time is independent of
space. Furthermore, it is supposed that space and time are ‘sufficiently’ continuous
that the differential and integral calculus can be applied. A helpful discussion of these
topics is given in Griffiths’s book.[2]

With this background, one selects a coordinate system. Often, this is a rectangular
or Cartesian system consisting of an arbitrarily chosen coordinate origin O and three
orthogonal axes, but in practice any convenient system can be used (spherical, cylin-
drical, etc.). The position of a particle relative to this coordinate system is specified by
a vector function of time – the position vector r(t). An equation for r(t) is known as
the trajectory of the particle, and finding the trajectory is the goal mentioned above.

In terms of r(t) we define two indispensable kinematic quantities for the particle:
the velocity v(t), which is the time rate of change of the position vector,

[1] L. D. Landau, A. I. Akhiezer, and E. M. Lifshitz, General physics: mechanics and molecular
physics. Oxford: Pergamon, 1967.

[2] J. B. Griffiths, The theory of classical dynamics. Cambridge: Cambridge University Press,
1985.

[3] T. W. B. Kibble and F. H. Berkshire, Classical mechanics. London: Imperial College Press,
5th edn, 2004.

[4] R. Baierlein, Newtonian dynamics. New York: McGraw-Hill, 1983.
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v(t) =
dr(t)

dt
, (1)

and the acceleration a(t), which is the time rate of change of the velocity,

a(t) =
dv(t)

dt
. (2)

It follows from (1) and (2) that the acceleration is also the second derivative

a =
d2r

dt2
. (3)

Sometimes use is made of Newton’s notation, where a dot denotes differentiation with
respect to time, so that (1)–(3) can be abbreviated

v = ṙ , a = v̇ = r̈ . (4)

The stage for mechanics – the frame of reference – consists of a coordinate system
together with clocks for measuring time. Initially, we restrict ourselves to an inertial
frame. This is a frame in which an isolated particle (one that is free of any applied
forces) moves with constant velocity v – meaning that v is constant in both magnitude
and direction (uniform rectilinear motion). This statement is the essence of Newton’s
first law of motion. In Newton’s mechanics (and also in relativity) an inertial frame is
not a unique construct: any frame moving with constant velocity with respect to it is
also inertial (see Chapters 14 and 15). Consequently, if one inertial frame exists, then
infinitely many exist. Sometimes mention is made of a primary inertial frame, which
is at rest with respect to the ‘fixed’ stars.

Now comes a central postulate of the entire theory: in an inertial frame, if a particle
of mass m is acted on by a force F, then

F =
dp

dt
, (5)

where
p = mv (6)

is the momentum of the particle relative to the given inertial frame. Equation (5) is
the content of Newton’s second law of motion: it provides the means for determining
the trajectory r(t), and is known as the equation of motion. If the mass of the particle
is constant then (5) can also be written as

m
dv

dt
= F , (7)

or, equivalently,

m
d2r

dt2
= F . (8)

The theory is completed by postulating a restriction on the interaction between
any two particles (Newton’s third law of motion): if F12 is the force that particle 1
exerts on particle 2, and if F21 is the force that particle 2 exerts on particle 1, then
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F21 = −F12 . (9)

That is, the mutual actions between particles are always equal in magnitude and
opposite in direction. (See also Question 10.5.)

The realization that the dynamics of the physical world can be studied by solving
differential equations is one of Newton’s great achievements, and many of the problems
discussed in this book deal with this topic. His theory shows that (on some level) it is
possible to predict the future and to unravel the past.

The reader may be concerned that, from a logical point of view, two new quantities
(mass and force) are introduced in the single statement (5). However, by using both
the second and third laws, (5) and (9), one can obtain an operational definition of
relative mass (see Question 2.6). Then (5) can be regarded as defining force.

Three ways in which the equation of motion can be applied are:

☞ Use a trajectory to determine the force. For example, elliptical planetary orbits –
with the Sun at a focus – imply an attractive inverse-square force (see Question
8.13).

☞ Use a force to determine the trajectory. For example, parabolic motion in a
uniform field (see Question 7.1).

☞ Use a force and a trajectory to determine particle properties. For example,
the electric charge from rectilinear motion in a combined gravitational and
electrostatic field, and the electric charge-to-mass ratio from motion in uniform
electrostatic and magnetostatic fields (see Questions 3.11, 7.19 and 7.20).

1.2 Multi-particle systems

The above formulation is readily extended to multi-particle systems. We follow stan-
dard notation and let mi and ri denote the mass and position vector of the ith particle,
where i = 1, 2, · · · , N for a system of N particles. The velocity and acceleration of the
ith particle are denoted vi and ai, respectively. The equations of motion are

Fi =
dpi

dt
(i = 1, 2, · · · , N) , (10)

where pi = mivi is the momentum of the ith particle relative to a given inertial frame,
and Fi is the total force on this particle.

In writing down the Fi it is useful to distinguish between interparticle forces, due
to interactions among the particles of the system, and external forces associated with
sources outside the system. The total force on particle i is the vector sum of all
interparticle and external forces. Thus, one writes

Fi =
∑
j �=i

Fji + F(e)

i (i = 1, 2, · · · , N) , (11)

where Fji is the force that particle j exerts on particle i, and F
(e)
i is the external

force on particle i. In (11) the sum over j runs from 1 to N but excludes j = i. The
interparticle forces are all assumed to obey the third law
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Fji = −Fij (i, j = 1, 2, · · · , N) . (12)

From (10) and (11) we have the equations of motion of a system of particles in terms
of interparticle forces and external forces:

dpi

dt
=
∑
j �=i

Fji + F(e)

i
(i = 1, 2, · · · , N) . (13)

If the masses mi are all constant then (13) can be written as

mi

d2ri

dt2
=
∑
j �=i

Fji + F(e)

i (i = 1, 2, · · · , N) . (14)

These are the equations of motion for the classical N-particle problem. In general, they
are a set of N coupled differential equations, and they are usually intractable.

Two of the four presently known fundamental interactions are applicable in
classical mechanics, namely the gravitational and electromagnetic forces. For the
former, Newton’s law of gravitation is usually a satisfactory approximation. For
electromagnetic forces there are Coulomb’s law of electrostatics, the Lorentz force,
and multipole interactions. Often, it is impractical to deduce macroscopic forces (such
as friction and viscous drag) from the electromagnetic interactions of particles, and
instead one uses phenomenological expressions.

Another method of approximating forces is through the simple expedient of a
spatial Taylor-series expansion, which opens the way to large areas of physics. Here, the
first (constant) term represents a uniform field; the second (linear) term
encompasses a ‘Hooke’s-law’-type force associated with linear (harmonic) oscillations;
the higher-order (quadratic, cubic, . . . ) terms are non-linear (anharmonic) forces that
produce a host of non-linear effects (see Chapter 13).

Also, there are many approximate representations of forces in terms of various
potentials (Lennard-Jones, Morse, Yukawa, Pöschl–Teller, Hulthén, etc.), which are
useful in molecular, solid-state and nuclear physics. The Newtonian concepts of force
and potential have turned out to be widely applicable – even to the statics and
dynamics of such esoteric yet important systems as flux quanta (Abrikosov vortices)
in superconductors and line defects (dislocations) in crystals.

Some of the most impressive successes of classical mechanics have been in the field
of astronomy. And so it seems ironic that one of the major unanswered questions in
physics concerns observed dynamics – ranging from galactic motion to accelerating
expansion of the universe – for which the source and nature of the force are uncertain
(dark matter and dark energy, see Question 11.20).

1.3 Newton and Maxwell

The above outline of Newtonian dynamics relies on the notion of a particle. The theory
can also be formulated in terms of an extended object (a ‘body’). This is the form
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used originally by Newton, and subsequently by Maxwell and others. In his fascinating
study of the Principia Mathematica, Chandrasekhar remarks that Maxwell’s “ is a
rarely sensitive presentation of the basic concepts of Newtonian dynamics” and “ is so
completely in the spirit of the Principia and illuminating by itself . . . .” [5]

Maxwell emphasized “ that by the velocity of a body is meant the velocity of its
centre of mass. The body may be rotating, or it may consist of parts, and be capable
of changes of configuration, so that the motions of different parts may be different,
but we can still assert the laws of motion in the following form:

Law I. – The centre of mass of the system perseveres in its state of rest, or of
uniform motion in a straight line, except in so far as it is made to change that state
by forces acting on the system from without.

Law II. – The change of momentum during any interval of time is measured by the
sum of the impulses of the external forces during that interval.” [5]

In Newtonian dynamics, the position of the centre of mass of any object is a unique
point in space whose motion is governed by the two laws stated above. The concept
of the centre of mass occurs in a straightforward manner[5] (see also Chapter 11) and
it plays an important role in the theory and its applications.

Often, the trajectory of the centre of mass
relative to an inertial frame is a simple curve, even
though other parts of the body may move in a more
complicated manner. This is nicely illustrated by the
motion of a uniform rod thrown through the air: to a
good approximation, the centre of mass describes a
simple parabolic curve such as P in the figure, while
other points in the rod may follow a more complicated
three-dimensional trajectory, like Q. If the rod is

P

Q

thrown in free space then its centre of mass will move with constant velocity (that is,
in a straight line and with constant speed) while other parts of the rod may have more
intricate trajectories. In general, the motion of a free rigid body in an inertial frame
is more complicated than that of a free particle (see Question 12.22).

1.4 Newton and Lagrange

The first edition of the Principia Mathematica was published in July 1687, when
Newton was 44 years old. Much of it was worked out and written between about August
1684 and May 1686, although he first obtained some of the results about twenty years
earlier, especially during the plague years 1665 and 1666 “ for in those days I was in
the prime of my age for invention and minded Mathematicks and Philosophy more
than at any time since.” [5]

After Newton had laid the foundations of classical mechanics, the scene for many
subsequent developments shifted to the Continent, and especially France, where

[5] S. Chandrasekhar, Newton’s Principia for the common reader, Chaps. 1 and 2. Oxford: Claren-
don Press, 1995.
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important works were published by d’Alembert (1717–1783), Lagrange (1736–1813),
de Laplace (1749–1827), Legendre (1725–1833), Fourier (1768–1830), Poisson (1781–
1840), and others. In particular, an alternative formulation of classical particle
dynamics was presented by Lagrange in his Mécanique Analytique (1788).

To describe this theory it is helpful to consider first a single particle of constant mass
m moving in an inertial frame. We suppose that all the forces acting are conservative:
then the particle possesses potential energy V (r) in addition to its kinetic energy
K = 1

2
mṙ2, and the force is related to V (r) by F = −∇V (see Chapter 5). So,

Newton’s equation of motion in Cartesian coordinates x1, x2, x3 has components

mẍi = Fi = −∂V/∂xi (i = 1, 2, 3) . (15)

Also, ∂K
/
∂xi = 0, ∂K

/
∂ẋi = mẋi, and ∂V

/
∂ẋi = 0. Therefore (15) can be recast in

the form
d

dt

∂L

∂ẋi

− ∂L

∂xi

= 0 (i = 1, 2, 3) , (16)

where L = K − V . The quantity L(r, ṙ) is known as the Lagrangian of the particle.
The Lagrange equations (16) imply that the action integral

I =

∫ t
2

t
1

L dt (17)

is stationary (has an extremum – usually a minimum) for any small variation of the
coordinates xi:

δI = 0 . (18)

Equations (16) hold even if V is a function of t, as long as F = −∇V .

This account can be generalized:

☞ It applies to systems containing an arbitrary number of particles N .

☞ The coordinates used need not be Cartesian; they are customarily denoted q1, q2,
· · · , qf (f = 3N) and are known as generalized coordinates. (In practice, the
choice of these coordinates is largely a matter of convenience.) The corresponding
time derivatives are the generalized velocities, and the Lagrangian is a function
of these 6N coordinates and velocities:

L = L(q1, q2, · · · , qf ; q̇1, q̇2, · · · , q̇f) . (19)

Often, we will abbreviate this to L = L(qi, q̇i).

☞ The Lagrangian is required to satisfy the action principle (18), and this implies
the Lagrange equations

d

dt

∂L

∂q̇i

− ∂L

∂qi

= 0 (i = 1, 2, · · · , 3N) , (20)

where L = K − V , and K and V are the total kinetic and potential energies of
the system.[2]
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☞ The Lagrangian formulation applies also to non-conservative systems such as
charged particles in time-dependent electromagnetic fields and damped harmonic
oscillators (see Question 4.16). Lagrangians can also be constructed for systems
with variable mass. In these instances L is not of the form K − V .

☞ The Lagrange equations (20) can be expressed as

dpi

/
dt = Fi , (21)

where
pi = ∂L

/
∂q̇i and Fi = ∂L

/
∂qi (22)

are known as the generalized momenta and generalized forces. In Cartesian
coordinates, p is equal to mass× velocity.

☞ The action principle (18) is valid in any frame of reference, even a non-inertial
frame (one that is accelerating relative to an inertial frame). However, in a non-
inertial frame the Lagrangian is modified by the acceleration, and Lagrange’s
equations (16) yield the equation of motion (24) below – see Question 14.22.

Although the Newtonian formulation (based on force) and the Lagrangian
formulation (based on a scalar L that often derives from kinetic and potential energies)
look very different, they are completely equivalent and must yield the same results in
practice. There are several reasons for the importance of the Lagrange approach, such
as:

☞ It may be simpler to obtain the equation of motion by working with energy rather
than by taking account of all the forces.

☞ Constrained motion is more easily treated.

☞ Conserved quantities can be readily identified.

☞ The action principle is a fundamental part of physics, and it provides a
powerful formulation of classical mechanics. For example, the theory can be
extended to continuous systems by introducing a Lagrangian density whose
volume integral is the Lagrangian. In this version the Lagrangian formulation
has important applications to field theory and quantum mechanics.

1.5 Non-inertial frames of reference

This section outlines a topic that is considered in more detail in Chapter 14 and is
used occasionally in earlier chapters.

Often, the frame of reference that one uses is not inertial, either by circumstance
(for example, a frame fixed on the Earth is non-inertial) or by choice (it may be
convenient to solve a particular problem in a non-inertial frame). And so the question
arises: what is the form of the equation of motion in a non-inertial frame (that is, a
frame that is accelerating with respect to an inertial frame)?

This leads one to consider a frame S′ that is translating and rotating with respect
to an inertial frame S. These frames are depicted in the figure below, where r is the
position vector of a particle of mass m relative to S and r′ is its position vector relative
to S′. The frame S′ has origin O′ and coordinate axes x′y′z′.
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The motion of S′ is described by two vectors: the
position vector D(t) of the origin O′ relative to S, and
the angular velocity ω(t) of S′ relative to a third frame S′′

that has origin at O′ and axes x′′y′′z′′, which are parallel
to the corresponding axes xyz of S. This angular velocity
is given in terms of a unit vector n̂ (that specifies the
axis of rotation relative to S′′) and the angle dθ rotated
through in a time dt by

ω =
dθ

dt
n̂ , (23)

where the sense of rotation and the direction of n̂ are connected by the right-hand
rule illustrated in the figure.

Starting from the equation of motion (8) for a single particle of constant mass m
in an inertial frame S, it can be shown that the equation of motion in the translating
and rotating frame S′ can be expressed in the form (see Chapter 14)

m
d2r′

dt2
= Fe . (24)

Here

Fe = F + Ftr + FCor + Fcf + Faz , (25)

where

Ftr = −md2D

dt2
, (26)

FCor = −2mω × dr′

dt
, (27)

Fcf = −mω × (ω × r′) , (28)

Faz = −mdω

dt
× r′ . (29)
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We mention that (24) is not a separate postulate, but is a consequence of (8) and
the assumptions that space is absolute (meaning r = r′ + D in the first of the above
figures), time is absolute (meaning t′ = t), and mass is absolute (meaning m′ = m).
Note that the relation r = r′ + D is not simply a consequence of the triangle law
for addition of vectors, because r and r′ are measured by observers who are moving
relative to each other – see Chapter 15.

We can interpret the equation of motion (24) in the following way: if we wish to
write Newton’s second law in a non-inertial frame S′ in the same way as in an inertial
frame S (i.e. as force = mass × acceleration), then the force F due to physical
interactions (such as electromagnetic interactions) must be replaced by an effective
force Fe that includes the four additional contributions Ftr, FCor, Fcf, and Faz.
Collectively, these contributions are variously referred to in the literature as:

☞ ‘inertial forces’ (because each involves the particle’s inertial mass m);

☞ ‘non-inertial forces’ (because each is present only in a non-inertial frame);

☞ ‘fictitious forces’ (to emphasize that they are not due to physical interactions but
to the acceleration of the frame S′ relative to S).

Each of the forces (26)–(29) also has its own name: Ftr is known as the translational
force (it occurs whenever the origin of the non-inertial system accelerates relative to
an inertial frame); FCor is the Coriolis force (it acts on a moving particle unless the
motion in S′ is parallel or anti-parallel to ω); Fcf is the centrifugal force, and it acts
even on a particle at rest in S′; Faz is the azimuthal force, and it occurs only if the
non-inertial frame has an angular acceleration dω

/
dt relative to S.

1.6 Homogeneity and isotropy of space and time

In addition to the fact that the laws of motion assume their simplest forms in inertial
frames, these frames also possess unique properties with respect to space and time.
For a free particle in an inertial frame these are: First, all positions in inertial space
are equivalent with regard to mechanics. This is known as the homogeneity of space in
inertial frames. Secondly, all directions in space are equivalent. This is the isotropy of
space. Thirdly, all instants of time are equivalent (homogeneity of time). Fourthly, there
is invariance with respect to reversal of motion – the replacement t → −t (isotropy
of time). These symmetries of space and time in inertial frames play a fundamental
role in physics. For example, in the conservation laws for energy, momentum and
angular momentum, and in the space-time transformation between inertial frames
(see Chapters 14 and 15). In a non-inertial frame these properties do not hold. For
example, if one stands on a rotating platform it is noticeable that positions on and off
the axis of rotation are not equivalent: space is not homogeneous in such a frame.

Notwithstanding the fact that, in general, Newtonian dynamics is most simply
formulated in inertial space, one should keep in mind the following proviso. Namely,
that the solution to certain problems is facilitated by choosing a suitable non-inertial
frame. Thus the trajectory of a particle at rest on a rotating turntable is simplest
in the frame of the turntable, where the particle is in static equilibrium under the
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action of four forces (weight, normal reaction, friction and centrifugal force). Similarly,
for a charged particle in a uniform magnetostatic field, one can transform away the
magnetic force: relative to a specific rotating and translating frame the particle is in
static equilibrium, whereas relative to inertial space the trajectory is a helix of constant
pitch (see Question 14.25).

1.7 The importance of being irrelevant

There are several obvious questions one can ask concerning Newtonian dynamics,
which can all be formulated: ‘Does it matter if · · · ?’ All are answered in the negative
and have deep consequences for physics.

The first concerns the units in which mass, length, and time are measured. Humans
(and probably also other life in the universe) have devised an abundance of different
physical units. In principle, there are infinitely many and one can ask whether the
validity of Newton’s second law is affected by an arbitrary choice of units. The answer
is ‘no’: the law is valid in any system of units because each side of the equation F = ma

must have the same units (see also Question 2.9). Thus, the unit of force in the MKS
system (the newton) is, by definition, 1 kgms−2.

This seemingly simple property is required of all physical laws: they do not depend
on an arbitrary choice of units because each side of an equation expressing the law is
required to have the same physical dimensions. The consequences of this are
dimensional analysis (see Chapter 2), similarity and scaling.[6] The fact that physical
laws are equally valid in all systems of units is an example of a ‘relativity principle’.

Similarly, one can ask whether the mechanical properties of an isolated (closed)
system depend in any way on its position or orientation in inertial space. The statement
that they do not implies, respectively, the conservation of momentum and angular
momentum of the system (see Questions 14.7, 14.18 and 14.19).

Furthermore, in Newtonian dynamics any choice of inertial frame (from among
an infinite set of frames in uniform, rectilinear relative motion) is acceptable because
the laws of motion are equally valid in all such frames. The extension of this property to
all the laws of physics constitutes Einstein’s relativity principle. A remarkable
consequence of this principle is that there are just two possibilities for the space-time
transformation between inertial frames: relative space-time (in a universe in which
there is a finite universal speed) or Newton’s absolute space-time (if this speed is
infinite) – see Chapter 15.

Further extensions of this type of reasoning have led to a theory of elementary
particles and their interactions.[7] So, this concept of irrelevance (or invariance, as it is
known in physics) which emerged from Newton’s mechanics, and was later emphasized
particularly by Einstein, has turned out to be extremely fruitful. The reader may
wonder what physics would be like if these invariances did not hold.

[6] G. I. Barenblatt, Scaling, self-similarity, and intermediate asymptotics. Cambridge: Cambridge
University Press, 1996.

[7] See, for example, G. t’ Hooft, “Gauge theories of the forces between elementary particles,”
Scientific American, vol. 242, pp. 90–116, June 1980.
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Miscellanea

This chapter contains questions dealing with three disparate topics, namely sensitivity
of trajectories to small changes in initial conditions; the reasons why we consider just
one, rather than three types of mass; and the use of dimensional reasoning in the
analysis of physical problems. The reader may wish to omit this chapter at first, and
return to it at a later stage.

Question 2.1

A particle moves in one dimension along the x-axis, bouncing between two perfectly
reflecting walls at x = 0 and x = �. In between collisions with the walls no forces act on
the particle. Suppose there is an uncertainty ∆v0 in the initial velocity v0. Determine
the corresponding uncertainty ∆x in the position of the particle after a time t.

Solution

In between the instants of reflection, the particle moves with constant velocity equal
to the initial value. Thus, if the initial velocity is v0 then the distance moved by the
particle in a time t is v0t, whereas if the initial velocity is v0 +∆v0 the distance moved
is (v0 + ∆v0)t. Therefore, the uncertainty in position after a time t is

∆x = (v0 + ∆v0)t− v0t

= (∆v0)t . (1)

Comments

(i) According to (1), after a time tc = �/∆v0 has elapsed, ∆x = �, meaning that the
position at time tc is completely undetermined.

(ii) For times t� tc, (1) shows that the uncertainty ∆x� �, and one can still regard
the motion as deterministic (in the sense mentioned in Question 3.1). However,
if we wait long enough the particle can be found anywhere between the walls:
determinism has changed into complete indeterminism.

(iii) It is only in the ideal (and unattainable) case ∆v0 = 0 (i.e. the initial velocity is
known exactly) that deterministic motion persists indefinitely.

(iv) In non-linear systems the uncertainty can increase much faster with time
(exponentially rather than linearly) due to chaotic motion (see Chapter 13).
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Question 2.2

A ball moves freely on the surface of a round billiard
table, and undergoes elastic reflections at the boundary
of the table. The motion is frictionless, and once started
it continues indefinitely. The initial conditions are that
the ball starts at a point A on the boundary and that the
chord AB drawn in the direction of the initial velocity
subtends an angle α at the centre O of the table. Discuss
the dependence of the trajectory of the ball on α.

Solution

Because the collisions with the wall are elastic, the an-
gles of incidence and reflection are equal (cf. the angles
φ in the figure). Thus, the angular positions of succes-
sive points of impact with the boundary are each rotated
through α (the chords AB, BC, . . . in the figure all sub-
tend an angle α at O). We may therefore distinguish
between two types of trajectory:

☞ α is equal to 2π times a rational number, that is

α = 2π
p

q
, (1)

where p and q are integers. Then, after q reflections at the wall the point of impact
will have rotated through an angle

qα = 2πp (2)

from A. That is, the ball will have returned to A. The trajectory is a closed path
of finite length, and the motion is periodic.

☞ α is equal to 2π times an irrational number. The angle of rotation of the point
of impact with the wall (qα after q impacts) is not equal to 2π times an integer;
the ball will never return to the starting position A – the trajectory is open and
non-periodic.

Comments

(i) This question, like the previous one, shows that small causes can have big
consequences. Here, the slightest change in the initial velocity can change a
closed trajectory into an open one. Consequently, determinism over indefinitely
long periods of time can be achieved only in the unphysical limit where the
uncertainty in the initial velocity is precisely zero.

(ii) Other systems showing extreme sensitivity to initial conditions can readily be
constructed (see Questions 3.3 and 4.2).
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(iii) On the basis of these, questions were raised by Born and others concerning
the deterministic nature of classical mechanics.[1,2] These examples show that
“determinism is an idealization rather than a statement of fact, valid only under
the assumption that unlimited accuracy is within our reach, an assumption which
in view of the atomic structure of our measuring instruments is anything but
realistic.” [2] The examples depict “a curious half-way house, showing not so much
the fall as the decline of causality – the point, that is, where the principle begins
to lose its applicability.” [2] (See also Chapter 13.) At the atomic level uncertain-
ties of a more drastic sort were encountered that required the abandonment of
deterministic laws in favour of the statistical approach of quantum mechanics.

Question 2.3

The active gravitational mass (mA) of a particle is an attribute that enables it to
establish a gravitational field in space, whereas the passive gravitational mass (mP) is
an attribute that enables the particle to respond to this field.

(a) Write Newton’s law of universal gravitation in terms of the relevant active and
passive gravitational masses.

(b) Show that the third law of motion makes it unnecessary to distinguish between
active and passive gravitational mass.

Solution

(a) The gravitational force F12 that particle 1 exerts on particle 2 is proportional
to the product of the active gravitational mass mA

1 of particle 1 and the passive
gravitational mass mP

2 of particle 2. Thus, the inverse-square law of gravitation is

F12 = −G mA
1m

P
2

r2
r̂ , (1)

where G is the universal constant of gravitation, r is the distance between the
particles and r̂ is a unit vector directed from particle 1 to particle 2. By the same
token, the force F21 which particle 2 exerts on particle 1 is

F21 = G
mA

2
mP

1

r2
r̂ . (2)

(b) According to Newton’s third law, F12 = −F21. It therefore follows from (1) and
(2) that

mA
2

mP
2

=
mA

1

mP
1

. (3)

We conclude from (3) that the ratio of the active to the passive gravitational
mass of a particle is a universal constant. Furthermore, this constant can be

[1] M. Born, Physics in my generation, pp. 78–82. New York: Springer, 1969.
[2] F. Waismann, in Turning points in physics. Amsterdam: North-Holland, 1959. Chap. 5.
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incorporated in the universal constant G, which is already present in (1) and (2).
That is, we can set mP = mA. There is no need to distinguish between active and
passive gravitational masses; it is sufficient to work with just gravitational mass
mG and to write (1) as

F12 = −G mG
1 m

G
2

r2
r̂ . (4)

Comment

Evidently, the same reasoning applies to the notions of active and passive electric
charge. Thus, if one were to write Coulomb’s law for the electrostatic force between
two charges in vacuum as

F12 = k
qA
1
qP
2

r2
r̂ , (5)

where k is a universal constant, a discussion similar to the above would lead to

qA
2

qP
2

=
qA
1

qP
1

. (6)

Consequently, the ratio of active to passive charge is a universal constant that can be
included in k in (5); it is sufficient to consider just electric charge q.

Question 2.4

The inertial mass of a particle is, by definition, the mass that appears in Newton’s
second law. Consider free fall of a particle with gravitational mass mG and inertial
mass mI near the surface of a homogeneous planet having gravitational mass MG and
radius R. Express the gravitational acceleration a of the particle in terms of these
quantities. (Neglect any frictional forces.)

Solution

The equation of motion is

mIa = F , (1)

where F is the gravitational force exerted by the planet

F = G
MGmG

R2
(2)

(see Question 11.17). Thus

a =
mG

mI

GMG

R2
. (3)
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Comments

(i) In many treatments of this topic the factor mG/mI in (3) is absent because it is
tacitly assumed that the gravitational and inertial masses are equal.

(ii) Equation (3) is approximate insofar as it neglects atmospheric drag (see Question
3.13) and motion of the planet toward the falling object (see Question 11.23).
Nevertheless, it is an important idealization. The first significant work in this
connection was by Galileo, who enunciated an empirically based result that, in
the absence of drag, all bodies fall with the same gravitational acceleration. This
is sometimes referred to as Galileo’s law of free fall.

(iii) Galileo’s law, together with (3), encouraged the hypothesis that gravitational and
inertial masses can be taken to be the same, mG = mI, and one need consider
only mass. This is the weak equivalence principle, which plays an important role
in the formulation of the general theory of relativity.

(iv) Because of its importance, numerous experiments have been performed to test
Galileo’s law, and hence the weak equivalence principle. Modern experiments
show[3] “ that bodies fall with the same acceleration to a few parts in 1013.” See
also Question 2.5.

Question 2.5

In Question 4.3 an expression is derived for the period T of a simple pendulum, tacitly
assuming equality of the inertial and gravitational masses mI and mG of the bob.
Study this calculation and then adapt it to apply when mI and mG are allowed to be
different, thereby obtaining the dependence of T on these masses.

Solution

In terms of mI and mG, the equation of motion (2) of Question 4.3 is

mI
d2s

dt2
n = −mGg sin θ n , (1)

where g = GMG
/
R2

(
see (2) of Question 2.4

)
and other symbols have the same

meaning as in Question 4.3. Then, for small oscillations (|θ| � 1) we see from (1),
that (4) of Question 4.3 is replaced by

d2θ

dt2
+
mG

mI

g

�
θ = 0 , (2)

where � is the length of the pendulum. Thus, we obtain the desired expression for the
period

T = 2π

√
mI

mG

�

g
. (3)

When mI = mG this reduces to the result in Question 4.3.

[3] C. M. Will, “Relativity at the centenary,” Physics World, vol. 18, pp. 27–32, January 2005.
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Comments

(i) Newton used the result (3) in conjunction with experiments on pendulums to test
the equality, in modern terminology, of inertial and gravitational mass.[4] He was
aware that this test could be performed more accurately with pendulums than by
using ‘Galileo’s free-fall experiment’ and (3) of Question 2.4. Newton evidently
attached importance to these pendulum experiments and often referred to them.
He used two identical pendulums with bobs consisting of hollow wooden spheres
suspended by threads 11 feet in length. By placing equal weights of various sub-
stances in the bobs, Newton observed that the pendulums always swung together
over long periods of time. He concluded that “ . . . by these experiments, in bodies
of the same weight, I could manifestly have discovered a difference of matter less
than the thousandth part of the whole, had any such been.” [4] The accuracy of
pendulum experiments was later improved to one part in 105 by Bessel.

(ii) Newton also showed how astronomical data could be used to test the equality of
inertial and gravitational mass.[4] Modern lunar laser-ranging measurements pro-
vide an accuracy of a few parts in 1013, while planned satellite-based experiments
(where an object is in perpetual free fall) may improve this to one part in 1015,
and perhaps even a thousand-fold beyond that.[3]

(iii) The equality mP = mA of passive and active gravitational masses in Question 2.3
is based on a theoretical condition (Newton’s third law) that is presumably exact.
By contrast, the accuracy of the equality mI = mG of inertial and gravitational
masses is limited by the accuracy of the experiments that test it.

Question 2.6

By applying the second and third laws of motion to the interaction between two
particles in the absence of any third object, show how one can obtain an operational
definition of relative mass.

Solution

Let F21 be the magnitude of the force exerted by particle 2 on particle 1, and similarly
for F12. The equations of motion of the two particles are

F21 = m1a1 , F12 = m2a2 , (1)

where the mi are the masses and the ai are the magnitudes of the accelerations.
According to the third law

F21 = F12 . (2)

From (1) and (2) we have
m2

m1

=
a1

a2

. (3)

[4] S. Chandrasekhar, Newton’s Principia for the common reader. Oxford: Clarendon Press, 1995.
Sections 10 and 103.
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Comments

(i) Equation (3) provides an operational definition of relative mass: one can, in
principle, determine the mass m2 of a particle relative to an arbitrarily selected
mass m1 by measuring the magnitudes of their accelerations at some instant, in
the absence of any external disturbance.

(ii) It is clear that the Lagrangian L of a system can always be multiplied by an
arbitrary constant without affecting the Lagrange equations – see (20) in Chapter
1. For a system of non-interacting particles, where L =

∑
1
2
mv2, this reflects the

fact that the unit of mass is arbitrary and only relative masses have significance.

Question 2.7

Use a three-particle interaction to show that mass is an additive quantity.

Solution

The equations of motion for three particles interacting in the absence of any other
objects are

m1a1 = F21 + F31 , m2a2 = F12 + F32 , m3a3 = F13 + F23 . (1)

According to the third law, F21 = −F12, etc., and so by adding equations (1) we have

m1a1 +m2a2 +m3a3 = 0 . (2)

Suppose particles 1 and 2 are stuck together rigidly to form a single particle. Then
a1 = a2 = ac, the acceleration of the composite particle due to its interaction with
particle 3, and (2) yields

(m1 +m2)ac = −m3a3 . (3)

Let mc denote the mass of the composite particle. According to the previous question,
for the two-particle interaction of masses mc and m3,

mcac = −m3a3 . (4)

It follows from (3) and (4) that

mc = m1 +m2 . (5)

Comment

In thermodynamics a distinction is made between two types of variable. First, there
are quantities that are additive when two systems are combined. For example, their
volumes, the number of particles, etc. Such variables are referred to as extensive.
Secondly, there are quantities such as temperature and pressure that are unchanged
when two identical systems are combined – these are intensive variables. According to
(5), the mass of a system is an extensive variable.
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Question 2.8

Consider a ‘mass dipole’ consisting of two particles having opposite masses‡ m (> 0)
and −m. Describe its motion in the following cases:

(a) The dipole is initially at rest in empty inertial space.

(b) The constituents of the dipole in (a) have electric charge q1 and q2.

(c) The charged mass dipole of (b) is placed vertically (with the negative mass above
the positive mass) in the Earth’s gravitational field. Assume that the distance d
between the particles is negligible in comparison with the distance r to the centre
of the Earth.

Solution

Opposite-mass particles repel each other
(
this follows from the law of gravitation, see

(4) of Question 2.3
)
. Also, for a negative-mass particle the force F and the acceleration

a in F = ma point in opposite directions.

(a) In empty inertial space the only force acting on neutral particles
a distance d apart is the gravitational repulsion F = Gm2

/
d2. In

response, each particle accelerates at the same rate a = Gm
/
d2 in

the direction shown: the negative mass pursues the positive mass
and d remains constant. The motion eventually becomes relativistic
– see Question 15.13.

(b) The net force is the sum of the gravitational and electrostatic forces:

F =
Gm2 + kq1q2

d2
(k = 1

/
4πε0). (1)

For like charges (q1q2 > 0), or for unlike charges (q1q2 < 0) with
q1q2 > −Gm2

/
k, the force F is repulsive and the motion is the same

as in (a) with acceleration

a =
Gm2 + kq1q2

md2
. (2)

But, for unlike charges with q1q2 < −Gm2
/
k the force is attractive.

The directions of F and a are reversed: the positive mass pursues
the negative mass.

(c) Since d � r the total force on each mass has the same magnitude, and the
resulting acceleration of a vertical dipole is

a =
F

m
=
GM

r2
+
Gm2 + kq1q2

md2
, (3)

‡Negative-mass particles have never been observed. It is, nevertheless, interesting and instructive
to consider the dynamics of such objects.
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where M is the Earth’s mass. Again, for like charges or for unlike charges with
q1q2 > −q2c where

q2
c

=
Gm2

k

(
1 +

Md2

mr2

)
, (4)

the forces F are directed as shown in the first diagram, and the dipole accelerates
toward the Earth at a rate a. But for unlike charges with q1q2 < −q2

c
, the forces

are reversed, as shown in the second diagram, and the dipole accelerates away
from the Earth. Each particle accelerates at the same rate (3), and so d remains
constant. The acceleration increases to the asymptotic value (2) as r increases.
For unlike charges with q1q2 = −q2c , the acceleration a = 0 and the dipole remains
at rest relative to the Earth.

Comments

(i) Despite its strange dynamical properties, a mass dipole would not violate any
of the laws of physics.[5] For example, despite the acceleration in empty space,
energy is conserved because the total kinetic energy 1

2
mv2 + 1

2
(−m)v2 is always

zero.

(ii) The acceleration a in (2) and (3) can be controlled (in both magnitude and di-
rection) by altering the charges q1 and q2. The dipole is an ‘anti-gravity glider’[5]

that can fall, hover, or rise in a gravitational field.

(iii) In a frame that is accelerating at a rate a, the total force on each particle is zero
because the respective translational forces, −ma and −(−m)a, cancel the forces
F = ma and −ma on each particle. Thus, the mass dipole is at rest in this frame.
It follows that the dipole is unstable with respect to any relative motion of the
particles toward or away from each other. It would be necessary to have some
feedback mechanism to counter any such drift.

(iv) One can consider variations of the above, such as a mass dipole in which both
inertial masses mI are positive, and the gravitational masses mG and −mG have
opposite signs. Or one can consider interactions that point in the same direction,
as in a predator-prey problem.

(v) The preceding questions just touch on the rather mysterious concept of mass.
Access to the extensive literature on this subject is provided in an article by
Roche.[6] In the theory of special relativity, mass has the property that it can
vary in space and time if so-called ‘impure’ forces are present (see Question 15.11).
Perhaps future, richer theories will reveal further properties of mass.

Question 2.9

Discuss the following statement in relation to Lagrange’s equations: ‘In the equation
of motion F = ma the units must be the same on both sides’.

[5] R. H. Price, “Negative mass can be positively amusing,” American Journal of Physics, vol. 61,
pp. 216–217, 1993.

[6] J. Roche, “What is mass?,” European Journal of Physics, vol. 26, pp. 225–242, 2005.
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Solution

In the Lagrange equations for a system of particles (see Chapter 1)

d

dt

∂L

∂q̇i

=
∂L

∂qi

, (1)

the units on each side are clearly the same. The right-hand side of (1) gives the
(generalized) forces Fi and the left-hand side the rates of change ṗ

i
of the (generalized)

momenta (see Chapter 1). Therefore, the above statement follows.

Comments

(i) The generalization of this statement is:

‘All equations in physics (including all physical

laws) have the same units on both sides’.

}
(2)

That is, one has an example of a ‘relativity principle’: the laws of physics are
equally valid in all systems of units.

(ii) The statement (2) is the basis for dimensional analysis, which has far-reaching
consequences in physics.[7] Some simple examples follow.

Question 2.10

Solutions to physical problems often involve functions like

cosu, sinu, eu, lnu, · · · , (1)

where the argument u is a scalar that depends on physical quantities such as time,
frequency, mass, etc. Explain why u must be dimensionless (that is, independent of
the system of units used for mass, length and time).

Solution

The result follows by inspection of the Taylor expansions of the functions in (1). (We
can, if we wish, take these expansions to be defining relations of the functions.[8]) For
example,

eu = 1 +
u

1!
+
u2

2!
+ · · · (for all u). (2)

It follows that 1, u, u2, · · · must have the same physical dimensions, and therefore u
is dimensionless.

[7] G. I. Barenblatt, Scaling, self-similarity, and intermediate asymptotics. Cambridge: Cambridge
University Press, 1996.

[8] J. M. Hyslop, Real variable. London: Oliver and Boyd, 1960.



Miscellanea ��

Comments

(i) It is a good idea to check whether the results of a calculation satisfy the above
condition. Thus, an expression like et/m (where t is time and m is mass) is clearly
unacceptable.

(ii) The earliest standards for space, time and mass were related to the human body
and human activities. With the introduction of the SI system of units in the
nineteenth century, the metre was defined by the length of a platinum-iridium bar,
the kilogram by the mass of a platinum-iridium cylinder (both preserved under
carefully controlled conditions), and the second was related to the rotation of the
Earth. In the twentieth century the metre and second were redefined in terms
of physical and atomic constants. The kilogram is therefore an anachronism in
that it is still based on a physical object, and it seems likely that the kilogram
will be redefined in a more convenient and accurate way, possibly by relating it
to Planck’s constant. An absorbing account of this topic has been given in Ref.
[9]. (Planck’s constant is already used in a system of units – see Question 2.17.)

Question 2.11

Use dimensional analysis to determine the dependence of the period T of a simple
pendulum on its mass m, weight w and length �.

Solution

Here, we neglect any dependence of T on the amplitude of oscillation; this is dis-
cussed in Question 2.12. We also assume that the desired function of three variables
T = T (m,w, �) is a power-law relation

T = kmαwβ�γ , (1)

where k, α, β, γ are dimensionless constants. We require that the physical dimensions
of each side of (1) be the same, that is

[T ] = [m]α[w]β [�]γ . (2)

Here, [Q] denotes the dimensions of the quantity Q (Maxwell’s notation). In terms
of the fundamental units of mass (M), length (L) and time (T ) we have‡ [T ] = T ,
[m] = M , [w] = MLT−2 (w being a force = mass × acceleration), and [�] = L. Thus,
(2) can be written

M0L0T = Mα(MLT−2)βLγ , (3)

which provides three equations in the unknowns α, β and γ:

‡We use T in two senses (a period and also a fundamental unit); which meaning is intended is
clear from the context.

[9] I. Robinson, “Redefining the kilogram,” Physics World, vol. 17, pp. 31–35, May 2004.
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α+ β = 0 , β + γ = 0 , −2β = 1 . (4)

Hence α = −β = γ = 1
2
, and (1) becomes

T = k

√
m�

w
. (5)

Comments

(i) The requirement (2), of equality of dimensions in a physical equation, is the
essence of the method of dimensional analysis. It is a consequence of the necessity
for physical laws and results to be independent of our arbitrary choice of units
for mass, length, time, etc. The numerical values of physical quantities such as
velocity, momentum and force do depend on the choice of units but physical laws
expressing the relations between these quantities do not. Thus, for example, the
law F = ma is valid in any system of units.

(ii) The assumption made in (1) that the desired form is a power-law monomial in
the independent variables, is typical of dimensional analysis (see also the following
examples). This use of power-law relations should not be regarded as a weakness of
the method. In fact, power-law (or scaling) relationships “give evidence of a very
deep property of the phenomena under consideration – their self-similarity: such
phenomena reproduce themselves, so to speak, in time and space.” [7] Further,
it can be proved that the dimension of any physical quantity Q is given by a
power-law monomial: for example, in the M , L, T class of units

[Q] = MaLbT c, (6)

where a, b, and c are dimensionless constants.[7]

(iii) In the above example, dimensional analysis provides enough independent
equations to solve for the three unknown quantities α, β and γ. Often, this is
not the case (see the following questions).

(iv) With w = mg, (5) becomes

T = k

√
�

g
. (7)(

Strictly, w = mGg and m = mI, where mG and mI are the gravitational and
inertial masses, so that (5) is

T = k

√
mI

mG

�

g
. (8)

According to the weak equivalence principle, mI = mG and (8) reduces to (7); see
Question 2.5.

)
(v) The constant k in (7) has to be determined from a detailed dynamical analysis.

This shows that k is, in fact, a function of the amplitude of oscillation (the maxi-
mum arc-length s) with the simple limit k → 2π as s→ 0. In the next question
we examine what happens if we try to use dimensional analysis to obtain also the
dependence of T on the amplitude of oscillation.
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Question 2.12

Use dimensional analysis to determine the dependence of the period T of a simple
pendulum on its mass m, weight w, length � and arc-length of swing s.

Solution

Instead of (1) of Question 2.11 we now have a power-law relation in four variables:

T = kmαwβ�γsδ. (1)

Hence
M0L0T 1 = Mα(MLT−2)βLγLδ, (2)

and so
α+ β = 0 , β + γ + δ = 0 , −2β = 1 . (3)

These yield α = −β = 1
2

and γ = 1
2
− δ. Consequently, (1) becomes

T = k

√
m�

w

(s
�

)δ
, (4)

where δ is an undetermined number.

Comments

(i) Because s/� is a dimensionless quantity, we cannot determine the dependence of
T on it by using dimensional analysis. In fact, it is clear that we can replace
the factor (s/�)δ by a power series in (s/�) without disturbing the dimensional
balance of (4). Thus, the most general form allowed on dimensional grounds is

T =

√
m�

w
φ
(s
�

)
=

√
�

g
φ
(s
�

)
, (5)

where φ is an undetermined function of the amplitude s/� of the oscillations. A
numerical calculation of φ is given in Question 5.18. In the limit s/�→ 0, φ→ 2π,
and it is only in this limit that it is reasonable to assume that T is independent
of s (as was done in Question 2.11).

(ii) Thus, in the present question dimensional analysis has reduced an unknown
function of four variables T = T (m,w, �, s) to an unknown function of one
variable φ(s/�). Despite this inability of the method to reduce a result beyond
a function of one (or more) dimensionless quantities in most cases, dimensional
analysis is a powerful and useful technique, particularly in its application to more
complex phenomena (such as the next question). Often, the forms provided by
dimensional analysis provide clues on how to perform a more detailed theoreti-
cal analysis or how to analyze experimental results. In fact, “using dimensional
analysis, researchers have been able to obtain remarkably deep results that have
sometimes changed entire branches of science . . . . The list of great names involved
runs from Newton and Fourier, to Maxwell, Rayleigh and Kolmogorov.” [7]
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Question 2.13

A liquid having density ρ and surface tension σ drips slowly from a vertical tube of
external radius r. Use dimensional arguments to analyze the dependence of the mass
m of a drop on ρ, σ, r and g (the gravitational acceleration).

Solution

Assume that the mass of a drop is given by the power-law relation

m = kρασβrγgδ, (1)

where k, α, β, γ and δ are dimensionless constants. Recall that surface tension is a
force per unit length: [σ] = MLT−2

/
L = MT−2. Thus, dimensional balance in (1)

requires
ML0T 0 = (ML−3)α(MT−2)βLγ(LT−2)δ. (2)

Therefore

α+ β = 1 , −3α+ γ + δ = 0 , −2β − 2δ = 0 , (3)

which yield for α, β and γ in terms of δ

α = 1 + δ , β = −δ , γ = 3 + 2δ . (4)

From (1) and (4) we have
m = kρr3(ρr2g

/
σ)δ. (5)

Comments

(i) We see again that the existence of a dimensionless combination – in this case
ρr2g

/
σ – means that the power-law dependence on this quantity

(
the number δ

in (5)
)

cannot be determined by dimensional arguments. In fact, we can generalize
(5) to

m = ρr3φ(ρr2g
/
σ) , (6)

where φ is an unknown function, without disturbing the dimensional balance.
Equation (6) is the most general form allowed by dimensional requirements.

(ii) Because ρ = m
/
V , where V is the volume of a drop, (6) can be inverted to read

σr/mg = F (V
/
r3) , (7)

where F is an unknown function. Measurements[10] show that F (u) decreases
slowly from 0.2647 at u = 2 to 0.2303 at u = 18. The above results are the basis
for Harkins and Brown’s drop-weight method for measuring the surface tension

[10] See, for example, A. W. Porter, The method of dimensions. London: Methuen, 3rd edn, 1946.
Chap. 3.



Miscellanea ��

of a liquid.[11] Note that F �= (2π)−1 and therefore it is not correct to make the
approximation mg = 2πrσ, as would follow if the surface tension acted vertically
around the outer radius of the tube at the instant that a drop breaks away: the
phenomenon is more complicated than that.

Question 2.14

A sphere of radius R moves with constant velocity v through a fluid of density ρ
and viscosity η. The fluid exerts a frictional force F on the sphere. Use dimensional
arguments to study the dependence of F on ρ, R, v and η.

Solution

Assume that
F = kραRβvγηδ, (1)

where k, α, β, γ and δ are dimensionless constants. Recall that viscosity is the
proportionality between a tangential force per unit area and a velocity gradient. So

[η] = (MLT−2 ÷ L2)
/
(LT−1 ÷ L) = ML−1T−1. (2)

Then dimensional balance in (1) requires

MLT−2 = (ML−3)αLβ(LT−1)γ(ML−1T−1)δ. (3)

Hence
α+ δ = 1 , −3α+ β + γ − δ = 1 , γ + δ = 2 , (4)

and we can express α, β and γ in terms of one unknown δ:

α = 1 − δ , β = γ = 2 − δ . (5)

Thus, (1) becomes
F = kρR2v2(η

/
ρRv)δ. (6)

Comments

(i) The existence of the dimensionless quantity η
/
ρRv means that the power-law

dependence on this number in (6) cannot be determined by dimensional reasoning.
Clearly, we can generalize (6) to

F = ρR2v2φ
(
ρRv

/
η
)
, (7)

where φ is an unknown function. Equation (7) is the most general form allowed by
dimensional requirements. Thus, dimensional analysis has enabled us to reduce

[11] See, for example, F. C. Champion and N. Davy, Properties of matter. London: Blackie, 3rd edn,
1959. Chap. 7.



�� Solved Problems in Classical Mechanics

an unknown function of four variables to a function of one variable. The dimen-
sionless quantity 2ρRv

/
η is known as the Reynolds number, and it is an essential

parameter that governs this phenomenon. The function φ is rather complicated
in general, although a reasonable approximation can be given that applies over
a fairly wide range of Reynolds numbers (see Question 3.8). For ‘low’ Reynolds
numbers a dynamical analysis shows that φ (u) → 6π

/
u, and hence (7) becomes

F = 6πηRv , (8)

which is Stokes’s law. For ‘higher’ Reynolds numbers φ ≈ 0.2π and (7) gives

F = 0.2πρR2v2. (9)

The meanings of ‘low’ and ‘high’ are explained in Question 3.8

(ii) The Reynolds number also enters naturally in dimensional analysis of other phe-
nomena. Consider, for example, the steady flow of fluid through a long, cylindrical
pipe. The constant decrease of pressure per unit length of pipe, dp

/
dx, depends

on the fluid density ρ, viscosity η, pipe diameter D, and the fluid velocity v (av-
eraged over the cross-section of the pipe). By a calculation similar to that leading
to (7) one finds

dp

dx
=
ρv2

D
φ(ρDv

/
η) , (10)

where φ is an undetermined function. Except for the transition region between
laminar and turbulent flow, a single function φ represents all experimental data.[7]

Question 2.15

A planet moves in a circular orbit of radiusR around a star of massM . Use dimensional
analysis to determine the dependence of the period T of the motion on M , R and G
(the universal constant of gravitation).

Solution

We make an analogy with the dimensional analysis of the simple pendulum. The
gravitational acceleration experienced by the planet is g = GM

/
R2 and therefore from

(7) of Question 2.11, a dimensionally acceptable expression for the period is

T = k

√
R

g
= k

√
R3

GM
, (1)

where k is a dimensionless constant.
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Comment

A detailed calculation shows that, in general, planetary orbits are elliptical and

T = 2π

√
a3

G(M +m)
, (2)

where m is the mass of the planet and a is the length of the semi-major axis of
the ellipse (see Question 10.11). The result T 2 ∝ a3 is known as Kepler’s third law.
According to (2), T depends also on m. In the limit m

/
M → 0 and for circular orbits

(a = R), (2) reduces to (1) with k = 2π.

Question 2.16

Let R be the radius of a shock wave front a time t after a nuclear explosion has released
an amount of energy E in an atmosphere of initial density ρ. Use dimensional analysis
to determine the dependence of R on E, ρ and t.

Solution

If we assume that
R = kEαρβtγ , (1)

where k, α, β and γ are dimensionless constants, then dimensional balance requires

M0LT 0 = (ML2T−2)α(ML−3)βT γ. (2)

Thus α = −β = 1
5

and γ = 2
5
, and (1) becomes

R = k

(
Et2

ρ

)1
5

. (3)

Comment

The above is a well-known result due to G. I. Taylor, who also showed that k ≈ 1 and
who used (3) to determine the energy of a nuclear explosion from a series of high-speed
photographs of the fireball.[7,12]

Question 2.17

By taking power-law combinations of the three fundamental constants �, c and G (the
reduced Planck constant, the speed of light in vacuum and the universal constant of
gravitation, respectively), construct quantities with the units of (a) mass, (b) length,
and (c) time.

[12] M. Longair, Theoretical concepts in physics (An alternative view of theoretical reasoning in
physics), pp. 169–170. Cambridge: Cambridge University Press, 2nd edn, 2003.
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Solution

From the Planck relation E = �ω, for example, the units of � are those of
energy × time; that is, Js. So [�] = ML2T−1. Also, [c] = LT−1 and [G] = M−1L3T−2.
Let Mp, Lp and Tp denote the desired mass, length and time.

(a) Write
Mp = �

αcβGγ . (1)

Then
ML0T 0 = (ML2T−1)α(LT−1)β(M−1L3T−2)γ . (2)

That is,

α− γ = 1 , 2α+ β + 3γ = 0 , −α− β − 2γ = 0 . (3)

Hence, α = β = −γ = 1
2

and (1) is

Mp =
√

�c
/
G . (4)

(b) Similarly, Lp = �
αcβGγ yields α = γ, 2α+β+3γ = 1 and α+β+2γ = 0. Hence,

α = β = − 1
3
γ = 1

2
and

Lp =
√

�G
/
c3 . (5)

(c) With Tp = �
αcβGγ we have α = γ, 2α + β + 3γ = 0, α + β + 2γ = −1. That is,

α = γ = 1
5
β = 1

2
and

Tp =
√

�G
/
c5 . (6)

Comments

(i) The system of units defined by (4)–(6) was introduced by Planck in 1899 when he
discovered his quantum of action, and they are named after him: the Planck mass
Mp, length Lp and time Tp. If the laws of physics containing �, c and G (that is,
quantum mechanics and special and general relativity) are universal, then Mp, Lp

and Tp comprise an absolute (or natural) system of units. For this reason Planck
remarked that the new units would be “ . . . independent of particular bodies or
substances, would necessarily retain their significance for all times and for all
cultures, including extraterrestrial and non-human ones, and can therefore be
designated as ‘natural units’ . . . .” [13]

(ii) For more than half a century after their introduction the Planck units were largely
ignored, or even regarded in a negative light. However, beginning in the 1950s, a
number of works appeared that considered the possible physical significance of the
Planck values. For example, it was suggested that the Planck mass Mp is an upper
limit for the mass spectrum of elementary particles and a lower limit for the mass

[13] M. Planck, “Über irreversible strahlungsvorgänge,” Sitzungsberichte der Preussischen
Akademie der Wissenschaften, vol. 5 . Mittheilung, pp. 440–480, 1899.
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of a black hole. The Planck density (Mp

/
L3

p
= 5.16 × 1096 kgm−3) was proposed

as an upper limit for the density of matter. An outline of these developments,
together with references to the literature, has been given in Ref. [14].

(iii) In terms of MKS units the Planck values are

Mp = 2.18 × 10−8 kg , Lp = 1.62 × 10−35 m and Tp = 5.39 × 10−44 s . (7)

(iv) Planck units for charge and temperature can be defined by including also the per-
mittivity of free space, ε0, and Boltzmann’s constant, k, in our set of fundamental
constants. Then

Qp =
√

4πε0�c = 1.88 × 10−18 C , θp = Mpc
2
/
k = 1.42 × 1032 K. (8)

(v) Physical quantities can readily be expressed in terms of Planck units. For
example, the Planck acceleration Lp

/
T 2

p
= 5.58 × 1051 ms−2 , and therefore an

acceleration of 1 ms−2 is equal to 1.79 × 10−52Lp

/
T 2

p
. The Planck velocity is

Lp

/
Tp = c; the Planck energy is Ep = Mpc

2 = 1.96× 109 J; the Planck density is

ρp = Mp

/
L3

p = 5.16 × 1096 kgm−3; and so on.

(vi) There are other systems of absolute units for mass, length and time that can be
constructed from fundamental constants, such as the classical system based on
e (the electronic charge), c and G. Some difficult questions remain concerning
numerical relations (such as mass ratios) between the absolute systems.[15]

(vii) In general, it is an interesting activity to use fundamental (and other) constants
to construct certain physical quantities because these invariably play a central
role in various phenomena. For example:

☞ The quantity λ = �
/
mc has the unit of length. It is known as the Compton

wavelength (of a particle with mass m) because, with m equal to an electron
mass me, it first appeared in the theory of the Compton effect for scattering
of a photon by an electron. With m equal to a meson mass, λ gives the range
of the nuclear force in Yukawa’s theory of this force.

☞ The ratio h
/
e = 2φ0 has the units of magnetic flux; φ0 is the so-called flux

quantum and it plays an essential role in understanding superconductors.

☞ The quantity R = h
/
e2 has the units of electrical resistance. It occurs in the

theory of the quantum Hall effect and provides a standard for resistance.

☞ The ratio e�/me = 2µB has the units of magnetic dipole moment; µB is known
as the Bohr magneton and it provides a scale for the magnetic moments of
atoms and the intrinsic moment of an electron.

[14] K. A. Tomilin, “Natural systems of units.” At http://web.ihep.su/library/pubs/tconf99/ps/
tomil.pdf.

[15] F. Wilczek, “On absolute units, II: challenges and responses,” Physics Today, vol. 59, pp. 10–11,
January 2006.

http://web.ihep.su/library/pubs/tconf99/ps/tomil.pdf
http://web.ihep.su/library/pubs/tconf99/ps/tomil.pdf
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One-dimensional motion

The examples in this chapter deal with a particle of mass m that moves in one
dimension (along the x-axis) and is acted on by a force F that may in general be
a function of x, v = ẋ, and t. Note that the actual force is the vector F x̂, the velocity
is vx̂, and so on; in one dimension it is convenient to omit reference to the unit vector
x̂. The motion is non-relativistic and so m is constant. At time t = 0 the particle is at
x0 and has velocity v0.

Question 3.1

If F is constant (independent of x, t and v) determine the velocity v(t) and the
trajectory x(t) in terms of F , m, v0, and x0.

Solution

The equation of motion is

m
dv

dt
= F . (1)

We integrate both sides of (1) with respect to t, between the limits t = 0 and t. Then,

because

(
dv

dt

)
dt = dv, and m and F are constants, we have

m

∫ v(t)

v0

dv = F

∫ t

0

dt . (2)

Thus, the velocity at time t is given by

v(t) = v0 + Ft
/
m. (3)

By definition, v = dx
/
dt and therefore integration of both sides of (3) with respect to

t yields ∫ x(t)

x0

dx =

∫ t

0

(
v0 + Ft

/
m
)
dt . (4)

Thus, the position at time t is
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x(t) = x0 + v0t+ Ft2
/
2m. (5)

Equations (3) and (5) are the desired solutions. They are linear and quadratic functions
of t, respectively, which are depicted below (for v0, x0, F > 0).

x0

x(t)

t

v0

v(t)

t

Comments

(i) The two unknown quantities v(t) and x(t) appear as the upper limits of the
integrals in (2) and (4). This is typical of problems that can be solved by simple
integration (see examples below).

(ii) The future behaviour of the particle is completely determined if the quantities
F , m, x0 and v0 on the right-hand side of (5) are known. In this sense classical
mechanics is deterministic. (See, however, Questions 2.1 and 2.2.)

(iii) In the sixteenth century, Galileo Galilei performed experiments on the distance
moved by an object when it undergoes a constant acceleration. For this purpose
he used brass balls rolling down inclined planes. The acceleration was quite low
(about 0.1 m s−2) and he was able to time the motion to sufficient accuracy by
using a simple water clock (a large vessel that drained through a narrow tube into
a beaker). He found that the distance travelled is proportional to the square of the
weight of the water that flowed into the beaker. This result, which is in accord
with (5), was counter to the prevailing conventional wisdom, which held that
the distance should be proportional to the time of travel. Galileo’s experiment is
thought by some to be among the most beautiful that have been performed in
physics.[1] The theory of this experiment is given in Question 12.20.

(iv) Equation (5) has many simple applications, such as the following. For a stone
that is dropped into a well of unknown depth D, one can express D in terms of
the time t elapsed until the splash is heard, the acceleration g due to gravity, and
the speed V of sound in air: according to (5), D = 1

2
gt21 for the falling stone and

D = V t2 for the sound wave, so that t = t1 + t2 = (2D
/
g)1/2 +D

/
V and therefore

D =
V 2

2g

(√
1 + 2gt

/
V − 1

)2
.

Measurements of V , g and t give D.

[1] R. P. Crease, “The most beautiful experiment,” Physics World, vol. 15, pp. 19–20, September
2002.
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(v) Equations (3) and (5) are approximate (non-relativistic) solutions which apply
for v � c, where c is the speed of light in vacuum: thus, for a particle that starts
from rest (v0 = 0) they are valid for t � mc

/
F (see Question 15.13). Often, the

time scale mc
/
F in a particular problem is large compared to the time interval(s)

of interest, and so (3) and (5) are acceptable approximations.

Question 3.2

If F is the time-dependent force F = A −Bt, where A and B are positive constants,
determine the velocity v(t) and the trajectory x(t) in terms of A, B, m, v0, and x0.
Sketch the graphs of F (t), v(t) and x(t) versus t for v0 = 0 and x0 > 0.

Solution

In place of (2) in Question 3.1, we now have

m

∫ v(t)

v0

dv =

∫ t

0

(A− Bt) dt , (6)

and therefore
v(t) = v0 +At

/
m−Bt2

/
2m. (7)

Then ∫ x(t)

x
0

dx =

∫ t

0

(
v0 +At

/
m−Bt2

/
2m

)
dt , (8)

and so
x(t) = x0 + v0t+At2

/
2m−Bt3

/
6m. (9)

A
B

A

F (t)

t 2A
B

A
B

v(t)

t

x0

2A
B

A
B

x(t)

t

Comments

(i) For t < A/B the force is positive and the particle is accelerated in the positive
x-direction; for t > A/B the force is negative and the particle is decelerated,
coming to rest at t = 2A/B. For t > 2A/B it moves in the negative x-direction.

(ii) When the force is zero (at t = A/B) the velocity is a maximum and the
displacement has a point of inflection; when the velocity is zero (at t = 2A/B)
the displacement along the positive x-axis is a maximum.



One-dimensional motion ��

Question 3.3

(a) A particle is subject to an oscillatory force F = F0 cos(ωt+φ), where F0, ω and φ
are positive constants. Calculate the velocity v(t) and the trajectory x(t) in terms
of m, F0, ω, φ, v0 and x0.

(b) Discuss and plot the possible graphs of v(t) and x(t) versus t.

Solution

(a) The equation of motion

m
dv

dt
= F0 cos(ωt+ φ) , (1)

can be integrated with respect to t to yield

v(t) = v0 + vc{sin(ωt+ φ) − sinφ} , (2)

where vc = F0

/
mω, has the units of velocity. Integration of (2) with respect to t

gives
x(t) = x0 + (vc/ω)[{(v0/vc) − sinφ}ωt+ cosφ− cos(ωt+ φ)]. (3)

(b) The trajectory (3) has the interesting property that it may be either bounded(
x(t) finite

)
or unbounded

(|x(t)| infinite at t = ∞)
, depending on whether the

term in ωt is present. If
v0 = vc sinφ , (4)

then (3) becomes

x(t) = x0 + (vc/ω){cosφ− cos(ωt+ φ)}, (5)

which is a bounded motion: x(t) − x0 oscillates between (vc/ω)(cosφ − 1) and
(vc/ω)(cosφ+1). On the other hand, if v0 �= vc sinφ then the motion given by (3)
is unbounded: if v0 > vc sinφ then x(t) → ∞ as t → ∞ (as in the fourth figure
below), while if v0 < vc sinφ then x(t) → −∞ as t → ∞. Plots of v(t) given by
(2) and x(t) given by (5) for bounded motion are shown below. Here, we have set
x0 = 0 and taken φ = π/4.

v0 = vc sin φx(t)

t

v0 = vc sin φ

v0

v(t)

t

Plots of v(t) given by (2) and x(t) given by (3) for unbounded motion are shown
below for x0 = 0 and φ = π/4. The position x(t) oscillates about the term
proportional to ωt in (3), and this is indicated by the dotted straight line in the
plot of x(t). Note that the velocity (2) is always bounded: it oscillates between
v0 − vc sinφ− vc and v0 − vc sinφ+ vc.
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v0 > vc sin φx(t)

t

v0 > vc sin φ

v0

v(t)

t

Comments

(i) This question illustrates again the sensitivity to initial conditions that can be
present in classical mechanics and has a bearing on determinism (see Questions 2.1
and 2.2). In general, sensitivity to small perturbations, particularly in non-linear
phenomena (see Chapter 13), makes tasks such as long-range weather forecasting
problematic.

(ii) All one-dimensional problems involving time-dependent forces F (t) (such as
Questions 3.2 and 3.3) can be solved by integration:

m

∫ v(t)

v0

dv =

∫ t

0

F (t) dt . (6)

Question 3.4

A particle starts from rest at x0 (> 0) in an attractive inverse-cube force field
F = −k/x3 (k is a positive constant). Show that the time taken to reach the
origin is

T0 =
√
mx4

0

/
k . (1)

Solution

The equation of motion

m
dv

dt
= − k

x3
(2)

cannot be integrated as it stands. Instead, make the replacement

dv

dt
=
dx

dt

dv

dx
= v

dv

dx
, (3)

to obtain

mvdv = − k

x3
dx , (4)

and then integrate between corresponding limits:

m

∫ v(x)

0

vdv = −k
∫ x

x
0

dx

x3
. (5)
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Hence
1

2
mv2(x) =

1

2
k

(
1

x2
− 1

x2
0

)
, (6)

and so

v(x) =
dx

dt
= −

√
k

mx2
0

√
x2

0
− x2

x
. (7)

In (7) a negative sign has been used in extracting a square root because we are
considering motion in the negative x-direction, that is v(x) ≤ 0. Integration of (7)
with respect to t gives ∫ x(t)

x
0

xdx√
x2

0 − x2
= −

√
k

mx2
0

∫ t

0

dt . (8)

Now ∫
xdx√
x2

0 − x2
= −

√
x2

0 − x2 , (9)

and therefore (8) yields √
x2

0 − x2(t) =

√
k

mx2
0

t . (10)

Thus, we obtain the trajectory

x(t) = x0

√
1 − k

mx4
0

t2 (t ≤
√
mx4

0/k) , (11)

where we have taken a positive root because the particle is to the right of the origin
(x > 0). According to (11), x = 0 when t is given by (1).

Comments

(i) The velocity v(t), obtained by differentiating (11), is

v(t) = − k

mx3
0

t

(
1 − k

mx4
0

t2
)− 1

2

. (12)

Graphs of (11) and (12) are shown below.

T0

x0

x(t)

tT0

−v(t)

t
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(ii) After passing the origin (with infinite speed) the particle comes to rest at −x0

(at time t = 2T0), and it then retraces its motion to again reach x0. Thus, the
complete motion is oscillatory with amplitude x0 (the particle oscillates between
x0 and −x0) and period T = 4T0. The two figures above show the first quarter-
cycle of the motion, and it is left as an exercise for the reader to sketch v(t) and
x(t) for the full oscillatory motion.

(iii) Three-dimensional motion in an inverse-cube force field is solved in Question 8.11.

Question 3.5

A particle in an attractive inverse-square force field F = −k/x2 (k is a positive con-
stant) is projected along the x-axis with velocity v0 (> 0) from the point x0 (> 0).
Determine its trajectory.

Solution

In the equation of motion

m
dv

dt
= − k

x2
, (1)

make the replacement (3) of Question 3.4 to obtain

mvdv = − k

x2
dx , (2)

and then integrate between corresponding limits:

m

∫ v(x)

v
0

vdv = −k
∫ x

x
0

dx

x2
. (3)

Hence
1
2
m
{
v2(x) − v2

0

}
= k

(
1

x
− 1

x0

)
, (4)

and so

v(x) = ±v0

{
1 +

2k

mv2
0

(
1

x
− 1

x0

)}1
2

, (5)

where the upper (lower) sign applies to outward (inward) motion.

Before proceeding it is helpful to note that, according to (5), the asymptotic value
of the velocity v∞ (the velocity at x = ∞) is

v∞ = v0

{
1 − 2k

mx0v2
0

}1
2

, (6)

which exists (is real) if

v0 ≥ ve =
√

2k/mx0 , (7)
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in which case
v∞ =

√
v2

0 − v2
e . (8)

Thus, there are three distinct cases to consider: (a) v0 = ve (the particle ‘comes to

rest at infinity’), (b) v0 < ve (the particle comes to rest at a finite value of x and

then returns to x0), and (c) v0 > ve

(
the particle ‘reaches infinity with a finite speed’

given by (8)
)
. We consider these in turn.

(a) v0 = ve

This is the simplest case to study because when v0 = ve, (5) simplifies to

dx

dt
= v0

√
x0

x
. (9)

So ∫ x(t)

x
0

√
xdx = v0

√
x0

∫ t

0

dt , (10)

and therefore

x(t) = x0

(
1 +

3v0

2x0

t

)2
3

. (11)

According to (9) and (11) the velocity is

v(t) = v0

(
1 +

3v0

2x0

t

)− 1
3

. (12)

Clearly, x→ ∞ and v → 0 as t→ ∞.

The calculations for the next two cases, while in essence the same as the
preceding one, involve more algebra because an integral is more complicated.
From (5) we have

dx

dt
= ±v0

√
αx+ β

x
, (13)

where α = 1 − γ−2, β = x0/γ
2, and

γ =
v0

ve

. (14)

(It is the fact that now γ �= 1 that complicates the ensuing algebra.) To integrate
(13) we require the following two integrals:

∫ √
x

αx+ β
dx =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
αx2 + βx

α
+

β

α
√−α sin−1

√
αx + β

β
if α < 0

√
αx2 + βx

α
− β

α
√
α

sinh−1

√
αx

β
if α > 0 .

(15)



�� Solved Problems in Classical Mechanics

(b) v0 < ve

Here, γ < 1 and so α < 0. We use (15)1 to integrate (13). After some algebra we
find the equation of the trajectory in its inverse form:

t =
γ

1 − γ2

x0

v0

[
γ +

1√
1 − γ2

sin−1 γ ∓
{√

(γ2 − 1)X2 +X

+
1√

1 − γ2
sin−1

√
(γ2 − 1)X + 1

}]
, (16)

where the upper (lower) sign applies for the outward (inward) motion, and

X = x
/
x0 . (17)

(c) v0 > ve

Now, γ > 1 and so α > 0. We use (15)2 to integrate (13), where we choose the
upper sign because the particle is always moving in the positive x-direction. This
gives the equation of the trajectory in its inverse form:

t =
γ

γ2 − 1

x0

v0

[
−γ +

1√
γ2 − 1

sinh−1
√
γ2 − 1 +

√
(γ2 − 1)X2 +X

− 1√
γ2 − 1

sinh−1
√

(γ2 − 1)X
]
. (18)

Comments

(i) The solutions (11) and (12) for v0 = ve are the monotonic functions shown below.
Here, v∞ = 0 according to (8).

O
x0

x(t)

t

v0 = ve

O

v0

v(t)

t

(ii) When v0 < ve the particle reaches a maximum position xm at t = tm, and then
returns to its starting point x0 at t = 2tm. Now v = 0 at xm and therefore (13)
yields

xm = −β/α = (1 − γ2)−1x0 . (19)

From (16) and (19) we have

tm =
(x0

v0

) γ

1 − γ2

{
γ +

1√
1 − γ2

sin−1 γ

}
. (20)
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Note that xm → ∞ as v0 → ve, as one expects. Curves of v(t) and x(t) obtained
from (13) and (16) are shown below for v0 = 0.9ve.

O

2tm

�

tm

�

xm�

x0

x(t)

t

v0 = 0.9ve

O

2tm

�tm

v0

v(t)

t

(iii) If v0 is small compared to ve, one can make a ‘constant-force approximation’ by
replacing the position-dependent force F = −k/x2 with its value at x0, that is

with F0 = −k/x2
0
. Then, (5) of Question 3.1 gives

x(t) = x0 + v0t+ F0t
2
/
2m. (21)

Because the force is over-estimated in this approximation, (21) is a lower bound
to the trajectory obtained from (16). This is illustrated below where the dotted
curves are obtained from (21) and the solid curves from (16). As one expects,
(21) is a poor approximation when v0 is comparable to ve.

(
Note that the vertical

scales differ in these plots; the values of xm are obtained from (19).
)

The approxi-
mation (21) is commonly used in the theory of projectiles moving near the Earth’s
surface (see Question 7.1). The numerical values in the diagrams are for the Earth
(x0 = 6370 km and ve = 11.2 kms−1).

62

�

�

≈

xm = 2.78x0

v0 = 0.80ve

o

xm

x0

x(t)

t (min)14

�

�
xm = 1.33x0

v0 = 0.50ve

o
≈

xm

x0

x(t)

t (min)4

�

xm�
xm = 1.04x0

v0 = 0.20ve

o
≈

x0

x(t)

t (min)

(iv) When v0 > ve the motion is unbounded. Plots of v(t) and x(t) obtained from (13)
and (18) are shown below for v0 = 2ve. The graph of x(t) appears to be close
to a linear relationship and it is interesting to investigate this further. There are
simple upper and lower bounds, xU(t) and xL(t), for x(t). The former is given by a
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O
x0

x(t)

t

v0 = 2ve

≈

v∞

O

v0

v(t)

t

‘force-free’ approximation

xU(t) = x0 + v0t , (22)(
see (5) of Question 3.1 with F = 0

)
while

xL(t) = x0 + v∞t

= x0 + (1 − γ−2)
1
2 v0t , (23)

where we have used (8). Now as t→ 0, x(t) → xU(t), and as t→ ∞, x(t) → xL(t).
This is illustrated for the Earth and for v0 = 3ve in the figure below. The two
dotted straight lines are xU(t) and xL(t). With increasing γ, the lower bound (23)
approaches the upper bound (22) and the solution x(t) is increasingly squeezed
between the two bounds. The result is that x(t) is very nearly linear.

6x0�

0.3

�

0.2

�

0.1

�

xL(t)

xU(t)v0 = 3ve

x0

x(t)

t (h)

Question 3.6

A force F = −F0e
−x/λ (where F0 and λ are positive constants) acts on a particle that

is initially at x0 = 0 and moving with velocity v0 (> 0). Determine its velocity v(x)
and sketch the three possible graphs of v(x) versus x.
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Solution

The equation of motion

m
dv

dt
= −F0e

−x/λ , (1)

can be written
(
using (3) of Question 3.4

)
as

mvdv = −F0e
−x/λdx , (2)

and then integrated between corresponding limits:

m

∫ v(x)

v
0

vdv = −F0

∫ x

x
0

e−x/λdx . (3)

This gives
1

2
m
{
v2(x) − v2

0

}
= F0λ

(
e−x/λ − 1

)
(4)

and thus

v(x) = ±
{
v2

0
+ (2F0λ/m)

(
e−x/λ − 1

)}1
2
, (5)

where the upper (lower) sign applies for motion in the positive (negative) x-direction.
Consider first the upper sign in (5). The asymptotic velocity (the limiting velocity as
x→ ∞), namely

v∞ =
√
v2

0
− 2F0λ/m , (6)

exists (is real) if

v0 ≥ ve =
√

2F0λ/m , (7)

in which case
v∞ =

√
v2

0
− v2

e
. (8)

If, however, v0 < ve then the particle comes to rest at a finite value of x given by
(
see

(5) with v(x) = 0
)

xm = −λ ln(1 − v2
0

/
v2

e
) . (9)

After this, the particle accelerates to the left and v(x) is obtained by taking the lower
sign in (5). The particle reaches the origin with velocity −v0. There are three possible
graphs of v(x) versus x corresponding to ☞ v0 = ve , ☞ v0 > ve and ☞ v0 < ve :

xm�

−v0

v0

v(x)

λ x

v0 < ve

�

v∞

v0

v(x)

λ x

v0 > ve

�

v0

v(x)

λ x

v0 = ve
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Comments

(i) All one-dimensional problems involving position-dependent forces F (x) (such as
the preceding three questions) can be solved by integration. First, use (3) of
Question 3.4 and then integrate the equation of motion:

m

∫ v(x)

v
0

v dv =

∫ x

x
0

F (x)dx . (10)

This yields v(x), which can be integrated with respect to t to obtain the trajectory
in the inverse form t = t(x).

(ii) Equation (10) is an example of the work–energy theorem: the change in kinetic
energy of a particle is equal to the work done by the force acting on the particle
during the motion from x0 to x. Use of (10) is also equivalent to using the law
of conservation of energy – the change in kinetic energy is the negative of the
change in the potential energy of the particle. See also (6) of Question 3.4 and
(4) of Questions 3.5 and 3.6. The general case is treated in Chapter 5.

Question 3.7

Find the velocity v(t) and position x(t) of a particle of mass m that is subject to a
frictional force (retarding force or drag) proportional to the velocity.

Solution

The drag can be written Ff = −αv, where α is a positive constant, and hence the
equation of motion is

m
dv

dt
= −αv . (1)

This can be rearranged and integrated to yield∫ v(t)

v
0

dv

v
= −1

τ

∫ t

0

dt , (2)

where v0 (> 0) is the initial velocity and

τ = m/α (3)

is a characteristic time. From (2) we obtain

v(t) = v0e
−t/τ . (4)

Setting v = dx
/
dt in (4) and integrating with respect to t, we have∫ x(t)

x
0

dx = v0

∫ t

0

e−t/τdt , (5)

and hence
x(t) = x0 + v0τ

(
1 − e−t/τ

)
. (6)
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Comments

(i) It is evident from (6) that for small t (t � τ), x ≈ x0 +v0t and for large t (t� τ),
x → x∞ = x0 + v0τ . Thus, the motion is bounded: the particle moves a finite
distance v0τ .

(ii) Graphs of v(t) and x(t) are shown below.

τ �

x∞

x0

x(t)

t

v0

e

τ

v0

v(t)

t

Question 3.8

Find the velocity v(t) and position x(t) of a particle of mass m that is subject to a
frictional force (retarding force or drag) proportional to the square of the velocity.

Solution

The equation of motion is

m
dv

dt
= −βv2, (1)

where β is a positive constant. Thus∫ v(t)

v
0

dv

v2
= − β

m

∫ t

0

dt , (2)

and hence
v(t) =

v0

1 + t/τ
, (3)

where
τ = m

/
βv0 (4)

is a characteristic time. Integration of (3) with respect to t yields

x(t) = x0 + v0τ ln(1 + t/τ). (5)

Comments

(i) Here, x(t) is unbounded – the drag is too weak at low velocity to restrict the
particle to a finite interval.

(ii) Graphs of the solutions (3) and (5) are shown below.
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x0

x(t)

t

v0

2

τ

v0

v(t)

t

(iii) In general, the frictional force Ff due to motion in a resistive medium is more com-
plicated than the linear and quadratic expressions considered above. For motion
of a sphere of radius R in a medium with density ρm, it can be shown that[2]

Ff = 1
2
πCdρmR

2v2. (6)

Here, the ‘drag coefficient’ Cd depends in a complicated way on the Reynolds
number Re = 2ρmRv/η, where η is the dynamic viscosity of the medium. An
approximate formula for Cd, which applies if Re � 2 × 105 is[3]

Cd(Re) ≈ 24

Re
+

6

1 +
√

Re
+ 0.4 . (7)

(For Re ≈ 2 × 105 there is a change from laminar to turbulent flow near the
sphere’s surface, resulting in a sudden decrease in Cd.) Thus, for small Reynolds
number (say Re < 1), Cd ≈ 24/Re and (6) reduces to Stokes’s law

Ff = 6πηRv . (8)

That is, the linear drag considered in Question 3.7. For larger Reynolds number
(typically 103 < Re < 2 × 105) equation (7) gives Cd ≈ 0.4 and hence

Ff = 0.2πρmR
2v2, (9)

which is the quadratic dependence used above. Linear drag applies, for example,
to a sediment settling in water (see Question 3.10), whereas quadratic drag applies
to a stone or a sky diver falling through the atmosphere.

(
We mention that (6)

is, strictly speaking, restricted to motion with constant velocity v; if v varies then
there are additional effects that can be significant.[4]

)
Question 3.9

Determine the velocity v(t) and position x(t) of a particle of mass m that is projected
vertically upwards with initial velocity v0 in a uniform gravitational field in a medium
with a frictional force proportional to the velocity.

[2] See, for example, L. D. Landau and E. M. Lifshitz, Fluid dynamics. Oxford: Pergamon, 1959.
[3] See, for example, F. M. White, Viscous fluid flow. New York: McGraw-Hill, 1974.
[4] C. Pozridikis, Introduction to theoretical and computational fluid dynamics. Oxford: Oxford

University Press, 1997.
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Solution

Choose the x-axis to be vertically upwards and suppose that the particle is projected
from the origin. The equation of motion is

m
dv

dt
= −mg − αv , (1)

where g (> 0) is the gravitational acceleration, assumed to be constant. Note that (1)
applies to both the initial (upward) and the subsequent downward motion (that is, for
v > 0 and v < 0, respectively). From (1) we have∫ v(t)

v
0

dv

1 + v/vt

= −g
∫ t

0

dt , (2)

where
vt = mg/α (3)

is a characteristic velocity. Performing the integration in (2) and solving for v(t) we
find

v(t) = v0e
−t/τ − vt

(
1 − e−t/τ

)
, (4)

where
τ = vt/g = m/α (5)

is a characteristic time. Integration of (4) with respect to t yields

x(t) = (v0 + vt) τ
(
1 − e−t/τ

)
− vtt . (6)

Comments

(i) If g = 0 then vt = 0 and (4) reduces to (4) of Question 3.7.

(ii) The significance of vt is apparent from (4): v(t) → −vt as t→ ∞. Thus, vt is the
asymptotic velocity for the downward motion. This property is evident already in
(1): the particle stops accelerating when v = −vt. For this reason, vt is referred
to as the terminal velocity.

(iii) Graphs of v(t) and x(t) are shown below.

trtm

�

xm�
x(t)

t

v0 = vt

tm

−vt

v0

v(t)

t



�� Solved Problems in Classical Mechanics

The time to reach the maximum height xm is obtained by setting v = 0 in (4):

tm = τ ln(1 + v0/vt). (7)

From (5)–(7) we have

xm = (v0vt/g)− (v2
t
/g) ln(1 + v0/vt). (8)

The time tr to return to the origin is obtained by setting x = 0 in (6), that is by
the non-zero root of the transcendental equation

t = (1 + v0/vt) τ
(
1 − e−t/τ

)
. (9)

(iv) The time td = tr−tm for the downward part of the motion, from x = xm back to the
origin, is longer than the time tm for the upward motion. This is a general result,
independent of the expression for the frictional force: the net force (and hence
the acceleration) for the upward motion is greater than that for the downward
motion. Therefore, tm < td. In the above case, and with u = v0/vt, we have from
(6) and (7) that‡

x(2tm) = vtτ
[
1 + u− (1 + u)

−1 − 2 ln(1 + u)
]
> 0 (10)

for u > 0. Therefore, 2tm < tr and consequently tm < td.

(v) It is interesting to compare xm with x0 = v2
0

/
2g, the maximum height reached in

the absence of friction. With u = v0/vt we have from (8)

g (x0 − xm)
/
v2

t = 1
2
u2 − u+ ln(1 + u) > 0 (11)

for u > 0. Thus, xm < x0, as one expects. This is also a general result – in-
dependent of the expression for the frictional force – which follows from energy
considerations. To see this, integrate the equation of motion with respect to x.
Then, if W and Ff denote the weight of the particle and the magnitude of the
frictional force, we have∫ x0

0

Wdx = 1
2
mv2

0
and

∫ xm

0

(W + Ff) dx = 1
2
mv2

0

for motion without and with friction, respectively. So,

Wx0 = Wxm +

∫ xm

0

Ff dx , (12)

and hence x0 > xm.

(vi) Similarly, we compare tm with t0 = v0/g, the time of ascent (or descent) in the
absence of friction. From (7) and (5), and with u = v0/vt > 0,

g (t0 − tm)
/
vt = u− ln(1 + u) > 0 . (13)

Thus, tm < t0; the time of ascent is decreased by friction. This is also a general
result, obtained by integrating the equation of motion with respect to t:

‡The inequalities in (10), (11) and (13) follow from the fact that f(u) > g(u) for u > 0 if
f(0) = g(0) and f ′(u) > g′(u).
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∫ t0

0

Wdt = mv0 and

∫ tm

0

(W + Ff) dt = mv0

for motion without and with friction, respectively. Thus

Wt0 = Wtm +

∫ tm

0

Ff dt , (14)

and so t0 > tm. For the time of descent td no such general result exists.[5]

(vii) In the equation of motion (1) we have neglected the buoyancy m′g, where m′

is the mass of the medium displaced by the ‘particle’. Taking this into account
means that g in (1)–(3) and (5) should be replaced by an effective gravitational
acceleration

ge = g
(
1 −m′/m) = g

(
1 − ρm

/
ρ
)
, (15)

where ρ and ρm are the densities of the ‘particle’ and the medium, respectively.
Thus, ge can be either positive or negative. Interesting numerical results have been
presented that illustrate the roles of the frictional and buoyancy forces for a grain
of sand moving in water.[6]

Question 3.10

Consider a uniform suspension of spherical particles of radius a = 1.40×10−3 mm and
density ρ = 4.10×103 kgm−3 in a lake of depth D = 2.00 m. The density and viscosity
of the water are ρm = 1.00 × 103 kgm−3 and η = 1.00 × 10−3 Pa s, respectively. Take
the acceleration g due to gravity to be 9.80 ms−2.

(a) Calculate the percentage of particles still in suspension after 12 h.

(b) How long does it take for the lake to be clear of suspended particles?

Solution

(a) Assume that the particle velocities are sufficiently low so that linear friction
applies

(
see Question 3.8

)
. At the terminal velocity v∞ the frictional force on

a particle is equal to the net downward force (the weight minus the buoyancy):

6πηav∞ = 4
3
πa3(ρ− ρm)g . (1)

Thus

v∞ =
2a2(ρ− ρm)g

9η
=

2 × (1.40 × 10−6)2 × 3.10 × 103 × 9.80

9 × 1.00 × 10−3

= 1.32 × 10−5 ms−1,

[5] J. M. Lévy-Leblond, “Solution to the problem on pg 15,” American Journal of Physics, vol. 51,
p. 88, 1983.

[6] P. Timmerman and J. P. van der Weele, “On the rise and fall of a ball with linear or quadratic
drag,” American Journal of Physics, vol. 67, pp. 538–546, 1999.
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which is low enough to justify the initial assumption (see Question 3.8). The time
taken for the particles to accelerate from rest to their terminal velocity is of order

τ = m
/
6πηa = 2a2ρ

/
9η ≈ 2 × 10−6 s(

see (3) of Question 3.7
)
. Therefore, we assume that the particles fall with constant

speed v∞ until they reach the bottom. It follows that all particles that were
initially within a distance

Dt = v∞t = 1.32 × 10−5 × 12 × 3600 = 0.57 m

from the bottom will settle out during the 12 h period. Then, the percentage of
particles still in suspension after this time is

D −Dt

D
× 100 =

2.00 − 0.57

2.00
× 100 ≈ 72% .

(b) The time taken for all the particles to reach the bottom is

D

v∞

=
2.00

1.32 × 10−5
= 1.52 × 105 s ≈ 42 h .

Question 3.11

A small spherical drop of density ρ carries a charge q′. Its terminal velocity when
falling through air of density ρa is v∞. When a uniform vertical electrostatic field E
is applied, its terminal velocity for upward motion is v′∞. These velocities are small
enough for the drag to be linear (see Question 3.8). Prove that for a drop of fixed mass

q′ = 9π
η

E

√
2ηv∞

g(ρ− ρa)
(v∞ + v′∞) , (1)

where η is the viscosity of air.

Solution

The net downward force on a drop of volume V falling in the absence of an electric
field is

Fd = (ρ− ρa)V g − αv . (2)

At the terminal velocity for downward motion, Fd = 0 and therefore

αv∞ = (ρ− ρa)V g . (3)

When an electric field is applied to make the drop rise, the net upward force is

Fu = q′E − (ρ− ρa)V g − αv . (4)

At the terminal velocity for upward motion, Fu = 0 and therefore

αv′∞ = q′E − (ρ− ρa)V g . (5)

By taking the ratio of (5) and (3), and adding one to both sides, we obtain
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q′ =
(ρ− ρa)V g

E

(
v∞ + v′∞
v∞

)
. (6)

The volume V is determined from (3) and the expression for α given by Stokes’s law,
namely α = 6πηR where R is the radius of the drop (see Question 3.8). Thus

V = 9π

√
2η3v3

∞

g3(ρ− ρa)3
. (7)

Equations (6) and (7) yield (1). Note that in (1) both v∞ and v′∞ are positive and
therefore q′ > 0 (< 0) if the electric field points up (down).

Comments

(i) Equation (1) forms the basis of Millikan’s famous oil-drop experiment to determine
the magnitude of the electronic charge e. In about 1910 Millikan measured the
terminal speeds v∞ and v′∞ for charged oil droplets (about 1µm in diameter‡) in
weakly ionized air and found[8]

e = 4.774 × 10−10 esu (or 1.591× 10−19 C) .

This is about 1% lower than the modern value. It was later shown that Millikan’s
data, when corrected for a small error in the measured viscosity of air, gives[9]

e = 4.807 × 10−10 esu (or 1.602× 10−19 C) .

Drops carrying charges of both signs were observed in Millikan’s experiments.
Individual drops were studied sometimes for hours at a time, during which changes
in the drop’s charge would occasionally occur.

(ii) Initially, Millikan obtained a rough value of e from measurements on water droplets.
Errors due to evaporation led him and a doctoral student[10] to consider non-
volatile alternatives such as oil. Accurately spherical drops were produced using
an atomizer, and some of these acquired a charge as they travelled through the
nozzle. Further ionization was achieved by introducing α-particles (from a radium
source) into the observation chamber. Sometimes the upward speed of the drop
was observed to change discontinuously from v′∞ to v′′∞, when it either captured
or released an ion (whose mass was negligible compared to m). Then, (1) becomes

q′′ = 9π
η

E

√
2ηv∞

g(ρ− ρa)
(v∞ + v′′∞) . (8)

‡For diameters comparable to the mean free path of the air molecules, a modified form of Stokes’s
law is used.[7]

[7] R. A. Millikan, “The isolation of an ion, a precision measurement of its charge, and the correc-
tion of Stokes’s law,” The Physical Review, vol. XXXII, pp. 349–397, 1911.

[8] R. A. Millikan, “On the elementary electrical charge and the Avogadro constant,” The Physical
Review, vol. 2, pp. 109–143, 1913.

[9] See, for example, H. Semat, Introduction to atomic and nuclear physics. London: Chapman
and Hall, 1954.

[10] H. Fletcher, “My work with Millikan on the oil-drop experiment,” Physics Today, vol. 35,
pp. 43–46, June 1982.
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From (1) and (8) it follows that

q′′

q′
=
v∞ + v′′∞
v∞ + v′∞

, (9)

and similarly for further changes in the drop’s charge and speed. Measurements
taken on thousands of oil drops revealed that the values of q′′

/
q′, q′′′

/
q′′, etc.

could always be expressed as the ratio of two small integers, thereby supporting
the hypothesis of the discrete nature of electric charge.

(iii) In 1923, Millikan was awarded the Nobel prize for his work on the elementary
electric charge and the photoelectric effect. In his acceptance speech[11] he stressed
that “ . . . the particular dimensions of the apparatus and the voltage of the battery
were the element which turned possible failure into success. Indeed, nature here
was very kind. She left only a narrow range of field strengths within which such
experiments as these are at all possible. They demand that the droplets be large
enough so that the minute dancing movements, the ‘Brownian movements’, are
nearly negligible, that the droplets be round and homogeneous, light and non-
evaporable, that the distance of fall be long enough to make the timing accurate,
and that the field be strong enough to more than balance gravity by its upward
pull on a drop carrying but one or two electrons. Scarcely any other combination of
dimensions, field strengths and materials could have yielded the results obtained.
Had the electronic charge been one-tenth its actual size, or the sparking potential
in air a tenth of what it actually is, no such experimental facts as here presented
would ever have been seen.” Millikan’s oil-drop experiment was placed third in a
survey to choose ‘the most beautiful experiment in physics’.[1]

Question 3.12

Determine the velocity and position of a particle of mass m that is projected vertically
upwards with initial velocity v0 in a medium with a frictional force that is quadratic
in the velocity. Assume the gravitational field is uniform.

Solution

It is necessary to consider separately the upward and downward parts of the motion.

Upward motion

The equation of motion for the upward journey is

m
dv

dt
= −mg − βv2, (1)

where β is a positive constant. This equation can be rearranged and integrated

[11] G. Holton, “Electrons or subelectrons? Millikan, Ehrenhaft and the role of preconceptions,”
in History of twentieth century physics. Proceedings of the international school of physics -
Enrico Fermi. (C. Weiner, ed.), New York, Academic Press, pp. 277–278, 1977.
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∫ v(t)

v0

dv

1 + (v/vt)
2 = −g

∫ t

0

dt , (2)

where

vt =
√
mg

/
β (3)

is a characteristic velocity. From (2) we obtain

v(t) = vt tan
[
tan−1

(
v0

/
vt

)− t
/
τ
]
, (4)

where

τ = vt/g =
√
m
/
βg (5)

is a characteristic time. It is convenient to express (4) in terms of tm, the time to reach
the maximum height. Now, v(tm) = 0 and (4) gives

tm = τ tan−1(v0

/
vt) . (6)

From (4) and (6) we have the simple result

v(t) = vt tan (tm − t)
/
τ (t ≤ tm) . (7)

By integrating (7) with respect to t, and taking x0 = 0, we obtain

x(t) = vtτ ln

[
cos(tm − t)

/
τ

cos tm/τ

]
(t ≤ tm) . (8)

The maximum height xm = x(tm) is

xm = vtτ ln
(
cos tm

/
τ
)−1

= 1
2
vtτ ln

(
1 + v2

0

/
v2

t

)
, (9)

where in the last step we have used (6) and the trigonometric relation

cos
(
tan−1 θ

)
= (1 + θ2)−1/2 .

Downward motion

Instead of (1) we now have

m
dv

dt
= −mg + βv2. (10)

The initial condition is v = 0 at t = tm, and so (10) yields∫ v(t)

0

dv

1 − (
v
/
vt

)2 = −g
∫ t

tm

dt (11)

instead of (2). Thus
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v(t) = −vt tanh(t− tm)
/
τ (t ≥ tm) . (12)

We see that v → −vt as t → ∞, meaning that vt is the terminal velocity. Integration
of (12) with respect to t and use of the initial condition x = xm at t = tm gives

x(t) = vtτ ln

⎡⎣
√

1 + v2
0

/
v2

t

cosh (t− tm)
/
τ

⎤⎦ (t ≥ tm) . (13)

Equations (7), (8), (12) and (13) are the desired solutions.

Comments

(i) Graphs of these solutions are shown below.

trtm

�

xm�
x(t)

t

v0 = vt

tm

−vt

v0

v(t)

t

The time td = tr − tm for the downward part of the motion (from x = xm back to
the origin) is obtained by setting x(tr) = 0 in (13). Thus,

td = τ cosh−1
√

1 + v2
0

/
v2

t =
vt

g
ln

{
v0

vt

+
√

1 + v2
0

/
v2

t

}
. (14)

One can show from (6) and (14) that tm < td. It is also evident from (9) that
xm < x0 = v2

0

/
2g, the maximum height reached in the absence of friction. Both

of these conclusions agree with the general results deduced in Question 3.9.

(ii) The speed with which the particle returns to the starting point is, from (12) with
t = tr,

vr = −vt tanh td
/
τ . (15)

Now, tanh(ln θ) = (θ2 − 1)
/
(θ2 + 1) and so (14) and (15) yield the simple result

vr = −v0(1 + v2
0

/
v2

t )−1/2. (16)

Thus, the fractional loss in kinetic energy due to dissipation,

∆E

E
=

1
2
mv2

0
− 1

2
mv2

r

1
2
mv2

0

=
1

(1 + v2
t

/
v2

0
)
, (17)

is small when v0 � vt, and approaches 1 when v0 � vt.
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Question 3.13

A sphere of radius R and density ρ falls through a medium of constant density ρm that
exerts a quadratic drag Ff = 0.2πρmR

2v2 on it
(
see (9) of Question 3.8

)
. Prove that

the time taken for the sphere to fall from rest through a height H is given by

t =

(
1√
2u

cosh−1 eu
)
t0 , (1)

where

u = 3ρmH
/
20ρR (2)

and t0 =
√

2H/ge is the time taken in the absence of drag. Here, ge = g(1 − ρm/ρ) is
the effective gravitational acceleration (see Question 3.9).

Solution

The equation of motion is

m
dv

dt
= mge − βv2, (3)

where β = 0.2πρmR
2 and we have chosen the positive x-axis downward. Integration of

(3) with the initial condition v0 = 0 yields

v(t) = vt tanh t/τ, (4)

where vt =
√
mge

/
β and τ =

√
m
/
βge. Integration of (4) with the initial condition

x0 = 0 yields
x(t) = vtτ ln(cosh t/τ) . (5)

Setting x = H and solving (5) for t gives

t =

√
m

βge

cosh−1 eβH/m. (6)

Using m = 4
3
πR3ρ and the above expression for β in (6), we obtain (1).

Comments

(i) For ‘small’ values of u there is a simple approximation to (1) that can be obtained
as follows. We use the logarithmic form

cosh−1 θ = ln
{
θ +

√
(θ − 1)(θ + 1)

}
(7)

and the expansions

eu = 1 + u+ 1
2
u2 + · · · , ln(1 + δ) = δ − 1

2
δ2 + 1

3
δ3 − · · · (8)

to write
cosh−1 eu =

√
2u+ 1

6

√
2u3 + O(u

5
2 ) . (9)

Thus, for small u equation (1) can be approximated by

t = (1 + 1
6
u)t0 . (10)
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As required, t → t0 in the limit ρm → 0
(
i.e. β → 0 in (3)

)
. The solution (1) and

the approximation (10) are compared in the figure below. We see that the linear
form (10) (the dotted line) is reasonable up to surprisingly large values of u (≈ 5),
and it is therefore applicable to a variety of macroscopic objects falling through
the Earth’s atmosphere.

Equation (10)

Equation (1)
2.4

�

1.7�

1.0

�

0

�

4.0

�

8.0

�

t/t0

u

(ii) Consider an iron ball of mass 0.50 kg falling from a height H = 100 m through

air. Here, ρm = 1.29 kgm−3 and ρ = 7870 kgm−3. Also, R = (3m/4πρ)
1
3 =

2.48 × 10−2 m and hence (2) gives u = 0.0993. According to (10), the correction
to the time of free fall t0 (≈ 4.52 s for g = 9.80 ms−2) is about 1.66% or 0.075 s.
By contrast, for a 50-kg iron ball, u = 0.0214 and the correction is about 0.016 s.
Thus, the larger ball strikes the ground about 0.059 s before the smaller one. That
there is such an effect was known already to Galileo.[12]

(iii) In making the above estimate, we have neglected the very short initial stage where
the Reynolds number is less than about 103 (see Question 3.8).

(iv) Note that one cannot make the above effect indefinitely large by using an ever
smaller sphere to increase u in (2) because the quadratic approximation for the
drag eventually becomes inapplicable when the Reynolds number is too small (see
Question 3.8).

(v) All one-dimensional problems involving velocity-dependent forces F (v) (such as
in Questions 3.7–3.13) can be solved by integration:

m

∫ v(t)

v0

dv

F (v)
=

∫ t

0

dt . (11)

This yields t = t(v); if it can be inverted to provide v = v(t), as in the above
questions, then one can integrate with respect to t to obtain x = x(t).

(vi) In the above questions we have neglected changes in the gravitational acceleration
and air density with height. We now consider a numerical calculation in which
these are taken into account.

[12] G. Galilei, Dialogues concerning two new sciences, p. 65. New York: Dover, 1914.
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Question 3.14

A sphere of radius R and density ρ falls from rest from a high altitude H through the
Earth’s atmosphere. For an isothermal atmosphere, the density varies with height x
above sea level according to ρm = ρ0e

−x/X . Assume a quadratic drag Ff = 0.2πρmR
2v2

and obtain numerical solutions for the velocity v(t) and height x(t) for H equal to
(a) 5 km, (b) 10 km, (c) 15 km, and (d) 20 km. TakeR = 2.00 cm, ρ = 5.00×103 kgm−3,
ρ0 = 1.29 kgm−3, X = 7.46× 103 m, Earth’s radius Re = 6.37× 106 m and at sea level
g0 = 9.80 ms−2.

Solution

Choosing the origin at sea level and the positive x-axis vertically upwards, the equation
of motion can be written as

dv

dt
= − g0

(1 + x
/
Re)2

+ λ−1
0
v2e−x/X , (1)

where λ0 = m
/
βsea level = 20ρR

/
3ρ0 = 517 m is a characteristic length. Equation (1)

takes account of variations in both the gravitational acceleration and the air density
with altitude (although in the present example the former has only a slight effect).
The Mathematica notebook given at the end of this question is used to solve (1) and
plot graphs of v(t) and x(t) versus t. The desired numerical solutions are presented
in the figures below, where each curve is plotted against t up to the instant of impact
with the ground.

10�

20�

90

�

180

�
(d) H = 20km

(c) H = 15 km

(d)

(c)

(b)

(a)

x (km)

t (s)

110�

220�

90

�

180

�

(b) H = 10 km

(a) H = 5 km

(d)(c)(b)(a)

−v (m s−1)

t (s)

Comments

(i) It is interesting to compare these solutions with those in Questions 3.12 and 3.13
that apply when the fall is from a low altitude. In the latter case we could assume a
constant air density, and the calculated speed of the downward motion increases
monotonically with t, tending to an asymptotic value vt (the terminal speed).
When the fall is from a greater altitude and the air density varies, the above
figure for v(t) shows that the speed is not monotonic: instead, each of the curves
has a maximum value. In this particular example, the impact speed and terminal
speed of the sphere

(
see (3) of Question 3.12

)
are comparable (about 70 ms−1).
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(ii) It is also interesting to compare the gravity and drag contributions to the total
acceleration in (1). This is done for H = 20 km in the figure below. The gravity
contribution is almost constant but the drag varies strongly. After an initial period
of downward acceleration, the sphere decelerates during the remainder of its fall.

(iii) The plot of the Reynolds number (Re = 2ρmRv
/
η) for a fall from H = 20.0 km

shows that Re < 2× 105, and therefore a quadratic drag is a good approximation
here (see Question 3.8).
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2.50�
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�

180

�

Re × 105

t (s)

Gravity contribution

Net acceleration

Drag contribution

-10�

10�

90� 180�
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t (s)
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Question 3.15

Jerk is defined as the rate of change of acceleration: j = da
/
dt = d2v

/
dt2 = d3r

/
dt3.

Consider a particle moving in one dimension with constant jerk j. Determine the
position x(t) of the particle in terms j and the initial values x0, v0, and a0.

Solution

We start with j = da
/
dt (a constant), and integrate with respect to t. Thus
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a(t) = a0 + jt . (1)

Because a = dv
/
dt and v = dx

/
dt, further integration with respect to t yields

v(t) = v0 + a0t+ 1
2
jt2 (2)

x(t) = x0 + v0t+ 1
2
a0t

2 + 1
6
jt3. (3)

Comments

(i) According to (3), to evaluate x(t) we require, in addition to j, three initial condi-
tions, namely x0, v0 and a0. This is because j = ȧ =

...
x is a third-order equation.

(ii) The force ma(t) = m(a0 + jt) is a linear function of t.

(iii) If the jerk is zero, then (1)–(3) reduce to the results for constant acceleration.

(iv) The above example is an introduction to the kinematics of jerk. This topic has
been discussed in detail in Refs. [13] and [14].

(v) In general, jerk is of interest and importance in three respects. First, the phys-
iological effects of jerk are important: “ jerk is the most easily sensed derivative
of displacement” and in amusement park rides, for example, it “ is the jerk rather
than the acceleration or velocity that makes the rides both exciting and uncom-
fortable.” [15] The human body can withstand a jerk of about 2×104 ms−3 (about
2000 g per second).[15] Second, jerk is of theoretical interest[13,16,17] and third, it
is important in engineering design.[13,18]

Question 3.16

Consider the third-order equation of motion

ma = F (t) +mτ
da

dt
, (1)

where τ is a positive constant having the dimension of time. Show that physically
acceptable solutions to (1) can be expressed as

ma(t) =
1

τ

∫ ∞

t

e−(t′−t)/τF (t′)dt′ (−∞ < t <∞) . (2)

(
Hint: Consider the behaviour as t→ ∞ of the solution to (1).

)
[13] S. H. Schot, “Jerk: the time rate of change of acceleration,” American Journal of Physics,

vol. 46, pp. 1090–1094, 1978.
[14] T. R. Sandin, “The jerk,” Physics Teacher, vol. 28, pp. 36–40, 1990.
[15] J. M. Wilson, “More jerks,” Physics Teacher, vol. 27, p. 7, 1989.
[16] H. P. W. Gottlieb, “Simple nonlinear jerk functions with periodic solutions,” American Journal

of Physics, vol. 66, pp. 903–906, 1998.
[17] S. J. Linz, “Newtonian jerky dynamics: some general properties,” American Journal of Physics,

vol. 66, pp. 1109–1114, 1998.
[18] W. F. D. Theron, “Bouncing due to the ‘infinite jerk’ at the end of a circular track,” American

Journal of Physics, vol. 63, pp. 950–955, 1995.
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Solution

Multiply (1) by e−t/τ . Then

d

dt
(ae−t/τ ) = −e

−t/τ

mτ
F (t) ,

and integration between t = 0 and t yields

a(t) = et/τ
[
a0 − 1

mτ

∫ t

0

e−t
′/τF (t′)dt′

]
. (3)

For arbitrary a0 the solution (3) diverges as t → ∞. This violates the following
condition:

Acceleration cannot increase indefinitely unless physical
forces act that supply the required energy.

}
(4)

To avoid this difficulty we require that the quantity in square brackets in (3) must
vanish in the limit t→ ∞. That is, we impose the condition

a0 =
1

mτ

∫ ∞

0

e−t
′/τF (t′)dt′ (5)

on the initial acceleration. Equations (3) and (5) yield (2). Note that in the limit
τ → 0, (2) reduces to the usual equation of motion ma(t) = F (t) because F (t′) in the
integrand of (2) can be replaced by F (t) in this limit.

Comments

(i) The third-order equation (1) applies to non-relativistic motion of a charged
particle in an external force-field F (t). For such motion

τ = e2
/
6πε0c

3, (6)

and (1) is the one-dimensional form of the Abraham–Lorentz equation.[19] (Here,
e is the charge of the particle, ε0 is the permittivity of free space and c is the
speed of light in vacuum.) The term involving τ in (1) is associated with radiative
reaction: it is a self-force due to radiation of energy by an accelerated charged
particle. Equation (1) is a reasonable approximation only when the effects of
radiative reaction are small.[19]

(ii) Solutions to (1) that violate (4) are known as ‘self-accelerated’ or ‘run-away’
solutions. The simplest example is given by (3) with F = 0, that is

a(t) = a0e
t/τ . (7)

According to (7), a particle set into free motion with a non-zero initial acceleration
a0 would continue to accelerate indefinitely. Such behaviour is not observed in
nature.

[19] See, for example, J. D. Jackson, Classical electrodynamics. New York: Wiley, 3rd edn, 1998.
Chap. 16.
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(iii) The solutions (2) are a subset of (3) that exclude the run-away solutions. In
particular, for F = 0, (2) yields a(t) = 0 rather than (7). In general, replacing
the third-order differential equation (1) by the second-order integro-differential
equation (2) has the effect of excluding the unphysical run-away solutions.

(iv) According to (2) the acceleration at time t is determined by the force experienced
by the particle at each future instant of time. Thus, the present motion of the
particle is determined by the force that will act on it at all future times. This
property of the Abraham–Lorentz equation clearly violates causality and is known
as preacceleration.

(v) Preacceleration is appreciable only for times of order τ . Consider, for example, a
pulse

F (t) = Aδ(t) , (8)

where A is a constant and δ(t) is the Dirac delta function. This function has the
properties

δ(t) = 0 if t �= 0 (9)

and ∫ ∞

−∞
g(t)δ(t)dt = g(0) . (10)

The pulse (8) exerts a force on the particle only at the instant t = 0. From (2)
and (8)–(10) we obtain

a(t) =

{
(A/mτ)et/τ t < 0

0 t > 0 .
(11)

If the particle is initially at rest (v = 0 at t = −∞) then integration of (11) gives

v(t) =

{
(A/m)et/τ t < 0

A/m t ≥ 0 .
(12)

These solutions are sketched below.

τ

�

A/m

v(t)

tτ

�

A/mτ

a(t)

t

(vi) For familiar charged particles τ is very small. For example, for an electron (6)
yields τ = 6.26 × 10−24 s. Thus, the Abraham–Lorentz equation violates micro-
scopic, and not macroscopic, causality. It should be emphasized that, in reality,
classical theory is not applicable on such time scales.[19]



4

Linear oscillations

Linear oscillations occur when a particle is subject to a restoring force that is pro-
portional to the position vector relative to a fixed point in inertial space. Known
as the harmonic oscillator, this system has considerable theoretical importance and
widespread applications: “ . . . the physics of the harmonic oscillator – that is, Galileo’s
pendulum – which made it possible to regulate the flow of time, leads far beyond a
mere device for making accurate clocks. These oscillators have been found to be the
basis not only of what we hear as the sound of music and see as the colours of light
but, via the quantum theory, of what we understand as the fabric of the universe.”
They are “ . . . the simplest, yet most fundamental physics system in nature . . . .” [1]

So it is not surprising that in the presentation of elementary dynamics it is tradi-
tional to devote a separate chapter to even the one-dimensional harmonic oscillator.
Here, one encounters important topics such as harmonic oscillations, frequency and
periodicity; linearity, superposition, completeness, and Fourier methods; the harmonic
approximation and the theory of small oscillations; damping, relaxation, and quality
factors; forced oscillations and resonance. The following questions deal with some of
these topics, and we return to the oscillator again in Chapter 9.

Question 4.1

A one-dimensional restoring force F = −kx (k is a positive constant) acts on a particle
of mass m. Determine the velocity v(t) and the position x(t) in terms of m, k, and the
initial conditions v0 and x0. Give two methods of solution: 1. Using the technique of

Questions 3.4–3.6. 2. By direct solution of the equation of motion.

Solution

1. We use the technique adopted in Questions 3.4–3.6 for one-dimensional problems
with position-dependent forces F (x). Thus, we express the equation of motion

m
dv

dt
= −kx (1)

[1] R. G. Newton, Galileo’s pendulum: From the rhythm of time to the making of matter, p. 2.
Cambridge, Massachusetts: Harvard University Press, 2004.
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as

mv
dv

dx
= −kx , (2)

and then integrate both sides with respect to x. Consequently,

m

∫ v(x)

v
0

vdv = −k
∫ x

x
0

xdx , (3)

and hence

1
2
mv2(x) − 1

2
mv2

0 = − 1
2
kx2 + 1

2
kx2

0 . (4)

We solve this equation for v(x):

v(x) =
dx

dt
= ±ω

√
A2 − x2 , (5)

where the upper (lower) sign refers to motion to the right (left), and

ω =
√
k/m , (6)

A =
√
x2

0 + v2
0

/
ω2 (7)

are constants having the units of (time)−1 and length, respectively. Integration of (5)
with respect to t gives ∫ x(t)

x0

dx√
A2 − x2

= ±ω
∫ t

0

dt , (8)

and hence

cos−1(x/A) − cos−1(x0/A) = ∓ωt . (9)

Equations (9) can be inverted to obtain x(t); both results can be subsumed in the
single equation

x(t) = A cos(ωt+ φ) , (10)

where φ = ∓ cos−1(x0/A) is a constant. Then,

v(t) = −ωA sin(ωt+ φ) , (11)

and φ is given in terms of the initial conditions by

φ = − tan−1(v0

/
ωx0) . (12)

Equations (10) and (11), with A and φ given by (7) and (12), are the desired solutions.
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2. We write (1) as
d2x

dt2
+ ω2x = 0 , (13)

and recognize that (13) is a linear, homogeneous, ordinary differential equation with
constant coefficients. We then apply the standard technique for solving such an
equation: we attempt a solution of the form

x(t) = eqt, (14)

where the constant q is to be determined. Substitution of (14) in (13) gives

(q2 + ω2)x = 0 . (15)

Thus, the condition for (14) to be a solution to (13) is that (15) should be satisfied
for all t. Now x �= 0 for all t, and so we require

q2 + ω2 = 0 . (16)

This is the so-called characteristic (or indicial) equation, and its roots are

q = ±iω , (17)

where i is the imaginary number
√−1. Thus, both eiωt and e−iωt are solutions to (13),

and the general solution is the linear combination

x(t) = a1e
iωt + a2e

−iωt, (18)

where a1 and a2 are arbitrary constants. In terms of the initial conditions,

a1 = 1
2
(x0 − iv0/ω) , a2 = 1

2
(x0 + iv0/ω) . (19)

Although the solution (18) looks different from the previous solution (10), their
equivalence is readily established. Because eiθ = cos θ + i sin θ and cos(α + β) =
cosα cosβ − sinα sinβ, (18) can be written

x(t) = a cosωt+ b sinωt (20)

= A cos(ωt+ φ) , (21)

where A =
√
a2 + b2, φ = − tan−1 b/a, and

a = a1 + a2 = x0 , b = i(a1 − a2) = v0/ω . (22)

Comments

(i) Equations (18), (20) and (21) are three equivalent ways of writing the general
solution to the simple harmonic equation of motion (13), and which of these one
uses in practice is essentially a matter of convenience. They are non-relativistic
approximations valid in the limit ωA � c, the speed of light in vacuum (see
Question 15.14).
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(ii) The solutions (10) and (11) are depicted below for t ≥ 0. The particle oscillates
between x = −A and x = A (the motion is bounded with amplitude A), and
the velocity varies between −ωA and ωA. The intercepts of x(t) on the positive
t-axis are given by tn =

{(
n− 1

2

)
π − φ

}/
ω with n = 1, 2, 3, · · · . The difference

tn+2 − tn = T is the period (the time for one cycle of the motion), and so

T = 2π/ω . (23)

The velocity has the same period. The number of cycles per second, T−1, is the
frequency f = ω/2π, and ω = 2πf is the angular frequency. The angle ωt+ φ in
(10) is the phase at time t, and φ is the initial phase, given in terms of the initial
conditions by (12).

t4

�
t2

�
t1

�
t3

�
t5

�

−ωA

ωA

�

�
v(t)

tt4t2

t1 t3 t5

−A

A

�

�
x(t)

t

(iii) According to (4), the energy E = 1
2
mv2 + 1

2
kx2 of the oscillator is a constant that

can be expressed, using (10) and (11), as

E = 1
2
kA2 = 1

2
mω2A2. (24)

Question 4.2

As for Question 4.1, but with a force F = kx, where k is a positive constant. (Thus,
we are examining the effect of a change in the sign of the force.)

Solution

The equation of motion is

m
dv

dt
= kx . (1)

Consequently, instead of the characteristic equation (16) of Question 4.1, we now have
q2 − k/m = 0 and the real roots q = ±τ−1, where τ =

√
m/k is a characteristic time.

Thus, the general solution to (1) is

x(t) = a1e
t/τ + a2e

−t/τ , (2)

where the constants a1 and a2 are given in terms of the initial conditions x0 and v0 by
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a1 = 1
2
(x0 + v0τ), a2 = 1

2
(x0 − v0τ). (3)

In terms of hyperbolic functions, (2) is

x(t) = x0 cosh t/τ + v0τ sinh t/τ . (4)

Comments

The motion is not oscillatory and it is sensitive to the initial conditions:

(i) If the particle is initially at the origin (x0 = 0) then

x(t) = v0τ sinh t/τ , v(t) = v0 cosh t/τ . (5)

Thus, x→ ∞ (−∞) if v0 > 0 (< 0).

(ii) On the other hand, if the particle is initially at rest (v0 = 0) then

x(t) = x0 cosh t/τ , v(t) =
x0

τ
sinh t/τ , (6)

and x→ ∞ (−∞) if x0 > 0 (< 0).

(iii) In addition to these unbounded (‘run-away’) motions there is a bounded motion
in the special case v0 = −x0/τ . Then, according to (2) and (3),

x(t) = x0e
−t/τ , v(t) = −x0

τ
e−t/τ . (7)

Thus, x → 0 and v → 0 as t → ∞ (the particle ‘comes to rest at the origin after
an infinite time’).

(iv) The solutions (5)–(7) are depicted below for v0 ≥ 0:

�τ

v0

v(t)

t

x0 = 0

τ �

x(t)

t

v0 = 0

�τ

v(t)

tτ �

x0

x(t)

t
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v0 = −x0/τ

�

v0

τ

−v(t)

tτ �

x0

x(t)

t

(v) The differences we have found for motion in the force fields F = −kx and F = kx
are readily understood. For the former, x = 0 is a point of stable equilibrium,
whereas for the latter it is a point of unstable equilibrium.

Question 4.3

Show that for small oscillations the period of a pendulum of length � subject to a
constant gravitational acceleration g is

T = 2π

√
�

g
. (1)

Solution

The bob of the pendulum has mass m, and its position is
given by the arc-length s measured from the equilibrium
position O as shown in the figure. At time t the cord of the
pendulum makes an angle θ with the vertical. The forces
acting on m are the tension T in the string and the weight
mg: the component of the weight along the unit tangent
vector n (which points in the direction of increasing θ) is
−mg sin θ. Thus, the equation of motion is

m
d2s

dt2
n = −mg sin θ n . (2)

Now s = �θ (where θ is in radians), and so

d2θ

dt2
+
g

�
sin θ = 0 . (3)

In the limit |θ| � 1, sin θ ≈ θ and (3) simplifies to

d2θ

dt2
+
g

�
θ = 0 . (4)

This is just the equation of a simple harmonic oscillator
(
see (13) of Question 4.1

)
with angular frequency ω =

√
g/� and period T = 2π/ω.
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Comments

(i) The solution to (4) that satisfies initial conditions θ = θ0 and dθ
/
dt = 0 for t = 0

(a pendulum released from rest at θ0) is

θ(t) = θ0 cos

√
g

�
t . (5)

(ii) The solution to the non-linear differential equation (3) involves elliptical integrals
that require numerical evaluation in general (see Question 5.18).

(iii) The harmonic approximation used above applies to a large variety of mechanical
systems. For small displacements from the point x = 0 (say) one can make a series
expansion for the force:

F (x) = F (0) +

(
dF

dx

)
0

x+
1

2

(
d2F

dx2

)
0

x2 + · · · . (6)

If F (0) = 0 then x = 0 is a point of equilibrium. If also
(
dF

/
dx
)
0
< 0 then the

linear term is a restoring force: x = 0 is a point of stable equilibrium, and for
small oscillations (6) allows a harmonic approximation F ≈ −kx, where k > 0.

(iv) Simple harmonic oscillations occur also in non-mechanical systems such as electric
circuits. In a circuit comprising an inductance L and capacitance C, the voltages
VL = −LdI/dt and VC = q/C must be equal, where q(t) is the charge on the

capacitor and I = dq
/
dt is the current in the circuit. Thus, we have the simple

harmonic equation

d2q

dt2
+

q

LC
= 0 , (7)

and q and I oscillate (in quadrature) with angular frequency

ω =
1√
LC

. (8)

(v) The pendulum is a simple mechanical system that has played an important role
in physics,[1] and we will encounter it in several other questions.

Question 4.4

A particle of mass m, which is constrained to move along a curve in the vertical plane,
performs simple harmonic oscillations with an amplitude-independent period

T = 2π

√
�

g
, (1)

where � is a constant length. Determine the curve s = s(θ) on which the particle
moves.
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Solution

Let s(θ) be the arc-length of the curve, measured from a point of equilibrium O, as
shown in the figure. Here, θ, which is the angle between a tangent to the curve and
the horizontal, is also the angle between a perpendicular to the curve and the vertical.
Thus, the tangential component of the equation of motion is

m
d2s

dt2
= −mg sin θ . (2)

It follows that if
s = � sin θ, (3)

then
d2s

dt2
+
g

�
s = 0 , (4)

and the particle performs simple harmonic oscillations with period given by (1). Unlike
the case of the simple pendulum (motion on the arc of a circle s = �θ), there is no
restriction on s for this result to hold.

Comments

(i) It is useful to express the solution (3) in terms of parametric equations for x(θ)
and y(θ). Now

dx = cos θds = � cos2 θdθ and dy = sin θds = � cos θ sin θdθ ,

and so

x(θ) = �

∫ θ

0

cos2 θdθ = 1
4
� (2θ + sin 2θ)

y(θ) = �

∫ θ

0

cos θ sin θdθ = 1
4
� (1 − cos 2θ).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5)

These are the parametric equations of a cycloid, which is the path traced out by a
point on the circumference of a circle that rolls without slipping along a straight
line. The cycloid defined by (5) is shown in the figure below, where the dotted
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curve is an arc of a circle of radius �. The shape of the cycloid depends only on �;
it is unaffected by the gravitational acceleration g.

cycloid
circle

•

�

•

�

•

�

(ii) Oscillations having an amplitude-independent period are referred to as isochronous.
They were studied in the seventeenth century by Huyghens, who showed how
a cycloidal pendulum could be constructed by having the string wind up on a
constraint curve as the pendulum oscillates.

(iii) The reasoning leading to equations (5) also provides the solution to the tau-
tochrone problem for a bead sliding on a frictionless, curved, vertical wire. If the
wire has the shape of a cycloid then the time taken to reach the bottom of the
wire will be independent of the position at which the bead is released from rest.

Question 4.5

A particle of mass m is subject to a one-dimensional restoring force Fr = −kx (k is a
positive constant) and a frictional force proportional to the velocity‡: Ff = −αv (α is
a positive constant). Determine the position x(t) in terms of m, k, α and the initial
conditions v0 and x0.

Solution

The equation of motion is

m
dv

dt
= −kx− αv , (1)

which we rewrite as
d2x

dt2
+

2

τ

dx

dt
+ ω2

0
x = 0 . (2)

Here
ω0 =

√
k/m and τ = 2m/α (3)

have the dimensions of (time)−1 and time, respectively. Equation (2) is the modifica-
tion of (13) in Question 4.1 to include friction. (We have now used a subscript on ω to

‡Quadratic drag is treated in Question 13.13.
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distinguish it from another angular frequency that is encountered below.) We solve (2)
by the same technique that was used in Question 4.1. Thus, the trial function x = eqt

is a solution to (2) if q satisfies the characteristic equation

q2 +
2

τ
q + ω2

0 = 0 . (4)

Consequently, the general solution to (2) is

x(t) = a1e
q1t + a2e

q2t, (5)

where

q1 = −1

τ

(
1 −

√
1 − ω2

0 τ
2
)

and q2 = −1

τ

(
1 +

√
1 − ω2

0τ
2
)
. (6)

There are three cases according to whether 1 − ω2
0 τ

2 is positive, negative or zero.

(a) Overdamped (ω0τ < 1)

Here, q1 and q2 are real, and (5) and (6) yield

x(t) = a1e
−(1−

√
1−ω2

0τ
2 )t/τ + a2e

−(1+
√

1−ω2
0τ

2 )t/τ , (7)

where a1 and a2 are given in terms of the initial conditions by

a1 = 1
2
x0 +

1

2
√

1 − ω2
0 τ

2
(x0 + v0τ) (8)

a2 = 1
2
x0 − 1

2
√

1 − ω2
0
τ2

(x0 + v0τ). (9)

(b) Underdamped (ω0τ > 1)

Now, q1 and q2 are complex: q1 = −1

τ
+ iωd, q2 = −1

τ
− iωd, where

ωd =
√
ω2

0 − 1/τ2 . (10)

is real. Thus, (5) gives

x(t) = e−t/τ
(
a1e

iωdt + a2e
−iωdt

)
. (11)

We can express the factor in brackets in (11) as A cos(ωdt + φ), where A and φ
are constants (see Question 4.1), and so

x(t) = Ae−t/τ cos(ωdt+ φ) . (12)

In terms of the initial conditions, A and φ are given by

A =
√
x2

0 + (x0 + v0τ)2
/
ω2

dτ
2 and tanφ = −(x0 + v0τ)

/
(x0ωdτ) . (13)
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(c) Critically damped (ω0τ = 1)

The roots q1 and q2 in (6) are now equal, and (5) is no longer the general solution.
It is easily seen that te−t/τ is also a solution to (2) when ω0τ = 1, and the general
solution is the linear combination

x(t) = (a1 + a2t)e
−t/τ . (14)

The constants in (14) are determined by

a1 = x0 and a2 = (x0 + v0τ)/τ . (15)

Comments

(i) In the plots of x(t) versus t shown below we have taken x0 > 0 and v0 < 0; the
particle is initially moving towards the origin.

x0 ω0τ = 0.5

x(t)

t

x0

x(t)

t

ω0τ = 0.5

(a) Overdamped (ω0τ < 1)

τ

−x0

x0

x(t)

t

Moderate damping: ω0τ = 8

τ

−x0

x0

x(t)

t

Weak damping: ω0τ = 40

(b) Underdamped (ω0τ > 1)
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x0

x(t)

t

x0

x(t)

t

(c) Critically damped (ω0τ = 1)

(ii) For overdamped oscillations x(t) decreases monotonically to zero, or it overshoots
the origin once, if the initial motion toward the origin is sufficiently rapid, see (a)
above.

(
If we had taken v0 > 0 there would be a maximum x(t), followed by a

monotonic decrease.
)

(iii) For underdamped oscillations the particle performs harmonic oscillations with
exponentially decreasing amplitude Ae−t/τ and period T = 2π/ωd. Thus, x(t)
oscillates within the envelope ±Ae−t/τ indicated by the dotted curves in the
figures in (b) above. In the limit ω0τ → ∞ (the weak-damping limit), ωd → ω0

the angular frequency of the undamped oscillator, see (10). The relaxation time
τ gives the time scale on which x(t) decays by the factor e−1

(≈ 37%
)
.

(iv) For critically damped oscillations there are two possibilities, as depicted in (c)
above, corresponding to whether or not x(t) has a root. According to (14) and
(15) a root occurs at t = −x0τ

/
(x0 +v0τ), which is positive if v0 < −x0/τ . Thus, a

particle projected towards the origin will overshoot the origin if the initial speed
is high enough. After that, its position decays exponentially to zero.

(v) Inclusion of a driving force Fd = γv in (1), where γ is a positive constant, will
change τ from 2m/α to 2m

/
(α − γ). If γ > α then τ < 0, and the solutions (7),

(12) and (14) increase exponentially on a time scale τ ; the system is dynamically
unstable. This is illustrated below for (7) and (12).

x(t)

t

ω0 = 30 rad s−1

τ = −1/3 s

ω0 = 30 rad s−1

τ = −1/50 s

x0

x(t)

t
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Question 4.6

Show that in the limit of weak damping (ω0τ → ∞) the energy of an underdamped
oscillator is given by

E(t) = E0e
−2t/τ , (1)

where E0 = 1
2
kA2 = 1

2
mω2

0
A2 .

Solution

The energy

E = 1
2
m

(
dx

dt

)2
+ 1

2
kx2 (k = mω2

0
) (2)

is, of course, not constant because there is friction. For an underdamped oscillator x(t)
is given by (12) of Question 4.5, and so

v(t) = −A
{
ωd sin(ωdt+ φ) +

1

τ
cos(ωdt+ φ)

}
e−t/τ . (3)

In the limit of weak damping the contribution of the second term in (3) to the energy
(2) becomes negligible. Also, ωd → ω0. Thus, as ω0τ → ∞

E → 1
2
A2

{
mω2

0
sin2(ω0t+ φ) + k cos2(ω0t+ φ)

}
e−2t/τ = 1

2
kA2e−2t/τ . (4)

Comment

Plots of E(t) versus t obtained from (2) and (3), and (12) of Question 4.5, without
making the above approximation, are shown below. There are points of inflection with
horizontal tangents at instants when v(t) = 0 because dE

/
dt ∝ v. The dotted curves

are the approximation (1). As expected, the accuracy of this approximation improves
as ω0τ increases.

E0e
−2t/τ

E0•

τ

�

ω0τ = 30E(t)

t

E0e
−2t/τ

E0•

τ

�

E(t)

t

ω0τ = 6



Linear oscillations ��

Question 4.7

A particle of mass m is subject to a one-dimensional restoring force Fr = −kx (k
is a positive constant), a frictional force proportional to the velocity Ff = −αv (α
is a positive constant), and a harmonic driving force Fd = F0 cosωt (F0 and ω are
constants). Determine the position x(t).

Solution

The equation of motion is

m
dv

dt
= −kx− αv + F0 cosωt . (1)

That is
d2x

dt2
+

2

τ

dx

dt
+ ω2

0x =
F0

m
cosωt , (2)

where ω0 and τ are given by (3) of Question 4.5. From the theory of differential equa-
tions, we know that the general solution to (2) consists of a complementary function
xc

(
which is the general solution to (2) with F0 = 0

)
, and a particular integral xp(

which is a particular solution to (2)
)
:

x(t) = xc(t) + xp(t) . (3)

The complementary function has already been obtained in Question 4.5, where it is
given by (7), (12) or (14), according to whether the oscillator is overdamped, un-
derdamped or critically damped. The two arbitrary constants, which are an essential
feature of a general solution to (2), are contained in the xc(t), and they are to be
fixed in terms of the initial conditions x0 and v0. We now turn to the task of finding
a particular integral xp(t). (This part of the solution will not involve any arbitrary
constants.) The calculation is simplified if we use complex notation. Thus, we write
(2) as

d2x

dt2
+

2

τ

dx

dt
+ ω2

0
x =

F0

m
eiωt (4)

and look for a solution
xp(t) = aei(ωt−ϑ) , (5)

where a and ϑ are real constants. In (4) and (5) the real parts are understood (so eiωt

implies cosωt, etc). Substitution of (5) in (4) yields

a
[
ω2

0
− ω2 + i(2ω/τ)

]
= (F0/m)eiϑ. (6)

Now equality of two complex numbers u+ iv and reiϑ requires that r =
√
u2 + v2 and

tanϑ = v/u. It therefore follows immediately from (6) that

a =
F0/m√

(ω2
0 − ω2)

2
+ (2ω/τ)

2
(7)

tanϑ =
2ω/τ

ω2
0
− ω2

. (8)
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This completes the task of finding the general solution to (2). Thus, for example, for
an underdamped driven oscillator we have from (3), (5) and (7) above, and (12) of
Question 4.5,

x(t) = Ae−t/τ cos(ωdt+ φ) +
F0

/
m√

(ω2
0
− ω2)2 + (2ω/τ)2

cos(ωt− ϑ) , (9)

where ϑ is given by (8). The two arbitrary constants A and φ in (9) are to be de-
termined by applying the initial conditions x0 and v0 to (9) and its derivative dx/dt.
Analogous expressions can be obtained for the overdamped and critically damped
driven oscillators: one simply replaces the first term in (9) by either (7) or (14) of
Question 4.5.

Comments

(i) The complementary function xc(t) in (3) is referred to as a transient because
eventually it decays exponentially to zero, as in (9) where the decay is on a time
scale τ . The particular integral xp(t) in (3) is referred to as the steady-state
solution; it is the part that remains after transients have died out, and it is given
by the second term in (9). Graphs of x(t) given by (9) for an underdamped driven
oscillator are presented below for ω < ω0 and ω > ω0 . In these we have taken

F0

/
m = 1.0 m s−2, ω0 = 1.0 rad s−1, τ = 20.0 s, x0 = 0 and v0 = 0. These plots

show the initial distortion produced by the transient, and how the motion tends
to the steady-state solution xp(t) (indicated by a dotted curve in each case). In
the example shown, the solution x(t) is more distorted and takes more cycles to
reach the steady state for the case ω > ω0.

xp(t)
x(t)

16π

�

−0.4 �

0.4�

x (m)

t (s)

ω = 2ω0

xp(t)
x(t)

22π

�

−1.5 �

1.5�

x (m)

t (s)

ω = 1
2
ω0

(ii) Graphs of the amplitude a in (7), in units of F0

/
mω2

0 , and the phase ϑ in (8)
versus ω/ω0 (the ratio of the driving frequency to the natural frequency) are
shown below for various values of ω0τ .
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ω0τ = 5
ω0τ = 10
ω0τ = 20
ω0τ = 50

1.0

�

π�

1
2
π�

ϑ(ω)

ω/ω0

ω0τ = 5
ω0τ = 10
ω0τ = 20
ω0τ = 50

1.0

�

20�

10�

a(ω)

ω/ω0

(iii) The graph of a(ω) illustrates the phenomenon of amplitude resonance. The am-
plitude is a maximum at a frequency ωr, known as the amplitude resonance fre-

quency. From (7) and da/dω = 0 we obtain ωr =
√
ω2

0
− 2/τ2. This differs from

the frequency ωd =
√
ω2

0 − 1/τ2 of the transient of an underdamped oscillator
and the natural frequency ω0: in fact, ωr < ωd < ω0. In the weak-damping limit,
ωd and ωr tend to ω0.

(iv) The phase ϑ is always positive, meaning that the response x(t) always lags the
driving force F (t), see (4) and (5).

(v) Damped, driven oscillations occur also in non-mechanical systems such as electric
circuits. In a circuit comprising an inductance L, resistance R, and capacitance
C connected in series across an oscillator producing an emf V (t) = V0 cosωt, the
circuit equation is

d2q

dt2
+
R

L

dq

dt
+

q

LC
=
V0

L
cosωt , (10)

where q is the charge on the capacitor and dq
/
dt is the current. Comparing this

with (4), we see that results for the series LRC circuit can be obtained directly
from those for the mechanical system by making the following substitutions

x→ q, τ → 2L
/
R, ω0 → 1

/√
LC, F0

/
m→ V0

/
L . (11)

(vi) As a special case of (9), consider a driven, undamped oscillator having the initial
conditions: x0 = 0, v0 = 0. With τ = ∞ in (9), these initial conditions require

x(t) =
F0

/
m

ω2
0 − ω2

(cosωt− cosω0t) . (12)

If the driving frequency ω is close to the natural frequency ω0, then (12) can be
approximated as

x(t) =
F0

/
m

ω0 (ω0 − ω)
sin

{
1
2
(ω0 + ω) t

}
sin

{
1
2
(ω0 − ω) t

}
. (13)

Here we have used the identity cosA − cosB = 2 sin 1
2
(A+B) sin 1

2
(B −A).

According to (13), x(t) oscillates at a frequency equal to the average of ω0 and ω,
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and with an amplitude that is modulated at the lower frequency 1
2
(ω0 − ω). The

so-called beat frequency is double this difference since the amplitude peaks twice
every cycle. This is illustrated in the graph below, which is for ω0 = 1.1 rad s−1 and
ω = 1.0 rad s−1. The phenomenon of beats occurs whenever the driving frequency
is close to the natural frequency ω0.

2π
ω0−ω

x(t)

t

Question 4.8

For a damped, driven oscillator in the steady state, calculate the average values of
the kinetic energy K = 1

2
mv2, the potential energy V = 1

2
kx2, and the total energy

E = K + V .

Solution

In the steady state

x(t) = a cos(ωt− ϑ) and v(t) = −aω sin(ωt− ϑ) , (1)

where a and ϑ are given by (7) and (8) of Question 4.7. Then,

K = 1
2
mω2a2 sin2(ωt− ϑ) and V = 1

2
mω2

0
a2 cos2(ωt− ϑ) . (2)

Now the average values of cos2 θ and sin2 θ over a complete cycle are equal. Also
cos2 θ + sin2 θ = 1, and therefore〈

cos2(ωt− ϑ)
〉

=
〈
sin2(ωt− ϑ)

〉
= 1

2
, (3)

where the angular brackets denote an average over one cycle. From (2) and (3) and
(7) of Question 4.7 we have

〈K〉 =
F 2

0

4m

ω2

(ω2
0 − ω2)2 + (2ω/τ)2

(4)

〈V 〉 =
F 2

0

4m

ω2
0

(ω2
0
− ω2)2 + (2ω/τ)2

(5)

〈E〉 =
F 2

0

4m

ω2 + ω2
0

(ω2
0 − ω2)2 + (2ω/τ)2

. (6)
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Comments

(i) The average kinetic energy in (4) is a maximum when

d〈K〉
dω

= 0 ,

that is when ω = ω0. Thus, resonance of 〈K〉 occurs at the natural frequency of
the oscillator. By contrast, resonance of the average potential energy 〈V 〉 occurs
at

ωr =
√
ω2

0
− 2

/
τ2 ,

which is the same as the frequency for amplitude resonance (see Question 4.7).

(ii) In the weak-damping limit (ω0τ � 1) the average energy (6) is appreciable only
for ω close to ω0. Thus, we can approximate ω2

0
− ω2 by 2ω0(ω0 − ω), and (6)

becomes

〈E〉 =
F 2

0 τ
2

8m

1

τ2(ω0 − ω)2 + 1
. (7)

The frequency dependence in (7) is specified by a Lorentz function

(X2 + 1)−1, where X = τ(ω0 − ω) . (8)

The Lorentz function is plotted below: it drops to half its maximum value at
X = ±1, and therefore the full width of the curve at half-maximum is ∆X = 2.
Then, (8) gives

τ∆ω = 2 , (9)

where ∆ω is the full width of the resonance curve (7) for 〈E〉: thus, the resonance
curve becomes narrower (broader) as τ increases (decreases). An oscillator that
responds only to a narrow band of frequencies (∆ω small) will have transients
that persist for a long time (τ large) – it will take a long time to reach the steady
state after a driving force is applied – and vice versa if ∆ω is large.

0.5

−1.0 1.0

1.0

(X2 + 1)−1

X
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Question 4.9

Consider the following experiment. A glass aspirator is closed with a stopper through
which passes a vertical, precision-made glass tube of uniform cross-section. A closely
fitting, smooth, steel ball is placed in the tube. If the ball is displaced from its
equilibrium position and released, it performs underdamped oscillations. Assuming a
frictional force Ff that is linear in the velocity, show that in the limit of weak damping
the period of oscillation is given by

T = 2π

√
mV

KA2
, (1)

where m is the mass of the ball, A is the cross-sectional area of the tube, and V and
K are the volume and bulk modulus of the gas in the aspirator.

Solution

Consider a displacement x of the ball from its equilibrium position, and let ∆P be the
corresponding change in the gas pressure. The restoring force on the ball is Fr = A∆P .
For small oscillations ∆P = −K∆V/V , where V is the equilibrium volume of the gas
and ∆V = Ax. With Ff = −αdx/dt, where α is a positive constant, the equation of
motion is

m
d2x

dt2
= Fr + Ff = −KA

2

V
x− α

dx

dt
. (2)

That is,
d2x

dt2
+
α

m

dx

dt
+
KA2

mV
x = 0 , (3)

which is the equation of a damped, simple harmonic oscillator. The solution for
underdamped oscillations is

(
see (12) of Question 4.5 with φ = 0

)
x(t) = x0e

−t/τ cos 2πt/T , (4)

where τ = m/2α is the relaxation time, and the period T is given by

T = 2π

√
mV

KA2

(
1 − mV

KA2τ2

)−1/2

. (5)

It is apparent from (5) that underdamped oscillations require τ >
√
mV

/
KA2. For

weak damping, τ �
√
mV

/
KA2, and (5) reduces to (1).

Comments

(i) This experiment was devised by Rüchardt[2] in 1929, and it has become one of
the standard methods for measuring the ratio of the specific heat of a gas at

[2] E. Rüchardt, “Eine einfache methode zur bistimmung von cp/cv,” Physikalische Zeitschrift,
vol. 30, pp. 58–59, 1929.
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constant pressure to the specific heat at constant volume, γ = Cp

/
Cv. For this

one assumes that the oscillations are adiabatic and the gas is ideal; then in (1),
K is the adiabatic bulk modulus Ka = γP , where P is the equilibrium pressure
of the gas. One can take account of corrections due to non-adiabatic conditions,
molecular interactions, and departures from weak damping.[3]

(ii) Various traces of x(t) versus t
(
as cap-

tured on a digital oscilloscope
)
[3] are

shown for three different volumes V of
a polyatomic gas (C2C�F5). An inter-
esting feature is the emergence of an
isothermal ‘tail’

(
for which T is given

by (1) with K = Ki = P
)
. The start

of this tail is indicated by an arrow
labelled 1 in diagrams (b) and (c);
the amplitude at which it first appears
increases as the volume V increases.
The arrow labelled L indicates the end
of the (almost) adiabatic oscillations.

Question 4.10

One definition of the quality factor Q of an underdamped oscillator is

Q = 1
2
ωdτ . (1)

Express Q in terms of the amplitudes xn and xn+1 of successive oscillations.

Solution

For the underdamped oscillator the amplitudes of successive oscillations are given by

[3] O. L. de Lange and J. Pierrus, “Measurement of bulk moduli and ratio of specific heats of gases
using Rüchardt’s experiment,” American Journal of Physics, vol. 68, pp. 265–270, 2000.
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xn = Ae−tn/τ and xn+1 = Ae−(tn+T )/τ , (2)

where T = 2π/ωd is the period
(
see (12) of Question 4.5

)
. Thus,

xn

/
xn+1 = eT/τ = e2π/ωdτ . (3)

From (1) and (3) we have the desired result

Q =
π

ln(xn

/
xn+1)

. (4)

Comments

(i) The quantity ln(xn

/
xn+1) is known as the logarithmic decrement δ. Thus,

Q = π/δ.

(ii) It is clear that for heavily (lightly) damped oscillators Q is small (large). In the
weak-damping limit, Q = 1

2
ω0τ .

(iii) Values of Q range from about 10 to 100 for mechanical systems (such as springs
and loudspeakers), to about 103 for musical instruments, and about 104 for a
microwave cavity. Excited atoms and nuclei are very lightly damped (Q ≈ 107

and 1012), and gas lasers even less so (Q ≈ 1014).
(iv) Values of Q can be extracted from

measurements of x(t) by using
(4). An interesting example of a
mechanical system (a confined gas)
is the Rüchardt experiment dis-
cussed in the previous question,
where the oscillation is due to
motion of part of the boundary of
the container. From traces of x(t),
such as those shown in Question 4.9,
and using (4), one can determine
Q. Results for several gases, plotted

as functions of the period of oscillation T
(
or

√
V – see (1) of Question 4.9

)
, are

shown above. We see that within this mechanical system we can classify heavily
damped gases (such as He), medium-damped gases (such as CO2), and lightly
damped gases (polyatomic gases). The range of Q (∼ 7 to 75) is typical of the
range mentioned above for mechanical systems. The results in the figure can be
understood in terms of a competition between two loss mechanisms, namely heat
flows in the gas and friction of the moving part of the boundary.[4]

Question 4.11

Establish the relationship between the quality factor Q = 1
2
ωdτ , of an underdamped

oscillator, and two other definitions that are used, namely

[4] O. L. de Lange and J. Pierrus, “The quality factor of low-frequency oscillations in gases,”
Transactions of the Royal Society of South Africa, vol. 58, pp. 115–117, 2003.
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Q′ = 2π(energy at the start of a cycle)
/
(energy lost during that cycle) , (1)

Q′′ = 2π〈energy stored〉/〈energy loss per cycle〉 . (2)

In (2) the angular brackets denote an average over one cycle.

Solution

In terms of the energy E(t) of the oscillator, (1) and (2) are

Q′ = 2π
E(t)

E(t) − E(t+ T )
(3)

Q′′ = 2π

∫ t+T
t E(t)dt∫ t+T

t
{E(t) − E(t+ T )} dt

, (4)

where T = 2π/ωd is the period of underdamped oscillations. Now, E(t) is given by (2)
and (3) of Question 4.6 and (12) of Question 4.5. It can be written

E(t) = f(t)e−2t/τ , (5)

where the function f(t) consists of three terms involving cos2(ωdt+ φ), sin2(ωdt+ φ),
and sin 2(ωdt+ φ). For our purposes the essential feature is that f(t) has period 1

2
T ,

and so
f(t+ T ) = f(t) . (6)

It follows from (3)–(6) that

Q′ = Q′′ =
2π

1 − e−2T/τ
=

2π

1 − e−2π/Q
. (7)

Note that in obtaining (7) we have not assumed the weak-damping limit.

Comments

(i) In the limit of weak damping
(Q � 1), (7) shows that Q′ and
Q′′ → Q + π. For small values of
Q

(
when ω0τ is close to unity – see

(10) of Question 4.5
)
, Q′ and Q′′ are

approximately 2π. The graph of (7)
is plotted alongside, where the dotted
line is the asymptote Q′ = Q+ π.

(ii) For weak damping, Q is also related

Q′, Q′′

Q

2π

10

5

105

�

�

��

to the width of the resonance curve. From (9) of Question 4.8 we have

∆ω

ω0

=
2

ω0τ
≈ 2

ωdτ
=

1

Q
. (8)

With increasing Q the resonance curve becomes narrower.
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Question 4.12

An undamped oscillator is driven at its resonance frequency ω0 by a harmonic force
F = F0 sinω0t. The initial conditions are x0 = 0 and v0 = 0.

(a) Determine x(t).

(b) If the breaking strength of the ‘spring’ of the oscillator is 5F0, deduce an equation
from which the time tb taken to reach the breaking point can be calculated in
terms of ω0.

Solution

(a) The equation of motion
d2x

dt2
+ ω2

0
x =

F0

m
sinω0t (1)

has the complementary function

xc(t) = A sin(ω0t+ φ) , (2)

where A and φ are constants that are to be determined from the initial conditions.
A particular integral for (1) is

xp(t) = − F0

2mω2
0

ω0t cosω0t . (3)

The general solution x = xc + xp satisfies the initial condition x0 = 0 if φ = 0.
That is,

x(t) = A sinω0t− F0

2mω2
0

ω0t cosω0t . (4)

The time derivative of (4) is the velocity

v(t) = Aω0 cosω0t− F0

2mω0

cosω0t+
F0

2mω0

ω0t sinω0t . (5)

Thus, the initial condition v0 = 0 requires A = F0

/
2mω2

0
, and (4) becomes

x(t) =
F0

2mω2
0

(sinω0t− ω0t cosω0t) . (6)

(b) At the breaking point F = kxb = ±5F0. Now, k = mω2
0 , and so the displacement

at the breaking point is given by

xb = ±5F0

/
mω2

0 . (7)

From (6) and (7), tb is the smallest positive root of the transcendental equations

1
2
(sinω0t− ω0t cosω0t) = ±5 . (8)
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Comment

Using Mathematica’s FindRoot function to solve (8), we find that tb = 11.90/ω0.
This is illustrated in the plot below. Note that tb is a discontinuous function of xb and
hence of the breaking strength.

Equation (6)

15�10�5� ω0tb

�

−5�

5 �

mω2
0

F0
x(t)

ω0t

Question 4.13

Suppose a jerk‡ force F = −γd3x
/
dt3 (where γ is a constant) is applied to the damped,

driven oscillator of Question 4.7.

(a) Show that the amplitude a(ω) and phase ϑ(ω) of the steady-state oscillations are
given by

a(ω) =
F0

/
m√

(ω2
0 − ω2)

2
+ ω2

0Q
−2
(
ω − 2ω3

/
ω2

c

)2 , (1)

and

tanϑ =
ω0(ω − 2ω3

/
ω2

c
)

Q(ω2
0 − ω2)

, (2)

where ω2
0

= k/m, Q = 1
2
ω0τ and ω2

c
= 4m

/
γτ .

(b) Suppose γ > 0. Show that the amplitude of the steady-state oscillations is in-
creased by the jerk force provided ω < ωc.

(c) Plot graphs of a(ω), in units of F0

/
mω2

0 , versus ω/ω0 and ϑ(ω) versus ω/ω0 for

Q = 10 and 0.9 ≤ ω/ω0 ≤ 1.1, when 1. ωc/ω0 = 0.8, 2. ωc/ω0 = 2.0,

3. ωc/ω0 = 2.5, and 4. ωc/ω0 = 25.

Solution

(a) The equation of motion (1) of Question 4.7 is now modified to read

m
dv

dt
= −kx− αv − γ

d3v

dt3
+ F0 cosωt . (3)

‡See Question 3.15.
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That is,
γ

m

d3x

dt3
+
d2x

dt2
+

2

τ

dx

dt
+ ω2

0x =
F0

m
cosωt , (4)

where τ = 2m/α. As before, the steady-state solution has the form

xp(t) = aei(ωt−ϑ), (5)

where the amplitude a and phase ϑ are real constants that are to be determined
(see Question 4.7). Substituting (5) in (4) gives

a
[
ω2

0
− ω2 + i(2ω/τ − ω3γ/m)

]
= (F0

/
m)eiϑ, (6)

and so

a =
F0

/
m√

(ω2
0
− ω2)

2
+ (2ω/τ − ω3γ/m)

2
, and tanϑ =

2ω/τ − ω3γ/m

ω2
0
− ω2

. (7)

Equations (1) and (2) follow.

(b) It is clear from (7)1 that the effect of the jerk is to increase the amplitude a

provided
(
2ω/τ − ω3γ/m

)2
< (2ω/τ)2. That is, (γω2/m)2(ω2 − 4m/γτ) < 0,

which is possible if γ > 0 and ω < ωc .

(c) Note that the resonance curve for ωc/ω0 = 25 approximates that of an ‘ordinary’
damped, driven oscillator (the effect of the jerk is negligible).

ωc/ω0 = 0.8

ωc/ω0 = 25

ωc/ω0 = 2.5

ωc/ω0 = 2.0

0.9

�

1.0

�

1.1

�0 �

10�

20�

mω2
0

F0
a(ω)

ω/ω0

Legend as for the above graph

0.9

�

1.0

�

1.1

�0◦ �

90◦�

180◦�
ϑ(ω)

ω/ω0

Comment

The graphs of a(ω) illustrate that the displacement amplitude is increased by the jerk
when ω < ωc (compare the curves for ωc/ω0 = 2.0 and ωc/ω0 = 2.5 with that for
ωc/ω0 = 25), and decreased when ω > ωc (see the curve for ωc/ω0 = 0.8).
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Question 4.14

An object of mass m is subject to a one-dimensional restoring force Fr = −kx (k
is a positive constant) and a frictional force of constant magnitude Ff = µN , where
µ is the coefficient of kinetic friction between the mass and the horizontal surface on
which it slides. Here, N , the normal reaction force, is equal to the weight of the object.
Assuming the initial conditions x0 = A (> 0) and v0 = 0, determine the displacement
x(t) and velocity v(t) of the object during the first cycle of its motion.

Solution

If kA ≤ µsN (µs is the coefficient of static friction) the object will not move. For
kA > µsN , the equation of motion is

m
d2x

dt2
= −kx∓ Ff , (1)

where the upper (lower) sign is for v > 0 (v < 0). With Ff = µmg, (1) gives

d2x

dt2
+ ω2x = ∓µg , (2)

where ω =
√
k/m. A particular solution of (2) is

x = ∓µg/ω2. (3)

The complementary function
(
the solution of the homogeneous equation (2) with

µ = 0
)

is given by (20) of Question 4.1. The general solution of the inhomogeneous
equation (2) is the sum of the particular solution (3) and the complementary function.
Thus

x(t) = a1 cosωt+ b1 sinωt+ µg/ω2 (v < 0), (4)

x(t) = a2 cosωt+ b2 sinωt− µg/ω2 (v > 0), (5)

where a1 and b1 (a2 and b2) are constants that depend on the initial conditions for
motion to the left (right). Equation (4) and the initial conditions x0 = A, v0 = 0 yield

a1 = A− µg/ω2 , b1 = 0 . (6)

Thus

x(t) =
(
A− µg/ω2

)
cosωt+ µg/ω2, (7)

v(t) = −ω (A− µg/ω2
)
sinωt . (8)

Equations (7) and (8) give the displacement and velocity of the object during the first
half-cycle. The direction of motion of the object reverses after v = 0. From (8) this
occurs at time t1 = π/ω. According to (7):
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x(t1) = −A+ 2µg/ω2, (9)

which shows that the amplitude decreases by 2µg/ω2 in the first half-cycle. In the
second half-cycle, the motion is determined by (5) with the initial conditions

x(π/ω) = −A+ 2µg/ω2 , v(π/ω) = 0 . (10)

It follows that
a2 = A− 3µg/ω2 , b2 = 0 . (11)

Therefore, in the second half-cycle:

x(t) =
(
A− 3µg/ω2

)
cosωt− µg/ω2, (12)

v(t) = −ω (A− 3µg/ω2
)
sinωt . (13)

Thus, v = 0 at time t2 = 2π/ω = T , the period of the oscillations, and

x(t2) = A− 4µg/ω2. (14)

Comments

(i) Equation (14) shows that the amplitude decreases in the second half-cycle by the
same amount as in the first, namely 2µg/ω2. Continuing in this way, we see that
there is a constant decrease of the amplitude by 2µg/ω2 every half-cycle of the
motion. The above results are easily generalized to obtain the displacement and
velocity for the nth half-cycle (n = 1, 2, 3, · · · )

xn(t) =
(
A− (2n− 1)

µg

ω2

)
cosωt+ (−1)

n+1 µg

ω2
, (15)

vn(t) = −ω
(
A− (2n− 1)

µg

ω2

)
sinωt . (16)

Plots of (15) and (16) are given below, and they show the linear decrease of the
amplitude of successive oscillations. This contrasts with the exponential decay
when the damping force depends linearly on v (see Question 4.5).

t4t2

t1 t3 t5

−ωA

ωA

�

�
v(t)

tt4t2

t1 t3 t5

−A

A

�

�
x(t)

t
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(ii) Notice that the frequency of the oscillation is unaffected by the frictional force.
This is not the case for viscous damping, see (10) of Question 4.5.

(iii) The motion will cease at the peak xn of the nth half-cycle for which the restoring
force k|xn| is less than the static friction force µsN .

(iv) The equation of motion (1) can be rewritten in an interesting form

d2x

dt2
+ ω2x = F (t)

/
m, (17)

where
F (t) = (−1)nµmg , (18)

and n (the number of a half-cycle) is the greatest integer less than ωt/π. Here, the
force F (t) is interpreted as a square-wave driving force at the natural frequency ω.
For example, for a spring–mass system, F (t) could be due to the back-and-forth
motion of the wall to which the spring is attached. The motions of the wall and
the mass are out of phase by π: when the mass moves to the left the wall moves
to the right with acceleration µg. This is known as ‘negative forcing’ and relates
to the interesting concept of negative damping. Motion of the support is common
in many applications. Another example is the ‘flip-flop’ pendulum.[5]

Question 4.15

For one-dimensional motion of a single particle, a plot of ẋ (or p = mẋ) versus x is
known as a phase trajectory.

(a) Determine the phase trajectory of a simple harmonic oscillator.

(b) For an underdamped oscillator the dimensionless coordinate x̄ = x/A is related
to the dimensionless time t̄ = ω0t by (see Question 4.5)

x̄ = e−t̄/ω0τ cos(ωd t̄/ω0 + φ) , (1)

where ωd

/
ω0 =

√
1 − ω−2

0 τ−2. Use Mathematica to plot the phase trajectory for
φ = 0, ω0τ = 10, and t̄ ≥ 0.

(c) Express the solution x(t) for a driven, underdamped oscillator
(
see (9) of Question

4.7
)

in dimensionless form. Then modify the notebook for (b) and plot the phase

trajectory for φ = 0, ω0τ = 2, ω/ω0 = 2, F0

/
mAω2

0 = 1.0 and t̄ ≥ 0.

(d) The representation of phase trajectories may be simplified by sampling them
stroboscopically at a suitable frequency ωs. Thus, the coordinates to be plotted
are determined at regular time intervals of 2π/ωs. The resulting diagram is known
as a Poincaré section.

1. What is the Poincaré section of a simple harmonic oscillator if ωs = ω?

2. Extend the above notebook to obtain the Poincaré section of the driven
oscillator in (c), when ωs equals the driving frequency ω.

[5] R. D. Peters and T. Pritchett, “The not-so-simple harmonic oscillator,” American Journal of
Physics, vol. 65, pp. 1067–1073, 1977.
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Solution

(a) For a simple harmonic oscillator: x = A cos(ωt+φ) and ẋ = −ωA sin(ωt+φ) (see
Question 4.1). Therefore, the phase trajectory is the ellipse

(x
/
A)2 + (ẋ

/
ωA)2 = 1 . (2)

(b) The phase trajectory for the solution (1) at t̄ ≥ 0 and the notebook are:
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(c) Equation (9) of Question 4.7 can be expressed as

x̄(t̄ ) = e−t̄/ω0τcos

(
ωd

ω0

t̄+ φ

)
+

F0/mAω
2
0√

(1 − γ2)2 + (2γ/ω0τ)2
cos(γ t̄− ϑ) , (3)

where γ = ω/ω0 and ϑ = tan−1 2γ
/(
ω0τ(1 − γ2)

)
. For t̄ ≥ 0 and the given

parameters, the phase trajectory below is obtained from the above notebook. The
four points plotted on the phase trajectory were calculated at the times indicated.

• t = 7π
∗ t = 2π
⊕ t = π

⊗ t = 0

•∗⊕

⊗

�

−0.50
�

0.50

�

1.0

�−0.80

�0.80

˙̄x

x̄

When the transient has died out (t̄ � ω0τ), the phase trajectory approximates
an ellipse.

(d) 1. The Poincaré section is a point at (x̄0, ˙̄x0).

2. For 0 ≤ t̄ ≤ 7π and ωs = ω, the Poincaré section obtained from (3) is shown
below. We remark that no additional points appear in the Poincaré section for
t̄ > 7π. The point plotted as a • indicates the steady state; the other three points
correspond to the transient. (The times at which these samples were taken are
given in the previous diagram.)

•∗⊕

⊗

�
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�
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�0.80

˙̄x

x̄



�� Solved Problems in Classical Mechanics

Comments

(i) The (x, ẋ) plane is known as the phase space for one-dimensional motion of
a particle. For three-dimensional motion the phase space (x, y, z, ẋ, ẏ, ż) is six-
dimensional, and for an N -particle system the dimensionality is 6N .

(ii) The phase trajectories of conservative systems
(
such as the oscillator in (a)

)
form

closed paths. This is not true for dissipative systems, such as the damped oscillator
in (b), where the phase trajectory is a logarithmic spiral, and all initial conditions
eventually result in a particle at rest at x = 0. The origin is an example of an
‘attractor’; that is, a point (or set of points) in phase space to which the system
is attracted in the presence of damping.

(iii) In more complicated systems the phase space may be divisible into regions each
having its own attractor. Such regions are called ‘basins of attraction’.

(iv) The phase trajectory for the damped driven oscillator in (c) shows the initial
transient and subsequent steady-state behaviour. The ellipse associated with the
latter is referred to as a ‘limit cycle’ – it is an attractor in the above sense.

(v) The simplification of phase space provided by Poincaré sections[6] can be an
important tool in analyzing and describing the physics of chaotic systems (see
also Chapter 13).

Question 4.16

Consider the damped oscillator of Question 4.5. Apply the transformation

x(t) = e−t/τy(t) (1)

to the equation of motion, and hence deduce a Lagrangian for the damped oscillator:

L = ( 1
2
mẋ2 − 1

2
mω2

0
x2)e2t/τ . (2)

Solution

We start with the equation of motion for the damped oscillator

ẍ+ (2/τ) ẋ+ ω2
0x = 0 , (3)

where ω2
0

= k/m and τ = 2m/α (see Question 4.5). The transformation (1) changes
(3) to

ÿ + ω2
dy = 0 , (4)

where ω2
d

= ω2
0
− τ−2. Equation (4) describes a simple harmonic oscillator, which is a

conservative system with Lagrangian

L̃ = K − V = 1
2
mẏ2 − 1

2
mω2

dy
2 . (5)

[6] G. L. Baker and J. P. Gollub, Chaotic dynamics (an introduction), pp. 23–27. Cambridge:
Cambridge University Press, 1990.
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If we now use (1) to express (5) in terms of x and ẋ we find a Lagrangian for the
damped oscillator:

L = ( 1
2
mẋ2 − 1

2
mω2

0
x2)e2t/τ +

d

dt

(m
2τ

x2e2t/τ
)
. (6)

In general, a term of the form dG(x, t)
/
dt in L makes no contribution in the Lagrange

equation
d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 . (7)

So, we can ignore the last term in (6) and take (2) as the Lagrangian.

Comments

(i) The reader can easily verify that (2) and (7) yield the equation of motion (3).

(ii) In the limit τ → ∞, (2) reduces to the familiar Lagrangian L = 1
2
mẋ2 − 1

2
mω2

0
x2

for an undamped oscillator.

(iii) Lagrangians such as (2), that do not have the conventional form L = K − V , are
referred to as generalized Lagrangians. They are useful in the study of dissipative
systems.[7,8]

(iv) Note that the Hamiltonian H = ẋ ∂L
/
∂ẋ−L (see Question 11.33) for the damped

oscillator is given by

H = ( 1
2
mẋ2 + 1

2
mω2

0
x2)e2t/τ = Ee2t/τ , (8)

where E is the energy. So, here the Hamiltonian is not equal to the energy (except
in the limit τ → ∞).[8]

(v) The Lagrangian (2) also describes an undamped oscillator with time-dependent
mass m(t) = me2t/τ . In this case the energy E = 1

2
m(t)ẋ2 + 1

2
m(t)ω2

0
x2 is equal

to H.

(vi) A general method to determine a Lagrangian L(x, ẋ, t) associated with an equation
of motion mẍ = F (x, ẋ, t) was provided by Darboux in 1894.[9]

[7] L. Y. Bakar and H. G. Kwatny, “Generalized Lagrangian and conservation law for the damped
harmonic oscillator,” American Journal of Physics, vol. 49, pp. 1062–1065, 1981.

[8] D. H. Kobe and G. Reali, “Lagrangians for dissipative systems,” American Journal of Physics,
vol. 54, pp. 997–999, 1986.

[9] See, C. Leubner and P. Krumm, “Lagrangians for simple systems with variable mass,” European
Journal of Physics, vol. 11, pp. 31–34, 1990.
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Energy and potentials

The questions in this chapter deal with the important topic of the mechanical energy
of a particle. Two simple examples (Questions 5.2 and 5.3) are used to motivate the
general formulation of mechanical energy associated with position-dependent force-
fields F(r). We remind the reader of some standard notation that is employed here.
A Cartesian vector A = Axx̂ +Ayŷ + Az ẑ is abbreviated as A = (Ax, Ay, Az); thus,
we write r = (x, y, z) for a position vector, dr = (dx, dy, dz) for an infinitesimal
displacement vector, F = (Fx, Fy, Fz) for a force, and so on.

Question 5.1

Consider a particle of mass m acted on by a force F in an inertial frame. Prove that

dK = F · dr , (1)

where dr is the change in the position vector of the particle in a time dt, and dK is
the corresponding change in the kinetic energy K = 1

2
mv2.

Solution

The rate of change of kinetic energy is

dK

dt
=

d

dt
( 1

2
mv · v) = m

dv

dt
· v = F · dr

dt
, (2)

and (1) follows.

Comments

(i) According to (1), the change in kinetic energy is equal to the work done on the
particle by the force F. This result is known as the work–energy theorem. It applies
to forces that can be dependent on position, velocity and time, F = F(r,v, t). For
finite changes, (1) yields

Kf −Ki =

∫ r
f

r
i

F
(
r,v(r), t(r)

) · dr , (3)
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where the kinetic energiesKi andKf are evaluated at the initial and final positions
ri and rf , respectively.

(ii) According to (2), the rate of change of kinetic energy is equal to the power F · v
expended on the particle by the force F.

(iii) In a non-inertial frame, (1) is dK = Fe · dr where the effective force Fe is defined
in (25) of Chapter 1.

Question 5.2

For a one-dimensional force F = F (x)x̂, prove that

d(K + V ) = 0 , (1)

where

V (x) = −
∫
F (x) dx . (2)

Solution

Here, F · dr =
(
F (x), 0, 0

)
·
(
dx, dy, dz

)
= F (x) dx, and hence (1) of Question 5.1

gives

dK = F (x) dx = d

∫
F (x) dx, (3)

which is (1) with V (x) given by (2).

Question 5.3

For a central, isotropic force F = F (r)r̂, where r =
√
x2 + y2 + z2, prove that (1) of

Question 5.2 holds with

V (r) = −
∫
F (r) dr . (1)

Solution

Write dr in terms of radial and transverse components: dr = dr r̂ + dr⊥, where dr⊥ is
perpendicular to the radial unit vector r̂. Then

F · dr = F (r)r̂ · (dr r̂ + dr⊥) = F (r) dr , (2)

because r̂ · r̂ = 1 and r̂ · dr⊥ = 0. Hence (1) of Question 5.1 yields

dK = F (r) dr = d

∫
F (r) dr , (3)

which is (1) of Question 5.2 with V (r) given by (1) above.
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Comments

(i) Note the algebraic similarity between the one-dimensional and the isotropic
three-dimensional cases by comparing (3) with (3) of Question 5.2. (See also
Chapter 8.)

(ii) The function V is referred to as the potential energy of the particle, and E = T+V
is its mechanical energy (hereafter referred to simply as energy).

(iii) The potential energy in (1) is spherically symmetric (in terms of spherical polar
coordinates r, θ and φ, it is independent of the angles θ and φ). The corresponding
force F (r)r̂ is always directed towards or away from the origin, and its magnitude
|F (r)| is constant on any sphere of radius r centred on the origin. The force asso-
ciated with a spherically symmetric potential V (r) is always central and isotropic.

(iv) The following questions deal with the energy of a particle in an arbitrary position-
dependent force field F(r).

Question 5.4

Show that the relations between F(r) and V (r) in the preceding two questions are
particular cases of

F(r) = −∇V (r) . (1)

Here, ∇ is the gradient operator, given in Cartesian coordinates by

∇ =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
.

Solution

From (2) of Question 5.2 and F = F (x)x̂ we have

F = −dV (x)

dx
x̂ . (2)

Similarly, (1) of Question 5.3 and F = F (r)r̂ yield

F = −dV (r)

dr
r̂ . (3)

These are (1) for the special cases V = V (x) and V = V (r), respectively.

Question 5.5

Show that if a force F(r) is ‘derivable from a scalar potential V (r)’ in the sense of (1)
of Question 5.4, then

d

dt
(K + V ) = 0 . (1)



Energy and potentials ��

Solution

Here, V = V (x, y, z) and therefore

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz ≡ (∇V ) · dr = − F · dr (2)

because of (1) of Question 5.4. But F · dr = dK (see Question 5.1) and so (2) yields

d(K + V ) = 0 . (3)

Comments

(i) A force F(r) that satisfies F(r) = −∇V (r) is called conservative because, accord-
ing to (1), it conserves the energy of a particle on which it acts. Thus, we have
the law of conservation of mechanical energy for a particle in a conservative force
field:

Ef = Ei . (4)

(ii) According to (2), the potential energy is given, to within an arbitrary constant,
by the line integral of the force:

V (r) = −
∫

F · dr . (5)

(iii) Not all forces F(r) are conservative, as the following example shows.

Question 5.6

Prove that F = (y,−x, 0) is not conservative.

Solution

Use reductio ad absurdum: Assume that F is conservative. Then, F = −∇V requires

∂V (x, y)

∂x
= −y and

∂V (x, y)

∂y
= x .

The solutions to these two equations are

V (x, y) = −xy + f(y) and V (x, y) = xy + g(x) ,

respectively, which is clearly impossible. Therefore, F is not conservative.

Comment

In general, we require a (necessary and sufficient) condition to test whether a given
force F(r) is conservative. The following two questions provide this.
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Question 5.7

Prove that a necessary condition for F(r) to be conservative is

∇ × F(r) = 0. (1)

That is, prove

F = −∇V (r) =⇒ ∇ × F = 0 , (2)

where an arrow =⇒ means ‘implies’. Do this in two ways:

(a) By using the Cartesian form for ∇.

(b) By applying Stokes’s theorem:‡∫
S

(∇ × F) · dS =

∮
C

F · dr , (3)

where S is a surface of arbitrary shape bounded by a closed curve C.

Solution

(a) In Cartesian coordinates (see Question 5.4) we have

∇ × (∇V ) =

∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂2V

∂y∂z
− ∂2V

∂z∂y
,

∂2V

∂z∂x
− ∂2V

∂x∂z
,

∂2V

∂x∂y
− ∂2V

∂y∂x

)
= 0 (4)

if the order of the partial derivatives is unimportant.

(b) If F = −∇V , then Stokes’s theorem, (3), yields∫
S

(∇ × F) · dS = −
∮

C

∇V · dr = −
∮
dV (r) = 0 , (5)

because V (r) is a single-valued function. In (5), S is an arbitrary surface and
therefore it follows that ∇ × F = 0 everywhere.

Comment

To prove Stokes’s theorem we start by evaluating

∮
F · dr around an infinitesimal,

closed rectangular path δC in the xy-plane:

(x, y, z) → (x+ dx, y, z) → (x+ dx, y + dy, z) → (x, y + dy, z) → (x, y, z) .

If we number the corners of this rectangle 1, 2, 3, and 4, then

‡For readers who not familiar with this theorem, a proof is provided in the Comment.
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∮
δC

F · dr =

(∫
1→2

+

∫
2→3

−
{∫

1→4

+

∫
4→3

})
F · dr

= Fx(x, y, z)dx+ Fy(x+ dx, y, z)dy − Fy(x, y, z)dy − Fx(x, y + dy, z)dx

=

(
∂Fy
∂x

− ∂Fx
∂y

)
dxdy

= (∇ × F)z dxdy

= (∇ × F) · n dS , (6)

where n is a unit vector vector perpendicular to a rectangular element of area dS.(
There is a sign convention, a right-hand rule, implicit in (6), relating the direction in

which δC is traversed and the direction of n, see below.
)

Equation (6) is independent of
the choice of coordinates, and applies to an element of any orientation. An arbitrary
finite surface S with boundary C can be subdivided into infinitesimal rectangular
elements δCi (i = 1, 2, · · · ). Then,∮

C

F · dr =
∑
i

∮
δC

i

F · dr , (7)

because on common segments of adjacent elements the dr point in opposite directions
and the contributions of F · dr to the sum in (7) cancel, whereas no such cancellation
occurs on the boundary C. Equations (6) and (7) yield (3). The figure below illustrates
the right-hand convention that is assumed here.

Question 5.8

Use Stokes’s theorem to prove that ∇ × F(r) = 0 is a sufficient condition for F(r) to
be conservative. That is, prove

∇ × F = 0 =⇒ F = −∇V (r) . (1)

Solution

The proof is less obvious than the preceding ‘necessary’ part because one has to prove
the existence of the function V (r). If ∇ × F = 0 everywhere, it follows from Stokes’s
theorem that
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F · dr = 0 (2)

for all closed curves C. According to (2):∫
1

F · dr =

∫
2

F · dr , (3)

where 1 and 2 are any two paths joining two points A and B. Therefore, the line
integral between any two such points is independent of the path followed from A to
B, and depends only on the endpoints A and B. Thus, F · dr must be the differential
of some single-valued scalar function V (r) (we say it is a perfect differential):

F · dr = −dV (r) , (4)

where a minus sign has been inserted to conform with (2) of Question 5.5. But

dV (r) = (∇V ) · dr (5)

(see Question 5.5). In (4) and (5), dr is arbitrary and therefore F = −∇V .

Comments

(i) It follows from the above that the conditions (1) of Question 5.4, (1) of Question
5.7, and (2) above are equivalent in the following sense:

F = −∇V (r)
=⇒ ⇐⇒

∇ × F(r) = 0 ⇐⇒
∮

C

F · dr = 0.

(6)

In (6), the gradient and curl equations must hold at all points r in the force field
F(r), and C is any closed curve.

(ii) The class of all position-dependent forces F(r) consists of two sub-classes: Those
that are conservative, Fc, and those that are non-conservative, Fn. For these, the
following statements hold:

Fc Fn

F = −∇V everywhere ? Yes No

∇ × F = 0 everywhere ? Yes No∮
C

F · dr = 0 for all closed curves C ? Yes No
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(iii) If a force consists of both conservative and non-conservative parts, F = Fc + Fn,
then

Ef = Ei +

∫
r
f

r
i

Fn · dr . (7)

That is, the change in mechanical energy is equal to the work done by non-
conservative forces during the motion from ri to rf .

(iv) In F = −∇V , an arbitrary constant can be added to the potential V without
changing the force F. (Usually, the arbitrary constant implicit in V is fixed by
making a convenient choice for the zero of V – frequently V is taken to be zero
at infinity. This choice is, of course, immaterial in the conservation law (4) of
Question 5.5.) Non-uniqueness of a physical quantity such as V is the ‘tip of an
iceberg’, and it is discussed further in Question 5.23.

(v) These results have applications in other areas as well, notably in electromag-
netism. For example, in electrostatics the curl of the electric field is always zero,
and therefore this field is derivable from a scalar potential: E(r) = −∇φ(r). Thus
the electrostatic force F = qE is conservative.

(vi) A vector field F whose curl is zero everywhere is referred to as irrotational; if
∇ × F �= 0 the field is rotational. Thus, we have seen that all irrotational fields
can be derived from a scalar potential.

(vii) In general, the electric field E is rotational (according to Faraday’s law
∇ × E = −∂B/∂t), and the question arises: in what way can E, and hence
the electric force qE, be expressed in terms of ‘potentials’? This topic involves an
interesting discussion of so-called solenoidal fields (fields whose divergence is zero
everywhere) and it is considered in Question 5.23.

(viii) The notion of the path or ‘history’ independence of a physical quantity in some
parameter space

(
which is usually first encountered in the theory of conservative

forces, as in (2) and (3) above
)

has wider ramifications in physics. For example,
heat energy Q is a path-dependent quantity (dQ is an imperfect differential),
whereas internal energy U and entropy S are path independent (dU and dS are
perfect differentials). Consequently, U and S are unique functions of the relevant
physical parameters, whereas Q is not; one can speak of the energy and entropy
content of a system, but not of its heat content.

(ix) Calculations involving path-independent quantities
(
such as the work done by a

conservative force, and hence the potential energy – see (5) of Question 5.5
)

can
often be simplified by selecting a convenient path.

Question 5.9

Prove that a frictional force is non-conservative.

Solution

A frictional force F always points in the opposite direction to the infinitesimal
displacement dr. Consequently, F · dr < 0 everywhere and
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F · dr < 0 . (1)

Comment

Often we encounter non-conservative forces in a macroscopic description of phenomena
(such as the conversion of mechanical energy into heat energy in dissipative processes),
whereas the underlying microscopic processes are, in fact, conservative – for example,
energy is conserved in the interactions of the molecules of the media experiencing
friction.

Question 5.10

Show that the irrotational condition ∇ × F = 0 for a central force F = F (r)r̂ to be
conservative can be expressed as

1

x

∂F

∂x
=

1

y

∂F

∂y
=

1

z

∂F

∂z
. (1)

Solution

Recall that r̂ = r r−1 = (x, y, z)
/
r, where r =

√
x2 + y2 + z2. Then

∇ × (F r̂) =

∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

x

r
F

y

r
F

z

r
F

∣∣∣∣∣∣∣∣∣∣∣
=

1

r

(
z
∂F

∂y
− y

∂F

∂z
, x

∂F

∂z
− z

∂F

∂x
, y

∂F

∂x
− x

∂F

∂y

)
, (2)

which is zero everywhere if (1) is satisfied.

Comments

(i) In general, (1) is not satisfied. For example, the central force kxyzr̂ (k is a
constant) is rotational, and therefore not conservative.

(ii) Equations (1) possess the important solution F = F (r). For this,

1

x

∂F (r)

∂x
=

1

x

∂r

∂x

dF (r)

dr
=

1

r

dF (r)

dr
, (3)

and similarly

1

y

∂F (r)

∂y
=

1

r

dF

dr
and

1

z

∂F (r)

∂z
=

1

r

dF

dr
. (4)
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Thus, (1) is satisfied and consequently all central, isotropic forces F (r)r̂ are
conservative – as we already know from Question 5.3. This class of forces is
important because it applies to several types of interaction, including
gravitational, electrostatic, and certain molecular and nuclear interactions; see
Question 5.19.

(iii) In general, it is clear that the line integral of a central, isotropic force F (r)r̂ around
any closed curve is zero (see Question 5.3), and therefore it follows directly from
Stokes’s theorem (see Question 5.7) that such forces are irrotational. Equations
(2)–(4) demonstrate this by an explicit calculation in Cartesian coordinates. In
other coordinate systems the calculations are longer.

Question 5.11

Consider a time-dependent force that can be expressed as the gradient of a scalar:

F(r, t) = −∇V (r, t) . (1)

Show that
d

dt
(K + V ) =

∂V

∂t
. (2)

Solution

Here, V = V (x, y, z, t) and so

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz +

∂V

∂t
dt

≡ (∇V ) · dr +
∂V

∂t
dt

= −F · dr +
∂V

∂t
dt

= −dK +
∂V

∂t
dt ,

and (2) follows.
(
In the last step we have used (1) of Question 5.1.

)
Comment

Even if a force F(r, t) that depends explicitly on time can be obtained from the
gradient of a scalar, as in (1), it will not conserve the mechanical energy K + V .
Thus, for example, the motion of a charged particle in a time-dependent electric field
E = −∇φ(r, t) is not conservative. (It can be shown that the total energy of the
particle and the field is conserved.)
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Question 5.12

A one-dimensional force F = −kxx̂, where k is a constant, acts on a particle of mass
m.

(a) Calculate the potential energy V (x) of the particle.

(b) Sketch the possible graphs of V (x). Use these graphs and conservation of energy
to discuss the possible motions of the particle.

Solution

(a) Use (2) of Question 5.2. Then

V (x) = k

∫
xdx = 1

2
kx2. (1)

In (1) we have omitted an arbitrary constant, and this means we have chosen the
zero of potential at x = 0.

(b) On the graphs below we have also drawn horizontal lines to denote the constant
energy

E = 1
2
mv2 + V (x) (2)

of the particle. We consider separately the cases k > 0 and k < 0.

x2x1

E

k > 0

x

V (x)

x2x1

E < 0

E > 0
k < 0

x

V (x)

k > 0

If k > 0, the force F = −kxx̂ is a Hooke’s-law-type force: it is linear in x and
it is a restoring force (F is always directed towards the origin O). In general,
the energy of the particle can never be less than the potential energy because,
according to (2), that would mean v2 < 0 and hence imaginary speed, which is
impossible. Thus, E ≥ 0. If E = 0, the particle is at rest at O; it is in stable
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equilibrium there (stable because if given a slight displacement away from O, the
force tends to return it to O). If E > 0, the particle is confined to regions where

V (x) ≤ E . (3)

When V (x) = E, that is 1
2
kx2 = E, the particle is at rest, see (2). The roots of

this equation are

x1 = −
√

2E/k and x2 =
√

2E/k . (4)

Consider a particle initially at x = x1. The force is to the right and the particle
accelerates towards O, where it reaches its maximum speed

√
2E/m. After pass-

ing O, the force is to the left and the particle is decelerated, coming to rest at
x = x2. The particle then retraces its motion, eventually coming to rest at x = x1.
And so on. The motion is periodic, with amplitude equal to

√
2E/k. The period

T = 2π
√
m/k (see Question 4.1). The regions x < x1 and x > x2 are referred to

as classically forbidden because in classical mechanics a particle with energy E
cannot enter them; x1 and x2 are known as the classical turning points.

k < 0

Consider a particle at x < 0 and moving to the right. If E > 0, the particle
is decelerated and attains its minimum speed v =

√
2E/m at the origin. After

passing O it is accelerated to the right. The motion is unbounded. If E = 0, the
particle comes to rest at O, where it is in unstable equilibrium (unstable because
any displacement will result in the particle being accelerated away from O). If
E < 0, the particle comes to rest at x = x1 and is then accelerated to the left.
The particle is reflected by the potential and again the motion is unbounded.

Comments

(i) The trajectories for this example are calculated in Questions 4.1 and 4.2.

(ii) The above question is a simple illustration of the use of energy diagrams to ob-
tain a qualitative picture of one-dimensional motion. By plotting a graph of V (x)
and drawing on it horizontal lines to represent the energy E, one can distin-
guish between bounded and unbounded motion, identify classical turning points,
classically forbidden regions, and points of stable and unstable equilibrium. The
next three questions provide further illustration of this method.

Question 5.13

A particle of mass m is subject to a one-dimensional force F = (−kx + bx3)x̂, where
k and b are positive constants.

(a) Sketch the energy diagram and use it to discuss the motion.

(b) Determine the frequency of small oscillations about a point of stable equilibrium.
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Solution

(a) The potential energy is (see Question 5.2)

V (x) = −
∫

(−kx+ bx3) dx = 1
2
kx2 − 1

4
bx4 , (1)

where we have chosen the zero of potential at x = 0. To plot V (x), note the

following: V = 0 at x = 0 and x = ±
√

2k/b. Also, V → −∞ as x → ±∞ , and
dV
/
dx = kx − bx3 = 0 at x = 0 and x = ±√k/b. At the latter two points there

are maxima with
Vmax = 1

2
k
(
k
/
b
)− 1

4
b
(
k2
/
b2
)

= k2
/
4b . (2)

Thus, we have the energy diagram:

√
2k/b−

√
2k/b √

k/b−
√

k/b x4x3 x2x1

k2/4b

E < k2/4b

E > k2/4b

x

V (x)

The origin O is a point of stable equilibrium: a particle with E = 0 placed at O
will remain there, and will oscillate about O if given a small displacement. The
points x = ±√k/b are also points of equilibrium: a particle with E = k2

/
4b can

be at rest at these points, but the equilibrium is unstable with respect to any
disturbance. There is a critical value of the energy, namely

Ec = k2
/
4b , (3)

below which the potential can bind the particle. If E > Ec, the motion is always
unbounded. If E < Ec, there are four classical turning points given by the roots
of the quartic equation

− 1
4
bx4 + 1

2
kx2 = E . (4)

If a particle with energy E < Ec is located between the points x1 and x2 shown in
the figure, it will perform a bounded motion, oscillating between x1 and x2. The
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points x3 and x4 are positions at which a particle outside the ‘well’ is reflected by
the potential (unbounded motion). As an example, if E = 3

4
Ec = 3k2

/
16b, then

the solutions to (4) are

x1 = −x2 = −
√
k
/
2b , x3 = −x4 = −

√
3k/2b . (5)

(b) When E → 0 the turning points x1 and x2 → 0, and the oscillations become
‘small’. Then the cubic term in the force can be neglected in comparison with the
linear term, and F = −kxx̂. The resulting equation of motion

d2x

dt2
+
k

m
x = 0 , (6)

is just the equation of the simple harmonic oscillator studied in Question 4.1. The
angular frequency of the oscillations is ω =

√
k/m.

Comment

This system is known as an anharmonic oscillator because the cubic term bx3 in the
force causes a departure from harmonic behaviour – see Chapter 13. Anharmonic
effects contribute to many phenomena, such as the thermal expansion of a solid and
molecular vibrations.

Question 5.14

Consider a simple pendulum consisting of a mass m supported by a massless, rigid
rod of length �.

(a) Determine the potential energy V (θ) in terms of the angular position θ of the
pendulum.

(b) Sketch the energy diagram and discuss the possible types of motion.

Solution

(a) Consider the trajectory from O to A. The tension in
the rod is everywhere perpendicular to OA, and so
it does no work on the mass m. The work done by
the gravitational force mg is independent of the path
followed from O to A, and it is convenient to evaluate
this work along OBA. On OB no work is done, and
along BA the gravitational force and displacement
vector are anti-parallel. Thus, (2) of Question 5.2
gives for the potential energy relative to O

V (h) = −
∫ h

0

(−mg)dx = mgh .
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In terms of θ, h = �− � cos θ and so

V (θ) = mg�(1 − cos θ) . (1)

(b) It is sufficient to sketch the energy diagram for −π ≤ θ ≤ π; outside this range
the potential repeats itself. There is a point of stable equilibrium at θ = 0 (a
pendulum with E = 0 hanging vertically downward) and two points of unstable
equilibrium at θ = ±π (at both points E = 2mg� and the pendulum is balanced
vertically upward). There is a critical value of the energy Ec = 2mg�. For E < Ec

the motion is bounded: the pendulum is an oscillator with classical turning points
at θ1 and θ2 (= −θ1) given by the roots of

mg�(1 − cos θ) = E . (2)

For E > Ec there are no classical turning points, and the pendulum behaves like
a rigid rotor; the value of θ(t) is unbounded. This behaviour is apparent in the
energy diagram:

θ2θ1
π−π

E = Ec = 2mg�

E < 2mg�

E > 2mg�

θ

V (θ)

Comment

If E � Ec then θ2 is small. So cos θ ≈ 1 − 1
2
θ2 and (1) can be approximated by

V ≈ 1
2
mg�θ2 = 1

2
(mg/�)x2. (3)

That is, a harmonic approximation with force constant k = mg/�, angular frequency
ω =

√
k/m =

√
g/� and period T = 2π

√
�/g.
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Question 5.15

A particle of mass m is acted on by a one-dimensional force

F =

(
b sin

2πx

λ

)
x̂ , (1)

where b and λ are positive constants. Sketch the energy diagram and discuss the
possible types of motion.

Solution

From (2) of Question 5.2 and (1) we have

V (x) = −b
∫

sin
2πx

λ
dx =

bλ

2π
cos

2πx

λ
. (2)

(Here, an arbitrary constant in the potential has been set equal to zero.) The energy
diagram is shown below. If E > bλ/2π, the motion is unbounded. A particle initially
moving to the right (say) will continue its motion indefinitely. The velocity of such a
particle has maxima at x = (n + 1

2
)λ and minima at x = nλ where n = 0,±1, · · · .

If E < bλ/2π, the particle is trapped in one of the ‘wells’ and performs a periodic
motion, oscillating between classical turning points such as x1 and x2, given by the
roots of

bλ

2π
cos

2πx

λ
= E . (3)

� � ��λ/4 3λ/4−λ/4−3λ/4 λλ/2−λ/2−λ
x1 x2x4x3

−bλ/2π

bλ/2π

E < bλ/2π E < bλ/2π

E > bλ/2π

x

V (x)
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There are points of stable equilibrium at x = (n + 1
2
)λ and unstable equilibrium at

x = nλ. A particle with energy E = −bλ/2π is at rest at one of the points of stable

equilibrium; a particle with energy E = bλ
/
2π will come to rest at one of the points

of unstable equilibrium. For small oscillations about a point of stable equilibrium
(
i.e.

for |E| � bλ/2π
)

we can write x = (n+ 1
2
)λ+X , where |X | � 1

4
λ, and approximate

(2) as‡

V (x) = − bλ

2π

(
1 − 2π2

λ2
X2

)
. (4)

Then, F = −(2πb/λ)X and one has a simple harmonic equation of motion

d2X

dt2
+

2πb

mλ
X = 0 , (5)

with angular frequency ω =
√

2πb
/
mλ and period T0 =

√
2πmλ

/
b. For larger values

of |X | there are anharmonic corrections to (5).

Comment

We can create a one-dimensional ‘crystal’ by having impenetrable barriers (V = ∞) at
x = ±Nλ (N an integer) in the above model. Then, particles with energy E > bλ/2π
are free to wander throughout the crystal, while those with E < bλ/2π are trapped in
the wells around x = (n+ 1

2
)λ.

Question 5.16

(a) For one-dimensional motion of a particle of mass m acted upon by a force F (x),
obtain the formal solution to the trajectory x(t) in the inverse form

t(x) =

∫ x

x
0

√
m

2 {E − V (x)} dx , (1)

where V (x) is the potential energy and x0 is the position at t = 0.

(b) Use (1) to obtain the trajectory if F is a constant.

Solution

(a) According to Question 5.2, a one-dimensional force F (x) = −dV /dx conserves
the energy

E =
1

2
m

(
dx

dt

)2
+ V (x) . (2)

It follows that

dt =

√
m

2{E − V (x)} dx . (3)

Integration of (3) between t = 0 and t, and x = x0 and x yields (1).

‡Use cos θ ≈ 1 − 1
2
θ2.
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(b) If F (x) is constant, then V = −Fx and (1) gives

t(x) =

√
m

2

∫ x

x0

dx√
E + Fx

=

√
2m

F

(√
E + Fx−

√
E + Fx0

)
. (4)

In terms of the initial conditions the energy is

E =
1

2
mv2

0 − Fx0 . (5)

From (4) and (5) we have

x(t) = x0 + v0t+ Ft2
/
2m, (6)

which is the familiar solution to this simple problem (see Question 3.1).

Comment

In the step leading to (3), we have assumed a positive root; that is, we have ignored the
possibility of a negative sign in (1). This negative sign is related to the time reversal
t → −t: for each trajectory x(t), the time-reversed solution x(−t) is also a possible
trajectory.

Question 5.17

A particle of mass m acted upon by a one-dimensional force F (x) performs periodic
motion, oscillating between classical turning points x1 and x2. Show that the period
of oscillation is

T =

∫ x
2

x
1

√
2m

V (x2) − V (x)
dx , (1)

where V (x) is the potential energy.

Solution

At a classical turning point, E = V (x). Therefore, V (x2) = E, and (3) of the previous
question yields

dt =

√
m

2{V (x2) − V (x)} dx . (2)

If the particle is at x1 at time t1 and x2 at time t2, integration of (2) gives

t2 − t1 =

∫ x
2

x
1

√
m

2{V (x2) − V (x)} dx . (3)

The period is T = 2(t2 − t1), and hence we obtain (1).
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Question 5.18

For each of the potentials in Questions 5.13–5.15, use (1) of the previous question and
a numerical integration to determine the period T of the oscillations as a function of
the amplitude. Display the results graphically. (Hint: For Questions 5.13 and 5.15, use
a suitable dimensionless amplitude.)

Solution

Anharmonic potential

We substitute the anharmonic potential V (x) = 1
2
kx2 − 1

4
bx4 of Question 5.13 into

(1) of the previous question. Making the change of variable u = x/x2 and putting
A =

√
bx2

2
/k results in the convenient form

T =
2T0

π

∫ 1

0

du√
1 − 1

2
A2 − u2 + 1

2
A2u4

, (1)

where T0 = 2π
√
m/k is the period in the harmonic limit b = 0. Here A is a dimension-

less amplitude for the anharmonic oscillations: because x2 <
√
k/b (see Question 5.13),

it follows that A < 1. A numerical integration of (1) using the following Mathematica

notebook yields the plot of T
/
T0 versus A shown below.

In[1]:= Amin � 0�Amax � 0.995�

f	A_
 �� Evaluate�Chop�Integrate� 2
Π�

1 � 1
2A

2 � u2 � 1
2A

2 u4
,u,0,1�����

Plot	f	A
, A,Amin,Amax�,PlotRange � 0,1�,0,3��


•1.0

2.0 �

3.0 �

1.0

�

0.8

�

0.6

�

0.4

�

0.2

�

T
T0

A
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Pendulum potential

For the pendulum in Question 5.14, V (θ) = mg�(1 − cos θ) and θ = x/�. Then,

T =

√
8�

g

∫ θ
0

0

dθ√
cos θ − cos θ0

, (2)

where θ0 is the angular amplitude of the oscillations. The integral in (2) is a complete
elliptic integral of the first kind. The limiting value for small θ0 is

T0 = 4

√
�

g

∫ θ0

0

dθ√
θ2
0
− θ2

= 2π

√
�

g
, (3)

the familiar expression for the period of a pendulum performing small oscillations. In
terms of T0, (2) is

T = T0

√
2

π

∫ θ
0

0

dθ√
cos θ − cos θ0

, (4)

=
2T0

π sin 1
2
θ0

∫ 1
2
θ
0

0

dθ√
1 − sin2 θ

/
sin2 1

2
θ0

. (5)

Equation (5) can be expressed in terms of Mathematica’s EllipticF function. A
numerical evaluation of T as a function of θ0 can be done using the first cell of the
following notebook, and it yields the graph shown below.

In[1]:= �� USE THIS CELL FOR THE PENDULUM POTENTIAL ��

Θmin � 0�Θmax � 0.995 Π�

f	Θ_
 �� Abs� 2

Π Sin� Θ2�EllipticF�Θ2, 1�Sin� Θ2��2 ���
Plot	Evaluate	f	Θ
 
, Θ,Θmin,Θmax�, PlotRange � 0,Π�,0,4��


Clear	Θ


In[2]:= �� USE THIS CELL FOR THE OSCILLATORY POTENTIAL ��

Θmin � 0�Θmax � 0.49995 Π�

g	Θ_
 ��
1

Sin	Θ

Abs�2

Π
EllipticF�Θ, 1

Sin	Θ
2
���

Plot�Evaluate	g	Θ
 
, Θ,Θmin,Θmax�,PlotRange � ��0, Π

2
�,0,3���

There has been interest in obtaining simple approximations to (4), such as[1]

T = −T0

ln(cos 1
2
θ0)

1 − cos 1
2
θ0

. (6)

Values of (6) are indicated by the dashed curve in the figure.

[1] F. M. S. Lima and P. Arun, “An accurate formula for the period of a simple pendulum oscillating
beyond the small angle regime,” American Journal of Physics, vol. 74, pp. 892–895, 2006.
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Equation (6)

Equation (4)

•1.0

2.0 �

3.0 �

4.0 �

1
2
π

�

π

�

T
T0

θ0

Oscillatory potential

For the potential in Question 5.15 we consider oscillations in the well centred on
x = 1

2
λ. Shifting the origin of coordinates to 1

2
λ by setting x = X + 1

2
λ gives

V (X) =
−bλ
2π

cos
2πX

λ

(− 1
2
λ < X < 1

2
λ
)
. (7)

Substituting (7) into (1) of Question 5.17 yields

T =
2T0

π sin θ2

∫ θ2

0

dθ√
1 − sin2 θ

/
sin2 θ2

. (8)

Here, T0 =
√

2πmλ/b is the period of small (harmonic) oscillations, θ = πX/λ and so
θ2 = πX2/λ with X2 equal to the amplitude of the oscillations (0 < X2 < 1

2
λ). Using

cell 2 in the above notebook to evaluate (8) gives the following graph:

•1.0

2.0 �

3.0 �

4.0 �

1
2
π

�

1
4
π

�

T
T0

θ2
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Question 5.19

Calculate the potential V (r) for each of the following central, isotropic forces.

(a) F = − k

r2
r̂, (b) F =

V0

r2

(
1 +

r

λ

)
e−r/λ r̂, (c) F =

(
A

rα+1
− B

rβ+1

)
r̂.

Here k, V0, λ, A, B, α, and β are constants.

Solution

According to Question 5.3, a central, isotropic force F = F (r)r̂ is conservative and the
potential is given by

V (r) = −
∫
F (r)dr . (1)

We apply this result to each of the given forces.

(a)
V (r) = k

∫
dr

r2
= −k

r
. (2)

(b)
V (r) = −V0

∫
1

r2

(
1 +

r

λ

)
e−r/λ dr

= V0

∫ (
d

dr

e−r/λ

r

)
dr =

V0

r
e−r/λ . (3)

(c)

V (r) = −
∫ (

A

rα+1
− B

rβ+1

)
dr =

C

rα
− D

rβ
, (4)

where C = A/α and D = B/β. In (2)–(4) we have chosen the zero of potential at
r = ∞. In (4) we have supposed that α, β > 0.

Comments

Equations (2)–(4) represent famous potentials:

(i) The potential (2) is often referred to as the Coulomb potential. With a suitable
choice of the constant k it represents either the gravitational or the electrostatic
potential for the interaction of two particles:

V (r) = −Gm1m2

r
or V (r) =

1

4πε0

q1q2
r

. (5)

(ii) The potential in (3) is known as the Yukawa potential because it occurs in
Yukawa’s theory of the nuclear force between two nucleons. In this theory the
force is due to the exchange of a particle (a pion) between interacting nucleons,
and the constant λ is positive and inversely proportional to the mass m of the
exchanged particle. The value of λ is finite and it defines the range of the force. In



��� Solved Problems in Classical Mechanics

the limit m→ 0, that is λ→ ∞, the Yukawa potential (3) becomes the Coulomb
potential (2). The latter is therefore a potential with infinite range. It is believed
that in gravity and electromagnetism the relevant exchanged particles (the gravi-
ton and photon, respectively) are massless, and consequently it is the Coulomb
potential, and not the Yukawa potential, that applies in these cases.

(iii) With suitable positive values of α and β, (4) is known as a Lennard-Jones poten-
tial, and it is used to describe molecular interactions. For example, with α = 12
and β = 6 one has the Lennard-Jones 6-12 potential. If C and D are positive,
there is a point of stable equilibrium at re = (2C/D)1/6. This could represent a
molecular bond length with dissociation energy equal to −Vmin = D2

/
4C.

(iv) Energy diagrams can also be used to analyze motion in a spherically symmetric
potential V (r), provided care is taken with the contribution of the kinetic energy,
see Chapter 8.

(v) The potentials (2)–(4) are illustrated in the figures below. In the Lennard-Jones
potential, the force is repulsive if r < re and attractive if r > re.

Attractive Yukawa potential

Attractive Coulomb potentialV (r)

r

Lennard-Jones 6-12 potential

Vmin

re

V (r)

r
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Question 5.20

Prove that the force
F = −(k1x, k2y, k3z), (1)

where the ki are constants, is conservative and determine the potential-energy function.

Solution

∇ × F = −

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

k1x k2y k3z

∣∣∣∣∣∣∣∣∣
= −

(
k3

∂z

∂y
− k2

∂y

∂z
, k1

∂x

∂z
− k3

∂z

∂x
, k2

∂y

∂x
− k1

∂x

∂y

)
= 0 .

Thus, F is conservative and there exists a scalar function V (r) such that

V (r) = −
∫

F · dr = k1

∫
xdx + k2

∫
ydy + k3

∫
zdz

= 1
2
k1x

2 + 1
2
k2y

2 + 1
2
k3z

2 . (2)

Here, we have chosen the zero of potential energy at the origin.

Comments

(i) If the ki are positive then the linear force (1) is a restoring force (a Hooke’s-law-
type force) and the system is known as a three-dimensional anisotropic harmonic
oscillator. If the ki are all equal it is a three-dimensional isotropic harmonic
oscillator with a spherically symmetric potential

V (r) = 1
2
kr2. (3)

These important systems are discussed in Chapters 7 and 8.

(ii) The above analysis can clearly be extended to any force of the separable type:

F =
(
F1(x), F2(y), F3(z)

)
, (4)

and it yields
V (r) = V1(x) + V2(y) + V3(z) , (5)

where

V1 = −
∫
F1(x)dx, V2 = −

∫
F2(y)dy, V3 = −

∫
F3(z)dz . (6)
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Question 5.21

Show that the force F = −k(yz, xz, xy), where k is a constant, is conservative and
determine the potential-energy function.

Solution

∇ × F = −k

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

yz xz xy

∣∣∣∣∣∣∣∣∣
= − k

(
∂

∂y
xy − ∂

∂z
xz ,

∂

∂z
yz − ∂

∂x
xy ,

∂

∂x
xz − ∂

∂y
yz

)
= 0 .

Consequently, F is conservative and there exists a scalar V (r) such that F = −∇V .
Thus

∂V

∂x
= kyz ,

∂V

∂y
= kxz ,

∂V

∂z
= kxy . (1)

To solve these equations for V (x, y, z) we integrate each in turn. From (1)1 we obtain

V (x, y, z) = kxyz + f(y, z), (2)

where f(y, z) is to be determined. From (2) and (1)2 we have

∂f(y, z)

∂y
= 0 , (3)

and hence
f(y, z) = g(z) , (4)

where g(z) is to be determined. From (1)3 , (2) and (4) we have

dg(z)

dz
= 0 . (5)

Thus, g(z) is a constant, which can be set equal to zero. Equations (2) and (4) yield
the potential

V (x, y, z) = kxyz . (6)

Comment

It is useful to check that the given force is obtained from the negative gradient of
the potential-energy function that one calculates. In the above example we see, by
inspection, that the negative gradient of (6) is −k(yz, xz, xy).
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Question 5.22

Prove that a necessary condition for a vector field F(r) to be derivable from a vector
potential A(r) is

∇ ·F = 0 . (1)

That is, prove
F = ∇ × A(r) =⇒ ∇ ·F = 0 , (2)

where the arrow =⇒ means ‘implies’. Do this in two ways:

(a) By using the Cartesian form of ∇.

(b) By applying Stokes’s theorem (see Question 5.7) and Gauss’s theorem:∮
S

F · dS =

∫
V

∇ ·F dV . (3)

Here, S is a surface enclosing a volume V , and dS and dV are infinitesimal
elements of S and V : the direction of dS at each point of the surface is along
the outward normal to S.

Solution

(a) If F = ∇ × A, then in Cartesian coordinates

∇ · F = ∇ ·
(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)

=
∂2Az

∂x∂y
− ∂2Ay

∂x∂z
+
∂2Ax

∂y∂z
− ∂2Az

∂y∂x
+
∂2Ay

∂z∂x
− ∂2Ax

∂z∂y

= 0

if the order of the partial derivatives can be interchanged (that is, if the second
partial derivatives of the components Ai are continuous functions).

(b) Divide a closed surface S into two ‘caps’ S1 and S2 bounded by a common closed
curve C, as shown in the next figure. According to Stokes’s theorem:∫

S
1

F · dS1 =

∫
S
1

(∇ × A) · dS1 =

∮
C

A · dr =

∫
S
2

(∇ × A) · dS2 =

∫
S
2

F · dS2 ,

where the sense in which C is traversed and the directions of dS1 and dS2 are
fixed by the right-hand rule. Therefore‡∮

S

F · dS =

∫
S
1

F · dS1 +

∫
S
2

F · (−dS2) = 0 ,

‡Note that dS2 is along an inward normal, as shown in the figure, and therefore the element to
be used in Gauss’s theorem is −dS2.
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which, by Gauss’s theorem (3) means that∫
V

∇ · F dV = 0 .

Because S1 and S2 are arbitrary, so is the volume V that they enclose. It follows
that ∇ ·F = 0.

C
dS2

dS1

S1

S2

Question 5.23

(a) Use Gauss’s theorem and Stokes’s theorem to prove that ∇·F(r) = 0 is a sufficient
condition for F(r) to be derivable from a vector potential A(r). That is, show that

∇ · F = 0 =⇒ F = ∇ × A(r) . (1)

(b) Also, obtain a formula for A in terms of integrals of the components of F.
(
Hint:

Show that for this purpose it is sufficient to consider a two-dimensional form such
as A = (Ax, Ay, 0).

)
Solution

(a) The initial part of the proof involves the inverse of the reasoning used in part (b)
of Question 5.22. If ∇ · F = 0 everywhere then it follows from Gauss’s theorem
that ∮

S

F · dS = 0 , (2)

for all closed surfaces S. That is, for ‘caps’ S1 and S2 that share a common
bounding curve C, as depicted in the above figure, we have∫

S
2

F · dS2 =

∫
S
1

F · dS1 , (3)

meaning that the flux of F through a cap is unchanged by any deformation of the
cap that leaves the bounding curve C unaltered. Therefore, the fluxes in (3) can
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depend only on the curve C and not on other details of S1 and S2: they can be
expressed as the line integral around C of some vector field A(r):∫

S
i

F · dSi =

∮
C

A · dr (i = 1, 2) (4)

=

∫
S

i

(∇ × A) · dSi (i = 1, 2) , (5)

where the last step relies on Stokes’s theorem. The surfaces Si in (5) are arbitrary
and therefore

F = ∇ × A . (6)

(b) It is clear that the vector field A introduced in (4) is not unique: the change

A → A + ∇χ , (7)

where χ(r) is an arbitrary single-valued function, leaves the line integral in (4)
unchanged because ∮

C

∇χ · dr =

∮
C

dχ = 0 . (8)

Equation (7) can be used to transform any three-dimensional vector potential to
a two-dimensional form: for example, the choice

χ = −
∫
Az dz (9)

removes the z-component of A. This enables one to obtain a simple formula for
A as follows. With A = (Ax, Ay, 0) the components of (6) are

Fx = −∂Ay

∂z
, Fy =

∂Ax

∂z
, Fz =

∂Ay

∂x
− ∂Ax

∂y
. (10)

Integration of (10)1 and (10)2 gives

Ax =

∫ z

z
0

Fy dz + f(x, y) and Ay = −
∫ z

z
0

Fx dz + g(x, y) , (11)

where f and g are arbitrary functions of x and y, and z0 is a constant. Then,
(10)3 becomes

Fz(x, y, z) = −
∫ z

z0

(
∂Fx

∂x
+

∂Fy

∂y

)
dz − ∂f

∂y
+

∂g

∂x
. (12)

The solenoidal property ∇ · F = 0 means that the integrand in (12) is equal to
−∂Fz/∂z, and therefore (12) yields

∂f

∂y
− ∂g

∂x
= −Fz(x, y, z0) . (13)
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If we set the arbitrary function f equal to zero, then

g =

∫ x

x
0

Fz(x, y, z0) dx . (14)

From (11) and (14) we obtain the desired formula

A =

(∫ z

z
0

Fy(x, y, z) dz , −
∫ z

z
0

Fx(x, y, z) dz +

∫ x

x
0

Fz(x, y, z0) dx , 0

)
. (15)

The reader can readily check that, provided ∇ · F = 0, the curl of (15) yields
F(x, y, z). Having found one vector potential, such as (15), we can generate an
infinite number of them via the transformation (7).

Comments

(i) In Questions 5.7, 5.8, 5.22 and 5.23 we have proved the following pair of
equivalences for a vector field‡ F(r):

∇ × F = 0 ⇐⇒ F = −∇V (r) (16)

∇ ·F = 0 ⇐⇒ F = ∇ × A(r) . (17)

If ∇ × F = 0 everywhere then F is called irrotational; if ∇ · F = 0 everywhere
then F is called solenoidal. Thus, an irrotational field is always derivable from a
scalar potential, and a solenoidal field is always derivable from a vector potential.

(ii) The reader may find it instructive to compare the proofs of the existence of
V (r), see Question 5.8, and A(r), see above. The former follows from the path
independence of a line integral of F between two points (the integral depends only
on the endpoints); the latter follows from the independence of a surface integral of
F on the details of the surface (the integral depends only on the curve bounding
the surface).

(iii) The results (16) and (17) have important applications in the theories of mechanics,
electrodynamics, hydrodynamics, and elasticity.

(iv) In Question 5.8 we have already mentioned the role of (16) in the theory of
conservative forces, such as the electrostatic force F = qE(r). For time-dependent
forces associated with the electric and magnetic fields E(r, t) and B(r, t), (16)
and (17) are used as follows. A fundamental property of the magnetic field is its
solenoidal nature ∇ ·B = 0 (Gauss’s law for magnetic fields). Consequently, B is
derivable from a vector potential: B = ∇×A(r, t). This, together with Faraday’s
law ∇×E = −∂B/∂t, implies that the vector E+ ∂A

/
∂t is irrotational and may

therefore be derived from a scalar potential φ(r, t):

E = −∇φ(r, t) − ∂A(r, t)

∂t
. (18)

‡F could represent a force field, a velocity field in a fluid, an electric field, a magnetic field, etc.
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Thus, the electric and magnetic forces (FE = qE and FB = qv × B) exerted on
a charge q are given in terms of a scalar potential φ(r, t) and a vector potential
A(r, t) by

FE = −q
(

∇φ+
∂A

∂t

)
, FB = qv × (∇ × A) . (19)

(v) Forces such as the electrostatic force −q∇φ(r) possess an obvious invariance: they
are unaffected by the addition of an arbitrary constant to φ. This invariance is
known as a ‘global’ gauge invariance (global because φ is changed by the same
amount at all spatial points and instants of time).

(vi) The time-dependent forces (19) possess a more elaborate invariance: they are
unaffected by the simultaneous replacements

A → A + ∇χ(r, t) and φ→ φ− ∂χ

∂t
, (20)

where χ(r, t) is an arbitrary† scalar function. This invariance – which is known
as a ‘local gauge invariance’ (‘local’ because the potentials can be changed by
different amounts at different spatial and temporal points) – is a key ingredient
in a theory of fundamental interactions.[2,3]

Question 5.24

(a) Use the formula (15) of the previous question to find a vector potential for a
uniform, static field F = (0, 0, F ), where F is a constant.

(b) Determine the effect of the transformation A → A + ∇χ for χ = F1xy, where F1

is a constant.

Solution

(a) Equation (15) yields

A =

(
0 ,

∫ x

x
0

F dx , 0

)
= (0 , Fx , 0) , (1)

where we have omitted a constant term −Fx0ŷ.

(b) The gradient of χ = F1xy is ∇χ = (F1y , F1x , 0) . If this is added to (1) we
obtain a second, transformed vector potential

A = (F1y , Fx+ F1x , 0) . (2)

Note that the choice F1 = − 1
2
F in (2) gives

A =
(− 1

2
Fy , 1

2
Fx , 0

)
= 1

2
F × r . (3)

†It should be single-valued if the flux of B is to be unaffected by (20)1.

[2] See, for example, G. t’ Hooft, “Gauge theories of the forces between elementary particles,”
Scientific American, vol. 242, pp. 90–116, June 1980.

[3] L. O’Raifeartaigh, The dawning of gauge theory. Princeton: Princeton University Press, 1997.
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Comments

(i) Equations (1) and (3) are often used for the vector potential of a uniform
magnetostatic field, and they find application in the quantum theory of a charged
particle in such a field.[4]

(ii) The vector potential is an intriguing quantity. Consider the magnetic field B

of an ideal solenoid: this field is zero outside the solenoid and uniform inside.
Therefore, charged particles moving outside the solenoid should be unaffected
when the field B is turned on. However, when such a solenoid‡ is placed between
the slits of a double-slit experiment using electrons (with the axis of the solenoid
parallel to the slits), it is observed that the interference pattern shifts when B is
turned on. This is an example of the well-known Aharonov–Bohm effect[5] and its
explanation relies on the fact that the vector potential A is not zero outside the
solenoid, as is evident from the fact that the circulation of A around a closed curve
encircling the solenoid is equal to the flux of B through the solenoid. According
to quantum mechanics, the phase of the electronic wavefunction depends on the
line integral of A, and it is this that accounts for the observed effect on the
interference pattern.[5] A similar quantum-mechanical effect exists for the electric
field E and the associated scalar potential φ. Thus, there are effects on charged
particles moving in field-free regions.

Question 5.25

Use (15) of Question 5.23 to obtain a vector potential

A = (Fxz, Fyz, 0) , (1)

for the field F = (−y, x, 0)F , where F is a constant. What scalar χ in A → A + ∇χ
will change (1) into

A = (Fxz + Fyz, Fxz + Fyz, Fxy) ? (2)

‡In practice, a magnetized iron ‘whisker’ (about 1µm in diameter) is used.

[4] See, for example, O. L. de Lange and R. E. Raab, Operator methods in quantum mechanics.
Oxford: Clarendon Press, 1991.

[5] See, for example, M. Peshkin and A. Tonomura, The Aharonov-Bohm effect. Berlin: Springer,
1989.
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Solution

Equation (15) gives A =

(∫ z

z
0

Fxdz ,

∫ z

z
0

Fy dz , 0

)
which, apart from a constant, is

(1). By inspection, χ = Fxyz changes (1) into (2).

Question 5.26

Consider the non-uniform field

B = (0, −αy, 1 + αz)B , (1)

where α and B are positive constants.

(a) State why B is derivable from a scalar potential ψ(y, z) and show that

ψ(y, z) =
{
z + 1

2
α(z2 − y2)

}
B . (2)

(b) State why B is derivable from a vector potential A and construct an expression
for A.

(c) Show that the field lines of B in the yz-plane are given by

y =
C

1 + αz
, (3)

where C is a constant. For this purpose, use the following argument: the field
lines of B

(
given by φ(y, z) = constant

)
are orthogonal to the equipotential

curves
(
ψ(y, z) = constant

)
, and therefore the functions φ and ψ must satisfy

the Cauchy–Riemann equations[6]

∂φ

∂y
=
∂ψ

∂z
,

∂φ

∂z
= −∂ψ

∂y
. (4)

(d) Sketch the field lines and equipotential curves in the yz-plane for α = 0.1 m−1

and B = 1.0 T.

Solution

(a) The field (1) is irrotational (∇×B = 0) and therefore, according to Question 5.8,
there exists a scalar function ψ(y, z) such that

B = ∇ψ . (5)

The components of (5) are

∂ψ

∂y
= −αyB and

∂ψ

∂z
= (1 + αz)B . (6)

Integration of (6)1 shows that ψ = − 1
2
αy2B + f(z), and then (6)2 requires

df(z)
/
dz = (1 + αz)B. Thus, we obtain the result (2).

[6] See, for example, J. Irving and N. Mullineux, Mathematics in physics and engineering. New
York: Academic Press, 1959. Chap. VIII.
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(b) The field (1) is solenoidal (∇ ·B = 0) and therefore, according to Question 5.23,
there exists a vector function A(r) such that B = ∇ × A. An expression for A

can be found by substituting (1) in (15) of Question 5.23. Then, with z0 = 0,

A = (−αyz, x, 0)B . (7)

A can be transformed, using the gauge function χ = −xyB, to align it along the
x-axis:

A → A + ∇χ = −(y + αyz, 0, 0
)
B . (8)

(c) According to (4) and (6) we have

∂φ

∂y
= (1 + αz)B and

∂φ

∂z
= αyB . (9)

Therefore, φ(y, z) = y(1+αz)B, and the field lines φ = constant are given by (3).

(d) In the diagram, the solid curves are the field lines (3) for the values of C shown.
The dotted curves are the equipotentials z+ 1

2
α(z2−y2) = D

(
see (2)

)
: the values

of D were selected to produce a set of evenly spaced equipotentials. The scale for
both axes is [−4.2, 4.2] with y and z in units of α−1.

4.11252.32050.7245−0.6755−1.8795D = −2.8875

−1

−2

−3

−4

−5

1

2

3

4

C = 5

z

y
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Comments

(i) Equation (3) can also be deduced as follows. Along a field line φ(y, z) is constant
and therefore

∂φ

∂y
dy +

∂φ

∂z
dz = 0 . (10)

Also, along such a line the slope of the tangent dy
/
dz is equal to

By

/
Bz = −αy/(1 + αz). So,

(1 + αz)dy + αydz = 0 . (11)

From (10) and (11), φ ∼ (1 + αz)y and (3) follows.

(ii) It is interesting to consider the solenoidal, irrotational field (1) in relation to the
well-known Helmholtz theorem.[7] According to this theorem, a vector field which
vanishes suitably at infinity is specified uniquely in terms of its divergence and
curl, and all solenoidal, irrotational fields are zero. There is no contradiction here
because (1) does not satisfy the boundary condition at infinity. (A field which is
confined to a finite region of space is determined also by its normal component
on the boundary.)

(iii) The motion of a charged particle in the magnetic field (1) is of interest. It is
analyzed in Question 7.23.

Question 5.27

Consider the vector field

F =

⎧⎪⎪⎨⎪⎪⎩
k

a2

(− y, x, 0
)

if
√
x2 + y2 ≤ a ,

k

x2 + y2

(− y, x, 0
)

if
√
x2 + y2 > a ,

(1)

where k and a are constants. Discuss the representation of F in terms of (a) a vector
potential A(r), and (b) a scalar potential V (r).

Solution

(a) It is easily shown that ∇ · F = 0 everywhere and therefore F is solenoidal. It
follows from Question 5.23 that F can then be derived from a vector potential
A(r) according to F = ∇ × A. An explicit expression for A can be obtained by
substituting (1) in (15) of Question 5.23:

A(r) =

⎧⎪⎪⎨⎪⎪⎩
k

a2

(
xz, yz, 0

)
if

√
x2 + y2 ≤ a ,

k

x2 + y2

(
xz, yz, 0

)
if

√
x2 + y2 > a .

(2)

[7] See, for example, P. Morse and H. Feshbach, Methods of theoretical physics, Part I. New York:
McGraw-Hill, 1953. Ch. I.
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(b) A short calculation shows that

∇ × F =

⎧⎨⎩
2k

a2

(
0, 0, 1

)
if

√
x2 + y2 ≤ a ,

0 if
√
x2 + y2 > a .

(3)

Thus, F is not irrotational and it cannot be expressed everywhere in terms of a
scalar potential V (r). However, F is irrotational in all space external to an infinite

cylinder of radius a centred on the z-axis. So for
√
x2 + y2 > a, F = ∇V (r) and

therefore
∂V

∂x
= − ky

x2 + y2
,

∂V

∂y
=

kx

x2 + y2
.

That is,
V (r) = −k tan−1(x/y) . (4)

Comments

(i) Since ∇ × F �= 0 everywhere, F is not conservative: for
√
x2 + y2 ≤ a, a scalar

potential V (r) does not exist. By Stokes’s theorem and (3),∮
C

F · dr = 2πk �= 0 , (5)

for any closed curve C lying outside the above cylinder and encircling the z-axis;
this is associated with the fact that the potential (4) is not single-valued. These
remarks apply even in the limit a→ 0, when F is irrotational everywhere except
on the z-axis, where F is singular.

(ii) The above results have application in the theory of the magnetostatic field of an
infinitely long, straight, current-carrying wire having radius a. With k = µ0I

/
2π,

and in cylindrical coordinates, we recognize (1) as the magnetostatic field

B(r) =

⎧⎪⎪⎨⎪⎪⎩
µ0

2π

I

a

ρ

a
φ̂ if ρ ≤ a ,

µ0

2π

I

ρ
φ̂ if ρ > a .

(6)

(
Equations (3) and (5) are now just the differential and integral forms of

Ampère’s law.
)

Therefore, such a field can be represented by the vector potential
(2) everywhere, or by a magnetic scalar potential (4) in the region ρ > a external
to the wire.
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Momentum and angular momentum

For a particle there are two fundamental dynamical quantities that can be constructed
from its mass m, position vector r and velocity v. They are the momentum p = mv

and angular momentum L = r × p. This chapter contains various questions dealing
with these quantities for a particle and also for simple objects such as a uniform sphere.
Further questions can be found in later chapters, including the extension to systems
of interacting particles and rigid bodies.

Question 6.1

What can be stated regarding the momentum of a free (isolated) particle relative to
an inertial frame of reference?

Solution

In an inertial frame dp
/
dt = F, and for a free particle F = 0. Therefore

dp
/
dt = 0 and so p = constant . (1)

Comments

(i) Equation (1) is the simplest form of a fundamental law of nature, namely the law
of conservation of momentum.

(ii) In general, if Fi = 0 then pi is constant. That is, for each component of the
force that is zero, the corresponding component of the momentum is conserved.
For example, when a charged particle moves in the electric field of a parallel-
plate capacitor, the two components of the momentum parallel to the plates are
conserved.

(iii) Within the framework of Newtonian dynamics, (1) is an obvious consequence of
the frame being inertial. It is less evident that the law applies also to the total
momentum of any collection of interacting particles for which the total external
force is zero (see Question 10.2), a result that is assumed in some of the following
questions.

(iv) Conservation of momentum of an isolated system is associated with invariance
(or symmetry) of such a system under spatial translation in inertial space (see
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Question 14.7). It is an example of a more general result known as Noether’s
theorem, according to which each invariance of a system implies the existence of
a corresponding conserved quantity.

(v) Conservation of momentum of an isolated system holds even in processes for
which Newtonian mechanics fails. There are no known violations of the law of
conservation of momentum.

Question 6.2

A rocket of mass m1 + m2 is launched with a velocity whose horizontal and vertical
components are ux and uy. At the highest point in its path the rocket explodes into
two parts of mass m1 and m2 that separate in a horizontal direction in the original
plane of motion. Show that the fragments strike the ground at a distance apart given
by

D =
uy

g

√
2(m1 +m2)K

m1m2

, (1)

where K is the kinetic energy produced by the explosion. (Neglect air resistance, the
mass of the explosive, any spinning motion of the fragments, and assume g is constant.)

Solution

••

•

uy

ux

A

D

y

x

Let v1 and v2 be the horizontal components of the velocities of the fragments after the
explosion (v1 and v2 are constants). Then

D = |v2 − v1|t , (2)

where t = the time for the fragments to reach the ground from the apex A = the time
for the rocket to reach A from O. Now uy − gt = 0 and so

t = uy/g . (3)

To calculate v2 − v1, use conservation of momentum and energy at A:

m1v1 +m2v2 = (m1 +m2)ux (4)

1
2
m1v

2
1 + 1

2
m2v

2
2 = 1

2
(m1 +m2)u

2
x +K . (5)
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Then, use (4) to eliminate ux from (5):

1
2
m1v

2
1

+ 1
2
m2v

2
2

= 1
2
(m1 +m2)

(
m1v1 +m2v2

m1 +m2

)2
+K ,

which simplifies to

v2
2 − 2v1v2 + v2

1 = 2
m1 +m2

m1m2

K . (6)

So

|v2 − v1| =

√
2(m1 +m2)K

m1m2

. (7)

Equations (2), (3) and (7) yield (1).

Comments

(i) This calculation can be simplified by using an inertial frame moving horizontally
with speed ux. Relative to this frame, (4) and (5) are simply

m1v1 +m2v2 = 0 , 1
2
m1v

2
1

+ 1
2
m2v

2
2

= K . (8)

Thus, v1 = −m2v2

/
m1 and

v2 = ±
√

2
m1

m2

K

m1 +m2

, (9)

and hence (7).

(ii) If we take the positive root in (9) then the horizontal speed of fragment 2 in the
original frame is greater than ux, while that of fragment 1 is

ux −
√

2
m2

m1

K

m1 +m2

, (10)

which is less than ux. So fragment 1 strikes the ground to the right of A, or to
the left of A, or directly below A, depending on whether K is less than, greater

than, or equal to
m1

2m2

(m1 +m2)u
2
x.

Question 6.3

Consider oblique impact of a smooth sphere on a fixed plane. According to Newton’s
experimental law of impact, the velocity of rebound is proportional to the velocity
of approach. Express this statement in the form of an equation. Write down also the
equation required by conservation of momentum.
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Solution

The figure shows the sphere at the instant of impact:
P is the point of impact, C is the centre of the sphere,
and PC is perpendicular to the plane. The velocities
of the sphere before and after impact (u and v) make
angles α and β with PC. The velocities of approach
and rebound are, respectively, u cosα and −v cosβ,
directed along CP. So Newton’s experimental law of
impact states that

v cosβ = eu cosα , (1)

where e is a positive constant. Because the sphere is smooth, the interaction between
the sphere and plane is along the perpendicular PC. Therefore, the component of
the momentum of the sphere parallel to the plane is conserved, and this provides an
additional condition

v sinβ = u sinα . (2)

Comments

(i) In this question (and in the rest of this chapter) we have assumed that the sphere
is not spinning. Furthermore, because the surface of the sphere is smooth (friction-
less), no spin is generated by the impact. Spin can produce some intriguing effects
that are well known and important in sports such as golf, tennis and billiards (see
Chapter 12).

(ii) The constant e is known as the coefficient of restitution:‡ it depends on the
materials of the colliding bodies, and often has the useful property that for a
given pair of bodies it is constant over a range of velocities.

(iii) If e = 1 the collision is termed elastic: according to (1) and (2), v = u and so the
kinetic energy of the ball is conserved. If e = 0 the collision is totally inelastic:
the ball sticks to the plane, and all its kinetic energy is lost. For most materials
e lies between these extremes and collisions are inelastic: the ball loses part of its
kinetic energy. Some approximate values of e are 0.5 for wooden balls, 0.6 for steel
balls, 0.9 for ivory billiard balls, and 0.95 for hard rubber balls. For a squash ball
and racquet e ≈ 0.3. The introduction of the coefficient of restitution e allows one
to account for the effects of inelasticity in an empirical way.

(iv) The total energy of the sphere, plane and surroundings is conserved. The energy
Q released by the impact equals the loss in kinetic energy:

Q = Ki −Kf = 1
2
mu2 − 1

2
mv2 = 1

2
mu2(1 − e2) cos2 α . (3)

That is, a fraction (1 − e2) cos2 α of the initial kinetic energy is converted into
other forms of energy (such as heat and sound). Collisions of macroscopic objects

‡Use of the symbol e should not be confused with the base of the natural logarithm. Which is
intended should be clear from the context.
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are invariably inelastic – there is a loss in kinetic energy associated with internal
changes of the objects. By contrast, elastic collisions are of importance in micro-
scopic (atomic, nuclear and particle) physics. In fact, it is even possible to have
superelastic collisions (e > 1) where the kinetic energy of one of the particles (e.g.
an electron) is increased at the expense of the internal energy of a target particle
(e.g. an excited atom).

Question 6.4

A ball falls from a height H onto a fixed horizontal plane. The coefficient of restitution
is e and the height reached by the ball in the nth rebound is Hn.

(a) Show that

Hn = e2nH (n = 1, 2, · · · ) . (1)

(b) If the ball travels a total distance D before coming to rest after a time T , deduce
that

D =
1 + e2

1 − e2
H and T =

1 + e

1 − e

√
2H

g
. (2)

(Neglect air resistance and any variation in g.)

Solution

(a) Let u be the speed with which the ball first impacts the plane. Conservation
of energy requires 1

2
mu2 = mgH , and so u2 = 2gH . According to Newton’s

law of impact the ball rebounds with speed eu and therefore it rises to a height
H1 = e2u2

/
2g = e2H . Similarly, H2 = e2H1 = e4H , and so on.

(b) The total distance travelled is

D = H + 2(H1 +H2 + · · · ) = H + 2(e2 + e4 + · · · )H, (3)

which is (2)1. The time taken to fall through a height Hn is
√

2Hn/g = en
√

2H/g,
and therefore the total time for which the ball bounces is

T =
√

2H/g + 2(e+ e2 + e3 + · · · )
√

2H/g , (4)

which is (2)2.

Comments

(i) It is apparent from (1) that e =
√
H1/H , where H1 is the height of the first

rebound. This relation provides a simple means of measuring e.

(ii) In the elastic limit e→ 1 and therefore D, T → ∞ as one expects. Graphs of (1)
and (2) are plotted below.
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√
g/2H T

D/H
�

�
� �
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e

Question 6.5

A smooth ball is projected with speed u at an angle θ (< 1
2
π) to a horizontal surface.

It bounces across the surface in a series of hops.‡ The coefficient of restitution is e.

(a) Show that the range Rn and maximum height Hn of the nth hop are

Rn = en−1 u
2

g
sin 2θ and Hn = e2(n−1) u

2

2g
sin2 θ . (1)

(b) Show that the trajectory of the nth hop is given in terms of Hn and Rn by

yn(x) =
4Hn

R2
n

(x−Xn)(Rn − x+Xn) n = 1, 2, · · · . (2)

Here, X1 = 0 and Xn =

n−1∑
i=1

Ri for n = 2, 3, · · · .

(c) Write a Mathematica notebook to calculate the trajectory† for the first 8 hops of a
ball for which θ = 45◦ and e = 0.75. Use Mathematica’s Manipulate command
to simulate the ball bouncing across the surface.

Solution

(a) For the first hop (n = 1) the initial velocity of the ball is (u cos θ, u sin θ). For
the second hop, conservation of momentum (parallel to the surface) and Newton’s
law of impact require that the initial velocity∗ is (u cos θ, eu sin θ). In general, for

‡Before attempting this question, the reader should be familiar with Question 7.1.
†It is convenient here to express x and y in units of u2

/
g.

∗That is, the velocity immediately after the first impact with the surface.
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the nth hop the initial velocity is (u cos θ, en−1u sin θ). With this initial velocity,
(7) of Question 7.1 yields (1).

(b) The result follows directly from (10) of Question 7.1.

(c) The following notebook yields the trajectory plotted below. (In the animation,
the speed at which the ball moves along its trajectory can be adjusted using the
up arrows ∧∧ and down arrows ∨∨ on the Manipulate slider control.)
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2
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�
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,i,1,n � 1,1�
�
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 ��
1

2
Sec	Θ
2�x � X	n
��R	n
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��
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While�n � nmax,

root � x/.Solve	Y	x,n
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�
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�
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Comments

(i) The horizontal distance R = R1 + R2 + · · · that a smooth ball bounces before it
slides on the surface is

R = (1 + e+ e2 + · · · )u
2

g
sin 2θ =

1

1 − e

u2

g
sin 2θ , (3)

and the time for which it bounces is

T =
R

u cos θ
=

2

1 − e

u

g
sin θ . (4)

(ii) The ratio of the kinetic energy Kn of the ball at the start of the nth hop to the
initial kinetic energy K1 is

Kn/K1 = cos2 θ + e2(n−1) sin2 θ . (5)

Thus, Kn decreases to its final value K1 cos2 θ in a time T , at which point the ball
starts sliding and its kinetic energy is constant.

Question 6.6

A smooth billiard ball is projected from a point A on the edge of a circular billiard table
in a direction making an angle φ with the radius to A. The coefficient of restitution is
e. The ball makes q impacts with the wall before returning to A. Show that

(a) φ = 0 if q = 1 , (1)

(b) tan2 φ = e3
/
(1 + e+ e2) if q = 2 , (2)

(c) tan2 φ = e3 if q = 3 . (3)
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Solution

(a) If q = 1 there is just one impact
before the ball returns to A: the
ball moves along a diameter and
back, and φ = 0.

(b) If q = 2 the path back to A is
a triangle. In terms of the angles
shown, the condition for the ball
to reach A after impacts at B and
C is

2(φ+ φ1 + φ2) = π . (4)

For the impact at B, conservation
of momentum (along the tangent
at B) and Newton’s law of impact
require v1 sinφ1 = v sinφ and v1 cosφ1 = ev cosφ. That is,

tanφ1 = e−1 tanφ . (5)

Similarly, for the impact at C,

tanφ2 = e−1 tanφ1 = e−2 tanφ . (6)

From (4) we have tan(φ1 + φ2) = tan( 1
2
π − φ). That is,

tanφ1 + tanφ2

1 − tanφ1 tanφ2

=
1

tanφ
. (7)

From (5), (6) and (7) we obtain

e−1 tanφ+ e−2 tanφ

1 − e−3 tan2 φ
=

1

tanφ
, (8)

and hence (2). Note that for e < 1, (6) yields φ2 > φ1 > φ.

(c) If q = 3 then the path back to A is a quadrilateral. Instead of (4) we have

2(φ+ φ1 + φ2 + φ3) = 2π , (9)

where φ1 and φ2 are given by (5) and (6), and

tanφ3 = e−3 tanφ . (10)

From (9), φ+ φ1 = π − φ2 − φ3 and so tan(φ + φ1) = − tan(φ2 + φ3). Thus,

tanφ+ tanφ1

1 − tanφ tanφ1

= − tanφ2 + tanφ3

1 − tanφ2 tanφ3

. (11)



��� Solved Problems in Classical Mechanics

By substituting (5), (6) and (10) in (11), the solution is found to be (3).

Comments

(i) Graphs of the solutions (2) and (3) are shown below.

φ = tan−1 e3/2

φ = tan−1

√
e3

1 + e + e2�

�

�

� �

15◦

30◦

45◦

0.5 1.0

φ

e

In the limit e → 1 the triangle in (b) becomes equilateral and the quadrilateral
in (c) becomes square, and the motions are periodic and reversible.

(ii) In general, the condition that the ball returns to A after q impacts with the wall
is

2(φ+

q∑
i=1

φi) = (q − 1)π , where tanφq = e−q tanφ . (12)

(iii) The reader may wish to consider further questions, such as, if e �= 1, is the motion
periodic, and is it reversible (if we reverse the velocity just before the ball returns
to A, does it retrace its path back to A)?
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Question 6.7

Consider a head-on collision of two spheres. Use Newton’s law of impact (see Question
6.3) and conservation of momentum to express the velocities after impact in terms of
the masses, the velocities before impact, and the coefficient of restitution.

Solution

Let u1 and v1 be the velocity of sphere 1 along the line of centres C1C2 just before
and just after the collision, and similarly for u2 and v2. According to Newton’s law of
impact, the relative speed of separation (v2 − v1) is proportional to the relative speed
of approach (u1 − u2):

v2 − v1 = e(u1 − u2) , (1)

where e is a positive constant. Also, conservation of momentum requires

m1v1 +m2v2 = m1u1 +m2u2 . (2)

Solution of the linear equations (1) and (2) yields the desired expressions for the
velocities after impact:

v1 =
m1 − em2

m1 +m2

u1 +
(1 + e)m2

m1 +m2

u2 , v2 =
(1 + e)m1

m1 +m2

u1 +
m2 − em1

m1 +m2

u2 . (3)

Note that under interchange of the subscripts 1 and 2, (3)1 ↔ (3)2.

Comments

(i) For a totally inelastic collision e = 0 and the spheres move together after the
collision with velocity

v1 = v2 =
m1u1 +m2u2

m1 +m2

. (4)
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(ii) For an elastic collision e = 1 and the velocities

v1 =
m1 −m2

m1 +m2

u1 +
2m2

m1 +m2

u2 , v2 =
2m1

m1 +m2

u1 +
m2 −m1

m1 +m2

u2 , (5)

are different. If m1 = m2 then v1 = u2 and v2 = u1: the particles exchange their
velocities.

(iii) If m2 is a stationary target (u2 = 0) then (3) shows that

v1 =
m1 − em2

m1 +m2

u1 , v2 =
(1 + e)m1

m1 +m2

u1 . (6)

It follows that if m1 � m2 then v1 ≈ u1 (the incident sphere is hardly affected by
the collision) and v2 ≈ (1 + e)u1. If m2 � m1 then v1 ≈ −eu1 and v2 ≈ 0; in an
elastic collision the incident sphere rebounds with almost unchanged speed.

(iv) The energy Q released by the collision is given by (1) of Question 6.11.

Question 6.8

Consider an oblique collision between two smooth spheres. On a sketch of the spheres
at the instant of impact indicate the velocities just before and just after the collision.
Then, write down an equation for Newton’s law of impact (see Question 6.3) and also
the equations required by conservation of momentum.

Solution

The figure shows the velocities of the two spheres just before and just after impact, and
the angles that these velocities make with the line of centres C1C2. Here, Newton’s law
of impact applies to the relative speed of separation and the relative speed of approach
along the line of centres:

v2 cosβ2 − v1 cosβ1 = e(u1 cosα1 − u2 cosα2) . (1)

Also, there is conservation of momentum along the line of centres
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m1v1 cosβ1 +m2v2 cosβ2 = m1u1 cosα1 +m2u2 cosα2 . (2)

Furthermore, because the spheres are smooth, their interaction is along C1C2 and
therefore, for each sphere separately, the component of momentum perpendicular to
C1C2 is conserved

v1 sinβ1 = u1 sinα1 , v2 sinβ2 = u2 sinα2 . (3)

Comment

If the masses m1 and m2, and the initial values u1, u2, α1, α2, and the coefficient of
restitution e are known, then (1)–(3) can be used to solve for the four unknowns v1,
v2, β1 and β2 – that is, for the velocities v1 and v2 after an oblique impact. See Question
6.9.

Question 6.9

For the oblique collision of two smooth spheres, use Newton’s law of impact and
conservation of momentum

(
(1)–(3) of the previous question

)
to express the velocities

v1 and v2 after impact in terms of the components of the velocities before impact.

Solution

Choose a coordinate system with x- and y-axes in the plane of u1 and u2, and with the
x-axis along the line of centres C1C2 (see the above figure). Then (1) and (2) are two
simultaneous linear equations for the x-components, v1 cosβ1 and v2 cosβ2, of v1 and
v2. Also, their y-components are given by (3). Thus, we have the desired expressions

v1 = x̂
(m1 − em2)u1 cosα1 + (1 + e)m2u2 cosα2

(m1 +m2)
+ ŷu1 sinα1 (1)

v2 = x̂
(1 + e)m1u1 cosα1 + (m2 − em1)u2 cosα2

(m1 +m2)
+ ŷu2 sinα2 . (2)

Note that under interchange of subscripts 1 and 2, (1) ↔ (2).

Comments

(i) The magnitudes and directions of v1 and v2 can be obtained from (1) and (2) in
the usual way:

|vi| =
√
v2

ix + v2
iy and tanβi = viy/vix (i = 1, 2) . (3)

(ii) For a head-on collision α1 = α2 = 0, and (1) and (2) reduce to (3)1 and (3)2 of
Question 6.7.
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(iii) If m2 is a stationary target
(
that is, if u2 = 0

)
then (1) and (2) reduce to

v1 = x̂
m1 − em2

m1 +m2

u1 cosα1 + ŷu1 sinα1 (4)

v2 = x̂
(1 + e)m1

m1 +m2

u1 cosα1 . (5)

We see that after the collision m2 moves along the x-axis (the line of centres
C1C2): this is expected since the force on impact is along C1C2. Furthermore, if
m1

/
m2 = e (as, for example, in an elastic collision between equal masses) and

α1 �= 0, then v1 is perpendicular to v2.

Question 6.10

In an oblique collision between two smooth spheres a mass m1 strikes a stationary
target of mass m2. The initial and final velocities u and v of m1 make angles α and β
with the line of centres at the instant of impact. The coefficient of restitution is e.

(a) Suppose m1

/
m2 ≥ e. The deflection δ = β − α of m1 has a maximum value δmax

for some α = αm. Show that

αm = tan−1

√
m1 − em2

m1 +m2

(1)

δmax = tan−1

√
m1 +m2

m1 − em2

− tan−1

√
m1 − em2

m1 +m2

. (2)(
Hint: Use (3)2 and (4) of Question 6.9.

)
(b) What happens if m1

/
m2 < e?

Solution

(a) From (3)2 and (4) of Question 6.9 (where we omit the
subscript 1 on α and β) we see that the directions of
motion of m1 before and after impact are related by

tanβ =
m1 +m2

m1 − em2

tanα , (3)

where 0 < α < 1
2
π for an oblique impact. For the angle

of deflection δ = β − α we have

tan δ =
tanβ − tanα

1 + tanα tanβ
=

(1 + e)m2 tanα

m1 − em2 + (m1 +m2) tan2 α
. (4)

If m1/m2 > e then 0 < δ < 1
2
π. Consequently, for δ to be a maximum, tan δ must

be a maximum and therefore d tan δ
/
dα = 0. Differentiating (4) with respect to

α gives
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tanαm =

√
m1 − em2

m1 +m2

, (5)

and hence (1) for the angle at which m1 must be projected in order to obtain
maximum deflection. From (3) and (5)

tanβm =

√
m1 +m2

m1 − em2

. (6)

Equations (5) and (6) show that the maximum deflection δmax = βm −αm is given
by (2). Note that as m1

/
em2 → 1+, αm → 0+ in (5) and βm → 1

2
π in (6): thus

δmax → 1
2
π.

(b) If m1

/
m2 < e then tanβ < 0 in (3), and so 1

2
π < β < π. The maximum deflection

is obtained in the limit α→ 0+, where β → π. So

δmax = π (7)

if m1

/
m2 < e. That is, backward scattering yields the largest deflection. We see

that δmax is discontinuous at m1

/
m2 = e.

Comment

Graphs of δmax versus m1/m2, calculated from (2) and for various values of e, are
plotted below. The limiting value of 90◦ at m1

/
m2 = e is evident in each case. If

m1

/
m2 < e then δmax = 180◦.

�

�

�����

90◦

45◦

54321

e
=

0
.1

e
=

0
.5

e
=

1
.0

δmax

m1/m2

Question 6.11

Consider a collision between two particles in which their masses m1 and m2 are
unchanged. Use conservation of momentum, conservation of energy and Newton’s law
of impact to show that the energy Q released by the collision is
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Q = (1 − e2) 1
2
µ(u2 − u1)

2 , (1)

where u1 and u2 are the initial velocities and

µ =
m1m2

(m1 +m1)
. (2)

Solution

Conservation of momentum and energy require that

P = m1v1 +m2v2 = m1u1 +m2u2 and Kf +Q = Ki , (3)

where Ki = 1
2
m1u

2
1
+ 1

2
m2u

2
2

and Kf = 1
2
m1v

2
1
+ 1

2
m2v

2
2

are the initial and final kinetic
energies. Also, the law of impact requires that the relative speeds before and after the
collision are related by the coefficient of restitution:

|v1 − v2| = e|u1 − u2| . (4)

By squaring (3)1 we obtain the identity

P 2 = 2(m1 +m2)Kf −m1m2(v1 − v2)
2 = 2(m1 +m2)Ki −m1m2(u1 − u2)

2 . (5)

The desired result (1) follows directly from (3)2, (4) and (5).

Comments

(i) It is apparent from (1) that Q = 0 if e = 1: no energy is released in an elastic
collision. Also, Q > 0 if e < 1: kinetic energy is lost in an inelastic collision. If
e > 1 then Q < 0: some internal energy of the colliding particles is released and
this produces an increase in their kinetic energy.

(ii) The quantity µ defined in (2) has the dimension of mass and it is less than either
m1 or m2. It is known as the reduced mass and is an important quantity in the
theory of the two-body problem (see Chapter 10).

Question 6.12

Three particles A, B and C with masses mA = 2mB = mC are arranged (in that order)
in a straight line. Initially, B and C are at rest a distance L apart, and A is projected
towards B with speed u. The particles then undergo head-on elastic collisions. Show
that A and B collide twice and that the time interval between these two collisions is

∆t = 12L
/
7u . (1)
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Solution

For the first collision between A and B, the latter is a stationary target and (6) of
Question 6.7 (with e = 1) yields for the velocities after the collision:

v′A =
mA −mB

mA +mB

u =
u

3
, v′B =

2mA

mA +mB

u =
4u

3
. (2)

B then collides with the stationary target C, after which the velocity of B is

v′′B =
mB −mC

mB +mC

v′B = −4u

9
. (3)

Equations (2)1 and (3) show that A and B are now moving in opposite directions and
so they will collide again. The time elapsed is

∆t = L
/
v′

B
+ (L− v′

A
∆t)

/|v′′
B
| . (4)

That is,

∆t =
L

v′B

v′
B
+ |v′′

B
|

v′A + |v′′B |
. (5)

Equations (2), (3) and (5) yield (1).

Question 6.13

N identical, stationary, rigid spheres Sn (n = 1, 2, · · · , N), each of radius a, are placed
along the x-axis with their centres at positions xn, such that x1 = 2a and the distances
between the surfaces of adjacent spheres is b

/
2n. At time t = 0 an identical sphere S0,

moving in the positive x-direction with speed v, collides elastically with S1. Determine
the eventual outcome of this event if the ensuing collisions are also elastic.

Solution

The centres of the spheres are at x1 = 2a, x2 = 4a+ b/2, x3 = 6a+ 3b/4, · · · . That
is, at

xn = 2na+ (1 − 2−n+1)b , where n = 1, 2, · · · , N . (1)

The outcome of the sequence of elastic collisions that occurs for t ≥ 0 is the following:
S0 stops at x0 = x1 −2a = 0 at time t = 0; S1 stops at x1 = x2 −2a = 2a+ b/2 at time
t = b

/
2v; S2 stops at x2 = x3 − 2a = 4a+ 3b/4 after a further time b

/
4v; · · · ; and SN

is eventually ejected from the array. Therefore, after a time

b

2v
+

b

4v
+ · · · + b

2Nv
=

(
1 − 1

2N

)
b

v
(2)

there will be an array of N stationary spheres Sn (n = 0, 1, · · · , N − 1) with their
centres at

xn = xn+1 − 2a = 2na+ (1 − 2−n)b , (3)

and the sphere SN moving with speed v in the positive x-direction.
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Comments

(i) In the limit N → ∞ the outcome after a finite time b/v is an infinite array of
stationary spheres S0, S1, · · · with centres located at xn given by (3).

(ii) The time-reversed version of this infinite model has been posed as a simple
example of a ‘spontaneously self-excited’ system that demonstrates indeterminism
in classical dynamics.[1]

Question 6.14

The angular momentum L of a particle is defined in terms of its position vector r and
momentum p = mṙ by

L = r × p . (1)

Show that in an inertial frame

dL

dt
= Γ , (2)

where

Γ = r × F (3)

and F is the force acting on the particle.

Solution

The rule for differentiating a product of two functions applies also to a vector product
such as (1), because the latter is a linear combination of products ripj. Therefore,

d

dt
(r × p) = ṙ × p + r× ṗ . (4)

Now, ṙ × p = 0 because ṙ and p = mṙ are parallel vectors. Also, in an inertial frame
ṗ = F. Thus, (4) yields (2).

Comments

(i) The quantity Γ defined in (3) is known as the torque or moment of a force. It is a
familiar quantity. For example, in the use of a spanner, r and F are perpendicular
and the magnitude of the torque is rF ; in a torque wrench the value of the
maximum applied torque can be pre-set. In general, torque plays an important
role in the statics and dynamics of rigid bodies (see Chapter 12).

(ii) Equation (2) is the rotational counterpart of the equation of motion dp/dt = F.
There is, however, an important difference between vectors appearing in these two
equations. The vectors L and Γ in (1) and (3) depend on r, and therefore they
depend on our choice of coordinate origin; by contrast, the momentum p and force

[1] J. P. Laraudogoitia, “On indeterminism in classical dynamics,” European Journal of Physics,
vol. 18, pp. 180–181, 1997.
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F are independent of this choice. The values of origin-dependent quantities such
as L and Γ have meaning only with respect to a specified choice of coordinate
origin O: to emphasize this they are often referred to as the angular momentum
about O and the torque about O. Origin dependence/independence of physical
quantities and origin independence of physical laws is an interesting topic, and
some examples are given in Chapter 14.

(iii) Sometimes a ‘mixed’ definition of angular momentum is used, where the mo-
mentum and position vectors are with respect to different frames: for example,
momentum p = mṙ relative to the inertial frame with origin at O, and position
vector r − D with respect to a frame with origin Q at D relative to O (see also
Comment (iv) in Question 11.3). Then,

LQ = (r − D) × p . (5)

Clearly, since r − D does not depend on the position of O, LQ is an origin-
independent vector. If Q is fixed relative to the inertial frame then Ḋ = 0 and
one has the following extension of (2):

dLQ

dt
= (r − D) × F . (6)

(iv) The origin dependence of torque can be used to simplify certain calculations by
making a convenient choice of coordinate origin (see Chapter 12).

(v) According to (2), if the torque acting on a particle in an inertial frame is zero then
the angular momentum of the particle is conserved. This is the simplest statement
of the law of conservation of angular momentum, which is a fundamental law of
nature. Its extension to a system of interacting particles is considered in Question
11.2.

(vi) In general, if Γi = 0 then Li is constant. That is, for each component of the torque
that is zero, the corresponding component of the angular momentum is conserved.

(vii) Conservation of angular momentum is associated with invariance under rotations
of an isolated system in inertial space (see Questions 14.18 and 14.19).

(viii) Conservation of angular momentum holds even in processes for which Newtonian
dynamics fails. There are no known violations of this law.

Question 6.15

Prove that the angular momentum L = r × p of a particle is conserved in a central
force field

F = F (r)r̂ . (1)

Solution

The torque exerted on the particle is

Γ = r× F = F (r)r × r̂ = 0 , (2)

because r = rr̂ and r̂ are parallel vectors. It follows from this and Question 6.14 that
dL

/
dt = 0 and therefore L is constant.
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Comments

(i) Central forces do not necessarily conserve energy. There is, however, an impor-
tant sub-class of these forces that conserves both energy and angular momentum,
namely central, isotropic forces‡ (see Question 5.10)

F = F (r)r̂ . (3)

Force Conserves L ? Conserves E ?

Central: F (r)r̂ Yes Not necessarily

Central, isotropic: F (r)r̂ Yes Yes

Important examples of (3) are the gravitational and Coulomb (electrostatic)
forces, and for these the trajectories are usually expressed in terms of the
conserved energy E and angular momentum L (see Question 7.27).

(ii) Two important results follow from the conservation of L. First, because r is always
perpendicular to L, it follows that when the direction of L is fixed the motion is
confined to a fixed plane perpendicular to L and through the origin O (the centre
of force). This plane is defined by the initial values r0 and v0. Secondly, constancy
of the magnitude L = m|r × dr|/dt means that

|r × dr| = Ldt
/
m (4)

is a constant. Now, |r×dr| is equal to the
area of the parallelogram formed by the
vectors r and dr, and it is equal to twice
the area dA of the triangle OPQ swept
out by the position vector r in time dt.
That is,

dA = Ldt
/
2m, (5)

meaning that the position vector sweeps out equal areas in equal times. This result
is known as Kepler’s second law and it applies to all central forces.†

(iii) The conservation of energy and angular momentum by central, isotropic fields is
valid also in quantum mechanics, albeit with a twist: because of the uncertainty
principle only one component (Lz say) and the magnitude L2 can be measured
simultaneously – the components Lx and Ly are indeterminate. The fact that E,
L2, and Lz are conserved is an essential ingredient for understanding the periodic
table of the chemical elements.

‡In spherical polar coordinates F (r) = F (r, θ, φ); if F does not depend explicitly on the angles θ
and φ then F = F r̂ is isotropic as well as central.

†The law was discovered by Kepler in relation to planetary motion about the Sun (see also
Question 10.11).
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Question 6.16

A particle of mass m attached to one end of a thin, light, inextensible string moves
with speed v0 in a circle of radius r0 in free space. Calculate the work required to
reduce the radius from r0 to r by pulling the other end of the string through a smooth
tube that is perpendicular to the plane of the circle. Express the result in terms of m,
v0, r0 and r.

Solution

According to the work–energy theorem (see Question 5.1) the work done on the particle
is equal to the change in kinetic energy:

W = Kf −Ki = 1
2
mv2 − 1

2
mv2

0 , (1)

where v is the speed when the radius is r. The tension in the string is a central force
(it is always radial) and so the angular momentum of the particle is conserved as the
radius decreases (see Question 6.15):

mvr = mv0r0 . (2)

Use of (2) to eliminate v from (1) gives

W =

(
r20
r2

− 1

)
1
2
mv2

0
. (3)

Note that W < 0 if r > r0, meaning that work is done by the particle if the radius is
allowed to increase.

Question 6.17

Suppose that in the previous question the string is winding up on the outside of the
tube (instead of being pulled into it), so that the particle spirals around the tube. The
initial length of the string is r0 and the initial velocity is v0 perpendicular to the string.
The outer radius of the tube is a. Choose x- and y-axes in the plane of motion, with
origin O at the initial point of contact between the string and tube, and the string
initially along the y-axis.

(a) Show that the trajectory is given in parametric form by

x(θ) = a(1 − cos θ) + (r0 − aθ) sin θ (1)

y(θ) = a sin θ + (r0 − aθ) cos θ , (2)

where θ(t) is the angle subtended at the centre of the tube by the arc of the string
wound onto the tube.

(b) Prove that the speed v(θ) of the particle is constant. (Hint: Show that the tension
T in the string is always perpendicular to the trajectory.)
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(c) Show that

θ(t) =

(
1 −

√
1 − 2av0t

r20

)
r0
a
. (3)

How long does it take for the particle to reach the tube?

(d) Show that the velocity of the particle is given by

v(θ) = (v0 cos θ, −v0 sin θ, 0) . (4)

(e) Show that the magnitude of the angular momentum is

L(θ) = mv0(r0 − aθ + a sin θ) . (5)

(f) Show that the tension in the string (that is, the force on the particle) is

T = − mv2
0

r0 − aθ
(sin θ, cos θ, 0). (6)

(g) Show that, relative to O, the torque acting on the particle is

Γ =
2mv2

0
a

r0 − aθ

(
0, 0, sin2 1

2
θ
)
. (7)

Solution

(a) The figure (which is a schematic view
of the plane of motion) shows the initial
position A of the particle and also a por-
tion APF of the trajectory. The axis of
the tube passes through C. When the
particle is at P the string has wound
around an arc OB – of length aθ – of
the tube, so that BP = r0 − aθ. It is
therefore apparent from the figure that
the x- and y-coordinates of P are given
by (1) and (2).

(b) From (1) and (2) we have

dx

dθ
= (r0 − aθ) cos θ

dy

dθ
= −(r0 − aθ) sin θ .

⎫⎪⎪⎬⎪⎪⎭ (8)

Therefore, the slope of the tangent DE to the trajectory at P is

dy

dx
=
dy

dθ

/dx
dθ

= − tan θ . (9)

The slope of BP is cot θ, and so the product of these two slopes is −1, meaning
that BP is perpendicular to DE. That is, the tension T in the string is always
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perpendicular to the displacement vector dr of the particle. Thus, T does no work
on the particle, and according to the work–energy theorem the kinetic energy –
and therefore the speed v(θ) – is constant:

v(θ) = v0 . (10)

(c) The components of the velocity are

ẋ = θ̇
dx

dθ
= θ̇(r0 − aθ) cos θ , ẏ = θ̇

dy

dθ
= −θ̇(r0 − aθ) sin θ , (11)

and therefore the speed is

v =
√
ẋ2 + ẏ2 = θ̇(r0 − aθ) . (12)

According to (10) and (12) the angular speed is

dθ

dt
=

v0

r0 − aθ
. (13)

By integrating (13) with respect to t, and using the initial condition θ = 0 at
t = 0, we obtain (3). It follows from (3) that θ(t) increases monotonically to the
value r0/a in a time

τ = r2
0

/
2av0 , (14)

at which instant the particle reaches the tube (BP = 0).

(d) From (11) and (13) we have

ẋ = v0 cos θ , ẏ = −v0 sin θ , (15)

and hence (4).

(e) The angular momentum about O is L = mr×v, where r = (x, y, 0). With x and
y given by (1) and (2), and v by (4), a short calculation shows that

L = −mv0(r0 − aθ + a sin θ) ẑ . (16)

The magnitude of (16) is (5).

(f) Differentiation of (4) with respect to t and use of (13) yields the acceleration

a = − v2
0

r0 − aθ

(
sin θ, cos θ, 0

)
(17)

and hence the force (6). The magnitude of the tension,

T =
mv2

0

r0 − aθ
, (18)

increases without limit as the particle approaches the tube.

(g) The result follows directly from Γ = L̇ and (13) and (16).
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Comments

(i) In the above question we have used the trajectory (x, y, 0) to obtain the force on
the particle. Other examples of this type appear in Chapter 8.

(ii) The graph of θ(t) versus t/τ
(
equation (3)

)
and two examples of the trajectory(

equations (1) and (2)
)

are shown below.

0.5�

1.0�

0.5

�

1.0

�

aθ(t)/r0

t/τ

(iii) The graphs below are plots of

L(θ)

L0

= 1 − aθ

r0
+
a sin θ

r0
(19)

versus θ for r0/a = π and 8π. There is a point of inflection with horizontal tangent
whenever the particle returns to the positive y-axis (θ = 2π × integer) because
the torque about O is zero there – see (7).



Momentum and angular momentum ���

1.0 �

π

�

r0

a = π
L/L0

θ

1.0 �

8π

�

6π

�

4π

�

2π

�

r0

a = 8π
L/L0

θ

(iv) It is interesting to contrast this question with Question 6.16. In the latter the
angular momentum of the particle is conserved (because the force is central), but
the kinetic energy is not conserved (because work is done on the particle as it is
pulled in). In the present question the angular momentum is not conserved (the
force is not central), but the kinetic energy is conserved (because no work is done
on the particle as the string winds around the tube).

Question 6.18

Consider a pendulum (see Question 4.3) whose length �
varies with time.

(a) Show that the equation of motion in the absence of
damping is

� θ̈ + 2�̇ θ̇ + g sin θ = 0 . (1)

Do this in three different ways:

1. Using Γ = L̇,

2. using F = ma, and

3. using Lagrange’s equation
d

dt

(∂L

∂θ̇

)
− ∂L

∂θ
= 0,

where L = K − V is the Lagrangian.

(b) Suppose �(t) = �0 + αt, where �0 and α are constants. Solve (1) for θ(t) for
small θ and subject to the initial conditions θ(0) = θ0 and θ̇(0) = 0.(
Hint: The solution can be expressed in terms of Bessel functions.

)
Solution

(a) 1. With respect to O, the torque and angular momentum are Γ = mg� sin θ ẑ

and L = −m�2θ̇ ẑ. The relation Γ = L̇ gives (1).

2. The component equations of F = ma are

mẍ+ Tx/� = 0 and mÿ + Ty/�−mg = 0 . (2)

If we multiply (2)1 by y and (2)2 by x and subtract, the result is
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yẍ− xÿ + gx = 0 . (3)

Now, x = � sin θ and y = � cos θ, and so (3) reduces to (1).

3. The kinetic energy of the pendulum K = 1
2
mv2 = 1

2
m(�θ̇)2 and potential

energy V = −mgy = −mg� cos θ yield a Lagrangian L = 1
2
m�2θ̇2 + mg� cos θ.

Equation (1) then follows from Lagrange’s equation.

(b) By making use of the chain rule
dθ

dt
=
d�

dt

dθ

d�
= α

dθ

d�
and approximating sin θ by

θ, (1) becomes

�
d2θ

d�2
+ 2

dθ

d�
+

g

α2
θ = 0 . (4)

For �(t) = �0 + αt and the given initial conditions, the general solution of (4) is

θ(t) = π

√
g

�

�0
α

[
−J1

(2
√
g�

α

)
N2

(2
√
g�0
α

)
+ J2

(2
√
g�0
α

)
N1

(2
√
g�

α

)]
θ0 , (5)

where Jk and Nk are Bessel functions of the first and second kind of order k,
respectively.[2]

Comments

(i) The above problem of a simple pendulum with variable length has an interest-
ing history dating back to the beginning of the eighteenth century.[3] Practical
questions of the type: ‘How long does it take to pull a swinging bucket out of
a mine well?’ could have motivated these studies.[3] Later, Lorentz posed it as
a question in relation to quantum theory at the first Solvay Congress in 1911.
Chandrasekhar brought the problem to the attention of Littlewood who
subsequently published a paper on it titled ‘Lorentz’s pendulum problem’.[4]

(ii) If θ is not small then (1) cannot be solved analytically. Numerical solutions are
considered below.

Question 6.19

(a) For Question 6.18, use Mathematica to find a numerical solution of the equation
of motion � θ̈ + 2�̇ θ̇ + g sin θ = 0 for θ(t) when �(t) = �0 + αt. Assume θ0 = 60◦

and θ̇(0) = 0. Take g = 9.8 ms−2, �0 = 10.0 m, and α = 0.1 ms−1 (a lengthening
pendulum). Repeat this for α = −0.1 ms−1 (a shortening pendulum).

1. Plot the graphs of θ(t) for both values of α and for 0 ≤ t ≤ 85 s.

2. Plot the trajectory of the lengthening pendulum up to t = 180 s.

[2] M. Boas, Mathematical methods in the physical sciences, pp. 598–599. Wiley, 3rd edn, 2006.
[3] L. LeCornu, “Mémoire sur le pendule de longueur variable,” Acta Mathematica, vol. 19, pp. 201–

249, 1895.
[4] J. E. Littlewood, “Lorentz’s pendulum problem,” Annals of Physics, vol. 21, pp. 233–242, 1963.
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(b) In the Mathematica notebook change θ0 to 1◦. Calculate the quarter-periods T ′′
n

(n = 1, 2, 3 · · · ) for the first sixteen quarter-cycles for both values of α and tabulate
these results. Plot graphs of the half-periods T ′

n versus n on the same axes.

(c) Derive an approximate formula for the half-periods T ′
n, assuming small oscillations

and |α| � √
�0g.

(d) For the energy E(t) = K + V , consider a shortening pendulum with �0 = 10.0 m
and α = −1.0 ms−1. Plot graphs of E(t)

/
E(0) for 0 ≤ t ≤ 9 s and for θ0 = 10◦

and θ0 = 45◦ .

Solution

(a) 1. The Mathematica notebook below produces the graphs:

60◦�

−60◦�

85�

α = 0.1ms−1 and θ0 = 60◦θ

t (s)

60◦�

−60◦�

85�

α = −0.1ms−1 and θ0 = 60◦θ

t (s)

In[1]:= g � 9.8�Α � 0.1�Θ0 � 60
Π

180
�Θ0dot � 0.0�

L0 � 10.0�Lf � 20.0�T �
�Lf � L0�

Α
�

Sol � NDSolve	�L0 � Α t� Θ��	t
 � 2 Α Θ�	t
 � g Sin	Θ	t

 �� 0,

Θ	0
 �� Θ0, Θ�	0
 �� Θ0dot� ,Θ	t
,Θ�	t
�,t, 0., T�
�

Plot�Evaluate�180
Π

Θ	t
/.Sol�, t,0,T�,

PlotRange � 0,85�,�60,60���
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2. The trajectory of the lengthening pendulum from A (t = 0) to B (t = 180 s)
is:

(b) Values of the quarter-periods T ′′
n of the nth quarter-cycle

(
measured from a root

of θ(t) to the contiguous root of dθ
/
dt
)

are tabulated below.

α = 0.1 ms−1

n T ′′
n (s) n T ′′

n (s) n T ′′
n (s) n T ′′

n (s)

1 1.600798 5 1.651155 9 1.701506 13 1.751862
2 1.598080 6 1.648435 10 1.698788 14 1.749142
3 1.625977 7 1.676332 11 1.726685 15 1.777039
4 1.623258 8 1.673612 12 1.723965 16 1.774321

α = −0.1 ms−1

n T ′′
n

(s) n T ′′
n

(s) n T ′′
n

(s) n T ′′
n

(s)

1 1.572901 5 1.522500 9 1.472197 13 1.421843
2 1.575621 6 1.525269 10 1.474914 14 1.424559
3 1.547727 7 1.497373 11 1.447020 15 1.396667
4 1.550445 8 1.500091 12 1.449738 16 1.399384

Values of the half-period T ′
n

of the nth half-cycle (n = 1, 1 1
2
, 2, 2 1

2
· · · ) were

calculated by adding successive quarter-periods.‡ This yields the following graphs.

‡Here, integral values of n correspond to adding quarter-periods from the same half-cycle, whereas
half-integral values of n correspond to adding the second quarter-period of the nth half-cycle to the
first quarter-period of the (n + 1)th half-cycle.
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2�

3�

4�

25

�

20

�

15

�

10

�
5

�
α = −0.1ms−1

α = 0.1ms
−1

θ0 = 1◦T ′
n
(s)

n

The slopes of these straight lines, obtained by linear regression, are ±0.050355 s.

(c) For small oscillations we can make the harmonic approximation

T ′
n

= π

√
�

g
. (1)

Here, � = �0 + αt and t ≈ (n− 1)T ′
1 = (n− 1)π

√
�0
g

. That is,

T ′
n
≈ π

√
�0 + α(n− 1)π

√
�0/g

g
= π

√
�0
g

√
1 +

α(n− 1)π√
�0g

. (2)

If |α| � √
�0g we can approximate (2) by an expansion to first order in α:

T ′
n ≈ π

√
�0
g

+
π2α

2g
(n− 1) . (3)

According to (3), a plot of T ′
n versus n should be a straight line with slope π2α/2g.

For α = ±0.1 ms−1 and g = 9.8 ms−2 the values of this slope are ±0.050355 s,
which are the same (to five figures) as the values obtained from the graphs in (b).

(d) We choose the zero of potential energy at y = �0. Then, E(t) = K + V =
1
2
m�2θ̇2 +mg(�0 − � cos θ) and so

E(t)

E(0)
=

1
2
�0
(
1 + αt

�0

)2
θ̇2 + g

(
1 − (

1 + αt
�0

)
cos θ

)
g(1 − cos θ0)

. (4)

Plots of (4) for a shortening pendulum with θ0 = 10◦ and 45◦, and α = −0.1 ms−1

are shown below.
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30 �

60 �

5

�

10
�

θ0 = 10◦
α = −1.0m s−1; �0 = 10m

E(t)
E(0)

t (s)

4 �

8 �

10

�

5

�

θ0 = 45◦
α = −1.0m s−1; �0 = 10m

E(t)
E(0)

t (s)

Comments

(i) The small-angle solution expressed in terms of Bessel functions
(
see (5) of

Question 6.18
)

is reasonable for |θ| � 5◦.
(ii) The trajectory from A to B plotted in part (a) above, was calculated for α > 0. A

similar calculation shows that for the corresponding α < 0 the pendulum moves
along the same path but in the reverse direction, from B to A. This reversibility
is expected since the system is frictionless.

(iii) The values of the quarter-periods, given for θ0 = 1◦ in the first of the above tables,
for a lengthening pendulum shows that an inward swing (n odd) takes longer
than either the preceding or following outward swing. A proof of this result based
on properties of the zeros of Bessel functions has been given by Chambers (see
Ref. [2] ). The reverse is true for a shortening pendulum (see the second table).
Interestingly, these feature occur also for large values of θ0. This variation in the
quarter-periods is absent in the half-periods, as the above graphs of T ′

n show.

(iv) For |θ| � 10◦ the rate at which the external agent does work on the pendulum is
approximately constant, as illustrated above.

(v) There are other interesting physical systems for which the equation of motion is
the analogue of the small-angle approximation to (1) of Question 6.18. For exam-
ple, for an undamped linear mechanical oscillator having a time-dependent mass(
mẍ + ṁ ẋ + kx = 0

)
and an LC circuit having a time-dependent inductance(

Lq̈ + L̇ q̇ + q/C = 0
)
. Here, the counterpart of θ is the displacement x for the

mechanical oscillator or the charge q on the capacitor for the electrical oscilla-
tor. Note that the term containing ṁ (or L̇) simulates damping linear in ẋ or q̇.
The solutions of these equations are decreasing (increasing) oscillatory functions,
depending on whether ṁ or L̇ is positive (negative), such as those depicted in
part (a) above.
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Motion in two and three dimensions

This chapter contains a variety of problems that illustrate the use of vector techniques
and calculus in the solution and analysis of two- and three-dimensional motion. Most
of the questions are solved using a Cartesian system; included among these is the
fundamental problem of motion in an inverse-square force, which is more traditionally
treated in polar coordinates.

Question 7.1

A particle of mass m is projected in a uniform gravitational field. The initial conditions
at time t = 0 are‡

r0 = 0 and v0 = u = (u1, u2, u3) . (1)

(a) Determine the trajectory r(t) in terms of u and g (the gravitational acceleration),
and show that it is a parabola.

(b) Determine the range of the projectile on a horizontal plane, and its maximum
height above the plane (in terms of the ui and g). Hence, determine the maximum
range.

Solution

(a) We integrate the equation of motion

m
dv

dt
= mg , (2)

with respect to t between the limits t = 0 and t, and use the initial condition (1)2.
Because g is a constant this yields∫ v(t)

u

dv = g

∫ t

0

dt , and so v(t) = u(t) + gt . (3)

To find r(t) we recall that dr
/
dt = v and integrate (3) with respect to t, taking

account of the initial condition (1)1. This gives

‡We will often use u, rather than v0, to denote the initial velocity; this simplifies the notation by
avoiding the occurrence of double subscripts (as in, for example, v01).
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∫
r(t)

0

dr =

∫ t

0

(u + gt)dt , and thus r(t) = ut+ 1
2
gt2. (4)

To interpret this trajectory it is convenient to orient the coordinate axes so that
the y-axis is vertically upward and the initial velocity is in the xy-plane. Thus,
g = (0, −g, 0), where g > 0, and u = (u1, u2, 0). Then (4) yields the two para-
metric equations

x = u1t , y = u2t− 1
2
gt2, (5)

and consequently the parabola

y =
u2

u1

x− g

2u2
1

x2. (6)

(b) This parabola has intercepts at x = 0
and x = 2u1u2/g, and maximum value
ymax = u2

2
/2g at x = u1u2/g. Thus,

the range R on a horizontal plane and
the maximum height H of the projectile
above this plane are given by

R =
2u1u2

g
, H =

u2
2

2g
. (7)

Now, u1 = u cos θ and u2 = u sin θ,
where θ is the angle of projection. Thus,

R(θ) =
u2

g
sin 2θ . (8)

θ
�

�

u

R/2 R

H

y

x

It follows that the range is a maximum when sin 2θ = 1, that is θ = 1
4
π:

Rmax =
u2

g
when θ = 1

4
π . (9)

Comments

(i) The trajectory (4) is independent of the mass m of the particle. This feature is a
result of our tacit use of the weak equivalence principle – that the gravitational and
inertial masses mG and mI can be taken to be the same. Without this assumption
the equation of motion (2) is mIv̇ = mGg, and consequently g is replaced by
(mG

/
mI)g in (3) and (4). The experimental basis for the equivalence principle is

discussed in Questions 2.4 and 2.5.

(ii) If the particle is subject to friction then the trajectory is, in general, dependent
on m (see Questions 7.7 and 7.8).

(iii) The trajectory (6) can also be expressed in terms of H and R as

y =
4H

R

(
x− x2

R

)
. (10)
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(iv) The parabolic trajectory (6) for motion in a uniform field can be a good approx-
imation to projectile motion in the non-uniform field of an idealized (spherically
symmetric) Earth. The latter trajectory is part of an ellipse with one focus at the
centre C of the Earth (see Question 8.9):

This approximation was known to Newton, and the conditions for its validity are
usually given as eitherH � Re or R� Re, or both, where Re is the Earth’s radius.
Burko and Price[1] have analyzed in detail the reduction of an exact, elliptical
trajectory to an approximate, ‘flat-Earth’ parabola and shown that it requires
two conditions: 1. H � Re, 2. The maximum curvature of the trajectory

(
g
/
u2

1

where u1 is the velocity at the apex
)

should be large compared to the Earth’s

curvature R−1
e . According to (7) this means R � √

HRe, which is more restrictive
than the condition R � Re.

Question 7.2

For the projectile discussed in the previous question, show that the range on a plane
inclined at an angle α to the horizontal is

R(α) =
2u2

g cos2 α
cos θ sin(θ − α) , (1)

for − 1
2
π ≤ α ≤ θ. Deduce that R is a maximum for

θ = 1
4
π + 1

2
α , (2)

and determine Rmax.

[1] L. M. Burko and R. H. Price, “Ballistic trajectory: parabola, ellipse, or what?,” American
Journal of Physics, vol. 73, pp. 516–520, 2005.



��� Solved Problems in Classical Mechanics

Solution

We resolve the trajectory (4) of Question 7.1 into components x′ (parallel to the plane)
and y′ (perpendicular to the plane) by resolving u and g along these directions:

x′ = u cos(θ − α)t− 1
2
(g sinα)t2 and y′ = u sin(θ − α)t− 1

2
(g cosα)t2. (3)

α

θ

u
x′

y

x

From (3)2 with y′ = 0, the time taken by the projectile to reach the plane is

t =
2u sin(θ − α)

g cosα
. (4)

Equations (3)1 and (4) yield (1). Use of the trigonometric identity 2 cosA sinB =
sin(A+B) − sin(A−B) shows that (1) can be expressed as

R =
u2

g cos2 α

[
sin(2θ − α) − sinα

]
. (5)

According to (5), R is a maximum when 2θ − α = 1
2
π, which is (2). From (5) and (2)

the maximum range is

Rmax(α) =
u2

g

1 − sinα

cos2 α
=

u2

g(1 + sinα)
. (6)

Comments

(i) Graphs of (2) and (6) for − 1
2
π ≤ α ≤ 1

2
π are shown below. For α = 0 the values

of θ and Rmax are those of (9) in the previous question. For a downward tilt of
the plane (α < 0) the maximum range is increased and, as one expects, it tends
to infinity as α→ − 1

2
π. An upward tilt decreases the maximum range: increasing

α from 0 to 1
2
π has the effect of halving Rmax (from u2

/
g to u2

/
2g).
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π/2−π/2

π
4

π
2

�

�

α

θ

π/2−π/2

5.0

1.0

�

�

α

g
u2Rmax

(ii) We can also regard (5) as a relation between u and θ for fixed R and α. The
derivative du

/
dθ is zero when θ is given by (2): by inspection of (5), u(θ) is a

minimum at this angle. Thus, the same angle θ that maximizes the range R of
the projectile for a given launch speed u, also minimizes the required speed u for
a given range R:

30◦

�

90◦

�

60◦

�1

�0

�2

�3

u(θ)√
Rg

R(θ)
u2/g

α = 30◦

θ

Question 7.3

A projectile is fired from the origin with velocity u = (u1, u2) at time t = 0. At the
same instant a target is released from rest at the point (X, Y ). Assume that g is
constant and neglect air resistance.

(a) Show that the condition for the particles to collide is

tan θ = Y
/
X , (1)

where θ is the angle of projection.

(b) Determine the value of the initial speed u for which the collision occurs 1. at

‘ground level’ (y = 0), and 2. at the apex of the projectile’s trajectory (y = H).
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Solution

(a) The condition for the two particles to collide is that their y-coordinates be equal
at the instant t when their x-coordinates are equal. That is,

u2t− 1
2
gt2 = Y − 1

2
gt2 when u1t = X. (2)

Therefore

u2

/
u1 = Y

/
X , (3)

which is (1) because u1 = u cos θ and u2 = u sin θ.

(b) 1. For a collision at y = 0, (2) requires Y − 1
2
gX2

/
u2

1
= 0 and therefore

u1 =
√
gX2

/
2Y . (4)

According to (3) and (4) the initial speed
is

ug =
√
u2

1
+ u2

2

=
√
g(X2 + Y 2)

/
2Y . (5)

2. At the apex y = u2
2

/
2g (see (7)2 of

Question 7.1), and so for a collision at
this point it is necessary that

Y − gX2
/
2u2

1
= u2

2

/
2g . (6)

The solution to the simultaneous equa-
tions (3) and (6) is

u1 =
√
gX2

/
Y , u2 =

√
gY , (7)

and therefore

ua =
√
g(X2 + Y 2)

/
Y =

√
2 ug . (8)

�

u
<

u
g

u = u
g

ug < u < ua

u = ua

u >
u a

u
�

u a

target
tra

jectory

(X,Y )
•

X

Y

y

x

Comments

(i) The result (1) is remarkable in that it is independent of g, u and the masses of the
particles. This simplicity is removed if we relax any of the assumptions on which
(1) is based (constant g, no drag, equality of inertial and gravitational masses,‡

simultaneity of starting the motions). The next question deals with the effect of
a time delay in releasing the target.

(ii) According to (b) above, the possible points of collision for a given angle of pro-
jection depend on the initial speed u, as illustrated in the diagram. If u� ua the
projectile travels in very nearly a straight line to the target. The dashed curve is
for a collision below the xz-plane.

‡See Question 2.5.
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Question 7.4

Suppose that the projectile in Question 7.3 is fired at time t = 0, while the target is
released at t = t0 (which can be positive or negative).

(a) Show that the condition (1) for a collision is modified to read

sin θ = A cos θ +B , (1)
where

A(t0) =
Y

X
− gt20

2X
and B(t0) =

gt0
u
. (2)

(b) Show that the relevant solution, θ(t0), of (1) is given by

tan θ =

Y
X − gt20

2X + gt0
u

√
1 +

(
Y
X − gt20

2X

)2
− g2t20

u2

1 − g2t20
u2

. (3)

(c) Suppose

X = 8.0 m , Y = 6.0 m , u = 11.0 ms−1 , and g = 9.8 ms−2 . (4)

Plot the trajectories for 1. t0 = 0, and 2. t0 = ±1

5

√
2Y

g
.

(d) Plot a graph of y(t0) = Y − 1
2
g(t − t0)

2 versus t0 for −0.5 s ≤ t0 ≤ 1.05 s. Use
the parameters in (4) and t = X

/
u1 where u1(t0) = u cos θ(t0), see Question 7.3.

Write a Mathematica notebook to determine the value(s) of t0 that correspond to
a collision 1. at y(t0) = 0, and 2. at the maximum value of y(t0).

(e) Plot a graph of θ(t0)
/
θ0 versus t0 for 0◦ ≤ θ(t0) ≤ 90◦ and θ0 = tan−1(Y

/
X).

Solution

(a) Instead of (2) in Question 7.3, the condition for a collision at time t is now

u2t− 1
2
gt2 = Y − 1

2
g(t− t0)

2 when u1t = X . (5)

That is,
u2 =

(
Y
/
X − 1

2
gt2

0

/
X
)
u1 + gt0 , (6)

which is (1) because u1 = u cos θ and u2 = u sin θ.

(b) We convert (1) to a quadratic equation in tan θ by writing it as tan θ−A = B sec θ
and squaring both sides of this equation. Then, after using the identity
sec2 θ = 1 + tan2 θ, we obtain

(1 −B2) tan2 θ − 2A tan θ +A2 −B2 = 0 . (7)

The solution to this equation which has the required property that θ increases
for small, positive values of t0 is (3): for small values of |t0|, (3) simplifies to the
linear relation

tan θ = Y
/
X + (gt0

/
u)
√

1 + Y 2
/
X2 . (8)

That is, one should aim higher if the target is released slightly late.
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(c) The angle of projection for no time delay is θ0 = tan−1(Y
/
X) = 36.9◦. With

t0 = 0.221 s, we find from (3) that θ(t0) = 45.0◦ and θ(−t0) = 26.6◦. The corre-
sponding trajectories of the projectile, calculated using (6) of Question 7.1, are
plotted below. Also shown is the vertical trajectory of the target.

�

�

θ(−t0)
θ0

θ(t0)

trajectory
target

(X, Y )•

X

Y

y

x

(d) The graph for the y-coordinate of the collision, y(t0), is:

−0.5

�

0.5

�

1.0

•

••

0.50

�

0.25

�

−0.25

�

y(t0)
Y

t0 (s)

The notebook below gives 1. t0 = 1.00 s and t0 = −0.332 s; 2. t0 = 0.635 s.

In[1]:= X � 8.0�Y � 6.0�g � 9.8�u � 11.0�

Θ	t0_
 �� ArcTan� Y
X �

g t02

2 X �
g t0
u

�
1 � 	 YX � g t02

2 X 
2 � g2 t02

u2

1 � g2 t02

u2

��
t	t0_
 ��

X

u Cos	Θ	t0


� f	t0_
 �� Y � 0.5 g �t	t0
 � t0�2�

t0 � t0/.FindRoot�Y �� 1

2
g �t	t0
 � t0�2,t0,0.99��

t0 � t0/.FindRoot	f�	t0
 �� 0,t0,0.5�
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(e) The following graph is a plot of θ(t0)
/
θ0 versus t0, obtained from (3) for the values

in (4). The dashed parts of the curve are for collisions below the xz-plane.

���

�

1.00.5−0.5

2.0

1.0

θ(t0)
θ0

t0 (s)

Question 7.5

Consider a point P( 1
2
R, Y ) on the symmetry axis of the parabolic trajectory of the

projectile in Question 7.1. Determine the position(s) (xc, yc) of closest approach of the
projectile to the point P if Y > 0.

Solution

According to Pythagoras’s theorem the distance D (> 0) between some point P(X, Y )
and a point (x, y) on the trajectory satisfies

D2(x) = (x−X)2 + (y − Y )2 . (1)

A minimum D requires dD
/
dx = 0, and therefore dD2

/
dx = 0: from (1) and with y

given by (10) of Question 7.1 we have

x3 − 3R

2
x2 +

R2

2

(
1 +

Y

2H
+

R2

16H2

)
x− R3

8H

(
Y +

XR

4H

)
= 0 . (2)

Solution of this cubic equation will give the x-coordinate xc of the point of closest
approach to some point P(X, Y ) in the xy-plane. We restrict ourselves to a point P
on the symmetry axis, X = 1

2
R. For this value of X we can simplify (2) by making

the change of variable x = w + 1
2
R. Then, (2) becomes

w3 − 1
4
R2
(
1 − Y

/
H −R2

/
8H2

)
w = 0 , (3)

which has roots

w = 0 and w = ± 1
2
R
√

1 − Y
/
H −R2

/
8H2 . (4)
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H�

R/2
�

D
(x)

(x, y)

•
R

•

P( 1
2
R, Y )•

y

x
Thus, the possible x-coordinates of the point of closest approach are

x0

c
= R

/
2 and x±

c
= 1

2
R

[
1 ±

√
1 − Y

/
H −R2

/
8H2

]
. (5)

The possible y-coordinates of the point of closest approach, obtained by substituting
(5) in (10) of Question 7.1, are: y0

c
= H and y±

c
= Y +R2

/
8H .

Comments

(i) Which of the roots in (5) give the x-coordinate(s) of closest approach depends on
the value of Y . For

Y < H(1 −R2
/
8H2) (6)

the relevant roots are x±
c

(the values of D for these two roots are equal). For

Y ≥ H(1 −R2
/
8H2) (7)

the solution is x0
c. It is helpful here to think of circles that can be inscribed within

a parabola:

x+
c

�

x0
c = R/2

�

x−
c

�

H�

R
•

×

×

×

×

C4

C1

C2

C3

y

x
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If Y satisfies (6), the inscribed circle C1 with centre ( 1
2
R, Y ) shows that the

relevant solutions are x±c , whereas if Y satisfies (7), we have circles such as C2

and C3, and the x-coordinate of closest approach is x0
c
. That is, D(x) has either

two minima and a local maximum, or just one minimum:

Y < H(1 −R2/8H2)

���

•

x−
c x+

c
x0

c

D(x)

x

Y ≥ H(1 −R2/8H2)

�

•

x0
c

D(x)

x

(ii) For points P(X, Y ) off the symmetry axis one must solve (2). The interpreta-
tion of the results is lengthy and involves an interesting analysis of the roots of
a cubic equation. Alternatively, one can obtain a numerical solution with Mathe-

matica’s FindRoot function. For P(R, 2
3
H), for example, we find xc ≈ 0.83R and

yc ≈ 0.56H (see the semi-circle C4 above).

Question 7.6

A projectile is fired from a platform that is moving horizontally with velocity
V = (V, 0, 0). The initial velocity of the projectile relative to the platform is
u = (u1, u2, 0). Show that the range on a horizontal plane through the platform is

R(θ) =
u2

g
sin 2θ +

2V u

g
sin θ , (1)

where u =
√
u2

1
+ u2

2
and θ is the angle of projection (0 ≤ θ ≤ 1

2
π). Determine the

value of θ that makes R a maximum, and calculate Rmax in terms of u, V and g.

Solution

The effect of the motion of the platform is simply to replace the horizontal component
u1 of the initial velocity relative to the Earth with u1 + V . Thus, (7)1 of Question 7.1
becomes

R =
2(u1 + V )u2

g
, (2)

which is (1) because u1 = u cos θ and u2 = u sin θ. To find the maximum range we
first differentiate (1) with respect to θ and set the result equal to zero: then use of the
identity cos 2θ = 2 cos2 θ − 1 yields the quadratic equation
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2u cos2 θ + V cos θ − u = 0 . (3)

The value of θ that makes R a maximum is given by the positive root of (3), that is

cos θ = 1
4

(− ε+
√
ε2 + 8

)
, (4)

where ε = V/u. The corresponding value of sin θ =
√

1 − cos2 θ is

sin θ =

√
1
2
− 1

8
ε2 + 1

8
ε
√
ε2 + 8 . (5)

From (1), (4) and (5) we obtain the maximum range

Rmax =
u2

2g

(
3ε+

√
ε2 + 8

)√
1
2
− 1

8
ε2 + 1

8
ε
√
ε2 + 8 . (6)

Comments

(i) When ε = 0 (i.e. V = 0), (4) and (6) reduce to (9) of Question 7.1.

(ii) The dependence of θ and Rmax on ε = V/u obtained from (4) and (6) is shown
in the following figures. Note that for ε > 0 the platform is moving towards the
target, while for ε < 0 it is moving away. The dotted lines represent asymptotic
values.

4−1

π
4

π
2

�

�

ε

θ

2−1

4

1

2ε

�

�

ε

g
u2Rmax

Question 7.7

A projectile of mass m is fired from the origin with initial velocity u in a uniform
gravitational field. Assume a linear drag equal to −αv (α is a positive constant) due
to the surrounding medium, and determine the trajectory r(t) in terms of m, α, u and
the gravitational acceleration g.
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Solution

The equation of motion is

m
dv

dt
= mg − αv . (1)

The substitution v = gτ + w, where τ = m/α is a characteristic time, changes (1)
into the homogeneous equation

dw

dt
+

w

τ
= 0 , (2)

whose general solution is w = w0e
−t/τ . Thus, the general solution to (1) is

v(t) = gτ + w0e
−t/τ. (3)

The initial condition v(0) = u requires w0 = u − gτ , and therefore

v(t) = gτ + (u− gτ)e−t/τ. (4)

Integrating (4) with respect to t, subject to the initial condition r(0) = 0, gives the
trajectory

r(t) = gτt+ τ(u− gτ)
(
1 − e−t/τ

)
. (5)

Comments

(i) The velocity (4) and the trajectory (5) both depend on the mass m. For vanish-
ing drag (i.e. τ → ∞) they have the mass-independent limits v = u + gt and
r = ut+ 1

2
gt2 discussed in Question 7.1.

(ii) The trajectory (5) lies in a vertical plane defined by the vectors g and u. With
axes oriented so that g = (0, −g, 0) and u = (u1, u2, 0) (see Question 7.1), the
motion is in the xy-plane. Then, by eliminating t from the component equations
of (5), we have

y(x) = gτ2 ln

(
1 − x

τu1

)
+

(
u2

u1

+
gτ

u1

)
x . (6)

The diagram below illustrates this trajectory for u = 100 ms−1, g = 9.8 ms−2,
θ = 1

6
π and various values of τ .

(iii) The above calculation is readily extended to include the effect of a constant cross-
wind V. The frictional force (which is proportional to the velocity of the projectile
relative to the air) is equal to −α(v − V), and the equation of motion (1) is
modified to read

mv̇ = mg − α(v − V) = (mg + αV) − αv . (7)

Therefore, the solution r(t) is obtained by making the substitution g → g + V/τ
in (5). The resulting trajectory lies in an inclined plane defined by g+V/τ and u.

(iv) A linear drag applies only at low Reynolds numbers; more commonplace is the
quadratic drag encountered at higher Reynolds numbers (see Question 3.8). This
problem cannot be solved analytically, and a numerical solution is given in the
next question.
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Question 7.8

A projectile of mass m fired from the origin with initial velocity u in a uniform gravi-
tational field g experiences a quadratic drag equal to −βv2 ( β is a positive constant).
Solve the equation of motion mr̈ = mg− β|v|v numerically and obtain the trajectory
y(x), taking u = 100 ms−1, θ = 1

6
π, g = 9.8 ms−2 and the following values of m/β:

100 m, 250 m, 500 m, 900 m, 1500 m and 4500 m. Plot these trajectories on the same
graph and show also the case for zero drag (m/β → ∞).

Solution

We solve the equation of motion r̈ = g − λ−1|v|v (where λ = m/β is a characteristic
length) using the following Mathematica notebook. This yields the trajectories shown
below.

In[1]:= u � 100.0�Θ � 30
Π

180
�g � 0,�9.8��Λ0 � 4500�tmax �

2 u Sin	Θ
�
Dot	g,g


�

Λ	t_
 �� Λ0 �� Use Λ	t_
 for Q 7.8 ��

�� Y0 � 7460� Λ	t_
 �� Λ0 Exp�y	t

Y0
� �� �� Use Λ	t_
 for Q 7.9 ��

x0 � 0�y0 � 0�vx0 � u Cos	Θ
�vy0 � u Sin	Θ
�

r	t_
 �� x	t
,y	t
��v	t_
 ��
�
x�	t
2 � y�	t
2�

EqnMotion � Thread�r��	t
 � g � r�	t
v	t


Λ	t

�� 0��
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In[2]:= InitCon � Join	Thread	r	0
 �� x0,y0�
,Thread	r�	0
 �� vx0,vy0�

�

Sol � NDSolve	Join	EqnMotion,InitCon
,x	t
,y	t
�,t, 0, tmax�
�

tmax � t/.FindRoot	y	t
 �� 0 /.Sol,t,tmax�
�

ParametricPlot	Evaluate	x	t
,y	t
�
/.Sol,t,0,tmax�
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Comment

It is sometimes stated in the literature that the maximum range of a projectile in a
resistive medium is attained for an angle of projection θm that is always less than the
value of 45◦ for no drag. This seems to be based largely on intuition and the case for
linear drag, for which it can be proved[2] that θm < 45◦. However, a detailed analysis
by Price and Romano[3] has shown that in general the behaviour is richer than this.
They studied projectile motion subject to a power-law drag force Fd = −γvnv̂, and
found the following. In general, θm depends on the drag parameters n and k = γvn

0

/
mg

(the ratio of the initial drag force to the weight of the projectile). In the limit of weak
drag (k small) they evaluated θm to first order in k and found that θm < 45◦ when n
is less than a critical value nc ≈ 3.41, whereas θm > 45◦ for n > nc. The largest value
of θm ≈ (45 + 4k)◦ occurred for n ≈ 8. Computer calculations for larger k showed
that nc increases with k and that θm did not exceed about 47◦. By contrast, for strong

[2] R. H. Price and J. D. Romano, “Comment on ‘On the optimal angle of projection in general
media’, by C. W. Groetsch [Am. J. Phys. 65 (8), 797–799 (1997)],” American Journal of Physics,
vol. 66, p. 114, 1998.

[3] R. H. Price and J. D. Romano, “Aim high and go far – optimal projectile launch angles greater
than 45◦,” American Journal of Physics, vol. 66, pp. 109–113, 1998.
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drag and n < nc, the values of θm are small, meaning that very shallow trajectories
are required for maximum range. For ‘high’ trajectories, these conclusions are altered
due to the variation of atmospheric density with altitude (see below).

Question 7.9

Suppose the projectile of the previous question moves through an isothermal atmo-
sphere. The only effect on the equation of motion r̈ = g − λ−1|v|v is to replace λ by
λey/Y, where Y is a positive constant (see Question 3.14). Make the necessary change
to the Mathematica notebook above, and then determine the angle of projection θ (to
the nearest degree) that gives maximum range when g = 9.8 ms−2, u = 1000 ms−1,
λ = 30 000 m and Y = 7460 m.

Solution

From graphs such as the following we find that for the above parameters the maximum
range occurs when θ = 50◦. To ‘go further’ one must aim ‘higher’ (above 45◦) to reach
a less-dense atmosphere.

θ = 60◦
θ = 55◦
θ = 50◦
θ = 45◦

24 �

12 �

50

�

25

�

λ = 3 × 104 m
y (km)

x (km)

Question 7.10

A straight section of river flows with speed V between parallel banks a distance D
apart. A boat crosses the river, travelling with constant speed u relative to the water,
in a direction perpendicular to the current. Determine the boat’s path relative to the
banks (a) if V is equal to a constant V0, and (b) if V is zero at the banks and increases
quadratically to a maximum V0 in midstream. In each case determine the distance
that the boat is carried downstream in crossing the river, and plot the trajectory.
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Solution

Choose x- and y-axes fixed relative to the banks as shown, and let the boat start at
the origin O. The velocity (ẋ, ẏ) of the boat relative to these axes is the vector sum
of its velocity relative to the water and the velocity of the water relative to the axes:

ẋ = V and ẏ = u . (1)

Consequently, udx = V dy. Now u is a constant, and therefore the path of the boat
relative to the banks is given by

x =
1

u

∫ y(x)

0

V dy . (2)

(a) If V = V0, then
x = V0y

/
u . (3)

The boat travels in a straight line relative to the x- and y-axes, and reaches the
opposite bank at x = V0D

/
u.

(b) The quadratic function

V (y) = (4V0

/
D2)(D − y)y (4)

is zero at the banks and has a maximum value V0 at y = 1
2
D. From (2) and (4)

we have
x = (2V0

/
uD2)(D − 2

3
y)y2. (5)

The boat travels along a cubic curve relative to the xy-axes, and reaches the
opposite bank at x = 2V0D

/
3u.

D

(V0/u)Dy

x

Trajectory for (a)

D

(2V0/3u)Dy

x

Trajectory for (b)
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Question 7.11

A particle of mass m slides on the surface of a fixed, smooth sphere of radius R. The
particle starts at the top of the sphere with horizontal initial velocity v0. Show that
it leaves the sphere at an angular position θ� (measured from the top of the sphere)
given by

θ� = cos−1

(
2

3
+

v2
0

3Rg

)
. (1)

Solution

The forces acting on the particle are its weight mg and the reaction N of the sphere,
which acts radially since the sphere is smooth. The equation of motion mv̇ = mg +N

has radial component (see Question 8.1)

mv2
/
R = mg cos θ −N. (2)

The particle loses contact with the sphere when N = 0. According to (2), this happens
at an angle θ� and velocity v� related by

v2
�

= Rg cos θ� . (3)

We can calculate v(θ) by applying the work–energy theorem (see Question 5.1)

d( 1
2
mv2) = F · dr = (mg sin θ)(Rdθ) . (4)

Now m, g and R are constants, and therefore integration of (4) gives∫ v(θ)

v
0

dv2 = 2Rg

∫ θ

0

sin θdθ . (5)

That is,
v2(θ) = v2

0 + 2Rg(1 − cos θ) . (6)

From equations (3) and (6) we have

cos θ� =

(
2

3
+

v2
0

3Rg

)
. (7)
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Comments

(i) The angle θ� depends on g, R and v0, but not on m.

(ii) The graph of (1) is shown below. Note that when v0 → 0, θ� → cos−1(2/3) (≈ 48◦),
independent of g and R. Also, when v0 =

√
Rg we have θ� = 0. That is, the particle

leaves the sphere at the starting point.

cos−1(2
3)

1.0 �

0.5 �

1.00.5

�

θ� (rad)

v0/
√

Rg

Question 7.12

Suppose that in the previous question a frictional force Ff = µN acts between the
particle and the sphere, where µ is the coefficient of kinetic friction.

(a) Use the work–energy theorem to show that the velocity of the particle, while it
is sliding on the sphere, is given by

v(θ)√
Rg

=

√
2 (2µ2 cos θ − 3µ sin θ − cos θ)

1 + 4µ2
+

(
v2

0

Rg
+

2 − 4µ2

1 + 4µ2

)
e2µθ . (1)

(b) From an analysis of numerical plots of v(θ) show that there exist two possible
outcomes to the motion: either the particle comes to rest (sticks) on the sphere,
or it continues to slide and eventually leaves the sphere. Deduce that the critical
condition that distinguishes these outcomes is

v(θ) = 0 when dv2(θ)
/
dθ = 0. (2)

(c) Hence, show that the phase diagram, which delineates the two possible motions
in the µv0-plane, is given by

v0c√
Rg

=

√
2

1 + 4µ2

(
2µ2 − 1 +

√
1 + µ2 e−2µ tan−1µ

)
, (3)

and plot this diagram.
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Solution

(a) The work done by friction, namely Ff · dr = (−µN)(Rdθ), must now be included
in the work–energy theorem. Here, N is given by (2) of Question 7.11, and so (4)
of Question 7.11 changes to

dv2

dθ
− 2µv2 = 2Rg(sin θ − µ cos θ) . (4)

To solve this first-order, inhomogeneous, ordinary differential equation for v(θ)
we multiply both sides by e−2µθ, to obtain

d

dθ

{
e−2µθv2(θ)

}
= 2Rge−2µθ (sin θ − µ cos θ). (5)

By integrating (5) between θ = 0 and θ, and using the real and imaginary parts
of the integral ∫ θ

0

e(−2µ+i)θdθ =
e(−2µ+i)θ − 1

−2µ+ i
, (6)

we find

e−2µθv2(θ) − v2
0 =

2Rg
(
2µ2 cos θ − 3µ sin θ − cos θ

)
e−2µθ

1 + 4µ2
+Rg

2 − 4µ2

1 + 4µ2
, (7)

and hence (1).

(b) Numerical plots of v(θ) versus v0, according to (1) and for given µ, show that
these plots are of two types:

☞ for ‘small’ v0 the function v(θ) decreases from its initial value v0 to zero at a
value θ = θs ;

☞ for ‘larger’ v0 the function v(θ) has no real roots – instead it decreases to a
positive minimum value before increasing again. (The meanings of ‘small’ and
‘larger’ are specified below.) These behaviours are illustrated in the following
figures, where we have also plotted the velocity v�(θ) =

√
Rg cos θ required

for the particle to leave the sphere
(
see (3) of Question 7.11

)
:

µ = 3
5; v0 ≈ 0.51

√
Rg = 99

100v0c

v0√
Rg

v�(θ)/
√

Rg =
√

cos θ

v(θ)/
√

Rg

1�

π/2

�

θs

v (θ)/
√

Rg

θ
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µ = 3
5; v0 ≈ 0.62

√
Rg = 6

5v0c

v0√
Rg

v�(θ)/
√

Rg =
√

cos θ

v(θ)/
√

Rg

1�

π/2

�

θ�

v (θ)/
√

Rg

θ

It is clear from these two graphs that the motion of the particle is sensitive to the
initial velocity. For ‘small’ v0, the particle slows down and comes to rest at θ = θs

where it sticks to the sphere. For ‘larger’ v0, the particle initially slows down and
then speeds up, and it eventually leaves the sphere at θ = θ� where v(θ) = v�(θ).
It is also clear that the condition that distinguishes these two outcomes occurs
at a critical value of the initial velocity v0 = v0c such that the minimum value of
v2(θ) occurs on the θ-axis: that is, when (2) is satisfied. The graph of v(θ) for this
critical motion is:

µ = 3
5; v0 ≈ 0.52

√
Rg = v0c

v0√
Rg

v�(θ)/
√

Rg =
√

cos θ

v(θ)/
√

Rg

1�

π/2

�

θc

v (θ)/
√

Rg

θ

Thus, ‘small’ initial velocity means v0 < v0c, while ‘larger’ initial velocity means
v0 > v0c. Note that for v0 = v0c the velocity v(θ) is not differentiable at the
minimum θc because v(θ) ∝ |θ−θc| near θc. For v0 > v0c the velocity is a quadratic
function of θ − θc near the minimum. Also, θ� → 0 as v0 → √

Rg (i.e. a particle
with initial velocity

√
Rg leaves the sphere at the starting point θ = 0).

(c) From (4) and (2) we have tan θc = µ. Then

sin θc =
µ√

1 + µ2
and cos θc =

1√
1 + µ2

.
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Substituting these values in (1), and solving (2)1 for v0, gives the formula (3) for
the critical velocity as a function of µ. The resulting phase diagram is:

Equation (3)

sticks

particle

leaves

particle

1.0 �

0.8 �

0.6 �

0.4 �

0.2 �

4

�

3

�

2

�

1

�

µ

v0c√
Rg

Comments

(i) The angles θs (where the particle sticks) and θ� (where it leaves the sphere) are
roots of the equations v(θ) = 0 and v(θ) =

√
2Rg cos θ, respectively, where v(θ)

is given by (1). These roots were computed numerically (see the Mathematica

notebook below), to obtain the following dependences on v0 for various values of µ.

π
2 �

π
4
�

0.2

�

0.4

�

0.6

�

0.8

�

1.0

�

θ�θ�θ�θ�θ�

θs

θsθsθsθs

µ = 0

µ = 0.3
µ = 0.6

µ = 0.9
µ = 1.5

µ = 5.0

θ (rad)

v0/
√

Rg

For each µ, the function θs(v0) is an increasing function of v0 in its domain
(0 ≤ v0 ≤ v0c) and reaches a maximum value tan−1 µ at v0c; while the func-
tion θ�(v0) is a decreasing function of v0 in its domain (v0c < v0 ≤ √

Rg) and
tends to zero as v0 →

√
Rg. We note that θs and θ� depend on v0, R, g and µ but

not on m.
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(ii) Close to the phase boundary the motion is highly sensitive to the initial condition
v0: if v0 is increased infinitesimally from just below v0c to just above v0c then the
angle through which the particle slides on the sphere increases by a finite amount
θmax

�
− θmax

s
, as indicated by the vertical dotted lines in the above figure. The

dependence of the maximum values of θs and θ� on µ is shown below.

π
3 �

π
6 �

4

�

3

�

2

�

1

�

θmax

s

θmax

�
θ (rad)

µ
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Question 7.13

A particle of mass m slides under gravity on a smooth, vertical circular wire of radius
R. At time t = 0 the particle is travelling with speed v0 at the top of the wire (θ = 0).

(a) Show that the magnitude of the force N that the wire exerts on the particle is
given by

N(θ) = mg(3 cos θ − 2 − v2
0

/
Rg) , (1)

and draw a diagram showing how N varies with the angle θ in the limit v0 → 0.

(b) Show that the period T of the motion is given by

T =
2R

v0

∫ π

0

dθ√
1 + (4Rg

/
v2

0 ) sin2 1
2
θ
. (2)

Evaluate (2) numerically and plot a graph of T (in units of
√
R/g) versus v0

/√
Rg

for 0 < v0

/√
Rg ≤ 2.

Solution

(a) Using the same coordinates as in Question 7.11, the equation of motion
mv̇ = mg + N has radial component

mv2
/
R = mg cos θ −N. (3)

Also, the work–energy theorem (see Question 5.1) requires that the change in
kinetic energy of the particle equals the work done by the force mg + N acting
on it. That is,

1
2
mv2 − 1

2
mv2

0
= mgy = mgR(1 − cos θ) , (4)

where v is the speed at angular position θ
(
see Comment (i) below

)
. Equations

(3) and (4) yield (1). Equation (1) shows that in the limit v0 → 0 the reaction
N changes sign at the angle θc = cos−1(2/3) ≈ 48◦. The direction of N is always
radial because the wire is smooth. The first diagram below illustrates the variation
of N with θ. The arrow at θ = 0 has length mg; at θ = π its length is 5mg, see
(1).

(b) From (4) and with v = Rdθ
/
dt we obtain

∫ T
2

0

dt =
R

v0

∫ π

0

dθ√
1 + (4Rg

/
v2

0 ) sin2 1
2
θ
, (5)

which is (2). According to (2), T is equal to
√
R/g times a function of the dimen-

sionless ratio v0

/√
Rg. The graph of this function is shown below, together with

the Mathematica notebook used to produce it.
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•

θc

�

�

10

5

��

21

T√
R/g

v0/
√

Rg

Comments

(i) The work–energy theorem requires that

1
2
mv2 − 1

2
mv2

0 =

∫ f

i

m(g + N) · dr , (6)

where i denotes the initial point (y = R) and f is a subsequent position of the
particle on the wire, at which the speed is v. For a smooth wire, N ·dr = 0 because
N is perpendicular to the arc dr, and therefore no work is done by the reaction.
The gravitational force mg = −mgŷ is conservative and so we may choose any
convenient path between i and f on which to evaluate the work done by it (see
Question 5.8), such as a path along the y-axis and then parallel to the x-axis.
Then, dr = x̂dx + ŷdy and mg · dr = −mgdy; therefore (6) can be written as

1
2
mv2 − 1

2
mv2

0
= −mg

∫ y

y=R

dy ,

where y = R cos θ. Thus, we obtain (4).

(ii) In general, T depends on v0. In the limit v0 → 0 the integral in (2) diverges and
T → ∞, as one expects.

In[1]:= �� In this notebook u0 �
v0�
Rg

is a dimensionless initial velocity ��

u0min � 2 � 10
�5�u0max � 2.0�u0step �

u0max � u0min
500

�

dat � Table��u0, 2

u0
NIntegrate� 1�

1 � 4
u02

Sin� Θ2�2 ,Θ,0,Π�� �,
u0,u0min,u0max,u0step���

ListLinePlot	dat,PlotRange � 0,12�
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Question 7.14

For the particle of Question 7.13, express the equation of motion in plane polar coordi-
nates

(
see equation (2) of Question 8.1

)
. Then, use Mathematica to obtain numerical

solutions for θ as a function of time for the initial conditions θ0 = 0 and v0 =
√
Rg/50.

Plot graphs of θ, θ̇, θ̈ and N/mg versus t, up to t = 3T . Here, N is the normal force
exerted by the wire on the particle and T is the period. Take g = 9.8 ms−2 and
R = 0.10 m.

Solution

The equation of motion is
mr̈ = mg + N ,

where N = N r̂. In polar coordinates, and with θ measured from the vertical y-axis,
g = −g(r̂ cos θ+ θ̂ sin θ). Here, r is constant and so the components of the equation of
motion

(
see (2) of Question 8.1

)
are

mrθ̇2 = mg cos θ −N

mrθ̈ = mg sin θ .

}
(1)

(Note that the angle θ used in this problem is complementary to the angle θ in Question
8.1.) The following Mathematica notebook was used to solve (1)2 for θ(t), and N was
obtained by using this solution in (1)1. The desired graphs are shown below. The
period of the motion, obtained from (2) of Question 7.13, is 0.81 s.

In[1]:= g � 9.8�R � 0.1�v0 �

�
R g

50
�Θ0 � 0�Θ0dot �

v0

R
�

T �
2 R

v0
NIntegrate� 1�

1 � 4 R g
v02

Sin� Θ2�2 ,Θ,0,Π�� � �� T is the period ��

tmax � 3 T�

Sol � NDSolve	� R Θ��	t
 � g Sin	Θ	t

 �� 0,Θ	0
 �� Θ0,Θ�	0
 �� Θ0dot�,

Θ	t
,Θ�	t
,Θ��	t
�,t,0,tmax�
�

Plot	Evaluate	Θ	t
/.Sol
,t,0,tmax�


Plot	Evaluate	Θ�	t
/.Sol
,t,0,tmax�


Plot	Evaluate	Θ��	t
/.Sol
,t,0,tmax�


Plot�	Evaluate	Cos	Θ	t

/.Sol
 � R

g
�Evaluate	Θ�	t
/.Sol
�2
,t,0,tmax��
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Question 7.15

A particle of mass m slides under gravity on a smooth wire lying in the vertical plane
and having the shape y = y(x).

(a) Show that the equation of motion can be written as[
1 +

(
dy

dx

)2]
ẍ +

[
g + ẋ2 d

2y

dx2

]
dy

dx
= 0 . (1)

(b) Suppose y(x) = coshx and the initial conditions are x0 = 1.0 m, ẋ0 = 0 and
ẏ0 = 0. Use Mathematica to find numerical solutions to (1) for x(t) and y(t).
Plot graphs of x(t) and y(t); ẋ(t) and ẏ(t); ẍ(t) and ÿ(t); and N(t)/mg, where
N is the normal force exerted by the wire on the particle. Take 0 ≤ t ≤ 2.5 s and
g = 9.8 ms−2.

(c) Repeat for y(x) = cosx. Use the initial conditions x0 = 0, ẋ0 = 2.0 ms−1 and
ẏ0 = 0. Take 0 ≤ t ≤ 4 s.
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Solution

(a) In terms of the angle θ shown in the figure below, the equation of motion
mr̈ = mg+N has components mẍ = −N sin θ and mÿ = N cos θ−mg. Eliminat-
ing θ from these equations and setting tan θ = dy

/
dx gives ẍ+(g+ ÿ) dy

/
dx = 0.

Now, ẏ = ẋdy
/
dx and so ÿ = ẋ2d2y

/
dx2 + ẍdy

/
dx. These results yield (1).

mg

N

y = y(x)
θ

θ

•

y

x

(b) The following Mathematica notebook was used to solve (1) for x(t) and to
calculate N when y(x) = coshx. The required graphs are shown below.

y(t)
x(t)

�

�
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1

��

21
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t (s)
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�

�
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�� 21
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�

�
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8

��

21
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�

�

1

2

��

21

N/mg

t (s)

(c) Change Cosh[x] to Cos[x] in the Mathematica notebook below and use the
given initial conditions. Note that here the x-motion is unbounded.
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In[2]:= ListLinePlot	xVelDat,yVelDat�,PlotRange � All


ListLinePlot	xAccDat,yAccDat�,PlotRange � All


ListLinePlot	ForcDat�,PlotRange � All


Comment

Results for other shapes of wire can be obtained by changing y(x) in the Mathematica

notebook. Some interesting functions to try are y = x2, y = 1/x, and y = x3.

Question 7.16

A camel takes N steps while walking directly between two towns located on the same
longitude, and whose latitudes differ by θ degrees. The camel takes S steps to cross
a stadium. Express the Earth’s circumference C (in units of stadia) in terms of N , θ,
and S.

Solution

To circumnavigate the Earth would take 360
/
θ journeys such as that completed by

the camel. Therefore

C =
360

θ
N camel steps =

360N

θS
stadia. (1)

Comments

(i) This method was used by Eratosthenes (a chief librarian in the famous library at
Alexandria in the third century B. C.) to obtain a reasonable value for the size of
the Earth. He knew that at noon on the summer solstice in Syene (the present
Aswan), a vertical object cast no shadow on the ground. At the same date and
time he found that the shadow of a vertical object in Alexandria subtended an
angle of about 7 1

2

◦.[4] Because the sun’s rays are nearly parallel, this is the angle
θ in (1).

[4] L. Hogben, Science for the citizen. London: George Allen and Unwin, 1956. Chap. 11.
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It seems that Eratosthenes took the distance between Alexandria and Syene to
be about 5200 stadia

(
this is the value of N

/
S in (1)

)
, because he obtained for C

approximately 250 000 stadia.[4] It is believed that this is within a few per cent of
the modern value (according to Bertrand Russell,[5] the error was less than 1%).

(ii) This result, together with a later measurement of the gravitational constant G by
Cavendish, made it possible to obtain a value for the mass of the Earth. These
experiments by Eratosthenes and Cavendish were both selected in a recent poll
of the ‘most beautiful experiment in physics’.[6]

Question 7.17

A particle having mass m and charge q moves in a uniform magnetostatic field
B = (0, 0, B) where B is a positive constant. The initial conditions at t = 0 are

r0 = 0 and v0 = u = (u1, u2, u3) . (1)

(a) Show that the trajectory is given by

r(t) =
(u1

ω
sinωt+

u2

ω
(1 − cosωt) ,

u1

ω
(cosωt− 1) +

u2

ω
sinωt , u3t

)
, (2)

where
ω = qB/m . (3)

(Hint: Integrate the equation of motion once with respect to t and then decouple
the resulting differential equations.)

(b) Make a convenient choice of axes, and then sketch this trajectory.

(c) Calculate the velocity of the particle and deduce that the speed is constant.

Solution

(a) First, integrate the equation of motion

m
dv

dt
= q

dr

dt
× B (4)

with respect to t between t = 0 and t. Because B is constant we have

m

∫
v(t)

u

dv = q

(∫
r

r
0

dr

)
× B . (5)

That is,
v(t) = (q/m)(r − r0) × B + u . (6)

[5] B. Russell, History of western philosophy, p. 225. London: George Allen and Unwin, 1962.
[6] R. P. Crease, “The most beautiful experiment,” Physics World, vol. 15, pp. 19–20, September

2002.
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With B = (0, 0, B) and for the initial conditions (1), the components of (6) are

dx

dt
= ωy + u1 ,

dy

dt
= −ωx+ u2 ,

dz

dt
= u3 . (7)

The first two equations in (7) can be decoupled by taking d
/
dt of (7)1 and

substituting (7)2 in it. This yields

d2x

dt2
+ ω2x = ωu2 . (8)

The general solution to (8) is the sum of the particular integral xp = u2/ω and
the complementary function xc. The latter is the general solution to (8) with
u2 = 0, and is given by the general solution of the equation of motion for a simple
harmonic oscillator – see (20) of Question 4.1. Thus

x(t) = a cosωt+ b sinωt+ u2/ω , (9)

where the constants a and b are determined by the initial conditions: clearly, (1)1
requires a = −u2/ω and (1)2 imposes b = u1/ω. Thus

x(t) =
u1

ω
sinωt+

u2

ω
(1 − cosωt) . (10)

By substituting (10) in (7)1 and solving for y we find that

y(t) =
u1

ω
(cosωt− 1) +

u2

ω
sinωt . (11)

Lastly, the solution to (7)3 that is zero at t = 0 is

z(t) = u3t . (12)

Equations (10)–(12) yield the trajectory (2).

(b) The x- and y-components in (10) and (11) satisfy(
x− u2

ω

)2
+
(
y +

u1

ω

)2
=
u1

2 + u2
2

ω2
, (13)

meaning that the projection of the motion onto the xy-plane is a circle of radius√
u1

2 + u2
2
/
ω centred on (u2/ω,−u1/ω). The period of this circular motion is

T = 2π/ω, and in this time the z-component (12) changes by u3T . Thus, the
complete trajectory is a helix of constant pitch D = u3T = 2πu3/ω. To sketch
this trajectory it is convenient to first rotate the coordinate system about the
z-axis until the initial velocity vector u lies in the xz-plane (that is, u2 = 0), and
then shift the origin O by −u1/ω along the y-axis. This simplifies (2) to

r(t) =
(u1

ω
sinωt ,

u1

ω
cosωt , u3t

)
, (14)

which is a helix of radius u1/ω, pitch 2πu3/ω and axis Oz, as depicted below. For
this trajectory the initial conditions are r0 = (0 , u1/ω , 0) and v0 = (u1, 0, u3).
The figure below is for a particle of positive charge q and for u1, u3 > 0.
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u1/ω

D = 2πu3/ω

B©
z

y

x

(c) The time derivative of (2) is the velocity

v(t) = (u1 cosωt+ u2 sinωt , −u1 sinωt+ u2 cosωt , u3) . (15)

The speed v is equal to the magnitude of (15), that is

v =
√
u1

2 + u2
2 + u3

2 = u . (16)

Thus, the speed remains constant, equal to its initial value u.

Comments

(i) The motion is sensitive to an initial condition. If u3 = 0 the trajectory is closed
(bounded circular motion in a plane perpendicular to B), whereas if u3 �= 0 the
trajectory is open (unbounded motion along B).

(ii) According to (16), the kinetic energy K = 1
2
mv2 of the particle is a constant.

This is to be expected because the magnetic force F = qv×B is perpendicular to
v and therefore the work–energy theorem K̇ = F · v (see Question 5.1) requires
K̇ = 0.

(iii) According to electromagnetic theory, an accelerated charge radiates electro-
magnetic energy and the kinetic energy decreases during the motion. The analysis
leading to (14) and (16) is approximate insofar as it neglects this energy loss. Usu-
ally this effect is very small – the fractional loss in energy per cycle is negligible,
although it can become appreciable under certain conditions (see Question 7.21).

(iv) For a non-relativistic particle the angular frequency ω in (3) is independent of the
speed v (and hence of the energy) of the particle. This property is the basis for
the operation of a particle accelerator known as the cyclotron,[7] and ω is called
the cyclotron frequency. For relativistic particles, ω depends on v (see Question
15.15), and a cyclotron cannot function properly. Consequently, the maximum
energy produced by a cyclotron is limited to a few per cent of the rest-mass
energy, and it is therefore not suitable for electrons, or for accelerating protons
beyond about 20 MeV. A modification of the cyclotron that overcomes this energy
limit is the frequency-modulated cyclotron (the synchrocyclotron).[7]

[7] See, for example, E. Persico, E. Ferrari, and S. E. Segre, Principles of particle accelerators.
New York: Benjamin, 1968.
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(v) The relevance of the theory of the simple harmonic oscillator to the classical prob-
lem (4), which is evident in (8) and (9), carries over to the quantum-mechanical
problem;[8] thus the energy of bounded motion consists, in fact, of a set of discrete
values

E = (n+ 1
2
)�ω (n = 0, 1, 2, · · · ) , (17)

known as the Landau levels.
(
To specify the quantum-mechanical problem fully,

one must select, in addition to the Hamiltonian operator H and the momentum-
operator pz, a third observable chosen from py (or px) and operators corresponding
to the position (x0, y0) of the centre of the helical trajectory.[8] Related to this is
the question of whether the angular momentum Lz is a constant of the motion.[8]

)
The fractional spacing of the levels (17) is ∆E

/
E = (n + 1

2
)−1; for large n the

spectrum forms a quasi-continuum and a classical description is possible.

Question 7.18

A particle of mass m and charge q is acted on by uniform magnetostatic and
electrostatic fields that are perpendicular to each other:

B = (0, 0, B) and E = (0, E, 0) , (1)

where B and E are positive constants. The initial conditions at time t = 0 are

r0 = 0 and v0 = u = (u1 , u2 , u3) . (2)

(a) Show that the trajectory r(t) has components

x(t) = vdt+
1

ω
(u1 − vd) sinωt+

u2

ω
(1 − cosωt) (3)

y(t) =
1

ω
(u1 − vd)(cosωt− 1) +

u2

ω
sinωt (4)

z(t) = u3t , (5)

where ω = qB/m is the cyclotron frequency and vd = E/B.

(b) Sketch the trajectory for a particle that starts from rest.

(c) If u1 = vd and u3 = 0, sketch the trajectories for u2 = 3
5
vd, u2 = vd, and u2 = 2vd.

Assume q > 0.

Solution

(a) This calculation is an extension of that in Question 7.17 to include the effect of
an electrostatic field. We start by integrating the equation of motion

m
dv

dt
= qE + q

dr

dt
× B (6)

[8] See, for example, O. L. de Lange and R. E. Raab, Operator methods in quantum mechanics.
Oxford: Clarendon Press, 1991.
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with respect to t between t = 0 and t. Because B and E are constants we see that

v(t) = (q/m)E t+ (q/m) (r − r0) × B + u . (7)

For the fields (1) and the initial conditions (2), the components of (7) are

dx

dt
= ωy + u1 ,

dy

dt
= vdωt− ωx+ u2 ,

dz

dt
= u3 . (8)

We take d
/
dt of (8)2 and substitute (8)1 in it to obtain the decoupled equation

d2y

dt2
+ ω2y = ω (vd − u1). (9)

The general solution to (9) is

y(t) = a cosωt+ b sinωt+ (vd − u1)
/
ω , (10)

where the constants a and b are fixed by the initial conditions (2) to be
a = (u1 − vd)

/
ω and b = u2/ω. This proves (4). From (8)2 and (4) we obtain

(3), while (5) follows from an integration of (8)3. We remark that if E = 0 then
(3)–(5) reduce to the trajectory (2) in Question 7.17.

(b) If the particle is initially at rest (u=0), (3)–(5) become

x(t) = (vd/ω)(ωt− sinωt) , y(t) = (vd/ω)(1 − cosωt) , z(t) = 0 , (11)

which represent a cycloid in the xy-plane:

−2R �

2R �
R = vd/ω; u = 0

6πR

B

4πR

B

2πR

B�E

q < 0

q > 0

y

x

(c) If u1 = vd and u3 = 0, (3)–(5) become

x(t) =
1

ω
[vdωt+ u2(1 − cosωt)] , y(t) =

u2

ω
sinωt , z(t) = 0 . (12)

The curves represented by (12) depend on the relative values of u2 and vd:
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−2R �

2R �
R = vd/ω; u2 = 3

5
vd; q > 0

6πR
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−2R �

2R �
R = vd/ω; u2 = vd; q > 0

6πR

B

4πR2πR

�E

y

x

−2R �

2R �
R = vd/ω; u2 = 2vd; q > 0

6πR4πR2πR

B�E

y

x

Comments

(i) Starting with (3) and (4) we can readily show that

(x− vdt− u2/ω)
2

+
(
y − {vd − u1}

/
ω
)2

=
{
(u1 − vd)

2
+ u2

2

}/
ω2, (13)

meaning that the projection of the motion onto the xy-plane is a circle with
a constant velocity vdx̂ = Ex̂

/
B superimposed on it: to an observer travel-

ling with velocity vdx̂, and for u3 = 0, the particle moves in a circle of radius√
(u1 − vd)2 + u2

2

/
ω centred at

(
u2

/
ω , (vd − u1)

/
ω
)
.

(ii) Thus, a particle projected in the xy-plane remains in this plane and drifts with
velocity vd along the direction of E×B; this behaviour is known as E×B drift.
The direction of the drift is independent of the sign of the charge q: a particle
starting from rest drifts along E × B irrespective of the sign of q – see (11) and
the figure following it.

(
More generally, when q → −q and u2 → −u2 in (3) and

(4), then x→ x and y → −y.)
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(iii) The trajectory described by (3) and (4) is a family of curves known as a trochoid.
These are the curves traced by a point P that is fixed on a disc that rolls along a
line. (P may be outside the disc, but it is fixed relative to the disc.) If P lies inside
the disc, the curve is known as a curtate cycloid (see the figure for u2 = 3

5
vd); if

P is on the edge of the disc, the curve is a cycloid (see the figure for u2 = vd); if
P lies outside the disc, the curve is a prolate cycloid (see the figure for u2 = 2vd).

(iv) According to (11), for a particle that starts from rest at the origin, the kinetic
energy

K = 1
2
m(ẋ2 + ẏ2) = mv2

d
(1 − cosωt) (14)

oscillates between 0 and 2mv2
d
, while the electric potential energy V = −qEy =

−K oscillates between 0 and −2mv2
d . The sum K +V maintains a constant value

of zero.

(v) The results (3)–(5) are readily extended to the case where E has also a constant
component along B, that is E = (0, E, E‖). The effect is to replace (5) by

z(t) = u3t+ qE‖t
2
/
2m, (15)

and thus there will be parabolic motion along the z-axis superimposed on the
motions discussed above.

Question 7.19

(a) A particle of mass m and charge q moving with constant velocity v0x̂ (where
v0 > 0) enters a region 0 ≤ x ≤ L where there is a uniform electrostatic field
E = Eŷ. Neglecting the effect of gravity, show that the position at which the
particle strikes a vertical screen placed at x = L+D is

yE =
qEL

mv2
0

(
1
2
L+D

)
. (1)

(b) If the electric field is replaced by a weak, uniform magnetostatic field B = Bẑ,
show that the charge strikes the screen at

yB = −qBL
mv0

(
1
2
L+D

)
. (2)

Solution

(a) Along OP1 in the diagram below, the electric field acts on the particle and its
coordinates are given by (see Question 3.1)

x = v0t , y =
qE

2m
t2 . (3)

Therefore, the portion OP1 of the trajectory is parabolic:

y =
qE

2mv2
0

x2 (0 ≤ x ≤ L) . (4)
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•

•
z�

yE

θ)
P1

P2

S

E

D

q > 0

L

y

x

For x > L the force on the particle is zero and therefore the portion P1P2 of the
trajectory is a straight line with slope

tan θ =

(
dy

dx

)
x=L

=
qEL

mv2
0

. (5)

From (4) and (5) it follows that the equation of P1P2 is given by

y =
qEL2

2mv2
0

+
qEL

mv2
0

(x− L) . (6)

Setting x = L+D in (6) we obtain (1). (The trajectory sketched in the above figure
is for a positively charged particle; for a negative charge the sense of deflection is
opposite – that is, P2 is below the x-axis.)

(b)

DL

•

•

•

�

yB

θ)
P1

P2

Sq > 0

B

C

R

y

x
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In the magnetic field, the particle moves in a circle of radius

R = mv0

/
qB (7)

(see Question 7.17) and the equation of the portion OP1 of the trajectory is

x2 + (y +R)2 = R2 (0 ≤ x ≤ L) . (8)

For weak fields, R is large compared to y, and so in (8) we can neglect the term
in y2. Then, (7) and (8) yield

y = − qB

2mv0

x2 (0 ≤ x ≤ L) . (9)

For the segment P1P2 the slope is tan θ =

(
dy

dx

)
x=L

=
−qBL
mv0

, and therefore

y = −qBL
2

2mv0

− qBL

mv0

(x− L) . (10)

Setting x = L+D in (10) gives (2).

Comments

(i) Equations (1) and (2) provide the basis for interpreting a famous experiment
performed in 1897 by J. J. Thomson to measure the charge-to-mass ratio q/m of
the electron. The lengths L and D, the fields E and B, and the deflections yE

and yB are all accessible to measurement, and so values for the two unknowns
v0 and q/m can be extracted from (1) and (2). Thomson’s procedure differed
slightly from this in that he measured v0 by using the B-field to cancel exactly
the deflection due to the E-field. That is, yE + yB = 0 and therefore v0 = E/B.
Then, measurements with the E-field alone yielded q/m from (1).

(ii) By 1899, Thomson had measured also the electronic charge q and inferred that
the mass m is about a thousand times less than that of a hydrogen atom. In this
way Thomson discovered the electron and concluded that atoms are routinely
split by electrification.[9]

Question 7.20

The single particle of Question 7.19 is now replaced by a beam of non-interacting
particles all having the same mass and charge but travelling with a range of initial
velocities v0x̂. Also, the magnetic field is applied parallel (or anti-parallel) to the
electric field (that is, B = Bŷ). Show that the motion is now three-dimensional and
that the coordinates at which the particles strike the screen must lie on a parabola

y =
m

q

E

B2L( 1
2
L+D)

z2. (1)

[9] J. F. Mulligan, “The personal and professional interactions of J. J. Thomson and Arthur
Schuster,” American Journal of Physics, vol. 65, pp. 954 – 963, 1997.
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Solution

The motion is three-dimensional because E produces a y-deflection and B produces a
z-deflection. The y-deflection on the screen due to E is given by (1) of Question 7.19:

y =
qEL

mv2
0

(
1
2
L+D

)
. (2)

By a similar calculation to (b) of Question 7.19 we see that a magnetic field B = Bŷ

produces a z-deflection on the screen given by

z =
qBL

mv0

(
1
2
L+D

)
. (3)

By taking the ratio of (2) and (3)2 we eliminate v0 and obtain (1).

Comments

(i) According to (3), particles with different initial velocity v0 strike the screen at
different points on the same parabolic curve (1):

x⊗
B < 0 B > 0

q > 0
y

z

(ii) Thomson used this modification of his experiment to measure also the charge-to-
mass ratio q/m of positive ions, finding that the ionic masses are much larger than
the electron mass. He also found that certain chemically pure gases produced more
than one parabola, and therefore had more than one value of q/m, thus heralding
the discovery of isotopes.

(iii) Variations of Thomson’s cathode ray tubes found widespread application in
devices such as oscilloscopes, television sets and computer monitors. It is only
recently that they have been surpassed by the less bulky liquid crystal displays
and plasma screens.

Question 7.21

A particle of charge q and rest mass m moves in a circle of radius R in a uniform
magnetic field B. It has kinetic energy‡

‡This question involves some results from the theory of special relativity, see Chapter 15.
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K = (γ − 1)mc2, (1)

and the power it radiates is given by[7]

P =
1

4πε0

2cq2β4γ4

3R2
. (2)

Here, c is the speed of light in vacuum,

β = v/c , γ = (1 − β2)−1/2. (3)

Calculate the fractional loss in kinetic energy per cycle, ∆K
/
K:

(a) for a proton with K = 0.08 MeV and R = 3.2 cm;

(b) for a deuteron with K = 24 MeV and R = 76 cm;

(c) for a 50-GeV proton when R = 4.3 km;

(d) for a 50-GeV electron when R = 4.3 km.

Use the rest mass energies: mc2 = 938 MeV (proton), 1877 MeV (deuteron), 0.51 MeV
(electron). Also, 1 eV≈ 1.6 × 10−19 J, 1 MeV= 106 eV and 1 GeV= 109 eV.

Solution

The energy radiated in one cycle is ∆K = PT , where T = 2πR/v = 2πR
/
βc is the

period. It therefore follows from (1) and (2) that the fractional loss in energy per cycle
is given by

∆K

K
=

1

4πε0

4πq2β3γ4

3KR
. (4)

This result applies at all particle velocities less than c.

(a) From (1), γ − 1 = K
/
mc2 = 0.08/938 = 8.5 × 10−5. From (3)2, β = 1.3 × 10−2.

Then (4) gives

∆K

K
= 9 × 109 4π(1.6 × 10−19)2 × (1.3 × 10−2)3 × 14

3 × (0.08 × 1.6 × 10−13) × 3.2 × 10−2
= 5.2 × 10−18. (5)

(b) It follows from (1) and (3) that, γ − 1 = 24/1877 = 1.3 × 10−2 and β = 0.16.
Then (4) gives

∆K

K
= 9 × 109 4π(1.6 × 10−19)2 × (0.16)3 × (1.013)4

3 × (24 × 1.6 × 10−13) × 0.76
= 1.4 × 10−18. (6)

(c) Here, γ − 1 = 50 000/938 = 53.3 and β ≈ 1. Then

∆K

K
= 9 × 109 4π(1.6 × 10−19)2 × 13 × (54.3)4

3 × (50 × 103 × 1.6 × 10−13) × 4300
= 2.4 × 10−16. (7)

(d) From (1) and (3), γ − 1 = 50 000/0.51 = 9.8 × 104 and β ≈ 1. Then

∆K

K
= 9 × 109 4π(1.6 × 10−19)2 × 13 × (9.8 × 104)4

3 × (50 × 103 × 1.6 × 10−13) × 4300
= 2.6 × 10−3. (8)
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Comments

(i) The data for the protons in (a) above are for the first (2 1
2

inch diameter)
cyclotron that was constructed by Lawrence and Livingstone in Berkeley in 1932.
The deuterons in (b) were produced in a later (1946) cyclotron that had a
diameter of 60 inches. The relativistic protons and electrons considered in (c)
and (d) are for the LEP electron synchrotron at CERN.

(ii) In most instances the fractional energy loss from radiation is small and can be
neglected, as we did in Question 7.17.

(iii) The large increase in energy loss for the relativistic electrons in (d) compared with
the relativistic protons in (c) is due to the large γ-factor of the electrons, see (7)
and (8).

(iv) The above is for a single particle. For a circulating current comprising N particles
there can be interesting ‘coherence’ effects. For example, if the particles form
a ‘bunch’ whose dimensions are small compared to the main wavelength of the
radiation, then this bunch behaves like a particle of charge Nq, and in (4) the
factor q2 is replaced by (Nq)2: the energy loss varies as N2 rather than N .[7]

(v) By contrast with this, one can think of a ring of superconducting material held at
a temperature below its critical temperature, and in which a circulating electric
current has been induced. Sensitive experiments (in which the magnetic dipole mo-
ment of the current loop is accurately monitored) reveal no measurable decrease
in current over long periods of time. This phenomenon is quantum mechanical:
interaction between the electrons has produced a macroscopic quantum state con-
sisting of paired electrons, and the magnetic flux through the ring is constant and
is quantized in units of h

/
2e (the flux quantum).[10]

Question 7.22

Consider a classical model of the hydrogen atom in which an electron of mass m and
charge q moves initially in a circular orbit of radius r0 about a proton. This orbit is
unstable because the accelerated electron should radiate electromagnetic energy and
spiral towards the proton. By using the non-relativistic form of (2) of Question 7.21
for the rate at which the electron loses energy, show that the lifetime of hydrogen in
this classical model is given approximately by

τ =
m2c3r3

0

4(q2/4πε0)2
. (1)

Solution

Here, we consider only the motion of the electron since it is about 1800 times lighter
than the proton. For non-relativistic motion (v � c) in a circular orbit, the equation
of motion of the electron is

[10] See, for example, M. Tinkham, Introduction to superconductivity. New York: McGraw-Hill,
1975.
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ma = m
v2

r
=

1

4πε0

q2

r2
. (2)

The energy of the electron is the sum of its kinetic and potential energies:

E = 1
2
mv2 − 1

4πε0

q2

r
= − 1

4πε0

q2

2r
. (3)

The rate at which the orbit decays due to radiation can be written

dr

dt
=
dE

/
dt

dE
/
dr
. (4)

For non-relativistic motion, (2) of Question 7.21 gives for the rate of change of the
electron’s energy

dE

dt
= − 1

4πε0

2q2a2

3c3
, (5)

while from (3) we have

dE

dr
=

1

4πε0

q2

2r2
. (6)

Equations (4)–(6) show that

dr

dt
= −

(
q2

4πε0

)2
4

3m2c3r2
, (7)

and therefore ∫ τ

0

dt = − 3m2c3

4(q2/4πε0)2

∫ 0

r
0

r2dr , (8)

which is (1).

Comments

(i) Using (2), one can readily check that the motion of the electron is non-relativistic
for most of its journey toward the proton. Also, according to (7), the fractional
change in r per orbit is small, and so the actual (spiral) trajectory is reasonably
approximated by circles.

(ii) Equation (1) can be expressed as

τ =
r30

4r2e c
, (9)

where re is the classical radius of the electron, defined by mc2 = q2
/
4πε0re, and

having the approximate value 2.8 × 10−15 m. If we take the diameter of the
initial electron orbit to be 0.5 × 10−10 m, then (9) gives a classical lifetime for
the hydrogen atom of

τ =
(0.5 × 10−10)3

4 × (2.8 × 10−15)2 × 3.0 × 108
= 1.3 × 10−11 s . (10)
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(iii) This instability of the classical hydrogen atom was but one of the serious diffi-
culties facing classical physics during several years spanning 1900. Other ‘clouds’
were the ‘ultraviolet catastrophe’ of blackbody radiation, the photoelectric effect,
the specific heats of solids at low temperature, the specific heat of a diatomic
gas, and the Gibbs paradox for the extensive property of the entropy of an ideal
gas. The resolution of these, and other problems, was achieved during the first
quarter of the twentieth century, and it involved the creation of a new physical
theory known as quantum mechanics. Today, it is recognized that classical physics
applies to a large, but nevertheless restricted, domain of phenomena. There is as
yet no experimental evidence that indicates any breakdown of quantum physics.
The development of this theory is one of the greatest achievements of the human
intellect, and its epic history is recounted in detail in the monumental set of six
volumes by Mehra and Rechenberg.[11]

(iv) The first use of quantum ideas in the resolution of the hydrogen-atom problem was
made by Bohr in 1913. In a drastic departure from classical theory he proposed
that the angular momentum of the atomic electron can have only a discrete set
of values L = mvr = nh

/
2π, where n = 1, 2, · · · and h is Planck’s constant.

He, nevertheless, retained the classical equation of motion‡ mv2/r = e2
/
4πε0 r

2

for a circular electronic orbit, and concluded from these two equations that the
electronic orbital radii can have just a discrete set of values rn = ε0h

2n2
/
πme2, the

so-called Bohr radii. Correspondingly, the electronic energy E = 1
2
mv2−e2/4πε0 r

is also restricted to a discrete set of values, the Bohr energy levels

En = − me4

8ε2
0
h2

1

n2
. (11)

He then made a connection with experiment by proposing that the spectral lines
of hydrogen are associated with ‘quantum jumps’ of the electron between Bohr
orbits differing in energy by ∆E, according to ∆E = hν where, following Planck
and Einstein, hν is the energy of an emitted or absorbed quantum (photon) of
frequency ν. In this way, Bohr was able to account for the observed spectrum
of hydrogen (but not its fine structure). In particular, he obtained from (11) the
expression

RH =
me4

8ε20h
3c

= 1.097 × 107 m−1 (12)

for the Rydberg constant, which sets the scale of the spectrum. Despite the fact
that Bohr’s theory is a curious mixture of classical and quantum concepts, it made
a strong impact: the good agreement he found between the theoretical expression
(12) for RH involving Planck’s constant and the measured value was regarded as
a compelling indication that a theory of quantum mechanics should exist. The
realization of this theory took another 12 years.[11]

‡Here, and in what follows, we have expressed Bohr’s results in terms of SI units.

[11] J. Mehra and H. Rechenberg, The historical development of quantum theory. New York:
Springer, 1982–2001. Vols. 1-6.
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(v) After the formulation of quantum mechanics in 1925, the earliest applications were
to the hydrogen-atom problem: independent calculations by Pauli (who used the
matrix mechanics of Heisenberg, Born and Jordan) and Schrödinger (who used
his wave mechanics) showed how the new theory gave the Bohr energy levels for
a non-relativistic hydrogen atom.[11] This success was regarded as an important
initial test of the theory, which was soon extended to the relativistic atom (see
Question 15.16).

(vi) In modern particle physics the stability of atoms such as hydrogen is viewed in
terms of the classification of particles into baryons (e.g. the proton) and leptons
(e.g. the electron), and the conservation laws of baryon number B and lepton
number L. Accordingly, a proton (B = 1, L = 0) cannot decay into a positron†

(B = 0, L = −1) and a photon (B = 0, L = 0) because this would violate
conservation of baryon and lepton numbers. (The current experimental lower limit
for the lifetime of a proton is ∼ 1036 yr.) Similarly, a hydrogen atom (B = 1,
L = 1) cannot decay into photons. However, this decay is not prohibited for a
positronium atom (a bound state of a positron and an electron), where B = 0
and L = 0. In fact, the longest lifetime of the ground state of positronium is
∼ 10−7 s. Of course, this lifetime is determined by quantum mechanics and not
by the classical result (1).

(vii) The developments mentioned above provide a good illustration of Thomas Kuhn’s
famous description of the nature of scientific progress, as a cyclic passage through
various stages:

regular science → crisis → revolution → regular science.

In regular science the consequences and applications of a new theory or model are
developed and tested. Eventually, a crisis develops when experimental results are
obtained that are at variance with this model (for example, the ‘clouds’ referred to
earlier). This precipitates a revolution when fundamental changes to the science
are implemented, and thereafter regular science resumes.[12]

Question 7.23

A particle of mass m and charge q is subject to a non-uniform magnetostatic field

B = (0, −αy, 1 + αz)B , (1)

where α and B are positive constants.

(a) Show that the components of the equation of motion can be expressed as

dX

dτ
− (1 + Z)Y = D (2)

†i.e. an anti-electron.

[12] T. S. Kuhn, The structure of scientific revolutions. Chicago: Chicago University Press, 1970.
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d2Y

dτ2
+ (1 + Z)2Y +D(1 + Z) = 0 (3)

d2Z

dτ2
+ (1 + Z)Y 2 +DY = 0 . (4)

Here, D is a constant which is determined below and

(X, Y, Z) = (αx, αy, αz) and τ = qBt/m = ωt (5)

are dimensionless coordinates and time.

(b) Consider a coordinate system in which the initial conditions at t = 0 are

(X, Y, Z)0 = (0, Y0, 0) and V0 = (U1, 0, U3), (6)

where Ui = αui/ω are dimensionless initial velocities. Take

Y0 = 0.66 , U1 = 0.02 , U3 = 0.08 , (7)

and use Mathematica to solve the coupled, non-linear equations (2)–(4) for
0 ≤ τ ≤ 140.

(
Note that according to (2) and (6) the constant D is fixed in

terms of initial conditions by D = U1−Y0 = −0.64.
)

Present the results for X(τ),
Y (τ) and Z(τ) graphically, and also plot graphs of Y (Z) and Y (X).

(c) Describe the motion represented by these graphs.

Solution

We remark that the field (1) satisfies ∇ · B = 0 (as any magnetic field must) and
∇ × B = 0 (which is required of static fields in source-free regions). Note also that
α−1 is a length scale.

(a) For the field (1), the equation of motion mr̈ = qṙ × B has components

ẍ = ω

{
ẏ + α

d

dt
(yz)

}
(8)

ÿ = −ω(1 + αz)ẋ (9)

z̈ = −ωαyẋ , (10)

where ω = qB/m is the cyclotron frequency for the uniform field (0, 0, B)
corresponding to α = 0. Integration of (8) gives

ẋ = ω(1 + αz)y +D0 , (11)

where D0 is a constant of integration. By substituting (11) in (9) and (10) we
obtain two coupled equations involving y and z only:

ÿ = −ω2(1 + αz)2y − ωD0(1 + αz) (12)

z̈ = −ω2α(1 + αz)y2 − ωD0αy . (13)

If we multiply (11) by α/ω and (12) and (13) by α/ω2, and use (5), we obtain
the dimensionless forms (2)–(4) with D = αD0/ω.
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(b) The Mathematica notebook used to solve (2)–(4) for X(τ), Y (τ), and Z(τ), and
the graphs obtained from it, are shown below.

−0.06�

0.06�

140�

τm

X

τ

0.3�

0.6�

70

�

140

�

τm

Y

τ

1�

2�

70

�

140

�

τm

Z

τ
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0.3�

0.6�

1

�
2

�

Mirror point (τ = τm)

Zm

Y

Z

(c) Three features are evident in these graphs:
1. Just as in the case of motion in a uni-
form field (see Question 7.17), the particle
spirals about the field lines (these lines are
discussed in Question 5.26).
2. There is a turning point at the instant
τ = τm in the motion along the Z-axis: for
τ < τm the particle spirals in the positive
Z-direction; for τ > τm it spirals back in the
negative Z-direction; and at τ = τm = 69.35
the component Ż = 0. The spatial point
at which Z = Zm = 2.316 is known as the
mirror point. Thus, when charged particles
spiral into regions of increasing magnetic
field (see Question 5.26) their forward
motion decreases until they are eventually
reflected.
3. The spiralling and forward (or back-
ward) motions are accompanied by drift in
the X- and Y -directions. For τ < τm(> τm)
the particle drifts in the negative (positive)
Y -direction. The drift along the X-axis
is slower than this and is in the negative
X-direction. Close to the mirror point the
drift velocities are low. 0.04

�
−0.04
�

0.4�

0.2�
Y

X

Comments

(i) The above calculation neglects radiation by the particle (see Question 7.21). In
this approximation the kinetic energy is constant (because the field does no work
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on the particle), and so

Ẋ2 + Ẏ 2 + Ż2 = U2
1

+ U2
3
, (14)

where a dot signifies differentiation with respect to τ . This can be expressed in
two-dimensional form by using (2) to eliminate Ẋ in favour of Y and Z:

Ẏ 2 + Ż2 = U2
1 + U2

3 − {D + (1 + Z)Y }2
. (15)

Because Ẏ 2 + Ż2 cannot be negative, (15) shows that there are two boundary
curves to the graph of Y (Z), obtained by setting the right-hand side of (15) equal
to zero. That is,

Y =
−D ±

√
U2

1 + U2
3

1 + Z
=

0.64 ± 0.0825

1 + Z
. (16)

These boundaries – that are indicated by the two dotted curves in the above plot
of Y (Z) – are, in fact, magnetic field lines

(
see (3) in Question 5.26

)
.

(ii) The magnetic field in this question is an example of a ‘mirror field’, characterized
by the property that charged particles are reflected back from regions where the
field is large. Magnetic mirrors find application in, inter alia, fusion devices that
are used to confine charged particles.

(iii) An important example of a magnetic mirror in nature is the magnetic field around
the Earth. Charged particles from the solar wind (usually electrons, but also
protons and ions) that become trapped in the Earth’s field perform three distinct
motions:

☞ they spiral around field lines with a period of order milliseconds;
☞ they move along field lines, oscillating between the North and South poles

with a period of order seconds (this is the mirror effect); and

☞ they also perform a transverse drift around the Earth with a period of order
hours.

(iv) The regions of space around the Earth populated by these charged particles
are called the Van Allen radiation belts. They are responsible for the polar
aurora when the trapped particles interact with atmospheric oxygen and nitrogen,
causing these molecules to fluoresce.

In[1]:= X0 � 0�Y0 � 0.66� Z0 � 0�

U1 � 0.02�U2 � 0�U3 � 0.08�Τmax � 140�

� � U1 � Y0� �� Here� represents the constant D used in the Question ��

f1	Τ_
 ��
�� �

�
U12 � U32

1.0 � Z	Τ

�f2	Τ_
 ��

�� �
�
U12 � U32

1.0 � Z	Τ

�

Sol � NDSolve��X�	Τ
 � ��1 � Z	Τ
� Y	Τ
� �� �� 0,

Y��	Τ
 � �1 � Z	Τ
�2 Y	Τ
 ���1 � Z	Τ
� �� 0,

Z��	Τ
 � �1 � Z	Τ
� Y	Τ
2 �� Y	Τ
 �� 0,

X	0
 �� X0, Y�	0
 �� U2,Y	0
 �� Y0,Z�	0
 �� U3, Z	0
 �� Z0� ,
X	Τ
,Y	Τ
,Z	Τ
,X�	Τ
,Y�	Τ
,Z�	Τ
�,Τ,0,Τmax�,MaxSteps � 100000��
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In[2]:= Plot	X	Τ
/.Sol,Τ,0,Τmax�,PlotRange � 0,Τmax�,�0.07,0.07��


Plot	Y	Τ
/.Sol,Τ,0,Τmax�,PlotRange � 0,Τmax�,0,0.8��


Plot	Z	Τ
/.Sol,Τ,0,Τmax�,PlotRange � 0,Τmax�,0,2.5��


ParametricPlot	Z	Τ
,Y	Τ
�/.Sol�,Z	Τ
,f1	Τ
�/.Sol�,

Z	Τ
,f2	Τ
�/.Sol��,Τ,0,Τmax�,PlotRange � 0,2.5�,0,0.8��


Question 7.24

Consider the previous question for motion of a charged particle in a non-uniform
magnetostatic field B = (0, −αy, 1 + αz)B in the limit of small departure from the
uniform-field problem. That is, assume

α� 1 and y0 ≈ u1/ω = rL; i.e. Y0 ≈ αrL = U1 , (1)

where the Larmor radius rL is the orbital radius in a uniform field.

(a) Show that the dimensionless Z-coordinate of the motion is given by a parabolic
approximation

Z(τ) = U3τ − 1
4
U2

1 τ
2, (2)

where the notation is that of the previous question.

(b) Hence, obtain approximate expressions for the time τm to reach the mirror point
and the coordinate Zm of this point.

(c) Compare the approximation (2) with the result of a numerical calculation (using
the above Mathematica notebook) for

U1 = 0.02 , U3 = 0.08 , Y0 = 2U1 = 0.04 , (3)

on a plot of Z(τ) for 0 ≤ τ ≤ 800.

Solution

(a) When (1) is satisfied we can approximate x and y on the right-hand side of (10)
in Question 7.23 by their expressions for a uniform field (0, 0, B), namely

x(t) = (u1/ω) sinωt , y(t) = (u1/ω) cosωt+ c , (4)

where c is a constant (see Question 7.17). Then, in dimensionless form we have
for (10):

d2Z

dτ2
= −Y dX

dτ
= −(U1 cos τ + C)U1 cos τ , (5)

where C = αc. Therefore,

Ż(τ) = U3 − 1
2
U2

1 τ − 1
4
U2

1 sin 2τ − CU1 sin τ . (6)

The last two terms in (6) are rapidly oscillating contributions about an average
value

Ż(τ) = U3 − 1
2
U2

1 τ , (7)

and consequently we have the parabolic approximation (2) for Z(τ).
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(b) At the mirror point Ż = 0 and therefore

τm = 2U3

/
U2

1
and Zm = (U3

/
U1)

2. (8)

(c) The parabolic approximation (2) with initial conditions (3) is compared with the
result of the numerical analysis in the following figure and table.

Parabolic approximation (2)

Numerical calculation

8�

16�

400

�

800

�

τm

Z

τ

τm Zm

Numerical calculation 384.9 15.4
Equation (8) 400.0 16.0

Improved agreement is obtained with decreasing Y0 (see below).

Comments

(i) The following graph of Zm(α) (for U1 = 2α, U3 = 8α and Y0 = 6α) shows the
agreement between the numerical values and the approximation (8)2 at low α,
and the increasing disparity as α increases.

(U3/U1)
2

Numerical calculation

0.02

�

0.01

�

0

�

16�

14�

12�

10

Zm

α (m−1)
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(ii) The final graph shows Zm as a function of y0

/
rL = Y0

/
αrL for α = 0.001 m−1,

with U1 = 0.02 and U3 = 0.08. Again, we see the expected agreement with the
approximation (8)2 for low values of y0

/
rL

(
where (4) is a good approximation

)
,

and increasing disagreement at higher values of y0

/
rL

(
where (4) becomes a poor

approximation
)
.

(U3/U1)
2

Numerical calculation

80

�

40

�

0

�

16�

14�

12�

10

Zm

y0/rL

Question 7.25

A particle of mass m moves in the xy-plane, acted on by a linear restoring force
F = −kr = −k(x, y), where k is a positive constant. Determine and sketch the
trajectory if the initial conditions at t = 0 are

r0 = (x0, 0) and v0 = (0, v0) . (1)

Solution

The equation of motion

m
d2r

dt2
= −kr (2)

yields the two oscillator equations

d2x

dt2
+ ω2x = 0 ,

d2y

dt2
+ ω2y = 0 , (3)

where ω2 = k/m > 0. The solutions to (3) that satisfy the initial conditions (1) are
clearly

x(t) = x0 cosωt , y(t) = (v0/ω) sinωt . (4)

Therefore, the trajectory is the ellipse

x2

x2
0

+
y2

(v0/ω)2
= 1 , (5)
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with axes of length 2x0 and 2v0/ω. The centre of the ellipse is at the centre of force
O. There are two special cases: if v0 = ωx0 the trajectory is a circle of radius x0, and
if v0 = 0 the particle moves in a straight line between −x0 and x0 along the x-axis.

−v0/ω

v0/ω

−x0 x0

y

x

Comments

(i) This system is known as an isotropic, two-dimensional harmonic oscillator.

(ii) Use of the initial conditions (1) is equivalent to orienting the coordinate axes in a
convenient way, namely with the x-axis directed to a turning point of the motion
(see also Question 8.10).

(iii) We could have used the initial conditions r0 = (x0, y0) and v0 = (u1, u2). For
these the solutions to (4) are

x(t) = A1 cos(ωt+ φ1) , y(t) = A2 cos(ωt+ φ2) , (6)

where

A1 =
√
x2

0
+ (u1

/
ω)2 , tanφ1 = −u1

/
ωx0 , (7)

and similarly for A2 and φ2 (see Question 4.1). However, this does not produce
any additional types of trajectory: a short calculation starting with (6) shows that

x2

A2
1

+
y2

A2
2

− 2xy

A1A2

cos(φ2 − φ1) = sin2(φ2 − φ1) . (8)

If φ2 − φ1 = 1
2
π then (8) reduces to an ellipse in the form (5). If φ2 − φ1 = 0 or

π then (8) reduces to a straight line y = ±(A2/A1)x, while for all other values of
φ2 − φ1 it is an ellipse with its axes rotated in the xy-plane.

(iv) For an isotropic, three-dimensional harmonic oscillator F = −k(x, y, z), and in
addition to (6) we have

z(t) = A3 cos(ωt+ φ3) . (9)
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Equations (6) and (9) imply a linear relationship

z = ax+ by , (10)

which is the equation of a plane. That the motion is confined to a plane is not
surprising because the central force −kr conserves the angular momentum of the
particle, and therefore the motion is restricted to the plane defined by the initial
vectors r0 and p0 = mv0 (see Question 6.15). If we orient the x- and y-axes in
this plane then the solutions are (6) and z = 0: the trajectory is either an ellipse,
a circle or a straight line.

(v) It is also interesting to solve and analyze the isotropic, three-dimensional har-
monic oscillator using plane polar coordinates (see Chapters 8 and 9).

Question 7.26

Consider an anisotropic, two-dimensional harmonic oscillator with F = −(k1x, k2y),
where the ki are positive constants. Obtain the trajectory and deduce the condition
for closed orbits.

Solution

The components of the equation of motion are

d2x

dt2
+ ω2

1x = 0 ,
d2y

dt2
+ ω2

2y = 0 , (1)

where ωi =
√
ki/m. The general solutions are

x(t) = A1 cos(ω1t+ φ1) , y(t) = A2 cos(ω2t+ φ2) , (2)

where the constants Ai and φi depend on the initial conditions r0 and v0 in the usual
manner (see Question 4.1). The nature of the trajectory described by (2) depends
crucially on the ratio ω2/ω1 of the angular frequencies. If this ratio is a rational number
n2/n1, where n1 and n2 are integers, then

n2

n1

=
ω2

ω1

=
T1

T2

, (3)

where T1 and T2 are the periods of the x- and y-oscillations. It follows that the orbit
is closed because n1T1 = n2T2, meaning that when the particle has performed n1

complete oscillations in the x-direction it has also performed n2 complete oscillations
in the y-direction, and has therefore returned to its starting point r0 with the same
initial velocity v0. The motion is periodic.

If ω2/ω1 is an irrational number, the orbit is open: the particle never regains the initial
conditions r0, v0 (it never passes twice through the same point with the same velocity).
It can be shown that in this case the trajectory ‘fills’ the rectangle 2A1 × 2A2 in the
xy-plane in the sense that given sufficient time, the particle will pass arbitrarily close
to each point in this rectangle.
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Comments

(i) This example illustrates again that the dynamics can be sensitive to even very
small changes in a parameter – in this case a ratio of frequencies (see also
Questions 2.1, 2.2, 3.3, 7.12, and Chapter 13).

(ii) The trajectory (2) is illustrated in the following two figures that are for
A2/A1 = 1, φ2 = φ1 = 0, ω2/ω1 = 3 and A2/A1 = 1, φ2 = φ1 = 0, ω2/ω1 = π. The
first trajectory is closed and periodic; the second is open.

ω2/ω1 = 3

φ2 = φ1 = 0

A2/A1 = 1

y

x

ω2/ω1 = π

φ2 = φ1 = 0

A2/A1 = 1

y

x

(iii) In general, the shape of the curve is sensitive to the phase difference δ = φ2 − φ1,
as illustrated in the following so-called Lissajous figures for various values of δ.
Here, A2/A1 = 1 and ω2/ω1 = 2:

ω2/ω1 = 2

δ = 0

A2/A1 = 1

y

x

ω2/ω1 = 2

δ = π/6

A2/A1 = 1

y

x
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ω2/ω1 = 2

δ = π/3

A2/A1 = 1

y

x

ω2/ω1 = 2

δ = π/2

A2/A1 = 1

y

x

(iv) The above analysis is readily extended to an anisotropic, three-dimensional
harmonic oscillator with F = −(k1x , k2y , k3z). Then, in addition to (2) we have

z(t) = A3 cos(ω3t+ φ3) , (4)

where ω3 =
√
k3/m. The condition for closed orbits is now

ω2

/
ω1 = n2

/
n1 and ω3

/
ω2 = n3

/
n2 , (5)

because then n1T1 = n2T2 = n3T3, meaning that n1 oscillations in the x-direction,
n2 oscillations in the y-direction, and n3 oscillations in the z-direction are com-
pleted in the same time, and the particle returns to its starting position r0 with
the same initial velocity v0. Otherwise the orbit is open, and the trajectory fills
the rectangular box 2A1 × 2A2 × 2A3 in the sense mentioned above.

Question 7.27

A particle of mass m is acted on by an inverse-square force (the Coulomb problem)

F = −k r

r3
, (1)

where the constant k can be positive or negative. The particle passes the point r0 with
velocity v0, where

r0 = (x0, y0, 0) and v0 = (u1, u2, 0) . (2)

(a) Argue that the motion is confined to the xy-plane, and show that the Cartesian
form of the trajectory is

A1x+A2y + (L2
/
mk) = (x2 + y2)1/2. (3)
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Here, L is the magnitude of the angular momentum L = r × p = (0, 0, L), and
A1 and A2 are constants such that

A2
1

+A2
2

= 1 + (2L2E
/
mk2) , (4)

where E = 1
2
mv2 − k/r is the energy.

(
Hint: Use conservation of angular momen-

tum and the kinematic identities

1

y

d

dt

x

r
= − 1

x

d

dt

y

r
=

1

r3

(
y
dx

dt
− x

dy

dt

)
, where r =

√
x2 + y2.

)
(5)

(b) The task of interpreting (3) is simplified if we choose the x-axis to point along
the vector A = (A1, A2, 0). In such a system A2 = 0. Hence, obtain from (3) the
trajectory in the form

y2 = (2L2
/
mk)(±x+ L2

/
2mk) (6)

if E = 0, and (
x+ k

2E

√
1 + 2L2E

mk2

)2
(k
/
2E)2

− y2

L2
/
2mE

= 1 (7)

if E �= 0.

(c) Interpret and sketch the possible trajectories represented by (6) and (7).

Solution

(a) Because the force (1) is central (always directed toward or away from the origin),
the motion is confined to the plane defined by the position and velocity vectors
r and v at any instant: so (2) means that the motion is in the xy-plane. The
components of the equation of motion in this system are

m
d2x

dt2
= −k x

r3
, m

d2y

dt2
= −k y

r3
, (8)

where r =
√
x2 + y2. It follows that yẍ = xÿ, which implies conservation of

angular momentum L = r × p in this system:

x
dy

dt
− y

dx

dt
=
L

m
. (9)

From (5), (8) and (9) we have

d

dt

x

r
=
L

k

d2y

dt2
,

d

dt

y

r
= −L

k

d2x

dt2
. (10)

Integration of (10) gives the pair of first-order, coupled equations

x

r
=
L

k

dy

dt
+A1 ,

y

r
= −L

k

dx

dt
+A2 , (11)
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where A1 and A2 are constants. The trajectory (3) is obtained after using (11) to
eliminate dx

/
dt and dy

/
dt from (9). It also follows from (11) and (9) that

A2
1 +A2

2 =

(
x

r
− L

k
ẏ

)2
+

(
y

r
+
L

k
ẋ

)2
=
x2 + y2

r2
+

(
L

k

)2
(ẋ2 + ẏ2) +

2L

kr
(yẋ− xẏ)

= 1 + (L/k)2
{
ẋ2 + ẏ2 − 2k/mr

}
,

which is (4) because the quantity in braces is (2/m) times the energy E.

(b) By squaring both sides of (3), with A2 = 0, and rearranging terms we have

(1 −A2
1
)x2 − 2(L2

/
mk)A1x+ y2 = (L2

/
mk)2, (12)

where, according to (4),
A2

1 = 1 + 2L2E
/
mk2 . (13)

When E = 0, A1 = ±1 and (12) reduces to (6). When E �= 0 we divide (12) by
1 −A2

1
= −2L2E

/
mk2 and complete the square in x to obtain (7).

(c) To interpret these results we consider separately attractive and repulsive forces.

☞ Attractive force k > 0

The energy E can be zero, negative or positive. For E = 0 the trajectories
(6) are parabolas. For E �= 0 the trajectory is given by (7), and to interpret
it we recall that the curve

X2
/
a2 − Y 2

/
b2 = 1 (a2, b2 > 0) (14)

is a hyperbola in the XY -plane, while the curve

X2
/
a2 + Y 2

/
b2 = 1 (a2, b2 > 0) (15)

is an ellipse. If a > b (> 0) then a is the length of the semi-major axis, b is
the length of the semi-minor axis of the ellipse. Also, the eccentricity is

e =
√

1 + b2/a2 (16)

for a hyperbola and

e =
√

1 − b2/a2 (17)

for an ellipse. Therefore, by inspection of (7), we conclude that for E > 0 the
trajectory is a hyperbola with a2 = (k/2E)2, b2 = L2/2mE, and for E < 0
the trajectory is an ellipse with a2 = (k/2E)2 and b2 = −L2/2mE. In both
cases the eccentricities (16) and (17) are

e =
√

1 + (2L2E/mk2) = |A1| . (18)

Equation (7) also shows that the centre of force x = 0, y = 0 is not at the
centre X = 0, Y = 0 of the ellipse, but at
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X =
k

2E

√
1 +

2L2E

mk2
= ea , Y = 0 , (19)

which is the position of one of the foci of the ellipse. Similarly, for the hyper-
bolic and parabolic orbits the centre of force is at a focus.

☞ Repulsive force k < 0

Here, the energy E in (7) is necessarily positive, and consequently only
hyperbolic orbits occur.

Note that with the above choice of axes, a point at which the trajectory cuts the
x-axis is a turning point (a minimum or maximum) of the motion: this is evident
from (11)2, where A2 = 0 and y = 0 imply ẋ = 0. Diagrams of the various orbits
are given in Question 8.9.

Comments

(i) This problem is usually solved in terms of plane polar coordinates (see Question
8.9), although the above solution based on Cartesian coordinates is, if anything,
more direct. Of course, there are advantages to using polar coordinates: they are
part of a general approach to solving and analyzing dynamics in a spherically
symmetric potential, and examples are given in Chapter 8.

(ii) The Cartesian trajectory (3) can be written in terms of polar coordinates (r, θ)
by setting x = r cos θ, y = r sin θ and A1 = A cos θ0, A2 = A sin θ0. Then, (3) and
(4) give the polar equation of a conic section (ellipse, hyperbola or parabola):

r(θ) =
L2/mk

1 −√
1 + (2L2E/mk2) cos(θ − θ0)

. (20)

The choice θ0 = 0 aligns the x-axis with A, making (20) equivalent to (6) and (7).

(iii) An essential feature of the above solution in Cartesian coordinates is the use of the
two constants of integration A1 and A2 that appear in (11). The existence of these
constants is associated with a ‘hidden symmetry’ possessed by the inverse-square
force. This topic has been the subject of extensive study since the seventeenth
century (see Chapter 9).

(iv) The solution to the problem of motion in an inverse-square force and its applica-
tion to planetary motion (the Kepler problem) was the first major accomplishment
of Newtonian mechanics, and it established the connection between Kepler’s laws
of motion and the law of universal gravitation. Other applications followed, such
as to Rutherford scattering.

(v) In Newtonian dynamics the trajectory always involves (at least) the initial condi-
tions r0 and v0, and the reader may wonder where these occur in (6) and (7). The
answer is that they enter through the energy E = 1

2
mv2

0
− k/r0 and the angular

momentum L = mr0 × v0, which are both conserved quantities.
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Spherically symmetric potentials

The examples in this chapter deal with motion of a particle in a spherically symmetric
potential V (r), the corresponding force

F = −dV
dr

r̂

being central and isotropic. We have already seen in Questions 5.3 and 6.15 that for
such motion the energy E and angular momentum L of the particle are conserved. The
conservation of L has the immediate consequence that for L �= 0 the motion is confined
to the plane defined by the initial position and momentum vectors r0 and p0 = mv0.
The angular momentum is perpendicular to this plane, and r, p and L = r×p form a
right-handed set. Usually, the motion is analyzed in terms of plane polar coordinates
(r, θ) of an inertial frame, although we could also use other coordinates such as two-
dimensional Cartesian coordinates (x, y), as in Questions 7.25–7.27.

These two sets of coordinates and their unit vectors are depicted below. Clearly,

x = r cos θ , y = r sin θ .

The inverse relations are

r =
√
x2 + y2 , θ = tan−1

( y
x

)
.
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Question 8.1

Prove that in plane polar coordinates (r, θ) the velocity and acceleration vectors are
given by

v = ṙr̂ + rθ̇θ̂ (1)

a = (r̈ − rθ̇2)r̂ + (rθ̈ + 2ṙθ̇)θ̂ . (2)

Solution

It is clear that the two unit vectors r̂ and θ̂ shown in the figure above are time
dependent. To calculate their rates of change, we first resolve them into x- and y-
components:

r̂ = x̂ cos θ + ŷsin θ , θ̂ = −x̂ sin θ + ŷcos θ . (3)

Then

dr̂

dt
= θ̇(−x̂ sin θ + ŷcos θ) = θ̇ θ̂ (4)

dθ̂

dt
= −θ̇(x̂ cos θ + ŷsin θ) = −θ̇ r̂ . (5)(

In obtaining (4) and (5) from (3) we have used the fact that dx̂
/
dt and dŷ

/
dt are both

zero.
)

Now
r = rr̂ , (6)

and hence the velocity is

v =
dr

dt
r̂ + r

dr̂

dt
. (7)

Equations (4) and (7) yield (1). The acceleration is the derivative of (1):

a = r̈ r̂ + ṙ
dr̂

dt
+ ṙ θ̇ θ̂ + r θ̈θ̂ + r θ̇

dθ̂

dt
. (8)

If we substitute (4) and (5) into (8), we obtain (2).

Comments

(i) Equations (1) and (2) express the velocity and acceleration in terms of radial and

transverse components (that is, components along r̂ and θ̂). The usefulness of
these results will become apparent in the questions below.

(ii) For motion in a circle, r is constant and (1) becomes

v = rθ̇θ̂ ; (9)

the velocity is transverse. If the angular speed θ̇ is also constant then (2) simplifies
to

a = −rθ̇2r̂ = −v2r̂
/
r ; (10)

the acceleration is radial (directed towards the centre of the circle).
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Question 8.2

Show that the angular momentum L and the energy E of a particle of mass m moving
in a potential V (r) can be expressed in terms of plane polar coordinates as

(a) L = mr2θ̇ ẑ , (1)

(b) E = 1
2
mṙ2 + 1

2
mr2θ̇2 + V (r) . (2)

Here, ẑ = r̂ × θ̂ is a unit vector perpendicular to the plane of the trajectory.

Solution

(a) L = r × p = mr× v = mrr̂ × (
ṙ r̂ + rθ̇ θ̂

)
, (3)

where in the last step we have used (1) and (6) of the previous question. Now
r̂ × r̂ = 0, and hence (3) reduces to (1).

(b) E = 1
2
mv2 + V (r) , (4)

where

v2 ≡ v · v = (ṙ r̂ + rθ̇ θ̂) · (ṙ r̂ + r θ̇θ̂) = ṙ2 + r2θ̇2 . (5)

From (4) and (5) we obtain (2).

Comments

(i) We can use (1) to eliminate θ̇ from (2). Then

E = 1
2
mṙ2 + V (r) +

L2

2mr2
, (6)

where
L = mr2θ̇ (7)

is the component of L along ẑ. Equation (6) is a very interesting result that is
often written as

E = 1
2
mṙ2 + Ve(r) , (8)

where

Ve(r) = V (r) +
L2

2mr2
. (9)

Equation (8) is just the expression for the energy of a particle of mass m moving
in one dimension (along r̂) in an ‘effective potential’ Ve(r). Evidently, we are now
viewing the motion from a frame that rotates in such a way that the angular
position of the particle is fixed and the motion is purely radial. Such a frame is
clearly non-inertial: in it there is an effective force

Fe = −dVe(r)

dr
r̂ = −dV (r)

dr
r̂ +

L2

mr3
r̂ , (10)

which consists of the physical force
(−dV/dr)r̂, experienced in an inertial frame,

plus a non-inertial (centrifugal) force
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Fcf =
L2

mr3
r̂ (11)

associated with the rotation (see Chapters 1 and 14).

(ii) Equations (8) and (9) enable us to describe the motion in terms of energy dia-
grams, just as we did for the one-dimensional problems in Questions 5.12–5.15.
For examples based on (8) and (9), see Questions 8.4 to 8.6.

(iii) In principle, (8) provides the solution r(t) for the radial motion in the inverse
form

t(r) =

∫ r

r0

√
m

2 {E − Ve(r)} dr , (12)

where r0 = r(0) and we have assumed a positive root. The solution (12) is anal-
ogous to the solution for motion in a one-dimensional potential V (x) – see (1) of
Question 5.16. (In both cases the possibility of a negative root is related to time
reversal t → −t: if r(t) is a solution then r(−t) is also a solution.) Inversion of
(12) gives the radial position r(t). Using this in (7) we can express the angular
position as

θ(t) =
L

m

∫ t

0

dt

r2(t)
+ θ0 . (13)

The solutions (12) and (13) specify completely the time-dependent orbit.

(iv) These time-dependent solutions can be rather complicated (as in Questions 8.18
and 8.19) and it is sometimes preferable to work instead with the geometric orbit
r(θ). The next question shows how this is done.

Question 8.3

Starting with (8) of Question 8.2, and by means of a change of variable from dr
/
dt to

dr
/
dθ, obtain the formal solution for the geometric orbit in inverse form:

θ(r) = θ(r0) +
L√
2m

∫ r

r
0

dr

r2
√
E − Ve(r)

. (1)

Solution

Begin by writing
dr

dt
=
dθ

dt

dr

dθ
=

L

mr2
dr

dθ
, (2)

where in the last step we have used (7) of Question 8.2. Thus, (8) of Question 8.2
becomes

E =
L2

2mr4

(
dr

dθ

)2
+ Ve(r) , (3)

and hence

dθ =
L√
2m

dr

r2
√
E − Ve(r)

. (4)

Integration of (4) between r = r0 and r, and θ = θ(r0) and θ(r), yields (1).
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Comments

(i) In applications of (1) it is convenient to write the definite integral as an indefinite
integral by incorporating the contribution from the lower limit r0 into θ(r0); the
resulting combination we denote by θ0. Thus

θ(r) = θ0 +
L√
2m

∫
dr

r2
√
E − Ve(r)

. (5)

(ii) There are three force fields for which (5) yields simple, invertible results, namely
the inverse-square, the linear, and the inverse-cube forces (see Questions 8.9–8.11).
Some other power-law forces are integrable in terms of elliptic functions.[1]

Question 8.4

A particle of mass m moves in an isotropic oscillator potential V = 1
2
kr2 (k is a

positive constant).

(a) Sketch the graph of the effective potential Ve(r) versus r.

(b) Use this graph to discuss the possible motions of the particle.

Solution

(a) From (9) of Question 8.2 we have

Ve(r) = 1
2
kr2 +

L2

2mr2
(r ≥ 0) . (1)

It is a simple matter to picture this function. When r → 0+ the second term in
(1) dominates and Ve → ∞. When r → ∞, the first term in (1) dominates and
Ve → ∞. There is one turning point: dVe

/
dr = 0 when kr − L2

/
mr3 = 0, and so

the turning point is at

r0 =
(
L2
/
mk

)1/4
. (2)

The value

Ve(r0) =
√
kL2/m (3)

is a minimum. Thus, we have the following graph:

[1] See, for example, H. Goldstein, Classical mechanics. Reading: Addison-Wesley, 2nd edn, 1980.
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r2r0r1

Ve(r0)

E

Ve(r)

r

(b) To interpret an energy diagram such as the one above, it is necessary to distinguish
between motion relative to the inertial frame S

(
with polar coordinates (r, θ)

)
and

motion relative to a non-inertial frame S′ that is rotating with angular velocity
θ̇ẑ with respect to S. In S′ the motion is one-dimensional – it is specified by r(t)
alone – while in S the motion is specified by both r(t) and θ(t). An energy diagram
allows us to describe the motion in S′ in the same manner as for one-dimensional
motion in a potential V (x) (see Questions 5.12–5.15). Note that it is impossible
for E to be less than Ve(r) because, according to (8) of Question 8.2, that would
mean the radial speed ṙ is imaginary. We can now interpret the above energy
diagram, where we have drawn a horizontal line to indicate a constant value of
the energy E

(≥ √
kL2/m

)
. We see immediately that the motion in S′ is simply

an oscillation between the classical turning points r1 and r2 that are the positive
roots of the equation

Ve = 1
2
kr2 +

L2

2mr2
= E ; (4)

that is,

r1 =

√
E

k

√
1 −

√
1 − kL2

mE2
, r2 =

√
E

k

√
1 +

√
1 − kL2

mE2
. (5)

Thus the particle is always bound by the potential. The simplest motion occurs
when E =

√
kL2/m : the particle is at rest in S′, and the trajectory in S is

therefore a circle of radius r0 = (L2
/
mk)1/4. The fact that Ve(r) has a minimum at

r0 means that in S′ the particle is in stable equilibrium at r0, and that the circular
orbit in S is stable. To determine the nature of the orbit for E >

√
kL2/m requires

a detailed calculation: this shows that the orbit is an ellipse with centre of force
at the origin, and with minor and major axes equal to 2r1 and 2r2, respectively
(see Questions 7.25 and 8.10).
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Comment

The term L2
/
2mr2 in the effective potential (1) plays the role of a ‘centrifugal barrier’:

the associated repulsive centrifugal force L2r̂
/
mr3 prevents the particle from falling

into the centre of force under the attraction of the linear restoring force −kr associated
with the term 1

2
kr2 in (1).

Question 8.5

A particle of mass m moves in an attractive Coulomb potential V = −k/r (k is a
positive constant).

(a) Sketch the graph of the effective potential Ve(r) versus r.

(b) Use this graph to discuss the possible motions of the particle.

Solution

(a) From (9) of Question 8.2 we have

Ve(r) = −k
r

+
L2

2mr2
(r ≥ 0) . (1)

When r → 0+, the second term in (1) dominates and Ve → ∞. When r → ∞, the
first term in (1) dominates and Ve → 0−. There is one turning point at a finite
value of r: dVe

/
dr = 0 when (k

/
r2)−L2

/
mr3 = 0, and therefore the turning point

is at
r0 = L2

/
mk . (2)

The value
Ve(r0) = −mk2

/
2L2 (3)

is a minimum. Thus, we have the following graph:

r2r0r1rm

Ve(r0)

E > 0

E < 0

Ve(r)

r
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(b) On the graph we have also drawn horizontal lines to indicate constant positive and
negative energies. We see that if E ≥ 0 the motion is unbounded. In the rotating
frame S′ in which the angular position of the particle is fixed (see Question 8.2),
a particle moving toward the centre of force comes to rest at a distance rm where
V (rm) = E. After that, the particle moves to the right, attaining an asymptotic

velocity v∞ =
√

2E
/
m r̂ at large r. If E < 0 the motion is bounded: in S′ the

particle oscillates between classical turning points r1 and r2 that are roots of the
equation

Ve = −k
r

+
L2

2mr2
= E ; (4)

that is,

r1 = − k

2E

(
1 −

√
1 +

2EL2

mk2

)
, r2 = − k

2E

(
1 +

√
1 +

2EL2

mk2

)
. (5)

A particle with energy E = −mk2
/
2L2 moves in a stable circular orbit of radius

r0 = L2
/
mk. To determine the nature of the orbit for E > −mk2

/
2L2 requires a

detailed calculation. This shows that the orbit is an ellipse if E < 0, a parabola
if E = 0, and a hyperbola if E > 0 (see Question 8.9).

Comments

(i) Note again the role of the centrifugal barrier associated with the second term
in (1), which prevents the particle from falling into the centre of force under
the attraction of the inverse-square force −kr̂/r2 associated with the Coulomb
potential in (1).

(ii) The following energy diagram is for a repulsive Coulomb potential
(
that is, for

k < 0 in (1)
)
. The motion is always unbounded: an incoming particle is scattered

by the potential. The distance of closest approach, r1, decreases as E increases.

r1

E > 0

Ve(r)

r
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Question 8.6

A particle of mass m moves in an attractive Yukawa potential V (r) = −(k/r)e−r/λ,
where k and λ are positive constants. Analyze the effective potential Ve(r) and plot the
four distinct types of graph of Ve(r) versus r. Use these to discuss the possible motions
of the particle: in particular, show that there exists a critical value λc = 1.19053L2

/
mk,

above which the potential can bind the particle.

Solution

The constant λ is the range of the potential. From Question 8.2 we have

Ve(r) = −k
r
e−r/λ +

L2

2mr2
(r ≥ 0) . (1)

When r → 0, Ve → ∞ and when r → ∞, Ve → 0+, because in both limits the second
term in (1) dominates. In its dependence on the range λ, the function (1) has a rather
rich behaviour. To analyze this it is convenient to use the dimensionless quantity
u = r/λ, in terms of which

Ve(u) =
k

λ

(
− 1

u
e−u +

1

2αu2

)
, (2)

where
α =

(
mk

/
L2
)
λ (3)

is a dimensionless, positive quantity. The condition dVe

/
du = 0 for a turning point(s)

can be written
G(u) = eu − α

(
u2 + u

)
= 0 (u ≥ 0) . (4)

The function G(u) has two real roots if α exceeds a value αc (which is calculated
below). These roots become coincident at α = αc, and below αc there are no real,
positive roots:

� �

α < αc

α = αc

α > αc

umaxumin u0

1

G(u)

u
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The value of αc is calculated by solving the simultaneous equationsG = 0 and dG
/
du =

eu − α(2u+ 1) = 0. This yields

u0 = 1
2
(1 +

√
5) = 1.61803 (5)

αc = (2 +
√

5)−1e(1+
√

5)/2 = 1.19053 . (6)

A numerical evaluation‡ of the two roots umin(α) and umax(α) of (4), where Ve(u) has
a turning point, provides the following graph:

umin

umax

u0

αc

6�

5�

4�

3�

2�

1�

10

�

8

�

6

�

4

�

2

�

u(α)

α

There are four distinct graphs of Ve(u), corresponding to various values of α (that is,
of the range λ) in (2):

α < αc

Ve(u) has no turning points: it is a positive, monotonic decreasing function. The motion
is unbounded – an incoming particle is scattered by the potential:

‡The Mathematica notebook is:

In[1]:= Αmini � 1.19053�Αmaxi � 10.0�Αstep � �Αmaxi � Αmini�/500�

LowerRoot � Table��Α,x/.FindRoot��x � Α �x2 � x� �� 0,
x,0.001,1.19503���,Α,Αmini,Αmaxi,Αstep���
UpperRoot � Table��Α,x/.FindRoot��x � Α �x2 � x� �� 0,
x,11.9503���,Α,Αmini,Αmaxi,Αstep���
ListPlot	Join	LowerRoot,UpperRoot
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�
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α = 0.5αc = 0.595270.50

0.25

4u03u02u0
u0

E > 0

λ
k Ve(u)

u

Here, and in the following graphs, we plot Ve(u) in units of k/λ – see (2).

α = αc

A point of inflection with a horizontal tangent appears at u0. Consequently, there
is an unstable circular orbit of radius u0 for a particle with energy† E = Ve(u0) =
0.03787k/λ. Otherwise, the motion is unbounded.

�

�

����

α = αc = 1.190530.10

0.05

4u03u02u0
u0

E > 0

λ
k Ve(u)

u

†See (8) of Question 8.2.
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1.19053 < α < 1.35914

For α > αc = 1.19053 the function Ve(u) has a minimum at umin and a maximum at
umax. Also, Ve(umin) > 0 if α is not too large: the value of α below which Ve(umin) > 0
is calculated by solving Ve(u) = 0 and G(u) = 0 simultaneously. According to (2) and
(4), this yields

umin = 1 , α = 1.35914 . (7)

The next graph is for a value of α less than (7)2, namely α = 1.1αc = 1.30958.

�

�

����

u2u1 umaxumin

0.050

0.025

4u03u02u0
u0

α = 1.1αc = 1.30958

Ve(umin) < E < Ve(umax)

E > Ve(umax)

λ
kVe(umin)

λ
kVe(umax)

λ
k Ve(u)

u

From this graph we see that there is a stable circular orbit of radius umin for a particle
with energy E = Ve(umin), and an unstable circular orbit of radius umax for a particle
with energy E = Ve(umax). For α = 1.1αc the roots of (4) are umin = 1.07316 and
umax = 2.30118. Then, Ve(umin) = 0.01290 k/λ and Ve(umax) = 0.02858 k/λ. A particle
with energy E such that Ve(umin) < E < Ve(umax), and that is located inside the well,
performs a bounded motion: its dimensionless radial coordinate oscillates between the
classical turning points u1 and u2, which are the roots of Ve(u) = E. All other motions
are unbounded – an incoming particle is scattered by the potential.

α > 1.35914

Here, Ve(umin) < 0. The possible motions of the particle are the same as in the previous
case, with the additional feature that now E can be negative. The following graph is
for α = 1.2αc = 1.42864.
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�

�

�

����

u2u1 umaxumin

0.050

0.025

−0.025

4u03u02u0
u0

α = 1.2αc = 1.42864

Ve(umin) < E < Ve(umax)

E > Ve(umax)

λ
kVe(umin)

λ
kVe(umax)

λ
k Ve(u)

u

We see from the above discussion that a Yukawa potential can bind the particle if the
range of the potential λ is larger than

λc = 1.19053
L2

mk
. (8)

Comments

(i) For uniform motion in a circular orbit of radius r the acceleration is −v2r̂/r (see
Question 8.1), and the equation of motion can be written

m
v2

r
=
dV

dr
= k

(
1

r2
+

1

λr

)
e−r/λ. (9)

Thus

v =

√
k(1 + r/λ)

mr
e−r/2λ, (10)

and the period T = 2πr/v can be expressed in terms of r:

T = 2π

√
mr3

k(1 + r/λ)
er/2λ. (11)

(ii) We have seen that a barrier creates a classically forbidden region where E < V .
However, in quantum mechanics a particle with energy E < V can tunnel through
a barrier of finite width. Thus, in the third case above, tunnelling of a bound
particle can occur. In the last case considered, tunnelling can occur if E > 0; but
if E < 0 the barrier width is infinite (see the last diagram) and tunnelling cannot
occur.
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Question 8.7

Show that when the equation of motion for a particle of mass m moving in a central,
isotropic field, namely

mr̈ = F (r) r̂ , (1)

is expressed in terms of plane polar coordinates (r, θ), it yields

m(r̈ − r θ̇2) = F (r) (2)

d

dt

(
mr2θ̇

)
= 0 . (3)

Solution

The acceleration a = r̈ is given in plane polar coordinates by (2) of Question 8.1: thus,
(1) can be written

m(r̈ − r θ̇2)r̂ +m(r θ̈ + 2ṙ θ̇)θ̂ = F (r) r̂ . (4)

Now, if c1r̂ + c2θ̂ = 0 then c1 = c2 = 0. Therefore (4) yields (2) and (3).

Comments

(i) Equation (3) expresses conservation of the angular momentum L = Lẑ, where
L = mr2θ̇

(
see (1) of Question 8.2

)
.

(ii) We can express (2) in terms of r alone by replacing θ̇ with L
/
mr2:

mr̈ − L2

mr3
= F (r) . (5)

By solving this second-order differential equation we can determine r(t). This
procedure is equivalent to evaluating the integral (12) of Question 8.2 to obtain
the solution in the inverse form t(r); which of these two approaches one uses is a
matter of convenience (see below).

(iii) Note that, as one expects, (5) implies that the energyE = 1
2
mṙ2+Ve(r) is constant(

see (10) of Question 8.2
)
.

Question 8.8

Prove that (5) of Question 8.7 can be written as

d2u

dθ2
+ u = −m

L2

1

u2
F

(
1

u

)
, (1)

where

u =
1

r
. (2)
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Solution

We write
dr

dt
=

d

dt

(
1

u

)
= − 1

u2

du

dt
= − 1

u2

dθ

dt

du

dθ
= − L

m

du

dθ
, (3)

where the result θ̇ = L
/
mr2 = Lu2

/
m has been used in the last step. Then

d2r

dt2
= − L

m

dθ

dt

d

dθ

du

dθ
= −

(
L

m

)2
u2 d

2u

dθ2
. (4)

Use of (2) and (4) in (5) of Question 8.7 yields (1).

Comment

Equation (1) can be used in two ways. First, to solve the so-called direct problem:
given the force F (r), calculate the trajectory r(θ).

(
This procedure is equivalent to

evaluating the integral (5) of Question 8.3 to obtain the solution θ(r).
)

Secondly, to
solve the so-called inverse problem: given the trajectory r(θ), calculate the force F (r).
These applications are illustrated in the examples below.

Question 8.9

Determine the geometric form of the trajectory r(θ) for a particle of mass m moving
in a Coulomb potential V (r) = −k/r:
(a) by evaluating the integral (5) of Question 8.3;

(b) by solving the differential equation (1) of Question 8.8.

Solution

(a) In (5) of Question 8.3 we substitute Ve = −k/r + L2
/
2mr2 and make the change

of variable r = 1
/
u. Then

θ = θ0 −
∫

du√
−u2 + (2mk/L2)u+ 2mE/L2

. (1)

Now ∫
dx√

Ax2 +Bx+ C
=

1√−A cos−1 2Ax+B√
B2 − 4AC

(A < 0) . (2)

It follows from (1) and (2) that

θ = θ0 − cos−1

(
1 − r0u

e

)
, (3)

where‡

‡Use of the symbol e should not be confused with the base of the natural logarithm. Which is
intended should be clear from the context.



Spherically symmetric potentials ���

r0 =
L2

mk
, e =

√
1 +

2L2E

mk2
. (4)

Equation (3) can be inverted to obtain u(θ) and hence r(θ) = 1
/
u(θ):

r(θ) =
r0

1 − e cos(θ − θ0)
. (5)

(b) With F = −k/r2 = −ku2, (1) of Question 8.8 is

d2u

dθ2
+ u =

mk

L2
. (6)

If we write u = w +mk
/
L2 then (6) becomes

d2w

dθ2
+ w = 0 , (7)

and hence w = C cos(θ − θ0) where C and θ0 are arbitrary constants. Thus

r(θ) =
1

mk
/
L2 + C cos(θ − θ0)

. (8)

The constant C can be determined by using (8) to evaluate the energy given by
(3) of Question 8.3. A short calculation shows that

E =
L2C2

2m
− mk2

2L2
, (9)

and hence

C = ±mk
L2

√
1 +

2EL2

mk2
= ±e/r0 , (10)

according to (4) above. If we choose the negative sign in (10) then (8) is identical
to (5).

(
Choice of the positive sign in (10) is equivalent to a rotation of axes by π

– see below.
)

In interpreting the above results it should be kept in mind that for
an attractive (repulsive) potential k > 0 (< 0).

Comments

(i) Readers who are familiar with the theory of conic sections will recognize (5) as
the general polar equation of a conic with eccentricity e.

(ii) For readers who are unfamiliar with this theory, it may be helpful to convert (5)
into its various Cartesian forms in order to obtain the possible trajectories. We
first choose the arbitrary constant θ0 = 0. (This is equivalent to orienting the axes
in a convenient manner.) Then

r(θ) =
r0

1 − e cos θ
. (11)

Now choose the Cartesian axes shown, with origin O displaced from the centre
of force F by an amount ea along the x-axis, where a is to be determined. Then
x = r cos θ − ea and y = r sin θ. Note that if a > 0 (< 0) then the origin is to the
right (left) of F .
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We express (11) in terms of x and y by setting r cos θ = x + ea and

r =
√

(x+ ea)2 + y2. A short calculation shows that if e �= 1, then the choice

a =
r0

1 − e2
, (12)

yields a simple quadratic form:

x2 +
1

1 − e2
y2 =

r2
0

(1 − e2)2
. (13)

If e = 1 then the choice a = − 1
2
r0 gives

y2 = 2r0x . (14)

Equation (14) represents a parabola. To interpret (13) we must consider whether
e is less than or greater than one

(
that is, whether E < 0 or E > 0, see (4)

)
. If

e < 1, we can write (13) as
x2

a2
+
y2

b2
= 1 , (15)

where

b2 =
r20

1 − e2
(16)

is positive, and hence b is real.

If e > 1, we write (13) as
x2

a2
− y2

b2
= 1 , (17)

where

b2 =
r20

e2 − 1
. (18)

Again, b is real. We recognize (15) as the equation of an ellipse and (17) as that
of a hyperbola.
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(iii) Consider an attractive potential (k > 0). According to (4), r0 > 0. From (11), or
equivalently (14), (15) and (17), we have three distinct types of trajectory (it is
useful to compare the following analysis with the discussion of the energy diagram
in Question 8.5):

e < 1 (that is, −mk2
/
2L2 < E < 0)

Here, a in (12) is positive and (15) yields the trajectory

∧

L�

r

θ

−b

b

−a a
−ea ea

F ′F

y

x

The points F and F ′ are the foci of the ellipse (the sum of the distances of the
particle from the two foci is a constant). The centre of force is at a focus (F ),
in accordance with Kepler’s first law.

(
For a trajectory r = r0

/
(1 + e cos θ) the

centre of force is at F ′.
)

If θ0 �= 0 in (5) then the ellipse is rotated with respect
to the x- and y-axes. The minimum and maximum values of r are

rmin =
r0

1 + e
= (1 − e)a when θ = π,

rmax =
r0

1 − e
= (1 + e)a when θ = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (19)

The major axis of the ellipse has length 2a, and the minor axis has length 2b.
From (4) and (12) we have

E = − k

2a
, (20)

and therefore all orbits with the same major axis have the same energy. This
degeneracy is associated with the extra symmetry possessed by the Coulomb
problem (see the comments for Question 9.9). Note that when E = −mk2

/
2L2
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we have e = 0: the foci F and F ′ coincide with the origin O and the trajectory is
a circle of radius r0, as is immediately evident from (5).

e > 1 (that is, E > 0)

Equation (17) represents a hyperbola comprising two branches:

L�

∧

r

θ

y =
bx/a

y =
−bx

/a

a −aea −ea
F ′ F

y

x

Note that here a, given by (12), is negative. Again there are two foci, F and
F ′: each branch is a curve traced by a point that moves in such a way that
the difference of its distances from F and F ′ is constant. The dotted lines are
the asymptotes. If the centre of an attractive force is at F then the trajectory
followed is the right-hand branch. The distance of closest approach to F is

rmin =
r0

1 + e
= (e− 1)|a| when θ = π. (21)

For a repulsive potential (k < 0) the energy E is necessarily positive, and therefore
e > 1. The trajectory is a hyperbola (following the right-hand branch if the centre
of force is at the left-hand focus F ′).

e = 1 (that is, E = 0)

Equation (14) represents a parabola. The centre of an attractive force is at the
focus F .
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∧

L�r

θ
−aa

F ′ F

y

x

(iv) The question answered above, namely given the potential (or force), what is the
trajectory, is known as the direct problem (sometimes it is referred to in the
literature as the inverse problem). The direct problem for an inverse-square force
was first solved by Hermann in 1710.[2]

Question 8.10

Determine the trajectory r(θ) for a particle of mass m moving in an oscillator potential
V (r) = 1

2
kr2 by evaluating the integral (5) of Question 8.3.

Solution

In (5) of Question 8.3 we substitute Ve = 1
2
kr2 + L2

/
2mr2 and make the change of

variable r =
√
u. Then

θ = θ0 +
L

2

∫
du

u
√

(−mku2 + 2mEu− L2)
. (1)

Now ∫
dx

x
√
Ax2 +Bx+ C

=
1√−C sin−1 Bx+ 2C

x
√
B2 − 4AC

(C < 0) . (2)

From (1) and (2) we find

θ = θ0 + 1
2
sin−1u− r2

0

eu
, (3)

where

r0 =
L√
mE

, e =

√
1 − kL2

mE2
. (4)

Note that E ≥ √
kL2/m (see Question 8.4) and so e is real. Equation (3) can be

inverted to obtain u(θ) and hence r2(θ) = u(θ):

[2] O. Volk, “Miscellanea from the history of celestial mechanics,” Celestial Mechanics, vol. 14,
pp. 365–382, 1976.
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r2(θ) =
r20

1 − e sin 2(θ − θ0)
. (5)

Comments

(i) To interpret the trajectory (5) we convert to Cartesian coordinates, placing the
centre of force at the origin O. Then x = r cos θ and y = r sin θ. We also make a
convenient choice of θ0 = − 1

4
π; then sin 2(θ − θ0) = cos 2θ = cos2 θ − sin2 θ and

(5) can be expressed as
x2

a2
+
y2

b2
= 1 , (6)

where

a =
r0√
1 − e

, b =
r0√
1 + e

. (7)

The orbit is an ellipse with major axis equal to 2a, minor axis equal to 2b, and
centre of force at the origin, as shown in the diagram below.

(ii) This result can be obtained more simply by solving the equation of motion in
Cartesian coordinates (see Question 7.25).

(iii) Solution by means of the differential equation (1) of Question 8.8, which for this
problem reads

d2u

dθ2
+ u =

mk

L2

1

u3
, (8)

is more difficult than either of the above two methods; but the reader can verify
that (5) does satisfy (8). In the next question it is simpler to use the differential
equation.

∧

L�
r

θ

−b

b

−a a

y

x
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Question 8.11

Determine the trajectory r(θ) for a particle of massmmoving in an attractive potential
V (r) = −k/2r2 (where k is a positive constant) by solving the differential equation
(1) of Question 8.8.

Solution

The force corresponding to the above potential is

F = −dV
dr

r̂ = − k

r3
r̂ , (1)

and therefore (1) of Question 8.8 becomes

d2u

dθ2
+

(
1 − mk

L2

)
u = 0 . (2)

The form of the general solution to (2) depends on whether the quantity in brackets
is positive, negative or zero. These three cases are considered below.

1. L >
√
mk

Here

u(θ) =
1

r(θ)
= C cosα(θ − θ0) , (3)

where C and θ0 are constants, and

α =

√
1 − mk

L2
(4)

is real. The constant C can be evaluated by using the expression for the energy given
in (3) of Question 8.3:

E =
L2

2mr4

(
dr

dθ

)2
+
L2

2m

(
1 − mk

L2

)
1

r2
. (5)

From (3) and (5) we find that

C =
√

2mE
/
α2L2 . (6)

Note that C is real because, according to (5), E > 0.
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2. L <
√
mk

Here

u(θ) =
1

r(θ)
= 1

2
(Ceβθ +De−βθ) , (7)

where C and D are constants, and

β =

√
mk

L2
− 1 (8)

is real. From (7) and (5) we obtain

E = −β2 L
2

2m
CD . (9)

There are three cases to consider, namely whether C and D have the same or opposite
sign, or whether one of them is zero (that is, whether E is negative, positive, or zero).

☞ E < 0

Write C = Be−βθ0, D = Beβθ0, where B and θ0 are constants. Then, (7) becomes

1

r(θ)
= B coshβ(θ − θ0) , (10)

where, according to (9),

B =
√

−2mE
/
β2L2 . (11)

☞ E > 0

Write C = Be−βθ0, D = −Beβθ0 to obtain

1

r(θ)
= B sinhβ(θ − θ0) , (12)

where

B =
√

2mE
/
β2L2 . (13)

☞ E = 0

Either D or C in (9) is zero, and from (7) the corresponding solutions are

1

r(θ)
= Beβθ, (14)

1

r(θ)
= Be−βθ, (15)

where B is a constant.
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3. L =
√
mk

Here

u(θ) =
1

r(θ)
= Cθ +D , (16)

where C and D are constants. From (16) and (5) we find

C =
√

2mE
/
L2 . (17)

When E = 0, we see from (16) and (17) that r = 1/D and the orbit is circular. In a
frame rotating with angular velocity dθ

/
dt, the particle is at rest in a state of neutral

equilibrium
(
neutral because Ve = 0 is constant when L =

√
mk

)
.

Comments

(i) The trajectories of a particle moving in an inverse-cube force were first obtained
by Johann Bernoulli in 1710.[2]

(ii) The following diagrams depict the trajectories obtained above.

1. L >
√
mk

From (3) and (6) above, r(θ) =
[√

2mE
/
α2L2 cosα(θ − θ0)

]−1

where E > 0.

The particle starts at θ0, and escapes to infinity. The number of spirals increases
with decreasing α. In calculating the trajectory below, we have taken α = 1/7
and θ0 = π/3 and set the quantity under the square root equal to one. The dotted
line shows the value of θ at which r becomes infinite, that is θ = θ0 + π

/
2α.
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2. L <
√
mk

☞ E < 0

From (10) and (11) above, r(θ) =
[√−2mE/β2L2 coshβ(θ − θ0)

]−1

for E < 0.

The particle starts at θ0, and spirals into the centre of force at the origin. In
calculating the trajectory below, we have taken β = 1/7 and θ0 = 1

6
π, and set the

quantity under the square root equal to one.

☞ E > 0

From (12) and (13) above, r(θ) =
[√

2mE/β2L2 sinhβ(θ − θ0)
]−1

for E > 0.

The particle starts at θ > θ0, and escapes to infinity if ṙ0 > 0 (radial motion is
outward). In calculating the trajectory below, the fraction under the square root
is set equal to one, β = 1/100, an initial value of θ = 3π was used and θ0 = 1

6
π.

The dotted line shows the value of θ at which r becomes infinite, that is, θ = θ0.
The number of spirals increases if the initial value of θ is increased (i.e. if the
particle starts closer to the centre of force).
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If ṙ0 < 0 (radial motion is inward), the particle spirals into the centre of force. In
calculating the trajectory below, the quantity under the square root is set equal
to one, β = 1/100, an initial value of θ = 9π/4 was used and θ0 = 1

6
π.

☞ E = 0

The trajectories are given by (14) and (15). The particle either spirals into the
centre of force or out to infinity.

3. L =
√
mk

Here, r(θ) =
[√

2mE/L2 θ +D
]−1

where E > 0. The particle spirals into the

centre of force if ṙ0 < 0. In calculating the trajectory below, the quantity under
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the square root is set equal to one, D = 1 and 1
6
π ≤ θ ≤ 4 3

4
π.

If ṙ0 > 0, the particle escapes to infinity. The dotted line shows the value of
θ at which r becomes infinite, that is, θ = −D√L2/2mE. In calculating the
trajectory below, the quantity under the square root is set equal to one, D = 1
and −1 < θ ≤ 3

4
π. Note that when E = 0 the trajectory is a circular orbit. Apart

from these circular orbits, none of the other trajectories is closed.

(iii) For the effective potential of an inverse-cube force

Ve(r) =
L2

2m

(
1 − mk

L2

)
1

r2
, (18)

and there are three possible graphs:
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L =
√
mk

L <
√
mk

L >
√
mk

Ve(r)

r

It is a useful exercise for the reader to reconcile the various trajectories depicted
above with these energy diagrams. For example, it is clear from the energy dia-
grams that for L >

√
mk the motion is unbounded (the particle eventually escapes

to infinity); the centrifugal barrier is strong enough to prevent the particle from
falling into the centre of force. It is also clear that for L <

√
mk the motion is

bounded for E < 0, and either bounded or unbounded for E ≥ 0, depending on
the sign of the radial velocity ṙ. The centrifugal barrier is now too weak to prevent
an incoming particle from falling into the centre of force.

Question 8.12

Extend the calculation of Question 8.9(a) to obtain the bounded trajectories r(θ) for
motion in a perturbed, attractive Coulomb potential.

V (r) = −k
r
− α

r2
, (1)

where k (> 0) and α are constants.

Solution

The effective potential is

Ve(r) = −k
r

+
L2 − 2mα

2mr2
. (2)

It follows from (2) that for bounded motion we require

α <
L2

2m
and − mk2

2(L2 − 2mα)
≤ E < 0 .
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(See the first energy diagram in Question 8.5.) Thus, proceeding as in Question 8.9(a),
we have

θ = θ0 − L√
2m

∫
du√

−(β2L2/2m)u2 + ku+ E

= θ0 − 1

β
cos−1

{
−(β2L2/m)u+ k√
k2 + (2β2L2E/m)

}
, (3)

where u = 1/r and β2 = 1 − 2mα/L2 > 0. Hence

r(θ) =
r0

1 − e cosβ(θ − θ0)
, (4)

where

r0 = β2 L
2

mk
, e =

√
1 + β2

2L2E

mk2
. (5)

Comments

(i) We see that the effect of the perturbation −α/r2 is contained in the parameter
β in (4) and (5). When α = 0 (i.e. β = 1), (4) reduces to the trajectory in a
Coulomb potential (see Question 8.9).

(ii) For bounded motion we saw above that α < L2
/
2m and −mk2

/
2β2L2 ≤ E < 0.

Therefore, 0 ≤ e < 1. For e = 0 the orbit is circular (and stable). If e �= 0, it
is evident from (4) that for rational values of β the orbit is closed (the particle
eventually returns to its starting point), while for irrational values of β the orbit
is open (the particle never returns to its starting point).

(iii) For 0 < e < 1 the orbit can precess. This is illustrated in the two figures below,
(a) for a rational β = 4/5 and (b) for an irrational β = (2+π)

/
2π. In (a) the orbit

A4

A3

A2

A1

(a) β = 4
5, e = 4

5

•

(b) β = 2+π
2π , e = 4

5

•

A4

A3

A2

A1

A

B
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is closed, while in (b) it is open. The points A1, A2, A3 and A4 are successive
aphelia. In (b) a portion of the trajectory is shown, between points A and B; the
actual trajectory fills the entire annulus between the turning points rmin and rmax.
In these figures, the dotted circle shows the maximum value r0

/
(1 − e) of r. The

perturbing potential is attractive because β < 1.

(iv) If β = (integer)−1 one finds that the position of the aphelion (the furthest distance
from the force centre) is fixed on the outer circle:

(c) β = 1
2, e = 4

5

•

(d) β = 1
3, e = 4

5

•

(v) For a repulsive perturbing potential β > 1. Typical trajectories are shown below:
(e) for a rational β = 3 that produces a closed orbit, and (f) for an irrational
β = (3+8π)

/
3π where the orbit is open (a finite portion of the trajectory between

initial and final points A and B is shown).

(e) β = 3, e = 4
5

•

B

A

(f) β = 3+8π
3π , e = 4

5

•
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The topic of closed and open orbits is encountered again in Questions 8.15 and
8.16, and also in Chapter 9, where it is related to the concept of hidden symmetry
and the breaking of this symmetry.

(vi) The next question deals with the so-called inverse problem, namely given the
trajectory r(θ) find the force F(r).

Question 8.13

For each of the following trajectories r(θ), determine the corresponding force
F = F (r)r̂.

(a) r(θ) =
r0

1 − e cos θ
, (1)

(b) r(θ) =
r2
0

1 − e sin 2θ
, (2)

(c) r(θ) = Aeβθ, (3)

(d) r(θ) = (Aθ +B)
−1
, (4)

where r0, e, β, A and B are constants.

Solution

To obtain the force from the trajectory we use the equation of motion in the form (1)
of Question 8.8:

F

(
1

u

)
= −L

2u2

m

(
d2u

dθ2
+ u

)
, (5)

where u = 1/r. Note that in any application of (5) the result obtained for F must, by
definition, be independent of the angular position θ.

(a) From (1) and (5) we have

F

(
1

u

)
= −L

2u2

m

{
e

r0
cos θ +

1

r0
(1 − e cos θ)

}
= −L

2u2

mr0
.

So

F = −
(
L2

mr0

)
1

r2
r̂ , (6)

which is an attractive inverse-square force directed towards a focus of the conic
section (1) (see Question 8.9).

(b) Here, u =
√

1 − e sin 2θ
/
r0, and a short calculation shows that

d2u

dθ2
+ u =

1 − e2

r4
0
u3

. (7)
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From (5) and (7) we have

F

(
1

u

)
= − (1 − e2)L2

mr4
0
u

, (8)

and hence

F = − (1 − e2)L2

mr4
0

r r̂ , (9)

which is an attractive, linear (Hooke’s-law) force directed toward the centre of the
ellipse (2) (see also Question 8.10).

(c) From (3) and (5) we have

F

(
1

u

)
= −L

2u2

m

(
β2 + 1

)
u . (10)

Thus

F = −L
2(β2 + 1)

m

1

r3
r̂ , (11)

which is an attractive, inverse-cube force.

(d) From (4) and (5) we have

F

(
1

u

)
= −L

2u2

m
u , (12)

and therefore

F = −L
2

m

1

r3
r̂ , (13)

which is also an attractive, inverse-cube force.

Comments

(i) The direct problems for the above three forces were solved in Questions 8.9–
8.11. The solution of an inverse problem involves differentiation, and it is invari-
ably easier than the solution of the corresponding direct problem, which involves
integration.

(ii) The inverse problems leading to the inverse-square and linear central forces (6)
and (9) were first solved by Newton.[3] Thus, the result that elliptical motion can
occur either in an inverse-square force field directed to one of the foci of the ellipse,
or in a linear force field directed to the centre of the ellipse, is due to Newton.

Question 8.14

A particle of mass m moves in a central, isotropic force field F (r)r̂.

[3] S. Chandrasekhar, Newton’s Principia for the common reader, Chaps. 5 and 6. Oxford: Claren-
don Press, 1995.
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(a) Show that the condition for a circular orbit of radius r0 is

F (r0) = −L2
/
mr30 , (1)

where L is the angular momentum of the particle.

(b) Prove that this orbit is stable provided

dF

dr

∣∣∣∣
r=r0

< − 3

r0
F (r0) . (2)

(c) Hence determine the values of the constant n for which the power-law force
F (r) = −k/rn has stable circular orbits.

Solution

(a) The radial part of the equation of motion is (see Question 8.7)

mr̈ −mrθ̇2 = F (r) . (3)

For a circular orbit r = r0 is a constant, and (3) becomes −mr0θ̇2 = F (r0), which
is (1) because L = mr2

0
θ̇ (see Question 8.2). The same result follows by setting

the effective force (10) of Question 8.2 equal to zero.

(b) For a stable circular orbit the effective potential (see Question 8.2)

Ve = V (r) + L2
/
2mr2 (4)

must have a minimum at r = r0. That is,

d2

dr2

(
V (r) +

L2

2mr2

)
> 0 at r = r0 . (5)

This is (2) because dV
/
dr = −F (r), and F (r0) is given by (1).

(c) If the force is repulsive (F > 0 and hence k < 0), (1) cannot be satisfied: no
circular orbits – for that matter, no bounded orbits – are possible in a repulsive
power-law force field. We need consider only an attractive force, k > 0. Now (2)
requires

nk
/
rn+1
0

< 3k
/
rn+1
0

. (6)

Because k and r0 are positive, this means that n < 3 for stable circular orbits.

Comment

In this connection it is interesting to sketch the curves of the effective potential (4) for
the power-law force F = −k/rn:

Ve(r) = − k

n− 1

1

rn−1
+

L2

2mr2
(n �= 1)

= k ln r +
L2

2mr2
(n = 1) .

⎫⎪⎪⎬⎪⎪⎭ (7)
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So, for k > 0 we have the following energy diagrams that demonstrate the stability of
circular orbits for n < 3. Note that for n ≤ 1 all trajectories are bounded, whereas for
1 < n < 3 both unbounded and bounded trajectories occur. If n > 3, circular orbits
are possible

(
(1) can be satisfied

)
, but they are unstable

(
the inequality (2) cannot be

satisfied
)
. The energy diagram for n = 3, given on page 243, shows that the stability

of a circular orbit is neutral in this case.

�

r0

n ≤ 1
Ve(r)

r
�

r0

1 < n < 3
Ve(r)

r

�

r0

n > 3
Ve(r)

r

Question 8.15

(a) Let Tr be the period of radial, bounded motion of a particle with mass m and
energy E in an effective potential Ve(r). Show that

Tr =

∫ r
2

r
1

√
2m

{E − Ve(r)} dr , (1)

where r1 and r2 are the classical turning points. (Hint: Refer to Question 8.2.)

(b) Let Tθ be the period of the angular motion of the above particle. Show that

Tθ =
m

L

∫ 2π

0

r2(θ) dθ . (2)

(c) Evaluate Tr and Tθ for an attractive Coulomb potential V = −k/r.
(d) Evaluate Tr and Tθ for an isotropic oscillator potential V = 1

2
kr2.

Solution

(a) The radial period Tr is the period of one-dimensional motion in the rotating frame
S′ referred to in Question 8.2

(
that is, the period of one-dimensional bounded

motion in the effective potential Ve(r)
)
. Tr is equal to the time taken for the

motion r1 → r2 → r1, which is twice the time taken to go from r1 → r2. Thus, (1)
follows directly from (12) of Question 8.2.

(b) From (7) of Question 8.2,
dt = (m/L)r2dθ . (3)

The angular period Tθ is the time taken for the angular position to change by 2π,
and therefore integration of the right-hand side of (3) between θ = 0 and θ = 2π
yields (2).
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(c) For a Coulomb potential V = −k/r, (1) gives

Tr =

∫ r
2

r
1

√
2m

{E + k/r − L2/2mr2} dr

= 2m

∫ r
2

r
1

r dr√
2mEr2 + 2mkr − L2

, (4)

where E < 0 for bounded motion. Now∫
r dr√

Ar2 +Br + C
=

√
Ar2 +Br + C

A
+

B

2A
√−A sin−1

{
2Ar +B√
B2 − 4AC

}
, (5)

for A < 0. Thus∫ r
2

r
1

r dr√
2mEr2 + 2mkr − L2

=
k

2E
√−2mE

{
sin−1(1) − sin−1(−1)

}
=

πk

2E
√−2mE

, (6)

because for r = r1 and r = r2 the quantity 2mEr2 + 2mkr − L2 = 0 and hence

4mEr + 2mk = ±
√

4m2k2 + 8mL2E. From (4) and (6) we have

Tr = πk

√
−m
2E3

. (7)

To calculate the angular period Tθ for a Coulomb potential, use the trajectory
r(θ) given by (11) of Question 8.9. Then, (2) gives

Tθ =
L3

mk2

∫ 2π

0

dθ

(1 − e cos θ)2
, (8)

where

e =

√
1 +

2L2E

mk2
< 1 . (9)

Now∫
dθ

(1 − e cos θ)2
=

e

1 − e2
sin θ

1 − e cos θ
+

2

(1 − e2)3/2
tan−1

[√
1 − e2 tan 1

2
θ

1 − e

]
(10)

for e2 < 1. Thus∫ 2π

0

dθ

(1 − e cos θ)2
= 2

∫ π

0

dθ

(1 − e cos θ)2
=

4 tan−1 ∞
(1 − e2)3/2

=
2π

(1 − e2)3/2
. (11)

From (8), (9) and (11) we have

Tθ =
L3

mk2
2π

(
− mk2

2L2E

)3/2

= πk

√
−m
2E3

. (12)
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(d) For the oscillator potential V = 1
2
kr2, (1) gives

Tr =

∫ r
2

r
1

√
2m{

E − 1
2
kr2 − L2/2mr2

} dr . (13)

The substitution u = r2 converts this to

Tr = m

∫ u
2

u
1

du√
−mku2 + 2mEu− L2

. (14)

By definition u1 and u2 are the roots of the quadratic function in the denominator
of (14). Thus, according to (2) of Question 8.9, the integral in (14) is equal to{
cos−1(−1) − cos−1(1)

}/√
mk = π

/√
mk, and therefore

Tr = π

√
m

k
. (15)

To calculate Tθ for the oscillator, use the trajectory r(θ) given by (5) of Question
8.10 with θ0 = 1

4
π. Then, (2) and the symmetry of the trajectory yield

Tθ =
L

E
4

∫ π/2

0

dθ

1 + e cos 2θ
, (16)

where e =
√

1 − kL2/mE2. Now∫
dα

1 + e cosα
=

2√
1 − e2

tan−1

[√
1 − e2 tan 1

2
α

1 + e

]
. (17)

Consequently, the integral in (16) is equal to 1
2
π
/√

1 − e2, and so

Tθ =
L

E
2π

√
mE2

kL2
= 2π

√
m

k
. (18)

Comments

(i) For the Coulomb potential the dependence on the angular momentum L cancels
in the above calculations of Tr and Tθ, while for the oscillator the dependences on
both L and E cancel

(
see, for example, the steps from (8) to (12), and from (16)

to (18)
)
.

(ii) For the Coulomb potential, (7) and (12) show that the angular and radial periods
are equal, Tθ = Tr – the motion is singly periodic. For the oscillator, (15) and
(18) show that Tθ = 2Tr – the motion is doubly periodic. (The difference arises
because the centre of force for the oscillator is at the centre of the ellipse and
consequently a radial cycle r1 → r2 → r1 is completed in half an angular cycle.)
It follows that all bounded orbits of these potentials are closed. In fact, these are
the only potentials that have this remarkable property, a result that is known as
Bertrand’s theorem (see Question 9.12). The special feature that sets the non-
relativistic Coulomb and oscillator problems apart is the ‘hidden’ symmetry they
possess (see Chapter 9).
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(iii) In general, bounded motion in a potential V (r) is doubly periodic, with different
periods Tθ and Tr. The ratio Tθ/Tr enables us to distinguish between closed and
open orbits.

(iv) If Tθ/Tr is a rational number, that is

Tθ/Tr = p/q , (19)

where p and q are integers, then after p cycles of the radial motion the particle
will have executed q complete revolutions – it will have returned to its initial
position. The orbit is closed. For the Coulomb potential Tθ/Tr = 1 and the orbit
closes after just one radial cycle and one revolution (θ changes by 2π during the
motion r1 → r2 → r1). Clearly, the same remark applies to the circular orbits
of any potential. If Tr is a little larger than Tθ then during one radial cycle the
angular position θ will change by a little more than 2π. The resulting motion,
which is known as precession, is depicted below. Here, Tθ is the time taken to go
from A to B, and Tr is the time taken to go from A to C. It takes a large number
of revolutions for the orbit to close (for example, 100 if p/q = 99/100).

(v) If Tθ/Tr is not a rational number then the orbit will not close – it is an open
orbit. All points in the classically accessible region r1 ≤ r ≤ r2 and 0 ≤ θ ≤ 2π
(the region between the circles of radii r1 and r2 in the figure) will eventually be
reached by the particle.

(vi) Equation (7) and the relation E = −k/2a (see Question 8.9) show that the period
T for the Coulomb problem is related to the length 2a of the major axis by

T = 2π
√
ma3

/
k . (20)

This is Kepler’s third law (see also Question 10.11).

r1

r2

C

B

A

•

•

•
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Question 8.16

Consider bounded motion in the perturbed, attractive Coulomb potential

V (r) = −k
r
− α

r2
, (1)

where k (> 0) and α are constants. Let β =
√

1 − 2mα/L2. Using the definite integrals
provided in the solution to Question 8.15, prove that if β is rational (i.e. β = p/q, where
p and q are integers) then the ratio of the angular and radial periods is given by

Tθ

Tr

= β . (2)

(Hint: For the angular period Tθ consider q complete cycles.)

Solution

The effective potential corresponding to (1) is

Ve(r) = −k
r

+
β2L2

2mr2
. (3)

This potential follows from the unperturbed effective potential by making the replace-
ment L→ βL. Thus, the radial period Tr for the perturbed motion can be obtained by
making this replacement in (7) of Question 8.15. But the latter result is independent
of L and therefore the radial period is unaffected by the perturbation: from (7)

Tr = πk

√
−m
2E3

. (4)

(
If the perturbation decreases (increases) the integrand in the general formula (1) of

Question 8.15, then for a given E it increases (decreases) the range of integration
[r1, r2]; these two effects compensate, leaving Tr unchanged.

)
For the angular period Tθ we use (2) of Question 8.15, and the trajectory

r(θ) =
β2L2

mk(1 − e cosβθ)
, with e =

√
1 + β2

2L2E

mk2
, (5)

(see Question 8.12). Then

Tθ =
β4L3

mk2

∫ 2π

0

dθ

(1 − e cosβθ)2
. (6)

In (6) we make the substitution u = βθ and consider q complete angular cycles. Then

qTθ =
β3L3

mk2

∫ 2πqβ

0

du

(1 − e cosu)2
. (7)
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For rational β (= p/q), (7) becomes

qTθ = p
β3L3

mk2

∫ 2π

0

du

(1 − e cosu)2
= p πk

√
−m
2E3

. (8)

Here, we have used (11) of Question 8.15 and (5)2. According to (4) and (8)

Tθ = βTr . (9)

Comments

(i) It follows from (2) that the trajectory is closed if β is rational. This conclusion is
consistent with the trajectories calculated in Question 8.12.

(ii) The above example illustrates how a perturbation destroys a special property of
motion in a Coulomb potential (namely, that all bounded orbits are closed and
singly periodic): the bounded trajectories of the perturbed potential (1) are closed
only for discrete values of β, and hence of the angular momentum

L =

√
2mα

1 − (p/q)2
, (10)

where p and q are integers (see also Question 8.12).

(iii) It is straightforward to show that a similar result holds for the perturbed oscillator
potential V (r) = 1

2
kr2−α/r2, where the discrete values that produce closed orbits

are given by

L =

√
2mα

1 − (p/2q)2
. (11)

In both instances the perturbed closed orbits are doubly periodic.

Question 8.17

Determine the time-dependent trajectory
(
r(t), θ(t)

)
for motion in a spiral orbit

r(θ) = Aeβθ, (1)

where A and β are constants. (Hint: Start with (7) of Question 8.2.)

Solution

For the given orbit, and by integrating (7) of Question 8.2, we have

t =
mA2

L

∫ θ(t)

θ
0

e2βθdθ =
mA2

2βL

(
e2βθ(t) − e2βθ0

)
, (2)

where θ0 = θ(0). Inversion of (2) gives
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θ(t) =
1

2β
ln

(
2βL

mA2
t+ e2βθ0

)
. (3)

From (1) and (3) we obtain

r(t) = A

√
2βL

mA2
t+ e2βθ0 . (4)

Comments

(i) It is a good exercise for the reader to reconcile (3) and (4) with the relevant polar
plots in Question 8.11.

(ii) In certain cases it is not feasible to invert the equations for t(θ) and t(r). The
next question is an important example of this type.

Question 8.18

Consider the elliptical orbits of a Coulomb potential described in Question 8.9.

(a) Given the initial conditions

θ = 0 and r = rmin = (1 − e)a (1)

at t = 0, show that the time-dependent trajectory
(
r(t), θ(t)

)
is given in inverse

form for the first half-cycle, 0 ≤ t ≤ 1
2
T , by

t(u) =
T

4

[
1 − 2

π

√
−u2 + 2u+ e2 − 1 − 2

π
sin−1

(
1 − u

e

)]
, (2)

t(θ) =
T

4

[
1 − 2

π
e
√

1 − e2
sin θ

1 + e cos θ
− 2

π
sin−1

(
e+ cos θ

1 + e cos θ

)]
, (3)

for (1 − e) ≤ u ≤ (1 + e) and 0 ≤ θ ≤ π. Here, u = r/a, T is the period, e is

the eccentricity, and 2a is the length of the major axis of the ellipse.
(
Hint: Start

with (12) of Question 8.2, and express t(r) in terms of a, e and T by using the
relations (see Questions 8.9 and 8.15)

E = −k/2a, L2 = (mk2
/
2E)(e2 − 1), T = 2π

√
ma3

/
k .

)
(4)

(b) Show that for the second half-cycle, 1
2
T ≤ t ≤ T ,

t(u) = T − (2) and t(θ) = T − (3) , (5)

where (2) and (3) denote the right-hand sides of (2) and (3), respectively. Make
parametric plots of u(t/T ) and θ(t/T ) versus t/T for e = 0.1, e = 0.5 and e = 0.9.
For u(t/T ) show the first three cycles, and for θ(t/T ) show the first cycle.
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Solution

(a) For the Coulomb potential V = −k/r, (12) of Question 8.2 yields

t(r) =

√
m

2

∫ r

r
0

dr√
E + k

/
r − L2

/
2mr2

, (6)

where the initial condition (1)2 requires r0 = (1− e)a. In (6) we make the change
of variable u = r/a, and use (4) to express the result in terms of a, e and T :

t(u) =
T

2π

∫ u

1−e

u du√−u2 + 2u+ e2 − 1
. (7)

According to (5) of Question 8.15,∫
u du√−u2 + 2u+ e2 − 1

= −
√
−u2 + 2u+ e2 − 1 − sin−1

(
1 − u

e

)
, (8)

a result that can easily be checked by differentiation. From (7) and (8) we find that
t(u) is given by (2). The calculation of t(θ) in (3) is similar. The polar equation
that is consistent with the initial conditions (1) is obtained by choosing θ0 = π in
(5) of Question 8.9; that is,

r(θ) =
a(1 − e2)

(1 + e cos θ)
.

After substituting this in (3) of Question 8.15, we use the integral‡∫
dθ

(1 + e cos θ)2
= − e

1 − e2
sin θ

1 + e cos θ
− 1

(1 − e2)3/2
sin−1

[
e+ cos θ

1 + e cos θ

]
, (9)

where 0 ≤ θ ≤ π and e < 1. This yields (3).

(b) The second half-cycle starts at t = 1
2
T and r = rmax = (1 + e)a. Thus, for

1
2
T ≤ t ≤ T we have, instead of (7),

t(r) = 1
2
T − T

2π

∫ u

1+e

u du√−u2 + 2u+ e2 − 1
. (10)

(
The negative sign before the integral in (10) takes account of the change in the

direction of motion during the second half of the cycle.
)

Equations (8) and (10)
lead to (5)1. A similar calculation yields (5)2. By continuing in this manner one
can construct the various half-cycles of the motion. The required plots are shown
below. We remark that if the apparent cusp-like structures at t = T, 2T, 3T · · ·
in the first graph are examined on a finer scale, one finds that the slope is always
continuous and equal to zero there. General formulas for t(u) and t(θ) in the
various half-cycles are given in (11) and (12).

‡The validity of (9) can be checked by differentiation. It is equivalent to (10) of Question 8.15
with e replaced by −e.
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e = 0.1

e = 0.5

e = 0.9

���

321

�

�

1

2

u(t/T )

t/T

e =
0.9

e =
0.5

e = 0.1

1.0

�

0.5

�

�2π

�π

θ(t/T )

t/T

Comments

(i) The solutions (2) and (3) have the simple feature that the parameters m, k, L
and E of the problem influence the dimensionless radial position u(t/T ) and the
angular position θ(t/T ) only through the eccentricity e.

(ii) The substitution u = (1 − e2)
/
(1 + e cos θ) changes (2) into (3) as required (the

solution to t(u) = t(θ) is the polar equation for u).

(iii) It is straightforward to generalize (2) and (3) to the nth half-period (of duration
1
2
T ), and the results are

t(u)

T
=

(2n− 1)

4
+

(−1)n

2π

[√
−u2 + 2u+ e2 − 1 + sin−1

(
1 − u

e

)]
, (11)

t(θ)

T
=

(2n− 1)

4
+

(−1)n

2π

[
e
√

1 − e2
| sin θ |

1 + e cos θ
+ sin−1

(
e+ cos θ

1 + e cos θ

)]
, (12)

for n = 1, 2, · · · and (1 − e) ≤ u ≤ (1 + e) and (n − 1)π ≤ θ ≤ nπ. We remark
that the modulus sign in (12) is essential to obtain the correct results for even n.
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(iii) The task of determining the time-dependent trajectories for the Kepler problem
was one of the first problems considered at the dawn of Newtonian mechanics.[1,2]

The historical approach differs from the ‘head-on’ method that we used to obtain
(2) and (3) in that it is based on the introduction of an intermediate variable, an
angle ψ known as the ‘eccentric anomaly’. In terms of ψ, the coordinates of the
particle relative to the centre of the ellipse are x = a cosψ, y = b sinψ. For the
polar equation (9), the focus is at F ′ = (ea, 0). Thus, the x-coordinate relative
to F ′ is x′ = x− ea (see Question 8.9), and so the distance from F ′ is

r =
√
x′2 + y2 = a(1 − e cosψ) . (13)

During a complete cycle from perigee to apogee to perigee, ψ changes from
0 to π to 2π. The change of variable (13) simplifies (7) to

t =
T

2π

∫ ψ

0

(1 − e cosψ) dψ .

Hence

ωt = ψ − e sinψ , (14)

where ω = 2π/T . In addition, there is a relation between the angular positions θ
and ψ that follows by equating r(θ) and (13), namely

tan
θ

2
=

√
1 + e

1 − e
tan

ψ

2
. (15)

The transcendental equation (14) is known as Kepler’s equation. It was first
derived by Newton,[3] who also deduced its form for hyperbolic trajectories.

(iv) In the above, the centre of force is located at the right-hand focus of the ellipse.
In problems where the centre of force is at the left-hand focus, one need simply
replace e with −e in (13)–(15).

(v) Equations (13)–(15) are the desired solution in terms of the eccentric anomaly.
To find the position

(
r(t), θ(t)

)
on the orbit at time t, they are used as follows.

First, the eccentric anomaly is calculated from (14), and then r(t) and θ(t) are
obtained from (13) and (15). For examples, see Questions 10.9 and 11.6.

(vi) Because of the importance of obtaining accurate numerical solutions for r(t),
the Kepler problem has attracted considerable attention since the seventeenth
century, when Newton described an iterative procedure for obtaining approximate
solutions.[3]

Question 8.19

Extend the calculation of Question 8.18 to obtain the time-dependent trajectory(
r(t), θ(t)

)
in inverse form for hyperbolic orbits of an attractive Coulomb potential.

Solution

For the hyperbolic orbits E = k
/
2|a|, e > 1, and rmin = (e − 1)|a| (see Question

8.9). (In what follows we omit the modulus sign on a.) Consequently, (6) and (4)2 of
Question 8.18 yield
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t(u) =

√
ma3

k

∫ u

e−1

u du√
u2 + 2u+ 1 − e2

, (1)

where u = r/a (≥ e− 1). The integral∫
u du√

u2 + 2u+ 1 − e2
=

√
u2 + 2u+ 1 − e2 − ln

(√
u2 + 2u+ 1 − e2 + u+ 1

)
(2)

(e > 1) can readily be checked by differentiation. Therefore, (1) gives

t(u) = τ

[√
u2 + 2u+ 1 − e2 − ln

1

e

(√
u2 + 2u+ 1 − e2 + u+ 1

)]
, (3)

for u ≥ e− 1. Here, τ is a time scale for the motion: τ =
√
ma3/k = a/v∞, where v∞

is the asymptotic velocity. The calculation of t(θ) is similar. By substituting the polar
equation u = (e2 − 1)

/
(1 + e cos θ) in (3) of Question 8.15 and using the integral∫

dθ

(1 + e cos θ)2
=

e

1 − e2
sin θ

1 + e cos θ
− 1

(e2 − 1)3/2
ln

[√
e2 − 1 sin θ + cos θ + e

1 + e cos θ

]
(4)

(e > 1) and the initial condition θ = 0 at t = 0, we obtain

t(θ) = τ

[
e
√
e2 − 1

sin θ

1 + e cos θ
− ln

(√
e2 − 1 sin θ + cos θ + e

1 + e cos θ

)]
, (5)

for θ ≤ cos−1(−1/e).

Comment

Graphs of u(t/τ) and θ(t/τ) versus t/τ obtained from (3) and (4) for three values of
the eccentricity e are shown below. The dotted lines are the asymptotes u = t/τ and
θ = cos−1(−1/e). We remark that curves of u(t/τ) for different values of e can cross,
as illustrated in the first figure.
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e = 6

e = 4
e = 2
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�
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�
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�

π
3 �

θ(t/τ)

t/τ

Question 8.20

At time t = 0 a rocket of mass m is at a distance of two Earth radii (2Re) from the
centre of the Earth and is travelling perpendicular to the equatorial plane with speed
u. The mass of the Earth Me � m. Suppose that

u = αv� , where v� =
√
GMe

/
2Re (1)

and α is a positive number.

(a) Show that a circular orbit requires α = 1.

(b) Show that the escape velocity of the rocket corresponds to α =
√

2.

(c) Show that for the rocket to strike a point on the Earth’s surface at angular position
λ (measured from the Equator) requires

α =

√
1 − cosλ

2 − cosλ
. (2)

(Neglect atmospheric drag when the rocket enters the Earth’s atmosphere.)

(d) Use Mathematica to find the time taken by the rocket to reach the Arctic Circle
(λ = 66 1

2

◦). Then, plot the trajectory for α = 0.613,
√

2/3, 0.9, 1.0, and 1.1.

Solution

Since Me � m, it is a good approximation to take the centre of mass of the Earth–
rocket system at the centre of the Earth (see Chapter 10).

(a) Then, the equation of motion of the rocket for a circular orbit of radius 2Re is

m
u2

2Re

=
GMem

(2Re)2
, (3)

and therefore u = v�.
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(b) Conservation of energy requires

1
2
mu2 − GMem

2Re

= 1
2
mv2

∞ , (4)

where v∞ is the speed of the rocket at r = ∞. By definition, the escape velocity
is the value of u corresponding to v∞ = 0: that is, u =

√
2 v�.

(c) In the diagram below, the circle represents the surface of the Earth. The trajectory
AB of the rocket is part of an ellipse with one focus at the centre O of the Earth.

•

•

A

B

xc

λ

u

R
e

2Re

y

x

The point of intersection B between the circle and the ellipse is determined by
the simultaneous equations

x2 + y2 = R2
e and

(
x− ea

a

)2
+
(y
b

)2
= 1 , (5)

where b = a
√

1 − e2 (see Question 8.9). The positive solution to (5) for x is

xc =
−a(1 − e2) +Re

e
. (6)

Also, a(1 + e) = 2Re (see Question 8.9) and xc = Re cosλ. If we use these two
equations to eliminate e and xc from (6) we find that

a =

(
2 − cosλ

3 − cosλ

)
2Re . (7)

Now, the energy of the rocket is

E = 1
2
mu2 − GMem

2Re

= −GMem

2Re

(1 − 1
2
α2). (8)
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From (7) and (8), and (20) of Question
8.9 (with k = GMem), we obtain the
desired result (2). Note that λ = 180◦

requires α =
√

2/3, and λ = 66 1
2

◦

requires α = 0.613.

(d) The Mathematica notebook given be-
low was used to solve the equation

of motion mr̈ = −GMem

r3
r for the

trajectory
(
x(t), y(t)

)
. This yields the

trajectories shown in the figure. With
α = 0.613 we find that the rocket reaches
the ground after t = 2715 s ≈ 45 min.

•

u

surface
Earth’s

α = 1.1

α = 1.0

α =
√

2/3α = 0.9

α = 0.613

Comment

If α <
√

2, (8) shows that E < 0. The trajectory is an ellipse if
√

2/3 < α <
√

2, and

part of an ellipse if α ≤ √
2/3

(
see (2) with λ ≤ π

)
. The left-hand focus is at O if

α < 1; the right-hand focus is at O if α > 1; and the orbit is a circle if α = 1. For
α >

√
2, E > 0 and the trajectory is a hyperbola. If α =

√
2 then E = 0 and the

trajectory is a parabola.

In[1]:= Me � 5.99 � 10
24�Re � 6.37 � 10
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The Coulomb and oscillator problems

The Coulomb (or Kepler) and oscillator problems play a special role in both classical
and quantum physics. Despite their simplicity, these two problems have important
applications and they possess interesting theoretical properties; not surprisingly, a
large number of papers have been devoted to them since the seventeenth century. The
following questions illustrate some of their special properties (extra constants of the
motion, hidden symmetries, closed orbits and transformations).

Question 9.1

Consider the equation of motion for a particle of mass m in a Coulomb potential:

dp

dt
= − k

r2
r̂ . (1)

(a) Cast (1) into the form of a conservation equation

dB

dt
= 0 , (2)

where the conserved vector B is given by

B =
L

mk
p − L̂× r̂ . (3)

(
Hint: Use the relation dθ̂/dt = −(dθ/dt) r̂ for the unit vectors of plane polar

coordinates – see Question 8.1.
)

(b) Use B and L to construct a second conserved vector A, and show that it can be
expressed as

A = r̂ +
1

mk
L × p . (4)
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Solution

(a) The relation (see Question 8.1)

dθ̂

dt
= −dθ

dt
r̂ = − L

mr2
r̂ (5)

enables us to write (1) as

d

dt

(
L

mk
p − θ̂

)
= 0 . (6)

This is (2) with

B =
L

mk
p− θ̂ . (7)

Because θ̂ = L̂× r̂ (see figure), this can also be written as (3).

(b) By taking the vector product of L̂ with B we can create a second conserved vector
that is orthogonal to both B and L:

A = L̂ × B . (8)

From (7) and (8), and with L̂× θ̂ = −r̂ (see figure), we obtain (4).

Comments

(i) The conserved vectors A and B are dimensionless and they lie in the plane of the
trajectory (they are perpendicular to L).

(ii) These two vectors have been known and studied for a long time.[1,2] We will refer to
them as the Laplace vector A and the Hamilton vector B.

(
In the literature, A is

also known as the Runge–Lenz vector, or the Hermann–Bernoulli–Laplace vector,
or the second Laplace vector, and B is also called the first Laplace vector.[1,2]

)
(iii) A conserved quantity like A or B is referred to as a constant of the motion. Thus

we have found that the Coulomb problem possesses a scalar constant of the motion
E and three vector constants of the motion L, A and B; that is, ten constants
in all. Of course, not all of these can be independent: the number of independent
constants is determined in the next question.

(iv) The vectors A and B have interesting properties and applications, some of which
are illustrated in the following three questions.

[1] H. Goldstein, “More on the prehistory of the Laplace or Runge-Lenz vector,” American Journal
of Physics, vol. 44, pp. 1123–1124, 1976.

[2] O. Volk, “Miscellanea from the history of celestial mechanics,” Celestial Mechanics, vol. 14,
pp. 365–382, 1976.
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Question 9.2

Prove that the magnitudes of the Laplace and Hamilton vectors for the Coulomb
problem satisfy

A2 = B2 = 1 +
2L2E

mk2
, (1)

where E is the energy

E =
1

2
m

(
dr

dt

)2
+

L2

2mr2
− k

r
. (2)

Solution

In the construction A = L̂×B, the vector B is perpendicular to L̂ (see Question 9.1).
It follows immediately that A = B. We evaluate B2 by first expressing B in terms of
radial and transverse components. From (7) of Question 9.1, and using

p = mṙr̂ +mrθ̇θ̂ = mṙr̂ + (L/r)θ̂ , (3)

(see Question 8.1) we have

B = (L/k)ṙr̂ +
{
(L2

/
mkr) − 1

}
θ̂ . (4)

Now, B2 = B ·B and r̂ · θ̂ = 0, while r̂ · r̂ = θ̂ · θ̂ = 1. Thus, the scalar product of (4)
with itself yields

B2 = 1 + (L2
/
k2)ṙ2 + L4

/
m2k2r2 − 2L2

/
mkr , (5)

which is (1) with E given by (2).

Comments

(i) The energy E is not an independent constant of the motion, being related to the
magnitudes of the Laplace and Hamilton vectors by (1).

(ii) We can now specify the number of independent constants of the motion for the
Coulomb problem. They are the six components of L and A (or B) minus one
because of the orthogonality condition

L ·A = 0 . (6)

That is, a total of five, which is the maximum number of independent constants
of the motion that allows a continuous trajectory in phase space. It seems that
this property of the Coulomb problem was first proved by Laplace.[1,2]

Question 9.3

Use the Laplace vector

A = r̂ +
1

mk
L × p (1)

to determine the polar equation r = r(θ) of the trajectory for the Coulomb problem.
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Solution

The scalar product of r with (1) is

r ·A = r − 1

mk
L2 . (2)

(
Here, we have used the identity r · (L × p) = −L · (r × p) = −L2.

)
But

r · A = rA cos θ , (3)

where θ is the angle between r and A. From (2) and (3) we obtain the polar equation
of the trajectory

r(θ) =
r0

1 − e cos θ
, (4)

where

r0 = L2
/
mk , e = A . (5)

Comments

(i) Equation (4) is the polar equation of a conic section with semilatus rectum r0 and
eccentricity e. With A given by (1) of Question 9.2, the solution (4) is the same
as that obtained by solving the equation of motion (see Question 8.9).

(ii) We see from (3) and (4) that the vector A points along the symmetry axis of the
conic section (the line θ = 0), and it is directed from a focus F away from the
point of closest approach. This is illustrated for an elliptical orbit (E < 0) in the
figure below. In the case of planetary motion, A is directed towards the aphelion.
While A is along the major axis of the ellipse, B is parallel to the minor axis.
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(iii) The same trajectory is obtained using the Hamilton vector B: simply take the

scalar product of θ̂ with (4) of Question 9.2,

θ̂ · B =
L2

mkr
− 1 , (6)

and note that from the figure

θ̂ ·B = B cos(π − θ) = −B cos θ . (7)

Equations (6) and (7) yield (4) with e = B = A.

(iv) Thus, either the Laplace vector or the Hamilton vector can be used to obtain
the trajectory r = r(θ) without solving a differential equation or performing any
integration.

Question 9.4

(a) Use the Hamilton vector in the form

B =
L

mk
p− θ̂ (1)

(
see (7) of Question 9.1

)
to show that in momentum space the trajectories of the

Coulomb problem are circular if L �= 0.

(b) Sketch the trajectory in momentum space corresponding to each trajectory in
configuration (coordinate) space.

Solution

(a) According to (1),

p −mkL−1B = mkL−1θ̂ . (2)

Choose Cartesian axes such that A = (A, 0, 0) and B = (0, B, 0), and recall that
B = A (see Question 9.2). Then, (2) yields

p2
x + (py −mkL−1A)2 = (mkL−1)2 . (3)

Thus, the trajectory in momentum space (the so-called hodograph) is a circle of
radius mkL−1 with centre at (0, mkL−1A, 0).

(b) In each of the diagrams below, B points from the origin O in momentum space
to the centre C of the hodograph. There are four cases:

E = −mk2/2L2, A = 0 (circular orbit in configuration space)

The centre of the hodograph is at the origin O of coordinates in momentum space.
The magnitude p of the momentum is a constant, mk/L.
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−mk2/2L2 < E < 0, 0 < A < 1 (elliptical orbit in configuration space)

The origin O is inside the hodograph.

E = 0, A = 1 (parabolic trajectory in configuration space)

The origin O is situated on the hodograph.
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E > 0, A > 1 (hyperbolic trajectory in configuration space)

The origin O is outside the hodograph. The momentum at r = ∞ is p∞ =√
2mE = (mk/L)

√
A2 − 1. This is greater‡ than (mk/L)(A − 1) if A > 1, and

hence the hodograph is an incomplete circle. If the particle starts at x = ∞,
y = −∞ and ends at x = ∞, y = ∞ then the hodograph is traversed from a to b
in the figure below.

Comments

(i) If L = 0, the hodograph is a straight line.

(ii) Starting with given initial conditions r0 and v0, and a given hodograph, one can
construct the corresponding orbit in configuration space in a purely geometric
(‘quasi-Newtonian’) manner.[3,4]

(iii) The circular nature of the hodograph was published by Hamilton in 1846.

(iv) The classical Laplace and Hamilton vectors found additional applications after
the formulation of quantum mechanics in 1925. In 1926, Pauli[5] was the first to
show how the new quantum mechanics could be used to obtain the energy levels
of the hydrogen atom. His analysis is based on a quantum-mechanical analogue
of the Laplace vector, namely the Pauli–Lenz vector operator

‡Because A − 1 <
√

A2 − 1 if A > 1.

[3] J. Sivardière, “Comments on the dynamical invariants of the Kepler and harmonic motions,”
European Journal of Physics, vol. 13, pp. 64–69, 1992.

[4] A. González-Villanueva, E. Guillaumin-España, R. P. Martinez-y-Romero, H. N. Nūñez-Yépez,
and A. L. Salas-Brito, “From circular paths to elliptic orbits: a geometric approach to Kepler’s
motion,” European Journal of Physics, vol. 19, pp. 431–438, 1998.

[5] W. Pauli, “Über das wasserstoffspektrum von standpunkt der neuen quantenmechanik,”
Zeitschrift fur Physik, vol. 36, pp. 336–363, 1926. English translation in B. L. van der Waerden
(ed.), Sources in quantum mechanics. New York: Dover, 1968. pp. 387–415.
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A =
r

r
+

1

2mk
(L × p − p× L). (4)

Here, r and p are the position and momentum operators, and the construction in
brackets in (4) ensures that A is a Hermitian operator. It is remarkable that while
the classical vector A played a role in the first direct solution of the Kepler problem
in 1710 using the recently discovered classical mechanics,[1,2] about two centuries
later the corresponding Hermitian vector operator A was an essential ingredient
in the first solution for the hydrogen atom by the new quantum mechanics.[5]

(v) The parallel between the classical and quantum-mechanical developments extends
further. A second vector operator B can be constructed as a quantum-mechanical
analogue of the classical Hamilton vector and, together with A, it is useful in an
algebraic formulation of the Coulomb problem in an angular-momentum basis.[6]

For example, the combinations A ± iB provide transformations (so-called shift
operations) that generate all the bound-state coordinate-space and momentum-
space wavefunctions of the Coulomb problem in this basis.[6,7]

Question 9.5

Starting with the equation of motion of a three-dimensional isotropic harmonic
oscillator

dpi

dt
= −kri (i = 1, 2, 3) , (1)

deduce the conservation equation

dAij

dt
= 0 , (2)

where

Aij =
1

2m
pipj + 1

2
krirj . (3)

(Note that we will use the notations r1, r2, r3 and x, y, z interchangeably, and similarly
for the components of p.)

Solution

Multiply (1) on both sides by pj = mṙj . Then

pj ṗi = −mkriṙj . (4)

Add to (4) the same equation, but with i and j interchanged, and divide the result by
2m. This gives

1

2m
(piṗj + ṗipj) = − 1

2
k(riṙj + ṙirj) , (5)

which is (2) with Aij given by (3).

[6] O. L. de Lange and R. E. Raab, “Coulomb problem in an angular momentum basis: An algebraic
formulation,” Physical Review, vol. A37, pp. 1858–1868, 1988.

[7] O. L. de Lange and R. E. Raab, Operator methods in quantum mechanics. Oxford: Clarendon
Press, 1991.
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Comments

(i) The symmetric second-rank tensor Aij is known as the Jauch–Hill–Fradkin (JHF)
tensor.[8,9] It has interesting properties and applications, some of which are
illustrated in Questions 9.6 to 9.9.

(ii) After studying these questions, it should be clear to the reader that the role played
by Aij in the theory of the isotropic harmonic oscillator is analogous to that of
the Laplace vector A and the Hamilton vector B in the Coulomb problem (see
Questions 9.1 to 9.4).

(iii) The reader may wonder whether Laplace- and Hamilton-type vectors can be
constructed for the oscillator. The answer is that they can but it is simpler to
use the tensor Aij.

[3,10] The Laplace- and Hamilton-type vectors are, in fact,
eigenvectors of Aij (see below).

Question 9.6

Prove the following algebraic properties of the JHF tensor Aij defined in Question
9.5:

(a) Trace A = E , (1)

(b) LiAij = AijLj = 0 , (2)

(c) Det A = 0 , (3)

(d) riAijrj = r2E − L2
/
2m. (4)

In (2) and (4) a repeated subscript implies summation from 1 to 3.

Solution

(a) Trace A = A11 +A22 +A33 =
1

2m

(
p2

1 + p2
2 + p2

3

)
+ 1

2
k
(
r21 + r22 + r23

)
= E .

(b) Recall that the components of a vector product such as L = r×p can be written
as

Li = εijkrjpk , (5)

where εijk is the Levi-Civita tensor defined by

εijk =

⎧⎨⎩
1 ijk = any even permutation of 1, 2, 3

−1 ijk = any odd permutation of 1, 2, 3
0 if any two subscripts are equal.

(6)

[8] J. M. Jauch and E. L. Hill, “On the problem of degeneracy in quantum mechanics,” Physical
Review, vol. 57, pp. 641–645, 1940.

[9] D. M. Fradkin, “Three-dimensional isotropic harmonic oscillator and SU3,” American Journal
of Physics, vol. 33, pp. 207–211, 1965.

[10] L. H. Buch and H. H. Denman, “Conserved and piecewise-conserved Runge vectors for the
isotropic harmonic oscillator,” American Journal of Physics, vol. 43, pp. 1046–1048, 1975.
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Then

LiAij = εiklrkpl

(
1

2m
pipj + 1

2
krirj

)
= 0 (7)

because εiklplpi = 1
2
(εiklplpi + εlkipipl) = 1

2
εikl (plpi − pipl) = 0, and similarly

εiklrkri = 0. It also follows that AijLj = AjiLi = AijLi = 0, where we have used
the symmetry of Aij and (7).

(c) Det A =

∣∣∣∣∣∣∣
A11 A12 A13

A12 A22 A23

A13 A23 A33

∣∣∣∣∣∣∣ = A11

∣∣∣∣∣A22 A23

A23 A33

∣∣∣∣∣−A12

∣∣∣∣∣A12 A23

A13 A33

∣∣∣∣∣+A13

∣∣∣∣∣A12 A22

A13 A23

∣∣∣∣∣
=
(
A11L

2
1
+A12L1L2 +A13L1L3

)× k/4m

= L1 (A1iLi) × k/4m

= 0
because of (2).

(d) riAijrj =
1

2m
ripipjrj + 1

2
kririrjrj =

1

2m
(r · p)2 + 1

2
kr4. (8)

Now‡

(r · p)2 = (r · r)(p · p) − (r × p)2 = r2p2 − L2. (9)

Equations (8) and (9) yield (4).

Comments

(i) The oscillator possesses ten constants of the motion: the scalar E, the vector
L (see Questions 5.3 and 6.15) and the symmetric tensor Aij (see Question
9.5). Equations (1)–(3) provide five relations connecting these, and consequently
there are five independent constants of the motion (which we can take to be L

and two components of Aij – see below). Thus, the oscillator, like the Coulomb
problem, possesses the maximum number of constants of the motion that allows
a continuous trajectory in phase space (see Question 9.2).

(ii) Equation (4) is known as the orbit equation because it contains only r and
conserved quantities, and from it the equation of the orbit can be obtained (see
Question 9.8).

Question 9.7

Consider the eigenvalue equation

Aijuj = λui . (1)

Determine the eigenvalues λ.

‡Use the vector identity: (a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c).
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Solution

The condition that the secular determinant should vanish, namely∣∣∣∣∣∣∣
A11 − λ A12 A13

A12 A22 − λ A23

A13 A23 A33 − λ

∣∣∣∣∣∣∣ = 0 , (2)

yields

λ3 − (Trace A)λ2 +

(∣∣∣∣∣A11 A12

A12 A22

∣∣∣∣∣+
∣∣∣∣∣A22 A23

A23 A33

∣∣∣∣∣+
∣∣∣∣∣A11 A13

A13 A33

∣∣∣∣∣
)
λ− (Det A) = 0 . (3)

The three 2 × 2 determinants in (3) are equal to kL2
3

/
4m, kL2

1

/
4m and kL2

2

/
4m,

respectively, and hence their sum is kL2
/
4m = ω2L2

/
4. Also, Trace A = E and

Det A = 0 (see Question 9.6). Thus, (3) can be written

λ(λ2 − Eλ+ 1
4
ω2L2) = 0 , (4)

and the three eigenvalues are

λ(1) = 1
2

(
E +

√
E2 − ω2L2

)
, λ(2) = 1

2

(
E −

√
E2 − ω2L2

)
, λ(3) = 0 . (5)

Comments

(i) The two non-zero eigenvalues satisfy

λ(1) + λ(2) = E, λ(1)λ(2) = 1
4
ω2L2. (6)

(ii) The scalar product of L with both sides of (1) for the eigenvectors u(1) and u(2)

corresponding to eigenvalues λ(1) and λ(2) yields L · u(1) = 0 and L · u(2) = 0
(because LiAij = 0, see Question 9.6). Thus, u(1) and u(2) lie in the plane of
the orbit. For the eigenvector u(3) corresponding to eigenvalue λ(3) = 0, (1) is
Aiju

(3)
j = 0. Thus, u(3) is in the direction of L.

Question 9.8

Determine the trajectory of an isotropic harmonic oscillator by solving the orbit
equation (see Question 9.6)

riAijrj = r2E − L2
/
2m (1)

in Cartesian coordinates.
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Solution

Choose Cartesian axes xyz such that L = (0, 0, L) and Aij is diagonal:

Aij =

⎛⎜⎝p2
x

/
2m+ 1

2
kx2 0 0

0 p2
y

/
2m+ 1

2
ky2 0

0 0 0

⎞⎟⎠. (2)

In this system of coordinates A12 = 0, meaning that pxpy = −mkxy. The sum of the
two entries in (2) is equal to E, and their product is equal to kL2

/
4m = ω2L2

/
4. Thus,(

see (6) of Question 9.7
)

Aij =

⎛⎜⎝λ(1) 0 0

0 λ(2) 0

0 0 0

⎞⎟⎠. (3)

For the above choice of axes, the trajectory lies in the xy-plane. So, r = (x, y, 0) and
r2 = x2 + y2. Then (1) and (3), and using also (6) of Question 9.7, gives

λ(1)x2 + λ(2)y2 = (x2 + y2)E − L2
/
2m = (x2 + y2)(λ(1) + λ(2)) − 2λ(1)λ(2)

/
k .

Thus, we have for the trajectory in Cartesian form the ellipse

x2

a2
+
y2

b2
= 1 , (4)

where

a =
√

2λ(1)
/
k , b =

√
2λ(2)

/
k . (5)

Comments

(i) We see that, just as in the Coulomb problem, we are able to determine the
trajectory without solving a differential equation or doing any integration, but
just by using the extra constants of the motion. The trajectory in momentum
space (the hodograph) can also be obtained in this manner (see Question 9.9).

(ii) In the above system of coordinates, two of the eigenvectors of Aij are

u(1) = αx̂ , u(2) = βŷ , (6)

where α and β are constants (see Question 9.7). Thus, the major and minor axes
of the elliptical orbit are along the eigenvectors u(1) and u(2) of Aij , while the

lengths of these axes are equal to 2a =
√

8λ(1)
/
k and 2b =

√
8λ(2)

/
k. In this way,

the tensor Aij specifies the orbit of the oscillator.

(iii) In an arbitrary system of coordinates the eigenvectors are[3,10]

u(1) =
p× L −mka2r

mk
√

(a2 − b2)(r2 − b2)
(7)

u(2) =
p × L −mkb2r

mk
√

(a2 − b2)(a2 − r2)
. (8)
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These eigenvectors have been normalized such that

u(1) · u(1) = a2 and u(2) · u(2) = b2 .

In the system in which Aij is diagonal, (7) and (8) reduce to (6) with
α = −a signx, β = b sign y.

(iv) The conserved vectors (7) and (8) are Laplace vectors for the oscillator. There are
two of them because the origin (the position of the centre of force) is at the centre
of the ellipse, and consequently there are two aphelia and two perihelia: u(1) is
directed between the aphelia, while u(2) is between the perihelia. Two Hamilton
vectors can be constructed from L̂×u(1) and L̂×u(2). The trajectory is obtained
by evaluating r · u(1), and the hodograph by calculating p · (L̂ × u(1)).

Question 9.9

Determine the hodograph (the trajectory in momentum space) of an isotropic harmonic
oscillator.

Solution

In the same manner as the proof of (4) in Question 9.6, we can show that

piAijpj = p2E − 1
2
kL2. (1)

With the same choice of axes as in the previous question, we have from (1)

λ(1)p2
x + λ(2)p2

y = (p2
x + p2

y )(λ(1) + λ(2)) − 2mλ(1)λ(2).

Thus, the hodograph is the elliptical trajectory

p2
x

2mλ(1)
+

p2
y

2mλ(2)
= 1 . (2)

Comments

(i) This completes our examples on extra constants of the motion for the Coulomb
and oscillator problems. We conclude with some brief remarks on the connection
between these constants, and symmetry and degeneracy.

(ii) The classical dynamics of a particle moving in a spherically symmetric poten-
tial V (r) possesses symmetry under rotations of the coordinate system. As a
result, orbits differing only in their spatial orientation are degenerate, meaning
that they all have the same energy. The symmetry and the degeneracy are associ-
ated with the property that the angular momentum L is a constant of the motion.
The three constants Li generate the symmetry by transforming a trajectory of a
given energy into another trajectory of the same energy by means of a contact
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transformation.[11] The existence of a constant of the motion implies a degener-
acy, and vice versa.[12,13] The above degeneracy arises from an obvious geometric
symmetry of all potentials V (r) – it is an example of a ‘geometric degeneracy’.
Many, but not all, degeneracies are of this type.

(iii) Certain potentials V (r) possess additional constants of the motion – for
example, the Laplace vector A of the Coulomb potential and the JHF tensor Aij

for the isotropic harmonic oscillator. These constants generate additional symme-
tries known as ‘hidden symmetries’, and as a result of this extra symmetry there
is additional degeneracy that is often referred to as ‘accidental degeneracy’. For
example, for bounded motion in the Coulomb problem the energy E = −k/2a (see
Question 8.9) depends only on the length a of the semi-major axis of the ellipse
– it is independent of the eccentricity of the orbit. This accidental degeneracy is
associated with the hidden symmetry generated by the Laplace vector A. If the
constancy of A is disturbed for any reason, the hidden symmetry is broken and
the accidental degeneracy is lifted.

(iv) We emphasize that A is constant only for non-relativistic motion in a Coulomb po-
tential. In relativistic theory A is not constant: it rotates in a plane perpendicular
to L, and consequently the elliptical orbits of the non-relativistic approximation
precess in this plane (see Question 15.15). Similarly, departures from a Coulomb
potential cause A to rotate.[14]

(v) The constants of the motion generate symmetry groups. The ‘geometric’ symme-
try group associated with L is O(3), and this is enlarged to O(4) by including the
hidden symmetry of A.[11]

(vi) All these ideas carry over to, and are even more vivid in, quantum mechanics.
For example, the bound states of the non-relativistic hydrogen atom are labelled
(in an angular momentum basis) by quantum numbers n , � ,m�. Here, � and m�

are quantum numbers specifying the eigenvalues of the operators L2 and Lz. The
energy eigenvalues are independent of � and m�

(
see (11) of Question 7.22

)
. The

degeneracy in m�

(
which is typical of all spherically symmetric potentials V(r)

)
is

associated with the geometric symmetry O(3) generated by L (operators Lx ± iLy

change m� but not E in the eigenkets |n �m�〉, so states with different m� have
the same energy). The accidental degeneracy in � is associated with the additional
symmetry generated by the Pauli–Lenz vector operator A (see Question 9.4).
This operator (which is a quantum-mechanical analogue of the classical Laplace
vector) changes � but not E in the eigenkets |n �m�〉.[5,7] Relativistic effects break
the hidden symmetry generated by A and consequently they lift the degeneracy
in � (see, for example, Ref. [7] ).

[11] H. Goldstein, Classical mechanics. Reading: Addison-Wesley, 2nd edn, 1980.
[12] D. F. Greenberg, “Accidental degeneracy,” American Journal of Physics, vol. 34, pp. 1101–1109,

1966.
[13] D. F. Greenberg, “Symmetry origin of dynamics,” American Journal of Physics, vol. 35,

pp. 1073–1077, 1967.
[14] K. T. McDonald, C. Farina, and A. Tort, “Right and wrong use of the Lenz vector for non-

Newtonian potentials,” American Journal of Physics, vol. 58, pp. 540–542, 1990.
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Question 9.10

Consider motion of an isotropic harmonic oscillator in a plane with Cartesian
coordinates (ξ, η) and time variable τ . The equation of motion is(

dpξ

dτ
,
dpη

dτ

)
= −k(ξ, η) , (1)

where

pξ = m
dξ

dτ
, pη = m

dη

dτ
. (2)

Let
ζ = ξ + iη , pζ = pξ + ipη , (3)

and consider the following transformation from coordinates (ξ, η, τ) to coordinates
(x, y, t)

z = ζ2 (4)

dt

dτ
= |ζ|2, (5)

where z = x+ iy. Show that the equation of motion (1) is transformed into(
dPx

dt
,
dPy

dt

)
= −

(
∂VD

∂x
,
∂VD

∂y

)
, (6)

where the momenta are

Px = M
dx

dt
, Py = M

dy

dt
, (7)

with M = 1
4
m, and

VD = −γ
r

(8)

is a Coulomb potential with the constant γ equal to the energy of the oscillator.

Solution

According to (2) and (3)

pζ = m
dζ

dτ
, (9)

and the equation of motion (1) is

dpζ

dτ
= −kζ . (10)

Let

Pz = Px + iPy = M
dz

dt
. (11)
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This can be expressed in terms of oscillator variables by using (4), (5) and (9):

Pz = M
dτ

dt

dζ2

dτ
=

2M

m

pζ

ζ∗
, (12)

where ζ∗ = ξ − iη. Then

dPz

dt
=
dτ

dt

dPz

dτ

=
2M

m

1

|ζ|2
(

1

ζ∗
dpζ

dτ
− 1

(ζ∗)2
pζ

dζ∗

dτ

)

=
2M

m|ζ|2
(
−k ζ

ζ∗
− |pζ|2
m(ζ∗)2

)
, (13)

where we have used (9) and (10) in the last step. The energy of the oscillator is

E0 =
1

2m

(
p2

ξ
+ p2

η

)
+ 1

2
k
(
ξ2 + η2

)
(14)

=
1

2m
|pζ|2 + 1

2
k|ζ|2, (15)

and therefore

|pζ|2 = 2mE0 −mk|ζ|2. (16)

From (13) and (16) we have

dPz

dt
= −4ME0

m

1

ζ(ζ∗)3
= −4ME0

m

ζ2

(ζζ∗)3
= −4ME0

m

ξ2 − η2 + 2iξη

(ξ2 + η2)3
. (17)

Now, the real and imaginary parts of (4) are

x = ξ2 − η2 , y = 2ξη . (18)

It follows that

r =
√
x2 + y2 = ξ2 + η2. (19)

Equations (18) and (19) enable us to express (17) in terms of x and y as

dPz

dt
= −4ME0

m

x+ iy

r3
. (20)

If we choose M = 1
4
m and recognize that

∂

∂x

1

r
= − x

r3
and

∂

∂y

1

r
= − y

r3
, (21)

we see that the real and imaginary parts of (20) yield the desired form (6).



The Coulomb and oscillator problems ���

Comments

(i) The coordinate transformation (4)–(5) is an example of a duality transformation.
Its application to the above example illustrates further the interesting connections
between the oscillator and Coulomb problems.

(ii) Duality transformations have been studied by Arnold and others.[15−17] In general,
these transformations relate the orbits of dual potentials. Thus, the above example
shows that the Coulomb potential is dual to the isotropic oscillator potential and
vice versa.

(iii) If we were to start with an anisotropic oscillator, that is with(
dpξ

dτ
,
dpη

dτ

)
= − (k1ξ, k2η) (22)

instead of (1), then the dual potential is a non-central perturbation of the Coulomb
potential[17]

VD(x, y) = −γ
r

+
1

4
(k1 − k2)

x

r
, (23)

where γ = E0, the energy of the anisotropic oscillator. Thus, by transforming the
orbits of an anisotropic oscillator one can obtain the orbits for the non-central
potential (23).[17]

Question 9.11

(a) Apply the duality transformation (4)–(5) of Question 9.10 to the isotropic
oscillator orbits in (ξ, η, τ) coordinates:(

ξ(τ), η(τ)
)

= (A cosωτ, B sinωτ) (1)

where ω =
√
k/m, to obtain the transformed orbits in (x, y, t) coordinates.

(b) Discuss these transformed orbits.

Solution

(a) The transformation (4) of Question 9.10 means

x = ξ2 − η2 , y = 2ξη . (2)

From (1) and (2) we obtain

x(τ) = 1
2
(A2 −B2) + 1

2
(A2 +B2) cos 2ωτ (3)

y(τ) = AB sin 2ωτ . (4)

Also, by integrating (5) of Question 9.10, and requiring t = 0 at τ = 0, we have

t(τ) = 1
2
(A2 +B2)τ + 1

2
(A2 −B2)(sin 2ωτ)

/
2ω . (5)

[15] V. I. Arnold, Huygens and Barrow, Newton and Hooke. Basel: Birkhäuser, 1990.
[16] T. Needham, Visual complex analysis. Oxford: Oxford University Press, 1997.
[17] D. R. Stump, “A solvable non-central perturbation of the Kepler problem,” European Journal

of Physics, vol. 19, pp. 299–305, 1998.
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(b) Equations (3)–(5) are a set of parametric equations for the Coulomb problem,
provided by the duality transformation, and we now proceed to interpret them.[17]

Suppose that B > A (that is,B is the length of the semi-major axis of the elliptical
orbit of the oscillator). Denote

a = 1
2
(A2 +B2) , e =

B2 −A2

B2 +A2
, ψ = 2ωτ . (6)

Also, note that the force constant γ in the dual potential VD = −γ/r (see Question
9.10) is equal to the energy of the oscillator:

γ = 1
2
mω2(A2 +B2) = mω2a . (7)

Using (6) and (7), the parametric equations (3)–(5) can be expressed as

x(ψ) = a(cosψ − e) (8)

y(ψ) = a
√

1 − e2 sinψ (9)

t(ψ) =
√
Ma3/γ (ψ − e sinψ). (10)

These are just the parametric equations for bounded motion in a Coulomb
potential, expressed in terms of the eccentric anomaly ψ (see Question 8.18).

Comment

There have been many studies of transformations between the Coulomb and oscillator
problems, both in classical and quantum mechanics. Some references can be found
in Ref. [7]. Among these, considerable attention has been devoted to the so-called
Kustaanheimo–Stiefel transformation that transforms the Coulomb (or Kepler)
problem into a four-dimensional harmonic oscillator with a constraint.[18] This
transformation has been known for a long time in celestial mechanics[2] and has more
recently been applied also to the quantum-mechanical case.[19]

Question 9.12

Consider bounded motion in an effective potential U(r) that has a minimum value
U0 = U(r0) at r = r0. The turning points of the motion are r1(U) and r2(U).

(a) Show that the formal solution of Question 8.3, namely

θ(r) = θ(r0) +

∫ r

r0

L

mr2
dr√

(2/m)(E − U)
, (1)

[18] E. L. Stiefel and G. Scheifle, Linear and regular celestial mechanics. Berlin: Springer, 1971.
See references therein.

[19] M. Kibler and T. Négadi, “Connection between the hydrogen atom and the harmonic oscillator:
The zero-energy case,” Physical Review, vol. A29, pp. 2891–2894 and references therein, 1984.
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can be inverted to yield

1

r1(U)
− 1

r2(U)
=

1

πL

√
m

2

∫ U

U0

∆θ(E)√
U − E

dE . (2)

Here, ∆θ(E) is the change in θ in the complete journey r2 → r1 → r2.

(b) Deduce that for closed orbits (2) becomes

1

r1(U)
− 1

r2(U)
=

2
√

2m

αL

√
U − U0 , (3)

where α is a rational number (= q/p, where p and q are integers).

(c) By expanding both sides of (3) up to fourth order in x = r2(U) − r0, show that

U (2) =
α2L2

mr4
0

(4)

U (4) =
3α2L2

mr4
0

(
5c2 + 8

c

r0
+

8

r2
0

)
, (5)

where U (n) denotes the nth derivative dnU
/
drn evaluated at r = r0, and

c = U (3)
/
3U (2) . (6)

(d) Use (4) and (5) to deduce that the only spherically symmetric potentials V (r) that
allow closed orbits for a range of initial conditions (E and L) are the Coulomb
and oscillator potentials V = −k/r and V = 1

2
kr2.

Solution

(a) The solution given below follows that of Tikochinsky.[20] The changes in θ from
r2 → r1 and from r1 → r2 are equal. Thus, from (1) we have

∆θ(E) = 2

∫ r2

r1

L

mr2
dr√

(2/m)(E − U)
. (7)

In (7) we change to an integration over U , taking care to integrate separately over
the two branches r1(U) and r2(U) shown in the figure below:

∆θ(E) =

√
2

m
L

(∫ U0

E

1

r2
1
(U)

dr1
dU

dU√
E − U

+

∫ E

U0

1

r2
2
(U)

dr2
dU

dU√
E − U

)

=

√
2

m
L

∫ E

U0

dG

dU

dU√
E − U

,

where

G(u) =
1

r1(U)
− 1

r2(U)
.

[20] Y. Tikochinsky, “A simplified proof of Bertrand’s theorem,” American Journal of Physics,
vol. 56, pp. 1073–1075, 1988.
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r2r2

r1

∆θ>>

>>

>>

r2(U)
r1(U)

r2r0r1

E

U0

U(r)

r

We invert this integral equation by dividing both sides by
√
U − E and integrating

over E between U0 and U to obtain∫ U

U0

∆θ(E)√
U − E

dE =

√
2

m
L

∫ U

U0

dE√
U − E

∫ E

U0

dG

dU

dU√
E − U

=

√
2

m
L

∫ U

U0

dG

dU
dU

∫ U

U

dE√
(U − E)(E − U)

, (8)

where in the last step we have used the relation∫ b

y=a

∫ y

x=a

f(x, y) dxdy =

∫ b

x=a

∫ b

y=x

f(x, y) dxdy .

The integral with respect to E in (8) is equal to π, and therefore the integral with
respect to U is equal to G(U) − G(U0) = G(U) because r1(U0) = r2(U0) = r0.
Replacing U with U , we obtain (2) from (8).

(b) For a bounded orbit to be closed we must have

∆θ = 2π
p

q
(9)

where p and q are integers; this ensures that after the oscillatory motion completes
q cycles, the angle θ will have changed by p complete revolutions. From (2) and
(9) we obtain (3).

(c) In (3), U is evaluated at r1 or r2. Write r2(U) = r0 +x and expand U up to fourth
order in x (the reason for expanding to this order will become apparent below):

U − U0 = 1
2
U (2)x2 + 1

6
U (3)x3 + 1

24
U (4)x4 + O(x5) , (10)

since U (1) = 0. Next, we must expand the left-hand side of (3) to fourth order in
x. This requires some care because r1(U) = r0 − y, where y is a function of x. To
determine this function we expand
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U − U0 = 1
2
U (2)y2 − 1

6
U (3)y3 + 1

24
U (4)y4 + O(y5). (11)

One can easily show that consistency of (10) and (11) requires

y = x+ cx2 + c2x3, (12)

where c is given by (6). Then( 1

r0 − y
− 1

r0 + x

)2
=

1

r40

(
y + x+

y2 − x2

r0
+
y3 + x3

r20
+ · · ·

)2
=

1

r4
0

(
2x+ cx2 + c2x3 +

2cx3

r0
+

2x3

r2
0

+ · · ·
)2

=
1

r4
0

(
4x2 + 4cx3 +

{
5c2 +

8c

r0
+

8

r2
0

}
x4

+ O(x5)
)
. (13)

From (3), (10) and (13) we have

1

r40

(
4x2 + 4cx3+

{
5c2 +

8c

r0
+

8

r20

}
x4
)

=
8m

α2L2

(
1
2
U (2)x2 + 1

6
U (3)x3 + 1

24
U (4)x4

)
.

Equating coefficients of the same powers of x we obtain two independent equations

U (2) =
α2L2

mr4
0

(14)

U (4) =
3α2L2

mr4
0

(
5c2 +

8c

r0
+

8

r2
0

)
. (15)

(
Because of (6), the coefficients of x3 yield the same relation as the coefficients of

x2, namely (14).
)

(d) Equations (14) and (15) are conditions on the effective potential

U(r) = V (r) +
L2

2mr2
, (16)

and hence on the potential V (r). From (16) we have

U (2) = V (2) +
3L2

mr4
0

. (17)

Thus, (14) requires
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V (2) =
(α2 − 3)L2

mr40
. (18)

Also, U(r) in (16) has a minimum at r = r0, and therefore

V (1) =
L2

mr30
. (19)

Dividing (18) by (19) we have

1

F

dF

dr
=

(α2 − 3)

r0
, (20)

where F = −dV/dr and dF
/
dr are evaluated at r0. Here, r0 can be regarded as

a variable, dependent on the initial conditions, and (20) is a differential equation
for the force with solution

F (r) = −dV
dr

= − k

r3−α2 , (21)

where k a positive constant. Thus, only a power-law force can yield closed orbits
for a range of initial conditions. To determine α we use (15). From (16) and (21)
we have

U (2) = α2V (1)
/
r0 (22)

U (3) = α2(α2 − 7)V (1)
/
r20 (23)

U (4) = α2(α4 − 12α2 + 47)V (1)
/
r3
0
. (24)

Thus, in (6)
c = (α2 − 7)

/
3r0 . (25)

Substituting (19), (24) and (25) in (15) we obtain

α4 − 5α2 + 4 = 0 , (26)

and hence
α2 = 1 or 4 . (27)

According to (21) and (27), the possible potentials are V = −k/r (Coulomb) and
V = 1

2
kr2 (oscillator).

Comments

(i) The result proved above – that the only spherically symmetric potentials that
possess closed orbits for a range of initial conditions are the Coulomb and oscillator
potentials – is known as Bertrand’s theorem.[21] The emphasis on a range of initial

[21] J. Bertrand, “Théorème relatif au mouvement d’un point attiré vers un centre fixe,” C. R.
Acad. Sci. Paris, vol. LXXVII, pp. 849–853, 1873.
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conditions is essential because one can readily construct other potentials that
possess closed orbits for discrete values of the angular momentum, see Question
8.16 and Ref. [22].

(ii) Bertrand’s theorem is also often stated as: the only potentials V (r) for which all
bounded trajectories are closed are the Coulomb and oscillator potentials. The
special property of these potentials that enables them to satisfy this theorem is
that they possess extra constants of the motion (such as the Laplace vector A

and the tensor Aij discussed in Questions 9.1 to 9.9).[23]

(iii) In non-relativistic mechanics, the Coulomb potential has the unique property that
it is the only potential V (r) vanishing at infinity for which all bounded trajecto-
ries are closed. From this viewpoint one can regard the widespread observation
of approximately closed orbits in astronomy as a signature of Newton’s law of
universal gravitation.

(iv) In an interesting paper, Pesic[24] points out that Newton was aware of some of the
remarkable connections between the Kepler (Coulomb) and oscillator problems.
After all, Newton showed that if the bounded motion of a body is an elliptical
orbit then the body is moving in a force that is either linear and directed to the
centre of the ellipse, or inverse square and directed to one of the foci of the ellipse.
In this connection he was evidently aware of the concept of dual pairs of forces,
and he discussed other examples of such pairs.[25] Although Newton did not refer
to additional conserved quantities explicitly, he emphasizes “ the quiescence of the
aphelion points” (that “ the aphelions are immovable; and so are the planes of
the orbit”), and shows in detail that any departure from an inverse-square law
results in precession.[25] (This was perhaps of more concern to him because of its
application to lunar motion.) Evidently, Newton understood the consequences of
what we now call the ‘breaking of hidden symmetry’.

[22] I. Rodriguez and J. L. Brun, “Closed orbits in central forces distinct from Coulomb or harmonic
oscillator type,” European Journal of Physics, vol. 19, pp. 41–49, 1998.

[23] R. P. Martinez-y-Romero, H. N. Nūñez-Yépez, and A. L. Salas-Brito, “Closed orbits and con-
stants of the motion in classical mechanics,” European Journal of Physics, vol. 13, pp. 26–31,
1992.

[24] P. Pesic, “Newton and hidden symmetry,” European Journal of Physics, vol. 19, pp. 151–153,
1998.

[25] S. Chandrasekhar, Newton’s Principia for the common reader, Chaps. 4, 6 and 13. Oxford:
Clarendon Press, 1995.
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Two-body problems

Two-body problems are important in their own right (for example, in astronomy and
atomic and molecular physics) and also because they serve as a useful transition to the
study of multi-particle systems: consideration of just two particles enables one to illus-
trate certain basic and pervasive features in their simplest form (see Questions 10.1,
10.2 and 10.6). Other questions in this chapter involve central, isotropic, interparticle
forces; coupled oscillators; rotating oscillators and interacting charges in a magnetic
field.

Question 10.1

Particles of constant mass m1 and m2 interact with each other and are also subject
to external forces. The interparticle forces are F12 (the force that 1 exerts on 2) and
F21 (the force that 2 exerts on 1). The external forces are F(e)

1
and F(e)

2
. The frame of

reference is assumed to be inertial.

(a) Use the equations of motion to show that

M
d2R

dt2
= F(e), (1)

where
M = m1 +m2 , F(e) = F(e)

1
+ F(e)

2
(2)

are the total mass and the total external force, and

R =
(m1r1 +m2r2)

M
. (3)

(b) Interpret this result.

Solution

(a) The equations of motion relative to an inertial frame are

m1

d2r1

dt2
= F(e)

1
+ F21 and m2

d2r2

dt2
= F(e)

2
+ F12 (4)
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where, according to Newton’s third law, F21 = −F12. Since the masses are
constant, addition of (4)1 and (4)2 yields (1):

d2

dt2
(m1r1 +m2r2) = F(e)

1 + F(e)

2 . (5)

(b) The vector R specifies the position (relative to a coordinate origin O) of a point in
space known as the centre of mass (CM) of the two particles. According to (1) the
trajectory R(t) of the CM relative to an inertial frame is that of a hypothetical
particle of massM = m1+m2 acted on by the total external force F(e) = F(e)

1
+F(e)

2
.

The interparticle forces play no role in the dynamics of the CM, which is therefore
generally much simpler than the dynamics of the individual particles (see Chapter
1). Note that in (2)2, F(e)

1
is to be evaluated at particle 1 and F(e)

2
at particle 2.

Comments

(i) It is clear from its definition (3) that R is an origin-dependent vector (it depends
on the choice of coordinate origin O).

(ii) The result (1) can be extended to a system comprising an arbitrary number of
particles (see Question 11.1) and it is implicit in the formulation of Newton’s laws
for extended objects (see Chapter 1).

Question 10.2

For the two particles in Question 10.1, prove that

dP

dt
= F(e), (1)

where P = m1ṙ1 +m2ṙ2 is the total momentum relative to an inertial frame.

Solution

Equation (1) follows from addition of the equations of motion ṗ1 = F21 + F(e)
1

and
ṗ2 = F12 + F(e)

2
, and Newton’s third law.

Comments

(i) According to (1), the rate of change of the total momentum P of two particles is
equal to the total external force F(e) acting on them. In particular, if F(e) = 0 then
P is constant, which is the law of conservation of momentum for two particles
relative to an inertial frame.

(ii) Equation (1) generalizes to systems comprising an arbitrary number of particles
(see Question 11.1).
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Question 10.3

Prove that the CM of two particles lies on the line joining the particles and between
them.

Solution

The position vectors of the particles relative to the CM (labelled C in the figure
below) are

r′
1

= r1 − R and r′
2

= r2 − R , (1)

and so
m1r

′
1
+m2r

′
2
= m1r1 +m2r2 − (m1 +m2)R = 0 . (2)

Therefore
r′
2

= −(m1/m2) r
′
1
, (3)

meaning that r′1 and r′2 are anti-parallel as shown.

Comments

(i) For particles of constant mass, differentiation of (2) shows that

m1ṙ
′
1 +m2ṙ

′
2 = 0 , (4)

and therefore the total momentum relative to the CM is zero – the CM is also
the centre of momentum.

(ii) It is useful to introduce the position vector

r = r2 − r1 = r′2 − r′1 (5)

of particle 2 relative to particle 1. In terms of this, (3) gives
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r′1 = − m2

m1 +m2

r , r′2 =
m1

m1 +m2

r . (6)

It is clear that r′1, r
′
2 and r are all origin-independent vectors (they are independent

of the choice of coordinate origin O).

Question 10.4

(a) Show that the relative position vector r = r2 − r1 for the two-body problem of
Question 10.1 satisfies the equation of motion

µ
d2r

dt2
= F12 + µ

(
F(e)

2

m2

− F(e)
1

m1

)
, (1)

where

µ =
m1m2

m1 +m2

. (2)

(b) Interpret (1).
(
Hint: Rederive (1) by considering motion of m2 relative to a frame

with origin O′ at m1, taking into account that this is a non-inertial frame.
)

Solution

(a) Start with the equations of motion for each particle, as given in (4) of Question
10.1. Equation (1) follows directly from m1 × (4)2 −m2 × (4)1 and the third law.

(b) It is helpful to refer to the diagram in Question 10.3. Consider the motion of m2

relative to a frame with origin O′ at m1 and axes parallel to the corresponding
axes of the inertial frame used in (a). This is a non-inertial frame in which there
is an additional force on m2, the translational force −m2r̈1 (see Chapters 1 and
14). So

m2

d2r

dt2
= F(e)

2
+ F12 −m2

d2r1

dt2
. (3)

Now, r̈1 is given by (4)1 of Question 10.1. Use of this and Newton’s third law
shows that (3) reduces to (1). Thus, the equation of motion (1) of the relative
vector r is with respect to a non-inertial frame with origin located at one of the
particles. This derivation is instructive in that it shows how the quantity µ enters
the equation of motion via the translational force.

Comments

(i) The quantity µ defined in (2) has the unit of mass and the property µ < m1 and
m2: it is known as the reduced mass.

(ii) If the external forces F(e)
1 and F(e)

2 are zero then (1) reduces to

µ
d2r

dt2
= F12 , (4)

while the equation of motion for the CM
(
see (1) of Question 10.1

)
becomes
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d2R

dt2
= 0 . (5)

If the interparticle force is central (i.e. directed along the line joining the two
particles) and isotropic

(
F12 = F (r)r̂

)
then (4) is

µ
d2r

dt2
= F (r)r̂ . (6)

We see that under these conditions the two-body problem separates into two one-
body problems: (5) for the motion of the CM and (6) for the relative motion. This
result is fundamental in analyzing this type of two-body problem (see Questions
10.7–10.9). Note that, according to (5), the CM moves with constant velocity Ṙ

relative to an inertial frame. Therefore, the CM can be used as the origin of an
inertial frame – the so-called CM frame.

(iii) In addition to the two particles of mass m1 and m2 we have two fictitious particles
of mass M (= m1 +m2) located at the CM and mass µ (= m1m2

/
M) located at

one of the particles. The trajectory r(t) of m2 relative to m1 can be obtained by
solving (6) – see Chapter 8. Then, this is used in (6) of Question 10.3 to provide
the trajectories r′

1
(t) and r′

2
(t) of m1 and m2 relative to the CM frame.

(iv) A central interparticle force conserves the total angular momentum L about the
CM (see Question 10.6), and therefore the motion has the simple feature that r

(and hence r′1 and r′2) is confined to a plane perpendicular to L and through the
CM. This plane is defined by the initial values r(0) and v(0):

We emphasize that the relative vector r connects m1 and m2. (Sometimes, the
description of this vector in the literature is misleading, being drawn from the CM
or some other point.) Solutions to (6) can be obtained in the polar form r = r(θ)
as described in Chapter 8. Here, r is the distance between m1 and m2, and the
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angle θ through which r rotates (as viewed from m1) is also equal to the angle
subtended, by either trajectory, at the CM.

(v) According to (1), equation (4) also holds for non-zero external forces that produce
the same accelerations in both particles: F(e)

2

/
m2 = F(e)

1

/
m1. For example, the

gravitational field due to distant sources; the gravitational field close to the surface
of a planet; or charged particles with the same charge-to-mass ratio in the same
electric field. See also Questions 10.16–10.19 for an interesting special case.

Question 10.5

Suppose that in the two-body problem of Question 10.1 the interparticle forces F12

and F21 are central. Prove that
dL

dt
= Γ(e), (1)

where L = r1 × p1 + r2 × p2 is the total angular momentum of the particles and
Γ(e) = r1 × F(e)

1 + r2 × F(e)
2 is the total torque on the particles exerted by external

forces.

Solution

Since ṙ1 × p1 and ṙ2 × p2 are both zero, we have

dL

dt
= r1 × ṗ1 + r2 × ṗ2 = (r1 − r2) × F21 + r1 × F(e)

1
+ r2 × F(e)

2
. (2)

In the last step we have used the second and third laws of motion. For a central force,
F21 is along r1 − r2 and so (2) reduces to (1).

Comments

(i) According to (1), if the total torque due to external forces on two interacting
particles is zero, and if the interparticle force is central, then the total angular
momentum of the particles, relative to an inertial frame, is constant. This is an
example of the law of conservation of angular momentum for two particles.

(ii) It is worth emphasizing the role played by Newton’s third law (that there are no
unbalanced interparticle forces in an inertial frame) in reaching this conclusion:[1]

“ In a binary star the action exerted by one body A on the other body B is
exactly balanced by the action of B on A. The mass centre of the system moves
with uniform velocity, and the total angular momentum remains constant. This
is only true in inertial frames of reference. In all other frames of reference the
apparent forces, as measured by the apparent accelerations, will form
unbalanced systems. Thus in the geocentric or Ptolemaic system of reference,
with a fixed Earth, the (apparent) centripetal forces on the stars, wheeling about

[1] G. Temple, in Turning points in physics, pp. 72–73. Amsterdam: North-Holland, 1959.
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the polar axis, are not balanced by any forces of attraction acting on this purely
mathematical axis.

Hence there does arise the possibility of discovering inertial frames
observationally at least in the case of an isolated system such as a planetary
system. This application of the third law of motion is especially valid because
without it Newtonian dynamics is a fairy tale referring to some mysterious
absolute space and time. But with the third law of motion we at least have the
abstract possibility of discovering the inertial frame.”

(iii) Equation (1) generalizes to a system containing an arbitrary number of particles
interacting via central interparticle forces – see Question 11.2.

(iv) The law of conservation of angular momentum applies also to systems where
the interparticle forces are not necessarily central – such as the electromagnetic
interaction of charged particles, provided the angular momentum of the
electromagnetic field is taken into account

(
see also Question 14.19

)
.

Question 10.6

Show that for the two-body problem of Question 10.1 the total momentum P, the
total kinetic energy K and the total angular momentum L relative to a frame with
coordinate origin at O can be expressed as

P = MṘ (1)

K = 1
2
MṘ2 + 1

2
µṙ2 (2)

L = MR × Ṙ + µr × ṙ , (3)

where M = m1 +m2 , µ = m1m2

/
(m1 +m2) and R is the position vector of the CM

relative to O.

Solution

The position vectors of m1 and m2 relative to O are (see Question 10.3)

r1 = R − m2

M
r and r2 = R +

m1

M
r . (4)

Also

P = m1ṙ1 +m2ṙ2, K = 1
2
m1ṙ

2
1

+ 1
2
m2ṙ

2
2
, L = m1r1 × ṙ1 +m2r2 × ṙ2 . (5)

By substituting (4) in (5) we obtain (1)–(3) after some simplification.

Comments

(i) According to (1) the total momentum is the same as that of a particle of mass M
located at the CM (the momentum of the CM).



Two-body problems ���

(ii) According to (2) the total kinetic energy is that of a particle of mass M located at
the CM, plus the kinetic energy of a particle of mass µ moving with the relative
velocity ṙ (the kinetic energy of the relative motion). Similarly for the total angular
momentum (3).

(iii) If the external forces are zero and if O is the origin of an inertial frame, then
R̈ = 0 (see Question 10.4) and the angular momentum MR × Ṙ of the CM is
conserved. Also, if the interparticle force is central and isotropic then µr̈ = F (r)r̂
(see Question 10.4) and the angular momentum µr × ṙ of the relative motion is
conserved.

Question 10.7

Two particles of mass m1 and m2 interact via an inverse-square force F12 = −k r̂/r2,
where r = r2 − r1 is the relative vector. There are no external forces.

(a) Use results from Questions 8.9, 10.3 and 10.4 to deduce the polar forms of the
trajectories r1(θ) and r2(θ) of the particles relative to the CM frame.

(b) For an attractive force (k > 0) plot the trajectories relative to the CM frame for
the following masses and eccentricities:

1. m1 = m2 and e = 0.65; 2. m1 = 2m2 and e = 0.65;

3. m1 = m2 and e = 2; 4. m1 = 2m2 and e = 6.

(c) For a repulsive force (k < 0) plot the trajectories for:

1. m1 = m2 and e = 4; 2. m1 = 2m2 and e = 8.

Solution

(a) According to Question 10.4 the relative vector satisfies the equation of motion
µr̈ = −k r̂/r2, and according to Question 8.9 the polar form of the solution is

r(θ) =
r0

1 − e cos θ
, (1)

where

r0 =
L2

µk
, e =

√
1 +

2L2E

µk2
. (2)

Here, L is the magnitude of the angular momentum L = µr × ṙ and E is the
energy E = 1

2
µṙ2 − k

/
r (both are for the CM frame). (Note the role of the

reduced mass µ in these formulas.) It follows from (6) of Question 10.3 and (1)
that the trajectories relative to the CM frame are

r1(θ) = − m2

m1 +m2

r0
1 − e cos θ

r̂ , r2(θ) =
m1

m1 +m2

r0
1 − e cos θ

r̂ . (3)

Note that here θ is the angular position of particle 2.

(b) For an attractive potential there are three possibilities for the eccentricity: e < 1,
e > 1 and e = 1. The trajectories depicted below are obtained from (3) for the
values of e shown.
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1. m1 = m2 and e = 0.65

L�

Q5

•

P5•

Q3

•

P3

•

P6•

Q6

•
P2

•

Q2•

P1 • Q1•P4•Q4 • C•
m1 m2

θ = 0

In this diagram (and those that follow) C denotes the CM, while P1, P2, · · · are
successive positions of m1 and Q1, Q2, · · · are the corresponding positions of m2.
The CM always lies on the line joining the two particles and so PiCQi is always a
straight line (see Question 10.3). This line rotates about C (in a counter-clockwise
direction in our diagrams) as the two particles orbit each other. This notation is
used in all the two-body trajectories on the next few pages.

2. m1 = 2m2 and e = 0.65

L�
P5•

P3

•

Q3•

Q5

•

P6•

Q6

•
P2

•

Q2•

P1• Q1•
P4

•Q4• C•
m1 m2

θ = 0

In the two diagrams above, the trajectories consist of overlapping ellipses with
the CM at a common focus, and the relative vector joining m1 and m2 rotates
about C in a counter-clockwise direction. In Question 10.9 a notebook is given
that presents a dynamic output for the various possible trajectories.
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3. m1 = m2 and e = 2

L�

Q5

•
P1

•

P5•
Q1•

Q3 • P3•

P2

Q4

•

P4

Q2•

C•

m1 m2

4. m1 = 2m2 and e = 6

Q3 • P3•
P4•

P2

•

Q2•

Q4

•
P1

•

Q1•
P5•

Q5

•

C• L�

m2
m1

In the two diagrams above, the trajectories consist of overlapping hyperbolas with
the CM at a common focus. The trajectories for e = 1 are similar to the preceding
two figures, except that the two hyperbolas are replaced by two parabolas (see
Question 10.10).
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(c) For a repulsive potential E > 0 and therefore only e > 1 is possible.

1. m1 = m2 and e = 4

L�

Q3

•
P1

•

P3•
Q1•

P2 • Q2•
C
•

m1 m2

2. m1 = 2m2 and e = 8

L�

P1

•

P3•

Q3

•

Q1•

Q2•P2 •
C
•

m2m1

In the two diagrams above, the trajectories consist of two hyperbolas with the CM
between the two focii. The line PiCQi rotates about C in a clockwise direction.

Comment

When m2 � m1 (e.g., a planet orbiting a massive star) the CM is close to m2 and
the orbit of m2 is small compared to that of m1. This small stellar motion provides a
means for detecting planets orbiting distant stars, and for measuring their mass.
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Question 10.8

Two particles of mass m1 and m2 interact via an attractive linear force F12 = −kr,
where k is a positive constant and r = r2 − r1 is the relative vector. There are no
external forces.

(a) Use results from Questions 8.10, 10.3 and 10.4 to deduce the polar forms of the
trajectories r1(θ) and r2(θ) of the particles relative to the CM frame.

(b) Plot the trajectories for: 1. m1 = m2; e = 0.268, and 2. m1 = 2m2; e = 0.268.

Solution

(a) According to Question 10.4 the relative vector satisfies the equation of motion
µr̈ = −kr, and according to Question 8.10 the polar form of the solution is

r(θ) =
r0√

1 − e cos 2θ
, (1)

where

r0 =
L√
µE

, e =

√
1 − kL2

µE2
(< 1) . (2)

Here, L is the magnitude of the angular momentum L = µr × ṙ and
E = 1

2
µṙ2 + 1

2
kr2 is the energy. It follows from (6) of Question 10.3 and (1)

that the trajectories relative to the CM frame are

r1(θ) = − m2

m1 +m2

r0√
1 − e cos 2θ

r̂ , r2(θ) =
m1

m1 +m2

r0√
1 − e cos 2θ

r̂ , (3)

where θ is the angular position of particle 2.

(b) 1. m1 = m2 and e = 0.268

Q4•

P2

•
P4

•

Q2•

P3

•

Q3•

P1 • Q1•
C•

L�

m1

m2

θ = 0
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2. m1 = 2m2 and e = 0.268

P4
•

Q4• Q2•

P2

•

Q3•

P3

•

Q5 • Q1•P5•P1 •
C•

L�

m1

m2

θ = 0

Here, P1, P2, · · · denote successive positions of m1 and Q1, Q2, · · · are the corre-
sponding positions of m2. The trajectories consist of two ellipses having a common
centre at the centre of mass C, and the line PiCQi rotates about C in a counter-
clockwise direction.

Question 10.9

Two particles of mass m1 and m2 interact via an inverse-square force F21 = k r
/
r3,

where r is the relative vector r = r2 − r1. There are no external forces and the initial
conditions in the CM frame are

r1(0) =
(
m2d

/
M, 0, 0

)
, v1(0) =

(
0, v0m2

/
m1, 0

)
r2(0) =

(−m1d
/
M, 0, 0

)
, v2(0) = (0, −v0, 0),

}
(1)

where d and v0 are constants and M = m1 +m2.

(a) Show that the total energy E and angular momentum L are given by

E =

(
v2

0

v2
e

− 1

)
k

d
and L = m2v0d , (2)

where

ve =

√
2m1

m2M

k

d
. (3)

Use (2)1 and Question 8.9 to state the conditions on v0 for which the trajectories
will be: 1. elliptical, 2. parabolic, and 3. hyperbolic.
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(b) Show that the eccentricity e and semi-major axis a of an elliptical relative orbit
r(θ) are

e =
√

1 − 4α2(1 − α2) and a =
d

2(1 − α2)
, (4)

where α = v0/ve (< 1).

(c) Use a system of units in which d = 1 and the period T = 1. Write a notebook
to plot the trajectories r1(t) and r2(t) using (4) above and (3) of Question 10.7.
Implement Mathematica’s Manipulate command to produce a dynamic output;
select values of α in the range 0 < α < 0.9 and a mass ratio γ = m2/m1 in the
range 1 ≤ γ ≤ 20.

(
Hint: Use the eccentric anomaly and Kepler’s equation to

determine θ(t) – see (14) and (15) of Question 8.18 with e replaced by −e.)
Solution

(a) E = K(0) + V (0), where V (0) = −k/d and

K(0) = 1
2
m1ẏ

2
1
(0) + 1

2
m2ẏ

2
2
(0) = 1

2

m2

m1

M v2
0

=
v2

0

v2
e

k

d
. (5)

L is a constant, equal to its value m1v1(0)r1(0) +m2v2(0)r2(0) at t = 0:

L = m1v0

m2

m1

m2d

M
+m2v0

m1d

M
= m2v0d . (6)

1. For elliptical orbits, E < 0 (see Question 8.9). According to (2)1 this requires

v0 < ve. 2. For parabolic orbits E = 0 and so v0 = ve. 3. For hyperbolic orbits
E > 0 and so v0 > ve.

(b) Substituting (2) into (2) of Question 10.7 and using r0 = a(1 − e2) gives (4).

(c) The required notebook is:

In[1]:= d � 1.0�T � 1.0�Ω �
2Π

T
�

e	Α_
 ��
�
1 � 4Α2�1 � Α2� �a	Α_
 ��

d

2�1 � Α2�
�

Ψ	Α_,t_
 �� Ψ/.FindRoot	Ψ � e	Α
 Sin	Ψ
 � Ω t �� 0,Ψ,Ω t�


�	Α_,t_
 �� 2 ArcTan��1 � e	Α


1 � e	Α

Tan�Ψ	Α,t


2
���

�� Kepler�s Eqn. Ψ is the eccentric anomaly.

See Comments �iii� � �v� in Question 8.18 ��

r1	Α_,Γ_,Θ_
 ��
Γ

1 � Γ

a	Α
�1 � e	Α
2�

1 � e	Α
 Cos	Θ

�

r2	Α_,Γ_,Θ_
 ��
1

1 � Γ

�a	Α
�1 � e	Α
2�

1 � e	Α
 Cos	Θ

�
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In[2]:= x1	Α_,Γ_,Θ_
 �� r1	Α,Γ,Θ
Cos	Θ
�y1	Α_,Γ_,Θ_
 �� r1	Α,Γ,Θ
Sin	Θ
�

x2	Α_,Γ_,Θ_
 �� r2	Α,Γ,Θ
Cos	Θ
�y2	Α_,Γ_,Θ_
 �� r2	Α,Γ,Θ
Sin	Θ
�

Min	Α_
 �� Min� � a	Α
�1 � e	Α
�,�a	Α
�1 � e	Α
2��
Max	Α_
 �� Max�a	Α
�1 � e	Α
�,a	Α
�1 � e	Α
2��
orbits	Α_,Γ_,Θ_
 �� ParametricPlot	x1	Α,Γ,Θ
,y1	Α,Γ,Θ
�,

x2	Α,Γ,Θ
,y2	Α,Γ,Θ
��,Θ,0,2Π�,PlotRange � Min	Α
,

Max	Α
�,Min	Α
,Max	Α
��,PlotStyle � Directive	Dashed,

Thick,Red
,Directive	Dashed,Thick,Blue
�,Axes � False,

False�
�

BinaryStar	Α_,Γ_,t_
 �� Graphics	PointSize	0.025
,Red,

Point	x1	Α,Γ,�	Α,t

,y1	Α,Γ,�	Α,t

�
,Blue,

Point	x2	Α,Γ,�	Α,t

,y2	Α,Γ,�	Α,t

�
,Purple,

Line	x1	Α,Γ,�	Α,t

,y1	Α,Γ,�	Α,t

�,x2	Α,Γ,�	Α,t

,

y2	Α,Γ,�	Α,t

��
,Black,PointSize	0.0125
,

Point	0,0�
�,Text	CM,0,�0.05�
�
�

Manipulate	Show	orbits	Α,Γ,Θ
,BinaryStar	Α,Γ,t
,Background �

LightGray
,Α,0.5,"velocity ratio"�,0.1,0.9,0.02,

Appearance � "Labeled"�,Γ,2,"mass ratio"�,1,20,1,

Appearance � "Labeled"�,t,0,T�


Question 10.10

Consider again the two particles of Question 10.9 subject to the same initial conditions.
Write a Mathematica notebook to obtain and plot numerical solutions to the equations
of motion mir̈i + (−1)i k r

/
r3 = 0, where ri = (xi, yi) and i = 1, 2. Take‡ k = 2π2,

m1 = m2 = 1, d = 1 and v0 = ve.

Solution

The required notebook is:

In[1]:= m1 � 1.0�m2 � 1.0�d � 1.0�k � 2Π2�v0 �
�
2Π�Tmax � 10.0�

x10 �
m2

m1 � m2
d� x20 � �

m1

m1 � m2
d�y10 � 0�y20 � 0�

vx10 � 0�vx20 � 0.0�vy10 �
m2

m1
v0�vy20 � �v0�

r1	t_
 �� x1	t
,y1	t
�� r2	t_
 �� x2	t
,y2	t
�� 	t_
 �� r2	t
 � r1	t
�

‡In a system of units where k = 2π2, m1 = m2 = 1, d = 1, the particles move in circles about the
CM with a period T = 1 when v0 = ve√

2

(
see (2) of Question 10.11

)
.
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In[2]:= EqnMotion1 � Thread�m1 r1��	t
 � k r	t


Dot	r	t
. r	t


3
2

�� 0��
EqnMotion2 � Thread�m2 r2��	t
 � k r	t


Dot	r	t
. r	t


3
2

�� 0��
InitCon1 � Join	Thread	r1	0
 �� x10,y10�
,

Thread	r1�	0
 �� vx10,vy10�

�

InitCon2 � Join	Thread	r2	0
 �� x20,y20�
,

Thread	r2�	0
 �� vx20,vy20�

�

EqsToSolve � Join	EqnMotion1,EqnMotion2,InitCon1,InitCon2
�

Sol � NDSolve	EqsToSolve,Join	r1	t
,r2	t

,t,0,Tmax�
�

ParametricPlot	Evaluate	x1	t
,y1	t
�
/.Sol�,

Evaluate	x2	t
,y2	t
�
/.Sol�,Evaluate	x1	t
,�y1	t
�


/.Sol�,Evaluate	x2	t
,�y2	t
�
/.Sol��,

t,0,Tmax�,PlotRange � �5,5�,�5,5��


Here, E = 0 and so the trajectories consist of two parabolas. In the diagram below,
P1, P2, · · · denote successive positions of m1 and Q1, Q2, · · · are the corresponding
positions of m2. The centre of mass of the system remains at rest at the origin O, and
the line PiOQi rotates about O in a counter-clockwise direction.

L�
Q1•P3•

Q3

•
P1

•

Q2• P2•

−3�

3�

−4.0

�

4.0

�

m1 m2

y

x

Question 10.11

Write down Kepler’s laws for the gravitational two-body problem by generalizing the
results in Questions 6.15, 8.9 and 8.15 for motion of a single particle in an inverse-
square force-field.
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Solution

I. Each particle moves in an elliptical orbit about a common focus located at the
CM (see Question 8.9 and 10.7).

II. For each particle, the area per unit time swept out by its radius vector relative to
the CM is a constant:

dA1

dt
=

(
m2

m1 +m2

)2
L

2µ
,

dA2

dt
=

(
m1

m1 +m2

)2
L

2µ
. (1)

(See Questions 6.15 and 10.7.)

III. The square of the (common) period is proportional to the cube of the semi-major
axis of the ellipse traced out by the particle µ; that is, by the relative vector
r = r2 − r1 drawn from the CM to µ:

T 2 = (4π2µ
/
k)a3, (2)

where a = r0
/
(1 − e2).

(
See Questions 8.15 and 10.4, and (1) of Question 10.7.

)
Comment

The original statement of Kepler’s laws was for the limit m2 � m1 (mass of the Sun
� the mass of a planet), where the CM is close to m2 and the motion of m2 relative
to the CM was neglected.

Question 10.12

Identical springs‡ (each having force constant k) are connected to two equal masses m
as shown below. The masses are constrained to move in one dimension on a frictionless
horizontal surface, and the ends of the springs are attached to fixed walls at P and Q.

(a) Show that the general solutions for the displacements x1(t) and x2(t) of the masses
from their equilibrium positions are

x1(t) = A cos(ω1t+ φ1) −B cos(ω2t+ φ2) (1)

x2(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) , (2)

where
ω1 =

√
k/m , ω2 =

√
3k/m , (3)

and A, B, φ1, φ2 are arbitrary constants.

‡Here, and elsewhere in this book, we assume elastic springs of negligible mass.
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(b) Discuss these solutions for the initial conditions:

1. x1(0) = x2(0) , v1(0) = v2(0) = 0 . (4)

2. x1(0) = −x2(0) , v1(0) = v2(0) = 0 . (5)

3. x1(0) = 0, x2(0) = x0 , v1(0) = v2(0) = 0 . (6)

Solution

(a) The forces acting on the two masses are the external forces F (e)
1 = −kx1 and

F (e)
2

= −kx2, and the interparticle forces F21 = k(x2 − x1) = −F12. Consequently,
the equations of motion are

m
d2x1

dt2
= −kx1 + k(x2 − x1) (7)

and

m
d2x2

dt2
= −kx2 − k(x2 − x1) . (8)

Addition of (7) and (8) gives the equation of motion

d2X

dt2
+
k

m
X = 0 (9)

of the CM coordinate X = 1
2
(x1 + x2), while subtraction of (7) and (8) yields the

equation of motion

d2x

dt2
+

3k

m
x = 0 (10)

of the relative coordinate x = x2 − x1. These are the equations of a simple har-
monic oscillator having angular frequencies ω1 and ω2, respectively. The general
solutions to (9) and (10) are X(t) = A cos(ω1t+ φ1) and x(t) = 2B cos(ω2t+ φ2).
Consequently, x1 = X − 1

2
x and x2 = X + 1

2
x are given by (1) and (2).

(b) 1. The initial conditions (4) require A = x1(0), B = 0 and φ1 = 0. Thus

x1(t) = x2(t) = x1(0) cosω1t . (11)

The masses oscillate in phase and with angular frequency ω1; this is known
as the symmetric mode of oscillation.

2. The initial conditions (5) require A = 0, B = −x1(0) and φ2 = 0. Thus

x1(t) = −x2(t) = x1(0) cosω2t . (12)

The masses oscillate out of phase and with angular frequency ω2; this is the
anti-symmetric mode of oscillation.
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3. The initial conditions (6) require A = B = 1
2
x0 and φ1 = φ2 = 0. Thus

x1(t) = 1
2
x0[cosω1t− cosω2t]

= x0 sin
{

1
2
(ω1 + ω2) t

}
sin

{
1
2
(ω2 − ω1) t

}
(13)

and

x2(t) = 1
2
x0[cosω1t+ cosω2t]

= x0 cos
{

1
2
(ω1 + ω2) t

}
cos

{
1
2
(ω2 − ω1) t

}
. (14)

Here, we have used the identities cos a − cos b = 2 sin 1
2
(a+ b) sin 1

2
(b− a) and

cos a+ cos b = 2 cos 1
2
(a+ b) cos 1

2
(a− b).

Comments

(i) The coordinatesX(t) and x(t) that satisfy the uncoupled (independent) equations
(9) and (10) are known as normal modes. In other, more complicated, systems
the normal modes differ from the CM and relative coordinates X(t) and x(t), and
they are denoted by η1(t) and η2(t). By definition, η1 is an oscillation at a single
frequency ω1, and η2 is an oscillation at a single frequency ω2. The frequencies ω1

and ω2 of the normal modes are known as the normal frequencies.

(ii) The result ω1 < ω2 (i.e. the frequency of the symmetric mode is less than that of
the anti-symmetric mode) is true of coupled oscillators in general.

(iii) The symmetric mode can be excited by releasing the masses from rest at equal dis-
placements as in (4); to excite the anti-symmetric mode the initial displacements
should have equal magnitudes but opposite signs, as in (5).

(iv) The following graphs show x1(t) and x2(t) for the symmetric and anti-symmetric
modes of oscillation (11) and (12). The periods are in the ratio

√
3 : 1 – see (3).

π
ω1

�

x1(0)

−x1(0)

�

�

x 1
(t

)
an

d
x 2

(t
)

symmetric modex1(t)

t π
ω1

�

x1(0)

−x1(0)

�

�

x2(t)

x1(t)

anti-symmetric modex1(t)

t

(v) The general solutions (1) and (2) are a superposition of normal modes. The graph
below illustrates the superpositions (13) and (14) for the initial conditions (6) and
with ω2/ω1 =

√
3.

(vi) This description generalizes to a system of n coupled oscillators where there are n
normal modes, each with a normal frequency, and the general solution is a linear
combination of the normal modes.
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x1(t)

x2(t)

4π
ω1

�

x1(0)

−x1(0)

�

�

x(t)

t

Question 10.13

A double pendulum consists of an inextensible string of negligible mass and length 2�,
with one end fixed and masses m attached at the midpoint and the other end.

(a) Show that for small planar oscillations the general solutions for the horizontal
displacements of the masses from their equilibrium positions are

x1(t) = A cos(ω1t+ φ1) +B cos(ω2t+ φ2) (1)

x2(t) = (
√

2 + 1)A cos(ω1t+ φ1) − (
√

2 − 1)B cos(ω2t+ φ2) . (2)

Here, ω1 =
√

2 −√
2ω0, ω2 =

√
2 +

√
2ω0, ω0 =

√
g/� (the angular frequency

of a simple pendulum of length �) and A, B, φ1, φ2 are arbitrary constants. (Hint:
Determine the normal modes in terms of x1 and x2.)

(b) Discuss these solutions for the initial conditions:

1. x2(0) = (
√

2 + 1)x1(0), v1(0) = v2(0) = 0 . (3)

2. x2(0) = −(
√

2 − 1)x1(0), v1(0) = v2(0) = 0 . (4)

Solution

(a) Choose x- and y-coordinates in the plane of motion with origin at the fixed
end of the pendulum as shown in the diagram below. The forces acting on the
particles are their weight mg and the tensions T1 and T2 in the strings. For small
oscillations (|θ1|, |θ2| � 1) the x- and y-components of the equations of motion
are

mẍ1 + T1θ1 − T2θ2 = 0

mÿ1 −mg − T2 + T1 = 0 ,

}
(5)
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and

mẍ2 + T2θ2 = 0

mÿ2 −mg + T2 = 0 .

}
(6)

(Here, we have neglected terms of order θ2
i

and higher.)
For small oscillations we can neglect changes in the
vertical coordinates y1 and y2. Also, x1 = �θ1 and
x2 = �(θ1 + θ2). Then, (5) and (6) yield T1 = 2mg,
T2 = mg, and

ẍ1 + ω2
0
(3x1 − x2) = 0 , ẍ2 + ω2

0
(x2 − x1) = 0 . (7)

To study the solutions of these coupled equations we con-
sider the linear combination (7)1 + α× (7)2, where α is a
constant that is to be determined. That is,

ẍ1 + αẍ2 + ω2
0 {(3 − α)x1 + (α− 1)x2} = 0 . (8)

Having in mind the normal modes η(t)
(
see Question 10.12

)
, we now ask: for what

value(s) of α does (8) have the form of the simple harmonic equation

η̈ + ω2η = 0 where ω2 = βω2
0 , (9)

and the constant β is also to be determined? By substituting ω2
0 = ω2

/
β in (8)

and comparing with (9)1, we see that α and β must satisfy

β = 3 − α and αβ = α− 1 . (10)

That is, α2 − 2α− 1 = 0 and so there are two possible values of α, namely

α1 = 1 +
√

2 and α2 = 1 −
√

2 . (11)

Correspondingly, β1 = 2−√
2 and β2 = 2 +

√
2, and therefore the possible values

of ω in (9) are

ω1 =

√
2 −

√
2 ω0 , ω2 =

√
2 +

√
2 ω0 . (12)

Thus, we have found that the linear combinations

ηi(t) = (3 − αi)x1(t) + (αi − 1)x2(t) (i = 1, 2) , (13)

with the αi given by (11), satisfy (9)1. We can therefore write down the general
solutions

η1(t) = (2 −
√

2)x1(t) +
√

2x2(t) = 4A cos(ω1t+ φ1) (14)

η2(t) = (2 +
√

2)x1(t) −
√

2x2(t) = 4B cos(ω2t+ φ2) . (15)

(Here, the factors of 4 have been inserted for convenience.) By adding and
subtracting (14) and (15) we obtain the solutions (1) and (2).
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(b) 1. The initial values (3) require B = 0, A = x1(0), φ1 = φ2 = 0, and so

x1(t) = x1(0) cosω1t , x2(t) = (
√

2 + 1)x1(0) cosω1t . (16)

This is the symmetric mode where the masses oscillate in phase.

2. The initial values (4) require A = 0, B = x1(0), φ1 = φ2 = 0, and so

x1(t) = x1(0) cosω2t , x2(t) = −(
√

2 − 1)x1(0) cosω2t . (17)

This is the anti-symmetric mode where the masses oscillate out of phase.

Comments

(i) The normal modes η1(t) and η2(t) are given by (14) and (15), and the respective
normal frequencies are ω1 and ω2 given in (12). The ratio of these frequencies is

ω2/ω1 =
√

2 +
√

2
/√

2 −√
2 ≈ 2.41; again we see that the anti-symmetric mode

is the faster mode.

(ii) The symmetric mode can be excited by releasing the masses from rest with
x2(0) = (

√
2 + 1)x1(0). The anti-symmetric mode can be excited by releasing

the masses from rest with x2(0) = −(
√

2 − 1)x1(0).

(iii) The general solutions (1) and (2) are linear combinations of both normal modes
(14) and (15). The four arbitrary constants in (1) and (2) are fixed by the four
initial conditions xi(0) and vi(0) (i = 1, 2) in the usual way (see Question 4.1).

Question 10.14

Consider a system consisting of two particles (beads), a spring and a circular wire
(hoop).[2] The beads are connected by the spring and they slide without friction on
the wire. The system is depicted in the figure that shows also the y- and z-axes of
a Cartesian coordinate system with origin at the centre of the hoop. The yz-plane is

[2] F. Ochoa and J. Clavijo, “Bead, hoop and spring as a classical spontaneous symmetry breaking
problem,” European Journal of Physics, vol. 27, pp. 1277–1288, 2006.
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horizontal and the spring is parallel to the y-axis; thus, the beads have the same z-
coordinate. Each bead has mass m, the force constant of the spring is k, and the radius
of the hoop is R. The equilibrium length 2r0 of the spring is less than the diameter
of the hoop, that is r0 < R. Suppose the hoop rotates about the z-axis of an inertial
frame Oxyz with constant angular velocity ω.

(a) Express the Lagrangian L = K − V in terms of cylindrical coordinates (r, φ, z)
and show that it can be written in the one-dimensional form

L = 1
2
µż2 − Ve(z) , (1)

where
µ = 2m(1 − z2

/
R2)−1 (2)

is a position-dependent effective mass and

Ve(z) = 2k(
√
R2 − z2 − r0)

2 −mω2(R2 − z2) (3)

is a one-dimensional effective potential.

(b) Use (3) to determine the equilibrium points zω of the particles.

(c) Determine the stability of these equilibrium points. In this connection, show that
there exists a critical angular velocity

ωc =

√
2k

m

(
1 − r0

R

)
, (4)

and illustrate the significance of ωc by plotting graphs of Ve(z) versus z/R for
r0/R = 0.5 and ω = 0.4ωc, ωc and 1.4ωc.

(d) Suppose the axis of rotation of the hoop is turned through an angle α about the
y-axis. Determine the effect of a uniform gravitational field g = −g x̂ on the above
results.

(e) Determine the angular frequencies of small oscillations about the equilibrium
points when α = 0. Express the result in terms of ω, ωc and ω0 =

√
2k/m,

and plot its graph versus ω/ωc for r0/R = 0.5.
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Solution

(a) In terms of cylindrical coordinates the Lagrangian is

L = m(ṙ2 + r2φ̇2 + ż2) − 2k(r − r0)
2. (5)

(Note that the gravitational potential energy of the particles has not been included
here because it is a constant – the centre of mass is always on the z-axis.) Now,
φ̇ = ω, a constant. Also, the beads are constrained to move on the hoop, meaning
that r =

√
R2 − z2. If we substitute these two conditions in (5) and rearrange

terms, we obtain (1).

(b) At the equilibrium points, z = constant and therefore dVe/dz = 0 (see also
Question 10.15). By differentiating (3) with respect to z we have

dVe

dz
= 4kr0z

(
1√

R2 − z2
− 1

ξ

)
, where ξ(ω) =

2kr0
2k −mω2

. (6)

So, there are three equilibrium points:

zω = 0 , ±
√
R2 − ξ2 . (7)

In a non-inertial frame rotating with the hoop, the beads are at rest at these
points: at zω = ±

√
R2 − ξ2 the outward centrifugal force mrω2 (see Chapter 14)

balances the inward elastic force k(2r − 2r0) and the normal reaction N of the
hoop is zero; at zω = 0 the normal reaction N balances the difference of these
two forces. In the inertial frame Oxyz the beads move in circles of radius ξ or R
about the z-axis.

(c) It is clear from (6) and (7) that the equation dVe

/
dz = 0 possesses three real roots

if 0 < ξ < R, whereas if ξ > R or ξ < 0 there is just one real root, namely zω = 0.
The critical condition demarcating these two results is ξc = R, and this defines a
critical angular velocity ωc given by (4). If ω < ωc then 0 < ξ < R and there are
three real roots; if ω > ωc there is one real root. To investigate the stability at
the equilibrium points we evaluate the second derivative

V ′′
e =

d2Ve

dz2
= 4kr0

[
R2

(R2 − z2)3/2
− 1

ξ

]
. (8)

It follows that at zω = 0, V ′′
e
< 0 if ξ < R (i.e. ω < ωc) and V ′′

e
> 0 if ξ > R (i.e.

ω > ωc). It is also clear that at zω = ±
√
R2 − ξ2, V ′′

e > 0, because here ω < ωc.

Thus, the equilibrium points zω = ±
√
R2 − ξ2 (which exist only if ω < ωc) are

always stable, whereas zω = 0 is unstable if ω < ωc and stable if ω > ωc (if
ω = ωc this point is neutral). When ω = 0 the points of stable equilibrium
are at z0 = ±√R2 − r20 , corresponding to an unstretched spring. Increasing ω
stretches the spring, thereby decreasing zω that becomes zero at ω = ωc. It is
helpful to illustrate these features by plotting graphs of Ve(z). We write (3) in the
dimensionless form

Ve

2kR2
=

(√
1 − z2

R2
− r0
R

)2
−
(
1 − r0

R

)( ω

ωc

)2(
1 − z2

R2

)
, (9)
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which is a function of the three dimensionless quantities z/R, ω/ωc and ε = r0/R.
Graphs of (9) versus z/R for ε = 0.5 and three values of ω/ωc are shown below.
We see that above ωc there is a single minimum at zω = 0, whereas below ωc there
are two degenerate minima, having the same energy, at zω = ±

√
R2 − ξ2 and a

local maximum at zω = 0.

ε = 0.5

ω/ω
c = 1.4

ω/ωc = 1.0

ω/ωc
= 0.4

0

�

−1.0

�

1.0

�

•0.25• •

�−0.8

�−0.4

�0

Ve/2kR2

z/R

(d) If the axis of rotation is tipped up by an angle α then there is a gravitational
contribution 2mgz sinα to the potential energy relative to the point z = 0. As a
result, the dimensionless expression (9) changes to

Ve

2kR2
=

(√
1 − z2

R2
− r0
R

)2
−
(
1 − r0

R

)( ω

ωc

)2(
1 − z2

R2

)
+
mg sinα

kR

z

R
. (10)

The gravitational term in (10) destroys the symmetry of (9) under the transfor-
mation z → −z. The graphs of Ve(z) are distorted as shown below: instead of
two degenerate global minima there is now a global and a local minimum when
ω < ωc and a global minimum at zω < 0 when ω > ωc.

mg sin α/kR = 0.3

ε = 0.5

ω/ω
c = 1.4

ω/ωc
= 1.0

ω/ωc
= 0.4

0

�

−1.0

�

1.0

�

•

•

�−0.8

�−0.4

�0

�0.4

Ve/2kR2

z/R
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(e) The effective force constants ke for small oscillations are equal to d2Ve

/
dz2

evaluated at the points of stable equilibrium zω. From (8):

ke =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4kr0

(
R2

ξ3
− 1

ξ

)
at zω = ±

√
R2 − ξ2

4kr0

(
1

R
− 1

ξ

)
at zω = 0 .

(11)

(
Recall that (11)1 is for ω < ωc, and (11)2 for ω > ωc – see (c).

)
The angular

frequency of small oscillations about zω is equal to
√
ke/µ. Here, µ is the effective

mass (2): that is, µ = 2mR2/ξ2 at zω = ±
√
R2 − ξ2 and µ = 2m at zω = 0. Thus,

we have the angular frequencies

ω< =

√
2kr0
m

(
1

ξ
− ξ

R2

)
for ω < ωc (12)

ω> =

√
2kr0
m

(
1

R
− 1

ξ

)
for ω > ωc . (13)

These can be expressed in terms of ω, ωc and ω0 =
√

2k/m by using (4) and (6)2:

ω< =

√
(2ω2

0 − ω2
c − ω2)(ω2

c − ω2)

ω2
0
− ω2

for ω < ωc (14)

ω> =
√
ω2 − ω2

c
for ω > ωc . (15)

Here, ω0 is the natural frequency of the two particles connected by the spring in
the absence of the hoop, and ωc is related to it by (4):

ωc = ω0

√
1 − r0/R . (16)

Thus, the ratios ω</ω0 and ω>/ω0 are functions of ω/ωc and ε = r0/R:

ω<

ω0

=
√

1 − ε

√
{2 − (1 − ε)(1 + ω2/ω2

c
)}{1 − ω2/ω2

c
}

1 − (1 − ε)ω2/ω2
c

(17)

ω>

ω0

=
√

1 − ε
√
ω2/ω2

c − 1 . (18)

Graphs of these ratios versus ω/ωc are plotted below for ε = 0.5. The frequency
of small oscillations tends to zero as ω → ωc, where the equilibrium is neutral
rather than stable.
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ε = 0.5
ω>
ω0

ω<
ω0

�

1.0

√
3

2
•
�1.0

ω/ω0

ω/ωc

Comments

(i) The above calculations are based on the analysis given in Ref. [2]. In this article,
an interesting account is presented of how this simple system provides insights
into more advanced topics in physics, such as spontaneous symmetry breaking,
phase transitions, order parameters, and critical exponents.

(ii) The angular velocity ω of the hoop is analogous to temperature in a thermo-
dynamic system. The two different regions of symmetry (symmetric phase with
zω = 0 for ω > ωc, and the broken symmetry with zω �= 0 for ω < ωc) are separated
by a critical point at which there is a second-order phase transition (the second
derivative d2Ve

/
dω2 has an infinite discontinuity at ω = ωc).

[2] If ω is decreased
below ωc, any external disturbance can cause the system to leave the mode zω = 0
(which is now unstable) in favour of one of the two degenerate stable minima at

zω = ±
√
R2 − ξ2.

(iii) The equilibrium positions zω play the role of an order parameter which
‘spontaneously’ acquires a non-zero value that grows as

√
ωc − ω just below ωc:

thus, the critical exponent for this order parameter is 1
2 , a value that is familiar

in the Landau theory for various systems with second-order phase transitions.[2]

(iv) Another example of spontaneous symmetry breaking in a simple mechanical
system is given in Question 13.14.

(v) The role of the gravitational force in causing explicit symmetry breaking illustrates
the difference between explicit and spontaneous symmetry breaking.

(vi) The system is a mechanical equivalent of a thermodynamic system where the state
is characterized by three variables: zω, ω and g, and it can be compared with a
two-dimensional Ising model of a ferromagnet in the mean-field approximation.[2]

(vii) The equation of motion for z and its solutions are considered in Questions 10.15
and 13.16.
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Question 10.15

For the particles, spring and rotating hoop of Question 10.14, use Lagrange’s equation
to obtain the equation of motion for the z-coordinate of the particles.

Solution

The z-coordinate fixes the positions of the particles in a frame rotating with the hoop.
According to Question 10.14 the Lagrangian is given in terms of this coordinate by

L(z, ż) = mż2(1 − z2/R2)−1 − 2k(
√
R2 − z2 − r0)

2 +mω2(R2 − z2) , (1)

where R and ω are the radius and angular velocity of the hoop, k and 2r0 are the force
constant and equilibrium length of the spring, and m is the mass of each particle. The
corresponding Lagrange equation

d

dt

∂L

∂ż
− ∂L

∂z
= 0 (2)

yields the equation of motion

d2z

dt2
+

z

R2 − z2

(
dz

dt

)2
+

(ω2
0
− ω2)

R2
z3 − (ω2

0 − ω2)z +
ω2

0
r0z

R2

√
R2 − z2 = 0 . (3)

Here, ω0 =
√

2k/m is the natural frequency of the two particles connected by the
spring in the absence of the hoop.

Comments

(i) In general, the non-linear equation (3) must be solved numerically (see Question
13.16). We can, however, easily identify two simple types of solution. The first is
z = a constant

(
the roots zω given by (7) of Question 10.14

)
, according to which

the particles move in circles of radius
√
R2 − z2

ω
about the z-axis. The second is

z = zω + A cosΩt
( |A| � R, and Ω given by (14) and (15) of Question 10.14

)
,

describing small oscillations about the points of stable equilibrium zω.

(ii) For numerical work it is convenient to express (3) in terms of the dimensionless
coordinate Z = z/R and time τ = t/T0 = ω0t/2π, and the critical angular velocity
ωc = ω0

√
1 − ε, where ε = r0/R

(
see (4) of Question 10.14

)
. In terms of these (3)

is

d2Z

dτ2
+

Z

1 − Z2

(
dZ

dτ

)2
+4π2

{
1 − (1 − ε)

ω2

ω2
c

}
Z(Z2−1)+4π2εZ

√
1 − Z2 = 0 , (4)

where −1 ≤ Z ≤ 1.
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Question 10.16

Consider two interacting charged particles, having the same mass m and charges q1
and q2, moving in a uniform magnetostatic field B.[3] Neglect radiation (see Question
7.21) and gravity.

(a) Suppose the charges are identical (q1 = q2 = q). Show that the equations of motion
can be separated into equations for centre-of-mass (CM) motion

MR̈ = QṘ× B , (1)

and relative motion

µr̈ = 1
2
qṙ × B +

kq2

r2
r̂ . (2)

Here, M = 2m and Q = 2q are the total mass and charge, µ = 1
2
m is the reduced

mass, R = 1
2
(r1 + r2) and r = r2 − r1 are the CM and relative position vectors,

and k = 1
/
4πε, where ε is the permittivity of the medium in which the motion

occurs.

(b) Suppose the charges have opposite signs (q1 = −q2 = q). Show that the equations
of motion do not separate into equations for CM motion and relative motion.

Solution

(a) The equations of motion are

mr̈1 = −kq1q2
r2

r̂ + q1ṙ1 × B (3)

mr̈2 =
kq1q2
r2

r̂ + q2ṙ2 × B . (4)

If we add (3) and (4) then the electrostatic forces cancel. With q1 = q2 = q we
obtain (1). Also, by subtracting (3) and (4) we obtain (2).

(b) When q1 = −q2 = q in (3) and (4), a similar procedure gives

mR̈ = − 1
2
qṙ × B (5)

and

mr̈ = −2qṘ× B− 2kq2

r2
r̂ . (6)

Equations (5) and (6) are coupled through the vectors R and r.

Comments

(i) The separation of the equation of motion in (a) occurs even if the external forces
due to B are non-zero.

[3] S. Curilef and F. Claro, “Dynamics of two interacting particles in a magnetic field in two
dimensions,” American Journal of Physics, vol. 65, pp. 244–250, 1997.
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(ii) For the identical particles in (a), the CM motion is that of a particle of mass 2m
and charge 2q in the field B, while the relative motion is that of a mass 1

2
m and

charge 1
2
q in the field B and the electrostatic field of a charge 2q located at the

origin of the relative position vector r.

Question 10.17

Suppose the identical interacting charged particles of Question 10.16(a) move in the
xy-plane, perpendicular to the uniform magnetostatic field B = Bẑ, where B > 0.

(a) 1. What is the CM trajectory R(t)?

2. Express (2) of Question 10.16 in terms of plane polar coordinates (r, θ) and
deduce that the quantity

Lω = µr2(θ̇ + 1
2
ω) (1)

is conserved, and that the radial equation of motion is

µr̈ =
kq2

r2
+
L2

ω

µr3
− 1

4
µrω2, (2)

where ω = qB/m is the cyclotron frequency.

(b) Use (2) to write down an expression for the effective potential Ve(r) and deduce
that in the presence of a magnetic field the motion is always bounded.

Solution

(a) 1. Consider an inertial frame in which the initial conditions are R0 = R0x̂ and

Ṙ0 = −ωR0ŷ, where ω = QB/M = qB/m. The solution to (1) of Question 10.16
is

R(t) = R0(cosωt , − sinωt , 0) . (3)

The CM trajectory is a circle of radius R0 centred on the origin.
2. In plane polar coordinates the velocity and acceleration are

ṙ = ṙr̂ + rθ̇θ̂ , r̈ = (r̈ − rθ̇2)r̂ +
1

r

d

dt
(r2 θ̇)θ̂ . (4)

(See Question 8.1.) Also, r̂×ẑ = −θ̂ and θ̂×ẑ = r̂. Thus, the radial and transverse
components of (2) of Question 10.16 yield

µ(r̈ − rθ̇2) = 1
2
qBrθ̇ +

kq2

r2
(5)

and

d

dt
(r2 θ̇) = −qB

2µ
r
dr

dt
= −qB

4µ

d

dt
r2 . (6)

It follows from (6) that

dLω

dt
= 0 , (7)
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where Lω is defined in (1). Thus, Lω is a constant whose value is determined by
the initial conditions for r and θ̇. When B = 0 (i.e. ω = 0), L0 is the total angular
momentum relative to the CM frame (see Question 8.2). By using (1) to eliminate
θ̇ from (5), we obtain the one-dimensional radial equation (2).

(b) The radial equation can be written in terms of an effective potential as

µr̈ = −dVe

dr
. (8)

By comparing this with (2) we see that the effective potential for the radial motion
is

Ve(r) =
kq2

r
+

L2
ω

2µr2
+ 1

8
µω2r2. (9)

(Here, we have set an arbitrary constant of integration equal to zero.) Clearly,
Ve → ∞ as 1/r2 when r → 0+ and as r2 when r → ∞. Therefore, the radial
motion is always bounded between two classical turning points that are the
positive solutions to the equation Ve(r) = the energy of relative motion. Despite
the Coulomb repulsion, the magnetic field always binds the particles.

Comments

(i) The radial equation (2) describes motion in a rotating (non-inertial) frame: in
addition to the Coulomb repulsion and the magnetic force, it contains a non-
inertial force (the centrifugal force).

(ii) Relative to the CM frame the position vectors r1 and r2 are equal in magnitude
and opposite in direction: r2 = −r1.

(iii) The simplest trajectory for the relative motion r is
a circle. Then, r is a constant

(
as is θ̇ – see (1)

)
and

(1) and (2) give

µ
v2

r
= µωv − kq2

r2
. (10)

Here, v = r|θ̇| (the speed of each particle in the
CM frame is 1

2
v) and we have set sign θ̇ = −sign q,

which is the condition for the magnetic force to
oppose the repulsive electrostatic interaction. By
solving (10) for r we obtain for the radius of the circle in the CM frame

1
2
r =

v

4ω

[
1 +

√
1 + 4kq2ω

/
µv3

]
. (11)

(iv) It is possible to obtain solutions (in terms of elliptic integrals) for the trajectories
in a plane perpendicular to B. However, these are complicated and the reader is
referred to the literature for details.[3] It is not difficult to obtain simple solutions
for closed trajectories and numerical solutions for open trajectories, and these are
considered in the next two questions.
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Question 10.18

Consider the two identical interacting charged particles of Question 10.17 moving in
the xy-plane, perpendicular to a uniform magnetostatic field B = Bẑ, where B > 0.

(a) Show that there are closed orbits with trajectories given by

xi(t) = R0 cosωt+ (−1)iAλ cos
α

β
ωt (1)

yi(t) = −R0 sinωt+ (−1)i−1Aλ sin
α

β
ωt (2)

(i = 1, 2). Here, R0 is a constant,

ω =
qB

m
, λ =

(
mk

B2

)1/3

, (3)

A =

[
4
α

β

(
1 − α

β

)]−1/3

, (4)

and α and β are positive integers with α < β.

(b) Express (1) and (2) in terms of the dimensionless variables x̄i = xi/λ, ȳi = yi/λ
and τ = t/T , where T = 2π/|ω|. Then make computer plots of the trajectories
for R̄0 = R0/λ = 1 and

α

β
=

1

2
,

3

4
,

2

3
and

1

3
. (5)

Solution

(a) According to the previous two questions, the trajectories of the particles are

r1 = R − 1
2
r and r2 = R + 1

2
r , (6)

where the CM vector performs a circular motion

R = R0(cosωt , − sinωt) (7)

and the relative vector r = (x, y) satisfies

mr̈ = qṙ × B +
2kq2

r3
r . (8)

The x- and y-components of (8) are

ẍ = ωẏ + 2ω2λ3 x

(x2 + y2)3/2
(9)

ÿ = −ωẋ+ 2ω2λ3 y

(x2 + y2)3/2
. (10)

We are interested in solutions to (9) and (10) that will produce closed orbits
for the trajectories (6). Thus, we look for solutions where the relative vector r

performs circular motion with constant angular velocity θ̇:
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x = 2A cos θ̇t , y = 2A sin θ̇t , (11)

and the constants A and θ̇ are to be determined. Equations (11) are solutions to
(9) and (10) provided

λ3

4|A|3 = − θ̇

ω
− θ̇2

ω2
. (12)

Thus, θ̇ and ω have opposite signs, meaning that sign θ̇ = −sign q. Now, for closed
orbits the ratio of the periods 2π

/|ω| and 2π
/|θ̇| of the circular CM and relative

motions must be a rational number, and so we require

θ̇

ω
= −α

β
, (13)

where α and β are positive integers. Equations (12) and (13) yield (4). The
trajectories (1) and (2) follow from (6), (7), (11) and (13).

(b) By replacing t with 2πτ
/|ω| and xi and yi with λx̄i and λȳi in (1) and (2), we

have the dimensionless forms of these trajectories

x̄i(τ) = R̄0 cos 2πτ + (−1)iA cos
(
2π
α

β
τ
)

(14)

ȳi(τ) = −γR̄0 sin 2πτ + (−1)i−1γA sin
(
2π
α

β
τ
)
, (15)

where γ = sign q. From (14) and (15) we obtain the diagrams shown below. In
these the dots labelled 1 and 2 indicate the initial positions of the particles. When
β is an even integer the trajectories of the particles form a single closed path, as
indicated by the solid curves in the first two figures. When β is an odd integer
the trajectories of the particles are distinct: in the third and fourth figures they
are indicated by a solid curve for particle 1 and a dotted curve for particle 2. The
figures are for q > 0; for q < 0 the directions of the arrows are reversed.

Comments

(i) In order to obtain the closed trajectories described above, the initial conditions
ri(0) and vi(0) must be exactly those implicit in (1) and (2).

(ii) The trajectories described by (1) and (2) are a superposition of two uniform cir-
cular motions: ‘orbital’ (motion of the CM about the origin with angular velocity
ω) and ‘spin’

(
rotation of the relative vector about the CM with angular velocity

θ̇ that is related to ω by the closure condition (13)
)
. The circles traced by the

CM and relative vectors are called the deferent and epicycle, respectively, and the
particle trajectories are known as epitrochoids. Epicycles were probably first used
– albeit without a dynamical basis – in one of the early accounts of planetary
orbits by Hipparchus and Ptolemy, which conformed to Aristotle’s doctrine of the
pre-eminence of circular motion.
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Question 10.19

Two interacting charged particles move in the xy-plane, perpendicular to a uniform
magnetostatic field B = Bẑ. In this question we consider numerical solutions of their
equations of motion (3) and (4) of Question 10.16.

(a) First, express these equations of motion in the dimensionless forms

d2r̄i

dτ2
= 2πγi

dr̄i

dτ
× ẑ + 4π2γ1γ2(−1)i

r̄

r̄ 3
(i = 1, 2) . (1)

Here, γi = sign qi = ±1. The quantity τ = t/T
(
where T = 2π/ω and

ω = qB/m with q = |q1| = |q2|
)

is a dimensionless time, and r̄ = r/λ, etc.,

with λ = (mk/B2)1/3, are dimensionless position vectors.
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(b) Use Mathematica to plot the particle trajectories for like charges (γ1 = γ2 = 1)
and the following initial conditions at τ = 0:

1. x̄i = 0, ȳi = (−1)i+1, dx̄i/dτ = (−1)iπ, dȳi/dτ = 0;

2. x̄i = 0, ȳi = (−1)i+1, dx̄i/dτ = π, dȳi/dτ = 0, where i = 1, 2.

(c) Use Mathematica to plot the particle trajectories and also the CM trajectory for
unlike charges (γ1 = −γ2 = 1) and the following initial conditions at τ = 0:

1. x̄i = 0, ȳi = (−1)i+1, dx̄i/dτ = (−1)i+12π, dȳi/dτ = 0;

2. x̄i = 0, ȳi = (−1)i+1, dx̄i/dτ = 0, dȳi/dτ = 2π, where i = 1, 2.

Solution

(a) With qi = q sign qi = γiq, we write (3) and (4) of Question 10.16 as

mr̈i = γiqṙi × B + k
(−1)iγ1γ2q

2

r3
r . (2)

Equation (1) follows if we multiply (2) by T 2/λ and set B = Bẑ.

(b) The Mathematica notebook below uses the package VectorAnalysis to
perform the cross-product in (1). Appropriate initial conditions should be entered
at the beginning of this notebook.

In[1]:= Needs	"VectorAnalysis‘"


Γ1 � 1�Γ2 � 1�Τmax � 5�

x10 � 0�y10 � 1�z10 � 0�vx10 � �Π�vy10 � 0�vz10 � 0�

x20 � 0�y20 � �1�z20 � 0�vx20 � Π�vy20 � 0�vz20 � 0�

r1	Τ_
 �� x1	Τ
,y1	Τ
,z1	Τ
�� r2	Τ_
 �� x2	Τ
,y2	Τ
,z2	Τ
��

r	Τ_
 �� r2	Τ
 � r1	Τ
�

LorentzForce1	Τ_
 �� 2Π Γ1 CrossProduct	r1�	Τ
,0,0,1�
�

LorentzForce2	Τ_
 �� 2Π Γ2 CrossProduct	r2�	Τ
,0,0,1�
�

EqnMotion1 � Thread�r1��	Τ
 � LorentzForce1	Τ
�
4Π2Γ1 Γ2

r	Τ


Dot	r	Τ
 ,r	Τ


3
2

�� 0��
EqnMotion2 � Thread�r2��	Τ
 � LorentzForce2	Τ
�

4Π2Γ1 Γ2
r	Τ


Dot	r	Τ
,r	Τ


3
2

�� 0��
InitCon1 � Join	Thread	r1	0
 �� x10,y10,z10�
,

Thread	r1�	0
 �� vx10,vy10,vz10�

�

InitCon2 � Join	Thread	r2	0
 �� x20,y20,z20�
,

Thread	r2�	0
 �� vx20,vy20,vz20�

�
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In[2]:= EqsToSolve � Join	EqnMotion1,EqnMotion2,InitCon1,InitCon2
�

Sol � NDSolve	EqsToSolve,Join	r1	Τ
,r2	Τ

,Τ,0,Τmax�
�

ParametricPlot	Evaluate	x1	Τ
,y1	Τ
�
/.Sol,

Evaluate	x2	Τ
,y2	Τ
�
/.Sol�,Τ,0,Τmax�,AspectRatio � 1


ParametricPlot	Evaluate	x2	Τ
 � x1	Τ
,y2	Τ
 � y1	Τ
�
/.Sol,

Τ,0,Τmax�,AspectRatio � 1,PlotRange � �6,6�,�6,6��
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For the diagram on the left (initial conditions 1), the CM remains at rest at
the origin and the relative vector oscillates between two concentric circles having
an inner radius of 1 and an outer radius of about 2.32. For the diagram on the
right (initial conditions 2), the CM moves in a circle of radius 0.5 and centred
at (0, −0.5). The relative vector again oscillates between two concentric circles
having an inner radius of 1 and an outer radius of about 1.48.

(c) The following figures show the particle trajectories (x̄, ȳ) and the CM trajectory
(X̄, Ȳ ) for charges of opposite sign:
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Comment

Two-dimensional motion of two interacting electrons in a plane perpendicular to an
applied magnetic field is of interest in the Hall effect and other phenomena.[3]

Question 10.20

Consider the effect of a time-varying gravitational constant G(t) on the Earth’s orbit
r(t) about the Sun. Neglecting the mass of the Earth in comparison with that of the
Sun, the equation of motion is

r̈ +
G(t)MS

r3
r = 0 . (1)

Use Cartesian coordinates with initial conditions

r(0) = (r0, 0) and v(0) =
(
0,
√
G0MS

/
r0

)
where r0 = 1.49 × 1011 m, MS = 2.00 × 1030 kg, and G0 = 6.67 × 10−11 N m2 kg−2.

(a) 1. Use Mathematica to solve (1) and plot the trajectory y(x) if G(t) decreases
linearly with time:

G(t) = G0(1 − αt) . (2)

Use the value α = 3.60 × 10−9 s−1, which is large enough to have an observable
effect on Earth’s orbit after one year.‡ Plot the trajectory up to t = 4 yr.
2. Now reduce α tenfold. Plot a graph of the period T of Earth’s orbit versus
the number n of complete Earth orbits, up to n = 18.

‡As the Earth recedes, the time to orbit the Sun and hence the length of the year increases. In
the following, one year means 365 × 24 × 3600 s.
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(b) Use Mathematica to plot the radial distance r(t) for 0 ≤ t ≤ 64 yr, and for an
oscillatory dependence

G(t) = G0(1 + β sin 2πt/T0) , (3)

where β = 5.00 × 10−3 and T0 = one year = 3.16 × 107 s.

Solution

(a) 1. We use the following Mathematica notebook to solve (1):

In[1]:= MS � 2.00 � 10
30�r0 � 1.49 � 10

11�G0 � 6.67 � 10
�11�

OneYear � 3600 � 24 � 365�Tmax � 4 � OneYear�Α � 3.60 � 10�9�

x0 � r0�y0 � 0�vx0 � 0�vy0 �

�
G0 MS
r0

�

G	t_
 �� G0�1 � Α t��r	t_
 �� x	t
,y	t
��

EqnMotion � Thread�r��	t
 � G	t
 MSr	t


Dot	r	t
, r	t


3
2

�� 0��
InitCon � Join	Thread	r	0
 �� x0,y0�
,Thread	r�	0
 �� vx0,vy0�

�

EqsToSolve � Join	EqnMotion,InitCon
�

Sol � NDSolve	EqsToSolve,r	t
,t,0,Tmax�,MaxSteps � 100000
�

ParametricPlot��Evaluate��x	t

r0

,
y	t


r0
��/.Sol�,t,0,Tmax�,

PlotRange � �1.6,1.6�,�1.6,1.6��,AspectRatio � 1�
The diagram below shows Earth’s orbit for t ≤ 4 yr. The dotted circular orbit is for
G constant and equal toG0. 2. The graph of T/T0 versus n is for α = 3.60×10−10 s
and T0 = 1 yr.
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(b) We replace (2) with (3) and re-run the Mathematica notebook. The diagram below
is for a 64-yr time span. The beat-like behaviour repeats itself and the motion is
bounded; a plot of y(x) shows that the trajectory fills a ring-like domain.

1.2 �

1.0 �

0.8 �

64

�

r(t)/r0

t/T0

Comment

There has been considerable interest in the possibility that fundamental constants like
G may vary with time.[4,5] Any actual variation in G, if it occurs, would be very small
– less than about one part in 1011 per year. (In this question, the assumed variation
of G with time has been exaggerated for illustrative purposes.)

[4] C. M. Will, “Experimental gravitation from Newton’s Principia to Einstein’s general relativ-
ity,” in Three hundred years of gravitation (S. W. Hawking and W. Israel, eds.), Cambridge,
Cambridge University Press, pp. 98 – 101, 1987.

[5] E. B. Norman, “Are fundamental constants really constant?,” American Journal of Physics,
vol. 54, pp. 317–321, 1986.
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Multi-particle systems

The gamut of physics extends from the study of ‘nothing’ (the vacuum) through one-,
two-, and few-body problems, to systems containing such a large number of particles
that they approximate a continuum. This chapter contains examples that illustrate
some aspects of classical multi-particle systems. In the study of such systems
considerable licence is taken with the ubiquitous words ‘particle’ and ‘system’. We
mention three examples to illustrate this.

When Newton solved the Kepler problem he was, at first, faced by a seemingly
intractable task: after all, the Sun is a complicated aggregate of particles, as is a
planet. To circumvent this he first approximated the gravitational field of the Sun by
that of a particle located at the centre of the Sun and with mass equal to a solar mass.
He then considered, instead of the motion of each particle in a planet, the motion of
a single particle having mass equal to that of the planet and located at its centre.
And so Newton arrived at a tractable yet reasonable problem: the motion of two
‘particles’ interacting via his law of universal gravitation. This example illustrates two
facets that are often encountered in many-body problems. First, there is source (or
potential) theory that is used to find the external forces. Secondly, there is response
theory that describes how a selected system responds to these external forces as well
as to the interparticle forces within it.

In cosmology, the particles may be a dust cloud in otherwise empty space that
evolves according to the laws of physics to form a star, or a solar system or even
a galaxy. This can be taken to an extreme, where one considers a ‘gas’ comprised of
galaxies – each galaxy being represented as a ‘particle’. The latter is an extension of an
approach used successfully in the theory of ordinary gases where, for certain properties,
one can neglect the structure of molecules and treat them simply as particles.

As a third example we think of an experiment in metal physics where a crystal
is subject to a tensile stress sufficient to cause plastic deformation. Here, the system
of interest may be an array of parallel line defects in the crystal structure known as
dislocations. These ‘particles’ repel each other and also move in response to external
forces (the applied forces and the forces due to, for example, other crystal defects
and the crystal surfaces.) Their dynamics and the dislocation structures they form are
essential to understanding the mechanical properties of metals.
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Question 11.1

Consider a system of N interacting particles with masses mi, position vectors ri, and
momenta pi = miṙi (i = 1, 2, · · · , N) relative to an inertial frame of reference. The
particles are also subject to external forces F

(e)
i , and the masses mi are assumed to be

constant. Prove the following:
1. That the total momentum P and the total external force F(e) acting on the system,
namely

P =

N∑
i=1

miṙi and F(e) =

N∑
i=1

F(e)

i , (1)

satisfy

dP

dt
= F(e). (2)

2. That the equation of motion of the centre-of-mass (CM) vector

R =
1

M

N∑
i=1

miri (3)

is

MR̈ = F(e), (4)

where M =

N∑
i=1

mi is the total mass of the system.

Solution

Let Fji denote the force that particle j exerts on particle i. According to Newton’s
second law, the equations of motion are

dpi

dt
= mi

d2ri

dt2
=

N∑
j=1

Fji + F(e)

i
(i = 1, 2, · · · , N) , (5)

where in the sum the term Fii is excluded. By adding together the N equations in
(5), and using (1) and (3), we have

dP

dt
= M

d2R

dt2
= S + F(e), (6)

where

S =

N∑
i=1

N∑
j=1

Fji . (7)

In (7) terms with j = i are excluded, and so S contains N(N − 1) terms. Also, for
each term Fji there is a corresponding term Fij in (7): so S consists of pairs of terms
Fji + Fij

(
there are 1

2
N(N − 1) of them

)
. Each pair is zero because, according to

Newton’s third law, Fji = −Fij . Therefore, S = 0 and (6) yields (2) and (4).
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Comments

(i) Equations (2) and (4) are generalizations of results obtained previously for two-
body problems in Questions 10.1 and 10.2.

(ii) According to (2), the rate of change of the total momentum P of a system of
particles is equal to the total external force F(e) acting on them. It follows that if
F(e) = 0 then P is constant, which is the law of conservation of momentum for a
system of particles relative to an inertial frame. See also Question 14.7.

(iii) Equation (3) defines the position vector (relative to an arbitrarily chosen
coordinate origin O) of the CM of the system of particles. It is clear that R

is an origin-dependent vector – meaning that it depends on our choice of O.

(iv) If the distribution of mass is continuous (rather than discrete), with volume
density ρ = dm

/
dV , then the definition (3) is replaced by

R =
1

M

∫
r dm =

1

M

∫
rρ dV . (8)

(v) According to (4) the trajectory of the CM is that of a hypothetical particle of
mass M acted on by the total external force F(e). The interparticle forces play
no role in the dynamics of the CM, and its trajectory is therefore generally much
simpler than that of the individual particles. For example, if a balloon filled with
water is thrown in a uniform gravitational field, the motions of its parts may be
very complicated, but the motion of the CM is along a parabola. Note that in
(1)2 the external forces F

(e)
i are evaluated at the positions of the corresponding

particles.

(vi) Equation (4) is the basis of Newton’s (and later Maxwell’s) formulation of
dynamics in terms of bodies rather than particles (see Chapter 1).

(vii) The above analysis leading to (2) and (4) is so simple to perform that one can
easily overlook the wonderful nature of these key results – specifically that the
interparticle forces play no role in them. To emphasize this point we quote at
length from an interesting discussion by Temple:[1]

“You are all familiar, of course, with the way in which Newton’s laws of motion
are expounded in the textbooks and the rather didactic way in which they are
imposed upon us. The truth is that they are positions, hypotheses, taken up to
correlate our observations, and there is nothing self-evident in them which imposes
itself upon our minds. The most interesting of the laws of motion is the third. I
am not a Newtonian scholar and I cannot tell you how he arrived at the third
law, but there is one obvious way in which he ought to have arrived:– One of
the great problems which confronts any philosopher is the crucial question ‘how
is it possible to know anything without knowing everything?’. In particular, if
you have committed yourself to a system of mechanics in which accelerations are
produced by external forces, and if you are committed to the view that these
forces are interactions between particles, it would seem that before you can make
any progress in the subject you would need to know not only the configuration

[1] G. Temple, in Turning points in physics, pp. 71–72. Amsterdam: North-Holland, 1959.
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of the universe, but also very detailed information about the nature of the forces
involved. In particular you would never be successful unless you had a complete
knowledge of the interatomic forces holding the body together. How are you to
solve this difficulty? It seems there is only one way. You can only make progress
in the face of ignorance by assuming that all the internal interactions cancel out,
and this is precisely the significance of Newton’s third law. It is a bold hypothesis
adopted to enable us to make progress in dynamics without elaborate knowledge
of interatomic forces. Making this assumption, the only forces which we have to
consider are the external forces and this at once leads to those grand theorems
about the rate of change of linear and angular momentum.”

Question 11.2

Suppose that the interparticle forces Fji for the N particles in the previous question
are central (meaning that Fji is directed along the line joining particles i and j). Let
L and Γ(e) denote the total angular momentum of the particles and the total torque
on the particles due to external forces:

L =
N∑
i=1

ri × pi and Γ(e) =
N∑
i=1

ri × F(e)

i
. (1)

Prove that
dL

dt
= Γ(e). (2)

Solution

Differentiation of (1)1 gives

dL

dt
=

N∑
i=1

ri × dpi

dt
=

N∑
i=1

N∑
j=1

ri × Fji +

N∑
i=1

ri × F(e)

i
, (3)

where in the second step we have used the equations of motion (5) of Question 11.1.
The double sum in (3) excludes terms with j = i, and consists of 1

2
N(N − 1) pairs of

terms
ri × Fji + rj × Fij = (ri − rj) × Fji . (4)

Now, central interparticle forces Fji are parallel to the relative position vector ri − rj .
So, for such forces all pairs (4) are zero, and consequently (3) reduces to (2).

Comments

(i) According to (2), for a system of particles that interact via central interparticle
forces, the total angular momentum is constant whenever the total torque due to
external forces is zero. This is an example of the law of conservation of angular
momentum of a system of particles relative to an inertial frame. See also Questions
14.18 and 14.19.
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(ii) This law applies also when the interparticle forces are non-central, such as in
certain electromagnetic interactions, provided the total angular momentum of
the electromagnetic field is taken into account.

Question 11.3

Let L be the angular momentum of a system of particles relative to a frame with
origin at O, and let L′ be the angular momentum of the system relative to a frame
with origin O′ at the CM. Prove that

L = L′ + R × P , (1)

where R is the position vector of O′ relative to O and P = MṘ with M the total
mass of the system.

Solution

The angular momentum relative to O is

L =

N∑
i=1

ri ×miṙi . (2)

From the figure, ri = r′
i
+ R and so

L =

N∑
i=1

(r′i + R) ×mi(ṙ
′
i + Ṙ)

=

N∑
i=1

r′i ×miṙ
′
i + R × ( N∑

i=1

mi

)
Ṙ + R ×

N∑
i=1

miṙ
′
i +

( N∑
i=1

mir
′
i

)× Ṙ . (3)

The first term in (3) is just the angular momentum

L′ =

N∑
i=1

r′
i
×miṙ

′
i

(4)

relative to O′ (i.e. relative to the CM). The second term is R ×MṘ = R × P. The
third and fourth terms are zero because

N∑
i=1

mir
′
i =

N∑
i=1

mi

(
ri − R

)
= MR−MR = 0 ,

and similarly for the sum over miṙ
′
i (provided the mi are constant). So (3) yields (1).

Comments

(i) The quantity L′ defined in (4) is the angular momentum relative to the CM. It is
independent of the choice of origin O, and is often referred to as the spin angular
momentum. The quantity

LCM = R × P (5)
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is the angular momentum of a particle of mass M located at the CM – it is
referred to as the orbital angular momentum. LCM depends on the choice of O,
and therefore so does L = L′ + LCM.

(ii) If O is the origin of an inertial frame, then the torque equation for LCM is

L̇CM = R × Ṗ = R ×
N∑
i=1

F(e)

i
= R × F(e), (6)

meaning that LCM responds as if the total external force F(e) exerts a torque
R × F(e) at R.

(
In (6) we have used (2) of Question 11.1.

)
(iii) If the interparticle forces are central, then the torque equation for L′ is

L̇′ = L̇ − L̇CM =

N∑
i=1

(ri − R) × F(e)

i =

N∑
i=1

r′i × F(e)

i , (7)

meaning that the angular momentum relative to the CM responds to the external
torque about the CM. In particular, L′ is conserved whenever the total external
torque about the CM is zero. This conclusion holds even if the frame with origin
O′ (the CM frame) is non-inertial.

(iv) In the definition (2) of angular momentum, the position vectors ri and momentum
vectors pi = miṙi are taken with respect to the same frame with origin at O. This
quantity is referred to as relative angular momentum to distinguish it from so-
called absolute angular momentum, where the position and momentum vectors
are with respect to different frames. Consequently, the torque equations can be
different for these two types of angular momentum. The relative definition is
widely used in the physics literature, whereas the absolute version is popular in
engineering texts. Which one uses is essentially a matter of convenience.[2]

Question 11.4

Consider a system of N particles in a uniform gravitational field. Prove that the total
gravitational torque about the CM is zero.

Solution

The force on the ith particle ismig where the gravitational acceleration g is a constant.
The total torque about an origin O is

Γ =

N∑
i=1

ri ×mig =

(
N∑
i=1

miri

)
× g , (1)

where ri is the position vector of the ith particle relative to O. If O is located at the
CM then

∑N
i=1miri = 0 and consequently Γ = 0.

[2] M. Illarramendi and T. del Rio Gaztelurrutia, “Moments to be cautious of – relative versus
absolute angular momentum,” European Journal of Physics, vol. 16, pp. 249–255, 1995.
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Comments

(i) In the above case the CM is also referred to as the centre of gravity (CG).

(ii) For a rigid body in a uniform gravitational field there is a unique point about
which the total torque is zero for an arbitrary orientation of the body. For, if
there are two such points separated by a vector D then D × Mg = 0 for any
orientation of the body (and hence of D), which is impossible.

(iii) If the field is non-uniform then the total torque Γ =
∑N

i=1 ri ×migi need not be
zero in a CM frame.

Question 11.5

Consider a system of N particles that interact via an attractive ‘gravitational’ force
that is proportional to the distance between particles:

Fji = −kmimj(ri − rj) , (1)

where k is a positive constant and i, j = 1, 2, · · · , N . Determine the trajectories of the
particles. (Hint: Choose a reference frame in which the CM is at rest at the origin.)

Solution

The equations of motion corresponding to the interparticle forces (1) are

mir̈i = −kmi

N∑
j=1

mj(ri − rj) . (2)

That is,

mir̈i = −kMmiri + kMmiR , (3)

where M =
∑N
j=1mj is the total mass and R =

∑N
j=1mjrj

/
M is the CM vector. By

summing (3) over all i we find that the acceleration of the CM is zero (as it must be,
because there are no external forces): R̈ = 0. So the CM moves with constant velocity
relative to an inertial frame, and therefore the CM frame is also inertial. In the CM
frame R = 0 and (3) simplifies to

r̈i + ω2ri = 0 , (4)

where ω =
√
k/M is real. We see that the trajectories ri in the CM frame are described

by a set of N independent, isotropic harmonic oscillator equations. The solutions for
such oscillators have been studied in Questions 7.25 and 8.10. The trajectories are
ellipses centred on the origin (i.e. on the CM). In general, the ellipses will differ in size,
but the period T = 2π/ω = 2π

√
M/k is the same for all particles. Of course, because

we are working in the CM frame, the solutions to (4) must satisfy
∑N

i=1miri = 0.
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Comments

(i) This solution was first obtained by Newton, who used induction to show that
“all bodies will describe different ellipses, with equal periodic times about their
common centre of gravity, in an immovable plane.” [3] Chandrasekhar feels that
Newton’s method of solution is superior to the modern one, in that “ it exhibits
the physical basis for the unfolding of the solution. And one is left marvelling at
Newton’s ability to explain precisely in words involved analytical arguments.” [3]

(ii) For the inverse-square gravitational interaction one has, instead of (1),

Fji = −Gmimj

(ri − rj)

|ri − rj|3 , (5)

and no analytical solution to the many-body problem exists. Only the two-body
problem (see Chapter 10) can be solved exactly, and also certain special cases for
more than two bodies (see below).

Question 11.6

(a) Consider the gravitational three-body problem for the special case where the three
particles are always located at the corners of an equilateral triangle, the length
of whose sides vary with time. Show that each particle moves on a conic section
with a focus at the CM of the system. (Hint: Work in CM coordinates.)

(b) Write a Mathematica notebook to plot the trajectories for bounded (elliptical)
motion. Use mass ratios m2/m1 = 2 and m3/m1 = 10/3, and eccentricity e = 0.8
and major axis 2a = 10/9 units for particle 1 (see Question 8.9). Implement
Mathematica’s Manipulate function to produce a dynamic output.

(
Hint: Use

the eccentric anomaly and Kepler’s equation – see (14) and (15) of Question 8.18
)
.

Solution

(a) Let the particles have masses mi and position vectors ri (i = 1, 2, 3) in an inertial
frame. The equation of motion of particle 1 is

r̈1 = −Gm2(r1 − r2)
/
r312 −Gm3(r1 − r3)

/
r313 , (1)

where rij ≡ |ri − rj|. Similar equations apply for the motions of particles 2 and
3. In CM coordinates, m1r1 +m2r2 +m3r3 = 0, which means that

m2(r2 − r1) +m3(r3 − r1) = −Mr1 , (2)

where M = m1 + m2 + m3 is the total mass. If the particles always lie at the
corners of an equilateral triangle, then r12 = r13 = r23 = r, say, and the square of
(2) yields

[3] S. Chandrasekhar, Newton’s Principia for the common reader. Oxford: Clarendon Press, 1995.
Chap. 12.
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(m2
2 +m2

3 +m2m3)r
2 = M2r21 . (3)

Equations (2) and (3) show that for this special case the equation of motion (1)
simplifies to a single-particle equation:

r̈1 +GM1r1

/
r31 = 0 , where M1 = (m2

2 +m2
3 +m2m3)

3/2M−2 . (4)

Similarly, the equations of motions for particles 2 and 3 are

r̈2 +GM2r2

/
r32 = 0 and r̈3 +GM3r3

/
r33 = 0 , (5)

where M2 = (m2
1 + m2

3 + m1m3)
3/2M−2 and M3 = (m2

1 + m2
2 + m1m2)

3/2M−2.
Equations (4) and (5) are single-particle equations for motion in attractive inverse-
square fields. They have been solved in Question 8.9: each of the three particles
moves on a conic section – in such a way that each is always at a corner of a
rotating equilateral triangle of varying size. For bounded motion each particle
describes an elliptical orbit with one focus at the common CM. For unbounded
motion each particle moves on a parabolic or hyperbolic orbit with a focus at the
CM.

(b) The trajectory of m1 in plane polar coordinates is (see Question 8.9)

r1 =
a(1 − e2)

1 − e cos θ
r̂(θ) , (6)

where a and e are constants and r̂(θ) is a radial unit vector. Correspondingly, the
trajectories of m2 and m3 are

r2 =

√
m2

1
+m2

3
+m1m3

m2
2

+m2
3

+m2m3

a(1 − e2)

(1 − e cos θ)
r̂(θ + α12) , (7)

r3 =

√
m2

1
+m2

2
+m1m2

m2
2

+m2
3

+m2m3

a(1 − e2)

(1 − e cos θ)
r̂(θ − α13) . (8)

Here, α12 is the smaller of the angles between r1 and r2. It is obtained by applying
the cosine formula to a triangle with sides r, r1, r2 :

α12 = cos−1 m2
3 −m2m3 −m1m3 − 2m1m2

2
√
m2

1
+m2

3
+m1m3

√
m2

2
+m2

3
+m2m3

. (9)

Similarly,

α13 = cos−1 m2
2
−m2m3 −m1m2 − 2m1m3

2
√
m2

1 +m2
2 +m1m2

√
m2

2 +m2
3 +m2m3

. (10)

(
The square-root factors and the angles α12 and α13 in (7) and (8) ensure that the

particles are at the corners of an equilateral triangle.
)

For the given e, a and mass
ratios, (6)–(10) and the notebook below yield the figure shown on the next page.
Here, the origin O is at the CM, and we have illustrated the change in orientation
and size of the equilateral triangle in the xy-plane.
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Comments

(i) In general, the gravitational three-body problem (1) cannot be solved exactly. It
is only for certain special cases that analytical solutions exist.

(ii) Equilateral triangle solutions were the first special solutions to be obtained for the
general three-body problem: by Lagrange (for a rigid triangle that rotates about
an axis perpendicular to its plane) and later by Euler (for a triangle that changes
size).

(iii) An important question regarding these solutions is their stability with respect to
small changes in initial conditions. It turns out that stability occurs only if one
of the masses has more than 95% of the total mass.[4]

[4] J. M. A. Danby, “Stability of the triangular points in the elliptic restricted problem of three
bodies,” Astronomical Journal, vol. 69, pp. 165–172, 1964.
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(iv) An essential feature of the above analysis is that when the interparticle distances
rij are all the same, the force on each particle is directed towards the common CM
– see (4) and (5). In three dimensions there are only two geometric figures that
provide constant rij : an equilateral triangle (three-body problem) and a regular
tetrahedron (four-body problem).

(v) Dynamic plots of the orbits of the three bodies can be viewed with the notebook
below. Similar plots can be made for the unbounded (parabolic and hyperbolic)
trajectories.

(vi) Special two-dimensional solutions for the gravitationalN -body problem also exist
when the particles all have equal mass and are located at the vertices of a regular
polygon. In this configuration the resultant gravitational force on a particle is
directed toward the centre of the polygon and its magnitude is inversely
proportional to the square of the distance to the centre. The polygon rotates non-
uniformly and the lengths of its sides vary periodically as the particles move along
congruent conic sections about a focus located at the centre of the polygon.[5]

(This centre can either be empty or occupied by a particle.)

(vii) The three-body problem is one of the oldest topics in dynamics. Newton regarded
it as the most complex problem in his Principia, and once remarked to a contem-
porary that “his head never ached but with his studies on the Moon”.[6]

Question 11.7

Consider the following gravitational three-body problem. Two heavy celestial bodies
(known as the primaries) move in circular orbits about their centre of mass. A third
body of negligible mass moves in the same plane as the primaries under the influ-
ence of their gravitational attraction. Let m1, m2 and m3 denote the masses of the
bodies with m1 > m2 � m3. The period of the motion of the primaries is given by

T = 2π
√
D3
/
GM , where D is the constant distance between them and M = m1 +m2

is the total mass.

(a) Use (1) of Question 11.6 and its cyclic permutations to express the equations of
motion in the dimensionless forms

d2r̄i

dτ2
+

4π2

M

(
mj r̄ij

r̄3
ij

+
mkr̄ik

r̄3
ik

)
= 0 (j, k �= i; j �= k) , (1)

for i = 1, 2, 3, where r̄i = ri/D and τ = t/T are dimensionless position vectors
and time.

(b) Show by a kinematical argument that the dimensionless speeds of the primaries
for circular motion in the CM frame are

[5] E. I. Butikov, “Regular Keplerian motions in classical many-body systems,” European Journal
of Physics, vol. 21, pp. 465–482, 2000.

[6] R. S. Westfall, Never at rest – A biography of Isaac Newton, p. 543. Cambridge: Cambridge
University Press, 1980.



Multi-particle systems ���

v̄1 = 2π
m2

M
and v̄2 = 2π

m1

M
. (2)

(c) Write a Mathematica notebook to solve (1) numerically for m2/M = 3/40 and
the following two sets of initial conditions:

r̄1(0) = (0 , −3
40 , 0); r̄2(0) = (0 , 37

40 , 0); r̄3(0) = (0 , 45
40 , 0);

v̄1(0) = (−3π
20 , 0 , 0); v̄2(0) = (37π

20 , 0 , 0);

and 1. v̄3(0) = (62π
20 , 0 , 0), and 2. v̄3(0) = (57π

20 , 0 , 0).

(d) For the initial conditions 1. , plot the trajectories of m2 and m3 in the ‘heliocen-
tric’ frame‡ for 0 ≤ τ ≤ 1.05.
For the initial conditions 2. , plot the trajectories of the bodies in the ‘heliocen-
tric’, ‘geocentric’, and CM frames 0 ≤ τ ≤ 3.925.

(e) Modify the Mathematica notebook to animate the motion of the three bodies for
the initial conditions in (c) part 2 . Then, view the motion of the bodies in the
three frames referred to above.

Solution

(a) The result follows directly from (1) of Question 11.6 (and its cyclic permutations)
after multiplication by T 2/D. Since the light body has negligible effect on the
motions of the primaries, terms containing m3 in the equations of motion (1)
have been set to zero in the numerical calculations below.

(b) In the CM frame of the primaries, circular orbits for bodies 1 and 2 have radii

(m2/M)D and (m1/M)D, and therefore speeds 2π
m2

M

D

T
and 2π

m1

M

D

T
, respec-

tively. The corresponding dimensionless forms – obtained after multiplication by
T/D – are (2).

(c) See the Mathematica notebook given in (e).

(d) The graphs are presented below, following the notebook.

(e) The notebook is for the ‘heliocentric’ frame. The trajectories for the ‘geocentric’
and CM frames are obtained by changing the appropriate variable names in the
Evaluate[] commands in the Traj and Bodies[t_] sections of the notebook.

In[1]:= m2 �
75

1000
�m1 � 1 � m2�Τmax � 3.925�

x10 � 0�y10 �
�3

40
�vx10 � �

3Π

20
�vy10 � 0�

x20 � 0�y20 �
37

40
� vx20 �

37Π

20
�vy20 � 0�

x30 � 0�y30 �
9

8
�vx30 �

57Π

20
�vy30 � 0�

‡‘Heliocentric’ signifies the frame in which the largest mass, m1, is at rest at the origin; ‘geocentric’
means that m2 is at rest there.
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In[2]:= r1	Τ_
 �� x1	Τ
,y1	Τ
��

r2	Τ_
 �� x2	Τ
,y2	Τ
��

r3	Τ_
 �� x3	Τ
,y3	Τ
��

r12	Τ_
 �� r1	Τ
 � r2	Τ
�R12	Τ_
 ��
�
Dot	r12	Τ
,r12	Τ

�

r21	Τ_
 �� r2	Τ
 � r1	Τ
�R21	Τ_
 ��
�
Dot	r21	Τ
,r21	Τ

�

r31	Τ_
 �� r3	Τ
 � r1	Τ
�R31	Τ_
 ��
�
Dot	r31	Τ
,r31	Τ

�

r32	Τ_
 �� r3	Τ
 � r2	Τ
�R32	Τ_
 ��
�
Dot	r32	Τ
,r32	Τ

�

EqnMot1 � Thread�r1��	Τ
 � 4Π2 m2

m1 � m2

r12	Τ


R12	Τ
3
�� 0��

EqnMot2 � Thread�r2��	Τ
 � 4Π2 m1

m1 � m2

r21	Τ


R21	Τ
3
�� 0��

EqnMot3 � Thread�r3��	Τ
 � 4Π2 m1

m1 � m2

r31	Τ


R31	Τ
3
� 4Π2

m2

m1 � m2

r32	Τ


R32	Τ
3
�� 0��

InCon1 � Join	Thread	r1	0
 �� x10,y10�
,Thread	r1�	0
 �� vx10,vy10�

�

InCon2 � Join	Thread	r2	0
 �� x20,y20�
,Thread	r2�	0
 �� vx20,vy20�

�

InCon3 � Join	Thread	r3	0
 �� x30,y30�
,Thread	r3�	0
 �� vx30,vy30�

�

EqsToSolve � Join	EqnMot1,EqnMot2,EqnMot3,InCon1,InCon2,InCon3
�

Sol � NDSolve	EqsToSolve,Join	r1	Τ
,r2	Τ
,r3	Τ

,Τ,0,Τmax�,

MaxSteps � 500000,AccuracyGoal � 12,PrecisionGoal � 12
�

Traj � ParametricPlot	Evaluate	x2	Τ
 � x1	Τ
,y2	Τ
 � y1	Τ
�
/.Sol�,

Evaluate	x3	Τ
 � x1	Τ
,y3	Τ
 � y1	Τ
�
/.Sol��,Τ,0,Τmax�,

AspectRatio � 1,PlotPoints � 1000
�

Bodies	t_
 �� Graphics	PointSize	0.025
,Red,Point	0,0�
,

PointSize	0.0125
,Green,Point	First	Evaluate	r21	Τ
/.

Sol/. Τ � t


,Blue,Point	First	Evaluate	r31	Τ
/.

Sol/. Τ � t


�
�

Manipulate	Show	Traj,Bodies	t
,Background � LightGray
,t,0,Τmax�
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�
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�

•

6

6

�

•9

9

�

•

10

10

�

•
5

5

�

•

8

8

�

•

4
4

� •

3

3

�

•

2

2

�

•

1

1

�

•

2.

orbit of m3

orbit of m2

orbit of m1

−0.8

�

0.8 �

−0.8

�

0.8

�

CM frame
ȳ
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Comments

(i) The first diagram illustrates a motion where the light mass m3 escapes from the
other two masses after orbiting m2 just once. For different initial conditions, other
motions are seen, such as m3 falling into m1.

(ii) The second diagram depicts a trajectory for m3 in the ‘heliocentric’ frame where,
after orbiting the intermediate mass m2 four times, it is pulled into an almost
elliptical orbit around the largest mass m1. After seven such orbits it is again
‘captured’ by m2. This sequence is then repeated: a plot up to τ = 300 contains
numerous interchanges of m3 from m2 to m1 and back to m2. The third diagram
is for the ‘geocentric’ frame and it shows clearly the orbits of m3 around m2. The
fourth diagram shows the motion of all three bodies relative to the CM.

(iii) These plots illustrate a striking feature of the gravitational three-body problem,
namely the complexity of the motion compared with the simplicity of the two-
body problem, where the two trajectories follow conic sections with focii at the
CM (see Chapter 10). By contrast, three-body orbits cannot be described by
analytic solutions (except in special cases such as the equilateral triangle solution
of the previous question).

(iv) It so happens that in our solar system the two-body Kepler laws (see Question
10.11) are a good approximation for the planets – the Sun is a single, massive
star and the planets are widely separated. In a system orbiting a binary star
the planetary orbits are much more complicated and “ it would be an immensely
difficult problem for astronomers · · · to establish the kinematical laws of planetary
motion for the double-star system (Kepler), and even a much more difficult
problem would be to discover that these complicated kinematical laws are
generated by the simple inverse-square law of gravitational attraction to each
of the stars (Newton). Our civilization has the advantage of a planet orbiting a
single star.” [5] (In fact, double, triple, . . . star groupings are more common in the
universe than are single stars.)

(v) The reader can readily check that small changes in the initial conditions have large
effects on the subsequent motion of m3 – the differences increase in the long-time
limit and indicate that the motion is chaotic.[7] Because of this, it is questionable
whether numerical integration can yield meaningful long-time orbits, and only
periodic orbits are regarded as valid solutions at large t.[8] (See also page 499.)

(vi) The problem considered in this question is known as the circular coplanar
restricted three-body (CCR3B) problem. It is part of the general, gravitational
three-body problem that was first considered by Newton in connection with the
Moon’s motion in the fields of the Earth and Sun. Because of its importance there
have been many theoretical studies of the three-body problem.[7,8] An interesting
account of exact particular solutions for the gravitational many-body problem has
been given by Butikov.[5]

[7] M. Valtonen and H. Karttunen, The three-body problem. Cambridge: Cambridge University
Press, 2006.

[8] A. D. Bruno, The restricted 3-body problem. Berlin: de Gruyter, 1994.
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Question 11.8

Consider again the CCR3B problem of Question 11.7. Let S̄(x̄, ȳ, z̄) be the CM frame
and S(x, y, z) be a rotating (non-inertial) frame that has the same origin and z-axis
as S̄. Suppose S rotates with angular velocity Ω = (0, 0, Ω) relative to S̄, where

Ω = 2π/T =
√
GM

/
D3 . (1)

Then, the primaries m1 and m2 are at rest in S, on the x-axis say. The light body m3

has coordinates (x, y).

(a) Show that the equation of motion of m3 in S has components

ẍ− 2Ωẏ = −∂U/∂x and ÿ + 2Ωẋ = −∂U/∂y , (2)

where U is the effective potential (per unit mass):

U(x, y) = − 1
2
Ω2(x2 + y2) −G(m1

/
r31 +m2

/
r32) . (3)

In the following it is convenient to choose the units of distance, time and mass
such that D = 1, T = 2π and M = 1.

(b) There are 5 points (the so-called Lagrange points L1, · · · , L5) in the xy-plane at
which m3 can be at rest. Write a Mathematica notebook to solve for the coordi-
nates of the Lagrange points in terms of µ = m2/M . Evaluate these coordinates
when µ = 10−3. (Hint: Use the VectorAnalysis package to calculate ∇U , and
then use the NSolve function to find its roots.)

(c) Two of the Lagrange points (labelled L4 and L5) are always located symmetrically
off the x-axis. Show that their coordinates are

(a, b) = 1
2
(1 − 2µ , ±

√
3) . (4)

(d) Extend the notebook for part (b) to produce a three-dimensional graph and also
a contour plot of U(x, y) for µ = 1

2
.

(e) Consider motion of m3 in the neighbourhood of L4 or L5. Show that there are
periodic solutions to (2), and find their frequencies.

(
Hint: Look for solutions

x = a+Aeλt , y = b+Beλt, (5)

where A, B and λ are constants. Use Mathematica to evaluate the derivatives of
U(x, y) at (a, b).

)
Solution

With the CM at the origin, the coordinates of m1 and m2 in S are fixed at (−µD, 0)
and

(
(1 − µ)D, 0

)
, where µ = m2/M .



Multi-particle systems ���

(a) The equation of motion of m3 in the rotating frame S is (see Chapters 1 and 14)

m3(ẍ, ÿ) = F + Fcf + FCor . (6)

Here, F is the gravitational force, given by

F = ∇(Gm1m3

/
r31 +Gm2m3

/
r32) , (7)

where ∇ = (∂/∂x, ∂/∂y), and Fcf and FCor are the centrifugal and Coriolis forces

Fcf = −m3[Ω× (Ω × r)] = m3Ω
2(x, y)

FCor = −2m3(Ω × ṙ) = −2m3Ω(−ẏ, ẋ) .

}
(8)

Equations (6)–(8) yield (2).

(b) For a body at rest at the Lagrange points, x and y are constants in (2), and so

∂U

∂x
=
∂U

∂y
= 0 (9)

there. In terms of the above units

U(x, y) = − 1
2
(x2 + y2) − (1 − µ)

/
r31 − µ

/
r32 . (10)

The following notebook gives the solutions to (9) when µ = 10−3.

In[1]:= Needs	"VectorAnalysis‘"
 �� use U in the units given in �a� ��

U	x_,y_
 �� �
1

2
�x2 � y2� � �1 � Μ��

�x � Μ�2 � y2
�

Μ�
�x � 1 � Μ�2 � y2

�

v1,v2,v3� � Grad	U	x,y
,Cartesian	x,y,z

� Μ � 1/1000�

x,y�/.NSolve	v1 �� 0,v2 �� 0�,x,y�,18


The solutions are:
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L1 = (0.93129, 0); L2 = (1.06992, 0); L3 = (−1.00042, 0);

L4 = (0.49900, 1
2

√
3); L5 = (0.49900,− 1

2

√
3) .

}
(11)

The positions of these points in the xy-plane are
shown in the diagram. The first three Lagrange
points are collinear with the primaries m1 and m2,
and L4 and L5 are located at the corners of equilat-
eral triangles, with the primaries at the other two
vertices. This is always the case (see below).

(c) According to (9) and (10), the coordinates of the
Lagrange points are the solutions to the simultane-
ous equations

x− (1 − µ)(x + µ)

r331
+
µ(1 − µ− x)

r332
= 0 , (12)

y[1 − (1 − µ)

r331
− µ

r332
] = 0 . (13)

If y �= 0, it is clear from (12) and (13) that r31 = r32 = 1. That is, L4 and L5 form
two equilateral triangles with the primaries and so their coordinates are given by
(4) – see the two diagrams above. If y = 0, (12) has to be solved numerically for
the positions of L1, L2 and L3

(
see Comment (ii) below

)
. Note that (12) and (13)

express equality of the gravitational and centrifugal forces at the Lagrange points.

(d) Use the notebook for part (b) as the first input cell in the notebook below. This
gives the required graph and contour plot. In these, the dots indicate the positions
of the five Lagrange points.

In[1]:= �� CELL 1 � ENTER THE NOTEBOOK FOR PART �b� ��

In[2]:= xlist � x /.NSolve	v1 �� 0,v2 �� 0�,x,y�,18
�

ylist � y /.NSolve	v1 �� 0,v2 �� 0�,x,y�,18
�

zlist � MapThread	U,xlist,ylist�
�

coords � Thread	xlist,ylist,zlist�
�

EffectivePotential � Plot3D	U	x,y
,x,�1.5,1.5�,y,�1.5,1.5�,

PlotRange � �3,�1�,Mesh � None,Boxed � True,Axes � True
�

LagrangePoints � Graphics3D	PointSize	0.0125
,Red,Point	coords
�
�

Show	EffectivePotential,LagrangePoints


In[3]:= contour � ContourPlot	U	x,y
,x, �1.5,1.5�, y, �1.5, 1.5�
�

coords � Thread	xlist,ylist�
�

LagrangePoints � Graphics	PointSize	0.0125
,Red,Point	coords
�
�

Show	contour,LagrangePoints
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(e) For small oscillations we can expand the partial derivatives in (2) to first order in
the displacements x− a and y − b about L4 or L5:

∂U

∂x
= (x− a)

∂2U

∂x2
+ (y − b)

∂2U

∂x∂y

∂U

∂y
= (x− a)

∂2U

∂x∂y
+ (y − b)

∂2U

∂y2
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (14)

where the second derivatives of U are evaluated at L4 or L5. Their values are (see
the notebook below)

∂2U

∂x2
= −3

4
,

∂2U

∂y2
= −9

4
, and

∂2U

∂x∂y
= −3

√
3

4
(1 − 2µ) . (15)

From (2) with Ω = 1, (5), (14) and (15) we find that

(λ2 − 3/4)A− (2λ+ 3
√

3(1 − 2µ)/4)B = 0

(2λ− 3
√

3(1 − 2µ)/4)A+ (λ2 − 9/4)B = 0 .

⎫⎬⎭ (16)

For non-trivial solutions the determinant of the coefficients of A and B in (16)
must be zero. That is,

λ4 + λ2 + 27µ(1 − µ) = 0 , (17)

and so
λ2 = − 1

2
± 1

2

√
1 − 27µ(1 − µ) . (18)

For periodic solutions we require that (16) has imaginary roots λj = iωj. There-
fore,

∆ = 27µ2 − 27µ+ 1 ≥ 0 . (19)

Thus, there is a critical value‡

µc = 1
2

(
1 −

√
23/27

) ≈ 0.03852 (20)

above which there are no periodic solutions. If µ < µc the two frequencies are

ω1 =

√
1 −√

∆

2
≈
√

27µ

4
and ω2 =

√
1 +

√
∆

2
≈ 1 − 27µ

8
. (21)

Small oscillations about L4 or L5 will, in general, be a linear combination of these
slow and rapid components (see Question 11.9).

In[1]:= U	x_,y_
 �� �
1

2
�x2 � y2� � 1 � Μ�

�x � Μ�2 � y2
�

Μ�
�x � 1 � Μ�2 � y2

�

L4 � �x � 1 � 2Μ

2
,y �

�
3

2
��

Uxx � Simplify	�D	U	x,y
,x,2�,y,0�
/.L4�


Uyy � Simplify	�D	U	x,y
,x,0�,y,2�
/.L4�


Uxy � Simplify	�D	U	x,y
,x,1�,y,1�
/.L4�


‡Recall that µ = m2
M

< 1
2

because m2 < m1.
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Comments

(i) At L1, L2 and L3 there are saddle points in U(x, y); at L4 and L5 there are maxima
in U(x, y) – see (15) and the preceding two plots of U(x, y). We have seen in
part (e) that these maxima are points of stable equilibrium, and the reader may
wonder whether this contradicts the familiar result that stable equilibrium occurs
at potential minima. The answer is ‘no’: in the present case the acceleration
is not equal to just the gradient of a scalar; there are also velocity-dependent
contributions due to the Coriolis force in (2). Motion around the potential maxima
at L4 and L5 is stabilized by the Coriolis force.[9]

(ii) The positions of L1, L2 and L3 are determined numerically by solving ∇U = 0, as
in the Mathematica notebook for (b). They are also given as the real solutions to
(12) with y = 0. This calculation requires that one consider each of the cases: m3

to the left of m1; m3 between m1 and m2; and m3 to the right of m2. This yields
for (12)

(1 − µ)

(x+ µ)2
+ α

µ

(x+ µ− 1)2
+ βx = 0 , (22)

where α = β = −1 (for L1), = 1 (for L3), and α = −β = 1 (for L2), and µ < 1
2
. In

each case there is a quintic with one real root that has to be found numerically –
see the notebook and graphs below.

L3

L2

L1

1.0

−1.0

�

�

0.25 0.5

� �

x

µ

In[1]:= �� Α � Β � �1 for L1 � Α � Β � 1 for L3 � Α � �Β � 1 for L2 ��

Μmax �
500

1000
� Μmin � 0� Μstep �

1

1000
� Α � Β � �1 �

data � Table��Μ,Sol � Reduce� �1 � Μ�

�x � Μ�2
� Α

Μ

�x � 1 � Μ�2
� Β x �� 0,x,Reals��

x/.ToRules	N	Sol,18

�,Μ,Μmin,Μmax,Μstep���
graph1 � ListPlot	data
�

Show	graph1


[9] R. Greenberg and D. R. Davis, “Stability at potential maxima: The L4 and L5 points of the
restricted three-body problem,” American Journal of Physics, vol. 10, pp. 1068–1070, 1978.
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(iii) Equation (2)1 times ẋ plus (2)2 times ẏ gives

−1

2

d

dt
(ẋ2 + ẏ2) =

∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
=
dU

dt
, (23)

and so there is a conserved quantity (the Jacobi constant)

C = 1
2
v2 + U , (24)

where v =
√
ẋ2 + ẏ2 is the speed of m3 in S. Now, v2 ≥ 0 and therefore

U(x, y) ≤ C. This means that the motion is confined to regions where the
potential does not exceed the energy, and can therefore be described in terms
of two-dimensional energy diagrams.[7,9] (The reader should note that in the
literature the potential is sometimes defined as −U .)

(iv) The five positions L1 , · · · ,L5 were discovered in the eighteenth century by Euler
and Lagrange. It took more than one hundred years before astronomers observed
bodies in the solar system trapped near triangular points. It is now known that
there are several hundred asteroids (the Trojan asteroids) located in the vicinity
of L4 and L5 in the Sun–Jupiter system. The other planets perturb the Trojans’s
orbits, causing them to drift as far as 30◦ or more away from L4 and L5.

[10]

(v) No stable orbits exist near collinear Lagrange points.[7] However, a concentration
of interplanetary dust at L2 in the Sun–Earth system is responsible for the faint
glow (the ‘gegenschein’) in the night sky in the direction opposite to the Sun.

(vi) In the 1970s it was proposed that L4 and L5 in the Earth–Moon system were
suitable locations for large, permanent space colonies.[11]

(vii) There are certain special values of µ < µc for which small-amplitude motions
about L4 and L5 are not stable.[12]

(viii) The next question uses numerical integration to solve the equations of motion for
both small and large oscillations about L4.

Question 11.9

Consider the CCR3B problem discussed above. The following questions deal with
numerical solutions for bounded motion of m3 around the Lagrange point L4. In these,
use the units given in part (a) of Question 11.8 and take µ = 10−3.

(a) Write a Mathematica notebook to solve the equations of motion (2) of Question
11.8 for the initial conditions below. Plot the trajectory r = (x, y) of m3 in the
rotating frame S for 0 ≤ t ≤ tmax = 80π (this corresponds to 40 revolutions
of the primaries). Take ṙ(0) = 0 and 1. r(0) = (a + 0.001, b + 0.002), and

2. r(0) = (a + 0.109, b − 0.073). Here (a, b) is the position of L4 in S, given in
(4) of Question 11.8.

[10] W. K. Hartmann, Moons & planets. United States: Thomson, 5th edn, 2005.
[11] G. K. O’Neill, “The colonization of space,” Physics Today, pp. 32–40, September 1974.
[12] J. A. Blackburn, M. A. H. Nerenberg, and Y. Beaudoin, “Satellite motion in the vicinity of the

triangular libration points,” American Journal of Physics, vol. 45, pp. 1077 – 1081, 1977.
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(b) Describe the motion of m3 in the CM frame S̄ for both cases in (a) above.

(c) For 1. and 2. above, create a table of values {t, x(t)} in Mathematica for
0 ≤ t ≤ tmax = 80π, using a step size ∆t = tmax/5000. Use Mathematica’s
FindFit function to fit the function x(t) = a0 +a1 cos(ω1t+φ1)+a2 cos(ω2t+φ2)
to the data. Here, ω1 and ω2 are given by (21) of Question 11.8 and a0, a1, a2, φ1

and φ2 are adjustable parameters. Plot x(t) versus t and on this graph show also
a representative subset of the data table.

(d) Rerun the notebook in (a) for the following initial conditions and plot the trajec-
tory of m3 in the xy-plane of S for 0 ≤ t ≤ tmax = 320π:

3. r(0) = (a+ 0.024 , b+ 0.055); ṙ(0) = (0.0778 , −0.0429);

4. r(0) = (a+ 0.108 , b+ 0.050); ṙ(0) = (0.0868 , −0.0400) .

(e) Plot the motion of m3 in the CM frame S̄ for case 3. above.

Solution

(a) The notebook is given below. In the diagrams obtained from it the positions of
the primaries and L4 are indicated by a dot •. Note that m1 is slightly to the left
of the CM, which is at the origin.

In[1]:= Μ �
1

1000
�a �

�1 � 2Μ�

2
�b �

�
3

4
�Tmax � 160Π �

x0 � a � 0.109� y0 � b � 0.073� vx0 � 0� vy0 � 0� ��INIT CON 2 ��

r	t_
 �� x	t
,y	t
�

U	x_,y_
 �� �
1

2
�x2 � y2� � �1 � Μ��

�x � Μ�2 � y2
�

Μ�
�x � 1 � Μ�2 � y2

�

Ux	t_
 �� D	U	x,y
,x,1�
/.x � x	t
,y � y	t
��

Uy	t_
 �� D	U	x,y
,y,1�
/.x � x	t
,y � y	t
��

EqnMotion � Thread	x��	t
 � 2y�	t
 � Ux	t
,y��	t
 � 2x�	t
�

Uy	t
� �� 0,0�
�

InitCon � Join	Thread	r	0
 �� x0,y0�
,Thread	r�	0
 �� vx0,vy0�

�

EqsToSolve � Join	EqnMotion,InitCon
�

Sol � NDSolve	EqsToSolve,r	t
,t,0,Tmax�,MaxSteps � 1000000,

AccuracyGoal � 12, PrecisionGoal � 12
�

ParametricPlot	Evaluate	x	t
,y	t
�
/.Sol��,t,0,Tmax�,

AspectRatio � 1,PlotPoints � 1000
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m1 •
m2•

L4•
0.8

0.4

�

�

0.80.4

��
1. y

x

m1 •
m2•

L4•
0.8

0.4

�

�

0.80.4

��

2. y

x

(b) Both of these initial displacements from L4 are ‘small’ in the sense of Question
11.8(e). In each case, the motion of m3 relative to S̄ is a nearly circular orbit of
radius ≈ 1 about the CM.

(c) Use the previous notebook as the the first input cell in the notebook below.

In[1]:= �� ENTER THE NOTEBOOK FOR �a� AS THE FIRST INPUT CELL HERE ��

In[2]:= � � 27Μ2 � 27Μ � 1�Ω1 �

�
1 �
�
�

2
�Ω2 �

�
1 �
�
�

2
�

f	t_
 �� a0 � a1 Cos	Ω1 t � Φ1
 � a2 Cos	Ω2 t � Φ2
�

FourierData � Table�t,First	x	t
/.Sol
�,�t,0,Tmax, Tmax

100
���

FourierCoefficients � FindFit	FourierData,f	t
,a0,a1,a2,Φ1,Φ2�,t
�

GraphFit � Plot	f	t
/.FourierCoefficients�,t,0,Tmax�,

PlotPoints � 1000
�GraphDiffEqn � ListPlot	FourierData
�

Show	GraphFit,GraphDiffEqn


The best-fit parameters are:

a0 a1 a2 φ1 φ2

case 1 0.4798130 –0.1442100 0.0122875 1.6941800 1.8353500
case 2 0.4850700 0.1230990 –0.0016150 0.0772048 1.0333400
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The values of a0 are close to the x-coordinate, 0.499, of L4.

0.6

0.3

�

�

80π40π0
���

1. x(t)

t

0.6

0.3

�

�

80π40π0

���

2. x(t)

t

In case 1. there is an appreciable contribution from the rapid oscillation ω2; in

case 2. this contribution is much less and x(t) is almost sinusoidal.

(d) The graphs are:

•

m1 • m2•

L4•
0.8

−0.8

�

�

0.8−0.8

��

3. y

x

•

m1 • m2•

L4

•0.8

−0.8

�

�

0.8−0.8

��

4. y

x

(e) The coordinates (x̄, ȳ) ofm3 in the CM frame S̄ are calculated from its coordinates
(x, y) in S using the transformation: (x̄, ȳ) = (x cos t − y sin t, x sin t + y cos t),
and the trajectory is shown below. Notice that the motion of m3 comprises two
nearly concentric orbital ‘bands’. The body starts in the outer band, and between
t ≈ 9.7 and ≈ 11.7 it makes a transition to the inner band where it remains until
t ≈ 105.5; by t ≈ 107.3 it has returned to the outer band, where it remains for
the rest of the time interval.

Comments

(i) A dynamic output of the motion of m3 in S is obtained by modifying the notebook
for (a) in the usual way (see, for example, the notebook of Question 11.7).
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(ii) Horseshoe orbits like that in part (d) above occur in the solar system. For example,
in the motion of two inner moons about Saturn, the lighter moon (Epimetheus)
performs a horseshoe orbit relative to the planet and the heavier moon (Janus).
These moons are almost equidistant from Saturn and every 4 yr (approximately)
they have a close encounter with each other before receding again.[13]

•

m1 • m2 •

L4•
0.8

−0.8

�

�

0.8−0.8

��

Graph for (e): case 3. y

x

Question 11.10

Consider a system of N particles (where N > 2) with central, power-law interparticle
forces:

Fji = −Kij

ri − rj

rn
ij

(j �= i), (1)

where rij = |ri −rj|. The coefficients Kij and the exponent n are constants. Determine
the conditions under which this N -body problem reduces to N one-body problems.[14]

Solution

For the forces (1), the equations of motion can be written

mir̈i = −
N∑
j=1
j �=i

Kij

ri

rn
ij

+

N∑
j=1
j �=i,k

Kij

rj

rn
ij

+Kik

rk

rn
ik

, (2)

[13] R. S. Harrington and P. K. Seidelmann, “The dynamics of the Saturnian satellites 1980S1 and
1980S3,” Icarus, vol. 47, pp. 97–99, July 1981.

[14] A. S. de Castro and C. A. Vilela, “On the regular-geometric-figure solution to the N-body
problem,” American Journal of Physics, vol. 22, pp. 487–490, 2001.
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where i = 1, 2, · · · , N and k �= i. In CM coordinates,

N∑
j=1

mjrj = 0 , and so mkrk = −
N∑
j=1
j �=k

mjrj . (3)

Equation (3) enables us to express (2) as

mir̈i = −
N∑
j=1
j �=i

Kij

ri

rnij

− mi

mk

Kik

ri

rnik

+

N∑
j=1
j �=i,k

(
Kij

1

rnij

− mj

mk

Kik

1

rnik

)
rj . (4)

In general, this is a set of coupled equations because the equation for each ri contains
also the position vectors of the other particles. The case n = 0 in (4) is special in that
it allows decoupling, provided the condition

Kij

/
Kik = mj

/
mk (5)

also holds. In this event (4) simplifies to a set of one-body equations

mir̈i = −Mαiri (i = 1, 2, · · · , N) , (6)

where M is the total mass and αi = Kik/mk. If the αi are positive then (6) is a set of
N isotropic harmonic oscillator equations with force constants ki = Mαi: each particle
moves independently of the others and as if it were bound to the CM of the system
by a spring having force constant ki.

Comments

(i) The case N = 2 is special because the two-body problem with central interparticle
force F (r12)r̂12 can always be reduced to two one-body problems

(
see Question

10.4)
)
.

(ii) For the gravitationalN -body problem, Kij = Gmimj

(
and so (5) is satisfied

)
and

n = 3. If the motions are such that the interparticle distances are always equal,
rij = r(t), then (4) has the simple form

r̈i = −GM

r3(t)
ri . (7)

Equations (7) describe the equilateral triangle solution of the three-body
problem (see Question 11.6) and the regular tetrahedron solution of the four-
body problem.[15]

[15] H. Essén, “On the equilateral triangle solution to the three-body problem,” European Journal
of Physics, vol. 21, pp. 579–590, 2000.
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Question 11.11

Consider a gas consisting of N non-interacting particles (molecules) that make elastic
collisions with the walls of a container (taken to be a cubical box of side L). Prove
that

PV = 2
3
K , (1)

where P and V = L3 are the pressure and volume of the gas, and K is the total kinetic
energy of the molecules.

Solution

Consider a face of the container that is perpendicular to the x-axis (say). For each
elastic collision with this face the change in momentum of a molecule is
∆p = mv − (−mv) = 2mv, where v is the x-component of its velocity. The time
between collisions with the face is ∆t = 2L/v and so, for the total force exerted by all
molecules on this face, we have

F =
∑ ∆p

∆t
=

1

L

∑
mv2 , (2)

where the sum is over all molecules. The pressure P = F
/
L2 is therefore

P =
1

L3

∑
mv2 . (3)

Now the contributions of the x, y and z motions to the total kinetic energy K are
equal, and so ∑

1
2
mv2 = 1

3
K . (4)

Equations (3) and (4) yield (1).

Comments

(i) In terms of the mean-square velocity u2 = (N1m1v
2
1
+N2m2v

2
2
+ · · · )/M , the total

kinetic energy of the gas is K = 1
2
Mu2. Here, M = N1m1+N2m2+ · · · is the mass

of the gas, given in terms of its density ρ by M = ρV . So (1) can be expressed as

P = 1
3
ρu2 . (5)

This means that for air at P = 105 Pa and ρ = 1.3 kgm−3, the root-mean-square

velocity
√
u2 is about 480 ms−1.

(ii) According to the equipartition theorem of classical statistical mechanics, the
average kinetic energy of a molecule is 1

2
kT per degree of freedom for a gas in

equilibrium at temperature T , where k is Boltzmann’s constant. The total kinetic
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energy K is N times this average. Also, each molecule has three (translational)
degrees of freedom. So,

K = N × 3
2
kT . (6)

Equations (1) and (6) give the equation of state of an ideal gas:

PV = NkT . (7)

(iii) For an ideal, monatomic gas the total energy U (the internal energy) is entirely
kinetic (no rotational, vibrational, . . . energies). So, U = K and (1) and (6) can
be written as

PV = 2
3
U with U = 3

2
NkT . (8)

(Alternatively, U = 3
2
nRT , where n = N

/
NA is the number of moles, NA is

Avogadro’s number and R = NAk is the ideal gas constant.)

(iv) The study of an ideal gas has played an important role in physics. An analysis
of the above sort – leading to (5) – was performed by Joule in about 1850, and
soon the equation of state PV = NkT and molar specific heat n−1∂U

/
∂T = 3

2
R

were obtained. These classical results ignore contributions due to the finite value
of Planck’s constant h, and they are valid only in the limit where the average
spacing between particles is large compared to the average de Broglie wavelength
of the particles. Consequently, it turns out that they do not apply to the ‘electron
gas’ in metals or to gases at low temperature and/or high pressure. Also, for some
properties of a gas, such as its entropy and chemical potential, the leading-order
contributions in the above limit depend on h.

Question 11.12

Consider a set of N particles that move along the x-axis. The interparticle forces are
repulsive and inversely proportional to the distance between particles:

Fji =
A

xi − xj

, (1)

where A is a positive constant. A constant external force −F (where F > 0) drives
the particles in the negative x-direction. The leading particle is held fixed at x1 = 0
and the remainder are in equilibrium at x2, · · · , xN , where

0 = x1 < x2 < · · · < xN .

(a) Show that the equilibrium positions xi of the particles are given by the N roots
of the polynomial

PN(u) = u+

N∑
n=2

(−1)n−1 (N − 1)(N − 2) · · · (N − n+ 1)

n!(n− 1)!
un, (2)

where N ≥ 2 and u = 2Fx
/
A.

(b) Use the fact that (2) is equal (apart from a minus sign) to a Laguerre polynomial,
as defined in Mathematica, to tabulate the equilibrium positions u2, u3, · · · , uN

for N = 2, 3, · · · , 10. Depict the equilibrium configurations for N = 7 and N = 8.
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Solution

(a) The condition for equilibrium is that the sum of the interparticle forces and the
external force on each of the N − 1 particles behind the trapped particle at x = 0
should be zero. This yields a set of non-linear algebraic equations:

N∑
j=1
j �=i

A

xi − xj

= F , where i = 2, 3, · · · , N . (3)

It is convenient to express (3) in the dimensionless form

N∑
j=1
j �=i

1

ui − uj

=
1

2
, where i = 2, 3, · · · , N , (4)

and u = 2Fx
/
A. To solve these equations we introduce a polynomial of degree N

whose roots are the equilibrium positions ui (i = 1, 2, · · · , N):

P (u) = (u− u1)(u − u2) · · · (u− uN) (5)

with u1 = 0. By differentiating (5) with respect to u we have

P ′(u)

P (u)
=

1

u− u1

+
1

u− u2

+ · · · + 1

u− uN

≡ S(u) ,

P ′′(u)

P ′(u)
= S(u) +

S′(u)

S(u)
, (6)

where a prime denotes differentiation with respect to u. Now, consider the limit
of (6) as u → ui for i = 2, 3, · · · , N . Use of the equilibrium condition (4) shows
that in this limit S(u) behaves like 1

2
+ (u− ui)

−1, and therefore

P ′′(u)
/
P ′(u) → 1 as u→ ui . (7)

That is, P ′′(ui)−P ′(ui) = 0. This means that P ′′(u)−P ′(u) is a polynomial that
vanishes at u2, u3, · · · , uN : according to (5) it must therefore be proportional to
u−1P (u). So,

P ′′(u) − P ′(u) = cu−1P (u) , (8)

where c is a constant. By considering the highest term (uN ) in P , it follows by
inspection of (8) that c = −N . Thus, P (u) satisfies the differential equation

uP ′′(u) − uP ′(u) +NP (u) = 0 . (9)

This possesses a polynomial solution

PN(u) =

N∑
n=1

anu
n (10)
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with a1 = 1 and

an(N) = −N − n+ 1

n(n− 1)
an−1(N) (n = 2, 3, · · · , N). (11)

That is,

an(N) = (−1)n−1 (N − 1)(N − 2) · · · (N − n+ 1)

n!(n− 1)!
(n = 2, 3, · · · , N) , (12)

and so we obtain (2).

(b) We find the roots of the Laguerre polynomials using the following notebook

In[1]:= Do	Print	NSolve	LaguerreL	n,�1,u
 �� 0,u

,n,1,10,1�


and the results are tabulated below:

N u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

1 0 – – – – – – – – –

2 0 2.000 – – – – – – – –

3 0 1.268 4.732 – – – – – – –

4 0 0.936 3.305 7.759 – – – – – –

5 0 0.743 2.572 5.731 10.954 – – – – –

6 0 0.617 2.113 4.611 8.399 14.260 – – – –

7 0 0.528 1.796 3.877 6.919 11.235 17.646 – – –

8 0 0.461 1.564 3.352 5.916 9.421 14.194 21.092 – –

9 0 0.409 1.385 2.956 5.182 8.162 12.070 17.250 24.586 –

10 0 0.368 1.243 2.646 4.617 7.222 10.567 14.836 20.382 28.118

N = 7 u

N = 8 u

Comments

(i) This example has application to dislocation pile-ups in crystals.[16] There is a
large literature dealing with the theory and application of these pile-ups to the
mechanical properties of crystals.[17] The calculation also applies to the
equilibrium configurations of long, parallel line charges in an electrostatic field.

[16] J. Eshelby, F. C. Frank, and F. R. N. Nabarro, “The equilibrium of linear arrays of dislocations,”
Philosophical Magazine, vol. 42, pp. 351–364, 1951.

[17] See, for example, J. P. Hirth and J. Lothe, Theory of dislocations. New York: Wiley, 1982.
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(ii) The fact that certain equilibrium configurations of particles (or line charges or
line defects) may be determined from the roots of classical polynomials has its
origin in work done long ago by Stieltjes (see Ref. [18] ).

(iii) When the number of particles N is large, it becomes possible to treat the array as
a continuum and to obtain equilibrium configurations by using integral transform
theory (see Question 11.13).

Question 11.13

Consider again a one-dimensional array of N particles with repulsive interparticle
forces Fji = A

/
(xi − xj), where A is a positive constant.

(a) Suppose that the outer two particles in the array are fixed at x = −L and x = L,
respectively, and the external force is zero. Show that the equilibrium positions
of the N − 2 mobile particles are given by the roots of the polynomial

Q(u) =
d

du
LN−1(u) . (1)

Here, u = x/L and LN−1(u) is the (N −1)th Legendre polynomial, which satisfies
the differential equation

(1 − u2)L′′
N−1

− 2uL′
N−1

+N(N − 1)LN−1 = 0 . (2)

Depict the equilibrium configurations for N = 7 and N = 8.

(b) Suppose all particles in the array are mobile and that an external force −Dx
(where D is a positive constant) acts on them. Show that their equilibrium
positions are given by the N roots of the Hermite polynomial HN(u), where
u =

√
D/A x and HN satisfies the differential equation

H
′′
N − 2uH′

N + 2NHN = 0 . (3)

Depict the equilibrium configurations for N = 7 and N = 8.

Solution

(a) The analysis is similar to that of the previous question. With N ≥ 3 and u = x/L,
the equilibrium conditions for the N − 2 mobile particles are

N∑
j=1
j �=i

1

ui − uj

= 0 , where i = 2, 3, · · · , (N − 1) , (4)

and u1 = −1 and uN = 1. Let

P (u) = (u+ 1)(u− u2) · · · (u− uN−1)(u − 1) . (5)

[18] G. Szego, Orthogonal polynomials. New York: American Mathematical Society, 1939.
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Then

P ′(u)

P (u)
=

1

u+ 1
+

1

u− u2

+ · · · + 1

u− uN−1

+
1

u− 1
≡ S(u) , (6)

P ′′(u)

P ′(u)
= S(u) +

S′(u)

S(u)
. (7)

The equilibrium conditions (4) show that in the limit u→ ui the sum S(u) in (6)
behaves like (u − ui)

−1, and it follows from (7) that P ′′(u) → 0 as u → ui (for
i = 2, 3, · · · , N − 1). So, P ′′(u) is a polynomial that vanishes at u2, u3, · · · , uN−1:
according to (5) it must therefore be proportional to (u2 − 1)−1P (u). We write

P ′′(u) = c(u2 − 1)−1P (u) , (8)

where c is a constant. Consider the highest term, uN , in P . It follows from (8)
that c = N(N − 1) and so P (u) satisfies the differential equation

(1 − u2)P ′′ +N(N − 1)P = 0 . (9)

In (9) let P = (u2 − 1)Q. Then

(1 − u2)Q′′ − 4uQ′ + {N(N − 1) − 2}Q = 0 . (10)

By differentiating (2) with respect to u we see that (10) is just the equation
satisfied by L

′
N−1, and so we have the identification (1). Numerical values for the

roots of L′
N−1

were calculated using Mathematica:

In[1]:= Do	Print	NSolve	D	LegendreP	n � 1,u
,u,1�
 �� 0,u

,

n,3,10,1�


N = 7 u

N = 8 u

(b) In terms of the dimensionless coordinate u =
√
D/A x the equilibrium conditions

for the N particles are

N∑
j=1
j �=i

1

ui − uj

= ui , where i = 1, 2, · · · , N . (11)

Let
P (u) = (u− u1)(u− u2) · · · (u − uN) . (12)
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Then
P ′(u)

P (u)
=

1

u− u1

+
1

u− u2

+ · · · + 1

u− uN

≡ S(u) , (13)

and P ′′(u)
/
P ′(u) satisfies (7). The equilibrium conditions (11) show that in the

limit u→ ui the sum S(u) in (13) behaves like u+ (u− ui)
−1. So, S+S′/S → 2u

as u→ ui, and according to (7)

P ′′(u) − 2uP ′(u) → 0 as u→ ui (i = 1, 2, · · · , N). (14)

Therefore
P ′′(u) − 2uP ′(u) = cP (u) , (15)

where the constant c is identified from the highest term, uN , in P (u) as c = −2N .
So,

P ′′ − 2uP ′ + 2NP = 0 , (16)

which is just the differential equation (3) for the Hermite polynomial HN(u).
Roots of HN can be obtained by replacing NSolve[· · ·] in the Mathematica

notebook above with NSolve[HermiteH[n, u] == 0, u]. The equilibrium
configurations for N = 7 and N = 8 are:

N = 7 u

N = 8 u

It can be shown that the largest root of HN is less than
√

2N + 1, and so the
particles are located in the region

|x| <
√

(2N + 1)A
/
D . (17)

Comments

(i) The above examples also have applications to crystal dislocations and mechanical
properties of solids.[16,17]

(ii) If the number of particles N in the array is large then a continuum description
in terms of a linear density f(x) becomes possible. Here, f(x) dx is the number
of particles in an interval [x, x + dx]. The equilibrium condition for an array in
[L1, L2] subject to an external force F (x) is now given by an integral equation

A

∫ L2

L1

f(x′)

x′ − x
dx′ = F (x) , (18)

where the principal value of the integral is understood (in order to exclude self-
interaction of the particles) and f(x) is subject to the normalization
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∫ L2

L1

f(x) dx = N . (19)

The integral in (18) is known as the Hilbert transform of f(x), and so the
determination of an equilibrium distribution f(x) requires evaluation of the
inverse Hilbert transform of a specified external force F (x). For this purpose there
are standard inversion theorems for Cauchy-type singular integral equations[19]

and tables of Hilbert transforms are also available.[20] Here, we mention two
examples. For an array that is driven in the negative x-direction by a constant
force −F (< 0) against an impenetrable barrier at x = 0, (18) is

A

∫ L

0

f(x′)

x′ − x
dx′ = −F , (20)

where L is the equilibrium length of the array. The normalized solution

f(x) =
F

πA

√
L− x

x
, where L = 2NA

/
F , (21)

is the continuum solution to Question 11.12. Equation (21)2 shows how the equi-
librium length depends on the number of particles, the external force and the
constant A in the interparticle forces. For an array that is trapped between
barriers at x = −L and x = L in the absence of an external force we have

A

∫ L

−L

f(x′)

x′ − x
dx′ = 0 . (22)

The normalized solution

f(x) =
N

π
√
L2 − x2

(23)

is the continuum solution to Question 11.13(a). Graphs of the distributions (21)
and (23) are shown below.

1

5�

4�

3�

2�

1�

L
Nf

x/L

−1

�

1

�

1�

1/2π

2L
N f

x/L

[19] N. I. Muskhelishvili, Singular integral equations. Groningen: P. Noordhoff, 1953.
[20] A. Erdélyi, ed., Tables of integral transforms. New York: McGraw-Hill, 1954.
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Question 11.14

Consider a system comprising N particles of equal mass that move in one dimension
and interact pairwise via repulsive inverse-cube interparticle forces. The equations of
motion are

ẍn = 2g2
N∑
m=1
m �=n

(xn − xm)−3 (n = 1, 2, · · · , N) , (1)

where g is a constant. Show that the solutions xn(t) to (1) subject to initial conditions

xn(0) and ẋn(0) are given by the eigenvalues of an N × N matrix Q̃(t) that has
elements[21]

Q̃nm(t) = δnm [xn(0) + ẋn(0)t] + (1 − δnm)ig [xn(0) − xm(0)]
−1
t . (2)(

Here, δnm is the Kronecker delta function: δnm = 1 if n = m, δnm = 0 if n �= m.
)

To
do this, perform the following steps:

(a) Introduce Q̃(t) by a similarity transformation

Q̃(t) = U(t)Q(t)U−1(t) (3)

of a diagonal N ×N matrix Q(t) with elements equal to xn(t),

Qnm(t) = δnmxn(t) . (4)

By differentiating (3) with respect to t, show that

¨̃
Q = U

(
L̇− [L,M ]

)
U−1 , (5)

where [L,M ] = LM −ML and

M = U−1U̇ , L = Q̇− [Q,M ] . (6)

(b) Use the equations of motion (1) to show that the choices

Lnm = δnmẋn + (1 − δnm)ig(xn − xm)−1 (7)

Mnm = δnmig

N∑
�=1
� �=n

(xn − x�)
−2 − (1 − δnm)ig(xn − xm)−2 (8)

satisfy the key condition
L̇ = [L,M ] . (9)

(c) Hence, integrate (5) to obtain (2).
(
Hint: Make the convenient choice U(0) = 1

for the initial value of the matrix U(t).
)

(d) Use (2) to obtain the trajectories for N = 2.

[21] F. Calogero, Classical many-body problems amenable to exact treatments. Berlin: Springer,
2001.
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Solution

We follow Calogero’s solution.[21]

(a) Differentiation of (3) with respect to t gives

˙̃
Q = UQ̇U−1 + U̇QU−1 − UQU−1U̇U−1

= U(Q̇+ U−1U̇Q−QU−1U̇)U−1

= U(Q̇+MQ−QM)U−1

= ULU−1, (10)

where we have used equations (6) for M and L. By the same procedure, differen-
tiation of (10) yields

¨̃
Q = U(L̇+ML− LM)U−1,

which is the desired relation (5).

(b) We verify that the evolution equation (9) is satisfied by the choices (7) and (8).
Consider first the diagonal terms

L̇nm =

N∑
�=1
� �=n

(Ln�M�n − L�nMn�) if m = n. (11)

By substituting (7) and (8) in (11) we have

ẍn = −2(ig)2
N∑
�=1
� �=n

(xn − x�)
−3,

which are just the equations of motion (1). For the off-diagonal terms, differenti-
ation of (7) gives

L̇nm = −ig(ẋn − ẋm)(xn − xm)−2,

and some algebra shows
(
Ref. [21], pp. 24–26

)
that this is also the right-hand side

of (9).

(c) The condition (9) reduces the evolution equation (5) to the simple form:

¨̃
Q = 0 , (12)

which has the general solution

Q̃(t) = Q̃(0) +
˙̃
Q(0)t . (13)

The matrix coefficients in (13) are calculated from the similarity transformations
(3) and (10), and they depend on the initial value U(0). Different choices for

U(0) yield different matrices Q̃(t), but they do not affect the eigenvalues of Q̃(t).
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Because we are interested in the latter, we can regard U(0) as an arbitrary initial
condition and make the simplifying choice U(0) = 1 (the unit matrix). Then, (3)
and (10) yield

Q̃(0) = Q(0) ,
˙̃
Q(0) = L(0) , (14)

and so

Q̃(t) = Q(0) + L(0)t . (15)

According to (4) and (7), the elements of the matrix (15) are given – in terms
of the initial conditions xn(0) and ẋn(0), and the constant g in the interparticle
forces – by (2). Explicit formulas for the N trajectories xn(t) can be obtained by
finding the eigenvalues of (2).

(d) For N = 2 the eigenvalues of (2) are obtained from∣∣∣∣∣ x1(0) + ẋ1(0)t− xn(t) ig[x1(0) − x2(0)]−1t

− ig[x1(0) − x2(0)]−1t x2(0) + ẋ2(0)t− xn(t)

∣∣∣∣∣ = 0 (16)

for n = 1, 2. The results are

xn(t) = 1
2
x+(0) + 1

2
ẋ+(0)t + (−1)n 1

2
{[x−(0)]2 + 2x−(0)ẋ−(0)t

+ ([ẋ−(0)]2 + 4g2[x−(0)]−2)t2}1/2, (17)

where x±(0) = x1(0) ± x2(0) and similarly for ẋ±(0).

Comments

(i) The above example is a particular case of a general technique that can be used
to solve certain classical many-body problems. A detailed account of this and
related topics is given in Calogero’s encyclopaedic study of classical many-body
problems (in one, two and three dimensions) that can be solved exactly.[21] We
mention that the method of solution used above is known as the Lax technique:
the matrices L and M that appear in (5) to (9) are called a Lax pair, and the key
evolution equation (9) is the Lax equation.

(ii) Several questions concerning the above calculations that may have occurred to
the reader are discussed in Ref. [21]. These include a derivation of the forms (7)
and (8) for the Lax matrices, and the non-uniqueness of Lax pairs corresponding
to a given set of equations of motion.

(iii) The system considered above experiences only repulsive interparticle forces, and
therefore the motions are unbounded: the particles will eventually disperse and
move freely, cf. (17). The system can be bounded by including also some attractive
interaction – such as a harmonic interaction – and this interesting problem is
analyzed next.
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Question 11.15

Suppose Question 11.14 is modified to include an external harmonic interaction that
attracts each particle towards the origin.[21] The equations of motion are

ẍn = −ω2xn + 2g2
N∑
m=1
m �=n

(
xn − xm

)−3
(n = 1, 2, · · · , N) , (1)

where ω and g are constants. Extend the analysis of the previous question to the
equations of motion (1). In particular, show that the solutions xn(t) to (1) with initial

conditions xn(0) and ẋn(0) are given by the eigenvalues of an N ×N matrix Q̃(t) that
has elements

Q̃nm(t) = δnm

[
xn(0) cosωt+ ẋn(0)ω−1 sinωt

]
+ (1 − δnm)ig [xn(0) − xm(0)]−1 ω−1 sinωt . (2)(

Hint: Equations (3)–(8) of Question 11.14 are unaltered, but the Lax equation (9)
must be modified to read

L̇ = [L,M ] − ω2Q , (3)

with Qnm = δnmxn, as in (4) of Question 11.14. Show that (3) is consistent with (1),

then obtain the evolution equation for Q̃(t) and show that it leads to (2).
)

Solution

To demonstrate that (3) is consistent with (1), we need consider only the diagonal
terms of (3), because Q is a diagonal matrix:

L̇nm =
N∑
�=1
� �=n

(
Ln�M�n − L�nMn�

)− ω2xn (m = n) , (4)

which, for the Lax pair (7) and (8), reduce to (1). The term −ω2Q in (3) is the essential
modification that incorporates the effect of the harmonic interactions. It leads – via
(5) and (3) of Question 11.14 – to an evolution equation

¨̃
Q+ ω2Q̃ = 0 , (5)

instead of
¨̃
Q = 0. The general solution to (5) is

Q̃ = Q̃(0) cosωt+
˙̃
Q(0)ω−1 sinωt = Q(0) cosωt+ L(0)ω−1 sinωt , (6)

where the calculation in the last step is the same as that leading to (15) in the previous
question. Use of (4) and (7) of Question 11.14 in (6) yields (2).
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Comments

(i) It is evident from (2) that when ω �= 0 the motions are bounded and periodic,
with period T = 2π/ω. In the limit ω = 0 all the above results reduce to those
obtained in the previous question, where the motions are unbounded. The binding
is provided by the harmonic forces that attract each particle to the origin.

(ii) One can also consider a system of particles where the harmonic interactions
are pairwise between the particles, rather than an external harmonic attraction
toward the origin. Then, (1) is replaced by

ẍn = −ω̄2
N∑
m=1

(
xn − xm

)
+ 2g2

N∑
m=1
m �=n

(
xn − xm

)−3
(n = 1, 2, · · · , N) . (7)

There is a simple relation between these two systems: the substitution ω̄2 = ω2/N

and a shift in coordinates xn → xn + X , where X =
∑N

m=1 xm

/
N is the CM

coordinate, reduces (7) to (1).

(iii) The system possesses a unique set of equilibrium points given
(
according to (1)

with xn = constant
)

by solutions to the non-linear equations

xn = 2
( g
ω

)2 N∑
m=1
m �=n

(
xn − xm

)−3
(n = 1, 2, · · · , N) . (8)

It is not difficult to see that these xn are also solutions for the equilibrium of a
system with inverse first-power, instead of inverse-cube, repulsive forces:[22]

xn = 2
( ḡ
ω

)2 N∑
m=1
m �=n

(
xn − xm

)−1
(n = 1, 2, · · · , N) . (9)

The latter problem has been solved in Question 11.13(b): the equilibrium positions
are the roots of a Hermite polynomial

HN(
√
ω/g xn) = 0 . (10)

(iv) The system (7) with pairwise harmonic and repulsive inverse-cube interactions is
known as the Calogero model. It was first analyzed in its quantum-mechanical
form,[23] and the classical problem was solved later.[24] Much research continues
to be devoted to understanding this model and its variations and applications.[25]

[22] F. Calogero, “Equilibrium configuration of the one-dimensional n-body problem with quadratic
and inversely quadratic pair potentials,” Lettere al Nuovo Cimento, vol. 20, pp. 251–253, 1977.

[23] F. Calogero, “Solution of the one-dimensional N-body problems with quadratic and/or inversely
quadratic pair potentials,” Journal of Mathematical Physics, vol. 12, pp. 419–436, 1971.

[24] M. Olshanetsky and A. Perelomov, “Explicit solution of the Calogero model in the classical
case and geodesic flows on symmetric spaces of zero curvature,” Lettere al Nuovo Cimento,
vol. 16, pp. 333–339, 1976.

[25] See Journal of Nonlinear Mathematical Physics, vol. 12, supplement 1, 2005.
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Question 11.16

Consider a particle of mass m with position vector r in the gravitational field of a
stationary system of N particles. The gravitational potential Φ(r) of the system is
defined as the potential energy per unit mass: Φ(r) = V (r)

/
m. Suppose that the

distribution of mass in the system is continuous, with mass density ρ(r).

(a) Show that Φ(r) satisfies Poisson’s equation

∇2Φ(r) = 4πGρ(r) . (1)(
Hint: Start with the expression for the potential energy of two particles and then

use the result
∇2 (1/r) = −4πδ(r) , (2)

where δ(r) is the Dirac delta function that has the properties

δ(r) = 0 if r �= 0 , and

∫
δ(r) d3r = 1 (3)

if the region of integration includes the origin.
)

(b) The gravitational field of the system is the force per unit mass: g(r) = F(r)
/
m,

where F is the total gravitational force exerted on m. Prove that

∇ × g(r) = 0 (4)

and
∇ · g(r) = −4πGρ(r) . (5)

Solution

(a) The potential energy of a mass m located at r due to a system of particles with
masses mi and position vectors ri (i = 1, 2 · · · , N) is a sum of N two-particle
potentials:

V (r) = −Gm
N∑
i=1

mi

|r− ri| . (6)

The corresponding gravitational potential is

Φ(r) = −G
N∑
i=1

mi

|r− ri| . (7)

For a continuous distribution of mass the sum in (7) can be replaced by a volume
integral:

Φ(r) = −G
∫

ρ(r′)

|r − r′| d
3r′ . (8)

Then
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∇2Φ(r) = −G
∫
ρ(r′)

{∇2|r − r′|−1
}
d3r′

= 4πG

∫
ρ(r′)δ(r − r′) d3r′

= 4πGρ(r) , (9)

where we have used (2) and (3).

(b) The gravitational force on m is conservative and related to the potential energy
(6) by F(r) = −∇V (r) (see Chapter 5). Equation (4) follows directly from this
(see Question 5.7). It also follows that ∇ · F = −∇ · (∇V ) = −∇2V . This,
combined with (1), yields (5).

Comments

(i) The interpretation and derivation of the key result (2), as well as the two steps
prior to (9), require careful treatment.[26]

(ii) The integral and differential forms (8) and (9) are equivalent. Either may be used
to determine the potential Φ(r) of a given mass distribution ρ(r), and then the
field

g(r) = −∇Φ(r) . (10)

Which one chooses is essentially a matter of convenience: in practice it can be
simpler to solve the differential equation (9) subject to appropriate boundary
conditions rather than to perform the integrations (8) over all space. Some
examples are given below.

(iii) By making the replacements g → E and G → −1
/
4πε0 in (4) and (5) we obtain

corresponding equations for the electrostatic field of a stationary charge
distribution:

∇ × E(r) = 0 , ∇ ·E(r) = ρ(r)
/
ε0 . (11)

Question 11.17

A sphere of mass M and radius R has uniform density ρ = M ÷ 4
3
πR3. Use Poisson’s

equation to calculate the gravitational potential Φ and hence the gravitational field g

of this sphere at all points in space.

Solution

We use spherical polar coordinates (r, θ, φ). Because of the spherical symmetry of the
system, Φ cannot depend on θ and φ. With Φ = Φ(r), Poisson’s equation

(
see (1) of

the previous question
)

is

d

dr
(r2

dΦ

dr
) =

{
kr2 if r < R

0 if r > R ,
(1)

[26] V. Hnizdo, “On the Laplacian of 1/r,” European Journal of Physics, vol. 21, pp. L1–L3, 2000.
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where k is the constant
k = 4πGρ = 3GM

/
R3 . (2)

1. r < R

By integrating (1)1 between r = 0 and r we have dΦ/dr = 1
3
kr, and so

Φ(r) = Φ(0) + 1
6
kr2 (r < R). (3)

2. r > R

We use (1)1 in the integration from r = 0 to R, and (1)2 in the integration from r = R
to r. Thus, dΦ

/
dr = kR3

/
3r2 for r > R. This, together with dΦ

/
dr = 1

3
kr for r < R,

means
Φ(r) = Φ(0) + 1

2
kR2 − 1

3
kR3

/
r (r > R) . (4)

One often chooses Φ(∞) = 0: according to (4) this requires Φ(0) = − 1
2
kR2. Then,

from (2), (3) and (4) the solution for the gravitational potential is

Φ(r) = − 4
3
πR2ρG

(
3

2
− r2

2R2

)
(5)

= −GM
R

(
3

2
− r2

2R2

)
(6)

if r < R, and
Φ(r) = − 4

3
πR3ρG

/
r = −GM/r (7)

if r > R. The resulting gravitational field g(r) = −∇Φ(r) = −r̂ dΦ
/
dr is

g(r) =

⎧⎪⎪⎨⎪⎪⎩
−GM
R2

r

R
r̂ if r < R

− GM

r2
r̂ if r > R .

(8)

Comments

(i) According to (3) and (4), the gravitational potential and its derivative are con-
tinuous at the surface r = R. This continuity appears naturally in the calculation
and is not imposed as an added condition.

(ii) Equations (7) and (8)2 show that the potential and field outside the sphere are
those of a particle of mass M located at the centre of the sphere. Actually, this
result is valid for any spherically symmetric density ρ(r), as is apparent from
Poisson’s equation (1) and the relation∫ R

0

4πr2ρ(r) dr = M.
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(iii) Inside the sphere the field decreases linearly to zero at the origin:

�

�−GM
R

−3GM
2R

RΦ(r) r

�

�−GM
R2

R

−g(r)

r

Question 11.18

Determine the gravitational potential Φ and the gravitational field g at all points in
space due to a spherical shell with inner and outer radii R1 and R2, and uniform
density ρ.

(
Hint: Use the results of the previous question and superposition.)

Solution

By superposition, the gravitational potential of the shell is equal to the potential of
a uniform sphere of radius R2 minus the potential of a concentric uniform sphere of
radius R1. Therefore, by using the potentials (5) and (7) of the previous question we
have:

1. r < R1

Φ(r) = − 4
3
πR2

2ρG
(
3
/
2 − r2

/
2R2

2

)
+ 4

3
πR2

1ρG
(
3
/
2 − r2

/
2R2

1

)
= −2π

(
R2

2
−R2

1

)
ρG . (1)

2. R1 < r < R2

Φ(r) = − 4
3
πR2

2ρG
(
3
/
2 − r2

/
2R2

2

)
+ 4

3
πR3

1ρG
/
r

= −4π
(

1
2
R2

2
− 1

6
r2 − 1

3
R3

1

/
r
)
ρG . (2)

3. r > R2

Φ(r) = − 4
3
π
(
R3

2 −R3
1

)
ρG

/
r . (3)

The resulting gravitational field g(r) = −∇Φ(r) = −r̂ dΦ
/
dr is

g(r) =

⎧⎪⎨⎪⎩
0 if r < R1

− 4
3
π
(
r −R3

1

/
r2
)
ρG r̂ if R1 < r < R2

− 4
3
π
(
R3

2 −R3
1

)
ρG

/
r2 r̂ if r > R2 .

(4)
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Comments

(i) Equations (1)–(4) yield the graphs:

R2R1
Φ(r) r

R2R1

−g(r)

r

(ii) The result that the gravitational field inside a uniform spherical shell is zero
clearly applies also if the density is spherically symmetric: ρ = ρ(r).

(iii) This is a consequence of the inverse-square property of the gravitational field,
and therefore it applies also to the electric field of a shell containing a spherically
symmetric distribution of static electric charge.

Question 11.19

Calculate the gravitational potential and field on the axis of:

(a) A thin uniform disc of mass M and radius R.

(b) A thin uniform annulus of mass M having inner and outer radii R1 and R2

respectively.

Solution

(a) Choose the z-axis along the symmetry axis of the disc with coordinate origin at
the disc. In terms of the constant mass per unit area, σ = M

/
πR2, (8) of Question

11.16 gives

Φ(z) = −Gσ
∫

d2r′

|zẑ− r′| . (1)

We integrate over annular rings of radius r′ and width dr′, from r′ = 0 to r′ = R.

Then, d2r′ = 2πr′dr′ and |zẑ− r′| =
√
z2 + r′2, and so

Φ(z) = −2πGσ

∫ R

0

r′ dr′√
z2 + r′2

= −2πGσ
[√

R2 + z2 − |z|
]
. (2)

The corresponding gravitational field g(z) = −∇Φ(z) = −ẑ dΦ
/
dz is

g(z) = ∓2πGσ

[
1 − |z|√

R2 + z2

]
ẑ , (3)

where the upper (lower) sign is for z > 0 (z < 0).



��� Solved Problems in Classical Mechanics

(b) By changing the lower and upper limits in (2) to R1 and R2 we obtain

Φ(z) = −2πGσ
[√

R2
2 + z2 −

√
R2

1 + z2
]
, (4)

and then

g(z) = −2πGσ

[
z√

R2
1 + z2

− z√
R2

2 + z2

]
ẑ . (5)

Comments

(i) In the limit |z| � R, (3) reduces to ∓GM ẑ
/
z2. The opposite limit (|z| � R)

gives a constant g = ∓2GM ẑ
/
R2 near the surface of the disc.

(
Again, in these

expressions the upper (lower) sign is for z > 0 (z < 0).
)

(ii) Equations (4) and (5) can also be obtained from (2) and (3) by superposition.

Question 11.20

A spherical galaxy consists of a core surrounded by a ‘halo’. The core has mass
MC, radius RC and constant density. The halo has mass MH, radius RH and density
ρH(r) ∼ rn−2, where r is the radial distance to the centre of the galaxy and n ( �= −1)
is a constant. Let v(r) be the speed of an object of mass m in a circular orbit of radius
r about the galactic centre.

(a) Calculate v(r) at all points in space. Express the results in terms of the dimen-
sionless ratios r

/
RC, RH

/
RC, MH

/
MC, and the velocity at the edge of the core,

vC =

√
GMC

RC

. (1)

(b) Use the answer to (a) to deduce what is special about the case n = 0 (an inverse-
square dependence of the halo density on radial distance).

(c) Take RH = 5RC, MH = 4MC and make a graphical comparison of the results for
n = 0 and n = 2 (a constant halo density). Also indicate on the graphs the curves
when the halo is absent (MH = 0).

Solution

(a) According to Question 11.17, the gravitational force on a mass m at a distance r
from the centre of a spherically symmetric mass distribution is

F =
GmM(r)

r2
, (2)

where

M(r) =

∫ r

0

ρ(r)4πr2dr (3)

is the mass inside a sphere of radius r. (The mass outside this sphere exerts
no force on m – see Question 11.18.) By equating (2) to the centripetal force
F = mv2(r)

/
r for circular motion we have
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v(r) =

√
GM(r)

r
. (4)(

Note that v(RC) = vC in (1).
)

Thus, the solution to this problem requires an
evaluation of the mass M(r) given by (3) at all points in space. Inside the core,
M(r) ∼ r3: therefore M(r) = (r

/
RC)3MC, and (4) and (1) yield

v(r)

vC

=
r

RC

(r ≤ RC) . (5)

At all points outside the halo, M(r) = MC +MH and (4) and (1) give

v(r)

vC

=

√(
1 +

MH

MC

)
RC

r
(r ≥ RH) . (6)

(
Equation (6) is independent of the form of the halo density ρH(r).

)
Inside the

halo, and for a density ρH ∼ rn−2, (3) shows that

M(r) = MC +
rn+1 −Rn+1

C

Rn+1
H −Rn+1

C

MH (RC ≤ r ≤ RH) , (7)

where n �= −1. Equations (4), (7) and (1) give

v(r)

vC

=

√√√√√√ MH

MC

(
r
RC

)n
(
RH

RC

)n+1

− 1
+

⎛⎜⎝1 −
MH

MC(
RH

RC

)n+1

− 1

⎞⎟⎠RC

r
(RC ≤ r ≤ RH) . (8)

Equations (5), (6) and (8) are the solutions to part (a) of the question.

(b) According to (8), the case n = 0 is special in that it allows the possibility for v(r)
to be independent of r: by inspection, this occurs when

MH

/
MC = (RH

/
RC) − 1 . (9)

(c) From (5), (6) and (8) with n = 0 or 2, and for RH = 5RC and MH = 4MC, we
obtain the following graphs:

with halo

without halo
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In each case, the velocity in the absence of a halo is given by (5) and (6) with
MH = 0 and RH = RC. The first graph illustrates the constancy of the velocity
for orbits within the halo when n = 0 and (9) is satisfied; the second graph shows
the effect of changing n.

Comments

(i) For galaxies, plots of measured stellar velocities v(r) versus radial distance r are
known as rotation curves. Often, the observed rotation curves have a ‘flat’ ap-
pearance, with an approximate plateau extending out to several times the visible
galactic radius. This feature is currently thought to indicate the presence of a halo
of ‘invisible matter’ around the galactic core, a connection that is apparent in the
above rough model. Such matter is generally referred to as ‘dark’, meaning matter
whose electromagnetic interaction is weak, or non-existent, and whose presence
is inferred by its gravitational interaction on visible matter or light. The ratio
MH

/
MC of dark matter to visible matter can be estimated from the width of the

plateau in the rotation curve by using (9), and values up to about 1000 have been
obtained, although some galaxies seem to contain little dark matter.

(ii) Other techniques exist for detecting the presence of dark matter on larger scales.
It is thought that as much as 95% of the matter/energy in the universe may
be dark. The nature of this ‘missing’ matter is a major unanswered question in
physics.[27]

Question 11.21

(a) Suppose a particle of mass m is dropped into a tunnel drilled along a diameter
through a planet of uniform density (see the first diagram below). Show that
the resulting motion is simple harmonic and determine the period. (Assume the
motion is frictionless.)

(b) Also determine the period for a straight-line tunnel connecting any two points on
the surface of the planet.

Solution

(a) Let M and R be the mass and radius of the planet. The gravitational force on the
particle when it is a distance r from the centre O of the planet is (see Question
11.17) F = −kr, where k = GMm

/
R3 is a positive constant; that is, a Hooke’s-

law-type restoring force. The resulting equation of motion mr̈ = −kr is that
of a simple harmonic oscillator with angular frequency ω =

√
k/m and period

T = 2π/ω. So

T = 2π
√
R3
/
GM . (1)

[27] See, for example, V. Trimble, “Dark matter in the universe: where, what and why?,” Contem-
porary Physics, vol. 29, pp. 373–392, 1988.
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(b) Consider motion along the straight-line tunnel AO′B (shown in the second
diagram below). The component of the gravitational force along AO′B is
−kr cos θ = −kx. Consequently, for frictionless motion along AO′B we have
mẍ = −kx and the period is again given by (1).

Comments

(i) Numerical values of T , ob-
tained from (1) with G =
6.67 × 10−11 N m2 kg−2, are
tabulated alongside. Note that
the transit time for a ‘one-way
trip’ is 1

2
T ; so for Earth it is

about 42 min.

M (kg) R (m) T (min)

Earth 6.00× 1024 6.37× 106 84
Moon 7.35× 1022 1.73× 106 108
Mars 6.42× 1023 3.39× 106 100
Jupiter 1.90× 1027 7.13× 107 177
Deimos‡ 2.24× 1015 6.3× 103 135

(ii) The formula (1) is the same as the period of a satellite orbiting the planet at low
altitude.

(iii) It is interesting to determine the equation of a tunnel
that minimizes the transit time between two points on
the surface. It can be shown that the curve is a hypo-
cycloid and that for two points A and B which subtend
an angle α at the centre, the minimum transit time is

τmin = τs

√
2α

π

(
1 − α

2π

)
, (2)

where τs is the transit time along the chord connecting A and B
(
that is, τs =

1
2
T with T given by (1)

)
.[28−30] The maximum depth reached is Dh = αR

/
π,

which can be compared with the maximum depth Ds = (1 − cos 1
2
α)R reached

‡Deimos, the smaller and outermost of the two moons of Mars, is rather ellipsoidal with dimensions
∼ 15 km × 12 km × 10 km. We have approximated this by a sphere of radius 6.3 km.

[28] G. Venezian, “Terrestrial brachistochrone,” American Journal of Physics, vol. 34, p. 701, 1966.
[29] R. L. Mallett, “Comments on ‘Through the Earth in forty minutes’,” American Journal of

Physics, vol. 34, p. 702, 1966.
[30] L. J. Laslett, “Trajectory for minimum transit time through the Earth,” American Journal of

Physics, vol. 34, p. 702, 1966.
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on the straight-line path from A to B. When α � 1, τmin/τs ≈
√

2α/π and
Dh

/
Ds ≈ 8

/
πα : for nearby points A and B, a substantial reduction in the transit

time τs requires going much deeper below the surface. The graph of (2) is:

1.0

0.5

�

�

1
2
π π

� �

τmin/τs

α

Question 11.22

(a) Show that the escape velocity of a particle of mass m from a uniform sphere of
mass M and radius R that is fixed in space is given by

ve =
√

2GM
/
R . (1)

(b) Determine ve if both objects are free to move. (Hint: Refer to Question 10.6.)

Solution

(a) For a non-relativistic particle of mass m with velocity v at the surface of the
sphere, and velocity v∞ at r = ∞, conservation of energy requires that

1

2
mv2 − GMm

R
=

1

2
mv2

∞ . (2)

The escape velocity ve is, by definition, the initial velocity v for which v∞ = 0 in
(2), and this yields (1).

(b) If both masses move, then the kinetic energy of the relative motion is 1
2
µv2,

where µ = Mm
/
(M + m) is the reduced mass and v = |ṙ| is the relative speed

(see Question 10.6). Then (2) is replaced by

1

2

Mm

M +m
v2 − GMm

R
=

1

2

Mm

M +m
v2
∞ , (3)

and so

ve =
√

2G(M +m)
/
R . (4)

Clearly, (1) is a good approximation when M � m.
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Comments

(i) Equations (1) and (4) apply also when the density of the sphere is spherically
symmetric: ρ = ρ(r) for r ≤ R.

(ii) Values of (1) for some astronomical bodies are:

M (kg) R (m) ve (kms−1)

Earth 6.00× 1024 6.37× 106 11.2
Moon 7.35× 1022 1.73× 106 2.38
Mars 6.42× 1023 3.39× 106 5.03
Jupiter 1.90× 1027 7.13× 107 59.6
Deimos 2.24× 1015 6.3× 103 0.0069

(iii) Light gases (such as hydrogen and helium) in a planetary atmosphere have a higher
average speed (in thermal equilibrium) than heavier elements such as nitrogen and
oxygen. Consequently, in time a larger proportion of the lighter species will escape
from the gravitational field. Small bodies like the Moon (which has a relatively
low ve) have no atmosphere at all, whereas the heavier Earth retains its nitrogen,
oxygen, etc. but has lost most of its initial hydrogen.

(iv) In 1798, Laplace considered the possibility that the theoretical expression for the
escape velocity from a star could exceed c (the speed of light in vacuum). That
is, √

2GM
/
R > c . (5)

This result suggests that even light cannot escape from such a star, which would
therefore be invisible to a distant observer. One may question the applicability
of the non-relativistic relation (2) to light quanta (photons), which are massless
particles (m = 0). However, it turns out that the result obtained from general
relativity is identical to (5). Objects for which (5) applies are known as black
holes. For a black hole with mass equal to that of the Sun (M = 1.99 × 1030 kg),
(5) shows that its radius R should be less than 295 m.

Question 11.23

Two particles are released from rest at a distance R apart. They have inertial masses
mI and M I, and gravitational masses mG and MG – see Question 2.4. Determine the
relative acceleration a in terms of these masses, R and the gravitational constant G.

Solution

The equation of motion for the relative position vector r is

µr̈ = −(GMGmG
/
R2)r̂ , (1)

where µ = mIM I
/
(M I +mI), see Question 10.4. Therefore

a =

(
1 +

mI

M I

)
mG

mI

GMG

R2
. (2)
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Comments

(i) Equation (2) shows that a depends on mI through the factor (1 +mI
/
M I). This

factor is a correction to Galileo’s famous result that all objects fall with the
same gravitational acceleration.

(
See (3) of Question 2.4, which is based on the

assumption that the position of the mass M is fixed.
)

(ii) Of course, for objects falling near the Earth’s surface this correction is
unmeasurable. But for cannonballs falling on a small, spherical asteroid it could
be significant.

Question 11.24

Consider the CM motion of an object whose mass m(t) is either (a) increasing (e.g. a
developing hailstone) or (b) decreasing (e.g. a rocket). The CM velocity of the object
at time t relative to an inertial frame S is v(t), and an external force F acts on the
object. Let u(t) be the velocity relative to S of the mass that is gained or lost. Show
that in both instances the equation of motion is

m
dv

dt
= F + (u− v)

dm

dt
. (1)

Solution

Let P be the total momentum of the particles comprising the object. Then, relative
to S the equation of motion of the CM is (see Question 11.1)

dP

dt
= F . (2)

(a) Suppose a mass δm moving with velocity u relative to S is accreted in a small
time interval from t to t+ δt. The change in the total momentum is

δP = P(t+ δt) − P(t)

= (m+ δm)(v + δv) − (mv + δmu)

= mδv + (v − u) δm+ δm δv , (3)

leading to an instantaneous rate of change

dP

dt
= lim
δt→0

δP

δt
= m

dv

dt
+ (v − u)

dm

dt
, (4)

provided δm→ 0 as δt→ 0. Equations (2) and (4) yield (1).

(b) Let (δm < 0 ) be the mass lost in a time interval δt. Then,

δP = (m+ δm)(v + δv) + (−δm)(u + δu) −mv

= mδv + (v − u) δm+ δm(δv − δu) , (5)

and so dP
/
dt is again given by (4).
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Comments

(i) Equation (1) describes the motion of a particle of varying mass m(t) located at
the CM of the object and acted on by the external force F.

(ii) The quantity u− v is the velocity of the accreted or emitted material relative to
the object: for rockets and jet engines it is the velocity of the exhaust gases, and
is referred to as the exhaust velocity ve = u− v. In terms of ve, (1) is

m
dv

dt
= F + ve

dm

dt
. (6)

(iii) The term vedm
/
dt in (6) is known as the thrust of a rocket or jet, and (6) indicates

how this thrust alters the velocity v. Here, dm
/
dt < 0, and so a rocket or jet is

accelerated if v and ve are anti-parallel, and decelerated if v and ve are parallel.

(iv) Although it is customary to treat variable-mass systems in terms of Newtonian
theory (as we have done here), the analysis and its applications can also be pre-
sented in the Lagrangian formulation.[31]

Question 11.25

A spherical raindrop falls from rest through a uniform, stationary mist. Its radius r
increases from an initial value r0 by accretion of all the mist that the drop encoun-
ters. Prove that in the absence of air drag, the acceleration of the drop varies with r
according to

dv

dt
=
g

7

{
1 + 6

(r0
r

)7}
. (1)

Solution

The instantaneous mass m(t) of the raindrop and its rate of increase are given by

m = ρw
4
3
πr3 and dm

/
dt = ρmπr

2v , (2)

where ρw and ρm are the densities of water and mist. It follows from (2) that the rate
of increase of radius is proportional to the velocity:

dr
/
dt = Av , where A = ρm

/
4ρw . (3)

Consider now the equation of motion. Because the mist is stationary and the motion
is one-dimensional, we have from (1) of Question 11.24

d

dt
(mv) = mg . (4)

Since m ∝ r3, we can perform the following manipulations on (4):

[31] C. Leubner and P. Krumm, “Lagrangians for simple systems with variable mass,” European
Journal of Physics, vol. 11, pp. 31–34, 1990.
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d

dt
(r3v) = r3g =

g

7r3
dr7

dr
=

g

7r3
dr7

dt

/dr
dt

=
g

7Ar3v

dr7

dt
, (5)

where in the last step we have used (3)1. Equation (5) is a differential equation

1

2

d

dt
(r3v)2 =

g

7A

dr7

dt
, (6)

which can be integrated to yield v(r). The solution that satisfies the initial condition
v = 0 when r = r0 is

v2 =
2g

7A

(r7 − r7
0
)

r6
. (7)

Differentiation of (7) with respect to t and use of (3)1 to eliminate dr
/
dt gives (1).

Comments

(i) The mechanical energy of the raindrop is not conserved due to the inelastic nature
of the accretion.[32]

(ii) According to (1), for a drag-free drop whose radius r has grown to several times
its initial value r0, the acceleration is approximately g/7.

(iii) When air drag is included, the equation of motion (4) becomes

d

dt
(mv) = mg − 1

2
Cdπρar

2v2, (8)

where Cd is the drag coefficient and ρa is the density of air (see Question 3.8).
Solutions to this equation show that for raindrops encountered in practice, “ the
inertia of the air dominates over that of the mist” and consequently the asymptotic
acceleration is only of order g/1000 rather than the drag-free value g/7.[33]

Question 11.26

A rocket of mass m0, which is moving in a straight line with constant speed v0 in free
space, is accelerated by igniting its engines at time t = 0. The exhaust speed ve is
constant. Calculate the speed v(t) of the rocket in terms of v0, ve, m0 and m(t).

Solution

In free space the external force F = 0. Also the motion is one-dimensional. So, the
equation of motion ismv̇ = −veṁ, where ve > 0

(
see (6) of Question 11.24

)
. Integrating

this with respect to t gives

[32] K. Krane, “The falling raindrop: variations on a theme of Newton,” American Journal of
Physics, vol. 49, pp. 113–117, 1981.

[33] B. F. Edwards, J. W. Wilder, and E. E. Scime, “Dynamics of falling raindrops,” European
Journal of Physics, vol. 22, pp. 113–118, 2001.
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∫ v(t)

v0

dv = −ve

∫ m(t)

m0

dm

m
, (1)

and so

v(t) = v0 + ve ln

(
m0

m(t)

)
. (2)

Comments

(i) According to (2), the speed v(t) attained depends on the ratio of the initial and
final masses of the rocket, and is independent of the rate at which fuel is consumed.

(ii) Also, the increase in speed will exceed the exhaust velocity if the mass of fuel
consumed mf = m0 −m(t) exceeds (1 − e−1)m0 ≈ 0.63m0.

Question 11.27

Suppose the rocket in the previous question takes off vertically from the surface of a
planet by igniting its engines at time t = 0. The burn rate −ṁ = k is constant and the
fuel is consumed in a time tb while the rocket is still close to the surface of the planet.
Find the speed v(t) of the rocket and the height y(t) it reaches, for t ≤ tb, in terms
of ve, m0, m(t), k and the gravitational acceleration g. (Neglect atmospheric drag and
rotation of the planet.)

Solution

The motion is one-dimensional and the equation of motion is mv̇ = −mg − veṁ
(
see

(6) of Question 11.24
)
. Here, ve is constant and for motion close to the surface of the

planet g is nearly constant. So, integration with respect to t gives

v(t) = −gt+ ve ln{m0/m(t)} (1)

= −(g/k){m0 −m(t)} + ve ln{m0/m(t)}, (2)

because m(t) = m0 − kt if the burn rate is constant. By integrating (1) with respect
to t we obtain the vertical height

y(t) = vet− 1
2
gt2 − ve(m0 − kt)

k
ln

(
m0

m0 − kt

)
(3)

=
ve

k
{m0 −m(t)} − g

2k2
{m0 −m(t)}2 − ve

k
m(t) ln

(
m0

m(t)

)
. (4)

Note that k, ve, and g are all positive.

Comments

(i) For the rocket to lift off, the thrust −veṁ must exceed the initial weight m0g.
That is, k > m0g/ve. This condition ensures that v(t) > 0 in (2).

(ii) The second term in (2) is the increase in speed for a rocket in gravity-free space.
The first term represents the retarding effect of gravity. For given initial and final
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masses m0 and m(t), this retardation is minimized by maximizing k, and this
accounts for the large burn rate in practice.

(iii) Equations (1)–(4) apply for t ≤ tb, the burnout time. The subsequent fate of the
rocket depends on whether v(tb) is less than the escape velocity of the planet. If
it is, the rocket continues to some maximum distance Hmax and then it falls back
to the surface. Otherwise, it escapes from the planet.

Question 11.28

A rocket is fired vertically (in the y-direction) from the Earth’s surface. The initial
mass of the rocket is 50 000 kg and 90% of this is fuel, which is consumed at a constant
rate. The exhaust velocity is 5000 ms−1. The rocket lifts off when the engines ignite
at time t = 0, and burnout occurs at tb = 300 s.

(a) Use (6) of Question 11.24 to write down an equation of motion for each of the
following cases:

1. Neglect air resistance and assume the gravitational acceleration is constant,
equal to its value g0 at the surface.

2. Neglect air resistance and use an altitude-dependent gravitational acceleration
g0R

2
e

/
(Re + y)2, where Re is Earth’s radius.

3. Suppose that g(y) varies with altitude as in case 2. and that the atmospheric
drag force exerted on the rocket is Fd = −βẏ2, where β is a constant. (See also
Question 3.8.)

4. Repeat 3. but replace β with β e−y/Y (where Y is a constant) to include the
effect of decreasing air density with altitude. (See also Questions 3.14 and 7.9.)

(b) Use Mathematica to calculate the displacement y(t), the velocity ẏ(t) and the
acceleration ÿ(t) for 0 ≤ t ≤ tb for cases 2. – 4. above. For case 1. use the
results of the previous question. Take g0 = 9.8 ms−2, Re = 6371 km, β = 2 kgm−1,
and Y = 7460 m.

(c) On the same axes, plot graphs of y(t) for each of these four cases. Show also y(t)
for the same rocket accelerating in free space. Repeat these for ẏ(t) and ÿ(t).

Solution

(a) The equations of motion are:

1.
d2y

dt2
+ g0 − kve

m(t)
= 0 . (1)

2.
d2y

dt2
+

g0R
2
e

(Re + y)2
− kve

m(t)
= 0 . (2)

3.
d2y

dt2
+

g0R
2
e

(Re + y)2
+
βẏ2 − kve

m(t)
= 0 . (3)

4. As in (3) but with β → β e−y/Y . (4)
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(b) For case 1. we use (4) of the previous question. For cases 2. – 4. we obtain
numerical solutions using the notebook listed below.

(c) The graphs are:

4: drag with altitude dependence

3: drag without altitude dependence

1 & 2: no drag, g(y) constant or varying

free space
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In[1]:= g0 � 9.8�Re � 6371000� m0 � 1.0 � 10
4�mfuel �

9

10
m0�tb � 300.0�

Ve � 5000.0�Β � 2.0� Y � 7462.1 �T0 � tb�

m	t
 �� m0 � mfuel
t

tb
�

Sol � NDSolve��y��	t
 � g0 Re
2

�Re � y	t
�
2 �

Β ��
y	t

Y y�	t
2 � Ve
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tb

m	t

�� 0,

y�	0
 �� 0,y	0
 �� 0�,y	t
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,t,0,T0�
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/g0/.Sol
,t,0,T0�


Comments

(i) In the above example, burnout occurs at an altitude y � Re and therefore the
rocket moves in an almost uniform gravitational field. Consequently, the graphs
for cases 1. and 2. are essentially coincident, except for a small deviation (not
shown) for t ≈ tb.

(ii) The graphs for cases 3. and 4. show the importance of including the decrease
of drag force with altitude.

(iii) Dynamic pressure (a quantity used in aerospace engineering) is defined as
Q = 1

2
× air density× speed2. Missiles, rockets and other vehicles are all de-

signed to withstand only a certain maximum dynamic pressure before they suffer
structural damage. The phrase ‘passing through max Q’ can sometimes be heard
during the broadcasting of rocket launches, where Q increases rapidly from zero
at t = 0 to a maximum, and then it decreases as the air density decreases. The
graph below shows Q(t) for the rocket in case 4. of the above question and for
an initial air density of 1.29 kgm−3.

2500

1250

�

�

0.500.25

��

Q (kgm−2)

t/tb



Multi-particle systems ���

Question 11.29

An object suspended from a spring having force constant k oscillates vertically along
the y-axis and is subject to a linear drag −αẏ, where α>0. The mass m(t) of the
object decreases with time due to a loss of material.

(a) Suppose that relative to the object the velocity ve of the exiting mass is sufficiently
small that its thrust −veṁ is negligible compared to the other forces acting. Use
(6) of Question 11.24 to obtain the equation of motion

m(t) ÿ + αẏ + ky = 0 , (1)

where y = 0 corresponds to the equilibrium position when ṁ = 0.

(b) Suppose the mass decreases at a constant rate ṁ = −c and has initial value m0.
Show that in the limit of weak damping the solution to (1) is

y(t) = A0(1 − ct/m0)
γ cos{h(t) + φ}, (2)

where A0 and φ are arbitrary constants, and

γ =
α

2c
+

1

4
, (3)

h(t) =
2
√
k

c

(√
m0 −

√
m0 − ct

)− (α+ 1
2
c)(α + 3

2
c)

4c
√
k

(
1√

m0 − ct
− 1√

m0

)
. (4)

The answer should stipulate the condition for ‘weak damping’.
(
Hint: Look for a

solution to (1) of the form

y(t) = A(t) cos{h(t) + φ} , where A(t) = A0f(t) , (5)

and show that the dimensionless functions f(t) and h(t) must satisfy the coupled
equations

mf̈ + αḟ + (k −mḣ2)f = 0 (6)

2mḣḟ + (αḣ+mḧ)f = 0 . (7)

Then, obtain approximate solutions to (6) and (7) in the limit of weak damping.
)

(c) Determine how the shape of the envelope in (2) depends on γ.

Solution

(a) With ve = 0 and F = −(αẏ + ky)ŷ, (6) of Question 11.24 yields (1).

(b) For the ansatz (5), equation (1) gives C1 cos{h(t) + φ} +C2 sin{h(t) + φ} = 0 for
all t, where C1 and C2 denote the left-hand sides of (6) and (7). Thus, (6) and (7)
must hold for all t if (5) is to be a solution to (1). These two coupled, non-linear



��� Solved Problems in Classical Mechanics

equations for f and h are intractable in general, but they can be solved in the
limit of weak damping and for a linear decrease of mass with time:

m(t) = m0 − ct . (8)

We proceed as follows. For weak damping we can, as a first approximation, neglect
the terms in ḟ and f̈ in (6). Then

ḣ =
√
k
/
m(t) . (9)

From (8) and (9) we have mḧ = 1
2
cḣ, and so (7) becomes

(m0 − ct)ḟ + ( 1
2
α+ 1

4
c)f = 0 . (10)

The solution to (10) that satisfies the initial condition f(0) = 1 is

f(t) = (1 − ct
/
m0)

γ , (11)

where γ is given by (3). Next, we improve the approximation (9) for ḣ by using
(11) in (6). This gives

ḣ2 =
k

m
− (α+ 1

2
c)(α+ 3

2
c)

4m2
. (12)

We now assume that
(α+ 1

2
c)(α + 3

2
c)

4m
� k , (13)

a condition that defines the weak-damping limit. Then, (12) can be approximated
as

ḣ =

√
k

m
− (α+ 1

2
c)(α+ 3

2
c)

8
√
km3

. (14)

With m given by (8) it is elementary to integrate (14) between t = 0 and t, and
the result is (4). This completes the proof of (2).

(c) The envelope of the damped oscillations (2) is determined by the time-dependent
amplitude

A(t) = A0(1 − ct/m0)
γ . (15)

Therefore the sign of Ä establishes the concavity of the envelope of the damped
oscillations. From (15) we have

Ä =
A0c

2

m2
0

γ(γ − 1)(1 − ct/m0)
γ−2 . (16)

It follows that for γ > 1, Ä > 0 and the envelope is concave up. For γ = 1, Ä = 0
and the envelope decreases linearly with time. For γ < 1, Ä < 0 and the envelope
is concave down.
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Comments

(i) According to the equation of motion (1), the mechanical energy E = 1
2
mẏ2+ 1

2
ky2

of the oscillator decreases at a rate

Ė = −(α+ 1
2
c)ẏ2 . (17)

So, both the drag and the mass loss contribute to the dissipation.

(ii) In the limit c→ 0 we have γ ≈ α
/
2c, and (2) becomes

y(t) = A0e
−t/τcos

{√
k

m0

(
1 − m0/k

2τ2

)
t+ φ

}
, (18)

where τ = 2m0/α. This is just the familiar solution for a weakly damped oscillator
of constant mass m0 (see Question 4.5).

(iii) Flores et al.[34] have described a simple variable-mass oscillator constructed from
an inverted, sand-filled soda bottle hung from a spring. A constant flow rate c was
achieved at low acceleration, ÿ � g. A sensor interfaced to a computer was used to
measure y(t) for different values of c, and good agreement was found with theory.
This indicates that the assumption ve ≈ 0 is reasonable in their experiment.

(iv) The accuracy of the solution (2) is discussed in the next question.

Question 11.30

Consider the variable-mass oscillator of Question 11.29 with k = 10.0 Nm−1,
α = 0.050 kgs−1, final mass mf = 0.1 kg, initial conditions y0 = 0.1 m, ẏ0 = 0, and the
following initial mass m0 and flow rate c (= −ṁ):

1. m0 = 1.0 kg, c = 1.0 × 10−3 kgs−1; 2. m0 = 1.0 kg, c = 33 1
3
× 10−3 kgs−1;

3. m0 = 20.0 kg, c = 0.20 kgs−1.

(a) Determine whether the oscillators satisfy the condition for weak damping – that
is, (13) of Question 11.29.

(b) Calculate the value of the exponent γ = α
/
2c+ 1

4
in the envelope of the damped

oscillations.

(c) Use Mathematica to plot graphs of y(t) versus t obtained from equations (2)–(4)
of Question 11.29. Include the envelope and also a set of points y(t) obtained from
a numerical solution of the equation of motion (1).

(d) From these graphs determine the periods Tn of the nth cycle of the oscillations
up to n = 20. Do this as follows: Use Mathematica’s drawing tool to locate the
approximate times at which y(t) has maxima. Then refine these values using the
FindRoot function to calculate the roots of ẏ(t) = 0. From these obtain values
of the Tn. Also plot graphs of T 2

n versus m(t), the mass at the midpoint of each
cycle. Give a simple, approximate formula for these graphs.

[34] J. Flores, G. Solovey, and S. Gil, “Variable mass oscillator,” American Journal of Physics,
vol. 71, pp. 721–725, 2003.
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Solution

(a) The condition for weak damping is N � k, where N = (α + 1
2
c)(α + 3

2
c)
/
4m(t).

For the above oscillators the initial and final values of N/k are

1. Ni

/
k = 6.5 × 10−5, Nf

/
k = 6.5 × 10−4;

2. Ni

/
k = 3.1 × 10−4, Nf

/
k = 3.1 × 10−3;

3. Ni

/
k = 6.5 × 10−5, Nf

/
k = 1.3 × 10−2,

showing that the condition for weak damping is well satisfied
(
though less so near

the end of the motion in case 3
)
.

(b) 1. γ = 25.25 2. γ = 1 3. γ = 0.375.

(c) The following graphs were obtained using the first cell of the Mathematica note-
book below. In these graphs, the envelope of the oscillations is calculated using
(15) of the previous question and is indicated by a dotted curve. For case 1. we

plot y(t) up to t = 100 s (the mass stops decreasing at t = 1000 s). For cases 2.

and 3. the arrow ↓ on the graph indicates the time at which the mass reaches mf .

−0.1�

0.1�

100�

1. γ = 25.25
y(t) (m)

t (s)

−0.1�

0.1�

27�

2. γ = 1
y(t) (m)

t (s)
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−0.1�

0.1�

99.5�

3. γ = 0.375
y(t) (m)

t (s)

(d) Including a second cell (see below) in the notebook gives the graph of T 2
n

versus
m(t) for case 3 . The straight line is a plot of T 2 = (4π2

/
k)m(t), which follows

from the approximation ω ≈√
k/m(t). Graphs for the other two cases are similar.

80�

60�

40�

20�

20

�

15

�

10

�

5

�

γ = 0.375T 2
n

(s2)

m(t) (kg)

In[1]:= y0 � 0.1� k � 10.0� Α � 0.05� mf � 0.1 �

m0 � 20.0 �c � 0.2� �� change these values for cases 1 and 2 ��

Ε �
m0 � mf
mf

�Τ �
m0 � mf

c
�� leak time �� � T0 � Τ � �� calcn time ��

m	t_
 �� Piecewise���mf	1 � Ε Τ � t

Τ

,t � Τ �,mf,t > Τ���

Sol � NDSolve	 m	t
 y��	t
 � Α y�	t
 � k y	t
 �� 0,

y	0
 �� y0,y�	0
 �� 0� ,y	t
,y�	t
�,t, 0,T0�,MaxSteps � 100000
�

Plot	Evaluate	y	t
/.Sol
, t,0,T0�,PlotPoints � 100




��� Solved Problems in Classical Mechanics

In[2]:= roots � t/.FindRoot	y�	t
 �� 0 /.Sol,t,8.7,17,24.9,32.4,

39.5,46.2,52.5,58.5,64,69.1,73.9,78.2,82.2,85.7,

88.9,91.6,94.,96,97.6,98.8��
�

PeriodSq	t_
 ��
4Π2

k
m	t
� data � ��

Do�If�n �� 1,T � roots		1

�time � T � 2�data � Append�data,�m	time
,T2��,
T � roots		n

 � roots		n � 1

�time � roots		n � 1

 � T � 2�

data � Append�data,�m	time
,T2���,n,1,20,1��
gr1 � ListPlot	data,PlotRange � 0,20�,0,80��
�

gr2 � ParametricPlot	m	t
,PeriodSq	t
�,t,0,100�
�

Show	gr1,gr2


Comment

The analytical values of y(t) for weak damping are in good agreement with the nu-
merical values. Also, the graphs illustrate the dependence of the shape of the envelope
on the exponent γ = α

/
2c+ 1

4
as discussed in (c) of Question 11.29.

Question 11.31

A uniform flexible rope of length � and mass M is stretched on a table with a segment
of length x0 hanging over the edge. The rope is released from rest.

(a) Suppose the motion is frictionless. By solving the equation of motion, show that
the time taken for the rope to slide off the table is

ts = τ cosh−1(�/x0) , where τ =
√
�/g . (1)

(A frictionless vertical barrier close to the end of the table prevents the rope from
overshooting the edge.)

(b) Solve the same problem by applying conservation of energy, and compare the
result with (1).

(c) Suppose the motion is subject to friction, with a coefficient of sliding friction µ
between the rope and table. Determine the modification to (1) that this requires.

(d) Calculate the total loss in mechanical energy of the rope at time ts in terms of µ,
x0/�, and Mg�.

Solution

(a) The diagram below shows the rope at time t, when the length that hangs over
the edge of the table is x(t). The equation of motion of the rope,

M
d2x

dt2
=
x

�
Mg , (2)
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can be expressed as
d2x

dt2
− x

τ2
= 0 , (3)

where τ =
√
�
/
g is a characteristic time for

the motion. The general solution to (3) is

x(t) = A cosh t/τ +B sinh t/τ , (4)

where A and B are arbitrary constants.
The initial conditions x = x0 and ẋ = 0
at t = 0 require A = x0 and B = 0, and so

x(t) = x0 cosh t/τ . (5)
.

barrier

rope

x( )t

`�x( )t

x( )t

The total time ts for which the rope slides on the table is obtained by putting
x(ts) = � in (5), and this yields (1).

(b) The initial and subsequent energies of a uniform rope are

Ei = − 1
2
Mg

x2
0

�
+ C and Ef = − 1

2
Mg

x2

�
+ 1

2
M
(dx
dt

)2
+ C , (6)

where C is an arbitrary constant. Therefore, conservation of energy requires

dx

dt
=

√
x2 − x2

0

τ
,

and so

ts = τ

∫ �

x
0

dx√
x2 − x2

0

= τ ln
(
�
/
x0 +

√
�2
/
x2

0 − 1
)
. (7)

The identity ln(u+
√
u2 − 1) = cosh−1 u shows that (7) is the same as (1).

(c) The segment of length � − x that is in contact with the table has weight equal
to {(� − x)

/
�}Mg, and it experiences a frictional force µ{(�− x)

/
�}Mg. So, the

equation of motion (2) is modified to read

M
d2x

dt2
=
x

�
Mg − µ

�− x

�
Mg . (8)

That is,

d2x

dt2
− x

τ2
= −µg , where τ =

√
�

(1 + µ)g
. (9)

By inspection, the general solution to (9)1 is equal to (4) + µgτ2. The initial
conditions require A = x0 − µgτ2 and B = 0, so that

x(t) = (x0 − µgτ2) cosh t/τ + µgτ2. (10)

It follows that the sliding time, defined by x(ts) = �, is now
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ts = τ cosh−1 �− µgτ2

x0 − µgτ2
= τ cosh−1

{
(1 + µ)

x0

�
− µ

}−1

. (11)

In terms of the length of rope D = �−x0 on the table at t = 0 and a characteristic
length

λ = gτ2 = �
/
(1 + µ) , (12)

(11)1 becomes

ts/τ = cosh−1(1 −D
/
λ)−1, (13)

showing that the dimensionless sliding time ts/τ is a universal function of the
dimensionless ratio D/λ.[35] Note that ts/τ → ∞ as D/λ → 1, as one expects(
the critical condition for slipping is µ(�− x0) = x0

)
.

(d) From (6) we see that the total loss in mechanical energy of the rope is

Ei − Ef =
Mg

2�
(�2 − x2

0 ) −
M

2
{ẋ(ts)}2

. (14)

Here, ẋ(ts) is the velocity of the rope at the instant when it loses contact with
the table, and according to (10) it is given by

ẋ(ts) = (x0/τ − µgτ) sinh ts/τ . (15)

This can be expressed in terms of the dimensionless ratio D/λ introduced above

by using the relations sinh θ =
√

cosh2 θ − 1, cosh ts/τ = (1−D/λ)−1, and (12).
A little algebra leads to

ẋ(ts) =
λ

τ

√
D

λ

(
2 − D

λ

)
, (16)

showing that ẋ(ts) expressed in units of λ/τ is also a universal function of D/λ.
The first term in (14) can be expressed in terms ofD/λ by making the factorization
�2 − x2

0
= (�− x0)(�+ x0) = D(2�−D). By using also (9)2, (12) and (16) in (14),

a short calculation shows that

Ei − Ef =
µ

1 + µ

M

2

D2

τ2
= 1

2
µ(1 − x0

/
�)2Mg� . (17)

Comments

(i) For the rope to move, the initial value of the force in (8) must be positive, and
this requires

x0 > µ�
/
(1 + µ) . (18)(

This condition is also apparent in (11).
)

Consequently, D <
�

(1 + µ)
and

D

λ
< 1.

[35] F. Behroozi, “The sliding chain problem with and without friction: a universal solution,” Eu-
ropean Journal of Physics, vol. 18, pp. 15–17, 1997.
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(ii) Equations (11) and (13) yield the following plots of the dimensionless sliding time
ts
/
τ versus x0

/
� and D

/
λ . For the first graph, the values of µ range from µ = 0(

curve (1)
)

to µ = 1.0
(
curve (6)

)
in steps of 0.2.

1.0

�

0.5

�

2.0�

4.0�

(6)(1)

ts/τ

x0/�

1.0

�

0.5

�

2.5�

5.0�
ts/τ

D/λ

(iii) According to (17) and (18), the total loss in mechanical energy is less than

µ

(1 + µ)2
1
2
Mg� . (19)

This upper bound is approached in the limit x0 → µ�
/
(1 + µ) and, for given M ,

g and �, it has a maximum value 1
8
Mg� when µ = 1.

(iv) The above problem can be solved with other initial conditions, such as x = 0 and
ẋ = v0 at t = 0. Then, the solution to (9) is

x(t) = µgτ2(1 − cosh t/τ) + v0τ sinh t/τ . (20)

The sliding time is determined by setting x(ts) = �, and some calculation shows
that

ts = τ cosh−1 µ(1 + µ) + θ
√
θ2 + 1 + 2µ

θ2 − µ2
, where θ = v0τ/λ > µ. (21)

Question 11.32

A uniform flexible chain of length � and mass M is initially suspended with its two
ends close together and at the same elevation, and then one end is released. Consider
a one-dimensional approximation to this two-dimensional problem, in which the chain
is represented by two vertical segments connected by a horizontal cross-piece which
is sufficiently short that its contribution to the kinetic and potential energies may be
neglected.

(a) Show that the Lagrangian of the chain is

L = 1
4
µ(�− x)ẋ2 + 1

4
µg(�2 + 2�x− x2) , (1)

where x(t) is the vertical distance that the falling end has travelled in a time t,
and the constant µ = M

/
� is the linear mass density of the chain.
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(b) Use Lagrange’s equation to prove that the energy E = 2K − L of the chain is
conserved, and to obtain the equation of motion

dp1

dt
= M1g − 1

4
µẋ2 (2)

of the falling segment. Here, M1(t) is the mass of this segment at time t, and
p1 = M1ẋ is its momentum.

(c) Use energy conservation to show that the speed v = ẋ at position x is given by

v(x) =
√

2gx

√
1 − x

/
2�

1 − x
/
�
. (3)

(d) Show that the inverse form of the trajectory for the free end is

t =
1

2

√
2�

g

∫ x(t)
�

0

√
1 − u

u(1 − 1
2
u)
du . (4)

Use Mathematica to evaluate the total time τ for which the free end falls (in units
of
√

2�/g) and plot a graph of x(t)
/
� versus (t/τ)2.

(e) Show that the tension at the fixed end is given by

T =
Mg

4

{
2 + 2x

/
�− 3x2

/
�2

1 − x
/
�

}
. (5)

Solution

(a) The figure depicts the one-dimensional
model of the chain a time t after release,
when the free end has fallen a distance x(t).
In this model we neglect the small horizon-
tal segment. So, at time t the falling segment
has length �1 = 1

2
(�−x), mass M1 = µ�1, and

velocity ẋ(t); the segment that is fixed at O
has length �2 = 1

2
(�+x) and mass M2 = µ�2.

The total kinetic energy is that of M1:

K = 1
2
M1ẋ

2 = 1
4
µ(�− x)ẋ2 , (6)

.

x( )t

` ` x1� �( )/2

` ` x2� �( )/2

x( )t

and the potential energy relative to the fixed end O is

V = −M1g(x+ 1
2
�1) −M2g 1

2
�2

= − 1
4
µg(�2 + 2�x− x2) . (7)

The Lagrangian L = K − V obtained from (6) and (7) is (1).
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(b) With E = K + V = 2K − L and L = L(x, v), where v = ẋ, we have

dE

dt
=

d

dt
(2K) − ∂L

∂x

dx

dt
− ∂L

∂v

dv

dt
.

According to Lagrange’s equation

∂L

∂x
=

d

dt

∂L

∂v
, (8)

and so

dE

dt
=

d

dt
(2K) −

(
d

dt

∂L

∂v

)
v − ∂L

∂v

dv

dt
=

d

dt

(
2K − v

∂L

∂v

)
= 0 (9)

because v ∂L
/
∂v = 2K

(
see(1) and (6)

)
. The equation of motion (2) follows

directly from the Lagrangian (1) and Lagrange’s equation (8).

(c) Because the energy is conserved, the sum of K and V given by (6) and (7) can
be equated to the initial energy (when x = 0 and ẋ = 0):

1
4
µ(�− x)ẋ2 − 1

4
µg (�2 + 2� x− x2) = − 1

4
µg �2. (10)

By solving (10) for the velocity v = ẋ we obtain (3).

(d) By setting v = dx
/
dt in (3) and integrating with respect to t, we find that the

inverse equation t = t(x) for the trajectory of the free end is given by (4). The
total time τ for which the free end falls is obtained by setting x(τ) = � in (4),
and a numerical integration yields

τ ≈ 0.847213
√

2�
/
g . (11)

The trajectory x(t) of the free end obtained from (4), and the Mathematica note-
book used to calculate it, are given below.

Free fall

Equation (4)1.0�

0.5�

1.0

�

0.5

�

x(t)/�

(t/τ)2
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In[1]:= DimTime	X_
 ��

NIntegrate�� 1�u

u�1� 1
2 u�,u,0,X��

NIntegrate�� 1�u

u�1� 1
2 u�,u,0,1���

ListPlot�Table��DimTime	X
2,X�,X,0,1,0.001���
(e) The equation of motion (2) can be written

M1

dv

dt
= M1g − 1

4
µẋ2 − ẋ

dM1

dt
. (12)

Here, M1 = µ 1
2
(�− x) and therefore dM1

/
dt = − 1

2
µẋ. So, (12) becomes

M1

dv

dt
= M1g + 1

4
µv2 , (13)

showing that in addition to the gravitational force M1g there is a downward
tension 1

4
µv2 in the falling segment. Because energy is conserved, the same down-

ward tension must act in the fixed segment. Therefore, the force that the chain
exerts on the fixed end O is

T = M2g + 1
4
µv2 . (14)

With M2 = µ 1
2
(�+ x) and v given by (3), equation (14) yields (5).

Comments

(i) There is a rather extensive literature on the subject of falling chains, and a review
has been given in Ref. [36]. These authors emphasize how useful the Lagrange
formulation is in obtaining correct solutions: “Lagrange’s equation of motion
contains a unique description of what happens when masses are transferred
between the two parts of a falling chain, a description that actually enforces
energy conservation in the falling chain.”

(ii) Some of the early solutions to the problem considered above (the fall of a tightly
folded chain) are incorrect in that they assume the released end falls freely and is
brought to rest by inelastic impacts with the fixed segment, thereby not conserving
mechanical energy.[36] In fact, energy conservation

(
see (9)

)
requires that the

force on the falling segment should exceed its weight
(
see (13)

)
, and the resulting

velocity and acceleration are greater than in free fall – see (3), where it is clear
that v(x) >

√
2gx, and from which it follows that the acceleration

a(x) = v̇ =

{
1 +

1

(1 − x
/
�)2

}
g

2
(15)

increases monotonically from an initial value g. Experiments confirm the energy-
conserving model.[36]

[36] C. W. Wong and K. Yasui, “Falling chains,” American Journal of Physics, vol. 74, pp. 490–496,
2006.
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(iii) In the one-dimensional model the velocity (3), the acceleration (15), and the
tension (5) become infinite at the end of the fall (i.e. as x → �). This is an
artefact of the model; the actual values are, of course, finite and there are more
realistic treatments of the closing stages of the motion.[36,37] Measured values of
the maximum tension exceed (by more than an order of magnitude) the value
2Mg for a freely falling chain.[37]

Question 11.33

Consider a system of particles for which the Lagrangian may be an explicit function
of time: L(qi , q̇i , t).

(a) Starting with the differential dL, and using Lagrange’s equations (see Chapter 1),
show that

d
(
L −

∑
piq̇i

)
=
∑

ṗ
i
dqi −

∑
q̇

i
dpi +

∂L

∂t
dt , (1)

where the summations are over all i and

pi = ∂L
/
∂q̇i. (2)

(b) What properties can be deduced from (1) for the function

H =
∑

piq̇i − L ? (3)

Solution

(a) dL =
∑(

∂L

∂qi

dqi +
∂L

∂q̇i

dq̇
i

)
+
∂L

∂t
dt

=
∑(

ṗidqi + pidq̇i

)
+
∂L

∂t
dt , (4)

where in the last step we have used Lagrange’s equations (ṗi = ∂L
/
∂qi) and (2).

Now use the relation

d
(∑

piq̇i

)
=
∑(

pidq̇i
+ q̇

i
dpi

)
(5)

to eliminate the second sum from (4), and then rearrange terms to obtain (1).

(b) It follows from (1) that:

☞ H is a function of the qi, pi and t:

H = H(qi , pi , t) . (6)

☞ q̇
i
= ∂H

/
∂pi , ṗ

i
= −∂H

/
∂qi . (7)

☞ ∂H
/
∂t = −∂L

/
∂t . (8)

☞ dH
/
dt = −∂L

/
∂t = ∂H

/
∂t . (9)

Equation (9) means that if L (and consequently H) does not depend explicitly on
t then H is a constant (a conserved quantity).

[37] J.-C. Géminard and L. Vanel, “The motion of a freely falling chain tip: force measurements,”
American Journal of Physics, vol. 76, pp. 541–545, 2008.
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Comments

(i) Equation (3) is a transformation that changes a function L of qi, q̇i, and t into a
function H of qi, pi and t. It is an example of a Legendre transformation.

(ii) The function H defined in (3) is known as the Hamiltonian of the system, and it
plays an important role in mechanics. Equations (7) are Hamilton’s equations of
motion and they are the basis for Hamiltonian dynamics.

(iii) For a system with a time-independent Lagrangian L = K − V, where the kinetic
energy K is a homogeneous quadratic function of the generalized velocities q̇i, the
Hamiltonian (3) is equal to the energy of the system,

H = E = K + V , (10)

and the property H = a constant
(
see (9)

)
is just a statement of conservation of

energy. For a single particle moving in a potential V the Hamiltonian in Cartesian
coordinates is

H =
1

2m

(
p2

x
+ p2

y
+ p2

z

)
+ V (x, y, z) . (11)

(iv) In an inertial frame time is homogeneous and the Lagrangian of a closed (isolated)
system is time independent. Consequently, in an inertial frame the energy of a
closed system is conserved.

(v) For systems where the Lagrangian depends explicitly on t the question of the
connection between H and E requires some care. Such Lagrangians can represent
more than one physical system and the relationship between H and E has to be
determined for each system. An example is given in Question 4.16.

(vi) In addition to its role in classical mechanics, the Hamiltonian is indispensable in
quantum mechanics. For example, from the Hamiltonian one constructs (according
to a prescription and usually working in Cartesian coordinates) a Hamiltonian
operator Hop that enters the famous Schrödinger equation HopΨ = i�Ψ̇.
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Rigid bodies

A rigid body is an idealized multi-particle system in which the distance between each
pair of particles is a constant: |ri(t) − rj(t)| = cij, where the cij are independent of
t. So, in a rigid body the relative positions of all particles are fixed. All real objects
undergo deformations, however small, when subjected to stresses. Nevertheless, the
assumption of rigidity is a useful approximation in many cases of interest in physics
and engineering.

The simplest motion of a rigid body is rotation about an axis that is fixed in space:
the trajectories of the particles are circles in planes perpendicular to the axis, and
the velocity of a particle is proportional to its distance from the axis. Also simple is
a translation of the body: here, all displacements δri in a time δt are equal. Every
particle has the same velocity and the trajectories differ by constant displacements cij

and therefore have the same shape.

Next in simplicity is two-dimensional motion (also known as planar or laminar
motion). Here, each particle moves parallel to a fixed plane; that is, each particle
performs a translation parallel to the plane and a rotation about an instantaneous
axis perpendicular to the plane. The most general motion of a rigid body consists of
translation of a point that is fixed in (or relative to) the body, together with rotation
about an instantaneous axis passing through that point. (Often this is referred to as
‘rotation about the point’ – the equivalence of the two statements is Euler’s theorem.)

Even though the theory of rigid bodies is a considerable simplification of the general
many-body problem, it is still one of the most intricate parts of classical mechanics.
The theory is highly developed and there have been extensive studies of even appar-
ently elementary systems such as gyroscopes and tops, and there are also widespread
applications in atomic, molecular and nuclear physics, and astronomy and engineering.

The questions in this chapter deal first with some general properties of rigid bodies.
Then, there are applications to both planar motion and questions in which the axis of
rotation changes with time.

Question 12.1

How many degrees of freedom f does a rigid body have (that is, how many independent
coordinates are required to uniquely determine its position in space at a given instant):
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(a) In rotation about an axis that is fixed in space?

(b) In translation?

(c) In two-dimensional (planar or laminar) motion?

(d) In general?

Solution

(a) Just one coordinate is required, the angle of rotation: f = 1.

(b) Since there is no rotation, it is sufficient to specify the trajectory of just one point
in (or relative to) the body: f = 3.

(c) Planar motion consists of translations parallel to a fixed plane and rotation about
an axis perpendicular to that plane. Two coordinates are required for the trans-
lations and one for the rotation: f = 3.

(d) In general, the position of a rigid body is specified if the coordinates of three non-
collinear points fixed in (or relative to) it are known. This requires 3 × 3 = 9
coordinates. However, not all these coordinates are independent. The rigidity
requirement provides three relations between them, and so f = 6. (This can
also be deduced by first specifying the position of one point – for example, the
centre of mass C. This requires 3 coordinates. The position of a second point
A requires 2 coordinates because AC is fixed, and the position of a third non-
collinear point B requires just one coordinate because BC and AB are fixed. That
is, f = 3 + 2 + 1 = 6.)

Question 12.2

According to (2) of Question 11.1 and 11.2, the rates of change of the momentum P

and the angular momentum L of a rigid body relative to an inertial frame satisfy‡

Ṗ = F and L̇ = Γ. (1)

Here, F and Γ are the total force and the total torque due to external forces acting
on the body. Discuss the role of (1) in rigid-body dynamics.

Solution

☞ First, note that the interparticle forces play no role in (1). This is a consequence of
Newton’s third law and, in the case of (1)2, the assumption that the interparticle
forces are central – see Questions 11.2 and 14.19.

☞ Equation (1)1 is the equation of motion

MR̈ = F (2)

for the position vector R of the centre of mass relative to some arbitrarily chosen
origin O of an inertial frame. So, (1)1 describes the translational motion of one

‡For convenience we omit the superscript e on F and Γ.
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point associated with the body – its solution provides 3 of the 6 parameters needed
to specify the trajectory for general motion of a rigid body.

☞ The remaining three parameters are associated with the rotational motion of the
body, and they are determined by (1)2.

☞ The two independent equations (1), which comprise six component equations, are
the equations of motion of a rigid body: they provide a complete description of its
general motion. By comparison, the general N -body problem involves 3N compo-
nent equations of motion: the reduction from 3N to 6 equations is a consequence
of the rigidity condition.

☞ Often, the rotational motion is analyzed in terms of rotation about the centre of
mass C, rather than the coordinate origin O to which R is referred. Then, (1)2 is
written

L̇C = ΓC , (3)

where LC and ΓC are the angular momentum and torque about the CM.
(
Equation

(3) holds even if C is accelerating relative to an inertial frame – see (7) of Question
11.3 and (5) below.

)
So, (2) describes the motion of the CM and (3) describes

rotation about the CM.

☞ In certain cases – for example, if one point in the body is fixed – it is preferable
to use (1)2 instead of (3), with L and Γ being the angular momentum and torque
about that point.

Comment

In the rotational equation L̇ = Γ, the angular momentum and torque are to be eval-
uated with respect to either the CM or a point that is fixed in an inertial frame,
but is otherwise arbitrary. Relative to an arbitrary moving point (Q, say) the angular
momentum and torque are†

LQ =
∑
i

mi(ri − rQ) × (ṙi − ṙQ) , ΓQ =
∑
i

(ri − rQ) × Fi
(e), (4)

where the ri are position vectors in an inertial frame. By differentiating (4)1 with
respect to t and using the equation of motion mir̈i = Fi, and assuming central inter-
particle forces, we obtain the rotational equation of motion relative to Q:

L̇Q = ΓQ −M(R − rQ) × r̈Q , (5)

whereM is the total mass and R is the position vector of the CM relative to the inertial
frame. So, in general, there is an additional term associated with the acceleration r̈Q

of Q. By inspection, this term is zero if (i) r̈Q is zero, or (ii) if Q is the CM, regardless
of its acceleration (both of which we know already), or (iii) if r̈Q is parallel or anti-
parallel to the vector that joins Q to the CM. In calculations where Q does not satisfy
any of these three conditions it is essential to use the correct form (5) of the rotational
equation of motion, and not L̇ = Γ (see Question 12.14).

†Here, and in what follows, the summations over i are from 1 to N .
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Question 12.3

(a) Define the angular velocity ω of a rigid body rotating about some axis.

(b) Then derive the relation
v = ω × r (1)

for the velocity of a point in the body with position vector r relative to an origin
on this axis. (Hint: First, sketch a diagram showing the axis of rotation, the vector
r, and its trajectory.)

Solution

(a) The diagram shows the axis of rotation and
the position vector r relative to a point A on
the axis. Also shown are the components of
r that are parallel and perpendicular to the
axis. The endpoint of r traces out a circle
centred on the axis. In a time dt the endpoint
rotates through an angle dθ. The unit vectors
r̂⊥ and θ̂ are in the directions of increasing
r⊥ and θ. By definition, the angular speed is
the rate of change ω = dθ

/
dt and the angular

velocity is ω = (dθ
/
dt)n, where the unit vec-

tor n satisfies a right-hand rule: n× r̂⊥ = θ̂.

(b) Let dr be the change in r in a time dt. From

the diagram and the definition of ω:

dr = r⊥dθ θ̂ = ω × r⊥dt . (2)

Now, r⊥ = r − r‖ and ω × r‖ = 0. So (2) yields (1).

Comments

(i) The angle dθ turned through in a time dt is the same for all points in the body,
and therefore so is ω. Also, the relation (1) is independent of where the point A
is located on the axis of rotation

(
cf. the step from (2) to (1)

)
.

(ii) From (1), if B and C are any two points fixed in the body then

vB = vC + ω × (rB − rC) . (3)

(iii) Equation (3) can be applied to a body that is translating as well as rotating.
Often, C is taken to be the CM and (3) is written (we omit the subscript B on v

and set vC = Ṙ)
v = Ṙ + ω × r . (4)

Equation (4) is the extension of (1) to include translation: it gives the velocity
v of a point in the body in terms of the velocity Ṙ of the CM (relative to some
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frame) and the position vector r of that point relative to the CM. So, the velocity
of any point in the body is known once the CM velocity and the angular velocity
are known (i.e. six degrees of freedom – see Question 12.1).

(iv) The translational equation of motion MR̈ = F provides a first-order differential
equation for Ṙ, and we will see below that the rotational equation of motion
L̇ = Γ provides a first-order differential equation for ω.

Question 12.4

Consider a rigid body that is rotating about a fixed axis (the z-axis, say) with angular
velocity ω = ωẑ.

(a) Show that the z-component of the angular momentum of the body about the axis
of rotation is

Lz = Izω , where Iz =
∑
i

mi(x
2
i + y2

i ) . (1)

(b) Deduce that the z-component of the rotational equation of motion is

Izω̇ = Γz , (2)

where Γz is the total torque about the z-axis due to external forces.

(c) Show that the kinetic energy of rotation is

K = 1
2
Izω

2 . (3)

Solution

(a) The velocity of the ith particle is (see Question 12.3)

vi = ω × ri = (0, 0, ω) × (xi, yi, zi) = (−ωyi, ωxi, 0) , (4)

and so
Lz =

∑
i

mi(ri × vi)z =
∑
i

mi(x
2
i

+ y2
i
)ω , (5)

which is (1) because ω is the same for all particles (see Question 12.3).

(b) The z-component of the rotational equation of motion L̇z = Γz and (1)1 give (2)
because for a rigid body Iz is independent of t.

(c) K = 1
2

∑
i

miv
2
i

= 1
2

∑
i

mi(x
2
i

+ y2
i
)ω2 = 1

2
Izω

2.

Comments

(i) The quantity Iz defined in (1)2 is called the moment of inertia about the z-axis.
The derivative ω̇ = θ̈ is the angular acceleration.
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(ii) Equations (1)1, (2) and (3) are rotational analogues of the equations p = mv,
mv̇ = F and K = 1

2
mv2 for one-dimensional translational motion. It is apparent

from this comparison that the moment of inertia is analogous to mass: for example,
(2) shows that the moment of inertia about an axis is a measure of the rotational
inertia relative to that axis.

(iii) The moment of inertia is therefore an important dynamical property of a rigid
body. In general, the moment of inertia about an axis is defined by

I =
∑
i

mir
2
i
, (6)

where ri is the perpendicular distance of the ith particle from the axis. If the
distribution of mass is continuous then (6) is replaced by

I =

∫
r2dm , (7)

where the integration is taken over the entire body. Some calculations of moments
of inertia are given in Questions 12.8 and 12.10.

(iv) The kinetic energy (3) changes at a rate K̇ = Izω̇ω = Γzθ̇, and therefore

dK = Γzdθ . (8)

Now, Γzdθ = dW is the work done by the external forces during the infinitesimal
rotation dθ, and (8) is the work–energy theorem for rotational motion. If the
external forces are conservative then there exists a potential-energy function V (θ)
such that dV = −dK (see Chapter 5). Thus, the mechanical energy

E = 1
2
Izω

2 + V (θ) , with V (θ) = −
∫

Γzdθ , (9)

is conserved during the motion.

Question 12.5

Extend the results of Question 12.4 for rotation about a fixed axis to planar motion
of a rigid body.

Solution

In planar motion of a rigid body, each particle moves parallel to a fixed plane. The
motion can be specified by two-dimensional motion of the CM and rotation about the
CM (meaning rotation about an axis through the CM and perpendicular to the fixed
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plane). Motion of the CM is governed by the translational equation MR̈ = F. For the
rotational motion we consider the angular momentum about the CM:

LC =
∑
i

miri × vi , (1)

where vi = ω×ri and the ri are position vectors relative to the CM . Let the fixed plane
be parallel to the xy-plane. Then, ω = (0, 0, ω) and the evaluation of (1) proceeds as
in Question 12.4. The result for the z-component of LC is

LC = ICω and IC =
∑
i

mi(x
2
i

+ y2
i
) . (2)

IC is the moment of inertia about the CM (that is, about the axis Cz). For a rigid
body, IC is independent of t and therefore the z-component of the rotational equation
of motion L̇C = ΓC is

ICω̇ = ΓC . (3)

Here, ΓC is the torque about the axis Cz. The total kinetic energy consists of
translational and rotational contributions:

K = 1
2
MṘ2 + 1

2
ICω

2, (4)

and for conservative external forces, the mechanical energy relative to an inertial frame
is

E = 1
2
MṘ2 + 1

2
ICω

2 + V (θ) , (5)

where

V (θ) = −
∫

ΓC dθ . (6)

Comment

The separation of the total kinetic energy into translational and rotational parts always
occurs in rigid-body motion. In general,

K = 1
2

∑
i

miv
2
i
, (7)

where vi = Ṙ + ω × ri and ri is the position vector of the ith particle relative to the
CM (see Question 12.3). So

K = 1
2

∑
i

mivi · (Ṙ + ω × ri)

= 1
2
MṘ

2
+ 1

2
ω ·

∑
i

miri × vi

= 1
2
MṘ

2
+ 1

2
ω · LC . (8)(

Here, we have used the identity a · (b × c) = b · (c × a) and the relation∑
imivi = MṘ, that holds because

∑
imiri = 0.

)
Equation (8) is valid for any

rigid-body motion. In planar motion, LC = ICω and (8) reduces to (4).
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Question 12.6

Suppose one point O of a rigid body is fixed in inertial space. Let Oxyz be a coordinate
system fixed within the body and let ω be the angular velocity of the body relative to
an inertial frame with origin at O. The angular momentum L about O, expressed in
terms of body coordinates, is

L =
∑
i

miri × vi, where vi = ω × ri . (1)

(a) Show that L is given in terms of the components of ω by

L = (Ixxωx + Ixyωy + Ixzωz) x̂ + (Iyxωx + Iyyωy + Iyzωz) ŷ

+ (Izxωx + Izyωy + Izzωz) ẑ , (2)

where

Ixx =
∑
i

mi(y
2
i + z2

i ) , Iyy =
∑
i

mi(x
2
i + z2

i ) , Izz =
∑
i

mi(x
2
i + y2

i ) , (3)

Ixy = Iyx = −
∑
i

mixiyi , Iyz = Izy = −
∑
i

miyizi ,

Ixz = Izx = −
∑
i

mixizi .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

(b) Hence, express the equations of motion in the inertial frame as first-order
equations in the time derivatives of the components of ω .

(c) What is the form of (2) and the equations of motion for rotation about a fixed
axis (the z-axis, say)?

(d) What is the form of (2) and the equations of motion in a body coordinate system
in which the off-diagonal components Ixy, Iyz and Ixz are zero (that is, in principal
axes)?

Solution

(a) We start with the vector product ri × (ω × ri), where ri and ω are expressed in
the body system as

ri = xix̂ + yiŷ + ziẑ , ω = ωxx̂ + ωyŷ + ωzẑ . (5)

A direct calculation yields

ri × (ω × ri) =
{
ωx(y

2
i + z2

i ) − ωyxiyi − ωzxizi

}
x̂

+
{−ωxxiyi + ωy(x

2
i

+ z2
i
) − ωzyizi

}
ŷ

+
{−ωxxizi − ωyyizi + ωz(x

2
i + y2

i )
}
ẑ . (6)

By substituting (6) in (1) we obtain (2)–(4).
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(b) The equation of motion in the inertial frame is L̇ = Γ. To express this in terms
of the components of ω, we must differentiate (2) with respect to t, taking into
account that in this frame the time-dependent quantities are ω and the unit
vectors x̂, ŷ, ẑ of the body frame.

(
The six components Ixx, · · · , Ixz in (4) are

constants because they are evaluated in the body frame, where xi, yi and zi are
constant.

)
The unit vectors are fixed in the body, and so they rotate with angular

velocity ω with respect to the inertial frame; that is (see Question 12.3)

dx̂
/
dt = ω × x̂ , dŷ

/
dt = ω × ŷ , dẑ

/
dt = ω × ẑ . (7)

By differentiating (2) and using (7), we find that the x-component of the equation
of motion is

Ixx ω̇x + Ixyω̇y + Ixzω̇z + (Izz − Iyy)ωyωz

+ Izxωxωy − Iyxωxωz + Izyω
2
y − Iyzω

2
z = Γx . (8)

The y- and z-components of the equation of motion are obtained from (8) by the
cyclic permutations x→ y → z → x.

(c) If the rotation is about the z-axis then ω = (0, 0, ω) and (2) simplifies to

L = Ixzω x̂ + Iyzω ŷ + Izzω ẑ . (9)

Similarly, the equation of motion (8), and the y- and z-components obtained from
(8) by cyclic permutation, simplify to

Ixzω̇ − Iyzω
2 = Γx

Iyzω̇ + Ixzω
2 = Γy

Izzω̇ = Γz .

⎫⎪⎪⎬⎪⎪⎭ (10)

Note that here the fixed point O can be any point on the axis of rotation.

(d) The principal axes are a special set of body axes OXYZ in which the off-diagonal
elements IXY , IY Z and IXZ are zero. The diagonal elements are denoted I1 = IXX ,
I2 = IY Y and I3 = IZZ , and the unit vectors of the principal axes are e1, e2, e3.
In principal axes the angular momentum (2) has the simple form

L = I1ω1 e1 + I2ω2 e2 + I3ω3 e3 . (11)

Similarly, the equation of motion (8) and its permutations become

I1ω̇1 + (I3 − I2)ω2ω3 = Γ1

I2ω̇2 + (I1 − I3)ω1ω3 = Γ2

I3ω̇3 + (I2 − I1)ω1ω2 = Γ3 .

⎫⎪⎪⎬⎪⎪⎭ (12)

Equations (12) are known as Euler’s equations for a rigid body. We remark that
the rotational kinetic energy K = 1

2
ω ·L also has a simple form in principal axes,

namely
K = 1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3 ). (13)
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Comments

(i) In general, the angular momentum L is not parallel to the axis of rotation – see
(2). Even in the simple case of rotation about a fixed axis, L can have components
perpendicular to the axis of rotation – see (9).

(ii) The quantities Ixx, Iyy , Izz defined in (3) are referred to as the moments of inertia
about the x-, y- and z-axes, respectively. The quantities Ixy, Iyz , Ixz defined in
(4) are known as the products of inertia with respect to the same axes.

(iii) For a continuous distribution of mass of density ρ(r) in a volume V, the sums in
(3) and (4) can be replaced by integrals:

Ixx =

∫
(y2 + z2) dm , Ixy = −

∫
xy dm , etc. (14)

(iv) Suppose a rigid body possesses an axis of symmetry, meaning that the masses dm
at r⊥ and −r⊥ are the same.‡ Then, some of the products of inertia are zero. For
example, if Oz is an axis of symmetry then Ixz and Iyz are zero;† consequently
the angular momentum (9) has a component only along the axis of rotation:

L = (0, 0, Izzω) , (15)

and the equations of motion (10) become

Γx = Γy = 0 and Izzω̇ = Γz . (16)

(v) Equation (2) for L and the equations of motion (8), etc. are cumbersome, and
often they are written in a concise tensor form. For this purpose the components
of r and ω, and the moments and products of inertia are denoted by xα, ωα Iαβ ,
where α, β = 1, 2 or 3. Also, the unit vectors of the body frame are denoted by
eα. Then (2)–(4) can be abbreviated as

L = Iαβωβeα. (17)

Here, Iαβ is the inertia tensor: for a continuous body it has components

Iαβ =

∫
V

(δαβxγxγ − xαxβ)ρ(r) dV, (18)

where δαβ is the Kronecker delta function. In equations such as (17) it is always
understood that a repeated index implies summation from 1 to 3

(
so (17) contains

a double sum over α and β
)
. The equations of motion (8), etc. abbreviate to

Iαβω̇β + εαβγωβIγδωδ = Γα , (19)

where εαβγ is the Levi-Civita tensor (see Question 9.6).

‡So, an axis of symmetry must pass through the CM.
†So, a symmetry axis is a principal axis.
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(vi) There is an important special case where the point O (mentioned in the statement
of this question) need not be fixed in inertial space, namely when O is the CM
of the rigid body (see Question 12.2). All the results obtained above apply also
when O is the CM, and they describe the general rotation of a rigid body about
its CM. When taken together with the translational equation of motion MR̈ = F,
they provide a complete description of the dynamics of the body.

Question 12.7

Let IO be the moment of inertia of a rigid body about an axis through a point O, and
let IC be the moment of inertia about a parallel axis through the centre of mass C.
Prove that

IO = IC +MD2, (1)

where M is the mass of the body and D is the distance between the axes.

Solution

Consider, for example, the moment of inertia about the Oz-axis:

Iz =
∑
i

mi(x
2
i + y2

i ) . (2)

The coordinates of the particles relative to the CM are xi = xi − xC , y
i

= yi − yC ,
zi = zi − zC, where (xC , yC, zC) is the position vector of C relative to Oxyz. So (2)
can be expressed as

Iz =
∑
i

mi

{
(xi + xC)2 + (y

i
+ yC)2

}
=
∑
i

mi(x
2
i + y2

i ) + 2xC

∑
i

mixi + 2yC

∑
i

miyi +
∑
i

mi(x
2
C + y2

C) . (3)

The first sum in (2) is the moment of inertia about an axis through C and parallel to
the z-axis. The second and third sums are zero because they are CM coordinates in
the CM frame. The fourth sum is equal to MD2. This proves (1) for the moment of
inertia about the z-axis, and by extension for any axis through O.

Comments

(i) Equation (1) is known as the parallel-axis theorem. It reduces the task of calcu-
lating the moment of inertia about any axis to the computation of the moment
of inertia about a parallel axis through the CM.

(ii) A similar result holds for the products of inertia. For example, from (4) of Question
12.6 we have

IOxy = ICxy −MxCyC , (4)

and similarly for IOyz and IOxz.
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(iii) Therefore, for the components Iαβ of the inertia tensor, the parallel-axis theorem
states: the moments and products of inertia of a body of mass M with respect
to Cartesian axes Oxyz are equal to those with respect to a set of parallel axes
through the CM plus those of a particle of mass M , situated at the CM, with
respect to Oxyz. See also Question 14.3.

Question 12.8

A truncated sphere is formed by removing a cap of height h from a uniform sphere of
radius a. (a) Calculate the position of the centre of mass. (b) Calculate the moment
of inertia about the axis of symmetry. (Express the results in terms of a and ε = h/a.)

Solution

(a) From (8) of Question 11.1, the Cartesian coordinates of the CM are given by

X =
1

M

∫
xdm , Y =

1

M

∫
y dm , Z =

1

M

∫
z dm , (1)

where M is the total mass and the integrals are
taken over all elements dm comprising the trun-
cated sphere. To evaluate (1) we choose the co-
ordinates shown, with x-axis along the symme-
try axis and origin O at the centre of the sphere
prior to truncation. First consider Y . From the
symmetry of the problem it is clear that for an
element dm at y there is always an equal ele-
ment dm at −y, and therefore Y = 0. Similarly,
Z = 0. For the elements of mass dm in (1)1 for
X , choose slices perpendicular to the x-axis and
of thickness dx as shown. Because the truncated
sphere is uniform,

dm = Mπ(a2 − x2) dx ÷
∫ a−h

−a
π(a2 − x2) dx . (2)

From (1)1 and (2) we have

X =

∫ a−h

−a
x(a2 − x2) dx ÷

∫ a−h

−a
(a2 − x2) dx

= −3

4

ε2(2 − ε)2

(4 − 3ε2 + ε3)
a , where ε = h/a. (3)

(b) The axis of symmetry is the x-axis, and the moment of inertia – of the infinitesimal
shaded disc shown in the figure – about this axis is

dIx = 1
2
(a2 − x2) dm . (4)
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From (2) and (4) we have the total moment of inertia about the x-axis:

Ix = 1
2
M

∫ a−h

−a
(a2 − x2)2dx ÷

∫ a−h

−a
(a2 − x2) dx . (5)

The integrals in (5) are elementary and a short calculation yields

Ix =
4 + 4ε+ 3ε2 − 3ε3

10(1 + ε)
Ma2 . (6)

Comments

(i) When ε = 0 (a sphere), (3) gives X = 0 as required. When ε = 1 (a hemisphere),
(3) gives X = −3a/8. In the limit ε → 2 (a ‘speck’ at x = −a), (3) is indeter-
minate, and L’Hôpital’s rule yields X = −a, as expected. When ε = 0 or 1, (6)
yields the familiar expression Ix = 2

5
Ma2.

2

�

1

�

1

�
3
8 �

−X/a

ε

(ii) Equation (3) shows that truncation of a uniform sphere displaces the centre of
mass (and hence the centre of gravity) away from the centre of the sphere, along
the axis of symmetry. Consequently, a truncated sphere in a uniform gravitational
field experiences a torque that tends to orient the flat face perpendicular to the
field. This property makes it possible to construct a simple gyroscope from a
truncated sphere that is spinning about its symmetry axis (see Question 12.24).

Question 12.9

Consider a homogeneous solid of revolution generated by rotating a function y = f(x),
for x ∈ [x1, x2], about the x-axis. Show that the moments of inertia Ix and Iy about
the x- and y-axes can be expressed in terms of single integrals:
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Ix = 1
2
πρ

∫ x
2

x
1

f4(x) dx (1)

Iy = 1
2
Ix + πρ

∫ x2

x1

x2f2(x) dx , (2)

where ρ = M/V is the density of the body.

Solution

Consider first a thin disc perpendicular to the x-axis, located at x and of thickness
dx and mass dm. Its moment of inertia about the x-axis is dIx = 1

2
f2(x)dm, where

dm = ρ dV = ρπf2(x) dx. So, the total moment of inertia about the x-axis is given by
(1). To calculate Iy we start with the moment of inertia of the thin disc about the y′

axis. Clearly,‡ dIy′ + dIz′ = dIx and dIz′ = dIy′ . Therefore, dIy′ = 1
2
dIx. According to

the parallel-axis theorem dIy = dIy′ + x2dm, and so we obtain (2).

Comments

(i) Usually, the evaluation of the moment of inertia of a rigid body requires mul-
tiple integration (often a triple integration must be performed). However, for a
homogeneous solid of revolution, (1) and (2) show that just one integration is
required.[1] Some examples are given in the next question.

(ii) This approach, where moments of inertia are expressed in terms of a generating
function f(x), allows one to study the minimization of certain moments of inertia
by using the calculus of variations.[1]

‡This is an example of the perpendicular-axis theorem.

[1] R. Diaz, W. J. Herrera, and R. Martinez, “Moments of inertia for solids of revolution and
variational methods,” European Journal of Physics, vol. 27, pp. 183–192, 2006.
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(iii) For solids of revolution such as shells and pipes, which are generated by two
functions f1(x) and f2(x), we have instead of (1) and (2),

Ix = 1
2
πρ

∫ x
2

x
1

[f4
1 (x) − f4

2 (x)] dx (3)

Iy = 1
2
Ix + πρ

∫ x
2

x
1

x2[f2
1
(x) − f2

2
(x)] dx . (4)

(iv) The moments of inertia (1)–(4) are expressed in terms of the density ρ of the
body. They can also be written in terms of the mass M because

ρ =
M

V
= M ÷ π

∫ x
2

x1

f2(x) dx , (5)

when there is one generating function, and

ρ = M ÷ π

∫ x
2

x
1

[f2
1 (x) − f2

2 (x)] dx , (6)

when there are two.

Question 12.10

Use the method of Question 12.9 to obtain the following moments of inertia for
homogeneous solids of revolution:

Solid Axis Moment of inertia

1. sphere (radius = a) any diameter 2
5
Ma2

2. spherical shell
(outer radius = a,
inner radius = b)

any diameter 2
5
M

(
a5 − b5

a3 − b3

)

3. thin spherical shell any diameter 2
3
Ma2

(radius = a)

4. circular cylinder
(radius = a,
height = h)

longitudinal axis 1
2
Ma2

perpendicular axis 1
4
Ma2 + 1

12
Mh2

through the CM

5. circular cylindrical pipe
(outer radius = a,
inner radius = b,
height = h)

longitudinal axis 1
2
M(a2 + b2)

perpendicular axis 1
4
M(a2 + b2) + 1

12
Mh2

through the CM
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Solid Axis Moment of inertia

6. thin cylindrical pipe
(radius = a,
height = h)

longitudinal axis Ma2

perpendicular axis 1
2
Ma2 + 1

12
Mh2

through the CM

7. ellipsoid of revolution
(semi-axes = a, b, b)

x-axis 2
5
Mb2

y-axis 1
5
M(a2 + b2)

8. circular cone
(radius = a,
height = h)

axis of symmetry 3
10
Ma2

perpendicular axis 3
20
Ma2 + 3

5
Mh2

through the vertex

9. torus formed by
rotating the circle
x2 + (y − a)2 = b2

(a > b) about the
x-axis

x-axis Ma2 + 3
4
Mb2

Solution

In each case we identify the generating function(s) y = f(x) and apply the appropriate
equations from (1) to (6) of Question 12.9:

1. f(x) =
√
a2 − x2 and ρ = 3M

/
4πa3. So

Ix =
3M

8a3

∫ a

−a
(a2 − x2)2 dx = 2

5
Ma2 . (1)

2. f1(x) =
√
a2 − x2 , f2(x) =

√
b2 − x2 and ρ = 3M

/
4π(a3 − b3). So

Ix =
3M

8(a3 − b3)

{∫ a

−a
(a2 − x2)2 dx−

∫ b

−b
(b2 − x2)2 dx

}

= 2
5
M

(
a5 − b5

a3 − b3

)
. (2)

3. In (2) set b = a− ε. The limit ε→ 0 gives

Ix = 2
3
Ma2. (3)

4. f(x) = a and ρ = M
/
πa2h. So
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Ix =
M

2a2h

∫ h

0

a4 dx = 1
2
Ma2 . (4)

Iy = 1
2
Ix +

M

a2h

∫ h/2

−h/2
x2a2 dx = 1

4
Ma2 + 1

12
Mh2 . (5)

5. f1(x) = a , f2(x) = b and ρ = M
/
π(a2 − b2)h. So

Ix =
M

2(a2 − b2)h

∫ h

0

(a4 − b4) dx = 1
2
M(a2 + b2) . (6)

Iy = 1
2
Ix +

M

(a2 − b2)h

∫ h/2

−h/2
x2(a2 − b2) dx

= 1
4
M(a2 + b2) + 1

12
Mh2 . (7)

6. In (6) and (7) set b = a.

7. f(x) = (b/a)
√
a2 − x2 and ρ = 3M

/
4πab2. So

Ix =
3M

8ab2

∫ a

−a
(b/a)4(a2 − x2)2 dx = 2

5
Mb2 . (8)

Iy = 1
2
Ix +

3M

4a3

∫ a

−a
x2(a2 − x2) dx = 1

5
M(a2 + b2) . (9)

8. f(x) = ax
/
h and ρ = 3M

/
πa2h. So

Ix =
3M

2a2h

∫ h

0

(ax/h)4 dx = 3
10
Ma2 . (10)

Iy = 1
2
Ix +

3M

a2h

∫ h

0

x2(ax/h)2 dx = 3
20
Ma2 + 3

5
Mh2 . (11)

9. f1(x) = a+
√
b2 − x2 , f2(x) = a−√

b2 − x2.

ρ = M ÷ π

∫ b

−b
4a
√
b2 − x2 dx

=
M

2π2ab2
.

Ix =
M

4πab2

∫ b

−b
8a
√
b2 − x2

{
a2 + b2 − x2

}
dx

= Ma2 + 3
4
Mb2 . (12)
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Question 12.11

Deduce the conditions for a rigid body to be in equilibrium in an inertial frame.

Solution

A rigid body is in equilibrium under the action of a set of external forces Fi in some
frame if all particles are at rest for all t; that is, ṙi = 0 (or, equivalently, Ṙ = 0 and
ω = 0). Consequently, the total momentum and angular momentum are zero: P = 0
and L = 0. If the frame is inertial then Ṗ = F and L̇ = Γ, and it follows that

F = 0 and Γ = 0 (1)

for all t. That is, a rigid body is in equilibrium in an inertial frame if the total external
force is zero and if the total torque due to external forces is zero.

Comments

(i) In an inertial frame, ṙi = 0 ⇒ F = 0 and Γ = 0. The converse of this result is:
F = 0 and Γ = 0, together with the initial conditions Ṙ = 0 and ω = 0 at t = 0,
⇒ Ṙ = 0 and ω = 0 (and hence ṙi = 0) for all t.

(ii) The origin O to which Γ is referred can be any point in the inertial frame, or it
could be the CM. This arbitrariness is often exploited in equilibrium calculations
by making a convenient choice of O.

(iii) The equilibrium conditions (1) consist, in general, of a set of six equations. There
are instances in which only some of these are satisfied: for a car accelerating along
a straight, horizontal road, five of the conditions hold. In such a case, where the
total force is not zero, it is the torque about the CM (ΓC) that is zero – the torque
about an arbitrary point need not vanish.

Question 12.12

A system of coplanar forces Fi acting in the xy-plane has a non-zero resultant∑
i
Fi = (Fx, Fy) and the total torque with respect to the origin O is Γ =

∑
i
ri×Fi =

Γẑ. Equilibrium can be established by applying an appropriate force at a (non-unique)
point B. (a) What force must be applied at B? (b) Show that the locus of the points
B is the straight line

y = (Fy

/
Fx)x − (Γ

/
Fx) . (1)

Solution

For equilibrium the total force and the total torque must be zero. So, (a) a force
−(Fx, Fy) must be applied, and (b) the torque due to −(Fx, Fy) applied at rB = (x, y)
must cancel the existing torque Γ. That is, −(x, y) × (Fx, Fy) = −Γẑ, which is (1).
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Comments

(i) The non-uniqueness of B is a consequence of the fact that rB ×F = (rB + r‖)×F,
where r‖ is any vector parallel to F.

(ii) The locus is x = Γ
/
Fy if Fx = 0; y = −Γ

/
Fx if Fy = 0; and y = xFy

/
Fx if Γ = 0.

Question 12.13

A uniform ladder of length 2� and weight w leans in a vertical plane against a wall at
an angle θ to the horizontal. The floor is rough with coefficient of static friction µ. A
person of weight W stands on the ladder at a distance D from its base. The reaction
forces are P at the wall and Q at the floor.

(a) If the wall is frictionless, determine P and Q in terms of W , w, �, D and θ. Hence,
deduce that the person can climb a maximum distance

Dmax =
{
2µ(1 + w

/
W ) tan θ − w

/
W
}
� (1)

up the ladder before it slips.

(b) If the wall is rough, explain why the reaction forces P and Q cannot be determined
by the conditions for static equilibrium alone.

Solution

(a) The external forces acting on the ladder are
the weights W and w and the reactions P

and Q. Because the wall is frictionless, P has
only a horizontal component. The conditions
for equilibrium are first that the total exter-
nal force must be zero:

Qx = Px , Qy = W + w , (2)

and second that the total torque about any point must be zero. It is convenient
to take the torque about the base of the ladder. Then, for equilibrium

Px2� sin θ −WD cos θ − w� cos θ = 0 , (3)

and so
Px = 1

2
(w +WD

/
�) cot θ . (4)

Equations (2) and (4) are the desired expressions for the components of P and Q.
When D = Dmax the static frictional force Qx reaches its maximum value µQy.
It then follows from (2) and (4) that

1
2
(w +WDmax

/
�) cot θ = µ(W + w) , (5)

and therefore Dmax is given by (1).
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(b) If the wall is rough then Py �= 0 and the equilibrium conditions (2) and (4) are
modified to read

Qx = Px , Qy + Py = W + w , (6)

Px + Py cot θ = 1
2
(w +WD

/
�) cot θ . (7)

These three equations cannot be solved for the four unknowns Px, Py, Qx and Qy.
Furthermore, no additional independent equations can be obtained by evaluating
the torque about any other point in space.

Comments

(i) The solution (1) for a frictionless wall is a monotonic increasing function of θ that
varies between Dmax = 0 at

θ1 = tan−1

[
w

2µ(w +W )

]
, (8)

and Dmax = 2� at

θ2 = tan−1

[
w + 2W

2µ(w +W )

]
. (9)

Note that the condition for an unloaded ladder (W = 0) not to slip is
θ ≥ θ3 = tan−1(1/2µ), and according to (1) a ladder inclined at θ3 can be climbed
to Dmax = � (i.e. the midpoint). Also, θ1 < θ3 and when θ1 < θ < θ3 in (1) the
ladder is on the verge of slipping when the load W is at Dmax < �. To achieve
this, the ladder should be held in position until the person is in place.

(ii) The extension of the above analysis to a rough wall turns out to be unexpectedly
challenging. It is sometimes assumed that the critical conditions for the onset of
slipping are

Py = µ′Px , Qx = µQy , (10)

where µ′ is the coefficient of static friction of the wall. The five equations (6), (7)
and (10) can be solved for the limiting reactions and the critical distance

Dmax =

(
2µ(µ′ + tan θ)(1 + w

/
W )

1 + µµ′ − w

W

)
� . (11)

However, there is no evident reason why the maximum values (10) should be
reached together, and, in fact, the correct description is more subtle than this.

(iii) Systems in which reaction forces cannot be determined solely from the conditions
for equilibrium are referred to as ‘statically indeterminate’. Such systems are
important in engineering, and useful references are given in Ref. [2]. It is known
that the reaction forces depend on both the elasticity of the system and its
history (the manner in which it is set up). For the ladder against a rough wall a

[2] K. S. Mendelson, “Statics of a ladder leaning against a rough wall,” American Journal of
Physics, vol. 63, pp. 148–150, 1995.
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detailed analysis has been performed by Gonzaléz and Gratton.[3] They find that,
in general, it is necessary to take account of both compression and flexion, and
“ that the reactions can never be determined using only statics, because there is
no way to ascertain which kind of deformation dominates, and so which limiting
condition will be attained, if any.”

Question 12.14

A uniform, rigid rod of mass M and length 2� is released from rest with its lower end
in contact with a horizontal frictionless surface. At time t the rod makes an angle θ(t)
with the vertical, and the initial value at t = 0 is θ0.

(a) Show that at time t the point of contact with the surface has moved a distance

d(t) = �(sin θ − sin θ0) . (1)

(b) Show that the rotational equation of motion yields the following differential equa-
tion for θ(t):

�

g

(1

3
+ sin2 θ

)
θ̈ +

�

g
θ̇2 cos θ sin θ = sin θ . (2)

Do this for each of the following choices of reference point for calculating torque:
1. the CM, 2. the point of contact between the rod and the surface.

(c) Deduce from (2) that

θ̇
2

=
6g

�

cos θ0 − cos θ

1 + 3 sin2 θ
(3)

and show that the force that the rod exerts on the surface is

N(θ) =
4 + 3 cos2 θ − 6 cos θ0 cos θ

(4 − 3 cos2 θ)2
Mg . (4)

(d) Use (3) to show that the time taken for the CM to reach the plane is given by

τf =
1√
6

∫ π/2

θ0

√
1 + 3 sin2 θ

cos θ0 − cos θ
dθ , (5)

where τf =

√
g

�
tf is a dimensionless time.

[3] A. G. González and J. Gratton, “Reaction forces on a ladder leaning on a rough wall,” American
Journal of Physics, vol. 64, pp. 1001–1005, 1996.
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Solution

x

z
y

�

Mg

N

Q

µ

C
( , )x yC C

Horizontal plane

(a) In the diagram, C is the CM and Q is the (moving) point of contact with the
surface. The only external forces acting on the rod are its weight Mg and the
reaction N from the plane. Oxyz is an inertial frame at rest with respect to the
plane. The motion is parallel to the xy-plane and therefore planar. Because there
is no horizontal force and the rod is released from rest, the x-coordinate of the
CM is constant: xC = constant. Also, xQ(t) = xC − � sin θ(t). Therefore, Q moves
a distance xQ(0) − xQ(t) = � sin θ − � sin θ0 in a time t.

(b) 1. The y-component of the translational equation of motion of the CM,

MR̈ = F, is
MÿC = N −Mg , where yC = � cos θ . (6)

That is,
−M�θ̈ sin θ −M�θ̇2 cos θ = N −Mg . (7)

Also, the rotational equation of motion IC θ̈ = ΓC for planar motion about the
CM (see Question 12.5) gives

IC θ̈ = N� sin θ , (8)

where IC = 1
3
M�2 is the moment of inertia of the rod about a perpendicular axis

(Cz) through the CM. Eliminating N between (7) and (8) gives (2).

2. The point of contact Q accelerates relative to the inertial frame Oxyz and
so the rotational equation of motion is given by (5) of Question 12.2:

L̇Q = ΓQ −M(R − rQ) × r̈Q . (9)

Now
L̇Q = −IQθ̈ẑ and ΓQ = −Mg� sinθẑ , (10)

where IQ = IC + M�2 = 4
3
M�2 (by the parallel-axis theorem of Question 12.7).

Also, R = xCx̂ + yCŷ and rQ = (xC − � sin θ)x̂, where xC is a constant. So

r̈Q = �(θ̇2 sin θ − θ̈ cos θ)x̂ (11)

and
(R − rQ) × r̈Q = �2(θ̈ cos2 θ − θ̇2 cos θ sin θ)ẑ . (12)

Equations (9), (10) and (12) also yield (2).
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(c) The identity

d

dθ

{
(1 + 3 sin2 θ)

(
dθ

dt

)2}
= 2(1 + 3 sin2 θ)θ̈ + 6θ̇2 cos θ sin θ (13)

enables us to write (2) as

d

dθ

{(
1 + 3 sin2 θ

)(dθ
dt

)2}
=

6g

�
sin θ . (14)

By integrating both sides of (14) with respect to θ between θ0 and θ(t), and setting
θ̇ = 0 at t = 0, we obtain (3).

The point of contact Q is in vertical equilibrium, and therefore the force that the
rod exerts on the surface is equal in magnitude to the reaction N(θ). The latter
can be calculated by first using (8) to eliminate θ̈ from (7):

−3N sin2 θ −M�θ̇2 cos θ = N −mg , (15)

and then substituting (3) in (15), and solving for N . The result is (4).

(d) Solve (3) for θ̇ and then integrate with respect to t. This yields (5).

Comments

(i) In the calculations leading to (1), both of the frames used – the CM frame and
the frame with origin at Q – are non-inertial. However, there is a striking differ-
ence between the two calculations: the CM frame is special in that there is no
contribution due to non-inertiality

(
the term involving r̈Q in (9) vanishes when

rQ = R
)

whereas for the point of contact Q there is such a contribution – cf. (12).

(ii) The relation (3), which was deduced by integrating the equation of motion (2),
can also be obtained directly from conservation of energy:

1
2
Mẏ2

C
+ 1

2
IC θ̇

2
+MgyC = Mg� cosθ0 , (16)

with yC = � cos θ and IC = 1
3
M�2.

Question 12.15

Use Mathematica to obtain numerical solutions of τf(θ0) and θ(τ) for the sliding rod
of Question 12.14, and to plot graphs of the following:

☞ τf(θ0) for π/120 ≤ θ0 ≤ π/2.

☞ θ(τ), d(τ)/�, N(τ)/Mg versus τ for 0 ≤ τ ≤ τf and θ0 = π/3, π/4 and π/6.(
For τf use (5); for θ(τ) use (2); for d(τ) use (1); and for N(τ) use (4) of Question

12.14.
)
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Solution

We obtain the following graphs using the Mathematica notebook below:

�

�

3.0

1.5
��

π/2π/4

τf(θ0)

θ0 (rad)

θ0 = π/6

θ0 = π/4

θ0 = π/3

�

�

�

π
2

π
3

π
6

���

1.60.80

θ(τ ) (rad)

τ

θ0 = π/6

θ0 = π/4

θ0 = π/3�

�

0.50

0.25

��

1.60.8

d(τ )/�

τ

θ0 = π/6

θ0 = π/4

θ0 = π/3

�

�

0.50

0.25

��

1.60.8

N(τ )/mg

τ
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Π
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Π
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�
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 ��
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6
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Question 12.16

A rigid, axially symmetric wheel has mass M , radius a and moment of inertia I about
its axis (i.e. the CM). The wheel is spun about this axis with constant angular speed
ω0, and is then released in an upright position on a horizontal plane. It slips for a time
τ and then rolls without slipping. The coefficient of kinetic friction between the wheel
and the plane is µ. Show that

τ =
ω0a

µg(1 +Ma2
/
I)
, (1)

and determine the CM speed of the rolling wheel.

Solution

While the wheel is slipping there is a frictional force µMg acting as shown below. This
causes a horizontal acceleration µg of the CM that therefore acquires a horizontal
speed

v = µgt (t ≤ τ) . (2)

The frictional force also produces a torque µMga about the CM and therefore an
angular deceleration ω̇ = −µMga/I. So

ω(t) = ω0 − µMgat/I (t ≤ τ) . (3)

Therefore, ω decreases while the wheel is slipping
until it reaches a value ω = v/a, which is the con-
dition for rolling without slipping. Equating (2)÷a
to (3) and setting t = τ , gives (1). For t > τ the
point of contact between the wheel and the surface
is instantaneously at rest. So, the wheel rolls with-
out slipping: the horizontal force is zero and v(t) is
a constant = v(τ). From (1) and (2) we have

v(t) = v(τ) =
ω0a

(1 +Ma2
/
I)

(t > τ) . (4)

Comments

(i) The graphs of F (t), v(t) and ω(t)/a versus t are:
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(ii) The speed (4) of the rolling wheel is independent of the coefficient of kinetic
friction µ. In the above calculation this arises because v is proportional to µ and
t – see (2) – while t = τ is inversely proportional to µ – see (1).

(iii) Equation (4) can also be obtained from conservation of angular momentum, using
the initial point of contact O with the plane as origin. The initial angular
momentum about O is Iω0 (being entirely spin angular momentum about the
CM) and the final angular momentum is the sum of spin angular momentum
Iω(t) and orbital angular momentum Mv(t)a about O (see Question 11.3). The
frictional force passes through O and therefore the angular momentum about O
is conserved:

Iω(t) +Mv(t)a = Iω0 . (5)

For t ≥ τ the wheel rolls without slipping: then ω = v/a and (5) yields (4).

(iv) A survey has been published of the response of both physics professors and stu-
dents to solving the above question, and the results make for interesting reading.[4]

Question 12.17

Suppose that the wheel in Question 12.16 has an initial horizontal CM speed v0 in
addition to an initial topspin ω0. Determine the instant τ at which the wheel rolls
without slipping and the CM speed v(τ) of the rolling wheel.

Solution

Here, it is important to take into account that the di-
rection of the frictional force during slipping depends on
which of ω0a and v0 is larger, as indicated in the figure.
Consequently, (2) and (3) of Question 12.16 are replaced
by

v(t) = v0 ∓ µgt and ω(t) = ω0 ± µMgat

I
(t ≤ τ) , (1)

where the upper sign applies if v0 > ω0a and the lower
sign if v0 < ω0a. At the instant t = τ when pure rolling
commences, we have v(τ) = aω(τ), and (1) gives

τ =
|ω0a− v0|

µg(1 +Ma2
/
I)
. (2)

Equations (1) and (2) yield the constant speed for t ≥ τ :

v(t) = v(τ) =
ω0a+ v0Ma2

/
I

1 +Ma2
/
I

(t ≥ τ) . (3)

[4] C. Singh, “When physical intuition fails,” American Journal of Physics, vol. 70, pp. 1103–1109,
2002.
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Comments

(i) The speed (3) is independent of µ and, just as in Question 12.16, this is associated
with conservation of angular momentum about the initial point of contact with
the plane:

Iω(t) +Mv(t)a = Iω0 +Mv0a . (4)

When pure rolling starts, ω = v/a and (4) yields (3).

(ii) The initial and final kinetic energies are

Ki = 1
2
Mv2

0
+ 1

2
Iω2

0
and Kf = 1

2
Mv2 + 1

2
Iω2 , (5)

with ω = v/a. From (3) and (5) we find a loss in kinetic energy

Ki −Kf = 1
2
M

(ω0a− v0)
2

1 +Ma2
/
I
, (6)

which is equal to the work done against friction during slipping.

Question 12.18

Suppose that the wheel in Question 12.16 has an initial horizontal CM speed v0 and
an initial backspin −ω0. Determine the possible motions of the wheel. Illustrate your
answer by sketching graphs of the CM speed v(t) and aω(t) versus t.

Solution

The wheel slips for some time τ and then rolls with-
out slipping. For t < τ the translational and rotational
equations of motion are Mv̇ = −µMg and Iω̇ = µMga.
These, together with the initial conditions v(0) = v0 and
ω(0) = −ω0, give

v(t) = v0−µgt , ω(t) = −ω0+
µMgat

I
(t ≤ τ) . (1)

The value of τ is determined from (1) by setting
v(τ) = aω(τ):

τ =
(1 + ω0a

/
v0)

(1 +Ma2
/
I)

v0

µg
. (2)

For t > τ , the frictional force is zero: consequently, v(t) and ω(t) are constant and
equal to v(τ) and ω(τ):

v(t) = aω(t) = v(τ) =
(v0Ma2

/
I) − ω0a

1 +Ma2
/
I

(t ≥ τ) . (3)

It is apparent that there are three cases to consider, according to whether v(τ) is
positive, zero or negative:
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1. v(τ) > 0 (i.e. v0 > Iω0

/
Ma) The wheel always moves to the right. The spin

changes sign at time Iω0

/
µMga < τ .

2. v(τ) = 0 (i.e. v0 = Iω0

/
Ma) The wheel comes to rest (v = 0 and ω = 0) at time

τ = v0

/
µg, and remains stationary. The distance travelled is x(τ) = v2

0

/
2µg.

3. v(τ) < 0 (i.e. v0 < Iω0

/
Ma) The spin does not change sign. Instead, the wheel

reverses direction (starts moving to the left) at time v0

/
µg < τ , when x = v2

0

/
2µg. It

passes its starting point after a time 2v0

/
µg and continues moving to the left.

Comments

(i) These results apply to any axially symmetric wheel or spherically symmetric
sphere or shell. One should simply use the appropriate moment of inertia I.

(ii) For the wheel to be rolling when it returns to its starting point (case 3) we require
τ < 2v0

/
µg, meaning that aω0 < (1 + 2Ma2

/
I)v0.

Question 12.19

A thin uniform rod AB of mass M and length 2� is
placed with the end A against the base of a wall and
inclined at an angle θ0 to the vertical. A point mass
m is attached to the end B and the rod is released
from rest. Let τ(m) denote the time taken for the
rod to reach the ground, and τ(0) its value when the
mass m is removed. Show that

τ(m) =

√
M + 3m

M + 2m
τ(0) . (1)
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Solution

This question can be solved using conservation of energy:

Mg� cosθ +mg2� cosθ + 1
2
IAθ̇

2
+ 1

2
m(2�θ̇)2 = Mg� cos θ0 +mg2� cos θ0 , (2)

where IA is the moment of inertia of the rod about A.
(
The first two terms in (2) are

the potential energies of the rod and mass m, and the next two terms are their kinetic
energies.

)
From the parallel-axis theorem (see Question 12.7),

IA = IC +M�2 = 4
3
M�2 (3)

because IC = 1
3
M�2. After substituting (3) in (2), we solve for the angular speed dθ

/
dt

of the system:

dθ

dt
=

√
3g

2�

M + 2m

M + 3m

1

(cos θ0 − cos θ)
. (4)

If dt(m) denotes the time for the rod plus mass m to fall through an angle dθ, and
dt(0) the corresponding time when m = 0, then according to (4)

dt(m) =

√
M + 3m

M + 2m
dt(0) , (5)

and (1) follows by integration.

Comments

(i) The effect (1) is easily observed, for example by using two metre sticks, one of
which is weighted. It is noticeable that the unweighted stick reaches the ground
first. This effect is largest for m�M , when it amounts to about 23%.

(ii) We can apply (2) to a non-uniform rod or lamina. Here, it is helpful to write
IA = Mk2, where k is the so-called radius of gyration

(
=

√
4
3
� for a uniform

rod
)
. Then, instead of (1), equation (2) yields

τ(m) =

√
M + 4m�2

/
k2

M + 2m
τ(0) . (6)

It is apparent that the difference in falling times can be increased by making k
small – that is, by concentrating the mass M near A. We also see that τ(m) > τ(0)
provided k <

√
2�, and that the maximum effect is now ≈ √

2�
/
k when m�M .

Question 12.20

A round, rigid object (such as a cylinder or sphere whose densities are axially or
spherically symmetric, respectively) has mass M , radius a and moment of inertia I
(about its axis or centre). The object is released from rest on a plane that is inclined
at an angle α to the horizontal and for which the coefficient of static friction is µs.
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(a) Suppose the object rolls without slipping. Determine the acceleration of the CM
and the required frictional force in terms of M , g, a, α and I. Deduce that there
is a critical angle of inclination

αc = tan−1(1 +Ma2
/
I)µs , (1)

below which there is pure rolling and above which there is slipping.

(b) Suppose α > αc, so that slipping occurs. Determine the acceleration of the CM
and the angular acceleration, and then deduce a relation between the CM velocity
and the angular velocity.

(c) Show that the mechanical energy of the object is constant during rolling but
decreases during slipping.

Solution

The motion is planar and can be described by two
coordinates: the distance x that the centre of mass
C moves and the angle θ through which the object
rotates about C. The forces acting are the weightMg
and the reaction from the plane, which consists of a
normal component N and the friction Ff . There is
no motion perpendicular to the plane and therefore

N = Mg cosα . (2)

The equations of motion for translation of C and rotation about C are

Mẍ = Mg sinα− Ff (3)

Iω̇ = Ffa (ω = θ̇) . (4)

(a) For rolling without slipping we must have ẋ = aω. Then, (3) and (4) can be solved
for the two unknowns ẍ and Ff :

ẍ =
g sinα

1 + I
/
Ma2

(5)

Ff =
Mg sinα

1 +Ma2
/
I
. (6)

Equation (6) gives the frictional force that is required to prevent the object from
slipping. Now, Ff cannot exceed µsN , where µs is the coefficient of static friction
(static because the instantaneous point of contact with the surface is at rest). So,
it follows from (2) and (6) that there is a critical value of α, given by

tanαc = (1 +Ma2
/
I)µs , (7)

below which there is pure rolling and above which there is slipping.
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(b) When slipping occurs the frictional force is

Ff = µN = µMg cosα , (8)

where µ is the coefficient of kinetic friction. Then, (3) and (4) can be solved for
the two unknown accelerations ẍ and ω̇:

ẍ = g(sinα− µ cosα) (9)

ω̇ = (µMga
/
I) cosα . (10)

The object starts from rest and so the linear and angular velocities ẋ and ω are
equal to t times the constant accelerations (9) and (10), respectively. Therefore,

ẋ = βaω , where β = (I
/
µMa2)(tanα− µ) . (11)

For slipping, ẋ > aω and so β > 1. The limit ẋ → aω marks the onset of pure
rolling, and (11) with µ = µs yields (1).

(c) The mechanical energy of the object,

E = 1
2
Mẋ2 + 1

2
Iω2 −Mgx sinα , (12)

has a rate of change
Ė = Mẋẍ+ Iωω̇ −Mgẋ sinα . (13)

During rolling, ẋ = aω and also (5) holds. Consequently, Ė = 0: even though there
is friction, the point of contact with the plane is always at rest and therefore the
frictional force Ff exerted by the plane does no work. During slipping, (9)–(11)
and (13) show that

Ė =
{
(µ2M2g2a2

/
I)(1 − β) cos2 α

}
t , (14)

which is negative because β > 1. The energy decreases quadratically with t.

Comments

(i) According to (5), for two objects that have the same mass M and radius a, but
different moments of inertia I, the object with the smaller I has the larger acceler-
ation during rolling. This is the basis for a well-known demonstration involving a
race down an inclined plane between two metal cylinders having identical external
dimensions and mass. The first is a uniform aluminium cylinder. The second is a
hollow aluminium cylinder of the same dimensions, with a steel liner attached to
its inner surface to achieve the required mass. The first cylinder always wins the
race, which is just what one would expect from (5) because I1 < I2.

(ii) A race in which both cylinders slip should result in a tie – see (9), which is
independent of I.

(iii) Slipping starts at a lower critical angle for the object with larger I
(
see (1)

)
.

(iv) If we make I �Ma2 (by concentrating high-density material near the axis) then
αc → 1

2
π and the acceleration (5) of a rolling object is increased, and approaches

the value g sinα attained during sliding on a frictionless plane.



��� Solved Problems in Classical Mechanics

Question 12.21

A spool is constructed from two identical cylinders of radius a connected by a
cylindrical axle of radius b (< a). The spool is placed at rest on a horizontal plane
and a constant external force T , making an angle α with the horizontal, is applied
by pulling on an inextensible string wound around the axle. Determine the possible
responses of the spool that involve pure rolling for 0 ≤ α ≤ 1

2
π. Include a calculation

of the maximum CM acceleration in pure rolling. (Neglect the mass of the string.)

Solution

The motion is planar and described by two coordinates:
the horizontal distance x moved by the centre of mass
C and the angle θ through which the spool rotates.
The equations of motion for horizontal motion of C and
rotation about C are

Mẍ = T cosα− Ff (1)

Iω̇ = Ffa− Tb , (2)

where ω = θ̇ and I is the moment of inertia of the spool
about its axis. For pure rolling, Ff is the force of static friction. Also, ẋ = aω, and (1)
and (2) can be solved for ẍ and Ff :

ẍ =
T
/
M

1 + I
/
Ma2

(
cosα− b/a

)
(3)

Ff =
T

1 + I
/
Ma2

( I

Ma2
cosα+ b/a

)
. (4)

(Note that Ff is positive if 0 ≤ α ≤ 1
2
π, meaning that friction acts to the left as drawn

in the diagram.) It follows from (3) that there exists a critical angle of inclination

αc = cos−1 b/a , (5)

which distinguishes two types of response. If α < αc (that is, cosα > b/a) then ẍ > 0:
the spool moves to the right. But if α > αc (that is, cosα < b/a) then ẍ < 0 and the
spool moves to the left. (In this case the frictional force is in the direction of motion of
the CM.) When α = αc, both ẍ and ω̇ are zero and the spool remains at rest – a force
applied at this angle cannot cause the spool to roll without slipping. Equation (4) gives
the frictional force required to prevent slipping. Because Ff ≤ µsN = µs(Mg−T sinα),
it follows from (4) that pure rolling occurs up to a maximum tension

Tmax =
µs(1 + I

/
Ma2)Mg

(I
/
Ma2) cosα+ µs(1 + I

/
Ma2) sinα+ b/a

. (6)

For T > Tmax slipping will occur. From (3) and (6) the maximum CM acceleration of
a spool in pure rolling is

ẍmax =
µs(cosα− b/a)g

(I
/
Ma2) cosα+ µs(1 + I

/
Ma2) sinα+ b/a

. (7)
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Comments

(i) There is a simple geometric interpretation of αc. When α = αc the line of action
of T passes through the point of contact P between the spool and the plane: T
therefore exerts no torque about P. When α < αc this line passes to the left of P,
and T exerts a clockwise torque about P; while if α > αc the line passes to the
right of P and the torque is counter-clockwise.

(ii) Below αc the horizontal component T cosα of
the applied force is greater than the frictional
force Ff given by (4), and the spool is accelerated
to the right. The opposite is true above αc.

(iii) The friction (4) exerted during rolling reduces
to zero at an angle α0 for which

cosα0 = −Mab
/
I . (8)

This angle exists (and lies between 1
2
π and π) if I ≥Mab: that is, if the radius of

gyration k ≥ √
ab. When α = α0 and T < Tmax there is frictionless pure rolling

along the negative x-axis
(
ẍ is negative, see (1)

)
. If α = α0 and T = Tmax then

µsN = Ff = 0. That is, N = 0: the weight Mg is supported by the vertical
component Tmax sinα0. For α > α0, Ff is negative, meaning that friction acts to
the right in the first diagram above.

(iv) If the tension T is created by passing the string over a frictionless pulley and
connecting the free end to a device that exerts a constant force, then the tension
will always be directed to a fixed point (the pulley). It is not difficult to show
that as a result the spool will perform an anharmonic oscillatory motion (which
becomes harmonic for small oscillations).[5]

Question 12.22

Consider rotational motion of an axially symmetric, homogeneous rigid body in the
absence of external forces and relative to an inertial frame with origin at the CM. The
total angular momentum L and the angular velocity ω are not necessarily parallel.

(a) Let n be a unit vector along the axis of symmetry. Prove that if ω is not along n

then ω, L and n are coplanar. (Hint: Start with L and ω expressed in terms of
principal axes, and recall that a symmetry axis is a principal axis – see Question
12.6.)

(b) Hence, give a geometric description of the motion relative to the inertial frame.[6]

[5] C. Carnero, P. Carpena, and J. Aguiar, “The rolling body paradox: an oscillatory motion
approach,” European Journal of Physics, vol. 18, pp. 409–416, 1997.

[6] E. Butikov, “Inertial rotation of a rigid body,” European Journal of Physics, vol. 27, pp. 913–
922, 2006.
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Solution

(a) In principal axes having unit vectors e1, e2, e3 the total angular momentum is

L = I1ω1e1 + I2ω2e2 + I3ω3e3 , (1)

and ω = ω1e1 +ω2e2 +ω3e3. For a homogeneous, axially symmetric body the axis
of symmetry n = n1e1 + n2e2 + n3e3 coincides with a principal axis (i.e. two of
the ni are zero). This means that

n · (ω × L) = n1ω2ω3(I3 − I2) + n2ω1ω3(I1 − I3) + n3ω1ω2(I2 − I1) (2)

is always zero: for example, if n3 = 1 then n1 = n2 = 0 and I2 = I1. Therefore, ω,
L and n are coplanar (unless ω is along n, in which case they are collinear).

(b) In the absence of external forces L is conserved.

1. Consider first the simplest possibility – that ω is along the symmetry axis n

(or, in general, along any of the principal axes). Then, ω and L are proportional,
and ω is also conserved (in both magnitude and direction): relative to an inertial
frame with origin at the CM the body spins around a fixed axis with constant
angular speed ω. A principal axis is also an axis of free rotation. This is true even
if the body is not axially symmetric.

2. If ω is not along the symmetry axis then L deviates from ω and the motion
is more complicated. To analyze it we use the result in (a). First note that there
is an ordering of the vectors ω, L and n in their common plane. To see this, let
I‖ be the moment of inertia about the symmetry axis and I⊥ be the moment of
inertia about a transverse axis. If I⊥ > I‖ (an elongated or prolate body) then
L given by (1) deviates from n by a larger amount than does ω; and vice versa
if I⊥ < I‖ (an oblate body).‡ This is illustrated in the following two diagrams,
where Oxyz is an inertial frame with O at the CM. We emphasize that L is a
conserved (fixed) vector and for convenience we have drawn it vertically. (The
body has been drawn schematically.)

‡For example, if n = e3 then ω = ω1e1 + ω2e2 + ω3n and L = I⊥(ω1e1 + ω2e2) + I‖ω3n.
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We now resolve ω into components ωs and ωp along n and L, respectively, and also
into components ω‖ and ω⊥ along and perpendicular to n. This is illustrated for
a prolate body in the first of the two diagrams below. The resolution ω = ωs +ωp

and the fact that ω, L and n are always coplanar shows that the motion consists
of two superimposed rotations: spin with angular velocity ωs about the symmetry
axis n and rotation of n about the fixed vector L with angular velocity ωp. The
unit vector n traces out a cone centred on L and with vertex at O – we say
that it precesses about L. The resolution ω = ω‖ + ω⊥ enables us to calculate
the precessional angular velocity ωp by simple geometry (similar triangles in the
diagram): L/L⊥ = ωp/ω⊥. Now, L⊥ = I⊥ω⊥ and so

ωp = L/I⊥ . (3)

Thus, ωp is a constant vector. Therefore, the component ω⊥ is also constant and,
by conservation of L, so is ω‖. That is, the magnitude ω is constant, as is ωs. The
vector ω rotates about L with constant angular speed ωp (to remain coplanar
with L and n), tracing out a cone with axis along L and vertex at O. Thus, both
n and ω precess uniformly about L. The corresponding diagram representing the
decomposition ω = ωs+ωp for an oblate body shows that ωs points in the opposite
direction to n. Consequently, when ω is almost along n the precession and spin
are in opposite senses. For both types of body and for small deviations of ω (and
hence L) from n we have ω⊥ � ω and L ≈ I‖ω. Then, (3) gives ωp ≈ (I‖/I⊥)ω.
So, for a prolate body ωp < ω and for an oblate body ωp > ω. In the limit of a
thin disc I‖ ≈ 2I⊥ and therefore ωp ≈ 2ω.
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Comments

(i) The motion of a free rigid body in an inertial frame is more intricate than that of
a free particle. In addition to uniform rectilinear motion of the CM, we have seen
that an axially symmetric free body can undergo uniform rotation about an axis
that is either fixed in space or precessing uniformly about a fixed axis. This regular
precession occurs if the angular velocity is not aligned with a principal axis of
inertia. A computer simulation program is available to illustrate the dynamics.[6]

(ii) The customary approach to this problem is algebraic, rather than geometric,
and involves solving the Euler equations of motion. These equations describe the
dynamics in a non-inertial frame that rotates with the body (the coordinate axes
are the principal axes – see Question 12.6), and the results must be transformed
to obtain solutions in the CM inertial frame.[7]

(iii) Free motion of a rigid body has applications to freely falling bodies, orbiting
satellites, the precession of the Earth’s axis of rotation (Chandler wobble), etc.

(iv) When a torque is applied to a body it can undergo a forced precession in addition
to the torque-free precession found above (as, for example, in the top and the
gyroscope – see Questions 12.23 and 12.24). In this event, the unforced precession
is referred to as a nutation.

Question 12.23

A top is a homogeneous, axially symmetric body with a sharp point at one end of its
axis, where it is pivoted. Consider a top of mass M that is rotating about its axis with
angular velocity ωs in a uniform gravitational field. The axis is inclined to the vertical
and the pivot is frictionless and located at a fixed point O in an inertial frame.

(a) Show that for a rapidly spinning top a possible motion is a steady precession
about a vertical axis through O with angular velocity

ωp = −(M�
/
Iωs)g , (1)

where � is the distance from the pivot to the CM, I is the moment of inertia about
the symmetry axis and g is the acceleration due to gravity.

(b) For what initial conditions is this steady precession attained?

(c) Give a geometric description, involving precession and nutation, of the motion of
an inclined, spinning top released with its axis at rest.[8] (Hint: For the nutation
use the results of Question 12.22).

[7] See, for example, A. P. Arya, Introduction to classical mechanics. Boston: Allyn and Bacon,
1990.

[8] E. Butikov, “Precession and nutation of a gyroscope,” European Journal of Physics, vol. 27,
pp. 1071–1081, 2006.



Rigid bodies ���

Solution

(a)

The CM is at C. The forces acting are the weight Mg and the reaction N at the
pivot. The total angular momentum L of the top changes at a rate

L̇ = Γ , (2)

where Γ is the total torque due to external forces. Relative to O we have

Γ = �n×Mg , (3)

where n is a unit vector along the symmetry axis. For a rapidly spinning top
L ≈ Ls (the spin angular momentum) and (2) can be approximated as

L̇s = Γ . (4)

Now, Ls is perpendicular to Γ and therefore the magnitude Ls =
√

Ls · Ls is
constant: dL2

s

/
dt = 2Ls · L̇s = 2Ls · Γ = 0. Also, dLs is along Γ, which is

perpendicular to the plane containing n and g at each instant. Therefore, the
tip of the vector Ls moves in a circle centred on the vertical axis through O:
the vector Ls traces out a cone with vertex at O. The angular velocity of this
precession follows from (3) and (4):

L̇s = �n ×Mg = (Iωsn) × (M�g
/
Iωs) = ωp × Ls , (5)

where Ls = Iωsn and ωp is given by (1). The meaning of ωp in (5) is easily found.
From (5), |dLs| = (ωpLs sinφ)dt, while from the diagram |dLs| = (Ls sinφ)dθ.
Therefore, ωp = dθ

/
dt is the angular speed of the precession. The direction of

ωp is along the axis of precession through O (parallel or anti-parallel to g: if the
initial spin ωs is ‘up’ – directed from the pivot to the upper end of the axis – then
ωp is also ‘up’, as depicted in the diagram; if ωs is reversed then ωp also reverses).
Therefore, ωp is the angular velocity of precession. It is constant (because of our
assumption that the pivot is frictionless) and so the precession is termed steady
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(or uniform). Note that this steady precession is, in fact, a possible exact solution
to (2) because L = Ls + Lp and Lp (the angular momentum of precession) is a
constant. Both Ls and L can perform a steady precession with angular velocity
ωp. Other motions of the top are possible, such as that described in (c) below.

(b) For the top to perform a steady precession, specific initial conditions are
required: the top should be given a spin ωs about its axis (which is inclined to the
vertical) and also an angular velocity ωp

(
determined by (1)

)
about the vertical

axis through O. The latter amounts to giving the free end of the axis (located a
distance D from O) an initial velocity

ωpD sinφ = (Mg�D
/
Iωs) sinφ (6)

perpendicular to the plane of n and g.

(c) For other initial conditions the motion is more complicated than a steady preces-
sion. Suppose, for example, that the upper end of the axis of a tilted, spinning
top is released from rest instead of at the initial velocity (6). The total angular
momentum L – which is initially directed along the axis n – will start to precess
with the angular velocity ωp given in (1). So, L consists of a superposition of the
spin angular momentum and a precessional component:

L = Ls + Lp , (7)

as illustrated below. (Note that it is L that precesses for t ≥ 0; the axis n and the
centre of mass C are at rest at t = 0.) Because Ls deviates from the symmetry axis
n, we conclude from Question 12.22 that n will perform an additional precession,
namely a rotation about Ls with angular velocity

ωn = Ls

/
I⊥ , (8)

where I⊥ is the moment of inertia about an axis through C and perpendicular to
n. The subscript n in (8) indicates that this precession is referred to as a nutation
(a nodding). The nutation is illustrated in the second diagram below.
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For a rapidly spinning top Ls ≈ Iωs and so

ωn ≈ (I
/
I⊥)ωs . (9)

It follows that if I and I⊥ are comparable then so are the angular speeds of
nutation and spin. Consequently, ωn � ωp

(
see (1)

)
– meaning that the nutation

is rapid compared to the precession. Also, the amplitude of the nutation is small
because Ls for a rapidly spinning top lies almost along L

(
see also (12) below

)
.

We conclude that if the axis n of a rapidly spinning, inclined top is released from
rest then its subsequent motion is the superposition of two precessions. First, a
steady, slow precession along a vertical cone: this is a forced precession due to
the gravitational torque. Secondly, a rapid nutation of small amplitude about the
(precessing) spin angular momentum vector Ls. The respective angular frequencies
ωp and ωn are independent of the angle of inclination φ. Further discussion of the
motion, and also computer simulations, can be found in Ref. [8].

Comments

(i) There is a critical value of the spin angular frequency

ωsc =
√

(4Mg�I⊥
/
I2) cosφ (10)

below which steady precession is not possible.[9]

(ii) The reader may have noticed that there is a second possibility for steady
precession. For example, when the axis of a rapidly spinning top is almost vertical,
the gravitational torque is small and the top can precess with the rapid frequency
ωp ≈ L

/
I⊥ ≈ (I

/
I⊥)ωs of a free top (see Question 12.22).

(iii) Usually the dynamics of a top in a gravitational field is analyzed by using
Lagrange’s equations, or by solving Euler’s equations for motion relative to a
non-inertial frame.[9]

(iv) For the slow precession of a rapidly spinning top the angle of inclination varies
according to[9]

φ(t) = φ0 + ∆φ(1 − cosωnt) , (11)

where

∆φ = |(ωp − ω0)
/
ωn| sinφ0 (12)

is the half-angle of the nutation cone depicted in the last figure above. In (11), ω0

and φ0 are initial conditions: ω0 is the initial angular frequency of precession about
the vertical, and φ0 is the initial inclination of n. For the initial condition ω0 = ωp

we have ∆φ = 0 and therefore no nutation, in agreement with the discussion in (b)
above. The initial condition ω0 = 0 discussed in (c) produces ∆φ = (ωp

/
ωn) sinφ0,

which is small for a rapidly spinning top, where ωp � ωn.

[9] See, for example, V. D. Barger and M. G. Olsson, Classical mechanics. New York: McGraw-
Hill, 1995.
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(v) It is interesting to also consider precession of a top in a non-inertial frame that
undergoes a uniform vertical acceleration a relative to the inertial frame used
above. The effect is to replace g in the above analysis with an effective gravita-
tional acceleration g−a. So, an upward acceleration increases ωp and a downward
acceleration decreases it

(
see (1)

)
. In particular, in free fall (a = g) there is no

forced precession (ωp = 0 and the motion is that described in Question 12.22).

(vi) The above analysis is for a frictionless pivot. Friction has two effects on the motion:
it damps out the nutation and it causes the spin ωs to decrease with time. The
next three questions deal with precession of a gyroscope in which the effect of
friction is reduced to such an extent that one can detect even the influence of the
non-inertial nature of a laboratory frame due to the Earth’s rotation.

Question 12.24

In an air-suspension gyroscope the rotor consists of a precision steel ball on which a flat
face has been ground. The rotor is levitated on an air ‘cushion’ in a hemispherical cup
and spins with a constant frequency f about its axis, which is horizontal.‡ Consider the
motion of the rotor relative to an inertial frame in which there is a uniform gravitational
field. Explain why the rotor precesses and show that the period of precession of a
rapidly spinning rotor is

T = kf , where k = 4π2I
/
MgR. (1)

Here, g is the acceleration due to gravity, M and I are the mass of the rotor and its
moment of inertia about the symmetry axis, and R is the distance from the CM of the
rotor to the centre O of the steel ball from which it was formed.

Solution

The diagram shows a side view of a rotor whose
spin angular velocity is directed out of the flat
face. The origin O is a fixed point located at the
centre of the steel ball. The coordinate axesOxyz
are those of the inertial frame – for clarity they
have been drawn displaced from O. Because of
the flat face, the CM is located away from O
as indicated, and there is a gravitational torque
Γg that is always horizontal and perpendicular
to the spin angular momentum Ls = Iωs (at the
instant depicted in the diagram, Γg = −MgR ŷ).
This torque would tip a stationary rotor until its
flat face is upward. However, a spinning rotor

‡In practice, the magnitude of the spin angular frequency is maintained against air friction, and
the axis is kept nearly horizontal, by means of a magnetic drive – see Comment (i) below.
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possesses angular momentum and so, instead of tipping, it precesses. This precession
is simple for sufficiently large ωs

(
see Comment (ii) below

)
. Then, we can neglect the

angular momentum of precession Lp (and also any angular momentum perpendicular
to Ls and Lp) and approximate the rotational equation L̇ = Γg, where L is the total
angular momentum, as L̇s = Γg. It follows that Ls · L̇s = 0 and therefore dL2

s

/
dt = 0.

That is, the magnitude Ls is a constant. Also, because Ls is constrained to be horizontal
we can express the rotational equation in terms of plane polar coordinates:

dLs

/
dt = −ηΓgθ̂ . (2)

Here, Γg = MgR and η specifies the spin direction: η = 1 if ωs points out of the flat
face and η = −1 if ωs points into the flat face. The interpretation of (2) is facilitated
by the following two diagrams, which are views looking down on the rotor. In each, Ls

traces a circle in the xy-plane – clockwise if η = 1 and anti-clockwise if η = −1:

It is clear that in both cases |dLs| = Lsdθ. From (2), |dLs| = Γgdt and therefore the
angular frequency ωp = θ̇ of the precession is given by

ωp = Γg

/
Ls = MgR

/
Iωs . (3)

Now, ωp = 2π/T and ωs = 2πf , and so we obtain (1). Note that ωp is independent
of the direction of spin η, and therefore the periods of clockwise and anti-clockwise
precession are the same in an inertial frame:

Tc = Ta = T . (4)

Comments

(i) In practice, the spin ωs of the rotor is maintained by a magnetic drive. To this
end, the rotor is magnetized in such a way that it has a magnetic dipole moment
parallel to its flat face. This magnetized rotor is then driven as a synchronous
motor by an encircling field coil excited by a suitable oscillator/power amplifier
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combination. In the above analysis we have ignored the torque Γd due to the
drive. If this is included then (3) is modified to read

ωp = (Γg + Γd)
/
Ls = (Γg + Γd)

/
Iωs . (5)

In practice, Γd � Γg and so k in (1) is replaced by

k =
4π2I

MgR
(1 − Γd

/
Γg) . (6)

The period (1) is extracted by measuring T as a function of the rms current in
the magnetic drive and extrapolating to zero current (i.e. Γd = 0).[10]

(ii) Equation (3) shows that ωp is inversely proportional to ωs, and therefore at large
spin the precession is slow and Lp � Ls, as assumed above. At low spin the
rotor precesses more rapidly and experiment shows that the motion becomes
increasingly ‘wobbly’. This nutation (nodding) is neglected in the simple
analysis given above, which describes only the (almost) steady precession achieved
at large spin, where the rotor axis deviates from the horizontal by less than about
0.5◦.[10]

(iii) Careful measurements of T show departures from (1); in particular, the result
Tc = Ta is not supported by experiment.[10] The reason for this breaking of the
invariance with respect to the spin direction is discussed in the next question.

Question 12.25

(a) Let S′ be a frame rotating with angular velocity Ω with respect to an inertial
frame S that shares a common origin with S′. Let L be the angular momentum
of a rigid body in S′. Show that the rotational equation in S′ is

L̇ = Γ + L × Ω . (1)(
Hint: Use (7) of Question 14.20.

)
(b) Hence, extend the results of Question 12.24 to an air-suspension gyroscope in

a laboratory frame on Earth. In particular, show that for a rapidly spinning
gyroscope the periods for clockwise and anti-clockwise precession (when viewed
from above) are

Tc = kf + 1
2
k′f2 and Ta = kf − 1

2
k′f2 . (2)

Here, k is given by (1) of Question 12.24 and

k′ = −(γΩk2
/
π) sinλ , (3)

where Ω = |Ω| is the magnitude of the Earth’s angular velocity, λ is the latitude
of the laboratory, and

γ = 1 in the northern hemisphere

= −1 in the southern hemisphere.

}
(4)

[10] O. L. de Lange and J. Pierrus, “Measurement of inertial and non-inertial properties of an air
suspension gyroscope,” American Journal of Physics, vol. 61, pp. 974–981, 1993.
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Solution

(a) According to (7) of Question 14.20, for any vector L:

The rate of change of L in S′ = The rate of change of L in S + (L × Ω) . (5)

If L denotes angular momentum of a rigid body, then L̇ in S = Γ and (5) yields (1).

(b) We proceed as in Question 12.24. So, for a rapidly spinning gyroscope we again
neglect the angular momentum of precession Lp in comparison with the spin
angular momentum Ls, and write (1) as

dLs

/
dt = Γg + Ls × Ω . (6)

It follows that Ls · L̇s = 0 and so the magnitude Ls is constant here as well. Also,
recall that Ls is constrained to be horizontal: in cylindrical coordinates Ls = Lsρ̂,
and we see from (6) that (2) of Question 12.24 is modified to read

dLs

/
dt = −(ηΓg + LsΩz)θ̂ . (7)

The new feature here is the term in Ωz (the vertical component of Earth’s angular
velocity); this term represents a perturbation because in practice |LsΩz

/
Γg � 1|.

The analysis of (7) proceeds as in Question 12.24 and we conclude that the angular
frequencies of clockwise and anti-clockwise precession (corresponding to η = 1 and
η = −1, respectively) are

ωpc = (Γg + LsΩz)
/
Ls , ωpa = (Γg − LsΩz)

/
Ls . (8)

Thus, the period Tc = 2π/ωpc of the clockwise precession is

Tc = (2πLs

/
Γg)(1 + LsΩz

/
Γg)

−1 ≈ (2πLs

/
Γg)(1 − LsΩz

/
Γg) . (9)

Now, Ls = Iωs = I2πf and Γg = MgR. So

Tc = kf − k2f2Ωz

/
2π . (10)

In the northern hemisphere the angular velocity Ω of the Earth points out of the
ground, whereas in the southern hemisphere it points into the ground. Therefore,
Ωz = γΩ sinλ, where γ is defined in (4), and (10) yields (2)1. In a similar way we
find that the period Ta = 2π/ωpa of anti-clockwise precession is given by (2)2.

Comments

(i) The torque L × Ω in (1) is due to the well-known Coriolis force that acts in a
rotating frame (see Chapters 1 and 14). Thus, the above analysis shows that the
Coriolis force breaks the invariance of the precessional motion with respect to the
direction of spin ωs relative to the rotor; if Ωz �= 0 in (8) then Tc �= Ta. The effect
is largest at the poles (λ = 90◦) and vanishes at the equator (λ = 0◦).
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(ii) This property of the gyroscope – where its precession is affected by the rotation
of the Earth – is reminiscent of the famous Foucalt pendulum, see Question 14.29.

(iii) The steady precessional motion of the gyroscope is accompanied by some nutation,
whose amplitude is small for rapid spin (ωs � ωp, Ω).[10]

(iv) Equations (2) apply in the limit where the torque Γd due to the magnetic drive
is zero (see also Question 12.24). In practice, the effect of this torque can be
comparable to that of the Coriolis force, and the values of Tc and Ta at Γd = 0
are obtained by extrapolation.[10] The following question involves a comparison
of the theoretical results (2) with experimental results obtained by this method.

Question 12.26

Measurements of the precessional periods Tc and Ta as functions of the spin frequency
f have been reported for the air-suspension gyroscope discussed in Questions 12.24
and 12.25.[10] The rotor had radius a = 25.438 mm and the removed cap had thickness
h = 2.027 mm. The laboratory was located at latitude λ = 29.62◦ in the southern
hemisphere and the gravitational acceleration was g = 9.794 m s−2.

(a) Calculate the constants k and k′ in (2) of Question 12.25. To do this, make use
of the formulae for the CM and the moment of inertia given in (3) and (6) of
Question 12.8. Also, take Ω = 7.292 × 10−5 rad s−1 for the Earth.

(b) Use the following measurements for this gyroscope to obtain experimental values
of k and k′, and compare them with the theoretical values in (a).

f (Hz) Tc (s) Ta (s) f (Hz) Tc (s) Ta (s) f (Hz) Tc (s) Ta (s)

10.00 93.51 93.42 35.00 327.73 326.57 60.00 562.53 559.07
15.00 140.28 140.12 40.00 374.56 372.96 65.00 609.78 609.39
20.00 187.21 186.77 45.00 421.47 419.62 70.00 656.64 651.88
25.00 234.08 233.52 50.00 468.70 466.17 –– –– ––
30.00 280.89 279.99 55.00 515.54 512.54 –– –– ––

Solution

(a) From (1) of Question 12.24 and (3) and (6) of Question 12.8 we have

k =
4π2I

MgR
=

8π2a

15g

(
4 + 4ε+ 3ε2 − 3ε3

ε2

)
, (1)

where ε = h/a = 2.027/25.438 = 7.9684 × 10−2. This, together with the given
values of a and g, yields

kth = 9.337 s2. (2)

From (3) of Question 12.25, and using (2) and the given Ω and λ, we have

k′th = (Ωk2
th

/
π) sinλ = 1.000 × 10−3 s3. (3)

The estimated uncertainty in kth is ±0.017 s2, and in k′th it is ±0.004×10−3 s3.[10]
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(b) From (2) of Question 12.25 we have

1
2
(Tc + Ta) = kf and Tc − Ta = k′f2. (4)

In the following graphs the straight lines are the theoretical expressions (4) with k
and k′ given by (2) and (3), and the data points are from the experimental values
of Tc and Ta in the above table. A regression analysis of these data points gives

kexp = 9.346± 0.001 s2, k′exp = (0.997 ± 0.017)× 10−3 s3, (5)

which are in good agreement with the theoretical values (2) and (3).

600�

400�

200�

80

�

60

�

40

�

20

�

1
2
(Tc + Ta) (s)

f (Hz)

5 �
4 �
3 �
2 �
1 �

5000

�

4000
�

3000

�

2000

�

1000

�

(Tc − Ta) (s)

f 2 (Hz2)

Comment

The result (4)1 is almost entirely an inertial property due to the gravitational field
of the Earth

(
it contains a small non-inertial effect due to the contribution of the

centrifugal force to the gravitational acceleration g, and hence to the value of k in (1)
)
.

By contrast, (4)2 is a non-inertial effect due to the Coriolis force on the gyroscope.

Question 12.27

Consider a gyrocompass that is fashioned from the air-suspension gyroscope of
Question 12.24 by machining a second, parallel and identical flat face on the rotor. The
rotor spins with constant angular frequency ωs about its axis, which is constrained to
be horizontal by a torque Γ. The rotor is free to rotate about the vertical.

(a) Show that in a laboratory frame on Earth a rapidly spinning rotor performs non-
linear oscillations about true North.

(b) Determine the period of small oscillations in terms of ωs and the angular frequency
Ω of the Earth, the latitude λ, and moments of inertia of the gyrocompass.
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Solution

(a) The diagram shows a view of the rotor from
above. The CM is at O, which is a fixed point.
Oxyz is a laboratory frame: the xy-plane is
horizontal with the x- and y-axes oriented due
East and due North. The only torque due to
external forces is Γ = (Γx, Γy, 0). Now, Oxyz
is a non-inertial frame and the z-component of
the rotational equation is (see Question 12.25)

Izω̇z = (L × Ω)z , (1)

where Ω is the angular velocity of the Earth and Iz is the moment of inertia of
the rotor about the z-axis. With the above choice of axes, Ω = (0, Ωy, Ωz) and
the horizontal part of L is Ls. So

(L × Ω)z = −LsΩy sin θ = −IωsΩ cosλ sin θ , (2)

where I is the moment of inertia of the rotor about its axis and λ is the latitude.
Equations (1) and (2) with ωz = θ̇ yield

θ̈ +
{
(I
/
Iz)ωsΩ cosλ

}
sin θ = 0 , (3)

and so the rotor oscillates in a horizontal plane about true North (θ = 0).

(b) For small oscillations (|θ| � 1), the non-linear equation (3) can be approximated
as

θ̈ +
{
(I
/
Iz)ωsΩ cosλ

}
θ = 0 , (4)

showing that the oscillations become harmonic with period

T = 2π
{
(I
/
Iz)ωsΩ cosλ

}−1/2
. (5)

Comments

(i) For the Earth, Ω ≈ 7.3 × 10−5 rad s−1. So, if I
/
Iz in (5) is of order unity, a

gyrocompass near the equator will have a period T ≈ 10 s if ωs ≈ 5500 rad s−1.

(ii) The oscillatory behaviour of the gyrocompass is due to the horizontal component
Ωy of the Earth’s angular velocity Ω – see (2). By contrast, it is the vertical
component of Ω that affects the precession of a gyroscope (see Question 12.25).

(iii) The rotational equation for the spin angular momentum Ls of a rapidly spinning
gyroscope is

L̇s = Γ + Ls × Ω = (Γ + LsΩz)θ̂ . (6)

That is, |dLs| = (Γ + LsΩz)dt. But |dLs| = Lsdθ. Therefore, θ̇ = Ωz + Γ
/
Ls. This

equation determines the constraining torque Γ because θ̇ can be calculated from
(3) and the relevant initial conditions. In practice, the rotor of a gyrocompass is
constrained mechanically (by gimbals).[11]

[11] See, for example, R. F. Deimel, Mechanics of the gyroscope. New York: Dover, 1950.
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Question 12.28

Two identical wheels, each of radius a, are connected by an axle of length b, about
which they can turn freely. This system rolls without slipping on a plane inclined at
an angle α to the horizontal. Choose Cartesian coordinates in the plane, with x-axis
horizontal and y-axis directed up the plane. The initial conditions are that the system
is placed on the plane, with spin angular velocity ω about an axis through the CM
and perpendicular to the plane, at an instant when the axle is horizontal (i.e. directed
along the x-axis).

(a) Show that the trajectory of the CM is the cycloid[12]

x(t) = (g0

/
4ω2)(2ωt− sin 2ωt) , y(t) = (g0

/
4ω2) cos 2ωt . (1)

Here

g0 =
g sinα

(1 + 2IA
/
Ma2)

, (2)

M is the total mass of the system, IA is the moment of inertia of a wheel about
the axle, and g is the gravitational acceleration. (Hint: This requires the use of
four equations of motion – for translation of the CM, rotation about the CM, and
rotation of each wheel about the axle – and two constraint equations associated
with the condition for no slipping.)

(b) Express (1) in dimensionless form x̄(τ), ȳ(τ) and plot ȳ(x̄).

Solution

[12] E. D. Peck, “Cart wheels,” American Journal of Physics, vol. 46, pp. 509–512, 1978.



��� Solved Problems in Classical Mechanics

The diagram shows the wheels and axle relative to a Cartesian coordinate system
Oxy on the inclined plane. C is the CM, located at the midpoint of the axle. Three
angles are shown: θ between the axle and the y-axis, and the corresponding angles
φ1 and φ2 through which a point on the rim of each wheel rotates. Also shown is an
infinitesimal displacement ds of the CM. Because there is no slipping, ds is always
directed perpendicular to the axle, and this implies the constraint

ds = 1
2
a(dφ1 − dφ2) . (3)

A second constraint is‡

dθ =
a

b
(dφ1 + dφ2) . (4)

(a) The forces acting are gravity and the contact forces between the wheels and
the plane. For the latter we are concerned with the tangential components F1

and F2 in the plane of each wheel. The total force in the direction of ds is
F1 + F2 −Mg sinα sin θ, and so the acceleration of the CM along the trajectory
is given by

Ms̈ = F1 + F2 −Mg sinα sin θ . (5)

Also, for rotation about a perpendicular axis (Cz) through the CM we have

Izθ̈ = 1
2
b(F1 − F2) , (6)

where Iz is the total moment of inertia about this axis. There is another pair of
equations of motion, namely those for rotation of each wheel about the axle:

IAφ̈1 = −aF1 , IAφ̈2 = aF2 . (7)

Equations (7) enable us to eliminate the unknown forces Fi from (5) and (6):

Ms̈ = −(IA
/
a)(φ̈1 − φ̈2) −Mg sinα sin θ (8)

Izθ̈ = −(bIA
/
2a)(φ̈

1
+ φ̈

2
) . (9)

Finally, the angular accelerations φ̈i in (8) and (9) can be eliminated by using the
constraint equations (3) and (4). Consequently, (8) and (9) become

s̈ = −g0 sin θ (10)

[Iz + (b2
/
2a2)IA ]θ̈ = 0 , (11)

where g0 is the constant (2). The quantity in square brackets in (11) is non-zero.
Therefore, θ̈ = 0, and so the angular speed θ̇ is a constant of the motion:

θ̇ = ω and θ = ωt+ θ0 . (12)

From (10) and (12) we have s̈ = −g0 sin(ωt+ θ0). Therefore

ṡ = (g0/ω) cos(ωt+ θ0) + v0 , (13)

‡Because dθ = dθ′ + dθ′′, where bdθ′ = adφ1 and bdθ′′ = adφ2.
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where v0 is the value of ṡ when θ = 1
2
π (i.e. when the axle is horizontal). We can

obtain the trajectory (x, y) of the CM from (13) by noting that dx = ds cos θ and
dy = ds sin θ (see the diagram). Then, ẋ = ṡ cos θ and ẏ = ṡ sin θ, and so

ẋ = (g0/2ω)[1 + cos 2(ωt+ θ0)] + v0 cos(ωt+ θ0) (14)

ẏ = (g0/2ω) sin 2(ωt+ θ0)] + v0 sin(ωt+ θ0) . (15)(
Here we have used the relations cos2 θ = 1

2
(1+ cos 2θ) and cos θ sin θ = 1

2
sin 2θ.

)
Integration of (14) and (15) gives the parametric equations of the CM trajectory:

x(t) = x0 + (g0/2ω)t+ (g0/4ω
2)[sin 2(ωt+ θ0) − sin 2θ0]

+ (v0/ω)[sin(ωt+ θ0) − sin θ0] (16)

y(t) = y0 − (g0/4ω
2)[cos 2(ωt+ θ0) − cos 2θ0]

− (v0/ω)[cos(ωt+ θ0) − cos θ0]. (17)

Now choose initial conditions such that x0 = 0 and y0 = g0/4ω
2, and the axle is

along the x-axis and has no linear velocity at t = 0 (i.e. θ0 = 1
2
π and v0 = 0).

Then (16) and (17) yield (1).

(b) The dimensionless form of (1) is

x(τ) = 4πτ − sin 4πτ , y(τ) = cos 4πτ , (18)

where x̄ = 4ω2x/g0, ȳ = 4ω2y/g0 and τ = ωt/2π. The graph of ȳ(x̄) is:

−1.0 �

1.0 � 20�10�

ȳ

x̄

Comments

(i) Of the four coordinates φ1, φ2, s and θ associated with the system, just two are
independent, namely φ1 and φ2 or s and θ – see (3) and (4) – and they suffice to
specify the motion of the system.

(ii) The motion can also be analyzed using Lagrange’s equations.[12]

(iii) On a horizontal plane, g0 = 0 and so the CM is either at rest (if v0 = 0) or it
moves in a circle of radius v0

/
ω – see (16) and (17).

(iv) According to (1), the motion of the CM along an inclined plane consists of uniform
circular motion with frequency 2ω about a point that moves horizontally along the
positive x-axis at constant speed g0

/
2ω. This horizontal motion is perpendicular

to the component Mg sinα of the weight down the plane. Also, the radius of the
circular motion is equal to g0/4ω

2, which is small for rapid spin. In this regard,
Peck has remarked that the motion “ is reminiscent of the precession of a gyroscope
in a horizontal plane. However, it will appear that a superposed oscillatory motion,
like the nutation of the gyroscope, is not optional but intrinsic to the motion of
the cart wheels.” [12]
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Question 12.29

A sphere of mass M and diameter D moves with CM
velocity v = ṙ and spin ω through air of density ρ. It
experiences drag and so-called lift (Magnus) forces:

Fd = − 1
8
CdπD

2ρvv and F� = 1
8
C�πD

2ρv(ω̂ × v) , (1)

where the dimensionless quantities Cd and C� are the drag
and lift coefficients

(
see Comment (ii) below

)
, ω̂ = ω/ω

and v = |v|. The diagram is for a sphere with backspin,
moving in a vertical plane.

(a) Express the equation of motion for the CM vector r(t) in the form

r̈ − g +

(
CdπD

2ρ

8M

)
vv −

(
C�πD

2ρ

8M

)
v(ω̂ × v) = 0 , (2)

where g is the acceleration due to gravity. Suppose coordinates are chosen so that
g = (0, −g, 0) and the initial conditions are r0 = 0 and v0 = v0(cos θ0, sin θ0, 0).
What can be stated regarding the plane in which the CM moves if the sphere has
either backspin or topspin, i.e. if ω̂ = (0, 0, ±1)?

(b) Consider a golf ball struck with backspin: ω̂ = (0, 0, 1). Write a Mathematica

notebook to solve (2) for r(t), taking M = 0.050 kg, D = 0.042 m, ρ = 1.3 kgm−3,
v0 = 60 ms−1, g = 9.8 ms−2, θ0 = 5◦, Cd = 0.28 and C� = 0.17 (the latter two
coefficients are typical for golf balls spinning at 3500 rpm).[13] Repeat for θ0 = 10◦,
15◦, 20◦, 25◦ and 30◦, and plot the trajectories y(x) on the same axes.

(c) Plot the trajectories for v0 = 60 m s−1, θ0 = 10◦ and for the following drag and
lift coefficients:
1. Cd = 0 ; C� = 0, 2. Cd = 0.28 ; C� = 0, and 3. Cd = 0.28 ; C� = 0.17.

(d) Suppose that the golf ball is now either hooked or sliced, so that it is spinning
about a vertical axis: ω̂ = (0, ±1, 0). Adapt the notebook to calculate r(t) for both
directions of spin, and for θ0 = 45◦, v0 = 60 m s−1, Cd = 0.28 and C� = 0.17, 0.11,
0.06 and 0. Plot the projections of these trajectories on the horizontal (xz-) plane.

Solution

(a) Equation (2) follows directly from Newton’s second law for the CM motion,
M r̈ = Mg + Fd + F�. The motion is restricted to the plane defined by v0 and g

because the CM starts moving in this plane and there are no forces perpendicular
to it when the sphere has just backspin or topspin. With the above choice of axes
the plane of motion is the xy-plane, with y-axis vertical.

(b) We use the following Mathematica notebook to obtain the trajectories below:

[13] W. M. MacDonald and S. Hanzley, “The physics of the drive in golf,” American Journal of
Physics, vol. 59, pp. 213–218, 1991.
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In[1]:= �� USE THIS CELL FOR THE GOLF BALL PROBLEM OF QUESTION 12.29 ��

M � 0.05� d � 0.042� Ρ � 1.3�

CD	t_
 �� 0.28�

CL	t_
 �� 0.17�

In[2]:= �� USE THIS CELL FOR THE TENNIS BALL PROBLEM OF QUESTION 12.30 ��

�� M � 0.057� d � 0.067� r0 �
d

2
� Ω0 �

3500.0

60
� Ρ � 1.3�

CD	t_
 �� 0.508 �
1	22.5 � 4.196	 speed	t
r0 Ω0 
2.5
0.4 �

CL	t_
 ��
1

2.022 � 0.981 speed	t

r0 Ω0

� ��

In[3]:= Needs	"VectorAnalysis‘"


M � 0.05� d � 0.042� Ρ � 1.3�

xmax � 1� ymax � 1� �� Reqd for plot. Program refines these guesses ��

tmax � 2� �� time that ball is airborne. Program refines this value ��

x0 � 0� y0 � 0� z0 � 0� v0 � 60.0� g0 � 9.8� g � 0,�g0,0�� Ωhat � 0,0,1��

r	t_
 �� x	t
,y	t
,z	t
��

v	t_
 �� r�	t
� speed	t_
 ��
�
Dot	v	t
,v	t

�

Drag	t_
 �� �CD	t

Π d2Ρ

8M
speed	t
v	t
�

Lift	t_
 �� CL	t

Π d2Ρ

8M
speed	t
CrossProduct	Ωhat,v	t

�

plotarray � Table�
InitCon � Join	Thread	r	0
 �� x0,y0,z0�
,

Thread	r�	0
 �� v0 Cos	Θ0
,v0 Sin	Θ0
,0�

�

EqnMotion � Thread	r��	t
 � g � Drag	t
 � Lift	t
 �� 0.
�

EqnsToSolve � Join	EqnMotion,InitCon
�

Sol � NDSolve	EqnsToSolve,Join	r	t
,v	t
,r��	t

,t, 0, 10tmax�
�

tmax � t/.FindRoot	y	t
 �� 0 /.Sol,t,6�
�

xmax � Max	xmax,First	x	t
/.Sol/.t � tmax

�

ymax � Max�ymax,Max�Table�First	y	t
/.Sol
�,�t,0,tmax, tmax

100
�����

ParametricPlot	Evaluate	x	t
,y	t
�
/.Sol��,t,0,10tmax�,

AspectRatio � 1,PlotRange � 0,xmax�,0,ymax��
,�Θ0,30 Π

180
,5

Π

180
,�5

Π

180
���

Show	plotarray
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Maximum range occurs for an angle of projection θ0 ≈ 27◦.

25 �

50 �

100

�

200

�

θ0 = 5◦

θ0 = 10◦
θ0 = 15◦
θ0

= 20
◦θ0

= 25
◦θ0

=
30
◦

y (m)

x (m)

(c) The trajectories are:

drag but no backspin

drag & backspin

no drag or backspin

12 �

6 �

75

�

150

�

θ0 = 10◦
y (m)

x (m)

(d) For slice or hook shots, the ‘lift’ force has lateral components but no vertical
component – the ball is therefore deflected instead of lifted. The diagram below
illustrates that for a sliced shot by a right-handed golfer (ω points into the ground)
the deflection is to the right. For a hooked shot (ω points out of the ground) the
deflection is to the left.

Comments

(i) The phenomenon whereby a spinning sphere moving through a fluid experiences
a force perpendicular to both its spin and velocity is known as the Magnus effect
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(ca. 1853). It contributes to the non-parabolic motion of spinning balls in sports
such as golf, tennis and baseball. Newton noticed that the trajectories of tennis
balls with spin could deviate and wondered whether rays of light “could swerve
the same way – if they ‘should possibly be globular bodies’ spinning against the
ether.” [14]

(ii) In general, the drag and lift coefficients depend on v and ω, and they are usually
specified by empirical relations (see Question 12.30). Here, we have taken them
to be constants, equal to their initial values.

(iii) The lift due to backspin enables the ball to remain airborne for longer and to
travel further than in the absence of spin. For example, for the trajectories in
part (c) the time of flight is more than double and the range is about 70% greater
when the ball has backspin.

(iv) If C� is increased in (b) above (for example, by increasing the backspin) then the
initial vertical component of the total force on the ball can become upward. This
produces trajectories y(x) with an initial upward curvature.

(v) The effects of spin damping on the motion of a golf ball have been studied and
found to be small.[13]

(vi) The effect of topspin on the motion of a tennis ball is considered next.

C� = 0

C� = 0.06

C� = 0.11

C� = 0.17

150

�

50�

-50 �

slice shots: ω̂ = (0, −1, 0)

hook shots: ω̂ = (0, 1, 0)

� y

z (m)

x (m)

[14] J. Gleick, Isaac Newton, p. 81. London: Harper Fourth Estate, 2003.
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Question 12.30

Suppose the sphere in Question 12.29 is a tennis ball with topspin: ω̂ = (0, 0, −1). For
the calculations below, take M = 0.057 kg, D = 0.067 m, ρ = 1.3 kgm−3 and, unless
stated otherwise, ω = 3500 rpm. Use the following empirical drag and lift coefficients
that are typical for tennis balls:[15]

Cd = 0.508 +
1

[22.50 + 4.196(2v
/
ωD)5/2]2/5

C� =
1

2.202 + 0.981(2v
/
ωD)

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

(a) Modify the notebook of Question 12.29 to use the Cd and C� given by (1).

(b) Hence, solve the equation of motion for r(t). Use the initial conditions
r(0) = (0, 0.8, 0)m, v0 = 20.0 ms−1 and θ0 = 15◦. Repeat for θ0 = 20◦, 25◦,
30◦, 35◦ and 40◦, and plot the trajectories y(x) on the same axes.

(c) Plot the trajectories y(x) for the following cases: 1. without drag or topspin,

2. with drag but no topspin, and 3. with both drag and topspin. Take
v0 = 20.0 ms−1 and θ0 = 20◦.

(d) Plot the trajectories y(x) for a tennis ball with 1. no spin: ω = 0, 2. topspin:

ω = 3500 rpm, and 3. topspin: ω → ∞. Take v0 = 20.0 m s−1 and θ0 = 20◦. Also,

plot the trajectory with 4. backspin: ω = 3500 rpm.

Solution

(a) Use cell 2 of the preceding notebook instead of cell 1.

(b) This yields the following trajectories:

6 �

3 �

20

�

10

�

θ0 = 15◦

θ0 = 20◦

θ0 = 25◦

θ0 = 30◦

θ0 = 35◦

θ0 = 40◦
y (m)

x (m)

[15] A. Štěpánek, “The aerodynamics of tennis balls – the topspin lob,” American Journal of Physics,
vol. 56, pp. 138–142, 1988.
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(c) In the diagram: ‘no drag’ means Cd = 0 and ‘no topspin’ means C� = 0.

no drag and no topspin

with drag but no topspin

with drag and topspin

3.0�

1.5�

15

�

30

�

θ0 = 20◦
y (m)

x (m)

(d) The trajectories are:

backspin: ω = 3500 rpm

no spin: ω = 0

topspin: ω = 3500 rpm

topspin: ω → ∞

3.0�

1.5�

10

�

20

�

θ0 = 20◦
y (m)

x (m)

Comment

Topspin reduces the maximum height and horizontal range of the ball. In this respect,
it has the opposite effect to backspin.
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Non-linear oscillations

If one were to list some characteristic features of non-linear oscillators then the
following would come to mind:

☞ Most systems are described by non-linear equations of motion.

☞ Some non-linear oscillators possess a linear (harmonic) limit, but many do not.

☞ In most instances non-linear equations of motion are intractable – analytic
solutions cannot be found, even in simple cases, so the use of computers and
numerical techniques is essential in this field.

☞ The superposition principle of a linear theory does not apply (but approximate
solutions in the form of a truncated Fourier series are sometimes reasonable).

☞ Non-linear systems can possess extreme sensitivity to initial conditions, indicative
of chaotic behaviour.

☞ In general, non-linear systems exhibit a far richer range of behaviour than do linear
systems, and even simple non-linear systems can have surprising and
complex properties. Among these are chaos, amplitude-dependent frequencies,
multi-valued amplitudes, amplitude jumps, hysteresis, phase locking, and inverted
oscillations.

☞ Many properties of non-linear equations are universal.

The following questions illustrate some of these features.

Question 13.1

A particle of massmmoves in a one-dimensional potential given by the series expansion

V (x) = 1
2
k1x

2 + 1
3
k2x

3 + 1
4
k3x

4 · · · , (1)

where the ki are constants.

(a) Show that the equation of motion is

ẍ+ αx + βx2 + γx3 + · · · = 0 , (2)

where α, β, γ, · · · are constants.

(b) Sketch the possible energy diagrams when the only non-zero coefficients are:
1. α(> 0) and β, 2. α(> 0) and γ, 3. γ(> 0) . In each case comment
on the nature of the possible motions (whether bounded or unbounded.)



Non-linear oscillations ���

Solution

(a) The force F = −dV/dx corresponding to (1) is

F (x) = −k1x− k2x
2 − k3x

3 − · · · , (3)

and therefore the equation of motion mẍ = F is (2) with α = k1/m, β = k2/m,
γ = k3/m, etc.

(b) 1. V (x) = m( 1
2
αx2 + 1

3
βx3).

harmonic potential

−α/β

α > 0, β > 0 V (x)

x

harmonic potential

−α/β

α > 0, β < 0V (x)

x

The motion can be either unbounded or bounded (periodic). The harmonic approxi-
mation is reasonable for |x| � α/|β|.

2. V (x) = m( 1
2
αx2 + 1

4
γx4).

potential
harmonic

α > 0, γ > 0V (x)

x

harmonic potential

−
√−α/γ

√
−α/γ

α > 0, γ < 0V (x)

x

The motion is always bounded if γ > 0 (the system is referred to as ‘hard’); but if γ < 0
(a ‘soft’ system) it can be either bounded or unbounded. The harmonic approximation
is reasonable if |x| � √

α/|γ|.

3. V (x) = 1
4
mγx4.

The graph of V (x) is similar to the above for γ > 0, and the motion is always bounded.
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Comments

(i) In general, if α = k1/m > 0 then the potential (1) has a minimum at x = 0, and
for small oscillations (2) describes a perturbed (anharmonic) oscillator. A linear
(harmonic) approximation is reasonable in the limit when energy→ 0+.

(ii) In general, if x = 0 is to be a point of stable equilibrium then F (x) must change
sign there: the leading non-zero term in (3) must involve an odd power of x – and
correspondingly an even power in V (x).

(iii) If the leading term in (1) is even and a quartic or higher (x4, x6, . . .), then the
oscillations have no linear (harmonic) approximation and they are referred to as
‘intrinsically non-linear’.[1]

(iv) Intrinsically non-linear oscillations can also occur when V (x) is not differentiable
at x = 0. For example, the function V (x) = V0|x|n, where V0 is a positive constant
and n is an odd integer. The corresponding oscillations are sometimes called
‘dynamically shifted’.[2]

(v) The period T of the oscillatory motion can be calculated (either analytically or
numerically) from the formula (1) of Question 5.17.

Question 13.2

A particle of mass m moves in the one-dimensional potential V (x) = F0|x|, where F0

is a positive constant.

(a) Determine the solution x(t) for the initial conditions x(0) = x0(> 0) and ẋ(0) = 0.
Deduce that the angular frequency of the oscillations is

ω = 1
2
π
√
F0

/
2mx0 . (1)

(b) Plot a graph of x(t) versus t up to t = 7 s, for x0 = 1, m = 1 and F0 = 1 (in some
units). On the same axes, plot the harmonic oscillation x0 cosωt.

(c) Include a frictional force −αẋ (where α is a positive constant), and use
Mathematica to solve the equation of motion

ẍ+
2

τ
ẋ+

F0

m
signx = 0 , (2)

where τ = 2m/α and signx = 1 if x > 0, and −1 if x < 0. Use the same initial
conditions and parameters as in (a) and (b), and take τ = 20 s. Plot x(t) versus
t up to t = 20 s. On the same axes plot also the damped harmonic oscillation
x0e

−2t/τ cosωt.

[1] P. Mohazzabi, “Theory and examples of intrinsically nonlinear oscillators,” American Journal
of Physics, vol. 72, pp. 492–498, 2004.

[2] W. M. Hartmann, “The dynamically shifted oscillator,” American Journal of Physics, vol. 54,
pp. 28–32, 1986.
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Solution

(a) F = −dV/dx = −F0 if x > 0 and F = F0 if x < 0. For x > 0 the equation of

motion ẍ+ F0

/
m = 0 and the initial conditions give

x(t) = x0 − F0t
2
/
2m (3)

for 0 ≤ t ≤ 1
4
T , where

T = 4
√

2mx0

/
F0 . (4)

For t > 1
4
T , x becomes negative. The solution to ẍ− F0

/
m = 0 that matches (3)

at t = 1
4
T is

x(t) = −{
x0 − (F0

/
2m)(t− 1

2
T )2

}
(5)

for 1
4
T ≤ t ≤ 3

4
T . In general,

x(t) = (−1)n
{
x0 − (F0

/
2m)(t− 1

2
nT )2

}
(6)

for 1
4
(2n− 1)T ≤ t ≤ 1

4
(2n+ 1)T and n = 0, 1, 2, . . . . The period of the motion

is T , and ω = 2π
/
T is given by (1).

(b) Cell 1 of the Mathematica notebook given below yields the graph:

x0 cos ωt
Equation (6)

−1.0 �

1.0 �

6.0

�

3.0

�

x(t)

t

The solution (6) has a Fourier series[3]

x(t) =
32x0

π3

[
cosωt− 1

33
cos 3ωt+

1

53
cos 5ωt− · · ·

]
, (7)

which is reasonably approximated by the harmonic oscillation x0 cosωt, as is
evident in the figure.

(c) In (2) we use the Mathematica function Sign[x] that includes the value
sign 0 = 0. (This does not affect the numerical calculations.) The relevant code is
given in cell 2 of the notebook below.

[3] I. R. Gatland, “Theory of a nonharmonic oscillator,” American Journal of Physics, vol. 59,
pp. 155–158, 1991.
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x0e
−2t/τ cos ωt

numerical solution

−1.0 �

1.0 �

22.0�11.0�

x(t)

t

Comments

(i) The dependence of ω on the amplitude x0 is a feature of non-linear oscillations,
and contrasts with harmonic oscillations, where ω =

√
k/m is independent of x0.

(ii) Approximate analytical solutions to (2) have been obtained.[3]

(iii) The potential V = F0|x| has been used in the study of various non-linear systems
including an elastic ball bouncing vertically.[1] Here, V (x) = mgx for x ≥ 0 and
V (x) = ∞ if x < 0. The oscillations are intrinsically non-linear. Instead of (4) the

period is T = 2
√

2x0

/
g.

In[1]:= x0 � 1�F0 � 1�m � 1�T � 4

�
2 m x0

F0
�Ω0 �

2 Π

T
�x	t_
 �� x0 �

F0 t2

2 m
�

f	t_
 �� Piecewise���x	t
,t � T

4
�,� � x�t � T

2
�, T

4
< t �

3 T

4
�,

�x	t � T
, 3 T

4
< t �

5 T

4
����

g1 � Plot�f	t
�,�t,0, 5 T

4
�,PlotStyle � Blue,DotDashed,Thin���

g2 � Plot�x0 Cos	Ω0 t
�,�t,0, 5 T

4
�,PlotStyle � Orange,Dashed,Thin���

Show	g1,g2


In[2]:= Clear	x
�Τ � 20�tmax � 4 T�

Sol � NDSolve��x��	t
 � 2 x�	t


Τ
�
F0 Sign	x	t



m
�� 0,x	0
 �� x0,x�	0
 �� 0�,

x	t
,x�	t
,x��	t
�,t,0,tmax�,MaxSteps � 100000��
g1 � Plot	x	t
/.Sol�,t,0,tmax�,PlotRange � All,PlotStyle � Black�
�

g2 � Plot��x0 Exp� � 2 t

Τ
� Cos	Ω0 t
�,t,0,tmax�,PlotRange � All,

PlotStyle � Orange,Dashed,Thin���
Show	g1,g2
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Question 13.3

Consider a particle of mass m oscillating in the one-dimensional potential

V (x) =

{
1
2
mω2

0
(x+X)2 if x ≥ 0

1
2
mω2

0
(x−X)2 if x ≤ 0 ,

(1)

where ω0 and X are constants

(a) Plot V (x) for X > 0 and X < 0. Show also the corresponding graphs of F (x).

(b) Use (1) of Question 5.17 to show that the angular frequency of oscillations of
amplitude x0 is given by

ω(x0) = ω0

[
1 − 2

π
sin−1

(
X

x0 +X

)]−1

, (2)

where x0 > −2X if X < 0. Plot the graphs of ω/ω0 versus x0

/|X |.

Solution

(a) The first pair of diagrams below shows the two parabolas in (1) and the poten-
tial V (x) (solid curves). If X > 0 the minimum at the origin is approximately
V-shaped and becomes more so as X increases, whereas for X < 0 the potential
is bimodal with minima at ±X and a Λ-shaped local maximum at the origin. The
second pair of diagrams shows the restoring force versus displacement.

(b) The angular frequency is ω = 2π/T , where

T =

∫ x2

x
1

√
2m

{V (x2) − V (x)} dx . (3)

Here, V (x) is given by (1), and x1 and x2 are the classical turning points. Let
x2 = x0. Then, V (x2) = 1

2
mω2

0
(x0 + X)2, and x1 = −x0 (provided x0 > −2X

when X < 0). By evaluating the integral in (3) we obtain (2). If x0 < −2X when
X < 0, the particle oscillates harmonically with angular frequency ω0 in either
one of the two wells: ω has a discontinuity equal to 1

2
ω0 at x0 = −2X as shown

in the graph of ω/ω0 versus x0/|X |.

X > 0

3.0 �

6.0 �

−2.0

�

−1.0

�

1.0

�

2.0

�

V (x)
1
2mω2

0X
2

x/X

X < 0

1.0•

−2.0

�

−1.0

�

1.0

�

2.0

�

V (x)
1
2mω2

0X
2

x/|X|
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X > 0
3.0 �

−3.0 �

−2.0

�

2.0

�

F (x)
mω2

0X

x/X

X < 0
1.5 �

−1.5 �

−2.5

�

2.5

�

F (x)
mω2

0X

x/|X|

Equation (2)

Equation (2) X > 0

X < 0

3.0 �

2.0 �

1.0 �

5.0
�

4.0

�

3.0

�

2.0

�

1.0

�

ω/ω0

x0/|X|

Comment

The above theory has been applied to the vibrations of a two-point librator and of a
spring doorstop.[2]

Question 13.4

Consider the arrangement shown below, where a mass m is attached to two light
identical springs that are in turn attached to two rigid walls a distance 2� apart. The
springs have force constant k and equilibrium length �0. Neglect the force of gravity
and assume that the system is frictionless.

kk

2`

m

x
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(a) Suppose � = �0. Show that for small transverse displacements (|x| � �0) the
equation of motion is

ẍ+ γx3 = 0 , (1)

where γ = k
/
m�2

0
is a positive constant.

(b) Suppose � > �0. Show that the equation of motion (1) changes to

ẍ+ αx+ γx3 = 0 , (2)

where α = 2k(�− �0)
/
m� and γ = k

/
m�2 are positive constants.

Solution

(a) When m is displaced by an amount x, the extension of each spring is√
�2
0
+ x2 − �0 = �0

√
1 + x2

/
�2
0
− �0 ≈ x2

/
2�0 .

This produces a tension T = kx2
/
2�0 in each spring and thus a net restoring force

on m equal to
F = −2Tx

/
�0 = −kx3

/
�2
0
. (3)

The corresponding equation of motion is given by (1).

(b) When � > �0 the extension is
√
�2 + x2 − �0 ≈ � − �0 + x2

/
2�. The tension T in

each spring, which is k times this extension, results in a net restoring force equal
to −2Tx

/
� . So, the equation of motion is

mẍ+
{
2k(�− �0)

/
�
}
x+ (k

/
�2)x3 = 0 . (4)

Comments

(i) The effect of giving the springs an initial tension is to change the equation of
motion from (1) to (2).

(ii) Equation (2) has a linear (harmonic) approximation in the limit of small oscilla-

tions
(|x| � √

α/γ, see Question 13.1
)
, whereas the oscillations corresponding to

(1) are intrinsically non-linear.

(iii) Approximate solutions to the non-linear equations (1) and (2) are of general
interest, and they are studied in the next four questions.

Question 13.5

Consider the equation of motion

ẍ+ γx3 = 0 (1)

(γ is a positive constant) with initial conditions

x = x0 and ẋ = 0 at t = 0 . (2)
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(a) Show that the period of the oscillations is

T =

√
2

γ
B( 1

4
, 1

2
)

1

x0

≈ 7.4163√
γ

1

x0

. (3)

Here, B denotes the beta function

B( 1
4
, 1

2
) =

∫ 1

0

u−3/4(1 − u)−1/2du ≈ 5.2441 . (4)

(b) Show that the Fourier expansion for x(t) can be expressed as

x(t) =

∞∑
n=0

a2n+1 cos(2n+ 1)ωt (ω = 2π/T ) . (5)

(c) Use an integration by parts (twice) to express the Fourier coefficients

an =
ω

π

∫ 2π/ω

0

x(t) cosnωt dt (6)

as

an =
γ

πn2ω

∫ 2π/ω

0

x3(t) cosnωt dt . (7)

(d) Use the ansatz
x(t) = a1 cosωt (8)

in (7) to obtain the estimates

a1 = 2ω
/√

3γ , a3 = a1/27 ≈ 0.03704a1 . (9)

Impose the initial condition (2)1 on the corresponding approximate solution
x = a1 cosωt+ a3 cos 3ωt and deduce that this yields

T1 ≈ 1.014T (10)

for the period, where T is the actual value (3).
(
Hint: Use the identity

cos3 ωt = 3
4
cosωt+ 1

4
cos 3ωt .

)
(11)

(e) Repeat (d), starting with the more accurate approximation

x(t) = a1 cosωt+ a3 cos 3ωt , (12)

instead of (8). Show that this yields

a1 ≈ 0.9782(2ω
/√

3γ) , a3 ≈ 0.04501a1 , a5 ≈ 0.001723a1 , (13)

and an improved estimate for the period

T2 ≈ 1.002T . (14)(
Hint: Use also the identity

cos2 ωt cos 3ωt = 1
4
cosωt+ 1

2
cos 3ωt+ 1

4
cos 5ωt .

)
(15)
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Solution

(a) According to Question 5.17,

T =

∫ x
0

−x
0

√
2m

V (x0) − V (x)
dx . (16)

Here, V (x) = 1
4
mγx4. With the substitution u = (x

/
x0)

4, (16) yields (3):

T =

√
2

γ

1

x0

∫ 1

0

u−3/4(1 − u)−1/2du . (17)

(b) Start with the standard Fourier expansion

x(t) = 1
2
a0 +

∞∑
n=1

(an cosnωt+ bn sinnωt) , (18)

where

an = (ω/π)

∫ 2π/ω

0

x(t) cosnωt dt (n = 0, 1, . . .) , (19)

bn = (ω/π)

∫ 2π/ω

0

x(t) sin nωt dt (n = 1, 2, . . .) . (20)

Now, time-reversal invariance of a non-dissipative system and the initial condition
ẋ = 0 at t = 0 require that the motion from t = 0 to T (= 2π/ω) and the
reversed motion from t = T to 0 be the same. Therefore, in the interval [0, T ],
x(t) is an even function about t = π/ω and an odd function about t = π/2ω and
3π/2ω:

��

−x0�

x0�

••
2π/ω

3π/2ω

π/ω

π/2ω

x(t)

t

It is helpful to shift the time origin to t = π/ω by letting t = t′ + π/ω. Then

an = (−1)n(ω/π)

∫ π/ω

−π/ω
x(t′ + π/ω) cosnωt′ dt′ (21)

bn = (−1)n(ω/π)

∫ π/ω

−π/ω
x(t′ + π/ω) sinnωt′ dt′ . (22)



��� Solved Problems in Classical Mechanics

Consider first (22): x is an even function of t′, while sinnωt′ is an odd function –
therefore, bn = 0 for all n. In (21), if n is even then the integrals from t′ = −π/ω
to −π/2ω and 0 to π/2ω cancel, as do those from −π/2ω to 0 and π/2ω to π/ω.
If n is odd no such cancellation occurs. So the Fourier series for x(t) is a cosine
series containing only odd harmonics, as in (5).

(c) We integrate (6) by parts in the following manner:

an =
1

πn

∫ 2π/ω

0

x(t)

(
d

dt
sinnωt

)
dt = − 1

πn

∫ 2π/ω

0

dx

dt
sinnωt dt .

A repetition of this process, and use of the initial condition (2)2, yields

an = − 1

πn2ω

∫ 2π/ω

0

d2x

dt2
cosnωt dt , (23)

which, in view of the equation of motion (1), is (7).

(d) With the approximation (8) and the identity (11), equation (7) with n = 1 gives

a1 =
γ

πω
a3

1

∫ 2π/ω

0

(
3
4
cosωt+ 1

4
cos 3ωt

)
cosωt dt =

3γa3
1

4ω2
, (24)

because of the orthonormality condition

ω

π

∫ 2π/ω

0

cosmωt cosnωt dt = δmn . (25)

Thus, a1 = 2ω
/√

3γ. Similarly, by setting n = 3 in (7) we obtain

a3 =
γ

36πω
a3

1

∫ 2π/ω

0

cos2 3ωt dt =
γa3

1

36ω2
=
a1

27
. (26)

Thus, the solution approximated by the first two harmonics is

x(t) =
2ω√
3γ

(
cosωt+

1

27
cos 3ωt

)
. (27)

By imposing the initial condition (2)1 on (27) we obtain for the angular frequency
and the period

ω =
(
27
√

3γ
/
56
)
x0 , (28)

T1 = 2π/ω =
7.524√
γ

1

x0

= 1.014T . (29)

Equations (27) and (28) give the approximate solution

x(t) = x0

(
27

28
cosωt+

1

28
cos 3ωt

)
. (30)
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(e) For the ansatz (12) we write

x3 ≈ a3
1
cos3 ωt+ 3a2

1
a3 cos2 ωt cos 3ωt

= 3
4

(
a3

1 + a2
1a3

)
cosωt+

(
1
4
a3

1 + 3
2
a2

1a3

)
cos 3ωt+ 3

4
a2

1a3 cos 5ωt . (31)

In the first step above we have neglected terms in a1a
2
3 and a3

3 , and in the second
step we have used the identities (11) and (15). By substituting (31) in (7) and
setting n = 1, 3 and 5 in turn, and using (25), we obtain the three equations:

a1 =
3γ

4ω2

(
a3

1
+ a2

1
a3

)
, a3 =

γ

9ω2

(
1
4
a3

1
+ 3

2
a2

1
a3

)
, a5 =

3γ

100ω2
a2

1
a3 . (32)

The ratio (32)2÷ (32)1 yields a quadratic equation

27 (a3/a1)
2

+ 21 (a3/a1) − 1 = 0 . (33)

One root is
a3

/
a1 ≈ 0.04501 . (34)(

We ignore the second root ≈ −1.85 because it gives an imaginary value for a1 in

(32)1.
)

From (32)1 and (34) we have

a1 ≈ 0.9782
2ω√
3γ

. (35)

Equations (32)3, (34) and (35) yield

a5

/
a1 ≈ 3γ

100ω2
4.501× 10−2a2

1 ≈ 0.001723 . (36)

Thus, the solution approximated by the first three harmonics of (5) is

x(t) = 0.9782
2ω√
3γ

(
cosωt+ 0.04501 cos3ωt+ 0.001723 cos5ωt

)
. (37)

The initial condition (2)1 applied to (37) requires

ω = 0.4883
√

3γ x0 , (38)

and so

T2 =
7.4287√

γ

1

x0

= 1.002T. (39)

Equations (37) and (38) give the approximate solution

x(t) = x0

(
0.9553 cosωt+ 0.04300 cos3ωt+ 0.001646 cos5ωt

)
. (40)

Comments

(i) According to (3), the period T is inversely proportional to x0 (this is unlike simple
harmonic motion where the period is independent of amplitude).

(ii) The approximate solutions obtained above are compared with numerical solutions
in the following question.
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Question 13.6

(a) Rewrite the equation of motion ẍ+γx3 = 0 of Question 13.5 in the dimensionless
form

d2X

dτ2
+ 2B2( 1

4
, 1

2
)X3 ≈ d2X

dτ2
+ 55.00X3 = 0 , (1)

where X = x/x0, τ = t/T and T is given by (3) of Question 13.5.

(b) Use the approximation (40) of Question 13.5 and its derivatives to plot graphs
of X(τ), Ẋ(τ) and Ẍ(τ) for 0 ≤ τ ≤ 1 and the initial conditions X = 1.0 and
Ẋ = dX

/
dτ = 0 at τ = 0. On the same graph, use points to represent values

obtained from a numerical solution of (1).

(c) With a step size ∆τ = 0.001, create a data file from the numerical solutions for
X(τ) obtained in (b). Next, apply Mathematica’s FindFit function to this data
and calculate the first three Fourier coefficients a1, a3 and a5. Compare these
with the approximations in (d) and (e) of Question 13.5 (i.e. the first and second
Fourier approximations).

(d) Plot a graph that shows the relative error of both these Fourier approximations
for X(τ) in the first cycle of the motion.

Solution

(a) By expressing the equation of motion in terms of X and τ , and using (3) of
Question 13.5, we obtain (1).

(b) The graphs and the Mathematica notebook used to obtain them are shown below.

Second approximation (40)

Numerical calculation

1.0

−1.0

�

�

0.5 1.0

� �

X

τ

Second approximation (40)

Numerical calculation
5.0

−5.0

�

�

0.5 1.0

�

Ẋ

τ
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Second approximation (40)

Numerical calculation

50.0

−50.0

�

�

0.5 1.0

� �

Ẍ

τ

(c) The second cell in the Mathematica notebook below uses the data file FourierDat
to calculate the Fourier coefficients. The values obtained are shown in the follow-
ing table, where the first and second approximations refer to the values in (30)
and (40) of Question 13.5.

a1/x0 a3/x0 a5/x0

First approximation 0.9643 0.03571 0
Second approximation 0.9553 0.04300 0.001646
Numerical value 0.9550 0.04305 0.001861

(d) The following graph shows the fractional error
(
X∗(τ)−X(τ)

)/
X(τ), whereX∗(τ)

represents either the first or second approximation. The error in the second Fourier
approximation is less than 0.3%.

Second approximation (40)

First approximation (30)

3.0 �

0.5 1.0

� �fr
a
ct

io
n
a
l
er

ro
r

(%
)

τ

In[1]:= Τmax � 1.0�

Sol � NDSolve��X��	Τ
 � 2Beta�1
4
,
1

2
�2 X	Τ
3 �� 0,X	0
 �� 1.0,

X�	0
 �� 0� ,X	Τ
,X�	Τ
,X��	Τ
�,Τ, 0,Τmax���
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In[2]:= FourierDat � Table�Τ,First	X	Τ
/.Sol
�,�Τ,0,Τmax, Τmax

100
���

Coeff � FindFit	FourierDat,a1 Cos	2Π Τ
 � a3 Cos	6Π Τ
 � a5 Cos	10Π Τ
,

a1,a3,a5�,Τ


gr1 � Plot	Evaluate	a1 Cos	2Π Τ
 � a3 Cos	6Π Τ
 � a5 Cos	10Π Τ
/.Coeff
,

Τ,0,Τmax�,PlotStyle � Red,Thin�
� gr2 � ListPlot	FourierDat
�

Show	gr1,gr2


Question 13.7

Consider the equation of motion of the Duffing oscillator:

ẍ+ αx+ γx3 = 0 , (1)

where α and γ are positive constants. The initial conditions are

x = x0 and ẋ = 0 at t = 0 . (2)

(a) Show that the period of the oscillations is

T (ε) =
2

π
T0

∫ 1

0

du√
1 − u2 + ε(1 − u4)

, (3)

where T0 = 2π
/√
α is the period when γ = 0 and ε is the dimensionless quantity

ε = γx2
0

/
2α . (4)(

Note: in the numerical work that follows, it is convenient to express (3) as

T (ε)

T0

=
2

π
√

1 + ε
F
( −ε

1 + ε

)
, (5)

where F is a complete elliptic integral of the first kind, as defined in Mathematica.
)

(b) Extend the Fourier analysis of Question 13.5 to obtain approximate solutions for
x(t) and T (ε). Plot a graph of T (ε)

/
T0 versus ε for 0 ≤ ε ≤ 10 and compare it

with the numerical values obtained from (5) using Mathematica. Plot also the
fractional error in T (ε) versus ε.

Solution

(a) Use the formula (see Question 5.17)

T =

∫ x0

−x
0

√
2m

V (x0) − V (x)
dx . (6)

Here, V (x) = 1
2
mαx2 + 1

4
mγx4, and the substitution u = x/x0 yields (3).
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(b) The relevant results from Question 13.5 are the Fourier expansion

x(t) =
∞∑
n=0

a2n+1 cos(2n+ 1)ωt , (7)

the formula for the Fourier coefficients

an = − 1

πn2ω

∫ 2π/ω

0

ẍ cosnωt dt , (8)

and the orthonormality relation

ω

π

∫ 2π/ω

0

cosmωt cosnωt dt = δmn . (9)

Equations (1), (2)2 and (9) allow us to express (8) as

an =
α

n2ω2
an +

γ

πn2ω

∫ 2π/ω

0

x3(t) cosnωt dt (n = 1, 3, 5 . . .) . (10)

The last term in (10) has been discussed in Question 13.5. Thus we have:

1. The ansatz x = a1 cosωt in (10) yields two equations,

(ω2 − α)a1 = 3γa3
1

/
4 , (9ω2 − α)a3 = γa3

1

/
4 , (11)

and their solutions for ω2 and a3 in terms of a1 are

ω2 = α+ 3γa2
1

/
4 ,

a3

a1

=
γ

32α+ 27γa2
1

a2
1
. (12)

Equations (12), together with the initial condition

a1 + a3 = x0 , (13)

determine a1, a3 and ω. We obtain approximate solutions as follows. Because
α > 0 it follows from (12)2 that a3 < a1/27. So, as a first approximation, we set
a1 = x0 in the right-hand side of (12)2. Then,

a3

a1

=
ε

16 + 27ε
, (14)

where ε is given by (4). A better approximation for a1 follows from (13) and (14):

a1 =
16 + 27ε

16 + 28ε
x0 , (15)

and this gives for the frequency in (12)1

ω =

√
α+

3αε

2

(
16 + 27ε

16 + 28ε

)2
. (16)
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Thus, based on the first two harmonics we have the following approximations:

x(t)

x0

=

(
16 + 27ε

16 + 28ε

)
cosωt+

(
ε

16 + 28ε

)
cos 3ωt , (17)

T1(ε)

T0

=

[
1 +

3ε

2

(
16 + 27ε

16 + 28ε

)2]−1/2

, (18)

where T0 = 2π
/√
α. Note that (14)–(16) have the desired property that in the

limit α→ 0 (i.e. ε→ ∞) they reduce to the exact solutions to (12) and (13) that
were obtained in Question 13.5. The graph of (18) is shown below, together with
numerical values of (5) calculated using Mathematica’s EllipticK function.

First approximation (18)

Equation (5)1.0

0.50

�

�

5 10

� �

T/T0

ε

2. The ansatz: x(t) = a1 cosωt+ a3 cos 3ωt in (10) yields three equations

(ω2 − α)a1 = 3
4
γ(a3

1 + a2
1a3) (19)

(9ω2 − α)a3 = γ( 1
4
a3

1 + 3
2
a2

1a3) (20)

(25ω2 − α)a5 = 3
4
γa2

1a3 . (21)

Equation (19) expresses ω2 in terms of a1 and a3

/
a1:

ω2 = α+ 3
4
γ(1 + a3

/
a1)a

2
1 . (22)

If this is substituted in (20) we obtain an equation for a3

/
a1 in terms of a2

1 :{
32α+ 27γ

(
1 +

a3

a1

)
a2

1

}
a3

a1

= γa2
1

(
1 +

6a3

a1

)
. (23)

The Fourier coefficients must satisfy the initial condition

a1 + a3 + a5 = x0 . (24)

We obtain an approximate solution to (23) by first neglecting a3 and a5 in (24).
Thus, we set a2

1 = x2
0 in (23) to obtain the quadratic equation
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27ε(a3

/
a1)

2 + (16 + 21ε)(a3

/
a1) − ε = 0 . (25)

The solution that remains finite when ε→ 0 (i.e. γ → 0) is

a3

a1

= G(ε) =
1

54ε

{√
108ε2 + (16 + 21ε)2 − (16 + 21ε)

}
. (26)

Similarly, from (21), (22) and (26) with a2
1

= x2
0

we have

a5

a1

=
εG(ε)

16 + 25ε+ 25εG(ε)
. (27)

Finally, we use (26) and (27) in (24) and solve for a1:

a1

x0

= H(ε) =
16 + 25ε{1 +G(ε)}

16{1 +G(ε)} + 25ε{1 +G2(ε)} + 51εG(ε)
. (28)

Thus, the solution approximated by the first three harmonics is

x(t)

x0

= H(ε)
{
cosωt+G(ε) cos 3ωt+

εG(ε)

16 + 25ε{1 +G(ε)} cos 5ωt
}
. (29)

Here, ω is given by (22), (26) and (28) as

ω =
√
α
[
1 + 3

2
ε{1 +G(ε)}H2(ε)

]
, (30)

and so the period is

T2(ε)

T0

=
1√

1 + 3
2
ε{1 +G(ε)}H2(ε)

. (31)

The graph of (31) is not shown because it is almost coincident with the graph of
T1(ε) above. Instead, a plot of the fractional error (T ∗ − T )

/
T versus ε is given

below, where T ∗ represents either T1(ε) or T2(ε) and T is given by (3).

Second approximation (31)

First approximation (18)

1.2

0.6

�

�

5 10

� �
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ε

Comment

The Duffing oscillator has both mechanical and electrical analogues. A damped, driven
Duffing oscillator is considered in Questions 13.11 and 13.12.
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Question 13.8

(a) Rewrite the equation of motion ẍ + αx + γx3 = 0 of Question 13.7 in the
dimensionless form

d2X

dτ2
+

16

1 + ε
F 2

( −ε
1 + ε

){
X + 2εX3

}
= 0 , (1)

where X = x/x0, τ = t/T , F is a complete elliptic integral of the first kind (as
defined in Mathematica) and ε and T are given by (4) and (5) of Question 13.7.

(b) Obtain numerical solutions to (1) for 0 ≤ ε ≤ 10, and with initial conditions
X = 1.0 and Ẋ = dX

/
dτ = 0 at τ = 0. Use Mathematica’s FindFit function to

calculate the Fourier coefficients a1(ε), a3(ε) and a5(ε) of these numerical solutions,
and show these as a discrete set of points on a graph. On each graph also plot the
approximate ai(ε) contained in (17) and (29) of Question 13.7.

(c) Take ε = 0.9, and use the second approximation (29) of Question 13.7, and its
derivatives, to plot graphs of X(τ), Ẋ(τ) and Ẍ(τ), where τ = ωt

/
2π, in the

interval 0 ≤ τ ≤ 1. On the same graph, use points to represent values obtained
from the numerical solution of the equation of motion.

Solution

(a) By expressing the equation of motion in terms of X and τ , and using (4) and (5)
of Question 13.7 we obtain (1).

(b) Replace cell 1 in the Mathematica notebook of Question 13.6 with the following:

In[1]:= Ε � 0.9�Τmax � 1.0�

Sol � NDSolve��X��	Τ
 �
16

1 � Ε
�X	Τ
 � 2Ε X	Τ
3�	EllipticK� �Ε

1 � Ε
� 
2 �� 0,

X	0
 �� 1.0, X�	0
 �� 0� ,X	Τ
,X�	Τ
,X��	Τ
�,Τ, 0,Τmax���
In the following figures the horizontal dotted lines show the asymptotic values of
the approximate Fourier coefficients in (29) of Question 13.7 for ε→ ∞.

Second approximation (29)

First approximation (17)

Numerical calculation

0.9643 �

5 10

� �

asymptote

a1/x0

ε
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Second approximation (29)

First approximation (17)

Numerical calculation

0.0430 �

5 10
� �

a3/x0

ε

Second approximation (29)

Numerical calculation

0.00165 �

5 10

� �

a5/x0

ε

(c)

Second approximation (29)

Numerical calculation

1.0

−1.0

�

�

ε = 0.9

0.5 1.0

� �

X

τ
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Second approximation (29)

Numerical calculation

5.0

−5.0

�

�

ε = 0.9

0.5 1.0

�

Ẋ

τ

Second approximation (29)

Numerical calculation

50.0

−50.0

�

�

ε = 0.9

0.5 1.0

� �

Ẍ

τ

Comment

The numerical solutions for X(τ) approach their asymptotic (large ε) behaviour
already at quite low values of ε.

Question 13.9

Consider the equation of motion

ẍ+ αx− βx2 = 0, (1)

where α and β are positive constants, and the initial conditions are

x = x0 (> 0) and ẋ = 0 at t = 0 . (2)

(a) Show that the period of bounded motion is given by

T (ε) =
T0

π

∫ 1

u(ε)

du√
1 − u2 + 2

3
ε(u3 − 1)

, (3)

where T0 = 2π
/√

α is the period when β = 0 and ε is the dimensionless quantity

ε = βx0

/
α < 1 , (4)
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and

u(ε) = −3 − 2ε

4ε

(√
1 +

8ε

3 − 2ε
− 1

)
. (5)

(b) Extend the Fourier analysis of Question 13.5 to obtain approximate solutions for
bounded motion x(t) when ε � 1, based on 1. the first two harmonics and 2.
the first three harmonics. Compare the results for the corresponding approximate
periods T (ε) with (3) by plotting graphs of T (ε) versus ε.

Solution

(a) For the asymmetric potential V (x) = 1
2
mαx2 − 1

3
mβx3 the period is

T =

∫ x
0

x
1

√
2m

V (x0) − V (x)
dx , (6)

where x1 is a solution to V (x) = V (x0). By making the substitution u = x/x0, we
can express (6) as

T (ε) =
2√
α

∫ 1

u(ε)

du√
1 − u2 + 2

3
ε(u3 − 1))

, (7)

where u(ε) is a solution to

2
3
εu3 − u2 + (1 − 2

3
ε) = 0 . (8)

One solution of (8) is u = 1 (corresponding to the initial point x = x0) and the
other is therefore a solution of the quadratic equation

2εu2 − (3 − 2ε)u− (3 − 2ε) = 0 . (9)

The root that remains finite when ε→ 0 is (5). This root is real if ε < 3
2
, which is

automatically satisfied because of the condition (4) for bounded motion
(
x0 less

than the coordinate α/β at which V (x) has a local maximum
)
.

(b) The Fourier analysis of (1) is similar to that in Question 13.5 and we give just an
outline. The Fourier expansion for the bounded (periodic) solutions of (1) that
satisfies the initial condition v(0) = 0 is

x(t) = 1
2
a0 +

∞∑
n=1

an cosnωt , (10)

where

an =
ω

π

∫ 2π/ω

0

x(t) cosnωt dt

= − βω

π(n2ω2 − α)

∫ 2π/ω

0

x2(t) cosnωt dt . (11)

Note that because V (x) is asymmetric, the expansion (10) contains both even
and odd harmonics (and not just odd harmonics as is the case for a symmetric
potential, see Question 13.5).
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1. We start by making the approximation x(t) = 1
2
a0 +a1 cosωt in (11). That is,

x2(t) = 1
4
a2

0
+ 1

2
a2

1
+ a0a1cosωt+ 1

2
a2

1
cos 2ωt . (12)

Now ∫ 2π/ω

0

cosmωt cosnωt dt =
π

ω
δmn , (13)

and it therefore follows that with the approximation (12) the only non-zero
coefficients are a0, a1 and a2, and that these satisfy the three equations

a0 = (β/α)( 1
2
a2

0
+ a2

1
) , a1 = − β

ω2 − α
a0a1 , a2 =

β

4ω2 − α
1
2
a2

1
. (14)

When ε � 1, the oscillator is almost harmonic. Then, a1 ≈ x0 and a0 � x0. So,
(14)1 yields the estimate

a0 ≈ εx0 , (15)

and then (14)2 gives

ω2 ≈ α(1 − ε2) . (16)

From (14)3 and (16) we have

a2 ≈ − 1
6
εx0 . (17)

An improved value for a1 is obtained by imposing the initial condition

1
2
a0 + a1 + a2 = x0 . (18)

From (15), (17) and (18) we find

a1 ≈ (1 − 1
3
ε)x0 . (19)

Thus, for ε� 1 the solution based on the first two harmonics is

x(t)

x0

= 1
2
ε+ (1 − 1

3
ε) cosωt− 1

6
ε cos 2ωt , (20)

where

ω =
√
α(1 − ε2) . (21)

The period is

T1(ε) =
T0√

1 − ε2
. (22)

2. For the next approximation, x(t) = 1
2
a0 +a1 cosωt+a2 cos 2ωt, we can express

x2(t) = 1
4
a2

0 + 1
2
a2

1 + (a0a1 + a1a2) cosωt+ ( 1
2
a2

1 + a0a2) cos 2ωt+ a1a2 cos 3ωt, and

(11) and (13) yield
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a0 = (β/α)( 1
2
a2

0
+ a2

1
) , a1 =

−β
ω2 − α

(a0a1 + a1a2)

a2 =
−β

4ω2 − α
( 1

2
a2

1
+ a0a2) , a3 =

−β
9ω2 − α

a1a2 .

⎫⎪⎪⎬⎪⎪⎭ (23)

The initial condition (2)1 requires

1
2
a0 + a1 + a2 + a3 = x0 . (24)

For ε � 1 we can obtain approximate solutions to these equations by starting
with a1 ≈ x0 and iterating. Up to the leading terms in ε the results are

a0 ≈ εx0 , a1 ≈ (1 − 1
3
ε)x0 , a2 ≈ − 1

6
εx0 , a3 ≈ 1

48 ε
2x0 , (25)

ω2 ≈ α(1 − 5
6ε

2) . (26)

Thus, the solution based on the first three harmonics is

x(t)

x0

= 1
2
ε+ (1 − 1

3
ε) cosωt− 1

6
ε cos 2ωt+ 1

48 ε
2 cos 3ωt , (27)

and the period is

T2(ε) =
T0√

1 − 5
6 ε

2
. (28)

The Fourier coefficients in (25) are compared with numerical values in the next
question. A comparison of the periods (22) and (28) with a numerical integration
of (3) is shown below, together with an improved approximation given in (30).

Numerical evaluation of (3)

Second approximation (30)

Second approximation (28)

First approximation (22)

1.0

1.8

�

�

0 0.5 1.0

�

� �

T/T0

ε
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Comments

(i) Higher-order corrections to (25) can be obtained by further iteration of (23) and
(24). For example, to order ε3 one finds

a0 = (ε− 2
3
ε2 + 11

18 ε
3)x0 , a1 = (1 − 1

3
ε+ 29

144 ε
2 − 59

432 ε
3)x0

a2 = (− 1
6
ε+ 1

9ε
2 − 4

27 ε
3)x0 , a3 ≈ 1

48ε
2 x0 .

}
(29)

We have not evaluated the cubic terms in the small coefficient a3.

(ii) By using these expressions for a0 and a2 in (23)2 we obtain a better estimate of
ω and hence the period:

T2(ε) =
T0√

1 − 5
6 ε

2(1 − 2
3 ε+ 5

9 ε
2)
. (30)

The fractional error (T ∗ − T )
/
T versus ε, where T ∗ is either (28) or (30) and T

is given by (3), is plotted below.

Second approximation (30)

Second approximation (28)

−4

4

8

�

�

�

0.5 1.0� �
fr

ac
ti

on
al

er
ro

r
(%

)

ε

Comment

The error in (30) is less than 0.5% for ε � 0.9.

Question 13.10

(a) Rewrite the equation of motion ẍ + αx − βx2 = 0 of Question 13.9 in the
dimensionless form

d2X

dτ2
+ 4

[
X − εX2

]
I2(ε) = 0 , (1)

where X = x/x0, τ = t/T and T = T0I(ε) is given by (3) of Question 13.9.

(b) Find numerical solutions of (1) for 0.0001 ≤ ε ≤ 0.99 and initial conditions
X = 1.0 and Ẋ = dX

/
dτ = 0 at τ = 0. For each of these solutions, use Mathe-

matica’s FindFit function to calculate the Fourier coefficients a0, a1, a2 and a3 in
the expansion (10) of Question 13.9. Plot graphs of these coefficients as a function
of ε using a set of discrete points. On each graph, plot also the approximations
(25) and (29) of Question 13.9.
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(c) Plot graphs of X(τ), Ẋ(τ) and Ẍ(τ) in the interval 0 ≤ τ ≤ 1 and for ε = 0.3
and ε = 0.6, corresponding to the approximations (27) and (29) of Question 13.9.
As before, also include points representing numerical solutions of the equation of
motion.

Solution

(a) By expressing the equation of motion in terms of X and τ , and using (3) and (4)
of Question 13.9 we obtain (1).

(b) Replace cell 1 in the Mathematica notebook of Question 13.6 with the following:

In[1]:= X��	Τ
 � 4�X	Τ
 � Ε X	Τ
2�Chop�NIntegrate� 1�
2
3Ε �u

3 � 1� � u2 � 1
,�

�u, ��3 � 2Ε�

4Ε
�1 �

8Ε

3 � 2Ε
� 1�,1��,10�6��2 �� 0

and suitably modify the FindFit function to calculate the required Fourier
coefficients. This yields the following graphs:

Numerical calculation
Equation (29)1

Equation (25)1

0.5

1.0

�

�

0.5 1.0

� �

a0/x0

ε

Numerical calculation
Equation (29)2

Equation (25)2
0.5

1.0

�

�

0.5 1.0

� �

a1/x0

ε

Numerical calculation
Equation (29)3

Equation (25)3

−0.16

−0.32

�

�

0.5 1.0

� �

a2/x0

ε

Numerical calculation
Equation (25)4

0.02

0.01�

�

0.5 1.0

� �

a3/x0

ε
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(c)

Numerical calculation

Equation (29)

Equation (27)

1.0

−1.0

�

�

ε = 0.3

0.5 1.0

� �

X

τ

Numerical calculation

Equation (29)

Equation (27)

1.0

−1.0

�

�

0.5 1.0

� �

ε = 0.6X

τ

Numerical calculation

Equation (29)

Equation (27)

6.0

−6.0

�

�

0.5 1.0

� �

ε = 0.3Ẋ

τ

Numerical calculation

Equation (29)

Equation (27)

6.0

−6.0

�

�

0.5 1.0
� �

ε = 0.6Ẋ

τ

Equation (29)

Equation (27)

Numerical calculation

50.0

25.0

−25.0

�

�

�

0.5 1.0

� �

ε = 0.3Ẍ

τ

Equation (29)

Equation (27)

Numerical calculation

50.0

25.0

−25.0

�

�

�

0.5 1.0

� �

ε = 0.6Ẍ

τ

Question 13.11

Suppose a damped, driven harmonic oscillator is perturbed by a cubic force −mγx3.
That is, by including a term γx3 in the equation of motion (2) of Question 4.7.
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(a) Write down the equation of motion and look for an approximate steady-state
solution

x(t) = a(ω) cos
(
ωt− ϑ(ω)

)
. (1)

Show that this requires

tanϑ =
ω

Q(1 − ω2 + a2signγ)
(2)

and the following relations between ω2 and a:

ω2
± = 1 + a2 signγ − 1

2Q2
±

√
1 − 4Q2 − 4Q2a2 signγ + 4Q4(F0

/
ma)2

2Q2
, (3)

where Q = 1
2
ω0τ . In (3), ω, a and F0

/
m represent the dimensionless quantities

ω

ω0

,

√
3|γ|

2ω0

a ,

√
3|γ|

2ω3
0

F0

m
. (4)

(b) Suppose γ > 0 (a ‘hard’ system). Deduce that:

1. Equation (3) has no real values if a > amax, where

a2
max =

1

2

√(
1 − 1

4Q2

)2
+ 4Q2

(
F0

m

)2
− 1

2

(
1 − 1

4Q2

)
. (5)

2. ω2
−(a) < 0 if a < amin, where amin is the largest real root of

a6 + 2a4 + a2 − (F0

/
m)2 = 0 . (6)

3. ω2
±(a) > 0 if amin < a < amax.

(c) Write a Mathematica notebook to calculate a(ω) and ϑ(ω) for γ > 0, Q = 4 and
F0

/
m = 0.4. Plot the graphs of a(ω) and ϑ(ω) versus ω for 0 ≤ ω ≤ 2.5. Repeat

for Q = 8 and F0

/
m = 0.4.

(
Hint: Use (5) and (6) to find amax and amin. Then

use (2) and (3) to calculate a(ω) and ϑ(ω) for a ≤ amax.
)

Solution

(a) The equation of motion is that of a damped, driven Duffing oscillator:

ẍ+ (2/τ)ẋ + ω2
0
x+ γx3 = (F0

/
m) cosωt . (7)

By substituting the trial solution (1) into (7) we obtain

(ω2
0
−ω2)a cos(ωt−ϑ)−(2ω/τ)a sin(ωt−ϑ)+γa3cos3(ωt−ϑ) = (F0

/
m) cosωt . (8)

With the aid of the identities
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cosωt = cosϑ cos(ωt− ϑ) − sinϑ sin(ωt− ϑ)

cos3(ωt− ϑ) = 3
4
cos(ωt− ϑ) + 1

4
cos 3(ωt− ϑ)

}
(9)

we rewrite (8) as{
(ω2

0
− ω2)a+ 3

4
γa3 − (F0

/
m) cosϑ

}
cos(ωt− ϑ) + {−(2ω/τ)a

+(F0

/
m) sinϑ

}
sin(ωt− ϑ) + 1

4
γa3 cos 3(ωt− ϑ) = 0 . (10)

Now, the approximation (1) represents the first term (the fundamental) of a
Fourier series with harmonics cos(3ωt− φ), etc. Thus, the last term in (10) plays
a role in the higher harmonics and can be ignored for the fundamental. Then, for
(10) to hold for all t requires that each of the coefficients in curly brackets be
zero:

(F0

/
m) cosϑ = (ω2

0 − ω2)a+ 3
4
γa3 (11)

(F0

/
m) sinϑ = (2ω/τ)a . (12)

We wish to solve these two equations for ϑ(ω) and a(ω)
(
alternatively, ω(a)

)
. To

simplify the calculations we first express (11) and (12) in terms of the dimension-
less quantities

ω =
ω

ω0

, a =

√
3|γ|

2ω0

a ,
F0

m
=

√
3|γ|

2ω3
0

F0

m
, (13)

and Q = 1
2
ω0τ . Then

(F0

/
m) cosϑ = (1 − ω2)a+ a3signγ (14)

(F0

/
m) sinϑ = ω a

/
Q . (15)

The term a3signγ in (14) represents the effect of the anharmonic (cubic) force.
The ratio (15)÷(14) yields (2).‡ Also, by squaring and adding (14) and (15) we
have {

(1 − ω2)a+ a3signγ
}2

+ ω2a2
/
Q2 = (F0

/
m)2. (16)

This can be regarded either as a cubic equation for a2(ω) or as a quadratic
equation for ω2(a). The latter is easier to solve and the roots are (3).

(b) 1. If γ > 0 then the quantity under the square root in (3) becomes negative for
a > amax, where amax is the positive root of (5). Thus, there are no real values of
ω2

±(a) for a > amax. At a = amax, ω+ = ω− is real.

2. ω2
− in (3) is zero when (6) is satisfied. For a < amin, ω

2
− becomes negative:

only the upper sign in (3) yields a real ω(a).

3. For amin < a < amax both signs in (3) yield positive values for ω2. Thus, the
graph of ω versus a is double-valued for amin < a < amax and single-valued for
a < amin (see also the graphs below). As a→ 0, ω+ → ∞.

‡For simplicity we omit the bar on ω, a and F0

/
m: in the following these are understood to be

dimensionless.
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(c) The Mathematica notebook is given after the comments, and it yields the following
graphs:

1.0

0.5

�

�

1 2

� �

ωU

ωL

Q = 4 ; F0

m = 0.4a(ω)

ω

180◦

90◦

�

�

1 2

� �

Q = 4 ; F0

m = 0.4ϑ(ω)

ω

1.6

0.8

�

�

1 2

� �

ωU

ωL

Q = 8 ; F0

m = 0.4a(ω)

ω

180◦

90◦

�

�

1 2

� �

Q = 8 ; F0

m = 0.4ϑ(ω)

ω

Comments

(i) We see that between the frequencies marked ωL and ωU in the diagrams, the
amplitude a is a triple-valued function of ω. Associated with this are the
phenomena of amplitude jumps and hysteresis. If ω is increased from below ωL

then a(ω) follows the upper branch of the curve
(
that is, ω−(a)

)
until ω = ωU

is reached. Here, the amplitude jumps to the lower branch (that is, ω+(a)
)

and
then it follows this branch with further increase in ω. The result is a sudden large
decrease in the amplitude at ωU. Conversely, if ω is decreased from above ωU then
a(ω) follows the lower branch of the curve until ω = ωL, where there is a jump to
the upper branch. These amplitude jumps and hysteresis can occur in oscillating
mechanical and electrical systems.

(ii) The damped, driven Duffing oscillator has other interesting properties such as
harmonic resonances (see below), bifurcation and chaos.[4]

[4] See, for example, V. D. Barger and M. G. Olsson, Classical mechanics. New York: McGraw-
Hill, 2nd edn, 1995. Chap. 11.
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In[1]:= Q � 8.0� Α � 0.4� �� THIS IS DIMENSIONLESS
F0
m

��

root � Flatten��ToRules�N�Reduce��x6 � 2x4 � x2 � Α2 �� 0�,x,Reals������
x1 � x/.First	root
�x2 � x/.Last	root
� amin � Max	x1,x2
�

amax �

�
1

2

�	1 � 1

4Q2

2 � 4Q2Α2 � 1

2
	1 � 1

4Q2

� astep �

�amax � amin�

10000
�

f	a_
 ��

�
1 � 4Q2 � 4Q2a2 � 4Q4�Α

a�
2

2Q2
�

Ω1	a_
 �� Chop��1 � a2 �
1

2Q2
� f	a
,10�8��

Ω2	a_
 �� Chop��1 � a2 �
1

2Q2
� f	a
,10�8��

ParametricPlot�Ω1	a
,a�,Ω2	a
,a��,�a, amin

5
,amax��

Φ1	a_
 �� Chop� Ω1	a


Q�1 � Ω1	a
2 � a2�
,10�8��

Φ2	a_
 �� Chop� Ω2	a


Q�1 � Ω2	a
2 � a2�
,10�8�

Θ1	a_
 �� 180 �
180

Π
ArcTan	Φ1	a

/�Φ1	a
 < 0

Θ1	a_
 ��
180

Π
ArcTan	Φ1	a

/�Φ1	a
 > 0� Θ2	a_
 ��

180

Π
ArcTan	Φ2	a

�

ParametricPlot�Ω1	a
,Θ1	a
�,Ω2	a
,Θ2	a
��,�a, amin

5
,amax�,

AspectRatio � 0.8�
Question 13.12

Write a Mathematica notebook to find numerical solutions x(t) for the driven Duffing
oscillator using the dimensionless variables introduced in (13) of the previous question.

(a) Plot graphs of the amplitude a(ω) versus ω for γ > 0 and ωmin ≤ ω ≤ ωmax.
Take ωmin = 0.1, ωmax = 2.5, F0

/
m = 0.4 and Q = 4. Repeat for Q = 8.

(
Hint:

To observe hysteresis, sweep the frequency from ωmin to ωmax using a step size
δω = (ωmax − ωmin)/1000. At each frequency calculate x(t) for 0 ≤ t ≤ 40T ,



Non-linear oscillations ���

where T = 2π/ω. Wait (for a time of, say, 30T ) for the transient to decay. Then,
calculate the average value of a(ω) in the interval 30T ≤ t ≤ 40T . Store the values
of ω, a(ω) and then repeat for the next value of ω until ωmax is reached. Repeat
the above, sweeping downwards in frequency from ωmax to ωmin in steps −δω. For
both increasing and decreasing ω use the initial conditions: ẋ(0) = 0 and x(0) = 0
if ω = ωmin, otherwise x(0) = a(ω) obtained from the previous calculation.

)
(b) Compare these numerical solutions with the approximate a(ω) of Question 13.11.

Solution

(a) In terms of the dimensionless variables of Question 13.11, the equation of motion
is ẍ + ẋ

/
Q + x + (4

/
3)x3 = (F0

/
m) cosωt. The notebook below produces the

following graphs.
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�
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� �

Q = 4 ; F0

m = 0.4a(ω)

ω
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� �

Q = 8 ; F0

m = 0.4a(ω)

ω

(b)

(3) of Question 13.11

Numerical calculation

1.0

0.5

�

�

1 2

� �

Q = 4 ; F0

m = 0.4a(ω)

ω

(3) of Question 13.11

Numerical calculation

1.6

0.8

�

�

1 2

� �
Q = 8 ; F0

m = 0.4a(ω)

ω

Comments

(i) The numerical calculations confirm the hysteresis found in the approximate
analysis of Question 13.11. Agreement with the numerical values can be improved
by including the next harmonic, cos(3ωt− φ), in (1) of Question 13.11.

(ii) In addition to the primary resonance, a small resonance peak is discernible at
lower ω. This is known as a harmonic resonance. Additional harmonic resonances
become evident at larger values of the amplitude F0 of the driving force.[4]
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In[1]:= Ω0 � 1� Q � 8� Α �
4

10
� Ωstart �

1

10
� Ωstop �

31

10
� Ωstep �

Ωstop � Ωstart

2400
�

amp � 0� ymax � 0� list1 � �� list2 � ��

�� INCREASING FREQUENCY ��

Do�T � 2Π

Ω
�

Sol � NDSolve��x��	t
 �
1

Q
x�	t
 � x	t
 �

4

3
x	t
3 �� Α Cos� Ω

Ω0
t�,

x	0
 ��
Floor	1000 amp


1000
, x�	0
 �� 0� ,x	t
,t, 0, 40 T�,

WorkingPrecision � 18,MaxSteps � 100000��
list � Table�First	x	t
/.Sol
,�t,30T,40T, T

1000
���

n � Length	list
�i � 2�count � 0�amp � 0�While	i < n,

a � Abs	list		i � 1


�b � Abs	list		i


�c � Abs	list		i � 1


�

If	a < b&&c < b,amp � amp � b�count � count � 1�i � i � 1,i � i � 1

�

amp �
amp

count
�list1 � Append	list1,N	Ω
,amp�
�

If	amp > ymax,ymax � amp
,Ω,Ωstart,Ωstop,Ωstep���
gr1 � ListLinePlot	list1,PlotRange � 0,Ωstop�,0,ymax��
�

�� DECREASING FREQUENCY ��

Do�T � 2Π

Ω
�

Sol � NDSolve��x��	t
 �
1

Q
x�	t
 � x	t
 �

4

3
x	t
3 �� Α Cos� Ω

Ω0
t�,

x	0
 ��
Floor	1000 amp


1000
, x�	0
 �� 0� ,x	t
,t, 0, 40 T�,

WorkingPrecision � 18,MaxSteps � 100000��
list � Table�First	x	t
/.Sol
,�t,30T,40T, T

1000
���

n � Length	list
�i � 2�count � 0�amp � 0�While	i < n,

a � Abs	list		i � 1


�b � Abs	list		i


�c � Abs	list		i � 1


�

If	a < b&&c < b,amp � amp � b�count � count � 1�i � i � 1,i � i � 1

�

amp �
amp

count
�list2 � Append	list2,N	Ω
,amp�
�

If	amp > ymax,ymax � amp
,Ω,Ωstop,Ωstart,�Ωstep���
gr2 � ListLinePlot	list2,PlotRange � 0,Ωstop�,0,ymax��
�

Show	gr1,gr2
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Question 13.13

A particle of mass m is subject to a one-dimensional restoring force Fr = −kx
and a quadratic frictional force Ff = −βv2, where k and β are positive constants.
Obtain numerical solutions for the position x(t) up to t = 100 s, for m = 1.0 kg,
β = 0.125 kgm−1, k = 1.0 Nm−1 and the initial conditions x0 = 1.0 m, v0 = 0.

Solution

Write Ff = −βv|v| to account for the change in direction of this force every half-cycle.
The equation of motion is

mẍ+ βv|v| + kx = 0 . (1)

The Mathematica notebook used to solve (1) and the graph of x(t) versus t are:

In[1]:= Ω0 � 1� Β �
125

1000
�

Sol � NDSolve��x��	t
 � Β x�	t
Abs	x�	t

 � Ω2 x	t
 �� 0,x	0
 �� 1,

x�	0
 �� 0� ,x	t
,t, 0, 32Π�,WorkingPrecision � 18��
Plot	Evaluate	x	t
/.Sol
, t,0,32Π�


ω0 = 1.0 rad s−1

100

�

−0.5�

0.5 �

1.0 �
x(t) (m)

t (s)

Comments

(i) Values of the half-periods 1
2
Tn of the nth half-cycle, obtained from intercepts

x(t) = 0, are tabulated below for the first 30 half-cycles. We see that 1
2
Tn changes

very slowly, and mainly during the first few cycles; thereafter it is nearly constant
and close to the value π/ω0 = π s. Thus, the angular frequency of the oscillator
is little different from its natural frequency ω0 = 1 rad s−1, in agreement with
theoretical analysis.[5]

[5] N. N. Bogolyubov and Y. A. Mitropolskii, Asymptotic methods in the theory of nonlinear
oscillations. New York: Gordon and Breach, 1961.
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(ii) Experiments show that for a simple pendulum in air the frictional force is usually
a combination of linear and quadratic terms, whose respective contributions can
be determined by a fit to the experimental data.[6] Pendula have been constructed
that demonstrate three types of damping (constant, linear and quadratic).[7,8] Ex-
periments on oscillatory motion of viscously damped spheres show the complexity
of the actual damping force for oscillatory motion, including the role of so-called
history and added-mass terms.[9]

n 1
2
Tn (s) n 1

2
Tn (s) n 1

2
Tn (s) n 1

2
Tn (s) n 1

2
Tn (s)

1 3.142500 7 3.141856 13 3.141716 19 3.141664 25 3.141639

2 3.142287 8 3.141819 14 3.141704 20 3.141658 26 3.141636

3 3.142142 9 3.141790 15 3.141693 21 3.141654 27 3.141633

4 3.142037 10 3.141766 16 3.141685 22 3.141649 28 3.141631

5 3.141960 11 3.141747 17 3.141677 23 3.141646 29 3.141629

6 3.141901 12 3.141730 18 3.141670 24 3.141642 30 3.141627

Question 13.14

A particle (bead) of massm is constrained to slide without
friction on a circular loop of radius R placed in a verti-
cal plane. A spring with force constant k and equilibrium
length 1

2
R is attached to the particle and to a fixed point

P that is a distance 1
2
R above the centre O of the loop.

The position of the particle is given by the angle θ(t) and
the instantaneous length of the spring is �(θ).

(a) Show that the potential energy of the system is

V (θ) = mgR

{
1 − cos θ +

3α

8

(√
5 + 4 cos θ − 1

)2}
, (1)

where α = k
/
kc and kc = 3mg

/
R.

(b) Determine the points of stable and unstable equilibrium of the particle.

(c) Plot graphs of V (θ)
/
mgR versus θ (for −π ≤ θ ≤ π) that illustrate the various

possibilities for this function.

[6] M. Bacon and D. D. Nguyen, “Real-world damping of a physical pendulum,” European Journal
of Physics, vol. 26, pp. 651–655, 2005.

[7] L. F. C. Zonetti et al., “A demonstration of dry and viscous damping of an oscillating pendu-
lum,” European Journal of Physics, vol. 20, pp. 85–88, 1999.

[8] X. Wang, C. Schmitt, and M. Payne, “Oscillations with three damping effects,” European
Journal of Physics, vol. 23, pp. 155–164, 2002.

[9] P. Alexander and E. Indelicato, “A semi-empirical approach to a viscously damped oscillating
sphere,” European Journal of Physics, vol. 26, pp. 1–10, 2005.
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Solution

(a) The gravitational potential energy of the bead is Vg(θ) = mgR(1 − cos θ) and its
elastic potential energy is Ve(θ) = 1

2
k(�− 1

2
R)2. By applying the cosine formula to

the triangle in the diagram we have �2 = ( 1
2
R)2+R2−R2 cos(π−θ) = ( 5

4
+cos θ)R2.

The total potential energy Vg + Ve is therefore

V (θ) = mgR

{
1 − cos θ +

3α

8

(√
5 + 4 cos θ − 1

)2}
, (2)

which is (1). (The reason for including a factor 3 in α will become apparent below.)

(b) Points of equilibrium are given by the roots of V ′ ≡ dV
/
dθ = 0. That is,

sin θ − 3α

2

{
1 − (5 + 4 cos θ)−1/2

}
sin θ = 0 . (3)

There are always at least three roots to (3) in [−π, π], namely θ1 = 0 and θ2 = ±π.
It is not difficult to show that V ′′(0) = (1 − α)mgR : so there is a minimum at
θ = 0 if α < 1 and a maximum if α > 1. Also, V ′′(±π) = −mgR and so there
always are maxima at θ = ±π. According to (3), there is the possibility of two
more roots, ±θ3, which are the solutions to

√
5 + 4 cos θ = 3α

/
(3α− 2) . (4)

Now, the left-hand side of (4) is restricted to values from 1 to 3, and these values
are attained by the right-hand side only if α > 1. Thus, the roots ±θ3 exist only
if α > 1. One can show that

V ′′(θ3) =
(α − 1)(3α− 1)(2α− 1)

α2(3α− 2)
mgR , (5)

which is positive for α > 1, and therefore the turning points at ±θ3 are always
minima. To summarize:

1. θ = ±π are always points of unstable equilibrium.

2. θ = 0 is a point of stable (unstable) equilibrium if α < 1 (α > 1).

3. For α > 1 there are also two points of stable equilibrium located at the
solutions ±θ3 to (4). For large values of α the solutions to (4) approach ±π.

(c) The three curves plotted below show the range of behaviour for V (θ). Note that
from (1), V (θ)

/
mgR = 3

2
α at θ = 0, and 2 at θ = ±π.

Comments

(i) When the force constant k is increased through the critical value kc = 3mg
/
R a

notable change occurs in the mechanics of this simple system: the point of stable
equilibrium shifts from θ = 0 to θ = ±θ3, given by the solutions to (4) – a particle
in equilibrium can be located at either θ3 or −θ3.

(ii) This is an example of a widespread phenomenon known as ‘spontaneous symmetry
breaking’. Here, the word ‘spontaneous’ refers to the fact that the above change
is not accompanied by any alteration in the symmetry of the loop or surroundings
(source of the gravitational field).
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•2.0

�1.0

�

1
2
π

�− 1
2
π

�

π

�−π

‘large’ α

α > 1

α
<

1

θ

V (θ)/mgR

(iii) In fact, a rather detailed formal analogy can be drawn between this mechanical
system and a ferroelectric undergoing a Landau second-order phase transition.[10]

Here, θ3 is analogous to an order parameter and 1/k to absolute temperature. For
example, when k is just above kc an expansion of (4) yields

θ3 = 3
√

2
√

1 − kc

/
k . (6)

By comparison, for a ferroelectric the order parameter (the polarization in zero
electric field) just below the critical temperature Tc varies as

√
1 − T/Tc. The

numerical solution to (4) shown in the following graph is similar to a plot of
order parameter versus T/Tc. Further discussion of this analogy and the impor-
tant topics of critical exponents and universality classes can be found in Ref. [10].

Approximation (6)

Equation (4)
3
√

2 •

�π

�

1.0

�

0.5

kc/k

θ3

(iv) There are other simple mechanical systems that exhibit spontaneous symmetry
breaking and an analogy with phase transitions (see Question 10.14). They all
involve a competition between two (or more) forces – gravity and elasticity in the
above example.

[10] J. R. Drugowich de Felício and O. Hipólito, “Spontaneous symmetry breaking in a simple
mechanical model,” American Journal of Physics, vol. 53, pp. 690–693, 1985.
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Question 13.15

(a) Show that for the particle in Question 13.14 the equation of motion is

d2θ

dτ2
+

{
1 − 3α

2

(
1 − (5 + 4 cos θ)−1/2

)}
sin θ = 0 , (1)

where τ =
√
g/R t is a dimensionless time.

(b) Write a Mathematica notebook to find numerical solutions of (1) for 0 ≤ τ ≤ 100
using 1. θ0 = 179.0◦, θ̇0 = 0, α = 0.1 and 2. θ0 = 99.0◦, θ̇0 = 0, α = 1.1. Plot
the graphs of θ(τ) in this range.

(c) Use Mathematica’s Manipulate function to animate the above notebook. Hence
simulate the particle’s motion for the four cases below and with θ̇0 = 0. Describe
and explain what is observed.

1. θ0 = 19.0◦, α = 0.1. 2. θ0 = 47.0◦, α = 1.1.

3. θ0 = 171.0◦, α = 50.0. 4. θ0 = 170.5◦, α = 50.0.

Solution

(a) The component Fθ of the net force tangential to the loop is −R−1dV
/
dθ, where

V (θ) is given by (1) of Question 13.14. Newton’s second law, Fθ = mRθ̈, yields
the equation of motion (1).

(b) The notebook given below produces the following graphs:

1. θ0 = 179◦; θ̇0 = 0; α = 0.1 2. θ0 = 99◦; θ̇0 = 0; α = 1.1

−180◦�

180◦ �

100

�

50

�

θ

τ

θ3

45◦�

90◦�

100

�

50

�

θ

τ

(c) 1. Here, the point of stable equilibrium is at θ = 0. The initial amplitude θ0 is
‘small’ and the oscillations are approximately harmonic

(
in contrast with the

first graph for (b) above
)
.

2. The point of stable equilibrium is now at θ3 = 68.8◦
(
see (4) of Question

13.14
)

and the oscillations are again approximately harmonic about this point(
in contrast to the second graph in (b)

)
.
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3. For this ‘large’ α the points of stable equilibrium are close to the vertical
(θ3 = 173.3◦). The amplitude of the oscillations is 2.3◦ and they occur in a
shallow potential well. The total energy of the system is small enough that
the particle does not cross the point of unstable equilibrium at θ = π.

4. The small increase of 0.5◦ in the initial amplitude for case 3. is sufficient
for the particle to cross the potential hump at θ = π, and it oscillates sym-
metrically about this point.

In[1]:= Α � 0.1� R � 1.0� Τmax � 100.0� If�Α > 1,Θ3 � ArcCos��9Α2 � 15Α � 5
�3Α � 2�2

�,Θ3 � 0��
Θ0 � 19

Π

180
� Θ0dot � 0�

Sol � NDSolve��Θ��	Τ
 � 1 � 3Α

2
1 � 1�

5 � 4Cos	Θ	Τ


��Sin	Θ	Τ

 �� 0,

Θ	0
 �� Θ0,Θ�	0
 �� Θ0dot�,Θ	Τ
,Θ�	Τ
,Θ��	Τ
�,Τ,0,Τmax�,
MaxSteps � 100000��

X	t_
 �� R Sin	Θ	Τ
/.Sol/.Τ � t
� Y	t_
 �� �R Cos	Θ	Τ
/.Sol/.Τ � t
�

data � Table��First�Evaluate�180
Π

Θ	Τ
/.Sol���,�Τ,0,Τmax, Τmax

2000
���

ymin � Min	Flatten	data

�ymax � Max	Flatten	data

�

Plot�� Evaluate�180
Π

Θ	Τ
/.Sol��,Τ,0,Τmax�,PlotRange � ymin,ymax��
traj	t_
 �� Graphics��Circle	0,0�,R
,PointSize	0.0125
,Black,

Point��0, R

2
��,Green,Point	R Sin	Θ3
,�R Cos	Θ3
�
,

PointSize	0.025
,Blue,Point	First	X	t

,First	Y	t

�
,

Purple,Line���0, R

2
�,First	X	t

,First	Y	t

���,

PointSize	0.0075
,Point	0,0�
���
Manipulate	traj	t
,t,0,Τmax�


Question 13.16

Consider the system of two particles, a spring and a rotating hoop discussed in
Questions 10.14 and 10.15. The position of the particles in a frame rotating with the
hoop is specified by their dimensionless z-coordinate Z, which satisfies the non-linear
equation of motion

(
see (4) of Question 10.15

)
d2Z

dτ2
+

Z

1 − Z2

(
dZ

dτ

)2
+ 4π2

{
1 − (1 − ε)

ω2

ω2
c

}
Z(Z2 − 1) + 4π2εZ

√
1 − Z2 = 0 . (1)
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Here, ε = r0/R (≤ 1) is the ratio of the equilibrium length 2r0
of the spring to the diameter 2R of the hoop; Z = z/R and so
−1 ≤ Z ≤ 1; τ = ω0t/2π (where ω0 =

√
2k/m) is a dimensionless

time; and ωc = ω0

√
1 − ε is the critical angular velocity discussed

in Question 10.14. In general, Z is a function of τ , ω/ωc, ε and
the initial conditions Z0 and Ż0 at τ = 0. Furthermore, the points
of equilibrium are at

(
see (7) and (16) of Question 10.14

)
Zω = 0 and Zω = ±

√
1 − ε2

{
1 − (ω2

/
ω2

c
)(1 − ε)

}−2
. (2)

In the calculations that follow we take ε = 1
2

and Ż0 = 0.

(a) Write a Mathematica notebook to find numerical solutions to (1) for Z(τ) and
Ż(τ), in which the user specifies values for ε, ω/ωc, Z0 and Ż0. Consider the
following cases: 1. ω/ωc = 0.8, Z0 = 0.030 ; 2. ω/ωc = 0.8, Z0 = 0.700 ;

3. ω/ωc = 0.8, Z0 = 0.880 ; 4. ω/ωc = 0.8, Z0 = 0.883 ; 5. ω/ωc = 1.2,

Z0 = 0.100 ; 6. ω/ωc = 1.2, Z0 = 0.900 .

(b) For each of these cases, plot the graphs of Z(τ) for 0 ≤ τ ≤ 10, and comment
on the results. Also, plot the phase portraits

(
that is, Ż(τ) versus Z(τ)

)
for

ω/ωc = 0.8 and ω/ωc = 1.2.

(c) Use Mathematica’s Manipulate function to extend the above notebook and
produce a dynamic display of the rotating hoop and constrained particles relative
to the laboratory frame. Comment on the behaviour of the system for the following
cases: 1. ω/ωc = 0.8, Z0 = 0.677 and Z0 = 0 ; 2. ω/ωc = 0.8, Z0 = 0.777 and

Z0 = 0.100 ; 3. ω/ωc = 0.8, Z0 = 0.883 ; 4. ω/ωc = 1.2, Z0 = 0.1 .

Solution

(a) The Mathematica notebook is:

In[1]:= Ε �
1

2
� ΩOverΩc �

4

5
� Τmax � 100.0� Z0 �

883

1000
� Z0dot � 0�

�� FindRoot��1 � Ε�2 � �1 � Ε��ΩOverΩc�2 � 	�1 � Z2 � Ε
2 � �1 � Ε�
�ΩOverΩc�2�1 � Z2� �� 0,Z,0.883�� ��

Sol � NDSolve��Z��	Τ
 � Z	Τ
 Z�	Τ
2

1 � Z	Τ
2
� 4 Π2�1 � �1 � Ε� �ΩOverΩc�2�

Z	Τ
�Z	Τ
2 � 1� � 4 Π2 Ε Z	Τ
�1 � Z	Τ
2 �� 0,Z	0
 �� Z0,Z�	0
 �� Z0dot�,
Z	Τ
,Z�	Τ
,Z��	Τ
�,Τ,0,Τmax�,MaxSteps � 100000,

AccuracyGoal � 400, WorkingPrecision � 32��
Plot	Evaluate	Z	Τ
�/.Sol
�, Τ,0,Τmax�,

PlotPoints � 1000, AspectRatio � 1


ParametricPlot	Evaluate	Z�	Τ
,Z	Τ
�/.Sol
�, Τ,0,Τmax�,

PlotRange � �1.5,1.5�,�1.5,1.5��,PlotPoints � 1000




��� Solved Problems in Classical Mechanics

(b) This notebook yields the following diagrams and phase portraits:

1. Z0 = 0.03; Ż0 = 0; ω/ωc = 0.8; ε = 0.5 2. Z0 = 0.7; Ż0 = 0; ω/ωc = 0.8; ε = 0.5

0.4

0.8

�

�

�

105

��

Zω

Z

τ

0.4

0.8

�

�

�

105

��

Zω

Z

τ

3. Z0 = 0.880; Ż0 = 0; ω/ωc = 0.8; ε = 0.5 4. Z0 = 0.883; Ż0 = 0; ω/ωc = 0.8; ε = 0.5
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�

�

�

105

��
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Z

τ
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�

�

�

105 ��
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Z

τ

5. Z0 = 0.1; Ż0 = 0; ω/ωc = 1.2; ε = 0.5 6. Z0 = 0.9; Ż0 = 0; ω/ωc = 1.2; ε = 0.5
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ε = 0.5; ω/ωc = 0.8

0.7

0.6

0.
8

0.4

0.
3

0.2

0.
1

Z0
=

0.9

�

−1.0

�

1.0

�−1.2

�1.2

Ż

Z

In the previous diagram, the trajectories for Z0 = 0.5 and 0.8 are almost identical
and so only the latter is plotted. For cases 1. – 4. the point of stable equilibrium
in (2)2 is Zω = 0.677, and this is indicated by the horizontal line on the graphs for
Z(τ). In 1. , where Z0 = 0.03, the particles start far from Zω, and consequently

they perform large-amplitude, anharmonic oscillations. In 2. , where Z0 = 0.7, the
initial displacement from Zω is smaller and the particles perform nearly harmonic
oscillations. Further increase of Z0 produces again large-amplitude oscillations
(case 3. , where Z0 = 0.880). There is a critical value of Z0, above which the
energy of the particles exceeds the maximum Ve(0) in the effective potential at
Z = 0, and the particles oscillate across the equator: according to (9) of Question
10.14 this critical value is a root of

(1 − ε)2 − (1 − ε)(ω/ωc)
2 = (

√
1 − Z2 − ε)2 − (1 − ε)(ω/ωc)

2(1 − Z2) . (3)

Mathematica’s FindRoot function with ε = 0.5 and ω/ωc = 0.8 gives Z =
0.882353. This is exceeded in case 4. , where Z0 = 0.883. In 5. and 6. , where
ω/ωc > 1, the point of stable equilibrium is Zω = 0, and the graphs above show
the expected small- and large-amplitude oscillations about the equator.

ε = 0.5; ω/ωc = 1.2

0.1
0.3

0.5

0.7

Z
0 = 0.9

�

−1.0

�

1.0

�−4

�4

Ż

Z
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(c) We first express the equation of the rotating hoop in terms of a parameter u and
in dimensionless form:

Xh(u, τ) = cosu sin 2πτ

Yh(u, τ) = cosu cos 2πτ

Zh(u, τ) = sinu .

⎫⎪⎪⎬⎪⎪⎭ (4)

Equation (4) and Mathematica’s ParametricPlot3D function are used to
produce the graphics for the hoop. The coordinates Xi(τ), Yi(τ) and Zi(τ) of
the particles in the laboratory frame are given, in terms of Z(τ), by⎛⎜⎝Xi(τ)

Yi(τ)

Zi(τ)

⎞⎟⎠ =

⎛⎜⎝ cos 2πτ sin 2πτ 0

− sin 2πτ cos 2πτ 0

0 0 1

⎞⎟⎠
⎛⎜⎝ 0

(−1)i−1
√

1 − Z2(τ)

Z(τ)

⎞⎟⎠, (5)

for i = 1, 2. Mathematica’s Graphics3D function uses the coordinates given by
(5) to locate the particles on the hoop. The modified notebook is shown below.

In[1]:= Ε �
1

2
� ΩOverΩc �

99

100
� Τmax � 1000.0� Z0 �

883

1000
� Z0dot � 0�

Sol � NDSolve��Z��	t
 � Z	t
 Z�	t
2

1 � Z	t
2
� 4 Π2�1 � �1 � Ε� �ΩOverΩc�2� Z	t


�Z	t
2 � 1� � 4 Π2 Ε Z	t
�1 � Z	t
2 �� 0,Z	0
 �� Z0,Z�	0
 �� Z0dot�,
Z	t
,Z�	t
,Z��	t
�,t,0,Τmax�,MaxSteps � 100000����,
AccuracyGoal � 400, WorkingPrecision � 32
���

X	Τ_
 �� 0�Y	Τ_
 ��
�
1 � �First	Z	t
/.Sol/.t � Τ
�2�

X1	Τ_
 �� Y	Τ
Sin	2Π Τ
�Y1	Τ_
 �� Y	Τ
Cos	2Π Τ
�

Z1	Τ_
 �� First	Z	t
/.Sol/.t � Τ
�

X2	Τ_
 �� �X1	Τ
�Y2	Τ_
 �� �Y1	Τ
�Z2	Τ_
 �� Z1	Τ
�

hoop	u_,Τ_
 �� ParametricPlot3D	Cos	u
 Sin	2Π Τ
,Cos	u


Cos	2Π Τ
,Sin	u
�,u,0,2 Π�,PlotRange �

�2,2�,�2,2�,�2,2��,Axes � False,False,False�,

Boxed � False,ViewVertical � 1,0,0�,ViewPoint � �20,0,0�


particles	Τ_
 �� Graphics3D	PointSize	0.025
,Red,Point	X1	Τ
,

Y1	Τ
,Z1	Τ
�
,Green,Point	X2	Τ
,Y2	Τ
,Z2	Τ
�
,Purple,

Line	X1	Τ
,Y1	Τ
,Z1	Τ
�,X2	Τ
,Y2	Τ
,Z2	Τ
��
,

PointSize	0.0125
,Point	0,0,0�
��


Manipulate	Show	hoop	u,Τ
,particles	Τ

,Τ,0,Τmax�
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1. From (2), Z0 = 0.677 and 0 are points of equilibrium. The particles remain

at rest relative to the rotating hoop. 2. Changing Z0 to 0.777 and 0.100 produces
small-amplitude, harmonic and large-amplitude, anharmonic oscillations,
respectively, such as those described in (b) above. 3. The particles have

sufficient energy to oscillate across the equator. 4. Here, ω > ωc and the
oscillations are about the equator.

Comment

It is important to set a suitable AccuracyGoal and WorkingPrecision in the
Mathematica notebook. Failure to do so can produce arithmetical errors, resulting in
unphysical behaviour. For example, oscillations across the equator by particles with
energy just less than Ve(0), where Ve is the effective potential discussed in Question
10.14. Furthermore, in plotting the phase trajectories, the PlotPoints setting must
be increased beyond the default value, otherwise it is possible to obtain phase-space
plots that exhibit features usually associated with chaotic behaviour. This can result
in incorrect conclusions being drawn: see, for example, Figure 9 and the accompanying
discussion in Ref. [11].

Question 13.17

Consider a rigid simple pendulum with linear drag and harmonic driving force applied
tangential to the path. The equation of motion is (see Questions 4.3 and 4.7)

d2θ

dτ2
+

1

Q

dθ

dτ
+ sin θ = A cos(ωτ/ω0) . (1)

Here ω0 is the natural frequency, ω is the driving frequency, τ = ω0t is a dimensionless
time,‡ Q = mω0/α is the quality factor and A is a constant. Suppose the system is
started twice from rest at slightly different initial positions θ0 and θ0 + ε. Write a
Mathematica notebook to calculate ∆θ(τ) = |θ1(τ)− θ2(τ)|, where θ1(τ) and θ2(τ) are
the respective solutions. 1. Take Q = 4, ω/ω0 = 1/2, A = 1/2, θ0 = 0, θ̇0 = 0 and

ε = 0.000001◦. Plot ∆θ(τ) on a logarithmic scale for 0 ≤ τ ≤ 120. 2. Repeat the
above, changing A to 5/2, and plot ∆θ(τ) on the same axes. (Use increased precision
in the notebook to minimize round-off errors.)

Solution

The notebook and resulting plot of ∆θ(τ) are

‡This use of the symbol τ should not be confused with the relaxation time 2m/α of the oscillator
introduced in Chapter 4.

[11] F. Ochoa and J. Clavijo, “Bead, hoop and spring as a classical spontaneous symmetry breaking
problem,” European Journal of Physics, vol. 27, pp. 1277–1288, 2006.
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100 �

10−3 �

10−6 �

10−9 �

10−12 �

10−15 �
0 50� 100�

A = 1/2

A = 5/2∆θ (deg)

τ

In[1]:= Τmax � 200� Ω0 � 1� Ω �
5

10
� Q � 4� Φ � 0� theta0 � 0� Ε �

Π

180
10�6�

Θ0 � theta0
Π

180
� Θ0dot � 0�

DataTable � �� counter � 0� NumPrec � 32�

�Θ	Τ_
 �� Abs�180
Π

�Evaluate	Θ1	Τ
/.Sol1
 � Evaluate	Θ2	Τ
/.Sol2
���
Do�If�counter �� 0,A � 50

100
,A �

250

100
��

Sol1 � NDSolve��Θ1��	Τ
 �
Θ1�	Τ


Q
� Sin	Θ1	Τ

 �� A Sin� Ω

Ω0
Τ � Φ�,

Θ1	0
 �� Θ0, Θ1�	0
 �� Θ0dot� ,Θ1	Τ
,Θ1�	Τ
,Θ1��	Τ
�,Τ, 0,Τmax�,

MaxSteps � 100000,WorkingPrecision � NumPrec��
Sol2 � NDSolve��Θ2��	Τ
 �

Θ2�	Τ


Q
� Sin	Θ2	Τ

 �� A Sin� Ω

Ω0
Τ � Φ�,

Θ2	0
 �� Θ0 � Ε, Θ2�	0
 �� Θ0dot� ,Θ2	Τ
,Θ2�	Τ
,Θ2��	Τ
�,Τ, 0,Τmax�,

MaxSteps � 100000,WorkingPrecision � NumPrec��
DataTable � Join	DataTable,Table	Τ,First	�Θ	Τ

�,Τ,0Τmax,Τmax�

,

counter,0,1���
ListLogPlot	DataTable�,PlotRange � 0,120�,0,103��,Joined � False


Comments

(i) These results illustrate an interesting and important feature of this system. For
A = 1

2
the small uncertainty ε in θ0 has a negligible effect on the long-term

behaviour of the pendulum. However, for A = 5
2

the quantity ∆θ increases by
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seven orders of magnitude in the interval shown: θ(τ) is very sensitive to the initial
conditions. In this case the motion is said to be chaotic. The study of chaos is an
important branch of physics. In the following comments we mention briefly some
developments in this field, and some distinguishing features of chaotic systems.

(ii) Towards the end of the nineteenth century, Poincaré discovered irregular pat-
terns of behaviour, indicative of chaos, in the gravitational three-body problem
(see also Question 11.7). However, it turned out that for some time “ Poincaré’s
fundamental studies had only a minimum impact. His investigations were math-
ematically so novel and sophisticated that they were not widely read or rapidly
accepted. Furthermore, the three-body problem was no longer at the center of
interest. It was considered a rather ‘far-out’ problem, so that peculiar and non-
intuitive behaviour did not cause a great deal of interest, let alone excitement.
The equations of motion of the three-body problem, which formed the starting
point of Poincaré’s considerations, are a set of non-linear ordinary differential
equations. At the beginning of this century, no general theory existed to handle
such equations. . . . It was hard, even impossible to obtain general conclusions.
Thus the chaotic behaviour of the three-body problem might well be an idiosyn-
cracy of just that problem without general significance. In any case, the physics
community paid very little attention to Poincaré’s results.” [12] Later – around
1960 – a period of rapid development in the study of chaos began. Dresden has
suggested three reasons for this: “ Perhaps most important were the advances in
computer technology. . . . The second, related, factor was the realization that many
systems described by quite simple equations nevertheless could show behaviour
indistinguishable from random behaviour and so could exhibit chaos. Finally, a
combination of computational, analytical, and abstract mathematical methods
led to a much deeper understanding of non-linear equations.” [12]

(iii) In 1959, E. N. Lorenz used a computer to study the numerical solutions of a set
of non-linear differential equations he had derived to describe the evolution of
weather systems. He noticed that these solutions possessed extreme sensitivity to
the initial conditions. Lorenz’s research “ marked the beginning of a remarkable
story which involved a number of individuals working largely in isolation, who all
came across different aspects of what we would now call chaotic behaviour. The
systems studied included dripping taps, electronic circuits, turbulence, population
dynamics, fractal geometry, the stability of Jupiter’s great red spot, the dynamics
of stellar orbits and the tumbling of Hyperion, one of the satellites of Saturn.” [13]

(iv) The non-linear equations that describe chaotic systems are deterministic in the
usual sense: the initial conditions specify a unique solution. “ However, it is now
clear that non-linear deterministic systems typically behave in such a way that,
even with the most powerful computers available, it would be impossible to predict
their state for a very long time. This interesting, and apparently contradictory,
behaviour (deterministic yet unpredictable) is possible because the solutions for

[12] M. Dresden, “Chaos: A new paradigm – or science by public relations?,” The Physics Teacher,
vol. 30, pp. 74–80, 1992.

[13] M. Longair, Theoretical concepts in physics (An alternative view of theoretical reasoning in
physics), p. 182. Cambridge: Cambridge University Press, 2nd edn, 2003.
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a non-linear system can depend very sensitively on the initial conditions.” [14] The
term ‘deterministic chaos’ is widely used to mean chaotic motion of dynamical sys-
tems whose time evolution is obtained from a knowledge of its previous history.[15]

It has been mentioned that “ the shock which was associated with the discovery
of deterministic chaos has therefore been compared to that which spread when it
was found that quantum mechanics only allows statistical predictions.” [15]

(v) If prediction becomes impossible, “ it is evident that a chaotic system can resemble
a stochastic system (a system subject to random external forces). However, the
source of the irregularity is quite different. For chaos, the irregularity is part of
the intrinsic dynamics of the system, not unpredictable outside influences.” [16]

(vi) For chaotic behaviour of a system, its equation of motion must be non-linear, and
it must possess at least three independent dynamical variables.[16] For the driven
pendulum discussed above, these variables are θ, dθ/dτ and φ = ωτ/ω0.

[16]

(vii) The two dotted lines in the preceeding plot of ∆θ(τ) show, respectively, either an
exponential increase or an exponential decrease in the uncertainty ∆θ with time.
These rates “ of orbital divergence or convergence, called Lyapunov exponents
. . . are clearly of fundamental importance in studying chaos. Positive Lyapunov
exponents indicate orbital divergence and chaos, and set the time scale on which
state prediction is possible. Negative Lyapunov exponents set the time scale on
which transients or perturbations of the system’s state will decay.” [17]

Question 13.18

Consider a compass needle that rotates freely in a uniform, oscillatory magnetic field
B = B0 cosωt aligned perpendicular to its pivot. The needle has magnetic dipole
moment m and moment of inertia I about a perpendicular axis through its centre.

(a) Show that the dimensionless equation of motion is

d2θ

dτ2
+ cos(ωτ

/
ω0) sin θ = 0 , (1)

where θ is the angle between m and B0, ω
2
0

= mB0

/
I and τ = ω0t.

(b) Suppose the system is started twice from rest at slightly different initial positions
θ0 and θ0 + ε. Write a Mathematica notebook to obtain numerical solutions of (1)
for θ0 = 30◦, θ̇0 = 0 and 1. ε = 0.000001◦; λ = 2; and 2. ε = 1◦; λ = 1

2
, where

λ =
√

2ω0

/
ω. In 1. plot the total angle turned through, θ(τ), for 0 ≤ τ ≤ 100π.

In 2. plot θ(τ) up to τ = 50. Also, plot the corresponding Poincaré sections,
using a sampling frequency ωs = ω (see Question 4.15).

[14] S. De Souza-Machado, R. W. Rollins, D. T. Jacobs, and J. L. Hartman, “Studying chaotic
systems using microcomputer simulations and Lyapunov exponents,” American Journal of
Physics, vol. 58, pp. 321–329, 1990.

[15] H. G. Schuster, Deterministic chaos, pp. 1–5. Frankfurt: Physik-Verlag, 1984.
[16] G. L. Baker and J. P. Gollub, Chaotic dynamics (an introduction). Cambridge: Cambridge

University Press, 1990.
[17] A. Wolf, “Quantifying chaos with Lyapunov exponents,” in Chaos (A. V. Holden, ed.), Prince-

ton, Princeton University Press, p. 273, 1986.
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Solution

(a) The needle experiences a restoring torque m × B and so the equation of motion
is (see Question 12.4)

I
d2θ

dt2
= −mB sin θ = −mB0 cosωt sin θ , (2)

which is (1).

(b) The Mathematica notebook is listed below. In both Poincaré sections, the angular
velocity θ̇ = dθ

/
dτ is given in degrees. Also, for clarity of presentation, some of

the data in the Poincaré section for case 1. have been omitted.

1. θ0 = 30◦, θ̇0 = 0, ε = 0.000001◦ and λ = 2

θ0 + ε
θ0

−2160 �

1080 �

300

�
θ (deg)

τ

θ0 + ε
θ0

�

10 080

�−160

�160
θ̇

θ (deg)

2. θ0 = 30◦, θ̇0 = 0, ε = 1◦ and λ = 1
2

θ0 + ε
θ0

−30 �

30 �

50

�

θ (deg)

τ

θ0 + ε
θ0

�

−36

�

36

�−4

�4

θ̇

θ (deg)
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Comments

(i) For λ > 1 the system exhibits chaotic behaviour.[18] Chaos is evident in the
Poincaré section for case 1. above, which illustrates a diffuse scatter of points
covering large areas of the phase space. Here, the initial ‘uncertainty’ ε in θ0 is
0.000001◦ and the two trajectories soon diverge. Contrast this with case 2. , where
the behaviour of the system is insensitive to the initial value of θ even though ε
is now one million times larger.

(ii) For λ � 1 the motion of the needle is approximately sinusoidal: the compass
needle becomes phase locked and rotates with the frequency of the magnetic
field.[18] As λ increases, the time taken to “ reach phase locking becomes longer
and longer until a critical value is reached at which the time becomes infinite
and the motion becomes chaotic. In this state, the magnet typically makes many
revolutions in one direction before unpredictably reversing.” [18]

(iii) Various features characteristic of chaotic systems, such as bifurcation and period
doubling have been observed in experiments on a compass needle in an alternating
magnetic field.[18,19]
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[18] K. Briggs, “Simple experiments in chaotic dynamics,” American Journal of Physics, vol. 55,
pp. 1083–1089, 1987.

[19] H. Meissner and G. Schmidt, “A simple experiment for studying the transition from order to
chaos,” American Journal of Physics, vol. 54, pp. 800–804, 1986.
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Question 13.19

Two smooth planes inclined at angles α (≤ 1
4
π) and π−α to the horizontal are joined

to form a symmetrical wedge. Cartesian axes are oriented with the y-axis vertical and
z-axis along the join. A particle released from rest above the left plane at (x0, y0) falls
under gravity and makes elastic collisions with the two faces of the wedge. The motion
is confined to the xy-plane.

(a) Suppose u = (ux, uy) and u′ are the velocities immediately before and after a
collision of the particle with the wedge. Then θ = cos−1(x̂ · u′/u′) is the corre-
sponding angle of projection after the collision. For the first impact, θ = 1

2
π−2α.

Show that for subsequent impacts the various values of θ are:

left plane right plane

θ =

⎧⎪⎨⎪⎩
π − 2α+ φ (uy > 0;ux < 0)

π − 2α− φ (uy < 0;ux < 0)

−2α+ φ (uy < 0;ux > 0)

2α− φ (uy > 0;ux > 0)

π + 2α− φ (uy < 0;ux < 0)

2α+ φ (uy < 0;ux > 0) ,

(1)

where φ = tan−1|uy/ux|.
(b) Use (5) of Question 7.1 and the values of θ in (1) to write a Mathematica notebook

that calculates the trajectory y(x) of the particle for a specified number n of
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bounces. (Hint: Recall that for elastic collisions u = u′.) Take x0 = −1 m, y0 = 2 m,
α = 30◦ and n = 7. Plot a graph of y versus x.

(c) Plot the graphs of x(t) and y(t) for n = 10.

Solution

(a) For elastic collisions on a smooth plane surface the ‘angle of incidence’ of the
particle equals the ‘angle of reflection’ (see Chapter 6). This, together with simple
geometry, yields the values of θ listed in (1).

(b) The trajectory obtained from the notebook below is:

2 �

−2

�

−1

�

2
�

1

�

αα

(x0, y0)

•

•

wedge

y (m)

x (m)

(c) We obtain the graphs:

−2.0

2.0

�

�

84

��

x (m)

t (s)
1.0

2.0 �

�

84

��

y (m)

t (s)

Comments

(i) Phase-space plots illustrate the rich behaviour of this non-linear system, which is
sometimes referred to as ‘gravitational billiards’.[20]

[20] H. J. Korsch and H. J. Jodl, Chaos, pp. 67–88. Berlin: Springer, 1999.
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(ii) For this system the “ motion cannot converge to a well defined sustained mo-
tion because there are no attractors in frictionless, conservative systems. As a
result, the nature of all motion strongly depends on the initial conditions and
the total energy. Regular motion corresponds to certain sets of initial conditions,
while chaotic motion corresponds to other sets. The initial conditions that lead
to chaotic motion form chaotic bands that, contrary to chaotic attractors, are
plane-filling objects.” [21]
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[21] T. Tél and M. Gruiz, Chaotic Dynamics, pp. 13–15. Cambridge: Cambridge University Press,
2006.
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Question 13.20

Consider a simple pendulum consisting of a mass m attached to one end of a massless,
rigid rod of length �. The pivot point is subject to a vertical oscillation y0 = a sinωt,
where a and ω are constants.

(a) Show that the equation of motion for oscillations of the pendulum in a vertical
plane is

θ̈ +
(
ω2

0 − (a
/
�)ω2 sinωt

)
sin θ = 0 , (1)

where θ is the angular coordinate of m measured counter-clockwise from the
downward vertical direction and ω0 =

√
g/� is the natural frequency. Do this in

two ways: 1. in an inertial frame, and 2. in an accelerated (non-inertial) frame
whose origin is located at the pivot point.

(b) Suppose the pivot is subject to a horizontal oscillation b sinωt rather than a
vertical one. Deduce the equation of motion of the pendulum.

(c) Extend the equations of motion in (a) and (b) to include the effect of a
linear frictional force −αθ̇ on m. Express the result in terms of the quality factor
Q = m�ω0

/
α for a weakly damped oscillator (see Question 4.10).

(d) Extend (1) to apply to a compound pendulum of mass m and moment of inertia
IC about its CM.

Solution

(a) 1. Let Fx and Fy denote the external forces acting on
the rod at the pivot P. Oxy is an inertial frame, and
P oscillates about O along the y-axis. The CM of the
pendulum is located at the position (x, y) of m. The
equation of motion of the CM has components

mẍ = Fx , mÿ = Fy −mg . (2)

The equation of motion for rotation about the CM is

IC θ̈ = −Fx� cos θ − Fy� sin θ

= −m�ẍ cos θ −m�(g + ÿ) sin θ , (3)

where IC is the moment of inertia about the CM. Now,
x = � sin θ and y = y0 − � cos θ, where y0 = a sinωt is
the position of P relative to O. So

ẍ = � θ̈ cos θ − � θ̇
2
sin θ

ÿ = ÿ0 + � θ̈ sin θ + � θ̇
2
cos θ .

}
(4)

Equations (3) and (4) show that

IC θ̈ = −m�2θ̈ −m�(g + ÿ0) sin θ . (5)
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Here, IC = 0 because the mass of the rod is negligible compared to the mass m
of the bob. Also, y0 = a sinωt. Thus, (5) yields (1).

2. This question can be solved most simply by referring the motion to a non-
inertial frame with origin at P – that is, at y0ŷ relative to O. In such a frame
the gravitational force mg = −mgŷ is modified by a translational force −mÿ

0
ŷ

acting on m (see Chapters 1 and 14), and the effective force is

F = −m(g + ÿ0)ŷ . (6)

Therefore, in the equation of motion θ̈ + (g
/
�) sin θ = 0 for a simple pendulum

(see Question 4.3) one should replace g with g + ÿ0. This yields (1).

(b) If the pivot is subject to a horizontal oscillation x0 = b sinωt, rather than a vertical
one, then we should set x = x0 + � sin θ and y = −� cos θ in (3) and so obtain

θ̈ + ω2
0 sin θ − (b

/
�)ω2sinωt cos θ = 0 . (7)

Alternatively, use an effective force F = −mgŷ −mÿ
0
x̂.

(c) A frictional force −αθ̇ acting on m will produce an additional term −�αθ̇ on the
right-hand sides of (3) and (5). Thus, (1) and (7) become, respectively,

θ̈ + (ω0

/
Q) θ̇ +

[
ω2

0
− (a

/
�)ω2sinωt

]
sin θ = 0 , (8)

and

θ̈ + (ω0

/
Q) θ̇ + ω2

0
sin θ − (b

/
�)ω2sinωt cos θ = 0 . (9)

(d) Equation (5) will apply to a compound pendulum of mass m if we replace � by
�C, the distance of the CM from P. So, the equation of motion becomes[

1 + IC

/
m� 2

C

]
θ̈ +

[
ω2

0 − (a
/
�C)ω2sinωt

]
sin θ = 0 . (10)

Comments

(i) The above system, consisting of an ordinary rigid pendulum whose pivot point is
driven sinusoidally, possesses a remarkable variety of motions for such a seemingly
simple object. (Many references to this topic are provided in Ref. [22].) Among
these are parametric resonance, chaos, bifurcation, and induced stability. The
latter occurs in vertical driving, and it is an example of a response that is counter-
intuitive: when the ratio aω

/
�ω0 exceeds a critical value, the upward (unstable)

equilibrium position of the pendulum becomes stable – the pendulum can perform
oscillatory motion about the vertical inverted position and, if it is damped, it will
come to rest in this position. This peculiar behaviour, which was discovered about
one hundred years ago, is studied in the next two questions.

(ii) It is evident from (6) that an oscillation y0(t) of the pivot point P is equivalent
to a modulation ÿ0 of the constant gravitational acceleration g.

[22] E. I. Butikov, “On the dynamic stabilization of an inverted pendulum,” American Journal of
Physics, vol. 69, pp. 755–768, 2001.
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(iii) The non-linear equation (1) cannot be solved analytically, although for small
oscillations about either the downward or upward equilibrium positions it reduces
to Mathieu’s equation, and the solution is given in terms of a doubly periodic
infinite series.[23] In Question 13.21 we consider numerical solutions to the
equations of motion (8) and (9).

Question 13.21

(a) Use the dimensionless time τ = ω0t to express the equations of motion (8) and
(9) of Question 13.20 in the dimensionless forms

d2θ

dτ2
+

1

Q

dθ

dτ
+

[
1 − a

�

ω2

ω2
0

sin
ω

ω0

τ

]
sin θ = 0 (1)

and
d2θ

dτ2
+

1

Q

dθ

dτ
+

[
1 − b

�

ω2

ω2
0

sin
ω

ω0

τ

]
cos θ = 0 . (2)

(b) Suppose the pivot oscillates vertically and that a/� = 0.1, ω/ω0 = 20.0, θ0 = 170◦

and θ̇0 = 0. Write a Mathematica notebook to solve (1) for θ(τ). Plot graphs of
the angular position φ = π − θ, measured from the upward vertical, versus τ for
Q = ∞ (an undamped pendulum) and Q = 10, for 0 ≤ τ ≤ 15.

(c) Suppose the pivot oscillates horizontally and that b/� = 0.1, ω/ω0 = 20.0,
θ0 = 80◦ and θ̇0 = 0. Modify the notebook in (b) and plot graphs of θ(τ) versus
τ for Q = ∞ and Q = 10.

(d) Animate the motion of the pendulum using Mathematica’s Manipulate func-
tion.

Solution

(a) Equations (1) and (2) follow by dividing (8) and (9) of Question 13.20 by ω2
0
.

(b) and (c) See the notebook given in (d) below. On the following figures we have
also plotted the oscillation of the pivot.

a/� = 0.10; ω/ω0 = 20; φ0 = 10◦; φ̇0 = 0; Q = ∞

(a/�) sin ω
ω0
τ

30◦ �

−30◦ �

vertically driven pendulum: without damping

16

�

φ(τ)

τ

[23] F. M. Phelps, III and J. H. Hunter, Jr., “An analytical solution of the inverted pendulum,”
American Journal of Physics, vol. 33, pp. 285–295, 1965.
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a/� = 0.10; ω/ω0 = 20; φ0 = 10◦; φ̇0 = 0; Q = 10

(a/�) sin ω
ω0
τ

30◦ �

−30◦ �

vertically driven pendulum: with damping

16

�

φ(τ)

τ

b/� = 0.10; ω/ω0 = 20; θ0 = 80◦; θ̇0 = 0; Q = ∞

(b/�) sin ω
ω0
τ

80◦ �

40◦ �

16

�

horizontally driven pendulum: without dampingθ(τ)

τ

b/� = 0.10; ω/ω0 = 20; θ0 = 80◦; θ̇0 = 0; Q = 10

(b/�) sin ω
ω0
τ

80◦ �

40◦ �

16

�

horizontally driven pendulum: with dampingθ(τ)

τ

(d) Use the following notebook:
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Comments

(i) A simple pendulum possesses two equilibrium positions: the downward position
θ = 0, which is stable, and the inverted position φ = π− θ = 0, which is unstable
(see Question 5.14). We see from the first pair of figures above that a vertically
driven pendulum can oscillate about φ = 0. In particular, if the pendulum is
damped it eventually comes to rest in the inverted position.

(ii) This property, where vertical oscillations of the pivot can cause the position of
unstable equilibrium to become stable, is known as induced stability. It was ev-
idently first studied

(
for small oscillations φ(t)

)
by Stephenson in 1908[24] and

[24] A. Stephenson, “On an induced stability,” Philosophical Magazine, vol. 15, pp. 233–236, 1908.
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later in more detail by Kapitza and others
(
see references in Refs. [22] and [25].

)
(iii) For the horizontally driven pendulum the second pair of figures above show that

a lateral position of equilibrium is induced below the horizontal position θ = 1
2
π.

(iv) It is evident from the figures that the motion consists of a slow oscillation plus a
small, superimposed rapid vibration at the frequency ω of the forced oscillation of
the pivot. This feature is present for small, rapid oscillations of the pivot (a � �
and ω � ω0), and it provides a useful clue for performing an approximate analysis
of the motion (see Questions 13.22 and 13.23).[22]

Question 13.22

Consider the vertically driven simple pendulum of Question 13.20 in the limit of small
driving amplitude a and large driving frequency ω:

a
/
�� 1 , ω

/
ω0 � 1 . (1)

Neglect friction. Motivated by the numerical solutions of Question 13.21, express the
angular position θ(t) as the sum of a ‘slow’ component θs and a small ‘rapid’ component
θr:

θ = θs + θr (|θr| � 1) . (2)

(a) Show that

θr ≈ −a
�

sinωt sin θs . (3)

(Hint: Consider a non-inertial frame that oscillates with the pivot and note that θr

is an oscillatory response of frequency ω to the torque exerted by the translational
force‡ in this frame.)

(b) Evaluate the total torque Γ about the oscillating pivot and show that its value
averaged over the period 2π/ω of the rapid oscillation is

〈Γ〉 = −m(g�+ 1
2
a2ω2 cos θs) sin θsẑ . (4)

(c) Consider oscillations of the pendulum about the vertical position θ = π. Express
(4) in terms of the supplementary angle φ = π − θ measured from the upward
vertical, and deduce that the maximum deviation φmax that can occur in such
oscillations is given by

cosφmax = 2

(
�

a

ω0

ω

)2
, (5)

where ω0 =
√
g/�. Hence, obtain the condition for induced stability (that is, for

oscillations of an inverted pendulum).

(d) Use (4) to obtain the effective potential Ve(θs) that governs the slow oscillations
of the pendulum. Sketch the graphs of Ve(θs) versus θs for aω

/
�ω0 = 1

/√
2 and

5
/√

2, and use them to analyze the possible motions of the pendulum.

‡See Chapter 1 and Question 14.11.

[25] A. B. Pippard, “The inverted pendulum,” European Journal of Physics, vol. 8, pp. 203–206,
1987.
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Solution

(a) The torque about the pivot P exerted by the transla-
tional force −mÿ

0
ŷ is

Γtr = −m�ÿ0 sin θ ẑ = m�aω2 sinωt sin θ ẑ . (6)

We look for a solution for the rapid variation θr in (2)
that is associated with Γtr: so we consider the equation
of motion

m� 2θ̈r = m�aω2 sinωt sin θ . (7)

We are interested in a solution θr that is small and
oscillates with frequency ω. So, we approximate θ in
(7) by θs and write

θ̈r = (aω2
/
�) sinωt sin θs . (8)

Here, the slow variable θs can be treated as a constant, and therefore integration of
(8) yields the desired solution (3). Note that θr oscillates with the rapid frequency
ω and that |θr| is small because of (1)1. Also, θr is proportional to sin θs and so
it vanishes where θs is zero. These features are in agreement with the numerical
results in Question 13.21. An alternative derivation of (3) is given in Comment
(ii) below.

(b) The total torque Γ about P is the sum of the gravitational torque Γg = −mg� sin θ ẑ

and Γtr in (6):

Γ = (−mg� sin θ +m�aω2 sinωt sin θ)ẑ . (9)

Here

sin θ = sin(θs + θr) ≈ sin θs + θr cos θs . (10)

With θr given by (3), equations (9) and (10) yield

Γ ≈
[
−mg�(1 − a

�
sinωt cos θs) +m�aω2(sinωt− a

�
sin2ωt cos θs)

]
sin θs ẑ . (11)

In averaging (11) over the period 2π/ω of the rapid oscillation we can treat θs as
a constant. Also, 〈sinωt〉 = 0 and 〈sin2ωt〉 = 1

2
. Therefore

〈Γ〉 = −m(g�+ 1
2
a2ω2cos θs) sin θs ẑ . (12)

The first term in (12) is the average 〈Γg〉 of the gravitational torque and the
second term is the average 〈Γtr〉 of the torque due to the translational force.

(c) It is clear from (12) that if θs < 1
2
π then both 〈Γg〉 and 〈Γtr〉 tend to turn the

pendulum downward: the pendulum can perform oscillations about the point of
stable equilibrium at θ = 0. However, if θs > 1

2
π then these torques oppose each

other: 〈Γtr〉 tends to turn the pendulum upward. To analyze this case it is helpful
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to introduce the supplementary angle φ = π − θs measured from the upward
vertical and write (12) as

〈Γ〉 = −m(g�− 1
2
a2ω2cosφ) sinφ ẑ . (13)

It follows that oscillations about the upward vertical (φ = 0) can occur up to a
maximum deflection φmax where

cosφmax = 2
g�

a2ω2
= 2

(
�

a

ω0

ω

)2
. (14)

These oscillations of an inverted pendulum are possible if the right-hand side of
(14) is less than 1. That is, if

a

�

ω

ω0

>
√

2 . (15)

Thus, induced stability (stable equilibrium at φ = 0) occurs when the ratio aω
/
�ω0

exceeds the critical value
√

2. According to (14), for values of aω
/
�ω0 slightly

above
√

2 an inverted pendulum can perform only small oscillations, whereas
for aω

/
�ω0 � 1 these inverted oscillations can extend to almost the horizontal

position (φmax ≈ 1
2
π):

(d) The effective potential Ve(θs) for the slow oscillations is related to the average
torque (4) by

〈Γ〉 = −(dVe

/
dθs) ẑ . (16)

Therefore, choosing the zero of potential at θs = 0 we have

Ve(θs) = m�2ω2
0

[
1 − cos θs +

1

8

(
aω

�ω0

)2
(1 − cos 2θs)

]
. (17)

From the derivatives dVe

/
dθs and d2Ve

/
dθ2

s
we see that Ve has a minimum at

θs = 0, and when aω
/
�ω0 >

√
2 it also has minima at θs = ±π, otherwise it has

maxima there. The graphs for aω
/
�ω0 = 1/

√
2 and 5/

√
2 illustrate this:
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aω/�ω0 = 1/
√

2

aω/�ω0 = 5/
√

2

2π

�

π

�

−π

�

−2π

�

4 �

2 �

θs

Ve(θs)/m�
2ω2

0

We conclude that if aω
/
�ω0 <

√
2 there is just one point of stable equilibrium (at

θs = 0) about which the pendulum can perform oscillatory motion. However, if
aω
/
�ω0 >

√
2, then θs = π (or, equivalently, θs = −π) is an additional (induced)

point of stable equilibrium, about which oscillations of an inverted pendulum are
possible, and to which damped oscillations will tend.

Comments

(i) The equation of motion of the slow oscillations is m�2θ̈sẑ = 〈Γ〉, where 〈Γ〉 is
given by (4). That is,

θ̈s + ω2
0 sin θs + (a2ω2

/
2�2) cos θs sin θs = 0 . (18)

Thus, for small oscillations about the lower equilibrium position (|θs| � 1) this
equation is harmonic with angular frequency

ωL = ω0

√
1 + a2ω2

/
2�2ω2

0 ; (19)

and for small oscillations about the upper equilibrium position (θs = φ+π, where
|φ| � 1) the angular frequency is

ωU = ω0

√
a2ω2

/
2�2ω2

0
− 1 , (20)

which exists if aω
/
�ω0 >

√
2, in agreement with (15).

(ii) The effective potential (17) can also be obtained from the equation of motion (1)
of Question 13.20. With the superposition (2) and the approximation (10) we can
write the following coupled equations of motion for θs and θr:

θ̈s + ω2
0
sin θs − (aω2

/
�) θr cos θs sinωt = 0 (21)

θ̈r + ω2
0 θr cos θs − (aω2

/
�) sin θs sinωt = 0 . (22)
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Because θs is slowly varying compared to θr, the solution to (22) can be approxi-
mated as θr = A sinωt, where

A = − (aω2
/
�) sin θs

ω2 − ω2
0
cos θs

≈ −a
�

sin θs . (23)

Thus θr is given by (3).
(
The second term in (22), which is absent from (7), does

not contribute materially to the solution.
)

From (21) and (3) we have

θ̈s + ω2
0
sin θs + (aω

/
�)2 cos θs sin θs sin2 ωt = 0 . (24)

This reduces to (18) when sin2 ωt is replaced by its average value over the driving
period 2π/ω. Equation (18) and the relation m�2θ̈s = −dVe

/
dθs yield (17).

(iii) The analysis given in parts (a) to (d) above is valid only in the limits (1).
Other motions occur when (1) is not satisfied, including parametric resonance
and chaotic modes, which can be either oscillatory (θ bounded), or rotational (θ
unbounded), or a combination of the two.[22]

Question 13.23

Extend the analysis of the previous question to a simple pendulum whose pivot is
driven horizontally according to x0 = b sinωt in the limits ω

/
ω0 � 1 and b

/
�� 1.

Solution

The calculations are similar to those above for a vertically driven pendulum, and we
present a brief outline. The translational force −mẍ0x̂ exerts a torque

Γtr = −m�ẍ0 cos θ ẑ = m�bω2 sinωt cos θ ẑ . (1)

The equation of motion of the small, rapid oscillation θr in the superposition θ = θs+θr

is therefore
θ̈r = (bω2

/
�) sinωt cos θs . (2)

Thus, θr = (−b/�) sinωt cos θs, and with cos θ = cos(θs + θr) ≈ cos θs − θr sin θs in (1)
we find an average torque

〈Γtr〉 = 1
2
mb2ω2cos θs sin θs ẑ . (3)

Therefore, the average value of the total torque is

〈Γ〉 = −m(g�− 1
2
b2ω2cos θs) sin θs ẑ . (4)

Consequently, an induced equilibrium position at θs given by

cos θs = 2g�
/
b2ω2 = 2(�ω0

/
bω)2 (5)

exists if
b

�

ω

ω0

>
√

2 . (6)



��� Solved Problems in Classical Mechanics

The effective potential Ve(θs) for the slow oscillations is related to (4) by
〈Γ〉 = −(dVe

/
dθs) ẑ. The potential, which is zero at θs = 0, is therefore

Ve(θs) = m�2ω2
0

[
1 − cos θs − 1

8

(
bω

�ω0

)2

(1 − cos 2θs)

]
. (7)

This differs from the corresponding potential for a vertically driven pendulum
(
see

(17) of Question 13.22
)

only in the sign of the last term in the square brackets. The

potential (7) has maxima at θs = ±π. If bω
/
�ω0 >

√
2 it has a maximum at θs = 0 and

minima at θs = cos−1 2(�ω0

/
bω)2:

bω/�ω0 = 1/
√

2

bω/�ω0 = 5/
√

2

2π

�

π

�−π�−2π

�

−2 �

2 �

θs

Ve(θs)/m�
2ω2

0

We conclude that if bω
/
�ω0 <

√
2 there is just one point of stable equilibrium, the

vertically downward position θs = 0. But, if bω
/
�ω0 >

√
2, this point becomes unstable

and instead a point of stable equilibrium is induced at a θs between 0 and 1
2
π, and

at a symmetric point between 0 and − 1
2
π. For bω

/
�ω0 � 1 these two points of stable

equilibrium approach the horizontal (θs = ± 1
2
π): a damped pendulum that is driven

horizontally with a sufficiently large amplitude b and/or frequency ω will eventually
perform small, rapid oscillations‡ (of amplitude b

/
� and angular frequency ω) about

an almost horizontal position.

Comment

The following curve is a plot of the induced equilibrium position θs given by the
approximation (5). The points are numerical results obtained by averaging asymptotic
numerical solutions to the dimensionless equation of motion of a damped pendulum
(see Question 13.21),

d2θ

dτ2
+

1

Q

dθ

dτ
+

[
1 − b

�

ω2

ω2
0

sin
ω

ω0

τ

]
cos θ = 0 , (8)

‡The reader should keep in mind that θs = θ − θr represents the ‘smoothed’ motion of the
pendulum: it is equal to the value of θ averaged over the period 2π/ω of the rapid oscillations,
because 〈θr〉 = 0.
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over the (dimensionless) period 2πω0

/
ω of the rapid oscillations. We have used Q = 10,

ω
/
ω0 = 80 and increasing values of b

/
�, starting at b

/
� = 1.416

/
80, which is just above

the critical value in (6). The approximate theory is seen to be rather accurate. In fact,
there is good agreement with numerical values at even smaller values of ω/ω0 and

θs = cos−1(2�2ω2
0
/b2ω2)

Numerical solutions

√
2 4

�

8

�

45◦�

90◦�

bω/�ω0

θs(eqm)

larger starting values of b
/
�, particularly if bω

/
�ω0 is not too close to the critical value√

2 (see the two tables below, where ω/ω0 decreases and b
/
� increases as one reads

from left to right). The conditions ω
/
ω0 � 1 and b

/
�� 1 for the validity of the theory

are evidently not particularly onerous in practice.

b

�

ω

ω0

= 1.416 and θs, theory = 4.070◦

ω
/
ω0 1000 500 100 80 60 40 20 10 5

100b
/
� 0.1416 0.2832 1.416 1.770 2.360 3.540 7.080 14.16 28.32

θs, num 4.075◦ 4.077◦ 4.096◦ 4.114◦ 4.151◦ 4.251◦ 4.749◦ 6.358◦ 10.554◦

b

�

ω

ω0

= 1.750 and θs, theory = 49.227◦

ω
/
ω0 500 100 80 60 40 20 10 5

100b
/
� 0.350 1.750 2.188 2.917 4.375 8.750 17.500 35.000

θs, num 49.227◦ 49.229◦ 49.230◦ 49.232◦ 49.238◦ 49.270◦ 49.397◦ 49.901◦
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Translation and rotation of the
reference frame

In this chapter we consider a topic that has been discussed at least from the time of
Galileo and Newton, and which centres on the question: what if we change the frame of
reference in some way? At first sight this question may seem of no special significance.
However, the harvest turns out to be surprisingly rich and it contains (and points to)
some of the most interesting and profound results in physics.

Broadly speaking, two types of question arise regarding the effects (if any) of a
change in the frame of reference, namely 1. effects on physical quantities and 2.
effects on the equations of physics. As Newton realized, this involves one in questions
concerning the nature of space and time, and it leads – after a subtle change in
emphasis (the relativity principle) – to Einstein’s theory of space-time.

In the following we consider physical quantities and relations in a frame S′ that
differs from an inertial frame S by a translation, or a rotation, or both. These frames
have Cartesian coordinate axesO′x′y′z′ andOxyz, and the position vector of the origin
O′ of S′ relative to O is denoted by D. When no rotation is involved the corresponding
axes of S′ and S are always taken to be parallel.

Questions in which D is constant deal with origin independence/dependence of
physical quantities and equations, and with conservation of momentum and its
connection with symmetry (see Questions 14.1–14.7). When D is time dependent one
can treat topics such as the Galilean transformation, invariance of the equation of
motion, the translational force and applications (see Questions 14.8–14.15).
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A fixed rotation of S′ relative to S enables one to discuss vectors (in general, ten-
sors) and orthogonal transformations, invariance of the equations of physics under such
transformations, conservation of angular momentum and symmetry (see Questions
14.16–14.19). Examples in which S′ rotates with angular velocity ω relative to S deal

x

z

y

!!

x
0

y
0

z
0

with the centrifugal, Coriolis, and azimuthal (Euler) forces and some applications (see
Questions 14.20–14.30). If the rotation is accompanied by translation then both D and
ω are non-zero, as illustrated on page 8.

Newtonian (or Galilean) relativity – that is, absolute space, time, and mass – is
assumed in this chapter. The next chapter touches on the topic of relative space-time.

Question 14.1

State what is meant by 1. an origin-dependent physical quantity, and 2. an origin-
independent physical quantity.

Solution

Let O denote the origin of the coordinate axes relative to which the position vector r

is specified. Let A denote a theoretical expression (or numerical value) for a physical
quantity relative to O; and let A′ be its expression, or value, relative to a different
origin O′. Then, A is termed origin dependent if (for at least some choices of O′)

A′ �= A , (1)

and origin independent if (for all choices of O′)

A′ = A . (2)
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Comments

(i) So, the origin dependence of a quantity is determined simply by comparing its
theoretical expression (or numerical value) relative to coordinate origins O and
O′ that are separated by a constant displacement D, so that r = r′ + D.

(ii) The value of an origin-dependent quantity has meaning only with respect to a
stated coordinate origin. Some examples are considered below.

(iii) In general, A represents the components of a tensor (scalar, vector, . . . ). In
the above we have supposed that the corresponding axes of Oxyz and O′x′y′z′

are parallel so that we are not concerned with the effect of rotation on these
components (see Question 14.16).

(iv) Usually O and O′ are arbitrary, but in certain cases they may be somewhat
constrained, for example by convergence of a series expansion.

(v) In practice, the condition for origin independence is used to check the validity of
a theoretical result for a quantity that is expected to be origin independent. For
example, after calculating such a quantity (magnetic susceptibility), Van Vleck
remarked: “The reader has possibly wondered what point should be used as
the origin for computing r. . . . This choice is immaterial as (the expression) is
invariant of the origin.” [1]

(vi) Conversely, the condition for origin independence can sometimes be used to
deduce theoretical expressions to within dimensionless factors. In this regard it is
somewhat analogous to dimensional analysis.

Question 14.2

Determine the effect of a change in coordinate origin on the following quantities: (a)
The position and displacement vectors r and dr. (b) The velocity v and acceleration
a. (c) Relative mass (see Question 2.6). (d) The momentum p and angular momentum
L of a particle. (e) The spin angular momentum Ls, orbital angular momentum Lo,
and total angular momentum L of a system of particles (see Question 11.3).

Solution

(a) The position vectors r and r′ of a particle
relative to coordinate origins O and O′ are related
by r = r′ + D. So, r is an origin-dependent vector.
But, dr = d(r′ +D) = dr′ is origin independent, as
therefore is any finite displacement vector.

(b) v = dr
/
dt is therefore also origin independent, as

is a = dv
/
dt.

r

D

0

r
0

(c) An operational definition of relative mass was given in terms of a ratio of
accelerations in Question 2.6. Therefore, relative mass is origin independent, and

[1] J. H. Van Vleck, The theory of electric and magnetic susceptibilities, p. 276. Oxford: Clarendon
Press, 1932.



Translation and rotation of the reference frame ���

so is the mass m in Newtonian mechanics (the standard mass – for example, the
kilogram – is an arbitrary, origin-independent quantity).

(d) So p = mv is origin independent, but L is origin dependent:

L = r× p = (r′ + D) × p′ = L′ + D× p . (1)

(e) The various angular momenta of a system of particles are (see Question 11.3):

Ls =
∑
i

(ri − R) × pi =
∑
i

(r′i + D− {R′ + D}) × p′
i

=
∑
i

(r′i − R′) × p′
i = L′

s . (2)

Lo = R × P = (R′ + D) × P′ = L′
o
+ D× P , (3)

where P (= P′) is the total momentum. So Ls is origin independent, whereas Lo,
and also the total angular momentum L = Lo + Ls, are origin dependent.

Question 14.3

Consider a set of Cartesian axes Ox1x2x3 and the inertia tensor of a rigid, continuous
body relative to these axes:

Iαβ =

∫
V

(δαβxγxγ − xαxβ)ρ(r) dV (α, β = 1, 2 or 3) , (1)

where V and ρ are the volume and density of the body, and the repeated index γ
implies summation from 1 to 3

(
see (18) of Question 12.6

)
. Let O′x′

1
x′

2
x′

3
be a second

set of axes parallel to Ox1x2x3 and with O′ displaced from O by a constant vector
D = (D1, D2, D3). Show that the inertia tensor relative to O′x′1x

′
2x

′
3 has components

I ′αβ = Iαβ +M(δαβD
2 −DαDβ) +M(RαDβ +RβDα − 2δαβRγDγ) , (2)

where D2 = D2
1

+D2
2

+D2
3
, R is the position vector of the CM relative to O, and M

is the mass of the body,

M =

∫
V

ρ(r) dV . (3)

Solution

We start with (1) expressed in terms of the primed coordinates:

I ′
αβ

=

∫
V

(δαβx
′
γ
x′

γ
− x′

α
x′

β
)ρ(r′) dV ′ , (4)

where x′
α

= xα −Dα and dV ′ = dx′
1
dx′

2
dx′

3
. Because the Dα are constants it is clear

that dV ′ = dV , and also ρ(r′) = dm′/dV ′ = dm
/
dV = ρ(r). So, (4) can be written
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I ′αβ =

∫
V

{δαβ(xγ −Dγ)(xγ −Dγ) − (xα −Dα)(xβ −Dβ)}ρ(r) dV . (5)

Expanding (5), then using (1) and (3) and rearranging terms gives

I ′αβ = Iαβ +M(δαβD
2 −DαDβ) +

∫
V

(Dβxα +Dαxβ − 2δαβDγxγ)ρ(r) dV . (6)

Now ∫
V

xαρ(r) dV = MRα , (7)

and so (6) reduces to (2).

Comments

(i) It is clear from (2) that, in general, the inertia tensor is origin dependent.

(ii) If O is at the CM, then Rα = 0 (α = 1, 2 or 3) and (2) simplifies to

I ′αβ = Iαβ +M(δαβD
2 −DαDβ) . (8)

Equation (8) is the parallel-axis theorem for the inertia tensor (see Question 12.7).

(iii) It is not difficult to show that (2) and (8) are valid also for a discrete mass
distribution (a system of particles), though the notation is more cumbersome
(the components of the position vectors of the particles are denoted xiα, where
i = 1, 2, · · · , N labels the particle and α = 1, 2, 3 labels the component).

Question 14.4

The components of the electric dipole moment µα and the electric quadrupole moment
qαβ of a continuous distribution of charge are defined by

µα =

∫
V

xαρ(r) dV (1)

qαβ =

∫
V

xαxβρ(r) dV , (2)

where V and ρ are the volume and charge density of the distribution, and
α, β = 1, 2, or 3. Determine the change in these moments when the coordinate origin
is shifted by D = (D1, D2, D3).

Solution

Relative to a coordinate origin O′ the dipole moment is

µ′
α

=

∫
V

x′
α
ρ(r′) dV ′ , (3)
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where x′
α

= xα −Dα and dV ′ = dx′
1
dx′

2
dx′

3
. Because the Dα are constant, dV ′ = dV

and ρ(r′) = ρ(r). So (3) can be written

µ′
α =

∫
V

(xα −Dα)ρ(r) dV = µα − qDα , (4)

where

q =

∫
V

ρ(r) dV (5)

is the total charge of the distribution. Similarly, for the quadrupole moment we have

q′
αβ

=

∫
V

x′
α
x′

β
ρ(r′) dV ′ =

∫
V

(xα −Dα)(xβ −Dβ)ρ(r) dV

= qαβ − µαDβ − µβDα + qDαDβ . (6)

Equations (4) and (6) are the desired results for the origin dependences of µα and qαβ .

Comments

(i) Equations (4) and (6) are valid also for a discrete distribution of charge.

(ii) It follows from (4) that the dipole moment µα is origin independent only if the
charge distribution is neutral (q = 0).

(iii) Similarly, from (6) the quadrupole moment qαβ is origin independent only if the
total charge q and the dipole moment µα are both zero. So, the electric quadrupole
moment of a dipolar molecule (one with µα �= 0) is origin dependent. An ingenious
experimental technique exists to measure this observable, based on a theory by
Buckingham and Longuet-Higgins of the birefringence induced in a gas by an
electric field gradient.[2,3]

(iv) These conclusions regarding origin dependence of µα and qαβ can be generalized:
only the leading non-vanishing electric multipole moment is origin independent.

Question 14.5

Show that the equation of motion F = dp
/
dt is origin independent (that is, it is valid

for any choice of the coordinate origin of an inertial frame).

Solution

This follows directly because p′ = p (see Question 14.2). Therefore, the rates of change
dp
/
dt and dp′/dt are the same, as are the associated forces F and F′.

[2] A. D. Buckingham and H. C. Longuet-Higgins, “The quadrupole moments of dipolar molecules,”
Molecular Physics, vol. 14, pp. 63–72, 1968.

[3] A. D. Buckingham, R. L. Disch, and D. A. Dunmur, “The quadrupole moments of some simple
molecules,” Journal of the American Chemical Society, vol. 90, pp. 3104–3107, 1968.
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Comments

(i) This result was known already to Newton (see Question 14.9). Its extension to
frames that are translating relative to each other with constant velocity (where
the separation D of the coordinate origins O and O′ is not constant) occurred in
two stages. First, for Newton’s absolute space and time (see Question 14.9), and
then for relative space-time (special relativity – see Chapter 15).

(ii) In the above, the vectors p and F entering the equation of motion are both
invariant with respect to the coordinate origin. In other instances the vectors in
an equation of physics can be origin dependent but the equation is, nevertheless,
invariant (see below).

Question 14.6

Show that the equation

L̇ = Γ (1)

for the rate of change of the total angular momentum of a system of particles (see
Question 11.2) is origin independent. Here, Γ is the total torque on the particles due
to external forces.

Solution

In terms of the separation D of the origins of the two frames, the position vectors of
the ith particle are related by ri = r′

i
+ D. Also pi = p′

i
(see Question 14.2). So

L =
∑
i

ri × pi =
∑
i

(r′
i
+ D) × p′

i
= L′ + D× P , (2)

where P =
∑
i

pi is the total momentum. Then

L̇ = L̇
′
+ D× F , (3)

because D is constant and Ṗ = F, the total external force acting on the particles.
Also,

Γ =
∑
i

ri × Fi =
∑
i

(r′i + D) × F′
i = Γ′ + D × F , (4)

because the external force Fi acting on each particle is origin independent. According

to (1), (3) and (4), L̇
′
= Γ′.

Comment

Even though the vectors L̇ and Γ depend on the choice of coordinate origin, the
equality (1) between them is origin independent.
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Question 14.7

(a) What are the conditions for the Lagrangian of a system of particles to be trans-
lationally invariant (that is, unchanged by a displacement of the entire system)?

(b) Use this invariance to deduce the law of conservation of momentum for a system
of particles.

(c) Deduce also the third law of motion for the interaction between two particles.

Solution

(a) The frame of reference should be inertial (which ensures that the space is
homogeneous – see Chapter 1) and the system should be isolated (or closed –
meaning that it does not interact with anything external).

(b) An infinitesimal, constant displacement δri = D of each particle leaves the velocity
vi unaltered and changes the Lagrangian L(ri,vi) by‡

δL =
∑
i

∂L

∂ri

· δri = D ·
∑
i

∂L

∂ri

. (1)

Translational invariance of L means δL = 0 for arbitrary D, and therefore∑
i

∂L

∂ri

= 0 . (2)

According to Lagrange’s equations (see Chapter 1) this means

d

dt

∑
i

∂L

∂vi

= 0 . (3)

But ∂L
/
∂vi = pi, the momentum of the ith particle, and so (3) can be written

dP

dt
= 0 , (4)

where P =
∑

i pi is the total momentum of the system. Equation (4) is the law
of conservation of momentum for a closed system of particles in an inertial frame.

(c) According to (2) the total force on the system is zero:∑
i

Fi = 0 , (5)

where Fi = ∂L
/
∂ri is the force on the ith particle. In an isolated system this force

is entirely due to interparticle interactions:

Fi =
∑
j

Fji (j �= i) , (6)

‡We use the following notation: ∂L
/
∂r denotes the vector (∂L

/
∂x, ∂L

/
∂y, ∂L

/
∂z), and similarly

for ∂L
/
∂v. This avoids the use of double indices in (1)–(3).
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and therefore ∑
i

∑
j

Fji = 0 (j �= i) . (7)

For the interaction of two particles, (7) yields Newton’s third law:

F12 + F21 = 0 . (8)

Comments

(i) This example is a particular case of the general connection between symmetry
properties and conservation laws. The homogeneity of space in an inertial frame
means that spatial translation of an isolated system is a symmetry transformation,
and the consequence of this is conservation of momentum. We have previously
seen that homogeneity of time in an inertial frame means that translation in
time is a symmetry transformation for an isolated system (see Question 11.33),
and correspondingly the energy is conserved. The connection between rotational
symmetry and conservation of angular momentum is treated in Question 14.18.

(ii) If the system is not isolated then the particles will also experience external forces:
in general, the invariance of L with respect to displacements along the three coor-
dinate axes will be broken and none of the components of P will be conserved. In
particular cases there may, nevertheless, be partial invariance, and consequently
conservation of the corresponding component(s): for example, invariance of L with
respect to displacement along the x-axis means that Px is conserved, etc.

(iii) In an inertial frame the Lagrangian for an isolated system of particles interacting
via two-body central potentials is

L =
∑
i

1
2
miv

2
i
− 1

2

∑
i

∑
j

Vij(|ri − rj|) , (9)

and the translational invariance is obvious. External interactions that add terms
of the form Vi(ri) to (9) will, in general, break this invariance, as will use of a
non-inertial frame (see Questions 14.11 and 14.22).

Question 14.8

Suppose S′ is a frame that is translating with constant velocity v relative to an inertial
frame S. Let (r, t) and (r′, t′) be the space and time coordinates of the same event
relative to S and S′. Give a brief discussion of the basis for the Galilean transformation
connecting (r′, t′) with (r, t).

Solution

Suppose first that S′ is at rest relative to S. Then

r′ = r− D and t′ = t , (1)
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where D is a constant. Equation (1)1 is a property of the assumed Euclidean nature
of space (see Chapter 1), and (1)2 asserts that a universal time exists in a given
frame. The Galilean transformation results from the assumption that equations (1)
are valid also when S′ is translating relative to S with constant velocity v: that is,
when D = vt+D0. Usually one sets D0 = 0 for convenience. (This means that O and
O′ coincide at t = t′ = 0.) Then

r′ = r − vt and t′ = t . (2)

The Galilean transformation (2) is the basis for Newtonian relativity.

Comments

(i) The transformation (2) seems intuitively reasonable. For example, it yields the
velocity transformation

ṙ′ = ṙ − v . (3)

(ii) However, (2) is based on the assumption of absolute space and absolute time
(see Question 15.1). Despite attracting much criticism,[4] about two hundred and
fifty years elapsed before Newton’s relativity was replaced by Einstein’s theory
of special relativity, following work by Fitzgerald, Lorentz and Poincaré. This
showed that the Galilean transformation is a good approximation at low speeds
(see Question 15.3).

(iii) When v is along one of the coordinate axes, say the x-axis, (2) reduces to the
Galilean transformation for the ‘standard configuration’:

x′ = x− vt , y′ = y , z′ = z , t′ = t . (4)

Question 14.9

Show that the equation of motion F = ma is invariant under the Galilean
transformation (2) of the previous question.

Solution

According to the Galilean transformation, acceleration is the same in all frames that
are translating relative to each other with constant velocity:

a′ =
d2r′

dt2
=

d2

dt2
(r − vt) =

d2r

dt2
= a . (1)

Also, relative mass (as determined by a ratio of accelerations – see Question 2.6), and
therefore mass, is the same in these frames.‡ So,

‡In general, in Newtonian physics it is assumed that the mass of an object is an invariant.

[4] See, for example, A. Danto and S. Morgenbesser, Philosophy of science. New York: Meridian,
1960.
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m′a′ = ma = F . (2)

Thus the equation of motion holds – with the same values of acceleration, mass and
force – in all frames that move with constant velocity relative to an inertial frame.

Comments

(i) Therefore, if one inertial frame exists then infinitely many exist.

(ii) Invariance under a Galilean transformation is clear for any force that depends
on the difference ri − rj between the simultaneous positions of particles: e.g. the
gravitational and electrostatic forces between particles vary as (ri − rj)

/|ri − rj|3,
and so F′

ij = Fij. More generally, the equations of motion for a system of N
particles interacting via two-body central potentials,

mir̈i = −
N∑
j=1

∇iVij(|ri − rj |) (i = 1, 2, · · · , N and j �= i) , (3)

are invariant (provided m′
i
= mi).

(iii) The result (2) – that Newton’s equation of motion is valid in all inertial frames –
is the earliest example of what came to be known as the relativity principle. As
formulated by Einstein, it states that the laws of physics are equally valid in all
inertial frames, and it is one of the fundamental principles of physics. Rindler[5] has
emphasized that “Einstein’s principle is really a metaprinciple: it puts constraints
on all the laws of physics.”

(iv) In particular, the relativity principle requires that the equations of physics have
the same mathematical form in all inertial frames. This is known as form
invariance (or covariance). In the above example it means that if F = ma in
S, then in S′ one should have the same form, namely F′ = m′a′. (The invari-
ance of a, m and F is peculiar to this example. In other instances the quantities
involved – such as electric and magnetic fields – are different in S and S′.) The
relativity principle is applied to the space-time transformation in Questions 14.10
and 15.1.

(v) When the Galilean transformation was applied to the theory of the electro-
magnetic field, it was found that the relativity principle is not completely
satisfied.† This indicates that the Galilean transformation is an approximation.
It was replaced by the Lorentz transformation (and consequently a new theory of
space and time) in Einstein’s theory of special relativity (see Question 15.1).

(vi) Penrose[6] points out that Newton “was certainly well aware that his dynamical
laws are invariant under change to a uniformly moving frame (as well as under shift

†Gauss’s law for the magnetic field and Faraday’s law of electromagnetic induction are form
invariant under the Galilean transformation, but Gauss’s law for the electric field and Ampère’s law
are not.

[5] W. Rindler, Introduction to special relativity, p. 2. Oxford: Oxford University Press, 1982.
[6] R. Penrose, “Newton, quantum theory and reality,” in Experimental gravitation from Newton’s

Principia to Einstein’s general relativity (S. W. Hawking and W. Israel, eds.), Cambridge,
Cambridge University Press, pp. 17 – 49, 1987.
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of origin and under rotation)” and asks “what evidence is there that Newton at
any time shared Einstein’s conviction that physics must be invariant under change
to uniform motion?” Penrose mentions that in writings prior to the Principia,
Newton had “proposed to base his mechanics on five (or six) fundamental laws
rather than the three that have come down to us through Principia. Law 4 was
actually a clear statement of the (Galilean) relativity principle! Newton was well
aware that these laws were not independent of one another, and for Principia he
settled on the three that are now familiar to us. What is remarkable – apparently
supporting the viewpoint tentatively put forward in this article – is that Newton
had at one time, indeed, seriously contemplated using the relativity principle as

a fundamental principle (despite what his views on ‘absolute space’ may or may
not have been)!”

(vii) Apparently, Huyghens also identified the relativity principle “as something deeper
in mechanics than a mere property of Newton’s laws.” [7]

(viii) The relativity principle is an example of a result that retains its validity even
when the theory from which it emerged is found to be approximate.

Question 14.10

Is the Galilean transformation of Question 14.8 consistent with the relativity principle
discussed in Comments (iii) and (iv) above?

Solution

The Galilean transformation

r′ = r − vt , t′ = t (1)

changes space and time coordinates (r, t) into coordinates (r′, t′). The inverse
transformation

r = r′ + vt , t = t′ (2)

has the same form as (1) and is therefore consistent with the relativity principle.(
Note the change in the sign of v in (2) which reflects the fact that while S′ moves

with velocity v relative to S, the latter moves with velocity −v relative to S′.
)

Comments

(i) In general, the following rule encapsulates the requirement that the relativity
principle imposes on the space and time transformation between inertial frames:

The inverse transformation is obtained from the direct transformation
by priming the unprimed coordinates, unpriming the primed
coordinates, and replacing v with −v.

⎫⎬⎭ (3)

[7] W. Rindler, Essential relativity. New York: Springer, 2nd edn, 1977. Chap. 2.
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(ii) This raises an important question: is the Galilean transformation (1) the most
general linear, homogeneous transformation consistent with (3)? The reader may
wish to attempt an answer to this (using, for simplicity, the standard configuration
where S′ moves along the x-axis). A solution is given in Question 15.1.

Question 14.11

Let S′ be a frame that is accelerating without rotation relative to an inertial frame S.
Assume Newtonian relativity and show that relative to S′ the equation of motion of a
particle of constant mass m is

m
d2r′

dt2
= F −m

d2D

dt2
, (1)

where F is the force acting in S and D(t) is the position vector of the origin O′ relative
to O. Do this in two ways: (a) directly, and (b) using Lagrange’s equations.

Solution

(a) In Newtonian relativity r′(t′) = r(t) −D(t) and t′ = t. These imply the accelera-
tion addition formula

d2r′

dt2
=
d2r

dt2
− d2D

dt2
. (2)

Also, mass is assumed to be absolute (m′=m). Then, because S is inertial and m
is constant we have md2r

/
dt2 = F, and so (2) yields (1).

(b) The Lagrangian of the particle in S is

L = 1
2
mv2 − V (r) , (3)

where v = dr
/
dt is the velocity of the particle relative to S and V (r) is the

potential. Now v = v′ + Ḋ, where v′ = dr′
/
dt is the velocity relative to S′. So (3)

gives for the Lagrangian in S′:

L
′ = 1

2
mv′2 +mv′ · Ḋ + 1

2
mḊ

2 − V (r′) , (4)

where we have again assumed m′ = m. Now use the identity

v′ · Ḋ =
d

dt
(r′ · Ḋ) − r′ · D̈ , (5)

and recall that a derivative with respect to time
(
such as the first term in (5)

)
can be omitted from a Lagrangian because it does not affect Lagrange’s equations

(see Question 4.16). Similarly, Ḋ
2
(t) in (4) can be written as a time derivative

and therefore omitted. So (4) becomes

L
′ = 1

2
mv′2 −mr′ · D̈ − V (r′) . (6)

If m is constant, then (1) follows from (6) and the Lagrange equations in S′:

d

dt

∂L
′

∂v′ −
∂L

′

∂r′
= 0 . (7)
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Comments

(i) Equation (1) is the extension of Newton’s equation of motion to a frame that is
translating in an arbitrary manner relative to an inertial frame.

(ii) The accelerated frame S′ is non-inertial because relative to it a free particle
(F = 0) does not have constant velocity.

(iii) The term −mD̈ in (1) is a particular type of ‘fictitious force’ known as the trans-
lational force (see Chapter 1). The translational force has been used in Question
10.4 (relative motion in the two-body problem) and Question 13.20 (the pivot-
driven pendulum).

(iv) The Lagrangian and the equation of motion are not form invariant under trans-
formation to an accelerating frame – see (6) and (1). And the Lagrangian (6)
is not translationally invariant even if V = 0 (space is not homogeneous in an
accelerating frame).

Question 14.12

Consider oscillations of a rigid simple pendulum whose pivot point is accelerating
vertically at a constant rate A in a uniform gravitational field g.

(a) Show that the angular frequency of small oscillations is

ω =
√
|g −A|/� , (1)

where � is the length of the pendulum, g (> 0) is the magnitude of the gravitational
acceleration, and A is positive if the acceleration of the pivot is ‘downward’ (that
is, along g).

(b) Discuss the result (1).

Solution

(a) Let S′ be a frame that is accelerating with the pendulum. In S′ the gravitational
force mg on the bob is modified by the translational force −mA to yield an
effective force

Fe = m(g − A) , (2)

where A = D̈ is the acceleration of S′ relative to an inertial frame (see Question
14.11). It follows that in the usual equation of motion, θ̈ + gθ/� = 0, for small
oscillations of a simple pendulum in an inertial frame, (see Question 4.3) we should
replace g with |g − A|, where A > 0 if A is downwards (parallel to g). Thus, we
obtain (1).

(b) 1. A downward acceleration (A > 0) diminishes the effect of gravity on the
pendulum, and in free fall (A = g) its effect disappears.

2. If A > g then the effective gravity is reversed, and the pendulum oscillates
about an inverted position (θ = π).
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3. An upward acceleration (A < 0) increases the effective gravity and hence the
frequency of the oscillations.

4. A pendulum accelerating upward at a rate A = −g in the absence of gravity
oscillates with the same frequency as an unaccelerated pendulum in a gravitational
field g.

We emphasize that strictly uniform gravitational fields do not exist, and it is only
locally (in small regions of space) that the uniform quantity −mA can simulate a
non-uniform gravitational field mg. For a pendulum, restriction to a small region
of space can be satisfied by driving the pivot sinusoidally (see Question 13.20),
which simulates a modulated gravitational field.

Comments

(i) In the above we have assumed the weak equivalence principle (equality of the iner-
tial and gravitational masses mI and mG – see Questions 2.4 and 2.5). Otherwise,
(1) and (2) should read

Fe = mGg −mIA , ω =
√
|(mG/mI)g −A| . (3)

(ii) If the weak equivalence principle holds then in mechanics one cannot distinguish
between a uniform gravitational acceleration g and an acceleration A = −g of
the frame (relative to inertial space) in the absence of gravity. The generalization
of this statement beyond mechanics, to the rest of physics, is known as Einstein’s
equivalence principle.

(iii) Einstein has described the importance of accelerated frames to his thinking:
“The breakthrough came suddenly one day. I was sitting on a chair in my patent
office in Bern. Suddenly a thought struck me: If a man falls freely, he would not
feel his weight. I was taken aback. This simple thought experiment made a deep
impression on me. This led me to the theory of gravity. I continued my thought:
A falling man is accelerated. Then what he feels and judges is happening in the
accelerated frame of reference. I decided to extend the theory of relativity to the
reference frame with acceleration. I felt that in doing so I could solve the problem
of gravity at the same time. A falling man does not feel his weight because in his
reference frame there is a new gravitational field which cancels the gravitational
field due to the Earth.” [8]

Question 14.13

At the centre C of the Earth there is a balance between the inward gravitational
force mgC exerted by the Sun and the outward translational force −mgC due to the
radial acceleration gC of the Earth towards the Sun.‡ At points away from C, and

‡That is, the Earth is in free fall towards the Sun, and according to the equivalence principle it
is not possible to observe effects due to the Sun’s field in an Earth-fixed system at C.

[8] A. Einstein, “How I created the theory of relativity,” Physics Today, vol. 35, pp. 45–47, August
1982.
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fixed relative to the Earth, this cancellation is incomplete (because the Sun’s field is
non-uniform) and so there is a residual effective force F′. Evaluate F′ to first order
in r

/
RS, where r is the distance of the field point from C, and RS is the distance

from the centre of the Sun to C. Express the result in terms of radial and transverse
components.

Solution

In the diagram, P is an arbitrary Earth-fixed point with r
/
RS � 1. The effective force

F′ on a particle of mass m at P is the sum of the Sun’s gravitational force and the
translational force due to free fall of P at the rate gC:

F′ = −GMSm

{
RS + r

|RS + r|3 − RS

R3
S

}
≈ −GMSm

R3
S

{
r − 3

r ·RS

R2
S

RS

}
(1)

to first order in r
/
RS. Note that F′ = 0 at r = 0 as required. To express (1) in terms of

radial and transverse components, convert it to plane polar coordinates using

r = rr̂ and RS = r̂RScos θ − θ̂RSsin θ . (2)

This yields the components

F ′
r = G

MSm

R3
S

r(3 cos2 θ − 1) (3)

F ′
θ = −GMSm

R3
S

r(3 cos θ sin θ) . (4)

Comments

(i) These residual forces are due to the non-uniformity of the Sun’s field and the
uniformity of the translational force. They are responsible for oceanic tides and
are referred to as tidal forces. There are, of course, also tidal forces due to the
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Moon. They are given by (3) and (4) with MS replaced by MM (the Moon’s mass)
and RS by RM (the distance between the centres of the Earth and the Moon). So

F ′(Moon)

F ′(Sun)
=
MM

MS

(
RS

RM

)3
≈ 7.3 × 1022

2 × 1030

(
1.5 × 1010

3.8 × 107

)3
≈ 2.2 . (5)

The Moon’s effect on tides is about twice that of the Sun. This is a result of the
non-uniformity of the Moon’s field at the Earth being larger than that of the Sun.

(ii) The ratio of the tidal force of the Moon to the weight mg = GMEm
/
R2

E
of an

object at the Earth’s surface (RE is the Earth’s radius) is of order

F ′

mg
≈ MM

ME

(
RE

RM

)3
≈ 1

81

(
1

60

)3
≈ 6 × 10−8 . (6)

Despite the smallness of this ratio, the effect
on the oceans is noticeable for two reasons.
First, because the horizontal component F ′

θ

moves water relative to the Earth’s surface:
this force is depicted in the diagram and it
is clear that it causes ‘bulges’ on the sides of
the Earth facing towards and away from the
Moon. Secondly, the effect of these bulges is

C

Earth Moon

µ

time dependent: the two tidal bulges move round the Earth with the Moon and
the result is two high tides and two low tides each day.

(iii) The maximum height HM of these tides, for an ocean of uniform depth covering
the entire planet, can be shown to be[9]

HM =
3

2

MM

ME

(
RE

RM

)3
RE , (7)

with a similar expression for HS (due to the Sun). These give HM ≈ 0.54 m and
HS ≈ 0.24 m, which provide an estimate for the tidal range in mid-ocean and
the value (HM + HS)

/
(HM −HS) ≈ 2.6 for the ratio of spring tide to neap tide.

Further discussion of this model is given in Ref. [9]. In reality, the Earth’s tides
are complicated, being strongly influenced by topography and other factors.

(iv) Long ago, when the Moon was much closer to Earth, the tides it produced were
about a hundred to a thousand times larger than today, and they occurred more
frequently because of the faster spin of the young Earth. It is thought that the
scouring action of these great surges onto land was a factor in the origin of life
through its effect on the chemical composition of the oceans.

(v) In the limit R(planet)
/
R(orbit) → 0 the residual forces disappear; the region over

which the equivalence principle applies covers the entire planet and not just the
neighbourhood of its centre.

[9] E. I. Butikov, “A dynamical picture of the oceanic tides,” American Journal of Physics, vol. 70,
pp. 1001–1011, 2002.
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Question 14.14

During take-off an aircraft accelerates horizontally in a straight line at a rate A. A
small bob of mass m is suspended on a string attached to the roof of the cabin, and
a hydrogen balloon (total mass m) is tethered to the floor by a string. For each,
determine the tension in the string and the equilibrium angle θ between the string and
the vertical.

Solution

We work in the reference frame of the aircraft. In this accelerated frame the effective
gravitational acceleration is ge = g − A (see Questions 14.11 and 14.12). In terms of
the coordinates shown in the diagram:

ge = −Ax̂ − gŷ (A, g > 0) . (1)

1. For the suspended mass the condition for equilibrium in this frame is T+mge = 0,
where T is the tension in the string. That is,

T = mAx̂ +mgŷ . (2)

So, the magnitude of the tension and the angle of inclination are given by

T = m
√
A2 + g2 , θ = tan−1(A/g) . (3)

2. For the tethered balloon in the same frame there are three forces: the tension T,
the weight mge, and the upthrust −mage given by Archimedes’s principle and the
equivalence principle. Here, ma(> m) is the mass of air displaced. So, the condition
for equilibrium is T + (m−ma)ge = 0. That is,

T = −(ma −m)Ax̂ − (ma −m)gŷ , (4)

and hence

T = (ma −m)
√
A2 + g2 , θ = tan−1(A/g) . (5)

Comments

(i) In both cases the equilibrium orientation of the string is along ge. For the bob,
T and ge are anti-parallel; for the balloon they are parallel. As a result, the bob
is displaced towards the rear of the aircraft as one expects. But, the response of
the balloon is counter-intuitive: it is displaced towards the front of the aircraft.
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(ii) The above calculations in the accelerated frame, including the use of Archimedes’s
principle in this frame, are based on the equivalence principle.

Question 14.15

According to Hubble’s law, galaxies recede from the Earth with a velocity that is
proportional to their distance. Determine the form of Hubble’s law relative to an
observer in some other galaxy. (Assume Newtonian relativity.)

Solution

Let O be an observer on Earth, and O′ an observer in
some other galaxy, located at position D(t) relative to
O. Both observers measure the velocity of a galaxy G
that is located at r(t) relative to O and r′(t′) relative
to O′. We know that the measurements made by O
satisfy Hubble’s law:

dr

dt
= H0r ,

dD

dt
= H0D , (1)

D( )t

r( )t

r
0 0

( )t

G

0

where H0 is a constant. The question is: what is the velocity dr′
/
dt′ of G as measured

by O′? In Newtonian relativity t′ = t and r′ = r − D, and the answer is immediate:

dr′

dt′
=

d

dt
(r − D) = H0r −H0D = H0r

′ . (2)

That is, Hubble’s law applies for all observers.

Comments

(i) This result brings to mind a picture of an expanding balloon (all points recede
from any point on the balloon) rather than the idea of a preferred point from
which all others recede.

(ii) Hubble’s law was formulated in 1929, based on earlier measurements of galactic
velocities obtained from red shifts. The Hubble constant H0 is an important cos-
mological parameter. For example, a rough estimate of the age of the universe
(post the big bang) is given by H−1

0 , and current measurements of H0 provide a
value of about 13.5 billion years.

(iii) Recent measurements of the red shifts of supernovae have yielded an astonishing
result: the expansion of the universe is accelerating, and this acceleration started
about 5 to 7 billion years ago. It is thought that the acceleration is caused by
some gravitationally repulsive substance, and that perhaps three quarters of the
energy density of the universe is due to this substance. The total amount of
matter in the universe (ordinary plus ‘dark’ – see Question 11.20) accounts for
only one-quarter of the energy; the rest is of unknown origin and is referred to
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as ‘dark energy’. Evidently, the future development of the universe hinges on the
competition between these attractive and repulsive constituents.

Question 14.16

Let frames S and S′ have a common originO and Cartesian axes Ox1x2x3 andOx′
1
x′

2
x′

3
,

where the latter are obtained from the former by rotation about an axis through O.

(a) Show that the components of the position vector r relative to S′ and S are related
by

x′i = aijxj (i = 1, 2, 3) , (1)

where the repeated index j implies summation from 1 to 3, and the nine
coefficients aij should be defined.

(b) Prove that the aij must satisfy the orthogonality relations

airajr = δij , ariarj = δij , (2)

where δij is the Kronecker delta symbol (δij = 1 if i = j; δij = 0 if i �= j). How
many independent aij are there in general?

(c) Illustrate the above for the special case of a positive (anti-clockwise) rotation
about Ox3.

(d) What is the generalization of (1) to an arbitrary vector A?

Solution

(a) Each component xj of r may be projected onto the axis x′i and then added to give

x′i = x1 cos θi1 + x2 cos θi2 + x3 cos θi3 = aijxj , (3)

where θij is the angle between x′i and xj, and aij = cos θij is the direction cosine
of x′i relative to xj.

(b) The unit vectors of S′ relative to S are n′
i
= (ai1, ai2, ai3); and the unit vectors of

S relative to S′ are ni = (a1i, a2i, a3i). Therefore, the orthonormality conditions
for unit vectors, namely n′

i
n′

j
= δij and ninj = δij, require (2). Equations (2)

provide six relations, thereby reducing the number of independent aij to three.

(c) We have a11 = a22 = cos θ; a12 = cos(90 − θ) =
sin θ; a21 = cos(90 + θ) = − sin θ; a13 = a23 =
0; a33 = 1. Equation (1) can be written in ma-
trix form as⎛⎝x′1x′

2

x′
3

⎞⎠ =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠⎛⎝x1

x2

x3

⎞⎠. (4)

x1

x2 x3

x1

x2 x3� �

µ

0

0
0
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(d) By definition, the components of a vector A = (A1, A2, A3) transform under
rotation in the same way as do the components of r. That is,

A′
i = aijAj . (5)

According to (5) and (2)2, the inverse relation is

Aj = aijA
′
i
. (6)

Comments

(i) The above can be generalized to Cartesian tensors of any rank. A vector is a tensor
of rank 1: it has three components Ai that transform under rotations according
to (5). A second-rank tensor has nine components Tij that transform according
to

T ′
ij = airajsTrs , (7)

and so on for higher rank. A scalar S is a tensor of zero rank and it is unchanged
by rotation: S′ = S.

(ii) A number of useful results follow from this. For example, from (5) and (2)2 we
have

A′
iA

′
i = aijaikAjAk = δjkAjAk = AjAj . (8)

Thus the magnitude of a vector (for example, the distance between two points)
is unchanged by rotation – it is a scalar. Similarly, AiBi is a scalar. Also,

∂

∂x′i
=
∂xj

∂x′i

∂

∂xj

= aij

∂

∂xj

. (9)

Thus ∇ = (∂
/
∂x1, ∂

/
∂x2, ∂

/
∂x3) is a vector, and ∇

2 = ∇ · ∇ is a scalar, as is

the divergence ∂Ai

/
∂xi.

(iii) Tensors in three-dimensional space are referred to as three-tensors to distinguish
them from those in higher dimensions, particularly the four-tensors encountered
in special relativity (see Question 15.7).

Question 14.17

Show that the equation of motion F = dp
/
dt is invariant under rotation of the coor-

dinate system (i.e. that it is valid for any orientation of the axes of an inertial frame).

Solution

In an inertial frame S, Fj = dpj

/
dt. By definition, F and p are vectors. So, in a frame

S′ obtained from S by rotation about an axis through O, they have components

F ′
i = aijFj and p′i = aijpj , (1)
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where the aij are independent of time. Therefore

F ′
i −

d

dt
p′i = aij(Fj − d

dt
pj) = 0 , (2)

and the equation of motion holds in S′.

Comments

(i) This result was known to Newton (see Question 14.9). It is a consequence of the
transformations (1) being linear and homogeneous. The components of F and ṗ

change when the axes are rotated, but the relationship between them does not.

(ii) The same conclusion applies to any three-tensor equation. For example, if

Ai = Bi , (3)

then
A′

i
−B′

i
= aij(Aj −Bj) = 0 . (4)

That is, (3) transforms into
A′

i
= B′

i
. (5)

Again, the components of A and B change but the relationship between them does
not – one says that the terms of (3) are covariant. In general, tensor
equations consist of linear relations among covariant quantities and therefore they
are invariant under rotations.

Question 14.18

(a) What are the conditions for the Lagrangian of a system of particles to be
rotationally invariant (that is, unchanged by a rotation of the entire system about
any axis)?

(b) Use this invariance to deduce the law of conservation of angular momentum for a
system of particles.

Solution

(a) The frame of reference should be inertial (which ensures that the space is isotropic
– see Chapter 1) and the system should be isolated.

(b) When the system is rotated through an infinitesimal angle δθ about some axis,
both the position vectors ri and the velocity vectors vi of the particles change
according to (see Question 12.3)

δri = δθ × ri , δvi = δθ × vi . (1)

The resulting change in the Lagrangian L(ri, vi) is

δL =
∑
i

(
∂L

∂ri

· δri +
∂L

∂vi

· δvi

)
. (2)
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Here, we are using the same notation as in Question 14.7. By substituting (1) in
(2) and using the relation ∂L

/
∂vi = pi and the Lagrange equations ∂L

/
∂ri = ṗi

(see Chapter 1) we obtain

δL =
∑
i

{ṗi · (δθ × ri) + pi · (δθ × ṙi)} = δθ ·
∑
i

(ri × ṗi + ṙi × pi)

= δθ · d
dt

∑
i

(ri × pi) . (3)

(
In the second step we have used the identity a · (b× c) = b · (c×a).

)
Rotational

invariance of L means δL = 0 for arbitrary δθ and so it follows from (3) that

dL

dt
= 0 , (4)

where L =
∑

i ri × pi is the total angular momentum. Equation (4) is the law of
conservation of angular momentum for a closed system of particles in an inertial
frame.

Comments

(i) This is a further example of the general connection between symmetry and
conservation laws. The isotropy of space in an inertial frame means that
rotation of an isolated system is a symmetry transformation, and the consequence
is conservation of angular momentum. Previous examples dealt with translation
in space (see Question 14.7) and translation in time (see Question 11.33), and the
corresponding laws of conservation of momentum and energy.

(ii) If the system is not isolated then, in general, the rotational invariance of L will be
broken and none of the components of L will be conserved. In special cases there
may be partial invariance and consequently conservation of the corresponding
component(s) of L: for example, invariance with respect to rotations about the
z-axis means that Lz is conserved, where Lz is evaluated relative to an origin on
the z-axis.

Question 14.19

(a) Reconcile the analysis of conservation of angular momentum in terms of Newton’s
equation of motion and central interparticle forces (see Question 11.2) with that
based on Lagrange’s equations and rotational invariance (see Question 14.18).[10]

(b) Illustrate your answer by considering the two-particle Lagrangian[10]

L = 1
2
m1v

2
1

+ 1
2
m2v

2
2
− V (|r1 − r2|) + bv1 · v2 , (1)

where b is a constant.

[10] B. Podolsky, “Conservation of angular momentum,” American Journal of Physics, vol. 34,
pp. 42–45, 1966.
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Solution

(a) The Newtonian analysis deals with the angular momentum

LN =
∑

i

ri ×mivi , (2)

and establishes conservation of LN for an isolated system with central interparticle
forces. The Lagrangian treatment involves the canonical angular momentum

Lc =
∑
i

ri × ∂L

∂vi

, (3)

and establishes conservation of Lc for isolated, rotationally invariant systems.
Now, Lc = LN only when the canonical and Newtonian momenta are equal:

∂L

∂vi

= mivi (i = 1, 2, · · · , N) . (4)

That is, when

L(ri, vi) =
∑
i

1
2
miv

2
i − V (r1, r2, · · · , rN) . (5)

If this L is to be rotationally invariant then V can depend only on the magnitude
of the particle separations:

V = 1
2

∑
i

∑
j

Vij(|ri − rj|) (i �= j) . (6)

The force Fi on particle i is a sum of interparticle forces

Fi =
∂L

∂ri

= −
∑

j

ri − rj

|ri − rj|
dVij

drij

(j �= i) , (7)

where rij = |ri − rj|. That is, the interparticle forces are central. So, the New-
tonian and Lagrangian analyses of conservation of angular momentum in inertial
frames agree when the canonical and Newtonian momenta are equal. When these
momenta are unequal, the angular momenta (2) and (3) are not the same. If there
is rotational invariance then it is (3) that is conserved, and not (2).

(b) The two-particle Lagrangian (1) illustrates this conclusion. The canonical
momenta pi = ∂L

/
∂vi are

p1 = m1v1 + bv2 , p2 = m2v2 + bv1 . (8)

It is apparent that pi �= mivi if b �= 0. The Lagrange equations yield the equations
of motion

d

dt
(m1v1 + bv2) = −r̂

dV (r)

dr
= F1

d

dt
(m2v2 + bv1) = r̂

dV (r)

dr
= F2 = −F1 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)
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where r = r1 − r2. The rate of change of the canonical angular momentum
Lc = r1 × p1 + r2 × p2 is

L̇c = v1 × p1 + r1 × ṗ
1
+ v2 × p2 + r2 × ṗ

2

= bv1 × v2 + r1 × F1 + bv2 × v1 + r2 × F2

= (r1 − r2) × F1 = 0 , (10)

because F1 in (9) is along r1 − r2. Thus, the canonical angular momentum is
conserved, as one expects because the Lagrangian (1) is rotationally invariant. By
contrast, LN = r1 ×m1v1 + r2 ×m2v2 is not conserved. To see this, first note that
from (9) the accelerations of the particles are

v̇1 =
m2 + b

m1m2 − b2
F1 , v̇2 = − m1 + b

m1m2 − b2
F1 . (11)

Consequently,

L̇N = r1 ×m1v̇1 + r2 ×m2v̇2 =
m1(m2 + b)r1 −m2(m1 + b)r2

m1m2 − b2
× F1 , (12)

which is not zero if b �= 0 and m1 �= m2.

Question 14.20

Reference frames S and S′ share a common origin O, and S′ rotates about an axis
through O with angular velocity ω relative to S.

(a) Deduce the velocity transformation formula(
dr

dt

)
S

=

(
dr

dt

)
S′

+ ω × r (1)

connecting velocities relative to S and S′. What is the generalization of (1) to an
arbitrary differentiable vector A(t)?

(b) Use the above results to deduce the acceleration transformation formula(
d2r

dt2

)
S

=

(
d2r

dt2

)
S′

+ ω × (ω × r) + 2ω ×
(
dr

dt

)
S′

+
dω

dt
× r . (2)

(c) Suppose S is inertial. Use (2) to write down the equation of motion for a particle
of constant mass m relative to S′.

Solution

(a) Consider the position vector expressed in terms of the coordinates of S′:

r = x′x̂′ + y′ŷ′ + z′ẑ′ . (3)
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The velocity relative to S′ is(
dr

dt

)
S′

=
dx′

dt
x̂
′ +

dy′

dt
ŷ
′ +

dz′

dt
ẑ
′ . (4)

Relative to S both the components and the unit vectors in (3) vary, and so(
dr

dt

)
S

=
dx′

dt
x̂
′ +

dy′

dt
ŷ
′ +

dz′

dt
ẑ
′ + x′

dx̂′

dt
+ y′

dŷ′

dt
+ z′

dẑ′

dt
. (5)

The frame S′ is rigid and therefore (see Question 12.3)

dx̂′

dt
= ω × x̂

′ ,
dŷ′

dt
= ω × ŷ

′ ,
dẑ′

dt
= ω × ẑ

′ . (6)

Equations (3)–(6) yield (1). For a vector A = Ax′ x̂
′ + Ay′ ŷ

′ + Az′ ẑ
′, the same

reasoning yields the generalization of (1):(
dA

dt

)
S

=

(
dA

dt

)
S′

+ ω × A . (7)

(b) By differentiating (1) with respect to t and using (7) we have(
d2r

dt2

)
S

=

{(
d

dt

)
S′

+ ω×
}(

dr

dt

)
S′

+

[{(
d

dt

)
S′

+ ω×
}

ω

]
× r + ω ×

{(
d

dt

)
S′

+ ω×
}
r ,

(8)
which simplifies to (2) because ω×ω = 0. In (2) we have dropped the label S′ on
ω̇ because, according to (7), ω̇S = ω̇S′ .

(c) The transformations (1) and (2) apply to any two frames. If S is inertial and m
is constant, then (d2r

/
dt2)S = F

/
m. Use of this in (2) and a rearrangement of

terms yields the equation of motion relative to a rotating frame S′:

m
d2r

dt2
= F − mω × (ω × r) − 2mω × dr

dt
− m

dω

dt
× r . (9)

Here, it is understood that the acceleration r̈ and velocity ṙ are relative to S′.

Comment

The above results are based on Newtonian relativity – absolute space, time and mass.
The analysis is readily extended to frames that are translating as well as rotating –
see below.

Question 14.21

Extend the analysis of Question 14.20 to include translation of S′ relative to S.
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Solution

Here, r = r′ + D, where D is the position vector of the origin O′ of S′ relative to S.
Then, ṙS = ṙ′

S
+ Ḋ and ṙ′

S
= ṙ′

S′ + ω × r′, and the velocity transformation formula is(
dr

dt

)
S

=

(
dr′

dt

)
S′

+ ω × r′ +
dD

dt
. (1)

Now differentiate (1) with respect to t. For the derivatives of the first two terms on
the right-hand side of (1) we repeat the step in (8) of Question 14.20. The derivative
of dD

/
dt is d2D

/
dt2. Thus, we obtain the acceleration transformation formula(

d2r

dt2

)
S

=

(
d2r′

dt2

)
S′

+ ω × (ω × r′) + 2ω ×
(
dr′

dt

)
S′

+
dω

dt
× r′ +

d2D

dt2
. (2)

Equations (1) and (2) are the extensions, to include translation, of the transformations
(1) and (2) of Questions 14.20. If S is inertial then (d2r

/
dt2)S = F

/
m and (2) yields

the equation of motion

m
d2r′

dt2
= F − mω × (ω × r′) − 2mω × dr′

dt
− m

dω

dt
× r′ − m

d2D

dt2
. (3)

To simplify the notation, we have again omitted the subscript S′ on r̈′ and ṙ′.

Comments

(i) Equation (3) shows how Newton’s second law mr̈ = F is modified due to rotation
and translation of the frame relative to an inertial frame. In general, there are
four additional forces:

1. Centrifugal force Fcf = −mω × (ω × r′) , (4)

2. Coriolis force FCor = −2mω × dr′

dt
, (5)

3. Azimuthal force Faz = −mdω

dt
× r′ , (6)

4. Translational force Ftr = −md2D

dt2
. (7)

(ii) The Coriolis and centrifugal forces are important in a number of phenomena.
For example, the Coriolis force is responsible for the circulation of winds around
regions of low and high pressure on Earth; for the deflection of trade winds; for
the deflection of the trajectories of long-range projectiles; for the rotation of the
plane of oscillation of a simple pendulum on Earth (the Foucault pendulum); for
the oscillations of a gyrocompass; and for the asymmetry in the precession of a
gyroscope. The centrifugal force is responsible for the flattening of the Earth; for
the variations in the direction and magnitude of the gravitational acceleration
g; and for the ‘centrifugal barrier’ in the two-body problem. Some of these have
been encountered previously (see Chapter 8 and Questions 10.4, 10.14, 10.17, and
12.25–12.27), and others are analyzed below.
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(iii) The analysis leading to (3) is largely kinematical in nature: dynamics enters only
when r̈ is replaced by F

/
m. An alternative approach, which uses Lagrange’s

equations in a non-inertial frame, is given in Question 14.22.

Question 14.22

Use Lagrange’s equations to obtain the equation of motion (9) in Question 14.20 for
motion of a particle in a rotating frame.

Solution

First, express the Lagrangian L = 1
2
mv2

S − V (r) in S in terms of the velocity

vS′ = (dr
/
dt)S′ = vS − ω × r relative to S′:

L
′ = 1

2
mv2

S′ +mvS′ · (ω × r) + 1
2
m(ω × r)2 − V (r) . (1)

Then, use the Lagrange equations in S′:

d

dt

∂L′

∂vS′

− ∂L′

∂r
= 0 . (2)

From (1) we have
∂L′

∂vS′

= mvS′ +mω × r . (3)

To evaluate ∂L′/∂r, first use the vector identities

vS′ · (ω × r) = r · (vS′ × ω) and (ω × r)2 = (ω · ω)(r · r) − (ω · r)(ω · r) . (4)

Then

∂L′

∂r
= mvS′ × ω +m(ω · ω)r −mω(ω · r) − ∂V

∂r

= mvS′ × ω −mω × (ω × r) − ∂V

∂r
. (5)

If S is inertial then ∂V
/
∂r = −F and (2)–(5) yield

mv̇S′ +mω̇ × r +mω × vS′ −mvS′ × ω +mω × (ω × r) − F = 0 . (6)

This is the same as the equation of motion (9) in Question 14.20, where vS′ is
abbreviated as dr

/
dt.

Comments

(i) The above is readily extended to include the effect of translation of S′ relative to
S (see Question 14.11), and it yields (3) of Question 14.21.

(ii) The Lagrangian (1) is not translationally or rotationally invariant, even if V = 0
(space is neither homogeneous nor isotropic in the rotating frame). Also, the
Lagrangian and the equation of motion (6) are not form invariant, when compared
with their counterparts in an inertial frame.
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Question 14.23

Determine the equation of motion, relative to a non-inertial (rotating and translating)
frame, of the centre of mass of a system of particles subject to external and interparticle
forces.

Solution

We use the same notation as in Question 11.1. The equation of motion of the ith
particle relative to the non-inertial frame is (see Question 14.21)

mi

d2ri

dt2
=
∑
j

Fji + F(e)

i −miω × (ω × ri)− 2miω × dri

dt
−mi

dω

dt
× ri −mi

d2D

dt2
. (1)

(
Here, we have simplified the notation by omitting the prime on ri.

)
By summing this

over all i, and recalling that the mi are constant, we can write

d2

dt2

∑
i

miri =
∑
i

∑
j

Fji +
∑
i

F(e)

i − ω ×
(
ω ×

∑
i

miri

)

−2ω × d

dt

∑
i

miri − dω

dt
×
∑
i

miri −
(∑

i

mi

)
d2D

dt2
. (2)

The double sum in (2) is zero because Fji = −Fij (see Question 11.1). And∑
iF

(e)

i = F(e) is the total external force acting on the system. Also,
∑

imiri = MR,
where M =

∑
imi is the total mass and R is the position vector of the CM relative

to the non-inertial frame. So, (2) yields

MR̈ = F(e) −Mω × (ω × R) − 2Mω × Ṙ −M ω̇ × R −MD̈ . (3)

Comment

In an inertial frame the equation of motion of the CM is MR̈ = F(e). Equation
(3) is its extension to motion in a non-inertial (rotating and translating) frame. We
conclude that in any reference frame the CM motion is a single-particle problem: the
interparticle forces Fij play no role and the four additional forces (centrifugal, Coriolis,
azimuthal and translational) in (3) are those of a particle of mass M located at R and
moving with velocity Ṙ relative to the non-inertial frame.

Question 14.24

A long straight wire rotates in free space with constant angular velocity ω about a
perpendicular axis through its midpoint O. This axis is fixed in inertial space. A bead
of mass m slides on the wire. The coefficient of kinetic friction between the bead and
the wire is µ. The bead is initially a distance x0 from O and moving with speed v0

along the wire. Calculate its position x(t) on the wire in terms of ω, µ, x0 and v0.
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Solution

The problem is one-dimensional in a rotating frame
whose x-axis (say) is along the wire. In this frame the
forces acting on the bead are the centrifugal force Fcf

along the wire, the Coriolis force FCor perpendicular to
the wire, the reaction N of the wire (which balances
the Coriolis force), and the frictional force Ff along the
wire. The equation of motion along Ox is

mẍ = mω2x− 2mµωẋ . (1)

By considering a solution x = eqt, where q is a constant,
we readily find that the general solution to (1) is

x(t) = e−µωt
(
A+e

√
1+µ2ωt +A−e

−
√

1+µ2ωt
)
, (2)

where A± are arbitrary constants. By differentiating (2) we obtain the velocity of the
bead along the wire:

v(t) = −µωx(t) +
√

1 + µ2 ωe−µωt
(
A+e

√
1+µ2ωt −A−e

−
√

1+µ2ωt
)
. (3)

It follows from (2) and (3) that the initial conditions x(0) = x0 and v(0) = v0 require

A± =
1

2

(
x0 ± v0 + µωx0

ω
√

1 + µ2

)
, (4)

and therefore

x(t) = e−µωt
(
x0 cosh

√
1 + µ2 ωt+

v0 + µωx0

ω
√

1 + µ2
sinh

√
1 + µ2 ωt

)
. (5)

Comment

According to (5) there is a critical value of the initial velocity v0, namely

v0c = −(µ+
√

1 + µ2 )ωx0 , (6)

for which the motion is bounded:

x(t) = x0e
−(µ+

√
1+µ2)ωt . (7)(

Note that v0c < 0, meaning the particle is projected towards O.
)

A particle having
v0 = v0c comes to rest at x = 0 on the axis of rotation, which is a point of unstable
equilibrium. For any other value of v0 the motion is unbounded – along the positive
x-axis if v0 > v0c, and along the negative x-axis if v0 < v0c. This is illustrated below

in terms of the characteristic time τ = ω−1(1 + µ2)−1/2.
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v0 = 2v0c

v0 = v0c

v0 = 0.8v0c

v0 = −v0c

4 �

−4 �

2

�

4

�

1 •

µ = 0.15
x(t/τ )

x0

t/τ

Question 14.25

Solve the problem of a charged particle moving in a uniform magnetostatic field B by
transforming to a suitable rotating frame.

Solution

The equation of motion in a frame S′ that is rotating with constant angular velocity
ω relative to an inertial frame S can be written

(
see (7) of Question 14.20

)
m

(
dv

dt

)
S′

= m

(
dv

dt

)
S

− mω × v = qv × B − mω × v , (1)

which is zero if

ω = −qB/m. (2)

Then v is constant in S′. The simplest description of the motion occurs relative to a
frame S′ in which the particle is at rest. The corresponding trajectory in S is a circle
in a plane perpendicular to B, and the particle moves with constant speed v⊥ = R|ω|
where R is the distance of the particle from the axis of rotation. The trajectory is
also simple if the particle has velocity v0B̂ in S′: the corresponding trajectory in S is
a helix with axis along B, and of constant pitch 2πv0

/|ω|, and radius v⊥

/|ω|. Other
choices of the velocity in S′ produce distorted helices.

Comment

In this example there is an advantage to working in a suitable non-inertial frame (cf.
the solution to Question 7.17). Other instances are given elsewhere in this chapter.
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Question 14.26

(a) A charged particle moves under the combined effects of an electrostatic field E(r)
and a weak, uniform magnetostatic field B. Show that the effect of B can be
removed by transforming to a suitable rotating frame.

(b) Apply this result to bounded motion of a charge q in the electrostatic field of a
fixed charge q′ perturbed by the field B.

Solution

(a) In a frame rotating with constant angular velocity ω relative to an inertial frame,
the equation of motion is

mr̈ = qE + qṙ × B − 2mω × ṙ − mω × (ω × r). (1)

If we choose
ω = −qB/2m (2)

then the Coriolis force −2mω × ṙ in (1) cancels the Lorentz force qṙ × B. Sup-
pose also that B is sufficiently weak that in (1) the centrifugal force is negligible
compared to the electrostatic force; that is,

B �
√
|4mE(r)

/
qr| . (3)

Then, (1) reduces to
mr̈ = qE . (4)

(b) Here, E = q′r̂
/
4πε0r

2 and the bounded solutions to (4) are elliptical orbits with q′

at a focus of the ellipse (see Question 8.9). These are the trajectories in the rotating
frame. In an inertial frame which shares a common origin with the rotating frame,
the ellipses precess slowly about B with the angular velocity (2). In particular, if
B is perpendicular to the plane of the ellipse then the trajectory forms a rosette
pattern, such as that depicted in Question 8.15. The condition (3) for B to be
weak is

B �
√

|mq′/ε0qr3| , (5)

which means that ω is small compared to the average angular speed of the particle
in its elliptical orbit.

Comments

(i) The transformation from (1) to (4) is known as Larmor’s theorem. It is a conse-
quence of the similarity between the Coriolis and Lorentz forces, with the angular
velocity ω being analogous to the magnetic field B. The slow precession about B

is known as the Larmor effect, and ωL = qB
/
2m is the Larmor frequency.

(ii) The analogy between electromagnetic and inertial forces applies elsewhere; for
example, to the gyrocompass and magnetic compass (see Question 12.27), to
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the magnetic and mechanical Hall effects,[11] and to the dynamics of systems of
particles and rigid bodies in non-inertial frames.[12]

(iii) For the hydrogen atom in its ground state, the condition (5) requires B � 104 T.

(iv) If B is not weak, the motion is more complicated and exhibits chaos.

(v) The Larmor effect changes electronic energy levels in atoms and gives rise to the
Zeeman effect – dependence of spectral frequencies on an applied magnetic field.

Question 14.27

A spherically symmetric planet has radius R, mass M , and rotates with constant
angular velocity Ω about an axis through its centre.

(a) Consider motion of a particle of mass m close to the surface of the planet. Con-
struct an equation of motion relative to a frame fixed on the planet (a laboratory
frame) based on the approximation that the centrifugal and gravitational forces
are constant and can be combined in an effective gravitational force.

(b) Evaluate and analyze the effective gravitational acceleration.

Solution

(a) The coordinate system Oxyz is fixed on the surface of the planet, with x-axis
pointing East, y-axis North, and z-axis vertical (here, we have in mind the example
of the Earth). R is the position vector of O relative to the centre C of the planet,
and r is the position vector of m relative to Oxyz.

¸

¸

x

z
y

�

��

��

C

R

R+r

r=( , )x y z�

R

m

C

North

[11] B. L. Johnson, “Inertial forces and the Hall effect,” American Journal of Physics, vol. 68,
pp. 649–653, 2000.

[12] G. A. Moreno and R. O. Barrachina, “A velocity-dependent potential of a rigid body in a
rotating frame,” American Journal of Physics, vol. 76, pp. 1146–1149, 2008.
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The equation of motion relative to this frame is (see Question 14.20)

m
d2r

dt2
= Fng − GMm

|R + r|3 (R + r) − mΩ× (
Ω × (R + r)

) − 2mΩ× dr

dt
, (1)

where Fng is the total non-gravitational force on the particle. It is convenient to
combine the gravitational and centrifugal forces in (1) into a term mg, where

g = − GM

|R + r|3 (R + r) − Ω × (
Ω× (R + r)

)
(2)

is an effective gravitational acceleration, and to write (1) as

m
d2r

dt2
= Fng + mg − 2mΩ× dr

dt
. (3)

For motions where r � R it is customary to assume that r can be neglected in
(2). That is, g is approximated by a constant vector equal to its expression at the
origin O of the laboratory frame:

g = −g0ẑ − Ω× (Ω × R) , where g0 = GM
/
R2. (4)

(b) In the laboratory frame:

Ω = Ωyŷ + Ωzẑ , R = Rẑ . (5)

The components of Ω are given in terms of the latitude λ by

Ωy = Ω cosλ , Ωz = γΩ sinλ , (6)

where λ is positive, and γ = +1 in the northern hemisphere; γ = −1 in the
southern hemisphere. Equations (4)–(6) yield

g = −γRΩ2cosλ sin λ ŷ − (g0 − RΩ2cos2 λ) ẑ . (7)

Thus, g (and hence a plumb line) deviates from the downward vertical −ẑ by an
amount ε given by

tan ε =
gy

gz

=
RΩ2cosλ sinλ

g0 −RΩ2cos2 λ
. (8)
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ε is zero at the equator (λ = 0) and the poles (λ = 90◦) and has a maximum
value at λ = 45◦. For the Earth, M = 6.00 × 1024 kg, R = 6.37 × 106 m,
Ω = 7.29 × 10−5 rad s−1 and εmax ≈ 0.1◦. According to (7), the centrifugal force
produces a difference between g at the equator and at the poles amounting to
RΩ2. For the Earth this is approximately 3.4 × 10−2 m s−2, which is smaller
than the measured value ≈ 5.2× 10−2 m s−2. This discrepancy is associated with
departures from a spherically symmetric model of the Earth.

Comments

(i) Although it is in widespread use, there is no general criterion for the validity of
the approximation (4); instead, “The quantitative validity of any approximation
must be tested case by case and component by component, by comparing the
magnitudes and/or the estimated effects of the terms neglected and the terms
retained. This lesson has too often not been followed in a number of standard
treatments.” [13] We comment on these in the next three questions.

(ii) Reference [13] contains a wealth of information on diverse aspects of dynamics
relative to a laboratory frame on Earth. The authors conclude that “A selective
review of the twentieth century physics literature on motion relative to the earth
demonstrates that errors and omissions abound.”

Question 14.28

Consider a freely falling particle that is released from rest (relative to the Earth) at a
low altitude.

(a) Use the equation of motion (3) in Question 14.27 to determine an approximate
trajectory (valid to first order in Ω) relative to a laboratory frame on Earth.
(Neglect air resistance.)

(b) Determine the deviation from the vertical of the point of impact with the ground.

Solution

(a) If non-gravitational forces (such as air resistance) are neglected then the equation
of motion relative to the Earth is

r̈ = g − 2Ω× ṙ . (1)

If we neglect terms of order Ω2 in g, and also changes with altitude, then
g = g0 = −GM ẑ

/
R2 is a constant and (1) can be integrated. With r = r0

and v = 0 at t = 0 we have

ṙ = g0t− 2Ω× (r − r0) . (2)

[13] M. Tiersten and H. Soodak, “Dropped objects and other motions relative to the noninertial
earth,” American Journal of Physics, vol. 68, pp. 129–142, 2000.
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Equation (2) cannot be integrated. Instead we substitute (2) in (1) and neglect a
term of order Ω2. The resulting equation,

r̈ = g0 − 2Ω× g0t , (3)

can be integrated twice to yield

r = r0 + 1
2
g0t

2 − 1
3
Ω × g0t

3. (4)

(b) In terms of the laboratory coordinates specified in Question 14.27, r0 = H ẑ,
g0 = −g0ẑ and Ω× g0 = −g0Ωyx̂. So, the components of (4) are

x = 1
3
g0Ωcosλ t3, y = 0 and z = H − 1

2
g0t

2. (5)

Thus, the time taken to reach the ground is t =
√

2H
/
g0 and the deflection is

x =
2Ω

3

√
2H3

g0

cosλ . (6)

This is positive and so the deflection is to the East in both hemispheres.

Comments

(i) To first order in Ω the eastward deflection is entirely due to the Coriolis force. For
an object falling from H = 100 m, and with g0 = 9.8 m s−2, (6) gives
x = 0.022 cosλm.

λ 0◦ 45◦ 90◦

x (mm) 22 16 0

(ii) A reader may, at first, find the eastward direction of deflection surprising because
the Earth rotates towards the East. A simple explanation was given by Newton
“based on the observation that, with respect to inertial space, the dropped object,
being further from earth’s spin axis, has a larger eastward initial velocity than
the plumb-bob, and will land eastward of the bob.” [13]

(iii) Tiersten and Soodak[13] have calculated the terms of order Ω2 in the trajectory.
They find that:

☞ the vertical component z = H − 1
2
g0t

2 is accurate to second order in Ω;

☞ the corrections to (6) are of order H
/
R; and

☞ there is a deflection towards the equator, whose value relative to a plumb line
is given by

y = −4(Ω2H2
/
g0) cosλ sinλ . (7)

Both the Coriolis force and the non-uniformity of g contribute to (7), with the
latter contribution being about five times the former. Thus, the assumption of
constant g will produce an error here amounting to about a factor of six.

(iv) The problem of the deviation of the path of a freely falling object from a plumb
line has a long history, and satisfactory agreement between theory and experiment
is still lacking.[13]
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Question 14.29

Determine (to first order in Ω) the effect of the Earth’s rotation on small oscillations
of a simple pendulum. Do this in two ways:

(a) by transforming to a frame that is rotating relative to a laboratory frame, and

(b) by solving the equation of motion in a laboratory frame.

Solution

We use the same coordinate system as in Question
14.27. The pivot is on the z-axis, a distance � above
O, where � is the length of the pendulum. For small
oscillations (x and y both � �) the vertical displace-
ment of the bob z ≈ (x2 + y2)

/
2� is of second order

and therefore negligible. The equation of motion is(
see (3) of Question 14.27

)
mr̈ = Fng + mg0 − 2mΩ× ṙ . (1)

Here, Fng = T, the tension in the string, and we have
approximated g by its value at O. (Changes in the
centrifugal force are of second order in Ω, and changes

in the gravitational force are of second order in x and y.) The motion is essentially
two-dimensional in the xy-plane, and the vertical component of (1) is T = −mg0. The
horizontal component of T is −mg0ρ/� = −mω2

0
ρ, where ρ = (x, y) is the position

vector of the bob and ω0 =
√
g0/� is the angular frequency of the oscillations when

Ω = 0. Thus, the horizontal component of (1) is

ρ̈ = −ω2
0ρ − 2Ω× ρ̇ . (2)

To this order the effect of the Earth’s rotation is given by the Coriolis term in (2).

(a) Now, Ω = (0, Ωy, Ωz) and so Ω× ρ̇ = Ωz ẑ × ρ̇. Thus, (2) can be written

ρ̈ = −ω2
0ρ − 2Ωzẑ× ρ̇ . (3)

The Coriolis term in (3) can be removed by transforming to a frame S′ rotating
with constant angular velocity

ω = −Ωzẑ = −γΩ sinλ ẑ , (4)

where γ = +1 in the northern hemisphere; γ = −1 in the southern hemisphere(
see (2) of Question 14.20 with terms in Ω2 neglected

)
. In S′ the pendulum

oscillates in a vertical plane with angular frequency ω0; in the laboratory frame
this plane rotates slowly (precesses) about the vertical with angular frequency ω.
This precession is clockwise when viewed from above in the northern hemisphere,
and anti-clockwise in the southern hemisphere.
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(b) Equation (2) has components

(ẍ, ÿ) = −ω2
0
(x, y) + 2Ωz(ẏ, −ẋ) . (5)

Thus, the quantity η = x+ iy satisfies the differential equation

η̈ + 2iΩzη̇ + ω2
0
η = 0 . (6)

The general solution to (6) is

η = e−iΩzt
(
Aei

√
ω2

0+Ω2
z t +Be−i

√
ω2

0+Ω2
z t
)
. (7)

The solution that satisfies the initial condition x = x0, y = 0 at t = 0 is

η = x0e
−iΩzt cos

√
ω2

0 + Ω2
z t ≈ x0e

−iΩzt cosω0t (8)

because Ωz � ω0. That is,

x = x0 cosω0t cosΩzt , y = −x0 cosω0t sin Ωzt . (9)

This is an oscillation x0 cosω0t in a vertical plane that rotates about the z-axis
with angular velocity −Ωzẑ. The motion is the same as that found in (a).

Comments

(i) The period of precession, T = 2π
/
Ω sinλ = 24

/
sinλ in hours, increases from 24 h

at the poles, to 33.7 h at λ = 45◦, and becomes infinite (i.e. no precession) at the
Equator.

(ii) The precessing pendulum is known as Foucault’s pendulum, after Jean Foucault
who first demonstrated the effect in a series of experiments in 1851, culminating in
the use of a 28-kg cannon ball suspended by a 65-m long wire in the Pantheon in
Paris. His experiment provides a terrestrial demonstration of the Earth’s rotation,
and it is a popular exhibit in science museums and other public places. In princi-
ple, other effects could be used for this demonstration, such as the deflection of a
falling object or a projectile. The essential advantage of the pendulum (and also
the gyroscope, see Question 12.25) is the cumulative nature of the effect. An inter-
esting account of Foucault’s work on the pendulum has been given by Crane.[14]

Foucault was an accomplished experimentalist who invented the gyroscope, per-
formed an accurate measurement (at the time) of the speed of light, discovered
eddy currents, and worked on many practical devices. Foucault’s pendulum was
selected in a poll as one of the ‘most beautiful experiments in physics’.[15]

(iii) Usually, the Foucault pendulum consists of a massive ball suspended by a long
wire. However, in recent years considerable progress has been made in eliminating

[14] H. R. Crane, “The Foucault pendulum as a murder weapon and a physicist’s delight,” The
Physics Teacher, vol. 28, pp. 264–269, 1990.

[15] R. P. Crease, “The most beautiful experiment,” Physics World, vol. 15, pp. 19–20, September
2002.
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the perturbing effects that plague more compact pendulums – to such an extent
that the effect has been observed with pendulums as short as 15 cm, and a 70-cm
pendulum has been reported to be in continuous operation for over ten years,
precessing to within 2% of the theoretical rate.[16]

(iv) If non-uniformity of the gravitational and centrifugal forces – that is, terms due
to non-zero r in (2) of Question 14.27 – is included, then (3) is modified to read

ρ̈ = −(ω2
0
− Ω2

z
+ g0

/
R)ρ + Ω2

y
xx̂ − 2Ωzẑ× ρ̇ . (10)

It is apparent that the additional terms are negligible (for example,
g0

/
R = �ω2

0

/
R � ω2

0
) and the main contribution to non-inertiality is the Coriolis

term in (10). In the following question the opposite is true.

Question 14.30

Obtain an approximate equation of motion for free motion of a particle on a horizontal
frictionless plane in the laboratory frame. (Hint: Refer to Question 14.29.)

Solution

Here, the components of the non-gravitational force Fng in the plane of the table are
zero. So, the equation of motion can be obtained by setting ω0 = 0 in (10) of Question
14.29. With g0

/
R = ω2

p
we have

ρ̈ = −(ω2
p
− Ω2

z
)ρ + Ω2

y
xx̂ − 2Ωzẑ × ρ̇ . (1)

Comment

It is often claimed in the literature that this problem can be solved by making the
uniform g approximation (4) of Question 14.27. That is, by neglecting non-uniformity
of the gravitational and centrifugal forces, so that

ρ̈ = −2Ωzẑ × ρ̇ . (2)

However, the analysis given in Ref. [13] shows that this approximation is not valid –
in fact, it would be more accurate to neglect the Coriolis term in (1). These authors
point out that the solutions to (1) and (2) are very different: according to (1) the
motion is an oscillation of angular frequency ωp

(
period ≈ 5000 s

)
that precesses at a

rate Ωz

(
period ≥ 86 400 s

)
; whereas, according to (2) the particle performs a uniform

circular gyration if ρ̇0 �= 0, and remains at rest if ρ̇0 = 0.

[16] H. R. Crane, “Foucault’s pendulum ‘wall clock’,” American Journal of Physics, vol. 63, pp. 33–
39, 1995.
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The relativity principle and some of
its consequences

Einstein’s relativity principle is an assertion that the laws of physics are equally valid in
all inertial frames – that is, these laws have the same mathematical form in all inertial
frames. This principle is the basis for the theory of special relativity, yet students often
have difficulty understanding its significance and power. It is with this in mind that
we have devised the following short set of questions.

If one uses the relativity principle to go beyond the absolute space and time of
Newtonian relativity, then a startling result soon emerges: the theory admits the
possibility of a universal speed, and shows that particles travelling with this speed
are peculiar – their speed relative to us is independent of whether we move towards
or away from them (see Questions 15.1 to 15.3).

Following Rindler[1] we denote the universal speed by V and refer to the space-time
transformation allowed by the relativity principle as the V 2-Lorentz transformation.‡

Because of our focus on the relativity principle, many of the following questions involve
V and the V 2-Lorentz transformation. The rationale behind this approach is
emphasized in the comments to Question 15.2. Readers who have in mind also the
theory of electromagnetism and the abundant experimental evidence concerning V
can, at any stage, make the identification V = c (the speed of light in vacuum).

We hope that our examples will indicate to the reader that “Einstein’s principle is
really a metaprinciple: it puts constraints on all the laws of physics . . . (and) is a beau-
tiful example of the power of pure thought to leap ahead of the empirical frontier.” [2]

For further study we recommend the books by Rindler[1,2] and Barton.[3]

Question 15.1

Consider two inertial frames S and S′ in the standard configuration, with S′ moving
relative to S at constant velocity v along the x-axis (see Question 14.8 and the diagram

‡This notation should not be confused with our previous use of V for a potential or a volume.

[1] W. Rindler, Essential relativity. New York: Springer, 2nd edn, 1977. Chap. 2.
[2] W. Rindler, Introduction to special relativity, p. 2. Oxford: Oxford University Press, 1982.
[3] G. Barton, Introduction to the relativity principle. Chichester: Wiley, 1999.
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below). Let (x, t) and (x′, t′) be the space and time coordinates of the same event
relative to S and S′. Show that the most general linear, homogeneous transformation
between (x , t) and (x′, t′) that is consistent with the relativity principle (see Question
14.10) is

x′ =
1√

1 − v2
/
V 2

(
x− vt

)
(1)

t′ =
1√

1 − v2
/
V 2

(
t− v

V 2
x
)
, (2)

where V 2 = V 2(v) is an even function of v.

x

z

S

y

�

v

y
0

z
0

x
0

S

0

0

Solution

The analysis involves four steps:

1. For the standard configuration depicted above, O and O′ coincide at t = t′ = 0 (see
also Question 14.8). Therefore, x = vt implies x′ = 0. This, together with linearity,
means x′ is proportional to x− vt:

x′ = γ(v)(x− vt) , (3)

where the coefficient γ(v) is independent of x and t.
2. Now, apply the relativity principle to (3). That is, unprime x′, prime x and t, and
replace v with −v (see (3) of Question 14.10

)
. Then

x = γ(−v)(x′ + vt′) . (4)

3. From (3), γ(v) is equal to the ratio† O′x′
/
Ox at t = 0, and this cannot depend on

the sign of v because space is isotropic in an inertial frame (see Chapter 1). So

γ(−v) = γ(v) . (5)

†In general, γ(v) = ∆x′/∆x, where ∆x′ is the length of a rod at rest along the x′-axis and ∆x is
the length of that rod in S, the endpoints of ∆x being measured at the same instant t.
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4. Now, use (3) to eliminate x′ from (4), and then solve for t′ in terms of t and x:

t′ = γ(v)

[
t− γ2(v) − 1

v2γ2(v)
vx

]
. (6)

Equations (3) and (6) are the linear transformations allowed by the relativity principle
and isotropy. They contain one unknown coefficient, the even function γ(v). For further
analysis it is helpful to write (3) and (6) in terms of a related unknown, V 2, defined
in terms of γ2 and v by the inverse of the coefficient of vx in (6),

V 2(v) ≡ γ2(v)

γ2(v) − 1
v2, (7)

and in terms of which

γ(v) =
1√

1 − v2
/
V 2

. (8)

(
In going from (7) to (8) a possible minus sign is excluded because γ(0) = 1.

)
Equations

(3) and (6)–(8) yield (1) and (2). Note that V has the dimensions of velocity.

Comments

(i) The transformations (1) and (2) are known as the V 2-Lorentz transformation.[1]

(ii) If V 2 = ∞ (that is, γ = 1) they reduce to the Galilean transformation of absolute
space and time (see Question 14.8): ∆x′ = ∆x and t′ = t. But, if V 2 is finite, then
(1) and (2) describe relative space-time (space and time intervals are different in
different inertial frames).

(iii) The restriction to linear transformations is associated with the restriction to
inertial frames, although the connection requires some discussion. We have also
supposed that the velocity of S relative to S′ is −v, where v is the velocity of S′

relative to S. Again, this seemingly mild result (known as reciprocity) requires
elaboration. Linearity follows from the homogeneity and isotropy of space and
the homogeneity of time in an inertial frame (see Chapter 1); reciprocity requires
these and the relativity principle.[1,2,4,5]

(iv) In the above we have not mentioned the coordinates perpendicular to the direction
of motion. It is easily shown that these are unchanged:

y′ = y , z′ = z . (9)

For example, with y′ = α(v)y the relativity principle and reciprocity require
α2(v) = 1 and therefore, since α→ 1 as v → 0, the relevant root is α(v) = 1.

(v) We emphasize the importance of the coefficient γ(v) introduced in (3)
(
equivalently,

the quantity V 2(v) defined in (7)
)
: it allows one to depart from Newton’s

restriction to absolute space and absolute time – see (6) – and it pervades all
of relativistic physics. The next question deals with some properties of V .

[4] A. R. Lee and T. M. Kalotas, “Response to Comments on ‘Lorentz transformations from the
first postulate’,” American Journal of Physics, vol. 44, pp. 1000–1002, 1976.

[5] V. Berzi and V. Gorini, “Reciprocity principle and Lorentz transformations,” Journal of Math-
ematical Physics, vol. 10, pp. 1518–1524, 1969.
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Question 15.2

(a) Show that the quantity V 2(v) that appears in the V 2-Lorentz transformation
of Question 15.1 is a universal constant. (Hint: Consider successive V 2-Lorentz
transformations from S to S′ to S′′.)

(b) Deduce that V 2 > 0.

Solution

(a) Let S′′ be an inertial frame in the standard configuration with S′ and moving with
velocity u relative to S′. According to Question 15.1 the space-time coordinates
of S′′ and S′ are related by a V 2-Lorentz transformation:

x′′ = γ(u)
(
x′ − ut′

)
, t′′ = γ(u)

(
t′ − u

V 2(u)
x′
)
. (1)

Also, x′ and t′ are given in terms of x and t by the V 2-Lorentz transformation
(1) and (2) of Question 15.1. It follows that (x′′, t′′) are related to (x, t) by

x′′ = γ(u)γ(v)

[(
1 +

uv

V 2(v)

)
x− (u+ v)t

]
(2)

t′′ = γ(u)γ(v)

[(
1 +

uv

V 2(u)

)
t−

(
u

V 2(u)
+

v

V 2(v)

)
x

]
. (3)

But, (x′′, t′′) and (x, t) are related by a V 2-Lorentz transformation from S to S′′:

x′′ = γ(w)(x− wt) , t′′ = γ(w)

(
t− w

V 2(w)
x

)
, (4)

where w is the velocity of S′′ relative to S. Equations (4) require equality of the
coefficient of x in (2) with the coefficient of t in (3). That is,

V 2(u) = V 2(v) . (5)

But u and v are arbitrary. Thus, V 2(v) must be independent of v: it is the same
for all inertial observers and is therefore a universal constant.

(b) By equating the ratio of the coefficients of t and x in (4)1 with the ratio of those
in (2) we obtain a velocity addition formula:

w =
u+ v

1 + uv
/
V 2

. (6)

Now, on physical grounds we require of (6) that for positive u and v the resultant
w must be positive. (Velocities in the same direction cannot add to produce a
velocity in the opposite direction.[6]) But, if V 2 < 0, then w < 0 when uv > −V 2.
Therefore, only positive values of V 2 are physically acceptable. (Negative values
of V 2 produce other unphysical consequences such as negative values of γ and
violation of causality.[1])

[6] A. R. Lee and T. M. Kalotas, “Lorentz transformation from the first postulate,” American
Journal of Physics, vol. 43, pp. 434–437, 1975.
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Comments

(i) The condition V 2 > 0 means that V is a real quantity. Also, because γ is
necessarily real, it follows from (8) of Question 15.1 that v2 < V 2: the
relative speed of inertial frames is bounded above by |V |. (No such bound is
implied if V 2 were negative.)

(ii) The foregoing derivation and analysis of the V 2-Lorentz transformation shows
“ that the Lorentz transformations are attainable up to an unspecified universal
constant [V ], without recourse to any specific physical phenomena apart from
those underlying the very existence of classical inertial frames.” [4] The prevailing
tendency to base the theory instead on propagation of light has been criticized
particularly by Lévy-Leblond: “By establishing special relativity on a property of
the speed of light, one seems to link this theory to a restricted class of natural
phenomena, namely, electromagnetic radiations. However, . . . special relativity
up to now seems to rule all classes of natural phenomena, whether they depend
on electromagnetic, weak, strong, or even gravitational interactions. This theory
does not derive from the use of electromagnetic signals for synchronizing clocks,
for example . . . ; quite the contrary, it is the validity of the theory which constrains
electromagnetic signals to have their specific propagation properties. We believe
that special relativity at the present time stands as a universal theory describing
the structure of a common space-time arena in which all fundamental processes
take place . . . and electromagnetic interactions here have no privilege other than
a historic and anthropocentric one.” [7]

(iii) The only possible space-time transformations between inertial frames are the
V 2-Lorentz transformation or its special limit, the Galilean transformation
(corresponding to V = ∞). “The Lorentz case is characterized by a parameter
with the dimensions of a velocity which is a universal constant associated with
the very structure of space-time.” [7]

Question 15.3

(a) Let u = (ux, uy, uz) and u′ = (u′x, u
′
y, u

′
z) be the velocities of a particle relative

to inertial frames S and S′ in the standard configuration. Use the V 2-Lorentz
transformation to obtain the velocity transformation

u′x =
ux − v

1 − uxv
/
V 2

, u′y =
uy

γ(1 − uxv
/
V 2)

, u′z =
uz

γ(1 − uxv
/
V 2)

. (1)

Comment on (1) with regard to form invariance (see Question 14.9).

(b) Deduce that if a particle moves with speed V relative to an inertial frame, then
its speed is V relative to all inertial frames.

(
Hint: Use the inverse of (1) to obtain

a relation between V 2 − u2 and V 2 − u′2.
)

[7] J. M. Lévy-Leblond, “One more derivation of the Lorentz transformation,” American Journal
of Physics, vol. 44, pp. 271–277, 1976.
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Solution

(a) By definition, the velocities are

u′ = (dx′
/
dt′, dy′

/
dt′, dz′

/
dt′) , u = (dx

/
dt, dy

/
dt, dz

/
dt) , (2)

where the differentials are given by the V 2-Lorentz transformation as

dx′ = γ(dx− vdt) , dy′ = dy , dz′ = dz , dt′ = γ(dt− vdx
/
V 2) . (3)

Equations (1) follow directly from (2) and (3). The inverses of (1) are

ux =
u′

x
+ v

1 + u′xv
/
V 2

, uy =
u′

y

γ(1 + u′xv
/
V 2)

, uz =
u′

z

γ(1 + u′xv
/
V 2)

. (4)

Comparison of (1) and (4) shows that they are related by the rule: interchange
primed and unprimed quantities, and replace v with −v. Therefore, they satisfy
the form invariance required by the relativity principle (see Questions 14.9 and
14.10).

(b) With u2 = u2
x
+ u2

y
+ u2

z
, and from (4) we have[1]

γ2
(
1 + u′

x

v

V 2

)2
(V 2 − u2) = γ2

(
1 + u′

x

v

V 2

)2
V 2 −

[
γ2 (u′

x
+ v)

2
+ u′

y

2
+ u′

z

2
]

= V 2 − u′
2
.

That is,

V 2 − u2 = V 2(V 2 − v2)(V 2 + u′ · v)−2(V 2 − u′
2
) , (5)

where we have replaced u′xv with u′ ·v, thereby generalizing the result to relative
motion of S and S′ along any direction. It follows from (5) that if u′ = V then
u = V , for arbitrary inertial frames S and S′.

Comments

(i) Such behaviour is outside our experience, which concerns objects that can be
pursued, caught and overtaken.

(ii) Because v2 < V 2 (see Question 15.2), it follows from (5) that u′ < V implies
u < V . Thus, we can distinguish two types of inhabitant of the universe: those
moving with speed less than V and those with speed equal to V (relative to
an inertial frame). The former can be pursued and even overtaken – and they
cannot move with speeds equal to or greater than V relative to any inertial frame.
(Actually, because u′ > V implies u > V , there is a third possible inhabitant,
which moves with speed greater than V relative to all inertial frames.)

(iii) Further development of this theory shows that V is the speed of any particle that
has zero mass. To within the accuracy of existing experiments, photons (light
quanta) have zero mass and probably also neutrinos and gravitons. All existing
measurements in physics are consistent with the identification V = c, the speed
of light in vacuum.



The relativity principle and some of its consequences ���

(iv) If it should one day turn out that the photon (and the neutrino, etc.) all have a
small but non-zero mass, then V would not be the speed of any actual particle.
This “would not, as such, shake in any way the validity of special relativity. It
would, however, nullify all of its derivations which are based on the invariance of
the photon velocity.” [7]

(v) The Galilean transformation applies when v � c, and Newtonian physics is a
good approximation for the large class of phenomena where particle speeds are
small compared to c.

Question 15.4

Consider the wave equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

)
φ(r, t) = 0 , (1)

where φ is a scalar function and c is the speed of light in vacuum. Determine how (1)
transforms under the V 2-Lorentz transformation of Question 15.1. Deduce the value
of V for which (1) is form invariant.

Solution

For the transformation

x′ = γ(x− vt) , y′ = y , z′ = z , t′ = γ(t− vx
/
V 2) (2)

we have
∂

∂x
= γ

∂

∂x′
− γ

v

V 2

∂

∂t′

∂

∂t
= −γv ∂

∂x′
+ γ

∂

∂t′
,

⎫⎪⎪⎬⎪⎪⎭ (3)

and ∂
/
∂y = ∂

/
∂y′, ∂

/
∂z = ∂/∂z′. Also, because φ is a scalar under (2), we have

φ′(r′, t′) = φ(r, t). So, (1) transforms into[ V 2

V 2 − v2

c2 − v2

c2
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
− 1

V 2 − v2

(
V 2

c2
− v2

V 2

)
∂2

∂t′2

+ 2v
V 2

V 2 − v2

(
1

c2
− 1

V 2

)
∂2

∂t′∂x′

]
φ′(r′, t′) = 0 . (4)

In general, this is not form invariant because of the term in ∂2
/
∂t′∂x′ and the

coefficients of ∂2
/
∂x′2 and ∂2

/
∂t′2. However, if V = c then (2) becomes form invariant:(

∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
− 1

c2
∂2

∂t′2

)
φ′(r′, t′) = 0 . (5)
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Comments

(i) This is a long-hand (first principles) calculation of the invariance of (1) under a
V 2-Lorentz transformation. There is a powerful formalism based on four-vectors
that enables one to determine, by inspection, the invariance of (1) under Lorentz
transformation: the differential operator acting on φ is a four-scalar when V = c
(see Question 15.7).

(ii) Identification of c with V means that c is a universal constant (the same in all
inertial frames – see Question 15.2).

(iii) For the Galilean transformation (V = ∞), (4) is(
c2 − v2

c2
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
− 1

c2
∂2

∂t′2
+

2v

c2
∂2

∂t′∂x′

)
φ′(r′, t′) = 0 , (6)

which is not form invariant.

(iv) The operator in brackets in (1) is the same as that which appears in the equation
for propagation of electromagnetic waves in vacuum. This indicates that form
invariance will require V = c =

(
1
/√
ε0µ0

)
, the speed of light in vacuum (see also

Question 15.9).

Question 15.5

(a) Express the V 2-Lorentz transformation in a form connecting a space and time
interval (∆r, ∆t) relative to S with the corresponding interval (∆r′, ∆t′) relative
to S′.

(b) Hence, deduce the phenomena of 1. length contraction, and 2. time dilation.

Solution

(a) Let (r1, t1) and (r2, t2) be the space and time coordinates of two events rela-
tive to S, and (r′

1
, t′

1
) and (r′

2
, t′

2
) be the corresponding coordinates relative to

S′. The respective intervals are (∆r, ∆t) = (r2 − r1, t2 − t1) and (∆r′, ∆t′) =
(r′2 − r′1, t

′
2 − t′1). The various coordinates are related by the V 2-Lorentz transfor-

mation of Question 15.1, and therefore so are the intervals:

∆x′ = γ(∆x− v∆t) , ∆y′ = ∆y , ∆z′ = ∆z , ∆t′ = γ

(
∆t− v∆x

V 2

)
. (1)

(b) 1. Let ∆x′ = �0 be the length of a rod at rest in S′. Its length � relative to S is
defined as the difference ∆x = x2 −x1, where x1 and x2 are measured at the same
instant t. From (1)1 with ∆t = 0 we have the formula for length contraction:

�0 = γ� . (2)

2. Consider the inverse transformation to (1)4, namely

∆t = γ

(
∆t′ +

v∆x′

V 2

)
, (3)



The relativity principle and some of its consequences ���

and let ∆t′ = ∆τ be the time interval between two events occurring at the same
position in S′. From (3) with ∆x′ = 0 we have the formula for time dilation:

∆t = γ∆τ . (4)

Comments

(i) According to (2), � =
√

1 − v2/V 2 �0 < �0: the length � of a moving rod is always
less than the so-called proper‡ length (or rest length).

(ii) According to (4), ∆τ =
√

1 − v2/V 2 ∆t: a time interval is always least in the
rest frame of a clock. A clock translating with constant speed v relative to an
inertial frame S runs slows by a factor

√
1 − v2/V 2 relative to the clocks of S. ∆τ

is known as the proper time interval.

(iii) The frame S′ in which measurements are made on an object or clock at rest is
known as the proper (or rest) frame. There is no preferred (absolute) rest frame.

(iv) In (2), the length � (which is measured by an observer in motion relative to the
rod) is known as the improper length. Similarly, ∆t in (4) is called the improper
time interval.

Question 15.6

Show that, in terms of the coordinates

x1 = x , x2 = y , x3 = z , x4 = iV t (1)

(i =
√−1 ), the V 2-Lorentz transformation of Question 15.1 can be expressed as an

orthogonal transformation in four dimensions:

x′µ = aµνxν , (2)

where the coefficients aµν satisfy the orthogonality relations

aµνaµλ = δνλ , aνµaλµ = δνλ . (3)

(Here, and in the following, it is understood that Greek indices have values from 1 to
4, and that a repeated index, such as ν in (2), implies summation from 1 to 4.)

Solution

In terms of the notation (1) and because V is the same in all inertial frames, the
V 2-Lorentz transformation can be expressed as

x′
1

= γ(x1 + ivx4/V ) , x′
2

= x2 , x′
3

= x3 , x′
4

= γ(x4 − ivx1/V ) , (4)

‡The word ‘proper’ derives from the Latin proprius, meaning ‘own’ or ‘belonging to oneself’; and
so it is a helpful adjective for evoking a measurement done in the rest frame of an object.
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where γ =
1√

1 − v2/V 2
and x′4 = iV ′t′ = iV t′ . That is,

⎛⎜⎜⎝
x′

1

x′2
x′

3

x′4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
γ 0 0 iγv/V
0 1 0 0
0 0 1 0

−iγv/V 0 0 γ

⎞⎟⎟⎠
⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠. (5)

Equations (4) are the desired relation (2) with coefficients aµν given by the elements
of the 4× 4 matrix in (5). It follows from (4) that the quantity x2

1 + x2
2 + x2

3 +x2
4 is an

invariant (the same for all inertial observers):

x′
µ

2
= x2

µ
. (6)

The orthogonality relations (3) are a consequence of the condition (6):

1. By substituting (2) in (6) we have aµνaµλxνxλ = x2
µ, for all values of the xν and

hence (3)1.

2. Multiplication of (2) by aµλ and use of (3)1 gives

aµλx
′
µ = aµλaµνxν = xλ . (7)

Thus we have the inverse transformation

xµ = aνµx
′
ν
. (8)

From (8) we have x2
µ = aνµaλµx

′
νx

′
λ, and hence (3)2.

Comments

(i) The inclusion of the imaginary number i in x4 enables one to work in a complex
Cartesian space known as Minkowski space. The alternative is to work in a real
space where x4 = V t, and consequently x2

µ = x2
1 + x2

2 + x2
3 − x2

4 . Such a space
is Riemannian. We have chosen the former for our discussion of special relativity
because “ the formulas in complex Minkowski space are usually particularly simple
and neat, without the encumbrances of metric tensors or the (here) artificial
distinction between covariant and contravariant quantities. It also permits natural
extensions from our experience with ordinary three-dimensional space. . . . Most
of the equations look the same in either space; in any case, conversion from one
space to the other is a simple matter.” [8]

(ii) The coefficients aµν contained in (5) are for frames S and S′ that are in the
standard configuration. However, the transformation (2) and the invariance (6)
are valid for arbitrary direction of the velocity v of S′ relative to S.

(iii) Clearly, (6) is also valid for infinitesimal intervals:

dx′
µ

2
= dx2

µ
. (9)

[8] H. Goldstein, Classical mechanics, p. 293. Reading: Addison-Wesley, 1980. Chap. 7.
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Question 15.7

Question 14.17 details the form invariance of three-dimensional tensor equations under
rotation of the coordinate system. Based on Question 15.6, and reasoning by analogy,
outline a mathematical framework that enables one to treat form invariance of physical
laws under a V 2-Lorentz transformation.

Solution

We first recall some properties of three-tensors (see Questions 14.16 and 14.17). These
are defined by the way they transform under rotation of the coordinate system – that is,
under a linear, homogeneous, orthogonal transformation. The prototype three-tensor is
the position vector r whose three components transform according to
x′

i
= aijxj. In general, the components of three-tensors transform according to

A′
i = aijAj, T

′
ij = airajsTrs, etc. Three-tensor equations consist of linear relations

among tensors of the same rank, and form invariance of the equations is achieved by
covariance of these tensors.

The extension of these ideas to quantities that are four-tensors under the
V 2-Lorentz transformation is simple. The prototype four-vector is the position
vector xµ = (r, iV t) of a point in Minkowski space, and we have seen that its
components transform according to the linear, homogeneous, orthogonal trans-
formation x′

µ
= aµνxν . In general, a four-vector is a set of four quantities Aµ for

which
A′

µ
= aµνAν ; (1)

a second-rank four-tensor comprises sixteen quantities Aµν for which

A′
µν = aµρaνσAρσ , (2)

and so on. A four-scalar S is a tensor of rank zero and it is unchanged by the
transformation: S

′ = S. A four-tensor equation is a linear relation among tensors
of the same rank. For example, the four-vector equation

Aµ = Bµ . (3)

Then
A′

µ
−B′

µ
= aµν(Aν −Bν) = 0 . (4)

That is, (3) transforms into the form-invariant result

A′
µ

= B′
µ
. (5)

Similarly for four-tensor equations of any rank. Form invariance of a four-tensor
equation under the V 2-Lorentz transformation is achieved by covariance of the terms
(tensors) in that equation. Thus, the relativity principle imposes a condition on the
equations of physics: they should be four-tensor equations. This means that kinemati-
cal quantities (velocity and acceleration) and dynamical quantities (such as momentum
and force) have to be reformulated in terms of four-vectors.
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Comments

(i) Several important results for four-tensors can simply be written down based on
the analogy with three-tensors and results in Question 14.17. For example: AµBµ

is a four-scalar; the four-gradient with components ∂
/
∂xµ is a four-vector; the

four-divergence ∂Aµ

/
∂xµ is a four-scalar, as is ∂2

/
∂x2

µ.

(ii) Note that the orthogonality relations are crucial in obtaining these results. For
example,

A′
µ
B′

µ
= aµνaµλAνBλ = δνλAνBλ = AνBν . (6)

(iii) In particular, A′
µ

2
= A2

µ
: the length of a four-vector is unchanged by a V 2-Lorentz

transformation. (This is analogous to the invariance of the length of a three-vector
under rotation.)

(iv) The scalar property of
∂2

∂x2
µ

≡ ∇2 − 1

V 2

∂2

∂t2
(7)

means that form invariance of the wave equation in Question 15.4, when V = c,
can be decided by inspection.

(v) In the following we will, for brevity, refer to Aµ as a four-vector, rather than as
the components of a four-vector.

Question 15.8

Consider a particle moving with velocity u(t) relative to an inertial frame S. Let
dτ be an infinitesimal proper time interval; that is, a time interval measured in the
instantaneous proper frame (rest frame) S′ of the particle.

(a) Show that dτ is an invariant (a four-scalar).
(
Hint: Consider dx′

µ

2
.
)

(b) Show that dτ is related to the corresponding improper time interval dt measured
in S by

dτ =
√

1 − u2(t)
/
V 2 dt . (1)

Solution

(a) dx′
µ

2
= dx′

1

2
+ dx′

2

2
+ dx′

3

2 − V 2dτ2 = −V 2dτ2 (2)

because dτ is measured in S′, where dx′i = 0. Now, V 2 and dx′µ
2

are invariants
(see Questions 15.2 and 15.6), and therefore so is dτ .

(b) dx2
µ = dx2

1 + dx2
2 + dx2

3 − V 2dt2 . (3)

Equating (2) and (3), and setting dx2
1

+ dx2
2

+ dx2
3

= u2dt2, gives (1).
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Comments

(i) Equation (1) describes time dilation: dt > dτ . (See Question 15.5.)

(ii) The invariance of dτ means that it is independent of the choice of inertial frame S
relative to which u(t) in (1) is measured. Consequently, events on the trajectory
can be assigned a unique proper time (relative to an initial value τi), independent
of S:

τ = τi +

∫ t

t
i

√
1 − u2(t)

/
V 2 dt . (4)

Question 15.9

(a) Explain why the expressions

Uµ =
dxµ

dτ
and Aµ =

dUµ

dτ
(1)

are suitable definitions for the four-velocity and four-acceleration of a particle.

(b) Define the four-momentum Pµ.

(c) Evaluate U2
µ and P 2

µ .

Solution

(a) An acceptable definition of the four-velocity should provide a four-vector whose
first three components tend to the familiar Newtonian velocity u = dr

/
dt in the

limit u � V . This is satisfied by (1)1: dxµ = (dr, iV dt) is a four-vector and
dτ =

√
1 − u2/V 2 dt is a four-scalar; consequently, their ratio is a four-vector.

Similarly, Aµ given by (1)2 is a four-vector with the desired Newtonian limit
d2r

/
dt2 for its first three components.

(b) The four-momentum of a particle is defined by

Pµ = m0Uµ . (2)

Here m0 is the mass of the particle, as measured in an inertial frame in which the
particle is at rest.‡ This is presumed to be a unique attribute of the particle – thus,
m0 is a scalar under the V 2-Lorentz transformation. Equation (2) defines a four-
vector whose first three components have the desired Newtonian limit p = m0u.

(c) From Question 15.8, dx2
µ = −V 2dτ2 and therefore

U2
µ = −V 2 , P 2

µ = −m2
0V

2. (3)

Comments

(i) Uµ is a hybrid of the four-vector dxµ = (dr, iV dt) defined relative to an inertial

frame S and the four-scalar dτ =
√

1 − u2
/
V 2 dt defined relative to the instanta-

neous rest frame S′. In terms of the velocity u = dr
/
dt relative to S:

‡In the literature, m0 is often referred to as the rest mass, or proper mass.
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Uµ = γ(u)(u, iV ) , (4)

where γ(u) = (1 − u2
/
V 2)−1/2. From (4) it is obvious that U2

µ
= −V 2.

(ii) This is a suitable point at which to consider the equation of motion of a particle.
The Newtonian form

d

dt
(m0u) = F (5)

is invariant under the Galilean transformation (see Question 14.9) but not under
the V 2-Lorentz transformation. To generalize (5), so that it satisfies the relativity
principle when V is finite, requires a classical theory of the force F that is invariant
under the V 2-Lorentz transformation. The only candidate for this is the Lorentz
force

F = q(E + u× B) (6)

acting on a charged particle in an electromagnetic field. The theory of the
transformation of this field is beyond the scope of our book, and we simply state
the results. First, covariance of the theory of the electromagnetic field requires

V = c , (7)

where c = (ε0µ0)
−1/2 is the speed of light in vacuum.

(
It is therefore at this point

that an experimental value for V enters the discussion. An intimation of (7) is
contained in Question 15.4.

)
Secondly, the equation of motion that satisfies the

relativity principle when V = c is [8,9]

d

dt
(γm0u) = F , where γ(u) =

1√
1 − u2

/
c2
, (8)

and F is given by (6). The modification of Newton’s theory is contained in the
factor γ(u) in (8), and in the limit u/c � 1 equation (8) tends to (5). The
V 2-Lorentz transformation with V = c is known as the Lorentz transformation.

(iii) Equation (8) comprises the first three components of a four-vector equation of
motion that we can write as

dPµ

dτ
= Kµ , (9)

where

Kµ =
(
γ(u)F, K4

)
(10)

is the four-force. The question arises: what is the fourth component of (9), and
what is its physical significance. If m0 is constant, the answer is contained in (9)
and the fact that U2

µ = −c2 is a constant (see Question 15.10).

[9] J. D. Jackson, Classical Electrodynamics, Chaps. 11 and 12. New York: Wiley, 1962.
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Question 15.10

Consider a particle whose mass m0 is constant (independent of time).

(a) Show that the fourth component of the equation of motion (9) of Question 15.9
is

d

dt

m0c
2√

1 − u2
/
c2

= F · u . (1)

(
Hint: First use (9) above to evaluate the fourth component K4 of the four-force.

)
(b) Deduce that the kinetic energy of the particle is given by

K =

⎛⎝ 1√
1 − u2

/
c2

− 1

⎞⎠m0c
2 . (2)

Solution

(a) For constant m0 the equation of motion (9) of Question 15.9 is

m0

dUµ

dτ
= Kµ . (3)

Multiply this by Uµ. Then

KµUµ = m0Uµ

dUµ

dτ
= 1

2
m0

d

dτ
U2

µ
= 0 , (4)

because U2
µ = −c2 is constant. From (4), and (4), (7) and (10) of Question 15.9,

we have

K4 = (i/c) γ(u)F · u . (5)

Thus the fourth component of (3) is (1).

(b) According to (1), the work done on the particle during a displacement dr is

F · dr = d

(
m0c

2√
1 − u2/c2

)
. (6)

The kinetic energy K(u) of the particle is defined by (see Question 5.1)

dK = F · dr with K(0) = 0. (7)

The solution to (6) and (7) is (2).

Comments

(i) Equation (2) reduces to the Newtonian expression K = 1
2
m0u

2 when u� c.
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(ii) The four-momentum Pµ = γm0(u, ic) can be written

Pµ = (p, iE/c) , (8)

where

p = γm0u (9)

is the relativistic momentum and

E = γm0c
2 = m0c

2 +K (10)

is the sum of the proper (or rest mass) energy m0c
2 and the kinetic energy K.

For a free particle E is the total energy‡, and (8) and the relation P 2
µ = −m2

0c
2

(see Question 15.9) yield the relativistic energy–momentum relation

E2 = p2c2 +m2
0
c4. (11)

(iii) When F = 0 the four-force Kµ is zero and the components of the four-momentum
(8) are constants. That is, p and E are conserved.

(iv) The mass m0 is constant for a charged particle in an electromagnetic field, but
not in general (see Questions 15.11 and 15.12).

Question 15.11

Show that a necessary and sufficient condition for the mass m0 of a particle to be
constant is orthogonality of the four-force and the four-velocity:

KµUµ = 0 . (1)

Solution

Multiply the equation of motion d(m0Uµ)
/
dτ = Kµ by Uµ. Then,

KµUµ = Uµ

d

dτ

(
m0Uµ

)
= 1

2
m0

d

dτ
U2

µ
+ U2

µ

dm0

dτ
= −c2 dm0

dτ
, (2)

because U2
µ

= −c2 (see Question 15.9). According to (2), a constant m0 implies (1)
and vice versa.

Comments

(i) The condition (1) is satisfied for a charged particle in an electromagnetic field and
hence m0 is constant.

(
Here, Kµ ∝ UνFµν , where Fµν is anti-symmetric in µ and

ν. Therefore (1) holds.[9]
)

‡But not for a particle in a potential – see, for example, (1)1 of Question 15.16 and (3) of Question
15.17.
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(ii) In general, forces can be classified as ‘pure’ if KµUµ = 0 (and hencem0 is constant)
and ‘impure’ otherwise. Any force can be divided into pure and impure parts, Kµ

and Iµ, according to

Kµ = Kµ + Iµ , (3)

where

Kµ = Kµ + c−2(KνUν)Uµ , Iµ = −c−2(KνUν)Uµ . (4)

It follows from (2) and (4)2 that

Iµ = Uµ

dm0

dτ
, (5)

and hence

Kµ = m0

dUµ

dτ
. (6)

Pure forces change Uµ, impure forces change m0. An example of an impure force
is given next.

Question 15.12

Consider a particle in a field

Kµ = − ∂φ

∂xµ

, (1)

where φ(xν) is a four-scalar. Show that the mass m0 depends on φ according to

m0(φ) = m0(0) + φ
/
c2 . (2)

Solution

From (2) of Question 15.11 and (1) we have

−c2dm0

dτ
= − ∂φ

∂xµ

dxµ

dτ
= −dφ

dτ
. (3)

That is,

d

dτ
(m0 − φ

/
c2) = 0 . (4)

The solution to (4) is (2).
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Comment

Use of (3) in (2) of Question 15.11 shows that the expression for K4 is modified to
read

K4 =
i

c

(
γF · u +

dφ

dt

)
, (5)

and as a result the fourth component of the equation of motion becomes

d

dt

(
m0c

2√
1 − u2/c2

)
= F · u +

1

γ

dφ

dt
. (6)

Question 15.13

Consider one-dimensional motion of a particle of constant mass m0 subject to a
constant force F (> 0) in an inertial frame S. The initial conditions are x = 0 and
ẋ = 0 at t = 0.

(a) Determine the velocity u(t) and the position x(t) of the particle relative to S at
time t in terms of F , m0 and c.

(b) Determine also t(τ), u(τ) and x(τ), where τ is the proper time.

(c) Using suitable dimensionless variables, plot the graphs of u(t), x(t) and t(τ). On
each graph also show the corresponding Newtonian limit.

Solution

(a) The equation of motion in S is
(
see (8) of Question 15.9

)
:

d

dt

u√
1 − u2/c2

= g , (1)

where u = ẋ and g = F
/
m0 is a constant. By integrating (1) with respect to t

and setting u = 0 at t = 0 we have

u√
1 − u2/c2

= gt . (2)

For motion along the positive x-axis the relevant solution to (2) is

u(t) =
gt√

1 + (gt/c)2
. (3)

By integrating (3) with respect to t and setting x = 0 at t = 0 we have

x(t) =
c2

g

(√
1 + (gt/c)2 − 1

)
. (4)
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(b) The elapsed proper time is (see Question 15.8)

τ =

∫ t

0

√
1 − u2/c2 dt =

∫ t

0

dt√
1 + (gt/c)2

=
c

g
sinh−1 gt

c
. (5)

Thus, the time in S is given in terms of the proper time by

t(τ) =
c

g
sinh

gτ

c
. (6)

Equations (3), (4) and (6) yield

u(τ) = c tanh
gτ

c
, x(τ) =

c2

g

(
cosh

gτ

c
− 1

)
. (7)

(c) For gt/c � 1, (3) and (4) reduce to the non-relativistic (Newtonian) expressions
u = gt and x = 1

2
gt2. For gt/c � 1, u → c and x → ct − c2/g. To plot the

graphs of (3) and (4) we use the dimensionless quantities ū = u/c, x̄ = gx/c2 and
t̄ = gt/c. In terms of these, (3) and (4) are

ū = t̄ (1 + t̄
2
)−1/2 , x̄ = (1 + t̄

2
)1/2 − 1 . (8)

ū = 1

ū = t̄

Eqn (8)1

1�

4

�

2

�

ū

t̄

x̄ = t̄ − 1

x̄ = 1
2
t̄ 2

Eqn (8)24�

2�

4

�

2

�
x̄

t̄

On the diagrams we have also shown the New-
tonian expressions ū = t̄ and x̄ = 1

2
t̄

2
, which

are reasonable approximations only for the
initial motion t̄ � 1 (that is, t � c/g). The
limiting forms of (6) are t ≈ τ (if gτ/c � 1)
and t ≈ (c/2g)egτ/c (if gτ/c � 1). In dimen-
sionless units (6) is t̄ = sinh τ̄ , and this is
shown in the diagram together with the New-
tonian relation t̄ = τ̄ (absolute time). For
large values of t the proper time τ is much
less than t.

t̄ = τ̄

Eqn (6)

4�

2�

4

�

2

�

t̄

τ̄
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Comments

(i) The equation of motion (1) is equivalent to the statement: ‘the particle undergoes
constant proper acceleration g.’ To see this, consider first the four-acceleration(
see (1)2 of Question 15.9

)
in the initial frame S:

Aµ =
1√

1 − u2/c2
d

dt

1√
1 − u2/c2

(u, 0, 0, ic) . (9)

A short calculation shows that A2
µ

= (1 − u2
/
c2)−3(du

/
dt)2. On the other hand,

according to the above statement, in the instantaneous rest frameAµ = (g, 0, 0, 0)
and so A2

µ = g2. By equating these two expressions for A2
µ we obtain (1).

(ii) It follows that for a space ship accelerating in this way, an astronaut of mass m0

would experience a weight equal to m0g.

(iii) Consider travel in a space ship for which c/g = 1 Earth year, and therefore
c2/g = 1 light year. (This requires g ≈ 9.5 m s−2, and so, with regard to their
weight, the astronauts would feel quite comfortable.) The following table is
obtained from (4) and (7). It gives values of x and u/c (the distance travelled
and the speed attained, both relative to the starting frame S) in terms of t (the
time in S) and the proper time τ . We see that for a journey across the Milky
Way (x ∼ 105 light years), τ is considerably less than t, and (in principle) travel
amounting to billions of light years relative to S is possible during the lifetime of
an astronaut.

x (light years) u/c t (yr) τ (yr)

10−1 0.417 0.458 0.444

100 0.866 1.732 1.317

101 1-4×10−3 10.95 3.089

105 1-5×10−11 105 12.21

1010 1-5×10−21 1010 23.72

(iv) Experimental tests of the theory for motion in a constant force have been per-
formed using charged particles accelerated by a uniform electrostatic field. For
these, F = qE and g = qE

/
m0. The measurements are in good agreement with

the relativistic theory and confirm that, to within experimental error, the limiting
value of the speed is c.[10]

Question 15.14

A one-dimensional restoring force F = −kx (k is a positive constant) acts on a particle
of constant mass m0 in an inertial frame S. The particle starts from rest at x = A.

[10] W. Bertozzi, “Speed and kinetic energy of relativistic electrons,” American Journal of Physics,
vol. 32, pp. 551–555, 1964.
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(a) Show that its velocity relative to S is given by

dx

dt
= ±c

√
1 − {

1 + (ω2
/
2c2)(A2 − x2)

}−2
, (1)

where ω =
√
k
/
m0 is the angular frequency in the non-relativistic limit.

(b) Show that the period of the oscillation is given by

T (ε) =
2εT0

π

∫ 1

0

dX√
1 − {

1 + 1
2
ε2(1 −X2)

}−2
, (2)

where T0 = 2π
/
ω is the non-relativistic period and ε = ωA

/
c. Determine the

non-relativistic limits of (1) and (2).

(c) Write a Mathematica notebook to calculate u
/
c and T (ε)

/
T0 from (1) and (2).

Plot the graphs of 1. u
/
c versus x

/
A for ε = 0.1, 0.3, 0.6, 1.0, 2.0, 3.0 and 10;

and 2. T (ε)
/
T0 versus ε up to ε = 10.

Solution

(a) The equation of motion is (see Question 15.9)

d

dt
(γm0u) = −kx , (3)

where γ = (1 − u2
/
c2)−1/2. If m0 is constant, (3) can be written as

1

(1 − u2
/
c2)3/2

du

dt
= −ω2x. (4)

The relation du
/
dt = u du

/
dx enables us to put (4) in the separated form

u du

(1 − u2
/
c2)3/2

= −ω2xdx , (5)

and therefore ∫ u

0

u du

(1 − u2
/
c2)3/2

= −ω2

∫ x

A

xdx . (6)

That is,

(1 − u2
/
c2)−1/2 = 1 + (ω2

/
2c2)(A2 − x2) . (7)

The solutions to (7) for u = dx
/
dt are (1), where the positive (negative) sign

refers to motion along the positive (negative) x-axis.
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(b) By rearranging and integrating (1) we have

c

∫ 1
4
T

0

dt =

∫ A

0

dx√
1 − {

1 + (ω2
/
2c2)(A2 − x2)

}−2
, (8)

and hence (2). In the non-relativistic limit ε = ωA
/
c � 1 and the expansion of

(1) to order ε3 is

u(x) = ±ω
√
A2 − x2

[
1 − 3

8

ω2A2

c2

(
1 − x2

A2

)]
. (9)

The factor multiplying the square brackets is just the familiar Newtonian result
(5) of Question 4.1. Similarly, (2) becomes

T =
2T0

π

∫ 1

0

dX√
1 −X2

= T0 . (10)

(c) The Mathematica notebook and graphs of (1) and (2) are:

In[1]:= Εmin � 0.005�Εmax � 1�Εstep � �Εmax � Εmin�/100�

f	Ε_
 ��
2Ε

Π
NIntegrate�	1 � 	1 � 1

2
Ε2�1 � X2�
�2
�1/2,X,0,1���

Plot	f	Ε
, Ε,Εmin,Εmax�,PlotRange � 0,1�,0,1.2��


ε = 0.1

ε = 0.3

ε = 0.6

ε = 1.0

ε = 2.0
ε = 3.0

ε = 10.0
1.0 �

0.5 �

1.0

�

0.5

�

u/c

x/A

Equation (12)

Equation (2)

•1.0

6.0 �

4.0 �

2.0 �

10

�

5

�

T (ε)
T0

ε

Comments

(i) ε2 = kA2
/
m0c

2 is twice the maximum potential energy ÷ the rest-mass energy.

(ii) In the relativistic limit ε� 1 and for x not too close to A, the speed (1) is

u(x) ≈ c(1 − 2ε−4) . (11)

Equation (11) represents the plateaus that stretch to x
/
A just below 1 in graphs

of u
/
c versus x

/
A, and then plummet to zero at x

/
A = 1. In the limit ε → ∞,
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u(x) resembles a step function. This behaviour is evident in the first diagram
above. Here u(x) ≈ c in most of the interval, and so

T ≈ 4A

c
=

2ε

π
T0 . (12)

The asymptote (12) is indicated by a dotted line in the second diagram. This
diagram also shows the Newtonian limit T → T0 as ε→ 1.

(iii) According to the fourth component of the equation of motion (see Question 15.10),

d

dt
(γm0c

2) = −kxdx
dt

= − d

dt
( 1

2
kx2) , (13)

and therefore the energy E = γm0c
2 + 1

2
kx2 is conserved. This provides an

alternative way of obtaining (7) and hence (1).

Question 15.15

(a) Show that the equation of motion for a particle of mass m0 and charge q in a
magnetic field B can be expressed as

m0√
1 − u2

/
c2

du

dt
= qu × B . (1)

(b) Determine the trajectory for motion in a uniform magnetostatic field B = (0, 0, B).(
Hint: Compare (1) with the non-relativistic equation in Question 7.17.

)
Solution

(a) The equation of motion is (see Question 15.9)

d

dt

⎛⎝ m0u√
1 − u2

/
c2

⎞⎠ = F = qu × B . (2)

For motion in an electromagnetic field m0 is a constant (see Question 15.11). Also,
F is perpendicular to u, and so F · u = 0. It follows from (1) of Question 15.10
that the speed u of the particle is constant. Therefore, (2) reduces to (1).

(b) Equation (1) is just the non-relativistic equation of motion (4) of Question 7.17

with the constant mass m replaced by the constant m0(1− u2
/
c2)−1/2. It follows

that we can obtain the trajectory for (1) by making this substitution in the non-
relativistic trajectory (2) of Question 7.17. The solution corresponding to the
initial conditions‡ r0 = 0 and u0 =

(
u1(0), u2(0), u3(0)

)
is therefore

‡In Question 7.17, u denotes the velocity at t = 0; here it represents the velocity at time t.
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r(t) =

(
u1(0)

ω
sinωt +

u2(0)

ω
(1 − cosωt),

u1(0)

ω
(cosωt− 1) +

u2(0)

ω
sinωt, u3(0)t

)
, (3)

where

ω =

√
1 − u2

c2
qB

m0

. (4)

Comments

(i) We see that the modification to the non-relativistic motion consists entirely of the

time-independent factor
√

1 − u2
/
c2 in (4). The relativistic angular frequency

ω differs from the cyclotron frequency (the non-relativistic magnetic resonance
frequency) qB

/
m0 by this factor, and ω → 0 as u→ c.

(ii) The interpretation of (3) is the same as for the non-relativistic motion. With a
suitable choice of axes (see Question 7.17), the trajectory is a helix of constant
pitch with axis parallel to the z-axis and centred at

(
u2(0), −u1(0)

)/
ω. The radius

and pitch of the helix are given by

R =
√
u2

1
(0) + u2

2
(0)

/
ω , D = 2πu3(0)

/
ω . (5)

Both R and D are time independent, and both become large as u→ c.

(iii) There is abundant experimental support for these results, coming mainly from the
operation of modern particle accelerators. For example, the relativistic dependence
of ω on u in (4) limits the functioning of a cyclotron to about 20 MeV for protons,
and this dependence has to be incorporated in the design of machines such as the
synchrocyclotron and synchrotron that function at much higher energies.

Question 15.16

Consider a particle of mass m0 subject to an attractive inverse-square force
F = −kr/r3, where k is a positive constant (the relativistic Coulomb problem).
Assume m0 is constant.
(a) Show that the energy and angular momentum,

E = γm0c
2 − k

/
r , L = r × p , (1)

are conserved.

(b) Determine the polar equation of the trajectory in terms of k, c, L and E. (Hint:
Adapt the method of Questions 8.7 and 8.8 for the non-relativistic motion.)

Solution

(a) If m0 is constant, the relativistic equation of motion is

d

dτ

(
γm0u, (i/c)γm0c

2
)

= γ
(
F, (i/c)F · u), (2)

where u = dr
/
dt and dτ = dt

/
γ (see Questions 15.8, 15.9 and 15.10). That is,
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d

dt
(γm0u) = − k

r3
r ,

d

dt
(γm0c

2) = − k

r2
dr

dt
. (3)

From (3)2 and (1)1 it is apparent that dE
/
dt = 0. Also, from (1)2 with p = γm0u

we have

dL

dt
= u × γm0u + r × d

dt
(γm0u) = r × (−k/r3)r = 0 . (4)

(b) Just as in the non-relativistic case, conservation of L means that the motion is
confined to a plane defined by the initial position and velocity vectors r0 and u0.
Therefore, plane polar coordinates r and θ can be used (see Chapter 8). In terms
of these

L = γm0r
2 dθ

dt
= m0r

2 dθ

dτ
. (5)

Also, the invariance of dx2
µ can be written

(
see (2) and (3) of Question 15.8

)
−c2dτ2 = dr2 − c2dt2 = dr2 + r2dθ2 − c2dt2. (6)

Therefore (
dr

dτ

)2
+ r2

(
dθ

dτ

)2
− c2γ2 = −c2. (7)

By writing (dr
/
dτ) = (dr

/
dθ)(dθ

/
dτ) and using (1)1 and (5) to eliminate γ and

dθ
/
dτ , respectively, from (7), we find

L2

m2
0
r4

(
dr

dθ

)2
+

L2

m2
0
r2

− 1

m2
0
c2

(
E +

k

r

)2
= −c2. (8)

This differential equation can be converted to a standard form by setting r = 1/w
and then differentiating both sides of (8) with respect to θ:

d2w

dθ2
+ λ2w =

kE

c2L2
, (9)

where

λ2 = 1 − k2
/
c2L2 . (10)

Consider first the case λ2 > 0. Then, the general solution to (9) is
w(θ) = (kE

/
λ2c2L2)+A cosλ(θ−θ0), where A and θ0 are arbitrary constants and

0 < λ ≤ 1. Thus, we have the polar equation of the trajectory:

r(θ) =
1

(kE
/
λ2c2L2) +A cosλ(θ − θ0)

. (11)

The value of A2 is determined by the requirement that (8) be satisfied. By
substituting (11) in (8) we find, after some calculation, that

A2 =
m2

0
c2

λ4L2

(
E2

m2
0
c4

− λ2

)
. (12)

If λ2 < 0 (that is, L < k/c) then we replace λ2 with −|λ|2 in (9). The solution is

r(θ) =
1

(kE
/
λ2c2L2) +A cosh |λ|(θ − θ0)

. (13)
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Comments

(i) The condition for bounded motion is evident from (1)1 and the fact that γ > 1.
We see that r will always be finite provided E < m0c

2. We know that for non-
relativistic motion (λ→ 1−) bounded trajectories are ellipses (see Question 8.9).
For 0 < λ2 < 1 it is clear from (11) that the perihelion (the point of closest
approach to the origin) precesses. In the non-relativistic limit (λ = 1) the position
vector r rotates through π (clockwise, say) in going from perihelion to aphelion,
whereas for relativistic motion (λ < 1) r must rotate by more than π. Thus,
the relativistic trajectory is an ellipse whose perihelion advances relative to the
inertial frame (or remains stationary in an appropriate rotating frame). This is
shown in the figure below, where both the precession and the sense in which the
orbit is traversed are clockwise (or anti-clockwise if all arrows are reversed). The
angular displacement of successive perihelia is

∆θ = (2π/λ) − 2π = 2π
{
(1 − k2

/
c2L2)−1/2 − 1

}
. (14)

∆
θ

(ii) For circular (and almost circular) orbits the angular momentum and equation of
motion are L = rp = rγm0u and γm0u

2
/
r = k

/
r2. Thus, k

/
L = u and

λ =
√

1 − u2
/
c2 . (15)

Also, (1)1 becomes
E = γm0c

2(1 − u2
/
c2) . (16)

It follows from (14) and (15) that almost circular, non-relativistic orbits precess
by ∆θ ≈ π(u/c)2 .
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(iii) The trajectory (13) for λ2 < 0 is a spiral into the centre of force at the origin.

(iv) An important application of the relativistic theory was made by Sommerfeld in
1916. Using Bohr’s theory he was able to extend Bohr’s non-relativistic result to
obtain the relativistic energy levels of the hydrogen-like atom. It later turned out
that Sommerfeld’s formula is in exact agreement with that given by relativistic
quantum mechanics (the Dirac equation). An interesting analysis and resolution
of this so-called ‘Sommerfeld Puzzle’ has been provided by Biedenharn.[11]

Question 15.17

Extend the analysis of Question 15.16 to a particle of constant mass m0 moving in a
spherically symmetric potential V (r). Specifically, show that the energy and angular
momentum are conserved, and obtain the differential equation for the inverse of the
polar trajectory, w(θ) = 1

/
r(θ).

(
That is, obtain the relativistic extension to (1) of

Question 8.8.
)

Solution

The force is

F = F (r)r̂ , where F (r) = −dV (r)
/
dr , (1)

and the corresponding equations of motion for constant m0 are

d

dt
(γm0u) =

1

r
F (r)r ,

d

dt
(γm0c

2) = F (r)
dr

dt
, (2)

where u = dr
/
dt. The total energy

E = γm0c
2 + V (r) (3)

is conserved:
dE

dt
=

d

dt
(γm0c

2) +
dV

dt
= F (r)

dr

dt
+
dr

dt

dV

dr
= 0 , (4)

and so is the angular momentum L = r× γm0u:

dL

dt
= u× γm0u + r× d

dt
(γm0u) = r × 1

r
F (r)r = 0 . (5)

The analysis leading to (8) of Question 15.16 is valid for any spherically symmetric
potential. Thus, we can replace the Coulomb potential −k/r in this equation by V (r):

L2

m2
0r

4

(
dr

dθ

)2
+

L2

m2
0r

2
− 1

m2
0c

2
{E − V (r)}2

= −c2 . (6)

[11] L. C. Biedenharn, “The ‘Sommerfeld Puzzle’ revisited and resolved,” Foundations of Physics,
vol. 13, pp. 13–34, 1983.
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In (6) we make the substitution r = 1/w and then differentiate (6) with respect to θ.
This yields

d2w

dθ2
+ w = − 1

c2L2

1

w2

{
E − V

(
1

w

)}
F

(
1

w

)
, (7)

which is the relativistic extension to (1) of Question 8.8.

Comments

(i) In the non-relativistic limit
(
E ≈ m0c

2 � |V |), (7) reduces to (1) of Question 8.8.

(ii) For a Coulomb potential (V = −kw and F = −kw2), equation (7) has the simple
form given in (9) of Question 15.16.

(iii) But, in general (7) is not a simple differential equation. Even the isotropic
harmonic oscillator (V = −k/2w2 and F = −k/w) poses the challenging equation

d2w

dθ2
+ w =

kE

c2L2

1

w3
− k2

2c2L2

1

w5
, (8)

whose non-relativistic limit,

d2w

dθ2
+ w =

m0k

L2

1

w3
, (9)

was solved in Question 8.10.

Question 15.18

A rocket having initial mass M is accelerated in a straight line in free space by
exhausting material at a constant speed ve relative to the rocket. Let u be the speed
of the rocket relative to its initial rest frame S when its rest mass has decreased to m.
Show that

u

c
=

1 − (m
/
M)2ve/c

1 + (m
/
M)2ve/c

. (1)

(Hint: Use conservation of energy and momentum in the instantaneous rest frame S′.)

Solution

Consider the rocket at proper time τ when its rest mass is m and its speed relative to
S is u. At this instant the rocket is instantaneously at rest in the inertial frame S′. At
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proper time τ+dτ its rest mass is m+dm (where dm < 0) and it has acquired velocity
du′ (directed to the right) relative to S′; exhaust ‘gases’ of rest mass dmg (> 0) have
been expelled with velocity ve (directed to the left) relative to S′. The energy and
momentum in S′ at time τ are mc2 and 0, respectively, and conservation of energy and
momentum relative to S′ during the interval dτ require

(m+ dm)c2√
1 − du′2

/
c2

+
dmgc

2√
1 − v2

e

/
c2

= mc2 (2)

and

(m+ dm)du′√
1 − du′2

/
c2

− dmgve√
1 − v2

e

/
c2

= 0 . (3)

To first order in small quantities these equations simplify to

dmg = −
√

1 − v2
e

/
c2 dm , mdu′ = dmgve(1 − v2

e

/
c2)−1/2 . (4)

Therefore
mdu′ = −vedm . (5)

We can eliminate du′ from (5) in favour of du (the velocity increment relative to S) by
using the velocity transformation between S and S′ (see Question 15.3). The velocity
u + du relative to S is the combination of the velocity u of S′ relative to S and the
velocity du′ of the rocket relative to S′:

u+ du =
u+ du′

1 + udu′
/
c2

≈ u+ (1 − u2
/
c2)du′ . (6)

Equations (5) and (6) yield a differential equation for u(m):

du

1 − u2
/
c2

= −ve

dm

m
. (7)

Integration of the left-hand side of (9) between 0 and u, and the right-hand side
between M and m gives

1
2
c ln

(
1 + u

/
c

1 − u
/
c

)
= −ve ln

m

M
, (8)

and hence (1).

Comments

(i) The limiting form of (1) in the non-relativistic limit u/c→ 0 is independent of c.
To see this, write (8) as

m

M
=

(
1 − u/c

1 + u/c

)c/2ve
=

[(
1 − α−1

1 + α−1

)α ]u/2ve
, (9)

where α = c/u. The quantity in square brackets tends to e−2 as α → ∞ and
therefore u→ ve lnM/m, which is independent of c and the same as the Newtonian
result in Question 11.26.
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(ii) Graphs of u/c versus ve/c obtained from (1) for various values of m/M are shown.
In general, u/c is largest (for given m/M) when ve = c. Also shown are graphs of
u/c versus m/M for various values of ve/c. In these, u/c→ 1 as m/M → 0.

m/M = 5 × 10−1

m/M = 2 × 10−1

m/M = 2 × 10−2

m/M = 2 × 10−6

1.0�

0.5�

0.5

�
1

�

ve/c

u/c

ve/c = 0.999

ve/c = 0.300

ve/c = 0.1001.0�

0.5�

0.5

�

1

�

m/M

u/c

Question 15.19

With the analysis of Questions 15.1 and 15.2 in mind, comment on the question:
‘Why did it take so long to improve on Newtonian relativity – that is, to discover the
V 2-Lorentz transformation?’

Solution

Question 15.1 shows how directly and simply one can obtain this transformation,
based on: 1. A willingness to forego absolute space by writing x′ = γ(v)(x − vt),

where γ(v) is an even function and not necessarily equal to unity. 2. The relativity
principle, which requires the crucial form invariance x = γ(v)(x′+vt′). From these two
equations it follows that time is relative – see (6) of Question 15.1. That is, relative
space + relativity principle ⇒ relative time. When put this way it seems surprising
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that it took about two hundred and fifty years to reveal the Lorentz transforma-
tion as a richer alternative to the Galilean transformation. After all, there was much
criticism of absolute space and time (albeit with a philosophical bent)[12] and, later,
concern with intricate properties of a mysterious ‘ether’, which was believed necessary
for propagation of electromagnetic waves.[1] These endeavours involved far more (and
fruitless) labour than the two steps detailed above. The main impediment was prob-
ably the conceptual leap involved in raising the relativity principle from the status
of a curiosity in Newtonian dynamics to a principle that also constrains the space-
time transformation, as in step 2. above. By contrast, the associated mathematical
development is not arduous, compared especially to mathematical achievements during
these centuries.

If Newton had carried out his original intention and presented the relativity princi-
ple as a fundamental law, or if Huyghens had been more insistent on the significance of
this principle, (see Question 14.9) it may have triggered a very different development
of the theory. A latter-day Lagrange could well have obtained the V 2-Lorentz transfor-
mation, as in Question 15.1, and either he or others (such as Gauss or Hamilton) could
have begun to extract the startling consequences of this result, including a tentative
identification of the speed of light in vacuum with the universal (frame-independent)
speed V .

Perhaps this chronology has been (or will be) followed by some other develop-
ing civilization in the universe, so that their theory of space-time for inertial frames
developed independently of other physical theories – notably, the theory of classical
electromagnetism. And their Michelson–Morley experiment confirmed an anticipated
result and impressed on them the power of inductive reasoning: that extension of the
notion of form invariance (manifest in the non-relativistic limit) to the space-time
transformation (and beyond) could produce such deep results.

As a further example of such reasoning we mention the extension of the Planck–
Einstein relations (E = �ω and p = �k) for light quanta (photons) to apply to all

particles. For a non-relativistic particle of mass m in a potential V , this implies the
dispersion relation �ω = �

2k2
/
2m + V and so, by inspection, the time-dependent

Schrödinger equation of quantum mechanics.[13]

To know what questions may reasonably be asked
is already a great and necessary proof of sagacity
and insight. (Immanuel Kant)

[12] See, for example, A. Danto and S. Morgenbesser, Philosophy of science. New York: Meridian,
1960.

[13] I. G. Main, Vibrations and waves in physics. Cambridge: Cambridge University Press, 3rd edn,
1993. Chap. 15.



Appendix

The following questions provide suitable material for project work in computational
physics. They require computer calculations in their solution, or for analysis of the
solution, or both. Those incorporating the interactive Manipulate function, which
enables one to observe and control motion on a computer screen, are highlighted below.

1. One dimensional motion of a particle subject to a time-harmonic force
(Question 3.3).

2. One-dimensional motion in an attractive inverse-square field (Question 3.5).

3. Free fall of a sphere through an atmosphere of varying density (Question 3.14).

4. Damped linear oscillator without driving and with driving (Questions 4.5 to 4.7).

5. Phase plot and Poincaré section of a damped, driven oscillator (Question 4.15).

6. Periods of some non-linear oscillations (Question 5.18).

7. Field lines and equipotentials for a non-uniform B field (Question 5.26).

8. Animation of the trajectory of a ball bouncing across a horizontal surface

(Question 6.5).

9. The variable-length (Lorentz) pendulum (Question 6.18).

10. Projectile and target (Question 7.4).

11. Projectile with quadratic drag and variable atmospheric density (Questions 7.8
and 7.9).

12. Sliding on a rough sphere (Question 7.12).

13. Sliding on a smooth wire (Questions 7.13 to 7.15).

14. Trajectory in a non-uniform B field (Question 7.23 and 7.24).

15. Lissajous figures for an anisotropic harmonic oscillator (Question 7.26).

16. Energy diagrams for the Yukawa potential (Question 8.6).

17. Trajectories in an inverse-cube force (Question 8.11).

18. Trajectories in a perturbed Coulomb potential (Question 8.12).

19. Time-dependent polar coordinates for motion in a Coulomb potential (Questions
8.18 and 8.19).

20. Rocket motion near the Earth (Question 8.20).

21. Animation of trajectories for the gravitational two-body problem (Questions 10.9

and 10.10).

22. One-dimensional coupled oscillator (Question 10.12).

23. Two interacting particles on a hoop: effective potential, and symmetry breaking,
etc. (Question 10.14).
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24. Two interacting particles on a hoop: dynamical properties and dynamic display

(Question 13.16).

25. Two interacting charges moving in a plane perpendicular to a uniform B field
(Questions 10.16 to 10.19).

26. Earth’s orbit with a time-dependent gravitational constant G(t) (Question 10.20).

27. Gravitational three-body problem: equilateral triangle solutions and their anima-

tion (Question 11.6).

28. Restricted three-body problem: solutions and their animation for the heliocentric,

geocentric and centre-of-mass frames (Question 11.7).

29. Restricted three-body problem: effective potential and Lagrange points
(Question 11.8).

30. Restricted three-body problem: bounded motion around a Lagrange point, and

its animation (Question 11.9).

31. Equilibrium configurations of discrete and continuous arrays (Questions 11.12 and
11.13).

32. Rotation curves for a galaxy with a halo (Question 11.20).

33. Rocket take-off from Earth (Question 11.28).

34. Variable-mass oscillator (Question 11.30).

35. Dynamics of a falling/sliding rod (Question 12.15).

36. Dynamics of a spinning golf ball (Question 12.29).

37. Dynamics of a spinning tennis ball (Question 12.30).

38. Fourier approximations for ẍ+ γx3 = 0 (Questions 13.5 and 13.6).

39. Fourier approximations for ẍ+ αx+ γx3 = 0 (Questions 13.7 and 13.8).

40. Fourier approximations for ẍ+ αx− βx2 = 0 (Questions 13.9 and 13.10).

41. Dynamics of a damped, driven Duffing oscillator (Questions 13.11 and 13.12).

42. Oscillator with quadratic drag (Question 13.13).

43. Bead, loop and spring: effective potential and symmetry breaking (Question 13.14).

44. Bead, loop and spring: motion and its animation (Question 13.15).

45. The driven rigid pendulum and chaos (Question 13.17).

46. Chaos of a compass needle in an oscillatory B field (Question 13.18).

47. Ball bouncing in a wedge: ‘gravitational billiards’ (Question 13.19).

48. Pivot-driven pendulum. Vertical driving. The inverted pendulum (Questions 13.20

to 13.22).

49. Pivot-driven pendulum. Horizontal driving (Questions 13.20 and 13.23).

50. Relativistic motion in a uniform field (Question 15.13).

51. Relativistic one-dimensional harmonic oscillator (Question 15.14).

52. Relativistic Coulomb problem (Question 15.16).

53. Relativistic rocket (Question 15.18).
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Abraham–Lorentz equation, 58
absolute space, 527
absolute time, 527
accelerated frame

Einstein on, 532
suspended bob in, 535
tethered balloon in, 535

acceleration, 2
effective gravitational, 47
gravitational, 14, 18, 24, 26, 31, 45, 55,

157, 168, 330, 434
in plane polar coordinates, 217
origin independence of, 520
radial, 217
transformation, 542, 544
transverse, 217

accidental degeneracy, 276
action integral, 6
age of universe, 536
Aharonov–Bohm effect, 122
air-suspension gyroscope, 438–443
Ampère’s law, 126, 528
amplitude, 22, 63, 103

of damped oscillations, 86
of forced oscillations, 73

amplitude jumps, 483
amplitude-dependent frequency, 458–485
angular frequency, 63, 66, 108, 303, 531
angular momentum, 127, 144

about centre of mass, 329
absolute, 330
canonical, 541–542
conservation of, 145, 146, 290, 291, 328,

424, 540, 583
in polar coordinates, 218
‘mixed’ definition of, 145
Newtonian, 541–542
of rigid body, 403–408
of two-body system, 292
orbital, 330
rate of change of, 291, 328
relative, 330
spin, 329, 424, 436
total, 290, 316, 328, 432

angular velocity, 8, 431
critical, 309
of a rigid body, 402
of Earth, 441, 444

anharmonic oscillations, 454–517

anharmonic oscillator, 103, 105, 456
anti-gravity glider, 19
aphelion, 245, 266, 582
Archimedes’s principle

in accelerated frame, 535, 536
Aristotle, 318
attractor, 90
axis of symmetry, 408, 431
azimuthal force, 9, 544–546

backspin, 448
Barton, 557
bead, loop and spring, 488–492
beads

interacting on a hoop, 307–313, 492–497
beat frequency, 76
Bernoulli

solution for inverse-cube force, 239
Bertrand’s theorem, 251, 284
Bessel functions, 152
Biedenharn, 583
big bang, 536
billiard table, 12, 134
black hole, 377
boat crossing a stream, 172–173
Bohr, 200
Bohr magneton, 29
Bohr’s theory, 200
bound motion, 33, 43, 63, 64, 105–107, 189,

223, 252, 315, 455, 547
broken symmetry, 312
Buckingham, 523
bulk modulus, 78, 79

adiabatic, 79
isothermal, 79

Burko, 159
Butikov, 341

Calogero, 362, 363
model, 366

cart wheels
motion on an inclined plane, 445–447

Cartesian coordinates, 1
Cauchy–Riemann equations, 123
causality, 59
Cavendish, 187
central force, 145
central isotropic force, 93, 146, 290
centre of gravity, 331
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uniqueness of, 331
centre of mass, 5, 287, 288, 314, 326

equation of motion for, 289, 314
motion in a non-inertial frame, 546
of a continuous system, 327
of a rigid body, 400, 410

centre of momentum, 288
centre-of-mass frame, 290, 316, 337, 401, 421
centre-of-mass motion, 379
centre-of-mass trajectory, 315, 321
centrifugal force, 9, 218, 309, 316, 343,

544–546
chain falling, 393–397
Chambers, 156
Chandrasekhar, 5, 152, 332
chaos and chaotic systems, 341, 497–505
circular orbit, 260

conditions for stability, 248
in momentum space, 267
stable, 221, 223, 227, 244
unstable, 227

classical electron radius, 199
closed orbits, 251

condition for, 281
coefficient of kinetic friction, 85, 175, 423, 429
coefficient of restitution, 130–142
coefficient of sliding friction, 390
coefficient of static friction, 85, 417, 427
collision

elastic, 130
inelastic, 130
totally elastic, 130
two-body, 137–142

compass needle
in oscillatory B field, 500–503

Compton wavelength, 29
conic sections, 231, 266
conservation of angular momentum, 145, 146,

291, 328, 424, 583
and Lagrangian formulation, 540

conservation of energy, 42, 95, 146, 390, 395,
421, 427, 583, 585

and Lagrangian formulation, 398
conservation of momentum, 127–129, 138,

327, 585
Lagrangian formulation, 525

conservative force, 95, 368
conditions for, 96–98

conserved tensor
for harmonic oscillator, 270–276

conserved vectors, 263–270
constants of the motion, 265, 272
constraint equations, 446
continuum array

equilibrium of, 360
continuum solutions, 361
coordinate space, 267
Coriolis force, 9, 343, 347, 544–546, 549,

553–554
effect on gyroscope, 441

Coulomb potential, 113, 222, 230, 263, 284
energy diagram for, 222
perturbed, 243, 253, 279
time-dependent, 255–259
trajectory, 255–259
unique property of, 285

Coulomb problem, 263–270
conserved vectors for, 263–270
in Cartesian coordinates, 212–215
relativistic, 580
two-body, 293

Coulomb repulsion, 316
Coulomb’s law, 14
coupled oscillators, 302–304
covariance, 528, 570
Crane, 555
critical damping, 70
critical velocity, 178, 547
cycloid, 68, 191, 445

curtate, 193
prolate, 193

cyclotron, 189, 198
cyclotron frequency, 189, 190, 202, 315, 580

damped oscillator, 90, 487
damping

critical, 70
negative, 87
over, 69
under, 69
weak, 71, 72

Darboux, 91
dark matter/energy, 374, 536, 537
de Broglie wavelength, 355
deflection

of falling object, 553
degeneracy, 275, 276

accidental, 276
lifting of, 276

degenerate minima, 310
density, 24, 26, 47, 53

Planck, 28
variable, 55

determinism, 11, 13, 31, 499
differential

imperfect, 99
perfect, 98, 99

dimensional analysis, 20, 21, 23, 25, 27
dimensionless arguments, 20
Dirac delta function, 59, 367
direct problems, 247
dislocation pile-ups, 357
dissipation, 52, 100
double pendulum

normal modes of, 305
doubly periodic motion, 251
drag, 42, 43, 48, 53, 55, 56, 68, 168, 170, 382,

448
drag coefficient, 44, 380, 448–452
Dresden, 499
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drift, 205
in electromagnetic field, 192

driven pendulum
chaos in, 497–500

duality transformation, 279–280
Duffing oscillator, 468

damped driven, 481–487
dynamic pressure, 384

Earth
angular velocity of, 441, 444
atmosphere of, 377
circumference of, 186
g of, 552
magnetic field of, 205
motion about Sun, 322, 532–534
motion near, 40, 54, 55
rocket lift-off from, 382–384
rocket motion near, 260
tides of, 534

eccentric anomaly, 258, 280, 332
eccentricity, 231, 259
effective gravitational acceleration, 47, 535,

550–552
effective gravity, 531
effective mass, 308
effective potential, 218, 280, 308, 316, 342,

511, 513, 516
for Coulomb problem, 222
for inverse-cube force, 242
for isotropic harmonic oscillator, 220
for perturbed Coulomb potential, 243, 253
for Yukawa, 224–228

Einstein, 10, 528
on creating relativity, 532

Einstein’s equivalence principle, 532
Einstein’s relativity principle, 528, 557
elastic collision, 130
electric dipole moment

origin dependence of, 522
electric field

inside a shell, 371
electric quadrupole moment

origin dependence of, 522
electronic charge, 49
electrostatic field, 368
energy, 63, 72, 76, 81, 91, 94, 108, 146, 155

and the Hamiltonian, 398
conservation of, 42, 95, 146, 390, 395, 421,

427, 583, 585
critical, 104, 106
heat, 99
in polar coordinates, 218
kinetic, 76
loss for a raindrop, 380
loss in, 393
loss in a collision, 141–142
of a rigid body, 404, 405
potential, 76, 94, 102
radiated, 196

relativistic, 572, 579, 580, 583
internal, 99

energy diagrams, 454–456
for an inverse-square potential, 243
for Coulomb potential, 222–223
for isotropic harmonic oscillator, 221
for one-dimensional motion, 103–108
for power-law forces, 248

entropy, 99
epicycles, 318
epitrochoid, 318
equation of motion

four-vector form, 570
of centre of mass, 289, 314
with variable mass, 378

equation of state, 355
equations

constraint, 446
two-body, 286

equations of motion, 3, 4, 8, 286
for centre of mass, 326
Galilean invariance of, 528
in a non-inertial frame, 544
in a rotating frame, 543–545
in polar coordinates, 229
multi-particle, 326
third-order, 57

equilibrium
and classical polynomials, 358
distribution function, 361
neutral, 311
of a rigid body, 416
of multi-particle systems, 355–361
stable, 65, 66, 103, 104, 108, 309
unstable, 65, 103, 104, 108, 309

equipotential curves, 123–124
equivalence principle, 22, 158, 534–536

Einstein’s, 532
weak, 15, 532

Eratosthenes
and Earth’s circumference, 186–187

escape velocity, 260, 376, 377
for two-body problem, 376

Euclidean space, 1, 527
Euler, 335, 348, 399
Euler’s equations, 407
exhaust velocity, 379
expansion of universe, 536
experiment: ‘most beautiful’ in physics

Eratosthenes’, 187
Foucault’s pendulum, 555
Galileo’s rolling-ball, 31
Millikan’s oil-drop, 50

extensive variables, 17
external force, 286

falling chain, 393–397
falling rod, 426
Faraday’s law, 99, 528
field
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electrostatic, 368
gravitational, 367
irrotational, 99, 126
lines, 123
solenoidal, 99, 120, 125
uniform static, 121
vector, 120, 125

Fitzgerald, 527
‘flat-Earth’ approximation, 159
flux quantum, 29
forbidden region, 103
force, 2, 9, 44

azimuthal, 9, 544–546
central, 145
central conservative, 100
central interparticle, 328
central isotropic, 93, 101, 113, 146, 229,

247
central power-law, 352
centre of, 233, 236
centrifugal, 9, 218, 309, 316, 343, 544–546
conservative, 6, 95, 98–101, 115, 116
constant, 30, 108
Coriolis, 9, 343, 347, 544–546, 549, 553–554
Coulomb, 146
dissipative, 100
dual pairs of, 285
effective, 9
electromagnetic, 121
electrostatic, 48, 99, 120
exponentially decaying, 40
external, 3, 286, 326
fictitious, 9, 531
friction, 68, 85
frictional, 42–44, 47, 99
gravitational, 13, 146, 532–533
harmonic, 73
impure, 573
inertial, 9
interparticle, 3, 286, 326, 352
inverse-cube, 34, 242, 247
inverse-square, 36, 212, 246
linear, 60, 63, 68, 85, 102, 115, 208, 247
linear time-dependent, 32
Lorentz, 549, 570
magnetic, 189
Magnus, 448
non-conservative, 95, 98–101
non-inertial, 9
oscillatory, 33, 107
position-dependent, 42, 94
pure, 573
series expansion of, 66
tidal, 533
time-dependent, 34, 101
translational, 9, 289, 507, 531–533, 544–546
uniform gravity plus friction, 50, 53
velocity dependent, 54

forces
interparticle, 355

form invariance, 528, 561, 563–564
of four-tensor equations, 567

Foucault, 555
Foucault pendulum, 554, 556
four-acceleration, 569
four-force, 570
four-momentum, 569
four-tensor, 567
four-tensor equation, 567
four-vector, 567
four-velocity, 569
Fourier approximations

for non-linear oscillations, 462–480
frame of reference, 2

centre of mass, 337
geocentric, 337
heliocentric, 337
inertial, 2, 292
non-inertial, 7, 289, 309, 506
primary, 2
rotation of, 537

free fall
greater than g, 396

free motion
on horizontal plane, 556

freely falling particle, 552–553
frequency, 63

amplitude-dependent, 458–485
angular, 63
natural, 311

friction, 68, 85, 99, 487, 506

galactic halo, 372, 374
effect on motion, 372–374

Galilean invariance
of Newton’s second law, 527

Galilean transformation, 526–530, 559, 561,
563, 570, 587

and electromagnetism, 528
Galileo, 518
Galileo’s experiment

falling objects, 16, 54
rolling balls, 31
two-body correction, 378

Galileo’s law of free fall, 15, 378
gauge function, 124
gauge invariance

global, 121
local, 121

Gauss’s law, 120, 528
Gauss’s theorem, 117, 118
gegenschein, 348
generalized coordinates, 6
generalized forces and momenta, 7
generalized velocities, 6
geocentric frame, 337
geometric degeneracy, 276
geometric orbit, 219
geometric symmetry, 276
golf ball and motion of, 448–451
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Gonzaléz, 419
Gratton, 419
gravitational acceleration, 14, 18, 24, 26, 31,

45, 55, 68, 157, 168, 330
G varying, 322
gravitational billiards, 504
gravitational field, 367

of a disc, 371
of a shell, 370
of a uniform sphere, 368–369
of an annulus, 371

gravitational force, 532–534
gravitational mass, 14, 16, 158, 162
gravitational potential, 367

of a disc, 371
of a shell, 370
of a uniform sphere, 368–369
of an annulus, 371

gyration, radius of, 427
gyrocompass, 443
gyroscope, 438–443

Hall effect, 29, 322, 550
Hamilton, 269
Hamilton vector, 264–270
Hamilton’s equations, 398
Hamiltonian, 91, 190, 398
Hamiltonian and energy, 398
harmonic and inverse-cube interactions, 364
harmonic approximation, 66, 106
harmonic oscillator, 60, 65, 66, 87, 188, 190

anisotropic, 115, 279
anisotropic two-dimensional, 210
conserved tensor for, 270–276
coupled, 302–304
damped, 68–71, 78
damped, driven, 73–76, 83
isotropic, 115, 277
isotropic and energy diagram for, 221
isotropic three-dimensional, 209
isotropic two-dimensional, 209
relativistic, 576

harmonic resonance, 485
heliocentric frame, 337
Helmholtz’s theorem, 125
Hermann

solution for inverse-square force, 235
Hermann–Bernoulli–Laplace vector, 264
Hermite polynomial, 358, 360, 366
hidden symmetry, 215, 246, 251, 276
Hilbert transform, 361
Hipparchus, 318
hodograph, 267–269, 275
homogeneity of space

and conservation of momentum, 526
homogeneity of time

and conservation of energy, 398
horseshoe orbits, 352
Hubble’s constant, 536
Hubble’s law, 536

Huyghens, 68
and the relativity principle, 529, 587

hydrogen atom
classical, 198
lifetime of, 198, 199
quantum mechanical, 200, 269
relativistic, 583

hysteresis, 483, 485

ideal gas, 355
improper length and time, 565
impure force, 573
indeterminism, 11
induced stability, 510, 511

condition for, 513
inelastic collision, 130
inertia tensor

origin dependence of, 521–522
inertial frame, 2, 5, 127, 292, 525, 539, 558

special properties of, 9
inertial mass, 14, 16, 158, 162
initial conditions, 57, 60, 68

and Coulomb problem, 215
sensitivity to, 34, 64, 179, 189, 318, 341

initial velocity
sensitivity to, 11, 12

intensive variables, 17
interacting charges

in a B field, 314–322
internal energy, 355
interparticle force, 286, 352, 355

central isotropic, 290
intrinsically non-linear oscillations, 456, 461
invariance, 10

breaking of, 440, 441
partial, 526, 540
under rotations, 539

invariant interval, 566
inverse problems, 247
inverse-cube interparticle forces, 362
inverted pendulum, 510, 511, 513, 514
irrotational field, 99, 120, 126
isochronous oscillations, 68
isolated system, 525, 539
isothermal atmosphere, 55, 172

Jacobi constant, 348
Jauch–Hill–Fradkin tensor, 271
jerk, 56, 57, 83
jet, 379
Joule, 355
jumps in amplitude, 483

Kapitza, 511
Kepler problem, 215, 258, 263–270, 325
Kepler’s

equation, 258, 332
first law, 233
second law, 146
third law, 27, 252
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Kepler’s laws
for two-body problem, 302, 341

kinetic energy, 6, 52, 76, 92, 130, 134, 189,
193, 354

loss in, 425
loss per cycle, 196, 198
of rigid body, 403–405
of two-body system, 292
relativistic, 196, 571

Kolmogorov, 23
Kronecker delta function, 362
Kuhn

structure of scientific revolutions, 201

laboratory frame, 440, 443, 551, 552, 556
ladder, equilibrium of, 417–419
Lagrange, 5, 6, 335, 348
Lagrange formulation

usefulness of, 396
Lagrange points, 342–348

motion near, 346–352
Lagrange’s equations, 6, 19, 151, 313, 394,

395, 397, 525, 530, 540, 545
Lagrangian, 6, 17, 151, 308, 309, 313, 393,

394, 397–398, 530
and conservation of angular momentum,

539–540
and conservation of energy, 398
and conservation of momentum, 525–526
for damped oscillator, 90
generalized, 91
in a rotating frame, 545
in a translating frame, 530
rotational invariance of, 539
translational invariance of, 525
two-particle, 540, 541

Laguerre polynomials, 357
Landau levels, 190
Landau theory, 312
Laplace, 377
Laplace vector, 264–270

first, 264
second, 264

Larmor effect, 549
Larmor frequency, 549
Larmor’s theorem, 549
Lawrence, 198
Lax equation, matrices, 364
LC circuit, 66, 156
Legendre polynomial, 358
Legendre transformation, 398
length contraction, 564
length Planck, 28
Lennard-Jones potential, 114
Levi-Civita tensor, 271, 408
Lévy-Leblond, 561
lifetime

of classical hydrogen atom, 198, 199
lift, 448
lift coefficient, 448–452

limit cycle, 90
linear ‘gravity’, 331

Newton’s method, 332
linearity

of space-time transformations, 559
Lissajous figures, 211
Littlewood, 152
Livingstone, 198
logarithmic decrement, 80
Longuet-Higgins, 523
Lorentz, 527

force, 549, 570
function, 77
transformation, 570

Lorentz’s pendulum problem, 152
Lorenz, 499
LRC circuit, 75
Lyapunov exponents, 500

Mécanique Analytique, 6
magnetic mirror, 205
magnetostatic field, 126

non-uniform, 201
uniform, 187

Magnus effect, 450
Magnus force, 448
major axis, 233, 266
mass, 2, 9, 19

active gravitational, 13
additive property of, 17
constant, 571–572
dipole, 18
effective, 308
four-scalar nature, 569
gravitational, 14, 16, 158, 162
inertial, 14, 16, 158, 162
invariance of, 527
negative, 18
passive gravitational, 13
Planck, 28
proper (or rest), 569
reduced, 142, 289
relative, 16
standard, 21
variable, 156, 378–390, 573

massless particles, 114, 562
Mathieu’s equation, 508
Maxwell, 4, 23
Maxwell’s notation, 21
Mehra, 200
Millikan’s oil-drop experiment, 49
Minkowski space, 566
minor axis, 233, 266
mirror field, 205
mirror point, 204
mode

anti-symmetric, 303, 304, 307
symmetric, 303, 304, 307

modulation of gravity, 507
moment of inertia, 403–415
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momenta
canonical, 541
Newtonian, 541

momentum, 2, 3, 127
conservation of, 127–129, 138, 327, 525,

585
of two-body system, 292
origin independence of, 520
total, 287, 326, 378

momentum space, 267
Moon, 285, 341, 348, 377, 534

a headache for Newton, 336
effect on Earth’s tides, 534

motion
bounded, 33, 63, 64, 105–107, 189, 223,

315, 455, 547
unbounded, 33, 43, 64, 103, 106–107, 189,

223, 455, 547
multi-particle systems, 325

N-body problem
reduction of, 352–353

neutral equilibrium, 311
Newton, 2, 4, 5, 159, 247, 325, 332, 336, 341,

518, 529
and breaking of hidden symmetry, 285
and duality, 285
and Galilean invariance, 529
and Kepler’s equation, 258
and origin independence, 524, 529
and pendulum experiments, 16
and rotational invariance, 529
and tennis, 451
and the relativity principle, 529, 587
on freely falling objects, 553

Newton’s law of impact, 129–142
Newton’s law of universal gravitation, 13, 285
Newton’s laws

first law, 2, 5
second law, 2, 5, 9, 16
third law, 2, 13, 16, 287, 291, 326, 525, 526

Newton’s second law
Galilean invariance of, 527
origin independence of, 523
rotational invariance of, 538

Newtonian relativity, 519, 536, 543, 557
Nobel prize, 50
Noether’s theorem, 128
non-inertial effect, 443
non-inertial frame, 7, 289, 309, 316, 444, 506,

531, 548
non-linear equations, 356
non-linear oscillators, 454–517
normal frequencies, 304, 307
normal modes, 304–306
nuclear explosion, energy of, 27
nutation, 434, 436, 447

oblate body, 432
orbit

closure of, 252–254
orbit equation, 272
orbital angular momentum, 330

origin dependence of, 520
orbits

closed, 245, 316
open, 245

order parameter, 312, 490
origin dependence, 518–523
origin independence, 145, 518–526
orthogonal transformation

four-dimensional, 565
orthogonality relations, 537, 565
oscillations, 22, 33

isochronous, 68
linear, 60

oscillator
critically damped, 70
damped, 68–71, 78
damped, driven, 73–76, 83
Duffing, 468, 481–487
harmonic, 60, 65, 66
overdamped, 69
relativistic, 576
underdamped, 69, 78–80, 87
weakly damped, 78
with variable mass, 156, 385–390

oscillator potential, 284
oscillators

coupled, 302–304
non-linear, 454–517

overdamping, 69

parallel-axis theorem, 409
particle, 1
Pauli, 269
Peck, 447
pendulum, 15, 65, 105

accelerated, 531
cycloidal, 68
double, 305–307
driven, 497–500
energy diagram for, 105
equilibrium of, 106
flip-flop, 87
in laboratory frame, 554
inverted, 510, 511, 513, 514
Lorentz, 152
Newton’s work on, 15
of varying length, 151–156
period of, 15, 21, 23, 65, 111
pivot-driven, 506–517
potential energy for, 105

Penrose, 528
perihelion, 582
period, 15, 21, 26, 63, 65, 78, 81, 103, 108,

180, 228, 374, 462, 468, 474
amplitude-independent, 66
angular motion, 249–252
integral formula for, 109
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of a gyrocompass, 444
of a gyroscope, 441
of anharmonic oscillations, 110, 454–517
radial motion, 249–252

periods
for Coulomb potential, 249–252
for isotropic oscillator potential, 249–252
for perturbed Coulomb potential, 253

Pesic, 285
phase, 63
phase space, 90
phase trajectory or phase portrait, 87, 493
Planck units, 28–29
Planck’s constant, 27, 355
plane polar coordinates, 215, 216
Poincaré, 499, 527
Poincaré section, 87, 89, 500
Poisson’s equation, 367, 368
polar aurora, 205
position vector, 1, 520
positronium decay, 201
potential, 116

anharmonic, 110
Coulomb, 113, 222, 230
dual, 279, 280
effective, 218
for central isotropic forces, 113
for pendulum, 105
inverse-square, 237
isotropic harmonic oscillator, 220
Lennard-Jones, 114
non-central, 279
non-uniqueness of, 99
perturbed Coulomb, 243, 253
scalar, 94, 98, 120, 123, 125
spherically symmetric, 94, 216
two-body, 526, 528
vector, 117, 120, 121, 123, 125
wells, 107
Yukawa, 113, 224

potential energy, 6, 76, 94, 95, 102, 193
gravitational, 367
of a rigid body, 404, 405

power, 93
power law, 21

use in dimensional analysis, 22
power radiated, 196
preacceleration, 59
precession, 244, 252, 285, 433–443, 447

of relativistic orbit, 582
pressure, 354
Price, 159, 171
principal axes, 407, 431
Principia Mathematica, 5, 336, 529
products of inertia, 408
projectile, 157–172

closest approach, 165–167
‘flat-Earth’ approximation for, 159
from moving platform, 167–168
maximum height, 158

maximum range, 158–161
moving target, 161–163
on inclined plane, 159
with drag, 168–172

prolate body, 432
proper

acceleration, 576
length, 565
time, 565

proper time interval
invariance of, 568

Ptolemy and Ptolemaic system, 291, 318
pure force, 573

quality factor, 79, 80, 497

race between two cylinders, 429
radius of gyration, 427
raindrop, 379
Rayleigh, 23
Rechenberg, 200
reciprocity, 559
reduced mass, 142, 289

and translational force, 289
relative mass, 16
relativistic Coulomb problem, 580
relativistic motion

constant force, 574–576
in a uniform B field, 579
of a one-dimensional oscillator, 576

relativistic rocket, 584–586
relativity

universality of, 561
relativity principle, 10, 528

Einstein, 557
relaxation time, 71, 78
resonance, 77
Reynolds number, 26, 44, 54, 56, 169
rigid body, 399–453

angular momentum of, 403–408
angular velocity of, 402
centre of mass, 400, 410
degrees of freedom, 399
energy, 404, 405
equations of motion of, 401
equilibrium of, 416
Euler’s equations for, 407
free motion of, 431–434
kinetic energy of, 403–405
moment of inertia of, 403–415
potential energy, 404, 405
precession of, 433–443
products of inertia, 408
velocity of, 402

Rindler, 557
rocket, 128, 260, 379

in free space, 380
relativistic, 584–586
take-off from a planet, 381–384

rod, falling, 426
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rolling motion, 423–431
Romano, 171
rope, sliding, 390–393
rotating frame, 7, 8, 309, 316, 440, 543–545,

549
rotating wire and bead’s motion on, 546
rotation curves for stellar velocities, 374
rotation of frame of reference, 537
rotational field, 99
rotational invariance

and central forces, 541
and conservation of angular momentum,

539
Rüchardt’s experiment, 78, 80
run-away solutions, 58
Runge–Lenz vector, 264
Rydberg constant, 200

scalar potential, 94, 98, 120, 123, 125
for electrostatic field, 99
magnetic, 126

Schrödinger equation, 398, 587
second-order phase transition, 312
sliding

on a circular wire, 180–183
on a curved wire, 183–186
on a rough sphere, 175–179
on a smooth sphere, 174–175

sliding rod, 419–422
sliding rope, 390–393
slipping motion, 423–431
solenoidal field, 99, 120, 125
solid of revolution, 411
Solvay Congress, 152
Sommerfeld Puzzle, 583
Soodak, 553
space, 1, 9

absolute, 527
homogeneity of, 9, 525, 559
isotropy of, 9, 539, 558–559
Minkowski, 566

spherical polar coordinates, 94, 146
nabla in, 101

spherically symmetric potential, 216
spin, 448

backspin, 425
topspin, 424

spin angular momentum, 329, 424, 436
origin independence of, 520

spontaneous symmetry breaking
in a mechanical system, 312, 489, 490

spool
rolling, 430–431
slipping, 430–431

stability
of atoms, 201

stable equilibrium, 65, 66, 103, 104, 106, 108,
221, 309, 456

standard configuration, 527, 557
steady flow in a pipe, 26

steady-state solutions, 74
Stephenson, 510
Stieltjes, 358
Stokes’s law, 26, 49
Stokes’s theorem, 96, 117, 118
Sun’s effect on Earth’s tides, 534
surface tension, 24
suspension of particles, 47
symmetry

additional, 276
and conservation laws, 526, 540
broken, 312
geometric, 276
hidden, 276
rotational, 275

symmetry axis, 408, 431
symmetry breaking, 276, 310

explicit, 312
spontaneous, 312, 489, 490

synchrotron, 198

tautochrone problem, 68
Taylor, 27
Temple, 327
tennis ball and motion of, 452
tensor

Jauch–Hill–Fradkin, 271
transformation of, 538

terminal velocity, 45–49, 55
Thomson

and ions, 196
and isotopes, 196

Thomson’s experiment, 195
three-body problem

restricted, 336–352
triangle solution, 332–336

three-tensor, 538
tidal force, 533
Tiersten, 553
Tikochinsky, 281
time, 1, 9

absolute, 527
homogeneity of, 9, 398
isotropy of, 9
Planck, 28

time dilation, 564, 569
top, 434–438
topspin, 448
torque, 144, 400

of translational force, 511, 512, 515
total, 291, 328

trajectory, 1, 30, 32, 33, 36, 38
closed, 12, 189, 210–212, 316
Coulomb potential, 255–259
crossing a stream, 173
for two-body Coulomb problem, 293–301
from the Laplace vector or Hamilton

vector, 267
in E and B fields, 549
in a Coulomb potential, 230–235
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in a non-uniform B field, 201–208
in a perturbed Coulomb potential, 243–247
in a uniform B field, 187–190, 548
in an inverse-square force, 212–215
in an inverse-square potential, 237–243
in an oscillator potential, 235–236
in momentum space, 267, 275
in uniform E and B fields, 190–195
inverse form of, 42, 108, 219, 255–259, 394
obtained from orbit equation, 273
of a beam, 195, 196
of anisotropic harmonic oscillator, 210
of centre of mass, 315, 321
of isotropic harmonic oscillator, 209
of relativistic Coulomb problem, 580–583
of the relative vector, 290
open, 12, 189, 210–212
polar, 254–259
projectile, 158, 169–172
relativistic in a constant force, 574–576
relativistic in a uniform B field, 579
time-dependent, 254–259

transformations
between Coulomb and oscillator problems,

280
transformed orbits, 279
transient, 74, 77, 89
translation of the reference frame, 7, 8, 518
translational force, 9, 289, 507, 531–533,

544–546
torque exerted by, 511, 512, 515

translational invariance
and conservation of momentum, 525

trochoid, 193
Trojan asteroids, 348
tunnel through a planet

motion along, 374–376
turning points, 103, 104, 106, 107, 221, 223
two-body potential, 526

and Galilean invariance, 528
two-body problem, 286

separation of, 290, 314
with inverse square force, 293–301

two-body system
angular momentum, 292
kinetic energy, 292
momentum, 292

unbound motion, 33, 43, 64, 103, 106, 107,
189, 223, 455, 547

uncertainty
in initial conditions, 11, 12, 497–502

underdamping, 69
uniform gravity plus friction, 44
unit

of force, 10
of length, 21
of mass, 10, 21
of time, 21

units, 19, 21
absolute (natural), 28, 29

arbitrariness of, 10, 17
Planck, 28
‘relativity principle’ for, 20

universal constant V 2, 559
universal constant of gravitation, 13
universal speed, 557, 561
universality of relativity, 561
unstable equilibrium, 65, 103, 104, 106, 108,

309

V 2-Lorentz transformation, 557–570
Van Allen belts, 205
Van Vleck, 520
variable mass, 378–390
variable-mass oscillator, 385–390
vector

Hamilton, 264
Hermann–Bernoulli–Laplace, 264
Laplace, 264
potential, 120
Runge–Lenz, 264
transformation of, 538

vector field, 125
equivalences for, 120

vector potential, 117, 121, 123, 125
condition for, 118
formula for, 118
non-uniqueness of, 119

velocity, 1
critical, 547
in plane polar coordinates, 217
of a rigid body, 402
origin independence of, 520
root-mean-square, 354
terminal, 45, 47
transformation, 542, 544

velocity transformation
relativistic, 561

viscosity, 25, 26, 47, 48

wave equation
form invariance of, 563, 568

weak damping, 71, 72
weak equivalence principle, 158, 532
wedge

ball bouncing on, 503–505
wheel

rolling, 423–429
slipping, 423–429

work, 92, 99, 147
work–energy theorem, 42, 92, 147, 149,

174–176, 180, 181, 189
for a rigid body, 404

Yukawa potential, 113, 224
energy diagrams for, 226–228
range of, 113

Zeeman effect, 550
zero mass, 562
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