SOLVING ALGEBRAIC RICCATI EQUATIONS FOR STABILIZATION OF INCOMPRESSIBLE FLOWS

Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik, Technische Universität Chemnitz

Joint work with Eberhard Bänsch (FAU Erlangen) and Anne Heubner within sub-project *Optimal Control-Based Feedback Stabilization in Multi-Field Flow Problems* of DFG Priority Program Optimization with Partial Differential Equations.

Householder Symposium XVII Zeuthen, Germany, June 1-6, 2008

Overview

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

1 Motivation

Optimal control-based stabilization for Navier-Stokes equations

2 Solving Large-Scale AREs

- Low-Rank Newton-ADI for AREs
- Numerical Results

3 Solving the Helmholtz-projected Oseen ARE

Algebraic Bernoulli Equations

4 Conclusions and Open Problems

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Scientific goals of the project:

- derive and investigate numerical algorithms for optimal control-based boundary feedback stabilization of multi-field flow problems;
- explore the potentials and limitations of feedback-based (Riccati) stabilization techniques;
- extend current methods for flow described by Navier-Stokes equations to flow problems coupled with other field equations of increasing complexity.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Scientific goals of the project:

- derive and investigate numerical algorithms for optimal control-based boundary feedback stabilization of multi-field flow problems;
- explore the potentials and limitations of feedback-based (Riccati) stabilization techniques;
- extend current methods for flow described by Navier-Stokes equations to flow problems coupled with other field equations of increasing complexity.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Scientific goals of the project:

- derive and investigate numerical algorithms for optimal control-based boundary feedback stabilization of multi-field flow problems;
- explore the potentials and limitations of feedback-based (Riccati) stabilization techniques;
- extend current methods for flow described by Navier-Stokes equations to flow problems coupled with other field equations of increasing complexity.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

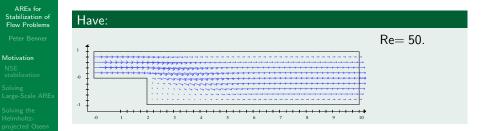
Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Scientific goals of the project:

- derive and investigate numerical algorithms for optimal control-based boundary feedback stabilization of multi-field flow problems;
- explore the potentials and limitations of feedback-based (Riccati) stabilization techniques;
- extend current methods for flow described by Navier-Stokes equations to flow problems coupled with other field equations of increasing complexity.

Motivation Model problem: backward facing step



Conclusions and Open Problems Diplomarbeit T. Rothaug, TU Chemnitz 2007 / [B./ROTHAUG/SCHNEIDER 2008]: optimized trajectory/open-loop control computed with discrete adjoint technique.

Motivation Model problem: backward facing step

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

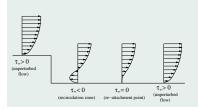
NSE stabilizatio

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Have:



Diplomarbeit T. Rothaug, TU Chemnitz 2007 / [B./ROTHAUG/SCHNEIDER 2008]: optimized trajectory/open-loop control computed with discrete adjoint technique.

Motivation Model problem: backward facing step

AREs for Stabilization of Flow Problems

Peter Benner

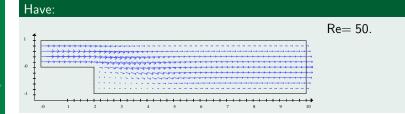
Motivation

NSE stabilization

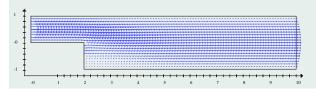
Solving Large-Scale AREs

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems



Want:



Diplomarbeit T. Rothaug, TU Chemnitz 2007 / [B./ROTHAUG/SCHNEIDER 2008]: optimized trajectory/open-loop control computed with discrete adjoint technique.

Optimal control-based stabilization for Navier-Stokes equations

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems Stabilization to steady-state solutions of flows (with velocity field ν and pressure χ), described by Navier-Stokes equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \nabla \chi = f$$
 (1a)

$$\operatorname{div} v = 0, \tag{1b}$$

on $Q_{\infty} := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, d = 2, 3 with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

$$egin{array}{rcl} v & = & g & ext{on } \Sigma_\infty := \Gamma imes (0,\infty), \ v(0) & = & w + z(0) & (w ext{ given velocity field}). \end{array}$$

- Existence of stabilizing feedback control proved in 2D [FERNÁNDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:
 - for distributed control, see [BARBU 2003, BARBU/SRITHARAN 1998, BARBU/TRIGGIANI 2004];
 - for boundary control, see [BARBU/LASIECKA/TRIGGIANI 2005, RAYMOND 2005].

Optimal control-based stabilization for Navier-Stokes equations

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems Stabilization to steady-state solutions of flows (with velocity field v and pressure χ), described by Navier-Stokes equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \nabla \chi = f$$
 (1a)

$$\operatorname{div} v = 0, \tag{1b}$$

on $Q_{\infty} := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, d = 2, 3 with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

$$egin{array}{rcl} v & = & g & ext{on } \Sigma_\infty := \Gamma imes (0,\infty), \ v(0) & = & w + z(0) & (w ext{ given velocity field}). \end{array}$$

- Existence of stabilizing feedback control proved in 2D [FERNÁNDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:
 - for distributed control, see [BARBU 2003, BARBU/SRITHARAN 1998, BARBU/TRIGGIANI 2004];
 - for boundary control, see [BARBU/LASIECKA/TRIGGIANI 2005, RAYMOND 2005].

Optimal control-based stabilization for Navier-Stokes equations

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems Stabilization to steady-state solutions of flows (with velocity field v and pressure χ), described by Navier-Stokes equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \nabla \chi = f$$
 (1a)

$$\operatorname{div} v = 0, \tag{1b}$$

on $Q_{\infty} := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, d = 2, 3 with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

$$egin{array}{rcl} v & = & g & ext{on } \Sigma_\infty := \Gamma imes (0,\infty), \ v(0) & = & w + z(0) & (w ext{ given velocity field}). \end{array}$$

- Existence of stabilizing feedback control proved in 2D [FERNÁNDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
- Construction of stabilizing feedback control based on associated linear-guadratic optimal control problem:
 - for distributed control, see [BARBU 2003, BARBU/SRITHARAN 1998, BARBU/TRIGGIANI 2004];
 - for boundary control, see [BARBU/LASIECKA/TRIGGIANI 2005, RAYMOND 2005].

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ . Furthermore, w is assumed to be *unstable* solution of (1).

If we can determine a Dirichlet boundary control u so that the corresponding controlled system

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$\operatorname{div} z = 0 \quad \text{in } Q_{\infty},$$

$$z = bu \quad \text{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \text{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V_n^0(\Omega)$, where

$$V_n^0(\Omega) := L_2 \cap \{\operatorname{div} z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},\$$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

Solution to instationary Navier-Stokes equations with v = w + z, $\chi = \chi_s + p$, and $v(0) = w + z_0$ in Ω is controlled to w.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \qquad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ . Furthermore, w is assumed to be *unstable* solution of (1).

If we can determine a Dirichlet boundary control u so that the corresponding controlled system

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$div z = 0 \quad \text{in } Q_{\infty},$$

$$z = bu \quad \text{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \text{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V_n^0(\Omega)$, where $V_n^0(\Omega) := L_2 \cap \{ \text{div } z = 0 \} \cap \{ z \cdot n = 0 \text{ on } \Gamma \},$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

Solution to instationary Navier-Stokes equations with v = w + z, $\chi = \chi_s + p$, and $v(0) = w + z_0$ in Ω is controlled to w.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \qquad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ . Furthermore, w is assumed to be *unstable* solution of (1).

If we can determine a Dirichlet boundary control u so that the corresponding controlled system

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$div z = 0 \quad \text{in } Q_{\infty},$$

$$z = bu \quad \text{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \text{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V_n^0(\Omega)$, where

$$V_n^0(\Omega) := L_2 \cap \{\operatorname{div} z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},\$$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

Solution to instationary Navier-Stokes equations with v = w + z, $\chi = \chi_s + p$, and $v(0) = w + z_0$ in Ω is controlled to w.

Optimal control-based stabilization for Navier-Stokes equations Analytical solution [RAYMOND^(*)05–^{*}08]

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems

Oseen approximation to Navier-Stokes control system:

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re}\Delta z - \omega z + \nabla p = 0$$
 in Q_∞ (3a)

- $\operatorname{div} z = 0 \quad \text{in} \ Q_{\infty} \qquad (3b)$
 - z = bu in Σ_{∞} (3c)
- $z(0)=z_0 \text{ in } \Omega, \qquad (3d)$

 ωz with $\omega > 0$ de-stabilizes the system further, needed to guarantee exponential stabilization of solution of nonlinear system!

Cost functiona

$$J(z,u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L_2(\Omega)} + \rho u(t)^2 dt, \qquad (4)$$

the linear-quadratic optimal control problem associated to (3) becomes

inf
$$\{J(z, u) \mid (z, u) \text{ satisfies (3)}, u \in L_2(0, \infty)\}$$
. (5)

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems

Oseen approximation to Navier-Stokes control system:

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re}\Delta z - \omega z + \nabla p = 0$$
 in Q_∞ (3a)

- $\operatorname{div} z = 0 \quad \text{in} \ Q_{\infty} \qquad (3b)$
 - z = bu in Σ_{∞} (3c)
- $z(0) = z_0 \text{ in } \Omega, \qquad (3d)$

 ωz with $\omega > 0$ de-stabilizes the system further, needed to guarantee exponential stabilization of solution of nonlinear system!

Cost functional

$$J(z,u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L_2(\Omega)} + \rho u(t)^2 dt, \qquad (4)$$

the linear-quadratic optimal control problem associated to (3) becomes

inf
$$\{J(z, u) \mid (z, u) \text{ satisfies (3)}, u \in L_2(0, \infty)\}$$
. (5)

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems

Proposition [RAYMOND '05]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u=-\rho^{-1}B^*\Pi z_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V^0_n(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_{\tau} B_{\tau}^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the Oseen operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems

Proposition [RAYMOND '05]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u=-\rho^{-1}B^*\Pi z_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- Π = Π^{*} ∈ $\mathcal{L}(V_n^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the Oseen operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems

Proposition [RAYMOND '05]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u=-\rho^{-1}B^*\Pi z_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V^0_n(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the Oseen operator restricted to V_n^0 ;

 B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

NSE stabilization

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Conclusions and Open Problems

Proposition [RAYMOND '05]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u=-\rho^{-1}B^*\Pi z_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector (\rightsquigarrow div $z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V^0_n(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the Oseen operator restricted to V_n^0 ;

 B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Algebraic Riccati Equation (ARE)

General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

Large-scale AREs from semi-discretized PDE control problems: $n = 10^3 - 10^6 \implies 10^6 - 10^{12} \text{ unknowns!}),$

- A has sparse representation $(A = -M^{-1}L$ for FEM),
- usually, *G*, *W* low-rank with *G*, *W* ∈ {*BB*^T, *C*^T*C*}, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- under the above assumptions, ARE allows for a low-rank approximation

$$X \approx ZZ^T, \quad Z \in \mathbb{R}^{n \times r}.$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Algebraic Riccati Equation (ARE)

General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

Large-scale AREs from semi-discretized PDE control problems: $n = 10^3 - 10^6 \iff 10^6 - 10^{12} \text{ unknowns!}).$

- A has sparse representation ($A = -M^{-1}L$ for FEM),
- usually, G, W low-rank with G, $W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- under the above assumptions, ARE allows for a low-rank approximation

$$X \approx ZZ^T, \quad Z \in \mathbb{R}^{n \times r}.$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Algebraic Riccati Equation (ARE)

General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

Large-scale AREs from semi-discretized PDE control problems:

■
$$n = 10^3 - 10^6 \implies 10^6 - 10^{12}$$
 unknowns!),

- A has sparse representation $(A = -M^{-1}L \text{ for FEM})$,
- usually, *G*, *W* low-rank with *G*, *W* \in {*BB*^{*T*}, *C*^{*T*}*C*}, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- under the above assumptions, ARE allows for a low-rank approximation

$$X \approx ZZ^T, \quad Z \in \mathbb{R}^{n \times r}.$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Algebraic Riccati Equation (ARE)

General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

Large-scale AREs from semi-discretized PDE control problems:

■
$$n = 10^3 - 10^6 \iff 10^6 - 10^{12}$$
 unknowns!),

- A has sparse representation $(A = -M^{-1}L \text{ for FEM})$,
- usually, *G*, *W* low-rank with *G*, *W* ∈ {*BB*^{*T*}, *C*^{*T*}*C*}, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- under the above assumptions, ARE allows for a low-rank approximation

$$X \approx ZZ^T, \quad Z \in \mathbb{R}^{n \times r}.$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Algebraic Riccati Equation (ARE)

General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W$$

Large-scale AREs from semi-discretized PDE control problems:

■
$$n = 10^3 - 10^6 \iff 10^6 - 10^{12}$$
 unknowns!),

- A has sparse representation $(A = -M^{-1}L \text{ for FEM})$,
- usually, *G*, *W* low-rank with *G*, *W* ∈ {*BB*^T, *C*^T*C*}, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- under the above assumptions, ARE allows for a low-rank approximation

$$X \approx ZZ^T, \quad Z \in \mathbb{R}^{n \times r}.$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI

Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems Re-write Newton's method for AREs

$$A_j^T N_j + N_j A_j = -\mathcal{R}(X_j)$$

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + \underbrace{(X_j + N_j)}_{=X_{j+1}} A_j = \underbrace{-C^T C - X_j B B^T X_j}_{=:-W_j W_j^T}$$

Set $X_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$ $A_i^T (Z_{i+1} Z_{i+1}^T) + (Z_{i+1} Z_{i+1}^T) A_i = -W_i W_i^T$

Factored Newton Iteration [B./LI/PENZL 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_j .

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI

Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems Re-write Newton's method for AREs

$$A_j^T N_j + N_j A_j = -\mathcal{R}(X_j)$$

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + \underbrace{(X_j + N_j)}_{=X_{j+1}} A_j = \underbrace{-C^T C - X_j B B^T X_j}_{=:-W_j W_j^T}$$

Set $X_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$ $A_i^T (Z_{i+1} Z_{i+1}^T) + (Z_{i+1} Z_{i+1}^T) A_i = -W_i W_i^T$

Factored Newton Iteration [B./LI/PENZL 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_i .

Properties and Implementation

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical

Results Solving the

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

• Convergence for *K*₀ stabilizing:

- $A_j = A BK_j = A BB^T X_j$ is stable $\forall j \ge 0$.
- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_j:

$$A_j = A - B \cdot K_j$$
$$= sparse - m \cdot$$

■ m ≪ n ⇒ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j)^{-1} = (I_n + A^{-1}B(I_m - K_jA^{-1}B)^{-1}K_j)A^{-1}.$$

Properties and Implementation

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

• Convergence for K₀ stabilizing:

- $A_j = A BK_j = A BB^T X_j$ is stable $\forall j \ge 0$.
- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i:

$$A_j = A - B \cdot K_j$$
$$= sparse - m \cdot c$$

■ m ≪ n ⇒ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j)^{-1} = (I_n + A^{-1}B(I_m - K_jA^{-1}B)^{-1}K_j)A^{-1}.$$

Properties and Implementation

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

• Convergence for K_0 stabilizing:

- $A_j = A BK_j = A BB^T X_j$ is stable $\forall j \ge 0$.
- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i:

$$A_j = A - B \cdot K_j$$
$$= sparse - m \cdot$$

■ m ≪ n ⇒ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j)^{-1} = (I_n + A^{-1}B(I_m - K_jA^{-1}B)^{-1}K_j)A^{-1}.$$

Properties and Implementation

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

• Convergence for K_0 stabilizing:

- $A_j = A BK_j = A BB^T X_j$ is stable $\forall j \ge 0$.
- $\lim_{j\to\infty} \|\mathcal{R}(X_j)\|_F = 0$ (monotonically).
- $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i:

$$A_{j} = A - B \cdot K_{j}$$
$$= sparse - m \cdot c$$

■ *m* ≪ *n* ⇒ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j)^{-1} = (I_n + A^{-1}B(I_m - K_jA^{-1}B)^{-1}K_j)A^{-1}.$$

Low-Rank ADI Method for Lyapunov Equations Lyapunov equation $0 = AX + XA^{T} = -BB^{T}$.

ADI with $X_k = Y_k Y_k^T$ yields

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems Algorithm [PENZL '97, LI/WHITE '02, B./LI/PENZL '99/'08] $V_1 \leftarrow \sqrt{-2\text{Re}(p_1)}(A + p_1l)^{-1}B, \quad Y_1 \leftarrow V_1$ FOR j = 2, 3, ... $V_k \leftarrow \sqrt{\frac{\text{Re}(p_k)}{\text{Re}(p_{k-1})}} (V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_kl)^{-1}V_{k-1}),$ $Y_k \leftarrow [Y_{k-1} \quad V_k]$ $Y_k \leftarrow \text{rrqr}(Y_k, \tau)$ % column compression

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where range $(Y_{k_{\max}}) = \text{range} \left(\begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix} \right), \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$

Note: Implementation in real arithmetic possible by combining two steps. **Alternatives:** K-PIK [SIMONCINI 06], low-rank cyclic Smith(ℓ) [PENZL '00, GUGERCIN/SORENSEN/ANTOULAS '03],

Low-Rank ADI Method for Lyapunov Equations Lyapunov equation $0 = AX + XA^{T} = -BB^{T}$.

ADI with $X_k = Y_k Y_k^T$ yields

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems Algorithm [PENZL '97, LI/WHITE '02, B./LI/PENZL '99/'08] $V_1 \leftarrow \sqrt{-2\text{Re}(p_1)}(A + p_1l)^{-1}B, \quad Y_1 \leftarrow V_1$ FOR j = 2, 3, ... $V_k \leftarrow \sqrt{\frac{\text{Re}(p_k)}{\text{Re}(p_{k-1})}} (V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_kl)^{-1}V_{k-1}),$ $Y_k \leftarrow [Y_{k-1} \quad V_k]$ $Y_k \leftarrow \text{rrqr}(Y_k, \tau)$ % column compression

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where range $(Y_{k_{\max}}) = \text{range} \left(\begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix} \right), \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m} \end{bmatrix}$.

Note: Implementation in real arithmetic possible by combining two steps. **Alternatives:** K-PIK [SIMONCINI 06], low-rank cyclic Smith(ℓ) [PENZL '00, GUGERCIN/SORENSEN/ANTOULAS '03],

Low-Rank ADI Method for Lyapunov Equations Lyapunov equation $0 = AX + XA^{T} = -BB^{T}$.

ADI with $X_k = Y_k Y_k^T$ yields

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Low-Rank Newton-ADI Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems Algorithm [PENZL '97, LI/WHITE '02, B./LI/PENZL '99/'08] $V_1 \leftarrow \sqrt{-2\text{Re}(p_1)}(A + p_1I)^{-1}B, \quad Y_1 \leftarrow V_1$ FOR j = 2, 3, ... $V_k \leftarrow \sqrt{\frac{\text{Re}(p_k)}{\text{Re}(p_{k-1})}} (V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_kI)^{-1}V_{k-1}),$ $Y_k \leftarrow [Y_{k-1} V_k]$ $Y_k \leftarrow \text{rrqr}(Y_k, \tau)$ % column compression

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where range $(Y_{k_{\max}}) = \text{range} \left(\begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix} \right), \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m} \end{bmatrix}$.

Note: Implementation in real arithmetic possible by combining two steps. Alternatives: K-PIK [SIMONCINI 06], Iow-rank cyclic Smith(ℓ) [PENZL '00, GUGERCIN/SORENSEN/ANTOULAS '03],

Solving Large-Scale AREs Performance of matrix equation solvers

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale ARE:

Low-Rank Newton-ADI

Numerical Results

Solving the Helmholtzprojected Osee ARE

Conclusions and Open Problems

Performance of Newton's method for accuracy $\sim 1/n$

grid	unknowns	$\frac{\ \mathcal{R}(X)\ _{F}}{\ X\ _{F}}$	it. (ADI it.)	CPU (sec.)
8 × 8	2,080	4.7e-7	2 (8)	0.47
16 imes 16	32,896	1.6e-6	2 (10)	0.49
32 × 32	524,800	1.8e-5	2 (11)	0.91
64×64	8,390,656	1.8e-5	3 (14)	7.98
128 imes 128	134,225,920	3.7e-6	3 (19)	79.46

Here,

- Convection-diffusion equation,
- m = 1 input and p = 2 outputs,
- $X = X^T \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.

Confirms mesh independence principle for Newton-Kleinman [BURNS/SACHS/ZIETSMANN 2006].

Solving the Helmholtz-projected Oseen ARE $0 = I + (A + \omega I)^T X + X(A + \omega I) - XBB^T X$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems

Problems with Newton-Kleinman

Discretization of Helmholtz-projected Oseen equations would need divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements available in flow solver NAVIER).

Explicit projection of ansatz functions possible using application of Helmholtz projection. But: solution of one saddle-point problem per ansatz function.

2 Each step of Newton-Kleinman iteration: solve

 $A_{j}^{T}Z_{j+1}Z_{j+1}^{T} + Z_{j+1}Z_{j+1}^{T}A_{j} = -W_{j}W_{j}^{T} = -M_{h} - (Z_{j}Z_{j}^{T}B)(Z_{j}Z_{j}^{T}B)^{T}$

 $n_v := \operatorname{rank}(M_h) = \operatorname{dim}$ of ansatz space for velocities.

 \rightsquigarrow need to solve n_v linear systems of equations in each step of ADI iteration!

Linearized system (i.e., A + ωl) is unstable in general.
 Thus, to start the iteration, a stabilizing initial guess is needed!

Solving the Helmholtz-projected Oseen ARE $0 = I + (A + \omega I)^T X + X(A + \omega I) - XBB^T X$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems

Problems with Newton-Kleinman

 Discretization of Helmholtz-projected Oseen equations would need divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements available in flow solver NAVIER).

Explicit projection of ansatz functions possible using application of Helmholtz projection. But: solution of one saddle-point problem per ansatz function.

2 Each step of Newton-Kleinman iteration: solve

$$A_{j}^{T}Z_{j+1}Z_{j+1}^{T} + Z_{j+1}Z_{j+1}^{T}A_{j} = -W_{j}W_{j}^{T} = -M_{h} - (Z_{j}Z_{j}^{T}B)(Z_{j}Z_{j}^{T}B)^{T}$$

 $n_v := \operatorname{rank}(M_h) = \operatorname{dim}$ of ansatz space for velocities.

 \rightsquigarrow need to solve $n_{\rm v}$ linear systems of equations in each step of ADI iteration!

3 Linearized system (i.e., $A + \omega I$) is unstable in general. Thus, to start the iteration, a stabilizing initial guess is needed!

Solving the Helmholtz-projected Oseen ARE $0 = I + (A + \omega I)^T X + X(A + \omega I) - XBB^T X$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems

Problems with Newton-Kleinman

Discretization of Helmholtz-projected Oseen equations would need divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements available in flow solver NAVIER).

Explicit projection of ansatz functions possible using application of Helmholtz projection. But: solution of one saddle-point problem per ansatz function.

2 Each step of Newton-Kleinman iteration: solve

$$A_{j}^{T}Z_{j+1}Z_{j+1}^{T} + Z_{j+1}Z_{j+1}^{T}A_{j} = -W_{j}W_{j}^{T} = -M_{h} - (Z_{j}Z_{j}^{T}B)(Z_{j}Z_{j}^{T}B)^{T}$$

 $n_v := \operatorname{rank}(M_h) = \operatorname{dim}$ of ansatz space for velocities.

 \rightsquigarrow need to solve $n_{\rm v}$ linear systems of equations in each step of ADI iteration!

Linearized system (i.e., A + ωl) is unstable in general.
 Thus, to start the iteration, a stabilizing initial guess is needed!

Solving the Helmholtz-projected Oseen ARE Solution to 1. Problem/no need for divergence free FE

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Work with the differential-algebraic equations (DAE)

$$\begin{aligned} \mathbf{E}_{11} \dot{\mathbf{z}}_h(t) &= \mathbf{A}_{11} \mathbf{z}_h(t) + \mathbf{A}_{12} \mathbf{p}_h(t) + \mathbf{B}_1 \mathbf{u}(t) \\ \mathbf{0} &= \mathbf{A}_{12}^T \mathbf{z}_h(t) + \mathbf{B}_2 \mathbf{u}(t) \\ \mathbf{z}_h(0) &= \mathbf{z}_{h,0}. \end{aligned}$$

obtained from Taylor-Hood FEM applied to Oseen equations.

Solving the Helmholtz-projected Oseen ARE Solution to 1. Problem/no need for divergence free FE

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Work with the differential-algebraic equations (DAE)

$$\begin{aligned} \mathbf{E}_{11} \dot{\mathbf{z}}_h(t) &= \mathbf{A}_{11} \mathbf{z}_h(t) + \mathbf{A}_{12} \mathbf{p}_h(t) + \mathbf{B}_1 \mathbf{u}(t) \\ \mathbf{0} &= \mathbf{A}_{12}^T \mathbf{z}_h(t) + \mathbf{B}_2 \mathbf{u}(t) \\ \mathbf{z}_h(0) &= \mathbf{z}_{h,0}. \end{aligned}$$

obtained from Taylor-Hood FEM applied to Oseen equations.

Necessary information for low-rank solution of Lyapunov equations can be obtained as in [HEINKENSCHLOSS/SORENSEN/SUN '07], cf. Dan Sorensen's talk.

Adapted to our situation: need to solve Lyapunov equation

$$A_j^T Z_{j+1} Z_{j+1}^T P_h \mathbf{E}_{11} P_h^T + P_h \mathbf{E}_{11} P_h^T Z_{j+1} Z_{j+1}^T A_j = -W_j W_j^T,$$

where

Solving the Helmholtz-projected Oseen ARE Solution to 1. Problem/no need for divergence free FE

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Obtain low-rank factor so that $X_{j+1} \approx Z_{j+1} Z_{j+1}^T$ as

$$Z_{j+1} = \sqrt{\mu} \left[B_{j,\mu}, A_{j,\mu} B_{j,\mu}, A_{j,\mu}^2 B_{j,\mu}, \dots, A_{j,\mu}^j B_{j,\mu} \right],$$

where

• $B_{j,\mu}$ solves the saddle point problem

$$\begin{bmatrix} \mathbf{E}_{11} + \mu (\mathbf{A}_{11} - \mathbf{B}_{1} \mathbf{B}_{1}^{T} Z_{j} Z_{j}^{T} \mathbf{E}_{11}) & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} B_{j,\mu} \\ * \end{bmatrix} = \begin{bmatrix} C^{T} & \mathbf{E}_{11} Z_{j} Z_{j}^{T} \mathbf{B}_{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- multiplication by $A_{j,\mu}$ is realized by solution of saddle-point problem with the same coefficient matrix,
- and we employ a column compression using RRQR as in [B./QUINTANA-ORTÍ '97].

Multishift version also possible, cf. [HEINKENSCHLOSS/SORENSEN/SUN '07].

Solving the Helmholtz-projected Oseen ARE Solution to 1. Problem/no need for divergence free FE

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Obtain low-rank factor so that $X_{j+1} \approx Z_{j+1} Z_{j+1}^T$ as

$$Z_{j+1} = \sqrt{\mu} \left[B_{j,\mu}, A_{j,\mu} B_{j,\mu}, A_{j,\mu}^2 B_{j,\mu}, \dots, A_{j,\mu}^j B_{j,\mu} \right],$$

where

• $B_{i,\mu}$ solves the saddle point problem

$$\begin{bmatrix} \mathbf{E}_{11} + \mu(\mathbf{A}_{11} - \mathbf{B}_{1}\mathbf{B}_{1}^{T}Z_{j}Z_{j}^{T}\mathbf{E}_{11}) & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} B_{j,\mu} \\ * \end{bmatrix} = \begin{bmatrix} C^{T} & \mathbf{E}_{11}Z_{j}Z_{j}^{T}\mathbf{B}_{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- multiplication by $A_{j,\mu}$ is realized by solution of saddle-point problem with the same coefficient matrix,
- and we employ a column compression using RRQR as in [B./QUINTANA-ORTÍ '97].

Multishift version also possible, cf. [HEINKENSCHLOSS/SORENSEN/SUN '07].

Solving the Helmholtz-projected Oseen ARE Solution to 1. Problem/no need for divergence free FE

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Obtain low-rank factor so that $X_{j+1} \approx Z_{j+1} Z_{j+1}^T$ as

$$Z_{j+1} = \sqrt{\mu} \left[B_{j,\mu}, A_{j,\mu} B_{j,\mu}, A_{j,\mu}^2 B_{j,\mu}, \dots, A_{j,\mu}^j B_{j,\mu} \right],$$

where

• $B_{i,\mu}$ solves the saddle point problem

$$\begin{bmatrix} \mathbf{E}_{11} + \mu(\mathbf{A}_{11} - \mathbf{B}_{1}\mathbf{B}_{1}^{T}Z_{j}Z_{j}^{T}\mathbf{E}_{11}) & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} B_{j,\mu} \\ * \end{bmatrix} = \begin{bmatrix} C^{T} & \mathbf{E}_{11}Z_{j}Z_{j}^{T}\mathbf{B}_{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- multiplication by $A_{j,\mu}$ is realized by solution of saddle-point problem with the same coefficient matrix,
- and we employ a column compression using RRQR as in [B./QUINTANA-ORTÍ '97].

Multishift version also possible, cf. [HEINKENSCHLOSS/SORENSEN/SUN '07].

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems For simplicity, consider standard ARE case:

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + X_{j+1}A_j = -W - X_j BB^T X_j \quad \text{for } j = 1, 2, \dots$$

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems For simplicity, consider standard ARE case:

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + X_{j+1}A_j = -W - X_j BB^T X_j \quad \text{for } j = 1, 2, \dots$$

$$A_j^T N_j + N_j A_j = -N_{j-1} B B^T N_{j-1}$$
 for $j = 1, 2, ...$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems For simplicity, consider standard ARE case:

$$A_{j}^{T}(X_{j} + N_{j}) + X_{j+1}A_{j} = -W - X_{j}BB^{T}X_{j}$$
 for $j = 1, 2, ...$

$$A_j^T N_j + N_j A_j = -N_{j-1} B B^T N_{j-1}$$
 for $j = 1, 2, ...$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $N_0 = X_1 - X_0!$

Solution idea:

Compute X_0 and X_1 from full, dense Lyapunov equation on coarse grid, prolongate to fine grid.

Possible refinement: coarse grid corrections using Richardson iteration, nested iteration for ARE [GRASEDYCK '08].

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems For simplicity, consider standard ARE case:

$$A_{j}^{T}(X_{j} + N_{j}) + X_{j+1}A_{j} = -W - X_{j}BB^{T}X_{j}$$
 for $j = 1, 2, ...$

$$A_j^T N_j + N_j A_j = -N_{j-1} B B^T N_{j-1}$$
 for $j = 1, 2, ...$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $N_0 = X_1 - X_0!$

Solution idea:

Compute X_0 and X_1 from full, dense Lyapunov equation on coarse grid, prolongate to fine grid.

Possible refinement: coarse grid corrections using Richardson iteration, nested iteration for ARE [GRASEDYCK '08].

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems For simplicity, consider standard ARE case:

$$A_{j}^{T}(X_{j} + N_{j}) + X_{j+1}A_{j} = -W - X_{j}BB^{T}X_{j}$$
 for $j = 1, 2, ...$

$$A_j^T N_j + N_j A_j = -N_{j-1} B B^T N_{j-1}$$
 for $j = 1, 2, ...$

See $[{\rm Banks}/{\rm Ito}$ '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $N_0 = X_1 - X_0!$

Solution idea:

Compute X_0 and X_1 from full, dense Lyapunov equation on coarse grid, prolongate to fine grid.

Possible refinement: coarse grid corrections using Richardson iteration, nested iteration for ARE [GRASEDYCK '08].

Solving the Helmholtz-projected Oseen ARE

Solution to 3. Problem/compute stabilizing initial feedback

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale ARE

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Again, consider standard ARE case:

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + X_{j+1} \underbrace{(A - BB^T X_j)}_{=:A_j} = -M_h - X_j BB^T X_j \quad \text{for } j = 1, 2, \dots$$

Recall: for convergence to stabilizing solution need

 $A_0 := A - BB^T X_0$ stable, i.e., all eigenvalues in left half plane.

Solving the Helmholtz-projected Oseen ARE

Solution to 3. Problem/compute stabilizing initial feedback

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale ARE

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Again, consider standard ARE case:

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + X_{j+1} \underbrace{(A - BB^T X_j)}_{=:A_j} = -M_h - X_j BB^T X_j \quad \text{for } j = 1, 2, \dots$$

Recall: for convergence to stabilizing solution need

 $A_0 := A - BB^T X_0$ stable, i.e., all eigenvalues in left half plane.

Basically, 3 approaches to compute $K_0 := B^T X_0$:

- pole placement (for descriptor systems: [VARGA '95]),
- Bass algorithm (based on Lyapunov equation):
 - for standard systems [ARMSTRONG '75],
 - for descriptor systems [VARGA '95, B. '08, B./STYKEL. '08],
- algebraic Bernoulli equations:
 - for standard systems [B. '06/'07], (for discrete-time systems: [GALLIVAN/RAO/VAN DOOREN 06]),
 - for descriptor systems [B. '08].

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem

- a) Let (A, B) be controllable. Then
 - there exist symmetric solutions X₊ ≥ 0, X₋ ≤ 0, with
 X₋ ≤ X ≤ X₊ for all solutions X of the ABE;
 - X_- is the unique solution satisfying $\Lambda(A BB^T X_-) \subset \mathbb{C}^+ \cup i\mathbb{R}$;
 - X_+ is the unique solution satisfying $\Lambda (A BB^T X_+) \subset \mathbb{C}^- \cup i\mathbb{R}$.
 - If Λ (A) ∩ iℝ = Ø, then X_− is the unique anti-stabilizing solution and X₊ is the unique stabilizing solution of the ABE.
- b) If (A, B) is stabilizable and $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the ABE has a unique stabilizing solution X_+ and $X_+ \ge 0$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem

a) Let (A, B) be controllable. Then

- there exist symmetric solutions X₊ ≥ 0, X₋ ≤ 0, with X₋ ≤ X ≤ X₊ for all solutions X of the ABE;
- X_- is the unique solution satisfying $\Lambda(A BB^T X_-) \subset \mathbb{C}^+ \cup i\mathbb{R}$;
- X_+ is the unique solution satisfying $\Lambda(A BB^T X_+) \subset \mathbb{C}^- \cup i\mathbb{R}$.
- If Λ (A) ∩ *i*ℝ = Ø, then X_− is the unique anti-stabilizing solution and X₊ is the unique stabilizing solution of the ABE.

b) If (A, B) is stabilizable and $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the ABE has a unique stabilizing solution X_+ and $X_+ \ge 0$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem

a) Let (A, B) be controllable. Then

- there exist symmetric solutions X₊ ≥ 0, X₋ ≤ 0, with X₋ ≤ X ≤ X₊ for all solutions X of the ABE;
- X_- is the unique solution satisfying $\Lambda(A BB^T X_-) \subset \mathbb{C}^+ \cup i\mathbb{R}$;
- X_+ is the unique solution satisfying $\Lambda(A BB^T X_+) \subset \mathbb{C}^- \cup i\mathbb{R}$.
- If Λ (A) ∩ iℝ = Ø, then X_− is the unique anti-stabilizing solution and X₊ is the unique stabilizing solution of the ABE.
- b) If (A, B) is stabilizable and $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the ABE has a unique stabilizing solution X_+ and $X_+ \ge 0$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem [B. '06]

If (A, B) is stabilizable, $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the unique stabilizing solution X_+ satisfies

```
\operatorname{rank}(X_+)=k,
```

```
where k is the number of eigenvalues of A in \mathbb{C}^+.
Hence,
```

 $X_+ = Y_+ Y_+^T$, where $Y_+ \in \mathbb{R}^{n \times k}$.

Theorem [B. '07]

 $\Lambda\left(A - BB^{T}X_{+}\right) = \left(\Lambda\left(A\right) \cap \mathbb{C}^{-}\right) \cup - \left(\Lambda\left(A\right) \cap \mathbb{C}^{+}\right),$

i.e., unstable eigenvalues are reflected at imaginary axis.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem [B. '06]

If (A, B) is stabilizable, $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the unique stabilizing solution X_+ satisfies

 $\operatorname{rank}(X_+) = k,$

where k is the number of eigenvalues of A in \mathbb{C}^+ . Hence,

 $X_+ = Y_+ Y_+^T$, where $Y_+ \in \mathbb{R}^{n \times k}$.

Theorem [B. '07]

 $\Lambda\left(A - BB^{T}X_{+}\right) = \left(\Lambda\left(A\right) \cap \mathbb{C}^{-}\right) \cup - \left(\Lambda\left(A\right) \cap \mathbb{C}^{+}\right),$

i.e., unstable eigenvalues are reflected at imaginary axis.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Theorem [B. '06]

If (A, B) is stabilizable, $\Lambda(A) \cap i\mathbb{R} = \emptyset$, then the unique stabilizing solution X_+ satisfies

 $\operatorname{rank}(X_+) = k,$

where k is the number of eigenvalues of A in \mathbb{C}^+ . Hence,

 $X_+ = Y_+ Y_+^T$, where $Y_+ \in \mathbb{R}^{n \times k}$.

Theorem [B. '07]

$$\Lambda \left(A - BB^{T}X_{+} \right) = \left(\Lambda \left(A \right) \cap \mathbb{C}^{-} \right) \cup - \left(\Lambda \left(A \right) \cap \mathbb{C}^{+} \right),$$

i.e., unstable eigenvalues are reflected at imaginary axis.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Computation of X_+

- Solve as ARE (inefficient).
- Sign function method [BARRACHINA/B./QUINTANA-ORTÍ '05].
- Sign function method for Y₊ [B. '06, BARR./B./Q.-ORTÍ '07].
- Extension to descriptor systems [B. '08].
- For large-scale systems, use partial stabilization idea:

1 Project onto unstable invariant/deflating subspace of $A/\lambda E - A$,

 $\tilde{Q}^{\mathsf{T}}A\tilde{Q} = \tilde{A} \in \mathbb{R}^{k imes k}, \quad \text{set } \tilde{B} := \tilde{Q}^{\mathsf{T}}B.$

2 Solve small-size ABE $\tilde{A}^T \tilde{X} + \tilde{X} \tilde{A} = \tilde{X} \tilde{B} \tilde{B}^T \tilde{X}$ for full-rank \tilde{X}_+ . **3** Construct feedback as $F := \tilde{B}^T \tilde{X} \tilde{Q}^T$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Computation of X_+

- Solve as ARE (inefficient).
- Sign function method [BARRACHINA/B./QUINTANA-ORTÍ '05].
- Sign function method for Y₊ [B. '06, BARR./B./Q.-ORTÍ '07].
- Extension to descriptor systems [B. '08].
- For large-scale systems, use partial stabilization idea:

1 Project onto unstable invariant/deflating subspace of $A/\lambda E - A$,

 $\tilde{Q}^{\mathsf{T}}A\tilde{Q} = \tilde{A} \in \mathbb{R}^{k \times k}, \quad \text{set } \tilde{B} := \tilde{Q}^{\mathsf{T}}B.$

Solve small-size ABE \$\tilde{A}^T \tilde{X} + \tilde{X} \tilde{A} = \tilde{X} \tilde{B} \tilde{B}^T \tilde{X}\$ for full-rank \$\tilde{X}_+\$.
 Construct feedback as \$F := \tilde{B}^T \tilde{X} \tilde{Q}^T\$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Computation of X_+

- Solve as ARE (inefficient).
- Sign function method [BARRACHINA/B./QUINTANA-ORTÍ '05].
- Sign function method for Y₊ [B. '06, BARR./B./Q.-ORTÍ '07].
- Extension to descriptor systems [B. '08].
- For large-scale systems, use partial stabilization idea:
 - 1 Project onto unstable invariant/deflating subspace of $A/\lambda E A$,

$$ilde{Q}^{ op}A ilde{Q}= ilde{A}\in \mathbb{R}^{k imes k}, \quad ext{set} \ ilde{B}:= ilde{Q}^{ op}B.$$

Solve small-size ABE \$\tilde{A}^T \tilde{X} + \tilde{X} \tilde{A} = \tilde{X} \tilde{B} \tilde{B}^T \tilde{X}\$ for full-rank \$\tilde{X}_+\$.
 Construct feedback as \$F := \tilde{B}^T \tilde{X} \tilde{Q}^T\$.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Computation of X_+

- Solve as ARE (inefficient).
- Sign function method [BARRACHINA/B./QUINTANA-ORTÍ '05].
- Sign function method for Y₊ [B. '06, BARR./B./Q.-ORTÍ '07].
- Extension to descriptor systems [B. '08].
- For large-scale systems, use partial stabilization idea:
 - 1 Project onto unstable invariant/deflating subspace of $A/\lambda E A$,

$$ilde{Q}^{ op}A ilde{Q}= ilde{A}\in\mathbb{R}^{k imes k},\quad ext{set}\; ilde{B}:= ilde{Q}^{ op}B.$$

2 Solve small-size ABE Ã^TX̃ + X̃Ã = X̃B̃B^TX̃ for full-rank X̃₊.
 3 Construct feedback as F := B̃^TX̃Q^T.

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems Consider the algebraic Bernoulli equation

$$A^T X + X A - X B B^T X = 0$$

associated to a standard ARE with zero constant term.

Computation of X_+

- Solve as ARE (inefficient).
- Sign function method [BARRACHINA/B./QUINTANA-ORTÍ '05].
- Sign function method for Y₊ [B. '06, BARR./B./Q.-ORTÍ '07].
- Extension to descriptor systems [B. '08].
- For large-scale systems, use partial stabilization idea:
 - **1** Project onto unstable invariant/deflating subspace of $A/\lambda E A$,

$$ilde{Q}^{ op}A ilde{Q}= ilde{A}\in\mathbb{R}^{k imes k},\quad ext{set}\; ilde{B}:= ilde{Q}^{ op}B.$$

2 Solve small-size ABE \$\tilde{A}^T \tilde{X} + \tilde{X} \tilde{A} = \tilde{X} \tilde{B} \tilde{B}^T \tilde{X}\$ for full-rank \$\tilde{X}_+\$.
 3 Construct feedback as \$F := \tilde{B}^T \tilde{X} \tilde{Q}^T\$.

Cf. also related work by [Amodei/Bouchon '08].

Numerical examples

Stabilization of Stokes-like problem

Stabilization of Flow Problems Peter Benner

AREs for

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems $\begin{array}{rcl} \partial_t v &=& \Delta v + \omega v - \nabla \rho + f, \\ 0 &=& \operatorname{div} v, \end{array} \qquad (\xi,t) \in \Omega \times (0,t_f). \end{array}$

Here, $n_v = 480$, $n_p = 255$ with $n_{\infty} = 510$ and $n_f = 225$.

olume control

 $m = 2, \omega = 100 \rightsquigarrow k = 3$

Numerical examples

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems

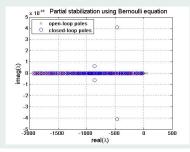
Stabilization of Stokes-like problem

$$\begin{array}{rcl} \partial_t v &=& \Delta v + \omega v - \nabla \rho + f, \\ 0 &=& \operatorname{div} v, \end{array} \qquad (\xi, t) \in \Omega \times (0, t_f) \end{array}$$

Here,
$$n_v = 480$$
, $n_p = 255$ with $n_{\infty} = 510$ and $n_f = 225$.

Volume control

$$m = 2, \omega = 100 \rightsquigarrow k = 3$$



Numerical examples

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

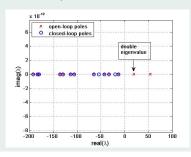
Conclusions and Open Problems Stabilization of Stokes-like problem

$$\begin{array}{rcl} \partial_t v &=& \Delta v + \omega v - \nabla \rho + f, \\ 0 &=& \operatorname{div} v, \end{array} \qquad (\xi, t) \in \Omega \times (0, t_f). \end{array}$$

Here, $n_v = 480$, $n_p = 255$ with $n_{\infty} = 510$ and $n_f = 225$.

Volume control

 $m = 2, \omega = 100 \rightsquigarrow k = 3$



Numerical examples

Stabilization of Stokes-like problem

Stabilization of Flow Problems Peter Benner

AREs for

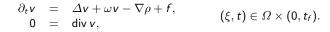
Motivation

Solving Large-Scale AREs

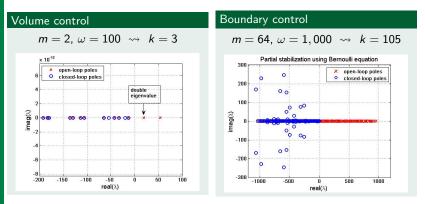
Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems



Here, $n_v = 480$, $n_p = 255$ with $n_\infty = 510$ and $n_f = 225$.



Numerical examples

Stabilization of Stokes-like problem

Stabilization of Flow Problems Peter Benner

AREs for

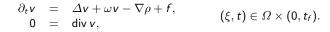
Motivation

Solving Large-Scale AREs

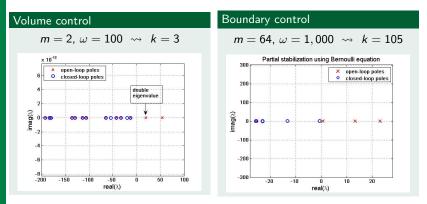
Solving the Helmholtzprojected Oseen ARE

Algebraic Bernoulli Equations

Conclusions and Open Problems



Here, $n_v = 480$, $n_p = 255$ with $n_\infty = 510$ and $n_f = 225$.



Conclusions and Open Problems

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Low-rank ADI and Newton-ADI is available in MATLAB toolbox Lyapack and its successor

MESS – Matrix Equations Sparse Solvers

[Saak/Mena/B. 2008]

- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods) → can solve LQR problems on finite-time horizon.
- Many algorithmic improvements:
 - ADI new parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix.

■ For flow problems, need a variety of modifications: To-do list includes solutions to Problems 1.–3.

Conclusions and Open Problems

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Low-rank ADI and Newton-ADI is available in MATLAB toolbox Lyapack and its successor

MESS – Matrix Equations Sparse Solvers

[Saak/Mena/B. 2008]

- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods) → can solve LQR problems on finite-time horizon.
- Many algorithmic improvements:
 - ADI new parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix.
- For flow problems, need a variety of modifications: To-do list includes solutions to Problems 1.-3.

Conclusions and Open Problems

AREs for Stabilization of Flow Problems

Peter Benner

Motivation

Solving Large-Scale AREs

Solving the Helmholtzprojected Oseer ARE

Conclusions and Open Problems Low-rank ADI and Newton-ADI is available in MATLAB toolbox Lyapack and its successor

MESS – Matrix Equations Sparse Solvers

[Saak/Mena/B. 2008]

- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods) → can solve LQR problems on finite-time horizon.
- Many algorithmic improvements:
 - ADI new parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix.

■ For flow problems, need a variety of modifications: To-do list includes solutions to Problems 1.–3.

The End.