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Motivation

Scientific goals of the project:

derive and investigate numerical algorithms for optimal
control-based boundary feedback stabilization of multi-field flow
problems;

explore the potentials and limitations of feedback-based
(Riccati) stabilization techniques;

extend current methods for flow described by Navier-Stokes
equations to flow problems coupled with other field equations of
increasing complexity.

 Major challenge: solve large-scale algebraic Riccati equations
associated to special LQR problem for Oseen-like equations.
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Motivation
Model problem: backward facing step

Have:
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Diplomarbeit T. Rothaug, TU Chemnitz 2007 / [B./Rothaug/Schneider 2008]:

optimized trajectory/open-loop control computed with discrete adjoint technique.
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Motivation
Optimal control-based stabilization for Navier-Stokes equations

Stabilization to steady-state solutions of flows (with velocity field v
and pressure χ), described by Navier-Stokes equations

∂tv + v · ∇v − 1

Re
∆v +∇χ = f (1a)

div v = 0, (1b)

on Q∞ := Ω× (0,∞), Ω ⊆ Rd , d = 2, 3 with smooth boundary
Γ := ∂Ω, and boundary and initial conditions

v = g on Σ∞ := Γ× (0,∞),

v(0) = w + z(0) (w given velocity field).

Existence of stabilizing feedback control proved in 2D
[Fernández-Cara et al 2004] and 3D [Fursikov 2004].

Construction of stabilizing feedback control based on associated
linear-quadratic optimal control problem:

for distributed control, see [Barbu 2003, Barbu/Sritharan
1998, Barbu/Triggiani 2004];
for boundary control, see [Barbu/Lasiecka/Triggiani 2005,
Raymond 2005].
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Optimal control-based stabilization for
Navier-Stokes equations
Analytical solution [Raymond‘’05–’08]

Assume w solves the stationary Navier-Stokes equations

w · ∇w − 1

Re
∆w +∇χs = f , div w = 0, (2)

with Dirichlet boundary condition w = g on Γ. Furthermore, w is assumed
to be unstable solution of (1).
If we can determine a Dirichlet boundary control u so that the
corresponding controlled system

∂tz + (z · ∇)w + (w · ∇)z + (z · ∇)z − 1

Re
∆z +∇p = 0 in Q∞,

div z = 0 in Q∞,

z = bu in Σ∞,

z(0) = z0 in Ω,

is stable for “small” initial values z0 ∈ X (Ω) ⊂ V 0
n (Ω), where

V 0
n (Ω) := L2 ∩ {div z = 0} ∩ {z · n = 0 on Γ},

then ∃ constants c, ω > 0 so that ‖z(t)‖X (Ω) ≤ ce−ωt .

=⇒ Solution to instationary Navier-Stokes equations with v = w + z ,
χ = χs + p, and v(0) = w + z0 in Ω is controlled to w .
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Optimal control-based stabilization for
Navier-Stokes equations
Analytical solution [Raymond‘’05–’08]

Oseen approximation to Navier-Stokes control system:

∂tz + (z · ∇)w + (w · ∇)z − 1

Re
∆z − ωz +∇p = 0 in Q∞ (3a)

div z = 0 in Q∞ (3b)

z = bu in Σ∞ (3c)

z(0) = z0 in Ω, (3d)

ωz with ω > 0 de-stabilizes the system further, needed to guarantee exponential

stabilization of solution of nonlinear system!

Cost functional

J(z , u) =
1

2

Z ∞
0

〈Pz ,Pz〉L2(Ω) + ρu(t)2 dt, (4)

the linear-quadratic optimal control problem associated to (3) becomes

inf {J(z , u) | (z , u) satisfies (3), u ∈ L2(0,∞)} . (5)
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Optimal control-based stabilization for
Navier-Stokes equations
Analytical solution [Raymond’05–’08]

Proposition [Raymond ’05]

The solution to the instationary Navier-Stokes equations with
perturbed initial data is exponentially controlled to the steady-state
solution w by the feedback law

u = −ρ−1B∗ΠzH ,
where

– zH := Pz , with P : L2(Ω) 7→ V 0
n (Ω) being the Helmholtz

projector ( div zH ≡ 0);

– Π = Π∗ ∈ L(V 0
n (Ω)) is the unique nonnegative semidefinite

weak solution of the operator Riccati equation

0 = I + (A + ωI )∗Π + Π(A + ωI )− Π(BτB∗
τ + ρ−1BnB

∗
n )Π,

A is the Oseen operator restricted to V 0
n ;

Bτ and Bn correspond to the projection of the control action in
the tangential and normal directions.
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Solving Large-Scale AREs

Algebraic Riccati Equation (ARE)

General form for A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n

unknown:
0 = R(X ) := ATX + XA− XGX + W .

Large-scale AREs from semi-discretized PDE control problems:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1L for FEM),

usually, G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

under the above assumptions, ARE allows for a low-rank
approximation

X ≈ ZZT , Z ∈ Rn×r .
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Xj)

⇐⇒

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBBTXj︸ ︷︷ ︸
=:−WjW T

j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .



AREs for
Stabilization of
Flow Problems

Peter Benner

Motivation

Solving
Large-Scale AREs

Low-Rank
Newton-ADI

Numerical
Results

Solving the
Helmholtz-
projected Oseen
ARE

Conclusions and
Open Problems

Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Xj)

⇐⇒

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBBTXj︸ ︷︷ ︸
=:−WjW T

j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .



AREs for
Stabilization of
Flow Problems

Peter Benner

Motivation

Solving
Large-Scale AREs

Low-Rank
Newton-ADI

Numerical
Results

Solving the
Helmholtz-
projected Oseen
ARE

Conclusions and
Open Problems

Low-Rank Newton-ADI for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient
matrix Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using
Sherman-Morrison-Woodbury formula:

(A− BKj)
−1 = (In + A−1B(Im − KjA

−1B)−1Kj)A
−1.

Need Lyapunov solver that computes low-rank approximation.
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Low-Rank ADI Method for Lyapunov Equations
Lyapunov equation 0 = AX + XAT = −BBT .

ADI with Xk = YkY
T
k yields

Algorithm [Penzl ’97, Li/White ’02, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
,

Yk ←
ˆ

Yk−1 Vk

˜
Yk ← rrqr(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where

range (Ykmax ) = range
([

V1 . . . Vkmax

])
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.

Alternatives: K-PIK [Simoncini 06],
low-rank cyclic Smith(`) [Penzl ’00, Gugercin/Sorensen/Antoulas ’03],
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Solving Large-Scale AREs
Performance of matrix equation solvers

Performance of Newton’s method for accuracy ∼ 1/n

grid unknowns
‖R(X )‖F
‖X‖F

it. (ADI it.) CPU (sec.)

8× 8 2,080 4.7e-7 2 (8) 0.47
16× 16 32,896 1.6e-6 2 (10) 0.49
32× 32 524,800 1.8e-5 2 (11) 0.91
64× 64 8,390,656 1.8e-5 3 (14) 7.98

128× 128 134,225,920 3.7e-6 3 (19) 79.46

Here,

Convection-diffusion equation,

m = 1 input and p = 2 outputs,

X = XT ∈ Rn×n ⇒ n(n+1)
2 unknowns.

Confirms mesh independence principle for Newton-Kleinman

[Burns/Sachs/Zietsmann 2006].
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Solving the Helmholtz-projected Oseen ARE
0 = I + (A + ωI )T X + X (A + ωI ) − XBBT X

Problems with Newton-Kleinman

1 Discretization of Helmholtz-projected Oseen equations would need
divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements
available in flow solver Navier).

Explicit projection of ansatz functions possible using application of
Helmholtz projection. But: solution of one saddle-point problem per
ansatz function.

2 Each step of Newton-Kleinman iteration: solve

AT
j Zj+1Z

T
j+1 + Zj+1Z

T
j+1Aj = −WjW

T
j = −Mh − (ZjZ

T
j B)(ZjZ

T
j B)T

nv := rank (Mh) = dim of ansatz space for velocities.

 need to solve nv linear systems of equations in each step of ADI
iteration!

3 Linearized system (i.e., A + ωI ) is unstable in general.

Thus, to start the iteration, a stabilizing initial guess is needed!
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Solving the Helmholtz-projected Oseen ARE
Solution to 1. Problem/no need for divergence free FE

Work with the differential-algebraic equations (DAE)

E11żh(t) = A11zh(t) + A12ph(t) + B1u(t)

0 = AT
12zh(t) + B2u(t)

zh(0) = zh,0.

obtained from Taylor-Hood FEM applied to Oseen equations.
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Solving the Helmholtz-projected Oseen ARE
Solution to 1. Problem/no need for divergence free FE

Work with the differential-algebraic equations (DAE)

E11żh(t) = A11zh(t) + A12ph(t) + B1u(t)

0 = AT
12zh(t) + B2u(t)

zh(0) = zh,0.

obtained from Taylor-Hood FEM applied to Oseen equations.

Necessary information for low-rank solution of Lyapunov equations can be
obtained as in [Heinkenschloß/Sorensen/Sun ’07], cf. Dan Sorensen’s talk.

Adapted to our situation: need to solve Lyapunov equation

AT
j Zj+1Z

T
j+1PhE11P

T
h + PhE11P

T
h Zj+1Z

T
j+1Aj = −WjW

T
j ,

where
Ph := Inv − A12(AT

12E
−1
11 A12)−1AT

12E
−1
11 ,

Aj := Ph(A11 − B1B
T
1 PhZjZ

T
j PhE11)Ph,

Wj :=
ˆ

PhC
T PhE11PhZjZ

T
j PhB1

˜
.
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Solving the Helmholtz-projected Oseen ARE
Solution to 1. Problem/no need for divergence free FE

Obtain low-rank factor so that Xj+1 ≈ Zj+1Z
T
j+1 as

Zj+1 =
√
µ
h
Bj,µ, Aj,µBj,µ, A2

j,µBj,µ, . . . ,A
j
j,µBj,µ

i
,

where

Bj,µ solves the saddle point problem»
E11 + µ(A11 − B1BT

1 ZjZ
T
j E11) A12

AT
12 0

– »
Bj,µ

∗

–
=

»
CT E11ZjZ

T
j B1

0 0

–
,

multiplication by Aj,µ is realized by solution of saddle-point problem
with the same coefficient matrix,

and we employ a column compression using RRQR as in
[B./Quintana-Ort́ı ’97].

Multishift version also possible, cf. [Heinkenschloß/Sorensen/Sun ’07].
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Solving the Helmholtz-projected Oseen ARE
Solution to 2. Problem/remove Mh from r.h.s.

For simplicity, consider standard ARE case:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1Aj = −W − XjBBTXj for j = 1, 2, . . .
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Solving the Helmholtz-projected Oseen ARE
Solution to 2. Problem/remove Mh from r.h.s.

For simplicity, consider standard ARE case:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1Aj = −W − XjBBTXj for j = 1, 2, . . .

⇐⇒

AT
j Nj + NjAj = −Nj−1BBTNj−1 for j = 1, 2, . . .

See [Banks/Ito ’91, B./Hernández/Pastor ’03, Morris/Navasca ’05] for
details and applications of this variant.
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Solving the Helmholtz-projected Oseen ARE
Solution to 2. Problem/remove Mh from r.h.s.

For simplicity, consider standard ARE case:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1Aj = −W − XjBBTXj for j = 1, 2, . . .

⇐⇒

AT
j Nj + NjAj = −Nj−1BBTNj−1 for j = 1, 2, . . .

See [Banks/Ito ’91, B./Hernández/Pastor ’03, Morris/Navasca ’05] for
details and applications of this variant.

But: need N0 = X1 − X0!

Solution idea:

Compute X0 and X1 from full, dense Lyapunov equation on coarse grid, prolongate
to fine grid.

Possible refinement: coarse grid corrections using Richardson iteration, nested ite-
ration for ARE [Grasedyck ’08].
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Possible refinement: coarse grid corrections using Richardson iteration, nested ite-
ration for ARE [Grasedyck ’08].



AREs for
Stabilization of
Flow Problems

Peter Benner

Motivation

Solving
Large-Scale AREs

Solving the
Helmholtz-
projected Oseen
ARE

Algebraic
Bernoulli
Equations

Conclusions and
Open Problems

Solving the Helmholtz-projected Oseen ARE
Solution to 3. Problem/compute stabilizing initial feedback

Again, consider standard ARE case:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1 (A− BBTXj)︸ ︷︷ ︸
=:Aj

= −Mh−XjBBTXj for j = 1, 2, . . .

Recall: for convergence to stabilizing solution need

A0 := A− BBTX0 stable, i.e., all eigenvalues in left half plane.
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Solving the Helmholtz-projected Oseen ARE
Solution to 3. Problem/compute stabilizing initial feedback

Again, consider standard ARE case:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1 (A− BBTXj)︸ ︷︷ ︸
=:Aj

= −Mh−XjBBTXj for j = 1, 2, . . .

Recall: for convergence to stabilizing solution need

A0 := A− BBTX0 stable, i.e., all eigenvalues in left half plane.

Basically, 3 approaches to compute K0 := BTX0:

pole placement (for descriptor systems: [Varga ’95]),

Bass algorithm (based on Lyapunov equation):

– for standard systems [Armstrong ’75],
– for descriptor systems [Varga ’95, B. ’08, B./Stykel. ’08],

algebraic Bernoulli equations:

– for standard systems [B. ’06/’07],
(for discrete-time systems: [Gallivan/Rao/Van Dooren 06]),

– for descriptor systems [B. ’08].
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Algebraic Bernoulli Equations

Consider the algebraic Bernoulli equation

ATX + XA− XBBTX = 0

associated to a standard ARE with zero constant term.
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Algebraic Bernoulli Equations

Consider the algebraic Bernoulli equation

ATX + XA− XBBTX = 0

associated to a standard ARE with zero constant term.

Theorem

a) Let (A,B) be controllable. Then

there exist symmetric solutions X+ ≥ 0, X− ≤ 0, with
X− ≤ X ≤ X+ for all solutions X of the ABE;
X− is the unique solution satisfying Λ (A− BBTX−) ⊂ C+ ∪ ıR;
X+ is the unique solution satisfying Λ (A− BBTX+) ⊂ C− ∪ ıR.
If Λ (A) ∩ ıR = ∅, then X− is the unique anti-stabilizing solution
and X+ is the unique stabilizing solution of the ABE.

b) If (A,B) is stabilizable and Λ (A) ∩ ıR = ∅, then the ABE has a unique
stabilizing solution X+ and X+ ≥ 0.
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If Λ (A) ∩ ıR = ∅, then X− is the unique anti-stabilizing solution
and X+ is the unique stabilizing solution of the ABE.

b) If (A,B) is stabilizable and Λ (A) ∩ ıR = ∅, then the ABE has a unique
stabilizing solution X+ and X+ ≥ 0.
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Algebraic Bernoulli Equations

Consider the algebraic Bernoulli equation

ATX + XA− XBBTX = 0

associated to a standard ARE with zero constant term.

Theorem [B. ’06]

If (A,B) is stabilizable, Λ (A) ∩ ıR = ∅, then the unique stabilizing solution
X+ satisfies

rank (X+) = k,

where k is the number of eigenvalues of A in C+.
Hence,

X+ = Y+Y T
+ , where Y+ ∈ Rn×k .

Theorem [B. ’07]

Λ (A− BBTX+) =
(
Λ (A) ∩ C−) ∪ − (Λ (A) ∩ C+

)
,

i.e., unstable eigenvalues are reflected at imaginary axis.
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Algebraic Bernoulli Equations

Consider the algebraic Bernoulli equation

ATX + XA− XBBTX = 0

associated to a standard ARE with zero constant term.

Computation of X+

Solve as ARE (inefficient).

Sign function method [Barrachina/B./Quintana-Ort́ı ’05].

Sign function method for Y+ [B. ’06, Barr./B./Q.-Ort́ı ’07].

Extension to descriptor systems [B. ’08].

For large-scale systems, use partial stabilization idea:

1 Project onto unstable invariant/deflating subspace of A/λE − A,

Q̃TAQ̃ = Ã ∈ Rk×k , set B̃ := Q̃TB.

2 Solve small-size ABE ÃT X̃ + X̃ Ã = X̃ B̃B̃T X̃ for full-rank X̃+.
3 Construct feedback as F := B̃T X̃ Q̃T .

Cf. also related work by [Amodei/Bouchon ’08].
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2 Solve small-size ABE ÃT X̃ + X̃ Ã = X̃ B̃B̃T X̃ for full-rank X̃+.
3 Construct feedback as F := B̃T X̃ Q̃T .

Cf. also related work by [Amodei/Bouchon ’08].



AREs for
Stabilization of
Flow Problems

Peter Benner

Motivation

Solving
Large-Scale AREs

Solving the
Helmholtz-
projected Oseen
ARE

Algebraic
Bernoulli
Equations

Conclusions and
Open Problems

Algebraic Bernoulli Equations
Numerical examples

Stabilization of Stokes-like problem

∂tv = ∆v + ωv −∇ρ+ f ,
0 = div v ,

(ξ, t) ∈ Ω × (0, tf ).

Here, nv = 480, np = 255 with n∞ = 510 and nf = 225.

Volume control

m = 2, ω = 100  k = 3
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Conclusions and Open Problems

Low-rank ADI and Newton-ADI is available in Matlab toolbox
Lyapack and its successor

MESS – Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

Extended and revised version of Lyapack.
Includes solvers for large-scale differential Riccati equations
(based on Rosenbrock and BDF methods)  can solve LQR
problems on finite-time horizon.
Many algorithmic improvements:

– ADI new parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of

the mass matrix.

For flow problems, need a variety of modifications:
To-do list includes solutions to Problems 1.–3.
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Low-rank ADI and Newton-ADI is available in Matlab toolbox
Lyapack and its successor

MESS – Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

Extended and revised version of Lyapack.
Includes solvers for large-scale differential Riccati equations
(based on Rosenbrock and BDF methods)  can solve LQR
problems on finite-time horizon.
Many algorithmic improvements:

– ADI new parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of

the mass matrix.

For flow problems, need a variety of modifications:
To-do list includes solutions to Problems 1.–3.

The End.
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