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Scientific goals of the project:

m derive and investigate numerical algorithms for optimal
control-based boundary feedback stabilization of multi-field flow
problems;

Motivation

m explore the potentials and limitations of feedback-based
(Riccati) stabilization techniques;

m extend current methods for flow described by Navier-Stokes
equations to flow problems coupled with other field equations of
increasing complexity.

~~ Major challenge: solve large-scale algebraic Riccati equations
associated to special LQR problem for Oseen-like equations.
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1
Otv+v-Vv— —Av+Vx=f (1a)
NSE Re
stabilization dIV v = 07 (1b)

on Qs 1= 02 x (0,00), 2 C R?, d = 2,3 with smooth boundary
[ := 09, and boundary and initial conditions
v = g onXy:=Tx(0,00),
v(0) = w+2z(0) (w given velocity field).
m Existence of stabilizing feedback control proved in 2D
[FERNANDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
m Construction of stabilizing feedback control based on associated
linear-quadratic optimal control problem:
m for distributed control, see [BARBU 2003, BARBU/SRITHARAN
1998, BARBU/TRIGGIANI 2004];

m for boundary control, see [BARBU/LASIECKA/ TRIGGIANI 2005,
RAYMOND 2005].
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Stabilzation to be unstable solution of (1).

If we can determine a Dirichlet boundary control u so that the
corresponding controlled system

8tz+(z-V)W+(W-V)z+(z-V)z—%Az—i—Vp = 0 in Qo,
divz = 0 in Qu,

z = bu in X,
z(0) = 2z inQ,

is stable for “small” initial values z € X(Q) C V2(Q), where
VI(Q):=Ln{divz=0}N{z-n=0o0n T},
then 3 constants ¢,w > 0 so that ||z(t)||x(q) < ce™*".

Solution to instationary Navier-Stokes equations with v = w + z,
X = Xs+ p, and v(0) = w + z in Q is controlled to w.
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Btz—l—(z-V)w—l—(w-V)z—RieAz—wz—i—Vp:Oin @ss (3a)

- divz=0 in Qo (3b)
z=buin X (3¢)
z(0) = z in Q, (3d)

wz with w > 0 de-stabilizes the system further, needed to guarantee exponential
stabilization of solution of nonlinear system!

Cost functional

1 o0
e =3 [Pz Py + pule)? . (4)
the linear-quadratic optimal control problem associated to (3) becomes

inf {J(z,u) | (z, u) satisfies (3), u € L»(0,00)}. (5)
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The solution to the instationary Navier-Stokes equations with
perturbed initial data is exponentially controlled to the steady-state
solution w by the feedback law

u=—p B MNzy,

NSE
stabilization

where
— zp = Pz, with P : L5(Q) — V?(Q) being the Helmholtz
projector (~ div zy = 0);
- N =0N* € L(V2(Q)) is the unique nonnegative semidefinite
weak solution of the operator Riccati equation
0=/+(A+w)*N+NA+wl)—N(B.B+p'B,B:)N,

A is the Oseen operator restricted to V,?;
B; and B, correspond to the projection of the control action in
the tangential and normal directions.
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General form for A,G = GT,W = WT € R"™*" given and X € R"*"
soning unknown:

Large-Scale AREs 0= 'R(X) = ATX + XA — XGX + W.

Large-scale AREs from semi-discretized PDE control problems:
m n=10%-10° (= 10° — 102 unknowns!),
m A has sparse representation (A = —M~1L for FEM),

m usually, G, W low-rank with G, W € {BBT,CT C}, where
BeR™™ m«n CeRP" pkn.

m under the above assumptions, ARE allows for a low-rank
approximation

X~ZZT, ZeR™".
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Aj N; + N;A; = —R(X))
<
bt AT (X; + Nj) + (X + N;) Aj = —CT C — X;BBT X;
=Xji1 =Xji1 - VVJVVJT

Set X; = Z;Z] for rank (Z) < n =

Al (Zi1Z80) + (ZinZla) A = —ww)T

Factored Newton lteration [B./Li/PENzL 1999/2008]

Solve Lyapunov equations for Z;1; directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of A;.
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S m Aj=A—BK; = A— BB' X is stable V¥ j > 0.
B limj_ ||R(X})||F = 0 (monotonically).
m limj— o X; = X, > 0 (locally quadratic).

YRl m Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient
matrix A;:
A = A

— B . KJ
= sparse — . :]

m m < n = efficient “inversion” using
Sherman-Morrison-Woodbury formula:

(A=BK) ' =(lh+ A 'B(ln — KAT'B) 'K;)A™".

m Need Lyapunov solver that computes low-rank approximation.
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Note: Implementation in real arithmetic possible by combining two steps.



Low-Rank ADI Method for Lyapunov Equations

Lyapunov equation 0 = AX + XAT = —BBT.

AREs for i T .
Stabilization of ADI with Xk — Yk Yk ylelds

Flow Problems

Peter Benner

Algorithm  [PenzL 97, Li/WHiTE *02, B./Li/PENZL *9¢

Vi —2Re (pl)(A-i-pl/)ilB7 Y. — Wi
ez R FOR j=2,3,...

Newton-ADI
Vi — /7t (Vi — (pe + Prmn) (A + pid) Vi)
Yi — [ Yi-1 Vi ]

Yi < rrqr( Yk, T) % column compression

At convergence, Y Ykza ~ X, where

range ( Yg,,.) = range ([ Vi View 1) Vi = H ecm™m.

Note: Implementation in real arithmetic possible by combining two steps.



Low-Rank ADI Method for Lyapunov Equations

Lyapunov equation 0 = AX + XAT = —BBT.
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Algorithm  [PenzL 97, Li/WHiTE *02, B./Li/PENZL *9¢

Vi —2Re (pl)(A-i-pl/)ilB7 Y. — Wi
ez R FOR j=2,3,...

Newton-ADI

Vi — /7t (Vi — (pe + Prmn) (A + pid) Vi)
Yi— [ Yeor Vi ]

Yi < rrqr( Yk, T) % column compression

At convergence, Y Ykzax ~ X, where
range (Yi,.) =range ([ Vi ... Vi, |), V= H e Ccmm,

Note: Implementation in real arithmetic possible by combining two steps.

Alternatives: K-PIK [SiMoNcINT 06],
low-rank cyclic Smith(¢) [PEnzL *00, GUGERCIN/SORENSEN/ ANTOULAS '03],
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grid unknowns % it. (ADI'it.) | CPU (sec.)
F
8x8 2,080 4.7e-7 2 (8) 0.47
Nimenica 16 x 16 32,896 1.6e-6 2 (10) 0.49
32 x 32 524,800 1.8e-5 2 (11) 0.91
64 x 64 8,390,656 1.8e-5 3 (14) 7.98
128 x 128 || 134,225,920 3.7e-6 3 (19) 79.46

Here,
m Convection-diffusion equation,
m m =1 input and p = 2 outputs,
B X=XT eR™*" = "("—2“2 unknowns.

Confirms mesh independence principle for Newton-Kleinman
[BURNS/SACHS/ZIETSMANN 2006].
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Discretization of Helmholtz-projected Oseen equations would need
divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements
, available in flow solver NAVIER).
Solving the

Helmholtz” Explicit projection of ansatz functions possible using application of

projected Oseen

e Helmholtz projection. But: solution of one saddle-point problem per
ansatz function.
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Feter Beme Discretization of Helmholtz-projected Oseen equations would need
divergence-free finite elements.

Here, we want to use standard discretization (Taylor-Hood elements
available in flow solver NAVIER).

Solving the
Helmholtz” Explicit projection of ansatz functions possible using application of

projected Oseen

e Helmholtz projection. But: solution of one saddle-point problem per
ansatz function.

Each step of Newton-Kleinman iteration: solve
Al ZinZla + ZinZla A = —Ww)T = - My (27 B)(ZZB)'

n, := rank (M;) = dim of ansatz space for velocities.
~~ need to solve n, linear systems of equations in each step of ADI
iteration!
Linearized system (i.e., A+ w/) is unstable in general.
Thus, to start the iteration, a stabilizing initial guess is needed!
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Peter Benner Enza(t) = Auz(t) + Awpi(t) + Biu(t)
0 = Afzu(t)+ Bou(t)
z4(0) = znp.
Sl i obtained from Taylor-Hood FEM applied to Oseen equations.

Helmholtz-
projected Oseen
ARE

Necessary information for low-rank solution of Lyapunov equations can be
obtained as in [HEINKENSCHLOSS /SORENSEN/SUN ’07], cf. Dan Sorensen's talk.

Adapted to our situation: need to solve Lyapunov equation

Al Zp1Zl A PP + PhELPY ZnZ) A = — W W,
where
In, = Aw2(ALE Arz) T ALE,
Py(A1 — BIBIPthZjTPhEll)Ph,
= [ PhCT PyEnLPWZZTPB; |.

Py
A
W
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Solution to 1. Problem/no need for divergence free FE

AREs for
Stabilization of
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St Bt Obtain low-rank factor so that X1 ~ j+1ZjL as

Zj+1 - \//74 |:Bj,/l7 Aj,#Bj,}M AJ?,;LBJ',}H e 7A§,HBJ'“U«i| )

Solving the where
Helmholtz-
projected Oseen m B;,, solves the saddle point problem
E1n + p(A1r — BlBlTZijTEu) A Biu | _ cT EnszjTBl
Al 0 * 0 0 ’

m multiplication by A;,, is realized by solution of saddle-point problem
with the same coefficient matrix,

m and we employ a column compression using RRQR as in
[B./QUINTANA-ORTI "97].

Multishift version also possible, cf. [HEINKENSCHLOSS /SORENSEN/SUN ’07].
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Solution to 2. Problem/remove M, from r.h.s.

ARES for For simplicity, consider standard ARE case:
Stabilization of
Flow Problems

Al (X + N) + XA = —W = X;BBTX;  for j=1,2,...
N——
=Aj+1
<~
Solving the
ot O ATN; + N;A; = BBTN, for j =1,2
Zrlgjé:ce seen \j J+ iA; = —Nj_1 li—1 orj =12, ...

See [BANKs/ITO ’91, B./HERNANDEZ/PASTOR ’03, MORRIS/NAVASCA ’05] for
details and applications of this variant.

But: need Ny = X; — Xp!

Solution idea:
Compute Xp and Xj from full, dense Lyapunov equation on coarse grid, prolongate
to fine grid.

Possible refinement: coarse grid corrections using Richardson iteration, nested ite-
ration for ARE [GRASEDYCK ’08].



Solving the Helmholtz-projected Oseen ARE

Solution to 3. Problem/compute stabilizing initial feedback

ARES for Again, consider standard ARE case:
Stabilization of
Flow Problems

PN AT (X + N)+X41 (A= BBTXj) = —My—X;BBTX; forj=1,2,...
N—— ——

=Xj+1 =4

e Recall: for convergence to stabilizing solution need
olving the
Helmholtz-

R e Ay :=A—BBTX, stable, i.e., all eigenvalues in left half plane.
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Solution to 3. Problem/compute stabilizing initial feedback

ARES for Again, consider standard ARE case:

Stabilization of
Flow Problems

PN AT (X + N)+X41 (A= BBTXj) = —My—X;BBTX; forj=1,2,...
N—— ——

=Xj+1 =4

Recall: for convergence to stabilizing solution need

Solving the
Helmholtz-
projected Oseen

ARE Ay :=A—BBTX, stable, i.e., all eigenvalues in left half plane.

Basically, 3 approaches to compute Ky := B Xg:
m pole placement (for descriptor systems: [VARGA ’95]),
m Bass algorithm (based on Lyapunov equation):

— for standard systems [ARMSTRONG '75],

— for descriptor systems [VARGA 95, B. '08, B./STYKEL. ’08],
m algebraic Bernoulli equations:

— for standard systems [B. '06/°07],

(for discrete-time systems: [GALLIVAN/RA0/VAN DOOREN 06]),
— for descriptor systems [B. 08].
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associated to a standard ARE with zero constant term.

Theorem

a) Let (A, B) be controllable. Then

Aaeai m there exist symmetric solutions Xy > 0, X_ < 0, with
] X_ < X < X; for all solutions X of the ABE;
m X_ is the unique solution satisfying A (A — BB” X_) c C* U1R;
m X, is the unique solution satisfying A (A — BBTX+) Cc C™ UR.
m If A(A) NeR = @, then X_ is the unique anti-stabilizing solution
and X is the unique stabilizing solution of the ABE.

b) If (A, B) is stabilizable and A (A) N:R = @, then the ABE has a unique
stabilizing solution X; and Xy > 0.
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Algebraic Bernoulli Equations

(e for Consider the algebraic Bernoulli equation
ATX +XA—-XBBTX =0

Flow Problems
associated to a standard ARE with zero constant term.

Peter Benner

Theorem [B. ’06]

If (A, B) is stabilizable, A (A) N2R = @, then the unique stabilizing solution
X, satisfies
Algebraic rank (X}) = k,

Bernoulli
Equations

where k is the number of eigenvalues of A in C*.
Hence,
X, =Y.Y], where Y,cR™k

Theorem [B. ’07]

ANA-BBTXy)= (A(A)NCT)U— (A(A)NCH),

i.e., unstable eigenvalues are reflected at imaginary axis.
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ARES for Consider the algebraic Bernoulli equation

Stabilization of

Flow Problems ATX + XA—XBB"X =0

Peter Benner

associated to a standard ARE with zero constant term.

Computation of X

m Solve as ARE (inefficient).

Algebraic m Sign function method [BARRACHINA/B./QUINTANA-ORTI ’05].

Bernoulli

Equations m Sign function method for Y, [B. '06, BARR./B./Q.-ORTf *07].
m Extension to descriptor systems [B. ’08].

m For large-scale systems, use partial stabilization idea:
Project onto unstable invariant/deflating subspace of A/AE — A,

Q"AQ=AcR"* setB:=Q"B.

Solve small-size ABE A" X + XA = XBB' X for full-rank X, .
Construct feedback as F := BT XQ".

Cf. also related work by [AMODEI/BOUCHON '08].
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0 divv,

(&, t) € 2 x (0, tr).

Here, n, = 480, n, = 255 with ny = 510 and nf = 225.

Volume control Boundary control
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Conclusions and Open Problems

AREs for

S m Low-rank ADI and Newton-ADI is available in MATLAB toolbox
Lyapack and its successor

Peter Benner

MESS — Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

m Extended and revised version of Lyapack.

® Includes solvers for large-scale differential Riccati equations
(based on Rosenbrock and BDF methods) ~~ can solve LQR

Conclusions and problems on finite-time horizon.

Oppan Patilans m Many algorithmic improvements:

ADI new parameter selection,

column compression based on RRQR,

more efficient use of direct solvers,

— treatment of generalized systems without factorization of
the mass matrix.
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Conclusions and Open Problems

AREs for

S m Low-rank ADI and Newton-ADI is available in MATLAB toolbox
Lyapack and its successor

Peter Benner

MESS — Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

m Extended and revised version of Lyapack.

® Includes solvers for large-scale differential Riccati equations
(based on Rosenbrock and BDF methods) ~~ can solve LQR

Conclusions and problems on finite-time horizon.

Oppan Patilans m Many algorithmic improvements:

ADI new parameter selection,

column compression based on RRQR,

more efficient use of direct solvers,

— treatment of generalized systems without factorization of
the mass matrix.

m For flow problems, need a variety of modifications:
To-do list includes solutions to Problems 1.-3.

The End.
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