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Abstract 

This paper presents a simple and powerful approach to 

introducing boundary-value problems arising in 

electrostatics. In this paper Finite Element and Finite 

difference numerical method has been used to solve two 

dimensional steady heat flow problem with Dirichlet 

boundary conditions in a rectangular domain. Finite 

Difference solution with rectangular grid and Finite Element 

solution with triangular grid using spreadsheets is 

implemented here. Spreadsheets are used for solving 

electrostatic boundary-value problems. Finally comparisons 

are made between the solution obtained from the Finite 

Difference and Finite Element Method. 
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I. INTRODUCTION 

In science and engineering different phenomena are 

modeled by partial differential equations (PDEs). PDE is a 

function that depends on more than one variable (typically, 

space variables x, y, z and the temporal variable t). The heat 

equation, wave equation, and Laplace’s equation are among 

the most prominent PDEs [1, 2]. This paper emphasizes 

numerical solutions to PDEs and suggests implementations 

through spreadsheets. This paper focuses on certain 

numerical methods for solving PDEs; in particular, the finite 

difference and the finite element methods. The examples 

presented in this paper include geometries that are 

sufficiently nontrivial for hand calculation or analytical 

solution, but reasonably manageable by using spreadsheets. 

Although specialized software is available for this purpose, 

oftentimes such sophistication tends to obscure the inner 

workings of the numerical methods employed in the solution 

of PDEs. Spreadsheets offer a transparent alternative 

perhaps proximate to hand calculation for students to better 

appreciate the numerical methods for solving PDEs and 

BVPs [1, 3, 4]. 

 

II. MATERIALS AND METHODS 

 II.I. The Finite Difference Method 

The Finite Difference Method (FDM) is conceptually 

simple. The problems to which the method applies are 

specified by a PDE, geometry, and boundary conditions. 

The Finite Difference Method follow three basic steps [5]: 

(1)  Divide the solution region (geometry) into a grid of 

nodes. Grid points are typically arranged in a 

rectangular array of nodes. 

(2)  Approximate the PDE and boundary conditions by a 

set of linear algebraic equations (the finite difference 

equations) on grid points within the solution region. 

(3)  Solve this set of linear algebraic equations. 

Consider the charge-free region depicted in Figure 1. The 

region has prescribed potentials along its boundaries. The 

region is divided into a rectangular grid of nodes, with the 

numbering of free nodes as indicated in the figure. 

 

Figure 1: Charge-free region showing prescribed potentials 

at the boundaries and rectangular grid of free nodes to 

illustrate the finite difference method. 

The potential V = V(x,y) at an interior point (x,y) within the 

region is governed by the two-dimensional Laplace’s 

equation 

∇2𝑉 =
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0                                              (1) 

For x=[0, a] and y=[0, b] with a=4, b=2 

Where V(x,y) is the steady state temperature 

distribution in the domain.  

Let the location of an interior grid point be identified by a 

pair of integers (i, j), where i and j represent the position 

along the horizontal and vertical directions, respectively. For 

a grid having equal horizontal and vertical step sizes, the 

potential is given by the finite difference equation 

𝑉𝑖,𝑗 =
1

4
(𝑉𝑖+1,𝑗 + 𝑉𝑖−1,𝑗 + 𝑉𝑖,𝑗+1 + 𝑉𝑖,𝑗−1)                   (2) 
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This system of equations may be solved by a variety of 

methods. In this section the Gauss-Seidel method is 

implemented in a spreadsheet to solve this system of 

equations. The Gauss-Seidel method is a relatively simple 

iterative method for solving systems such as those 

encountered in the finite difference formulation. 

Boundary Potential 

lower side 50 

right side 250 

left side 100 

upper side 200 

Figure 2: Input section of spreadsheet implementation of 

the finite difference method. 
 

Gauss-Seidel Iteration 

iteration v1(=7) v2(=8) v3(=9) 

0 0 0 0 

1 87.5 62.5 125 

2 103.125 115.625 140.625 

3 116.4063 123.4375 153.9063 

4 118.3594 130.0781 155.8594 

5 120.0195 131.0547 157.5195 

6 120.2637 131.8848 157.7637 

7 120.4712 132.0068 157.9712 

8 120.5017 132.1106 158.0017 

9 120.5276 132.1259 158.0276 

10 120.5315 132.1388 158.0315 
 

Figure 3: The Gauss-Seidel iterations of the difference 

equations. 

 

II.II. The Finite Element Method 

The Finite Element Method (FEM) is a numerical technique 

for solving PDEs. FEM was originally applied to problems 

in structural mechanics. Unlike FDM, FEM is better suited 

for solution regions having irregularly shaped boundaries. 

The finite element analysis involves four basic steps [4, 5]: 

(1)  Divide the solution region into a finite number of 

elements. The most common elements have triangular 

or quadrilateral shapes. The collection of all elements 

should resemble the original region as closely as 

possible. 

(2)  Derive governing equations for a typical element. 

This step will determine the element coefficient 

matrix. 

(3)  Assemble all elements in the solution region to obtain 

the global coefficient matrix. 

(4)  Solve the resulting system of equations. 

Consider the same charge-free region shown in Figure 1. 

The region is divided into 16 equal triangular elements as 

indicated in Figure 4. The elements are identified by 

encircled numbers 1 through 16. In this discretization there 

are 15 global nodes numbered 1 through 15. 

 

Figure 4: Finite element arrangement for electrostatic 

problem. 

 

For each element e the following quantities are computed 

      𝑃1 = 𝑦2 − 𝑦3 ,    𝑃2 = 𝑦3 − 𝑦1,  𝑃3 = 𝑦1 − 𝑦2 , 

𝑄1 = 𝑥3 − 𝑥2, 𝑄2  = 𝑥1 − 𝑥3, 𝑄3 = 𝑥2 − 𝑥1,                (3) 

Where the subscripts refer to the local node 

numbers 1, 2, and 3 of element e. For example, in Figure 4, 

element 6 has global nodes 4, 9, and 8, which correspond, 

respectively to local nodes 1, 2, and 3. 

With Pi and Qi  (i = 1, 2, 3) for element e thus 

computed, the entries of the 3 x 3 element coefficient matrix 

are then given by 

𝐶𝑖𝑗
(𝑒)

=
1

4𝐴
[𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗]  (i, j= 1,2,3)                   (4) 

Where  

𝐴 =
1

2
[𝑃2𝑄3 − 𝑃3𝑄2]                                                (5) 

The element coefficient matrix is shown in Figure 6. The 

global coefficient matrix is then assembled from the element 

coefficient matrices. Since there are 15 nodes, the global 

coefficient matrix will be a 15 x 15 matrix shown in Figure 

7. For example, node 7, which corresponds to the C7, 7 entry 

in the global coefficient matrix C, belongs to elements 2, 3, 

4, 9, 10 and 11; since node 7 is assigned local node number 

1 in elements 10 and 11, and local node number 2 in 

elements 2 and 9, and local number 3 in element 3 and 4 (as 

seen in the middle table of Figure 5), the corresponding 

global coefficient is 

𝐶7,7 = 𝐶1,1
(10)

+ 𝐶1,1
(11)

+ 𝐶2,2
(2)

+ 𝐶2,2
(9)

+ 𝐶3,3
(3)

+ 𝐶3,3
(4)

… . . (6)     

          = 0.5 + 1 + 1 + 0.5 + 0.5 + 0.5 

           = 4   
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Figure 5: Input section of finite element analysis for electrostatic problem: (left) global node x and y coordinates; (middle) 

triangular element – global and local node correspondence; (right) nodes in the finite element mesh having prescribed potentials. 

 

 
Figure 6: Computation of element coefficient matrices Ce 

 

 
Figure 7: Screenshot showing global coefficient matrix 

Nodal Coordinate of                           Element Node Identification                 Prescribed Potential 

    Finite Element Meshes                                                                                                         
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Defining the vector of potentials vf and vp, where the 

subscripts f and p refer to nodes with free (unknown) 

potentials and prescribed potentials, respectively, the global 

coefficient matrix is then partitioned accordingly and the 

unknown potentials are obtained from 

𝑣𝑓 = −𝐶𝑓𝑓
−1𝐶𝑓𝑝𝑣𝑝                                               (7) 

The matrices Cfp (  free and prescribed node matrix) and Cff 

( free node matrix) are formed by extracting the appropriate 

rows and columns from the global coefficient matrix C. In 

this case node 7, 8, 9 are the free node while 1, 2, 3, 4, 5, 6, 

10, 11,12, 13, 14, and 15 are the nodes with prescribed 

potential, The result is shown in figure 8. 

Microsoft Excell function MINVERSE and MMULT are 

used in  the implementation of equation (7), the final results 

are shown in  Figure 9. 

 

Figure 8: The matrix Cff and Cfp are computed from Global 

Coefficient matrix. 

 

 
Figure 9: Final calculations section of finite element solution to electrostatic problem. 

 

III. RESULTS AND DISCUSSION 

In Sections II.I and II.II spreadsheet implementations of 

FDM and FEM were presented. As indicated in Table 1, the 

potentials at the free nodes computed by both methods 

compared fairly well. The node numbers in the table for 

FDM correspond to those in Figure 1, while those for FEM 

correspond to the node numbers shown in Figure 4. 

 

Table 1: Comparison of results obtained  

from FDM and FEM. 

Finite Difference Finite Element 

Node Potential Node Potential 

7 120.5315 7 120.5357 

8 132.1388 8 132.1429 

9 158.0315 9 158.0357 

 

IV. CONCLUSION 

This paper presented spreadsheet implementations of two 

numerical methods for solving electrostatics problems. As 

indicated in above table the potentials at the free nodes were 

computed by using spreadsheet. Numerical solutions 

compared fairly well. The better agreement should be 

obtained between the finite element numerical solution 

results by using spreadsheet with a triangular grid and finite 

difference solution with a rectangular grid.  

Spreadsheets may be considered as a viable alternative to 

enhancing education in other subjects and engineering 

fields. 
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