
Solving differential equations using neural networks

M. M. Chiaramonte and M. Kiener

1 INTRODUCTION

The numerical solution of ordinary and partial differential equations (DE’s) is essential to many engi-
neering fields. Traditional methods, such as finite elements, finite volume, and finite differences, rely on
discretizing the domain and weakly solving the DE’s over this discretization. While these methods are
generally adequate and effective in many engineering applications, one limitation is that the obtained
solutions are discrete or have limited differentiability. In order to avoid this issue when numerically
solving DE’s (i.e., obtain a differentiable solution that can be evaluated continuously on the domain),
one can implement a different method which relies on neural networks (NN). The purpose of this study
is to outline this method, implement it for some examples, and analyze some of its error properties.

2 FORMULATION

The study is restricted to second-order equations of the form

G(x,Ψ(x),∇Ψ(x),∇2Ψ(x)) = 0, ∀x ∈ D, (1)

where x ∈ Rn is the independent variable over the domain D ⊂ Rn, and Ψ(x) is the unknown (scalar-
valued) solution. The boundary of the domain is decomposed as ∂D = ∂dD ∪ ∂τD, ∅ = ∂dD ∪ ∂τD,
where ∂dD is the portion of ∂D where essential boundary conditions (BC’s) are specified. This study
is restricted to problems with only essential BC’s: for a given function Ψ̂(x), Ψ(x) = Ψ̂(x), ∀x ∈ ∂dD.
To approximately solve the above using an NN, a trial form of the solution is assumed as

Ψt(x, p) = Ψ̂(x) + F (x)N(x, p), (2)

where N(x, p) is a feedforward NN with parameters p. The scalar-valued function F (x) is chosen so
as not to contribute to the BC’s: F (x) = 0, ∀x ∈ ∂dD. This allows the overall function Ψt(x, p)
to automatically satisfy the BC’s. A subtle point is that (the single function) Ψ̂(x) must often be
constructed from piecewise BC’s (see Section 3). Furthermore, for a given problem there are multiple
ways to construct Ψ̂(x) and F (x), though often there will be an “obvious” choice.

The task is then to learn the parameters p such that Eqn. 1 is approximately solved by the form in
Eqn. 2. To do this, the original equation is relaxed to a discretized version and approximately solved.
More specifically, for a discretization of the domain D̂ =

{
x(i) ∈ D; i = 1, . . . ,m

}
, Eqn. 1 is relaxed to

hold only at these points:

G(x(i),Ψ(x(i)),∇Ψ(x(i)),∇2Ψ(x(i))) = 0, ∀i = 1, . . . ,m. (3)

Note this relaxation is general and independent of the form in Eqn. 2. Because with a given NN it may
not be possible to (exactly) satisfy Eqn. 3 at each discrete point, the problem is further relaxed to find
a trial solution that “nearly satisfies” Eqn. 3 by minimizing a related error index. Specifically, for the
error index

J(p) =

m∑
i=1

G(x(i),Ψt(x
(i), p),∇xΨt(x

(i), p),∇2
xΨt(x

(i), p))2, (4)

1



Solving differential equations using neural networks

the optimal trial solution is Ψt(x, p
?), where p? = arg minpJ(p). The optimal parameters can be

obtained numerically by a number of different optimization methods 1, such as back propagation or
the quasi-Newton BFGS algorithm. Regardless of the method, once the parameters p? have been
attained, the trial solution Ψt(x, p

?) is a smooth approximation to the true solution that can be evaluated
continuously on the domain.

A schematic of the NN used in this study is shown in Fig. 1.

x1

...

xn

bias: 1

N(x, p)

Hidden
layer

Input
layer

Output
layer

Figure 1: Schematic of NN with n+ 1 input nodes, H hidden nodes, and 1 output node.

There are n+ 1 input nodes (including a bias node) and a single hidden layer of H nodes with sigmoid
activation functions. The single scalar output is thus given by

N(x, v, W̄ ) = vT g(W̄ x̄), (5)

where v ∈ RH and W̄ ∈ RH×n+1 are the specific NN parameters (replacing the general parameter
representation p). The input variable is x̄ = [xT , 1]T , where the “bar” indicates the appended “1” used
to account for the bias at each of the hidden units. The function g : RH → RH is a component-wise
sigmoid that acts on the hidden layer.

Given the above, the overall task is to choose the discretization D̂ and the number of hidden nodes H,
and then minimize Eqn. 4 to obtain the approximation Ψt(x, p

?). Assuming a given numerical method
that reliably obtains the solution p?, this leaves the discretization and the hidden layer as basic design
choices. Intuitively, it is expected that the solution accuracy will increase with a finer discretization and
a larger hidden layer (i.e. NN complexity), but at the expense of computation and possible over fitting.
These trends will be explored in the examples. Ultimately, one would like to obtain an approximation
of sufficient accuracy by using a minimum of computation effort and NN complexity.

3 EXAMPLES

The method is now showcased for the solution of two sample partial differential equations (PDE).
In both examples, n = 2 and the domain was taken to be the square D = [0, 1] × [0, 1] with a
uniform grid discretization D̂ = {(i/K, j/K) ; i = 0, . . . ,K , j = 0, . . . ,K}, where m = (K + 1)2.
Both backpropagation and the BFGS algorithm were initially implemented to train the parameters. It

1These methods may reach a local optimum in Eqn. 4 as opposed to the global optimum.

2 of 5



Solving differential equations using neural networks

was discovered that BFGS converged more quickly, so this was ultimately implemented for these final
examples. Furthermore, through trial and error it was discovered that including a regularization term in
Eqn. 4 provided benefits in obtaining parameters of relatively small magnitudes. Without this term, the
parameters occasionally would become very large in magnitude. This regularization term also seemed to
provide some marginal benefits in reducing error and convergence time compared to the unregularized
implementations.

3.1 Laplace’s Equation

The first example is the elliptic Laplace’s equation:

∇2Ψ(x) = 0, ∀x ∈ D. (6)

The BC’s were chosen as

Ψ(x) = 0, ∀x ∈ {(x1, x2) ∈ ∂D | x1 = 0, x1 = 1, or x2 = 0}
Ψ(x) = sinπx1, ∀x ∈ {(x1, x2) ∈ ∂D | x2 = 1}. (7)

The analytical solution is

Ψ(x) =
1

eπ − e−π sinπx1
(
eπx2 − e−πx2

)
. (8)

Using the BC’s, the trial solution was constructed as

Ψt(x, v, W̄ ) = x2 sinπx1 + x1(x1 − 1)x2(x2 − 1)N(x, v, W̄ ). (9)

For the case of K = 16 and H = 6, the numerical solution and the corresponding error from the
analytical solution are shown in Fig. 2. The numerical solution is in good agreement with the analytical
solution, obtaining a maximum error of about 2 · 10−4.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ψ

(a) The computed solution Ψt(x, v, W̄ ).

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0e+00

2.1e-05

4.2e-05

6.3e-05

8.4e-05

1.1e-04

1.3e-04

1.5e-04

1.7e-04

1.9e-04

|Ψ
−

Ψ
t|

(b) The error of the computed solution from the analytical so-
lution: |Ψ(x)−Ψt(x, v, W̄ )|.

Figure 2: Solution to Laplace’s equation (Eqn. 6) for BC’s in Eqn. 7.

3 of 5



Solving differential equations using neural networks

3.2 Conservation law

The next example is the hyperbolic conservation law PDE

x1∂x1Ψ(x) + ∂x2Ψ(x) = x1 x2, ∀x ∈ D, (10)

where the BC’s were chosen as

Ψ(x) = x21 + exp(−x21), ∀x1 ∈ [0, 1], x2 = 0. (11)

The analytical solution is

Ψ(x) = x1(x2 − 1) + x21e
−2x2 + e−x

2
1e

−2x2
+ x1e

−x2 . (12)

Using the BC’s, the trial solution was constructed as

Ψt(x, v, W̄ ) = x21 + exp(−x21) + x2N(x, v, W̄ ). (13)

The network parameters were again obtained for K = 16 and H = 6, and the solution and error is
shown in Fig. 3. The numerical and analytical solutions are in good agreement, with a maximum error
of about 2.5 · 10−3.

Although the errors in both examples are small, the error for Laplace’s equation is about an order of
magnitude smaller than that of the hyperbolic equation. While this may be due in part to the different
nature of the solutions, the different BC’s may also have an effect. In Laplace’s equation the BC’s
constrain the solution around the entire square domain (since it is second-order in both variables), while
in the hyperbolic equation the BC’s only constrain the solution along the bottom edge (since it is first
order in both variables). Because the solution will automatically hold at the BC’s due to the construction
of F (x), the BC’s along the entire boundary in Laplace’s equation most likely contributes to overall
smaller error throughout the domain.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

1.0

1.0

1.1

1.1

1.2

1.2

1.2

1.3

1.3

1.3

Ψ
t

(a) The computed solution Ψt(x, v, W̄ ).

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

0.0e+00

2.7e-04

5.5e-04

8.2e-04

1.1e-03

1.4e-03

1.6e-03

1.9e-03

2.2e-03

2.5e-03

|Ψ
−

Ψ
t|

(b) The error of the computed solution from the analytical so-
lution: |Ψ(x)−Ψt(x, v, W̄ )|.

Figure 3: Solution to the hyperbolic conservation law (Eqn. 10) for the BC’s in Eqn. 11.

4 of 5



Solving differential equations using neural networks

4 ERROR PROPERTIES

As discussed previously, it is intuitively expected that refining the discretization and increasing the
size of the hidden layer will increase the accuracy of the solution. To study this, Laplace’s equation
was solved for a number of choices in K and H, and the maximum error over the domain |Ψ(x) −
Ψt(x, v, W̄ )|max for each solution was recorded. To assess the dependence on H, solutions were obtained
for H = 2, 4, 8, and 16 for a fixed K = 8. To assess the dependence on K, solutions were obtained
for K = 4, 8, and 16 for a fixed H = 4. The results are shown in Fig. 4. From the first figure, the
error steadily decreases for H = 2, 4, and 8 but plateaus for H = 16. This suggests that for the given
discretization, a network complexity greater than H = 8 yields diminishing returns in reducing error.
From the second figure, the error steadily decreases with increasing mesh refinement. It is unclear how
this trend continues for even finer discretizations of K > 16.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
log2H

−9

−8

−7

−6

−5

−4

−3

lo
g
|Ψ
−

Ψ
t| m

a
x

(a) Plot of maximum error versus hidden layer sizes H =
2, 4, 8, and 16 for fixed mesh size K = 8.

2.0 2.5 3.0 3.5 4.0
log2K

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

lo
g
|Ψ
−

Ψ
t| m

a
x

(b) Plot of maximum error versus discretization sizes K =
4, 8, and 16 for fixed hidden layer size H = 4.

Figure 4: Error trends for Laplace’s equation.

5 CONCLUSIONS AND FUTURE WORK

In this study, a framework for the numerical solution of DE’s using NN’s has been showcased for several
examples. The benefit of this method is that the trial solution (via the trained NN) represents a smooth
approximation that can be evaluated and differentiated continuously on the domain. This is in contrast
with the discrete or non-smooth solutions obtained by traditional schemes. Although the method has
been implemented successfully, there are several areas of possible improvement. Because there is a
considerable tradeoff between the discretization training set size (and solution accuracy) and the cost
of training the NN, it could be useful to devise adaptive training set generation to balance this tradeoff.
Also, this study used a uniform rectangular discretization of the domain, so future studies could explore
nonuniform discretizations. This could be especially useful in examples with irregular boundaries, where
more sample points might be needed in some regions of the domain compared to others.

5 of 5


	INTRODUCTION
	FORMULATION 
	EXAMPLES
	Laplace's Equation
	Conservation law

	ERROR PROPERTIES
	CONCLUSIONS AND FUTURE WORK  

