SOLVING EQUATIONS AND INEQUALITIES	
1. Which value of <i>p</i> is the solution of $5p - 1 = 2p + 20$?	2. What is the value of <i>x</i> in the equation
	2(x-4) = 4(2x+1)?
	1) -2
	2) 2
	$(3) -\frac{1}{2}$
	4) $\frac{1}{2}$
3. If $12x = 4(x+5)$ then x equals	4. If $2x + 5 = -25$ and $-3m - 6 = 48$ what is the product
$\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$	of x and m ?
$\frac{1}{12}$	
2) 5	
3) 1.25	
4) 2.5	
5.If $3(x-2) = 2x + 6$, the value of <i>x</i> is	6.Solve for x: $5(x-2) = 2(10 + x)$
7. What is the value of <i>m</i> in the equation $2m = (m + 1) = 0$	8. If $3(x+2) - 2(x+1) = 8$, the value of x is
2m - (m + 1) = 0	
0 The inequality 7^{2} resc. Since which lead to	10. Which inequality is shown on the
9. The inequality $7 = \frac{1}{3}x < x = 8$ is equivalent to	accompanying graph?
1) x > 9	
(2) $x > -\frac{3}{2}$	<+++++++++++++++++++++++++++++++++++++
5	-3-2-10123456
3) $x < 9$	1) $x < -1$
$\binom{4}{x} < -\frac{3}{5}$	2) $x \le -1$
ر	3) $x > -1$
	4) $x \ge -1$
11. Solve the inequality $-5(x-7) < 15$ algebraically	12 Solve algebraically for $y_1(r-4) \ge \frac{1}{r}(5-3r)$
for x.	12.3017 algebraically 101 X. $2(x-y) = \frac{1}{2}(y-y)$

MODELING EQUATIONS	
1. Tara buys two items that cost <i>d</i> dollars each. She	2. Julie has three children whose ages are
gives the cashier \$20. Which expression represents	consecutive odd integers. If <i>x</i> represents the
the change she should receive?	youngest child's age, which expression represents
1) 20 – 2 <i>d</i>	the sum of her children's ages?
2) $20 - d$	1) $3x + 3$
3) $20 + 2d$	2) $3x + 4$
4) $2d-20$	3) $3x + 5$
	4) 3 <i>x</i> + 6
3. Tim ate four more cookies than Alice. Bob ate	4. Tamara has a cell phone plan that charges \$0.07
twice as many cookies as Tim. If <i>x</i> represents the	per minute plus a monthly fee of \$19.00. She
number of cookies Alice ate, which expression	budgets \$29.50 per month for total cell phone
represents the number of cookies Bob ate?	expenses without taxes. What is the maximum
1) $2 + (x + 4)$	number of minutes Tamara could use her phone
2) $2x + 4$	each month in order to stay within her budget?
3) $2(x+4)$	
4) $4(x+2)$	
5. Mario paid \$44.25 in taxi fare from the hotel to	6. Peter begins his kindergarten year able to spell 10
the airport. The cab charged \$2.25 for the first mile	words. He is going to learn to spell 2 new words
plus \$3.50 for each additional mile. How many	every day. Write an inequality that can be used to
miles was it from the hotel to the airport?	determine how many days, <i>d</i> , it takes Peter to be
	able to spell <i>at least</i> 75 words. Use this inequality
	to determine the minimum number of whole days it
	will take for him to be able to spell at least 75
	words.
7. A prom ticket at Smith High School is \$120. Tom	8. An online music club has a one-time registration
is going to save money for the ticket by walking his	fee of \$13.95 and charges \$0.49 to buy each song. If
neighbor's dog for \$15 per week. If Tom already	Emma has \$50.00 to join the club and buy songs,
has saved \$22, what is the minimum number of	what is the maximum number of songs she can
weeks Tom must walk the dog to earn enough to	buy?
pay for the prom ticket?	1) 73
	2) 74
	3) 130
	4) 131
9. Chelsea has \$45 to spend at the fair. She spends	10.Tony makes a phone call at a pay phone. The
\$20 on admission and \$15 on snacks. She wants to	charge is 25 cents for the first four minutes, and 10
play a game that costs \$0.65 per game. Write an	cents for each additional minute. Tony has \$2.10 in
inequality to find the maximum number of times, <i>x</i> ,	change in his pocket. Write an inequality that can
Chelsea can play the game. Using this inequality,	be used to find <i>m</i> , the maximum number of minutes
determine the maximum number of times she can	that Tony can talk on the phone. Solve this
play the game.	inequality algebraically to find the maximum
_	number of whole minutes he can talk on the phone.
11. The sum of the ages of the three Romano	12. Sara's telephone service costs \$21 per month
brothers is 63. If their ages can be represented as	plus \$0.25 for each local call, and long-distance
consecutive integers, what is the age of the middle	calls are extra. Last month, Sara's bill was \$36.64,
brother?	and it included \$6.14 in long-distance charges.
	How many local calls did she make?

ABSOLUTE VALUE EQUATIONS AND INEQUALTIES	
1. 3x-1 =14	2. 2y+7 =7
2 14 91 2-5	4 + 17 + 17 + 10 - 70
2. y-0 -2-3	4. X+17 +10=70
5. 3 x+7 -14=4	62 y-7 +18=8
7 514 111 2-12	0 1 1 2 2 2 2 2 1
7:-5 4y-11 -5=12	0. X+5 =5X+1
9. 5-8x <43	10. $7 r-2 \le 77$
	12 old 21 10 < 72
$11. \frac{11}{5} \le 2$	12.9 1-2 -10<-75
$13 \frac{ 4m+1 }{ 4m+1 } < 1$	$14 \frac{ 2+3x }{ 2+3x } > 5$
	2 2

COMPOUND INEQUALITIES	
15 <x+5<5 2. k-3>1 or k-3<-1</x+5<5 	2. 1<3x+4<10 4. b-2>18 or 3b<54
$53 \le 3 + m \le 7$	6. 2r+8>16-2r and 7r+21 <r-9< td=""></r-9<>
7. 4b+18≤ $-12b - 14 ≤ 14 - 5b$	8. 5v+10≤ $-4v - 17 < 9 - 2v$
9. 4a+8> 11 <i>a</i> + 15 and 13-14a≤ 13 − 3 <i>a</i>	$10.36 \le 11 - 5x \le 66$

ARITHMETIC/GEOMETRIC SERIES	
What is the common difference of the arithmetic	What is the common ratio of the geometric
sequence 5, 8, 11, 14?	sequence shown below?
1) 8	-2,4,-8,16,
5	1) <u>1</u>
2) -3	2
3) 3	2) 2
4) 9	3) -2
	4) -6
The common ratio of the sequence $-\frac{1}{2}, \frac{3}{4}, -\frac{9}{8}$ is	What is the common difference in the sequence $2a + 1, 4a + 4, 6a + 7, 8a + 10$?
1) $-\frac{3}{2}$	1) $2a + 3$
2) 2	2) -2a - 3
$\begin{bmatrix} 2 & -\frac{2}{3} \end{bmatrix}$	3) $2a+5$
3) 1	4) $-2a + 5$
$-\frac{1}{2}$	
4) 1	
4	
What is the common difference of the arithmetic	is the formula for the <i>n</i> th term of the sequence
sequence below?	54,18,6,?
$-7x, -4x, -x, 2x, 5x, \ldots$	1) $(1)^n$
1) -3	$a_n = 6 \left(\frac{-1}{3} \right)$
2) $-3x$	2) $(1)^{n-1}$
3) 3	$a_n = 6 \left \frac{1}{2} \right $
4) 3x	
	$a_n = 54 \left(\frac{1}{3}\right)^n$
	$(1)^{n-1}$
	$a_n = 54 \left(\frac{-1}{3} \right)$
ka is stacking boxes of tissues for a store display.	Chem deposited \$115.00 in a savings account. Each
Each row of tissues has 2 fewer boxes than the row	week thereafter, he deposits \$35 into the account.
below. The first row has 23 boxes of tissues. Write	Write a function to represent the total amount
a function to represent the arithmetic sequence.	Chem has deposited for any particular number of
How many boxes will there be in the tenth row?	weeks after his initial deposit. How much has
	Chem deposited 30 weeks after his initial deposit?
Write the formula for this sequence:	Write the formula for this sequence:
-1, 6, -36, 216	-2, -4, -8, -16
Write the formula for this sequence:	Write the formula for this sequence:
-37, -38, -19, -10	31, 32, 11, 2,