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Abstract

This report represents GCD, euclidean algorithm, linear diophan-
tine equation and linear congruential equation. It investigates the
methods for solving linear diophantine equations and linear congru-
ential equations in several variables. There are many examples which
illustrate the methods for solving equations.
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1 Introduction

Linear diophantine equations got their name from Diophantus. Diophantus
of Alexandria was a mathematician who lived around the 3rd century. Dio-
phantus wrote a treatise and he called ’Arithmetica’ which is the earliest
known book on algebra.

A Diophantine equation is an algebraic equation for which rational or
integral solutions are sought. An algebraic equation is one that involves only
polynomial expressions in one or more variables. What makes the equation
’Diophantine’ is that the coefficients of the polynomials should be ratio-
nal numbers(or often integers)and also solutions must be only rational(or
integer).

Brahmagupta(598-670)was the first mathematician who gave general so-
lution of the linear diophantine equation (ax + by = c). Diophantus didn’t
use complicated algebraic notation, but Brahmagupta used the complicated
notations for solving equation.

Two well known results from beginning number theory are examples of
diophantine equations which predate Diophantus. Both of these problems
were known by the Babylonians. These are;

1. Linear equations of two variables, ax + by = c

2. The quadratic equation of three variables, x2 + y2 = z2

And also we can mention linear congruences. First, Carl Freidrich Gauss
considered the congruences and he developed congruences. Gauss noticed;
when he try to solve the linear diophantine equations(ax+by = c); if m|(a−
b), then we write a ≡ b (mod m), and a is congruent to b modulo m.

Except Gauss, many scientist seek the linear congruences and solutions
of them. Some of them; J.konig [1],Th.Schnemann [2] and M.Fekete [3].

Congruences are used in our daily life, today is monday or the time
is 15:00. The periodic nature of dates and time can be described using
congruences.

The purpose of this study is derive algorithms for finding all the solutions
of linear diophantine equation of the form

a1x1 + a2x2 + · · ·+ anxn = b.

and also we will derive algorithm for solving the linear congruential equa-
tion;

a1x1 + a2x2 + · · ·+ anxn ≡ b (mod m).

In this project, we have two main sections. First section is about linear
diophantine equation. There are required definitions and theorems for ex-
plaining linear diophantine equation. These are GCD, euclidean algorithm,
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extended euclidean algorithm and linear diophantine equation. There are
also some examples for understand the theorems and definitions better. In
the last part of first section, there are two applications which are related to
linear diophantine equation. We will see that linear diophantine equation in
more than two variables can be solved by induction method.

Second section is about linear congruential equation. It contains in-
troduction to congruences, basic congruences theorems, linear congruences
theorems and also definitions for solving linear congruential equation in sev-
eral variables. We will search for the number of incongruent solutions of
linear congruential equation in various variables. We will find the number
of solutions to linear congruential equation in one variable and by generaliza-
tion, we will get the linear congruential equation in n variables has |m|n−1 ·d
incongruent solutions.
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2 Linear Diophantine Equations

2.1 Greatest Common Divisor

Definition 2.1.1. Given the integers a, b > 0, we define greatest common
divisor of a and b, as the largest number that divides both a and b. It is
denoted in two ways: (a, b) = c or gcd(a, b) = c. We will use (a, b) to denote
the greatest common divisor.

Example 2.1.1. Let’s find GCD of 15 and 35. The divisors are of 15;
±1,±3,±5,±15,the divisors of 35 are;±1,±5,±7,±35, and the common di-
visors of 15 and 35 are; ±1,±5, and the greatest common divisor is 5, so
the gcd of 15 and 35 is 5 and by notation (15, 35) = 5.

Definition 2.1.2. If the greatest common divisor of (a, b) = 1, we say that
the integers are relatively prime.

Theorem 2.1.1. a and b integers with (a, b) = d. Then (ad ,
b
d) = 1

Proof. Assume that (ad ,
b
d) = k, then a

d = mk, b
d = nk where m,n are any

integers and we get a = mkd, b = nkd, therefore kd|a and kd | b. Since d is
the greatest common divisor for a and b, kd ≤ d, k ≤ 1 then k must be equal
to 1, if k is bigger than 1, d isn’t gcd of a and b, so k = 1 and(ad ,

b
d) = 1.

Let’s illustrate the theorem.

Example 2.1.2. Let’s find gcd of 12 and 18. By factorization 12 = 22 · 3
and 18 = 32 · 2, hence we can see gcd of 12 and 18 equal to 6, namely
(12, 18) = 6.

(
12

6
,
18

6
) = (2, 3) = 1.

Theorem 2.1.2. Let a, b and c be integers. Then (a + cb, b) = (a, b).

Proof. Suppose that (a, b) = d and (a+ cb, b) = k and we should prove that
d = k. If (a, b) = d, we can write a = dt and b = dp where t, p are any
integers.
If (a+ cb, b) = k, then a+ cb = km and b = kn where m,n are any integers.
In a + cb, we should write instead of a and b,a = dt and cb = cdp then
(dt+ cdp, dp) = (d(t+ cp), dp) and from this equality, it is clear that the gcd
of d(t+cp) and dp is equal to d, since d divide t+cp and p. So (a+cb, b) = d.
Hence we find d = k.

Example 2.1.3. Let’s consider those numbers; a = 190, b = 76, c = 38.
Then according to theorem, it must be like below;

(190 + 38 · 76, 76) = (190, 76)
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(3078, 76) = (190, 76)

For be sure of the equality, we must find the (3078, 76) and (190, 76)

76 = 22 · 19

190 = 2 · 5 · 19

3078 = 2 · 34 · 19.

So, we see (3078, 76) = (190, 76) = 38.

Definition 2.1.3. If a and b integers, the linear combination of a and b is
a sum of the form ax + by, where x and y are integers.

Theorem 2.1.3. Given integers a, b > 0, then d = (a, b) is the least positive
integer that can be represented as ax + by and x, y integer numbers.

Proof. Assume that k is the smallest integer, k = ax+by. If d|a and d|b then,
d|ax+by, and also d ≤ k. k should divide a; otherwise a = uk+r, 0 < r < k
where u, r ∈ Z; r = a − uk = a − u(ax + by) = a(1 − ux) + b(−uy), so we
found another linear combination and r < k. It is a contradiction, because
our assumption was k is the smallest integer which can be represented as
ax + by. The process is same for proving that k|b.
Then, we get k ≤ (a, b) = d and k = d.

Example 2.1.4. Assume that a = 169 and b = 13

26 = 2 · 13

169 = 13 · 13

We find (26, 169) = 13.
If we choose x = 1, y = −6, we can write the equation below

169− 26 · 6 = 13 = (26, 169).

Theorem 2.1.4. If a, b, m and n are integers, and if c|a and c|b, then
c|(ma + nb).

Proof. If c|a and c|b, we can find e and f are integers, a = ce, b = cf . Then,
ma + nb = mce + ncf = c(me + nf). Hence, we saw that ma + nb is a
multiple of c. Thus, c|ma + nb.
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Example 2.1.5. Assume that a = 16, b = 44 and c = 4

16 = 24

44 = 22 · 11.

So, 4 divides 16 and 44.
And assume that m = 6, n = −2, then

6 · 16− 2 · 44 = 96− 88 = 8.

And 4|8. Because 8 = 2 · 4.

Theorem 2.1.5. If a and b are positive integers, then the set of linear
combinations of a and b is the set of integer multiplies of (a, b).

Proof. Suppose that (a, b) = c. Let’s show that every linear combination
of a and b must also be a multiple of c. We know that (a, b) = c, then c|a
and c|b. Every linear combination of a and b is the form ma + nb and by
Theorem 2.1.4. we can see c|ma + nb, then ma + nb = ck. By Theorem
2.1.3. (a, b) = c can be represented a linear combination of a and b, there
are integers s.t. x and y, (a, b) can be written like; (a, b) = ax + by. If we
multiply both of sides with s, we get sc = sax + sby. Hence, we saw that
every multiple of c is a linear combination of a and b.

Example 2.1.6. Suppose that a = 28, b = 196

28 = 22 · 7

196 = 22 · 72

Then (28, 196) = 14.
For any x, y ∈ Z, there are some k values which provide the equation 28x+
196y = 14k. If we consider the which x and y give us k = 2.

28x + 196y = 14 · 2.

If we divide both sides by 28, the equation reduced to

x + 7y = 1.

Hence, we find x = 8 and y = −1.

Definition 2.1.4. We will also define GCD for more than two integers.
Consider n integers, not all 0. The GCD is the largest number in the common
divisors. The notation is (a1, a2, . . . , an).
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Example 2.1.7. We can see (6, 9, 12) = 3 and (5, 35, 50) = 5.

But,sometimes we have more than three variables or complicated num-
bers, we can’t find the gcd easily. We can use the Theorem 2.1.6. in such
cases.

Theorem 2.1.6. If a1, a2, . . . , an are integers, not all 0, then
(a1, a2, . . . , an−1, an) = (a1, a2, . . . , (an−1, an)) .

Proof. Now, we have to find gcd of n integers. We know that any common
divisor of a1, a2, · · · , an−1, an is also divisor of an−1 and an. If we say that
d1 = (an−1, an), it reduces to n − 1 integers a1, a2, · · · , an−2, d1. Also, any
common divisor of the n− 1 integers a1, a2, · · · , an−2 and (an−1, an) is com-
mon divisor of n integers, if it divides d1 = (an−1, an) and both of an−1,an.
The gcd of n integers, the gcd of first n− 2 integers and the gcd of the last
two integers are same, namely their gcd is equal.

Example 2.1.8. Find the gcd of 256,342,578,1000 and 3472.
Using the Theorem 2.1.6. By prime factorization

256 = 28

342 = 2 · 32 · 19

578 = 2 · 172

1000 = 23 · 53

3472 = 24 · 7 · 31.

(256, 342, 578, 1000, 3472) = (256, 342, 578, (1000, 3472))

= (256, 342, 578, 8)

= (256, 342, (578, 8))

= (256, 342, 2)

= (256, (342, 2))

= (256, 2)

= 2.

Lemma 2.1.1. If e and d are integers and e = dq + r, where q and r are
integers, then (e, d) = (d, r).

Proof. This lemma follows directly from Theorem 2.1.2, taking a = r, b =
d, c = q. Suppose that a = (d, e), then a|d and a|e. And there are integers
such that t and s, it can be written d = at and e = as. Multiply both sides
by q in the equation d = at, and it will be equal to qd = qat. Now, we can
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mention the equation qd− e. We found the values of qd and e. If we put up
these values in the equation qd−e, we will find qd−e = qat−as = a(qt−s)
and a|qd − e, in other words a|r. Then a is a common divisor of d and r.
If b is a common divisor of d and r so b|dq + r, namely b|e. b is a common
divisor of d and e. b ≤ a and from definition of gcd we get a = (d, r)

Example 2.1.9. Consider the equation below;

27 = 6 · 4 + 3.

If we analyse the equation according to theorem, we will reach;

e = 27, d = 6, r = 3

6 = 2 · 3

27 = 33.

(6, 27) = (6, 3) = 3.

2.2 Euclidean Algorithm

Now, we can determine euclidean algorithm. The euclidean algorithm is a
way to find the gcd of two positive integers. The euclidean algorithm is an
extremely fast way to find gcd.

Theorem 2.2.1. (Euclidean Algorithm)To compute the gcd of two numbers
a and b, let r−1 = a, let r0 = b, and compute successive quotients and
remainders

ri−1 = qi+1 · ri + ri+1.

for i = 0, 1, 2, . . . until some remainder rn+1 is 0. The last nonzero remainder
rn is then the gcd of a and b.

Proof. The algorithm will work in the following way:

a = b · q1 + r1, 0 ≤ r1 < b

b = r1 · q2 + r2, 0 ≤ r2 < r1

r1 = r2 · q3 + r3, 0 ≤ r3 < r2

r2 = r3 · q4 + r4, 0 ≤ r4 < r3

...

ri−1 = ri · qi+1 + ri+1, 0 ≤ ri+1 < ri
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...

rn−3 = rn−2 · qn−1 + rn−1, 0 ≤ rn−1 < rn−2

rn−2 = rn−1 · qn + rn → (gcd), 0 ≤ rn < rn−1

rn−1 = rn · qn+1 + 0.

We will answer that why is the last nonzero remainder rn a common
divisor of a and b?

It is clear from the last line that rn divides rn−1. Then the previous line
rn divides rn−2, since it divides both rn−1 and rn, (we can see it by Lemma
2.1.1. (rn, rn−1) = (rn−1, rn−2)). Moving up to previous line, rn divides
rn−3, since rn−3 divides rn−1 and rn−2 and (rn−3, rn−2) = (rn−2, rn−1). In
the middle line, we can see rn divides rn+1, because of Lemma 2.1.1. says
(rn, rn−1) = (rn−1, rn−2) = (rn−2, rn−3) = · · · = (ri−1, ri) = (ri, ri+1).
Moving up line by line,when we arrive the second line we already know that
rn divides r2 and r1, then (rn, rn−1) = (rn−1, rn−2) = (rn−2, rn−3) = · · · =
(r2, r1) . Then the second line b = q2 · r1 + r2 tells us if rn divides r2
and r1, also rn divides b, (rn, rn−1) = (rn−1, rn−2) = (rn−2, rn−3) = · · · =
(r2, r1) = (r1, b). And in conclusion rn divides r1 and b, so it divides also
a, by using Lemma 2.1.1. rn = (rn, rn−1) = (rn−1, rn−2) = (rn−2, rn−3) =
· · · = (r2, r1) = (r1, b) = (a, b).
Now, we know that the last nonzero remainder will be gcd, but now we must
answer that how do we know that we always get a remainder that equals to
0? When we compute a quotient with remainder, we get;
A = Q ·B + R.
The remainder will be between 0 and B − 1. This is clear, since if R ≥ B,
then we can add one more to the quotient Q and substract B from R. So
the remainders will be decreasing;
b = r0 > r1 > r2 > r3 · · ·
But all of the remainders are greater than or equal to 0, so we have decreasing
sequence of nonnegative integers. After all we conclude remainder that
equals to 0 and it is clear that we will reach a remainder of 0 in at most b
steps.

Example 2.2.1. We illustrate the euclidean algorithm:
(128, 442)

442 = 128 · 3 + 58

128 = 58 · 2 + 12

58 = 12 · 4 + 10

12 = 10 · 1 + 2

10 = 2 · 5 + 0.
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Euclidean algorithm says; the gcd of two variables is the last nonzero re-
mainder, in the question the last nonzero remainder is 2. Then (128, 442) = 2

If we have more than two variables and we want to find gcd, we can use
euclidean algorithm in connection with Theorem 2.1.6.

Example 2.2.2. Find (63, 217, 350, 728, 7077, 9100) using euclidean algo-
rithm.

(63, 217, 350, 728, (7077, 9100))

Let’s find (7077, 9100) using euclidean algorithm.

9100 = 7077 · 1 + 2023

7077 = 2023 · 3 + 1008

2023 = 1008 · 2 + 7

1008 = 7 · 144 + 0.

The last nonzero remainder 7. So, (7077, 9100) = 7.
The equation reduce to (63, 217, 350, 728, 7).
And the other step (63, 217, 350, (728, 7))

728 = 7 · 104 + 0

The remainder is 0. So, 7|728 and (728, 7) = 7.
(63, 217, (350, 7))

350 = 7 · 50 + 0

As is seen from above 350 is a multiple of 7. Then, (350, 7) = 7 and we
should find (63, (217, 7))

217 = 7 · 31 + 0

217 is a multiple of 7. That’s why (217, 7) = 7.
It reduce to (63, 7).

63 = 7 · 9 + 0

We found (63, 7) = 7.
Then, (63, 217, 350, 728, 7077, 9100) = 7.
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2.2.1 Extended Euclidean Algorithm

We already know how can we find the gcd of two numbers by euclidean
algorithm. Suppose that rn = (a, b) , a > b and

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3

r2 = r3 · q4 + r4

...

ri−1 = ri · qi+1 + ri+1

...

rn−3 = rn−2 · qn−1 + rn−1

rn−2 = rn−1 · qn + rn

rn−1 = rn · qn+1 + 0.

When we want to write gcd of two integers as a linear combination of these
integers,we use the process in the following way.
The equation (a, b) = rn = rn−2 − rn−1 · qn express (a, b) as a linear combi-
nation of rn−2 and rn−1. If we move to penultimate equation we can write;

rn−1 = rn−3 − rn−2 · qn−1.

So,we get

rn = rn−2 − (rn−3 − rn−2 · qn−1) · qn
= rn−2(1 + qn−1 · qn)− qn · rn−3.

The last expression shows us that it is a linear combination of rn−2 and
rn−3.
We continue to process(express (a,b) as a linear combination of each pair of
remainders) until find (a, b) as a linear combination of a and b. If we write
particular line,

(a, b) = k · ri + m · ri−1

Since,
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ri = ri−2 − ri−1 · qi−1

So,we have

(a, b) = k(ri−2 − ri−1 · qi−1) + m · ri−1

= k · ri−2 + (m− k · qi−1)ri−1.

If we continue until the top line, we can find (a, b) as a linear combination
of a and b. The following theorem gives the induction method for finding
(a, b) as a linear combination of a and b.

Theorem 2.2.2. Let a and b be a positive integers. Then
(a, b) = kn · a + mn · b
where kn and mn the nth terms of the sequences defined recursively by

k0 = 1,m0 = 0

k1 = 0,m1 = 1.

and
ki = ki−2 − qi−1 · ki−1, mi = mi−2 − qi−1 ·mi−1

for i = 2, 3, · · · , n where the qi are the quotients in the divisions of the
euclidean algorithm when it is used to find (a, b).

Proof. Let’s prove that

ri = ki · a + mi · b (1)

for i = 0, 1, · · · , n since (a, b) = rn, we mentioned the equation (1), we
know that

(a, b) = rn = kn · a + mn · b

If we use mathematical induction in equation (1),
For i = 0,

r0 = k0 · a + m0 · b
= 1 · a + 0

= a.
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For i = 1,

r1 = k1 · a + m1 · b
= 0 + 1 · b
= b.

We can see that equation (1) is valid for j = 0, 1.
Now, we assume that

ri = ki · a + mi · b

for i = 1, 2, · · · , p−1. Then, from the pth step of the euclidean algorithm,
we know

rp = rp−2 − rp−1 · qp−1

If we use induction method, we get

rp = (kp−2 · a + mp−2 · b)− (kp−1 · a + mp−1 · b) · qp−1

= (kp−2 − kp−1 · qp−1) · a + (mp−2 −mp−1 · qp−1) · b
= kp · a + mp · b.

And as a result, we can write the (a, b) as a linear combination of a and
b. The proof finishes.

Example 2.2.3. Let’s illustrate Theorem 2.2.2. by finding integers x and
y such that

12740x + 1610y = (12740, 1610).

First we use euclidean algorithm for finding (12740, 1610).

12740 = 1610 · 7 + 1470

1610 = 1470 · 1 + 140

1470 = 140 · 10 + 70

140 = 70 · 2 + 0.

The last nonzero remainder is 70, so (12740, 1610) = 70.
We now use back substitution to express 70 as a linear combination of 12740
and 1610.
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70 = 1470− 140 · 10

= 1470− (1670− 1470) · 10

= 11 · 1470− 1610

= 11 · (12740− 1610 · 7)− 1610

= 11 · 12740− 78 · 1610.

We conclude that an integer solution of 12740x+ 1610y = (12740, 1610)
is x = 11, y = −78.
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2.3 Linear Diophantine Equation

Definition 2.3.1. The diophantine equation is the polynomial equation
which the coefficients are integers and diophantine equations whose solutions
we seek in the set of integers or natural numbers. The most basic diophantine
equation is the linear case. We can write ax + by = c where a, b, c ∈ Z.

Theorem 2.3.1. Let a,b, and c be integers with a and b not both zero. The
linear diophantine equation

ax + by = c

has a solution if and only if d = (a, b) divides c.

Proof. (⇒)
Suppose that x0 and y0 is a solution. Then ax0 + by0 = c. Since d|a and

d|b, we get that d|ax0 + by0 and d|c.
(⇐)
Suppose that d|c. then c = dk where k is an integer. We already know

that by Theorem 2.1.5 (a, b) can be written as a linear combination of a and
b. So, there exist u, v ∈ Z with au + bv = d. Hence a(uk) + b(vk) = dk = c.
So the equation ax + by = c has a solution(namely x = uk, y = vk).

Example 2.3.1. Find the solution of 155x + 45y = 7
First, we must find (155, 45) =?

(155, 45) = 5.

5 and 7 relatively prime. So we can’t find a solution. Because, there is no
solution.

Theorem 2.3.2. Let a and b integers with d = (a, b). The equation ax +
by = c has no integral solutions if d doesn’t divide c. If d|c, then there are
infinitely many integral solutions. Moreover, if x = x0, y = y0 is a particular
solution of the equation, then all solutions are given by

x = x0 +
b

d
n, y = y0 −

a

d
n,

where n is an integer.

Proof. We already know that there is a solution if and only if d|c by Theorem
2.3.1.
For the second part of the theorem, let x0,y0 be a particular solution

ax0 + by0 = c.

17



If we put

x = x0 +
bn

d
, y = y0 −

an

d

where n is any integer, then

ax + by = a(x0 +
bn

d
) + b(y0 −

an

d
) = ax0 + by0 = c,

so x, y are also solution.
We know from the previous Theorem 2.3.1., x and y integers since d

divides b and a. This gives us many solutions , for different integers n. Let’s
show that these are any solution; x, y be any integer solution, so ax+by = c.
Since ax + by = c = ax0 + by0 we have

a(x− x0) + b(y − y0) = 0,

so dividing by d we get

a

d
(x− x0) = − b

d
(y − y0). (2)

Now, a and b aren’t both 0, assume that b 6= 0. If we divide both the sides
with b

d and since (ad ,
b
d) = 1 , b

d divides x − x0(by k|pr and (k, p) = 1, then

k|r). Thus x− x0 = bn
d for some integer n, so x = x0 + bn

d .
Substituting back for x− x0 in (2) we obtain;

− b

d
(y − y0) =

a

d
(x− x0) =

a

d
.
bn

d

So dividing by b
d (which is nonzero) we have

y = y0 −
an

d
.

Example 2.3.2. Let the equation be

60x + 33y = 9.

And we will find all solution to 60x + 33y = 9.
So, a = 60, b = 33, c = 9 and (60, 33) = 3, we can see 3|9. So we can search
for solutions.
First, we use euclidean algorithm
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60 = 1 · 33 + 27

33 = 1 · 27 + 6

27 = 4 · 6 + 3

6 = 2 · 3 + 0.

We see the last nonzero remainder is 3 so (60, 33) = 3.
Reverse by step

3 = 27− 4 · 6
= 27− 4 · (33− 27)

= 5 · 27− 4 · 33

= 5 · (60− 33)− 4 · 33

= 5 · 60− 9 · 33.

So we take u = 5 and v = −9. One solution is then,

x0 = 5 · 9

3
= 15.

y0 = −9 · 9

3
= −27.

All the solutions are given by

x = 15 +
33n

3
⇒ x = 15 + 11n.

y = −27− 60n

3
⇒ y = −27− 20n.

where n ∈ Z.

Now,we can extend the Theorem 2.3.2 with more than two variables.

Theorem 2.3.3. If a1, a2, . . . , an are non zero positive integers, then the
equation a1x1 + a2x2 + · · ·+ anxn = c has an integral solution if and only if
d = (a1, a2, . . . , an) divides c. Furthermore, when there is a solution, there
are infinitely many solutions.
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Proof. Suppose that d = (a1, a2, . . . , an) and d|c, we have many solutions.
Let’s use the mathematical induction.
For n = 2 we know that how we can find the solution of linear diophantine
equation by Theorem 2.3.2.
Suppose that there are infinitely many solutions for the equation in n = k
variables, then we can write a1x1 + a2x2 + · · ·+ akxk = c and d|c.
The original equation in n = k + 1 variables can be reduced to a linear
diophantine equation in n variables. The equation in n = k + 1 variables;
a1x1 + a2x2 + · · ·+ akxk + ak+1xk+1 = t and d|t then, t = dp.
By Theorem 2.1.5., the set of linear combinations akxk + ak+1xk+1 is the
same as the set of multiplies of (ak, ak+1). So, for every integer p there
are many solutions of the linear diophantine equations akxk + ak+1xk+1 =
(ak, ak+1)p. Then, the equation reduced to k variables.

a1x1 + a2x2 + · · ·+ ak−1xk−1 + (ak, ak+1)p = c.

By Theorem 2.1.6. c is divisible by (a1, a2, . . . , ak−1, (ak, ak+1)), this gcd
equals (a1, a2, . . . , ak, ak+1).
By the inductive hypothesis, this equation has many solution (it is also a lin-
ear diophantine equation has n variables) because gcd of a1, a2, . . . , an, an+1

divides c. We completed our proof and we see there are many solutions to
the original equation.

Let’s illustrate the theorem:

Example 2.3.3. We will find the solutions of 4x + 8y + 5z = 7
First we find (4, 8) = 4, then;

(4, 8)(x + 2y) + 5z = 7 and if we say x + 2y = w

4w + 5z = 7

5 = 4 · 1 + 1

4 = 1 · 4 + 0.

The (4, 5) = 1 and 1 divides 7, there are many solutions.

1 = 5− 4 · 1

w0 = −1, z0 = 1

Its general solution is
w = −7 + 5k

z = 7− 4k.
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Next we find x and y
x + 2y = −7 + 5k.

(1, 2)|(−7 + 5k), the equation is solvable and the solution is

x = 1 · (−7 + 5k) + 2p

y = 0 · (−7 + 5k)− p

z = 7− 4k

where p ∈ Z is another parameter.

k, p = 0,±1,±2, . . .

If we want to solve in different way;

4x + 8y + 5z = 7

4x + (8, 5)(8y + 5z) = 7

Assume that 8y + 5z = t

4x + t = 7

x0 = 0 and t0 = 1.
Then,

x = s

t = 7− 4s

We said that 8y+ 5z = t and we found t = 7−4s, so we can write 8y+ 5z =
7− 4s.
(8, 5)|7− 4s so there is a solution.

8 = 5 · 1 + 3

5 = 3 · 1 + 2

3 = 2 · 1 + 1

2 = 1 · 2 + 0.

And by extended euclidean algorithm;
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1 = 3− 2 · 1
= 3− (5− 3)

= 2 · 3− 1 · 5
= 2 · (8− 5)− 5

= 2 · 8− 3 · 5.

Hence we find y0 = 2, z0 = −3.

x = s

y = 2 · (7− 4s) + 5m

= 14− 8s + 5m.

z = −3 · (7− 4s)− 8m

= −21 + 12s− 8m.

where s,m are the integers.
And then we have two different systems of equation with different parameters

x = −7 + 5k + 2p,

y = −p,

z = 7− 4k.

and for the second system
x = s,

y = −8s + 5m,

z = 12− 8m.

Let’s find the s,m in terms of k, p from the two systems;
For x
x = −7 + 5k + 2p and x = s.
Then

s = 5k + 2p− 7

For y we have;
y = −p and y = 14− 8s + 5m

−p = 14− 8s + 5m
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If we put s = 5k + 2p− 7 we get;

−p = 14− 40k − 16p + 56 + 5m⇒ m =
15p− 70 + 40k

5
= 3p + 8k − 14

and if we put these values(s and m)in the z equality,we will see;

z = 7− 4k, z = −21 + 12s− 8m

Put the values of s and m in terms of k and p

7− 4k = −21 + 12(−7 + 5k + 2p)− 8(3p− 14 + 8k)

Hence,we get
7 = 7

So,our equality is always true.
Now, we have

s = −7 + 5k + 2p

m = 3p− 14 + 8k.

We reduced the our equation system to two parameter as k and p.

2.4 Some Applications For Linear Diophantine Equations

Example 2.4.1. Clara wants to buy pizza and cola to her family. She has
400 SEK.

If we know that each pizza 57 SEK and each bottle of cola cost 22 SEK,
how many pizzas and bottles of cola she can buy?

We can write the equation as the linear diophantine equations

57x + 22y = 400

Let’s find the GCD of 57 and 22 using the euclidean algorithm;

57 = 22 · 2 + 13

22 = 13 · 1 + 9

13 = 9 · 1 + 4

9 = 4 · 2 + 1

4 = 1 · 4 + 0.

So, the last non zero remiander 1 and (57, 22) = 1 and 1|400, there are many
solutions.
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1 = 9− 4 · 2
= 9− 2 · (13− 9)

= 3 · 9− 2 · 13

= 3 · (22− 13)− 2 · 13

= 3 · 22− 5 · 13

= 3 · 22− 5 · (57− 2 · 22)

= 13 · 22− 5 · 57.

We can find x∗0 = −5 and y∗0 = 13 ⇒ x0 = 400 · (−5) = −2000 and
y0 = 400 · 13 = 5200
We write the general solution;

x = −2000 + 22n

y = 5200− 57n.

x ≥ 0 and y ≥ 0. Because x and y determine the number of pizzas and
bottles of colas. That’s why x and y can’t be negative.
5200− 57n ≥ 0 then 5200 ≥ 57n, if divide both sides by 57, we find n ≤ 91.
−2000+22n ≥ 0, so 22n ≥ 2000, divide both sides by 22, we get n ≥ 90, 9 ∼=
91, so n = 91.
If we put n = 91 in general solution we find x = −2000 + (22 · 91) = 2 and
y = 5200− (57 · 91) = 13, so she can buy 2 pizza and 13 bottles of cola.

Example 2.4.2. Assume that, there is discount for some stuffs in the restau-
rant and the pizza’s price changed from 57 SEK to 55 SEK. How many pizzas
and bottles of cola she can buy?

55x + 22y = 400

Using the euclidean algorithm;

55 = 22 · 2 + 11

22 = 11 · 2 + 0.

(55, 22) = 11 and 11 doesn’t divide 400. So there is no solution.

Example 2.4.3. Peter wants to buy pets. He has 151 euros and he must
choose at least one of each pet. The prices are; fishes 3 euro each, cats are
5 euro each, dogs are 10 euros each. How many fishes, cats and dogs he can
buy?
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3x + 5y + 10z = 151.
If we use the same method which have been used in Example 2.3.3, then we
write
(3, 5)3x + 5y + 10z = 151 and 3x + 5y = v.

v + 10z = 151

The general solutions are given by

v = 151 + 10t

z = −t.

And we assumed that 3x + 5y = v and then 3x + 5y = 151 + 10t;
The general solution

x = 47 + 5k

y = 2 + 2t− 3k.

where t, k ∈ Z.
x, y, z should be bigger than zero, so we can find the ranges for t and k.

47 + 5k > 0,

2 + 2t− 3k > 0,

−t > 0.

If we calculate the ranges, we find;

k > −10,

2t− 3k > −2,

t > 0.

Now, we should find the ranges. For example, consider 2t−3k > −2 and we
know that t a is negative parameter. So, if we put t = −1 in 2t− 3k > −2,
it is equal to (2 · −1) − 3k > −2 and k < 0. So, the ranges for k should
be −10 < k < 0 and let’s continue to process, if we choose t = −2 , the
inequality will be k < 0 again, and for t = −3, it will be k < −2 and if
we continue that calculation when we reach t = −16, we will get k < −10
and it will be wrong, because k should be bigger than −10. So, range for t
should be −16 < t ≤ −1. And the ranges are;

−10 < k < 0,
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−16 < t ≤ −1.

If we choose t = −14, k can be only equal to−9, and if we put those values on
the x, y, z equation, we find x = 47+5(−9) = 2, y = 2+2(−14)−3(−9) = 1
and z = −(−14) = 14. So he can buy 2 fishes, 1 cat and 14 dogs and he
pays 151 euros. If we choose the t values according to range, then k depends
on t.
We will find that how many solutions are there for these equations after the
theorem for solving linear congruence in n variables.
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3 Linear Congruence

3.1 Introduction to Congruence

Definition 3.1.1. a, b,m ∈ Z and such that m > 0 if m|a− b, we say that
a is congruent to b modulo m. We denote it by

a ≡ b (mod m)

Example 3.1.1. 11 ≡ 3 (mod 4) and 43 ≡ 1 (mod 6)
since
4|(11− 3) and 6|(43− 1).

Theorem 3.1.1. If a and b are integers, then a ≡ b (mod m) if and only if
there is an integer k such that a = b + mk.

Proof. (⇒) We know that from the definition of congruence; if a ≡ b
(mod m), then m|(a− b). Namely, a− b = km⇒ a = b + km.

(⇐) Assume that a = b+ km, then a− b = km. Hence m|a− b, and this
means a ≡ b (mod m).

Example 3.1.2. Suppose that a = 185, b = 3 and m = 14, then

185 = 3 + (14 · 13).

It is equal to 3 = 185− 14 · 13, it means 185 ≡ 3 (mod 14).

Theorem 3.1.2. If a, b, c and m are integers such that m > 0, d = (c,m)
and ac ≡ bc (mod m), then a ≡ b (mod m

d ).

Proof. If ac ≡ bc (mod m), so m|ac− bc. Then, m|c(a− b).
If m divide c(a− b), then there is an integer like t and it can be written like
c(a− b) = mt. Divide by d both sides, we got;

c(a− b)

d
=

mt

d

And we know from Theorem 2.1.1 if d = (c,m); then ( c
d ,

m
d ) = 1. Hence,

we can write ( c
d)(a−b) = m

d t and m
d is a multiple of (a−b). Then, m

d |(a−b).
Namely, a ≡ b (mod m

d )

Example 3.1.3. 45 ≡ 3 (mod 6) and if write 45 as a multiple of 3, we get
15 ·3 = 3 ·1 (mod 6), so if we consider for theorem c = 3, then (3, 6) = 3,

we see that 45
3 ≡

3
3 (mod 6

3) or 15 ≡ 1 (mod 2).
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3.2 Linear Congruences

A linear congruence is an equation of the form ax ≡ b (mod m). Solving
this equation means identisfying which values of x satisfy it.

Theorem 3.2.1. Let a, b, c ∈ Z with a and b nonzero. If (x0, y0) is a solution
to

ax + by = c

then x0 is a solution to the associated congruence

ax ≡ c (mod m)

where m = |b|.
Conversely, if x0 is a solution to the above congruence, then there is a

y0 such that (x0, y0) is a solution to the above diophantine equation.

Proof. For the first part of theorem, observe that b divides (ax0 − c). Thus
m divides (ax0 − c).

For the second part of theorem, since x0 solve the congruence, m|(ax0−
c). Thus ax0 − c is a multiple of b. Hence ax0 − c = y0b for some y0 ∈ Z .
Then (x0, y0) solves the Diophantine equation.

Example 3.2.1. Let us solve the diophantine equation

7x + 9y = 41 (3)

We convert equation (3) to a congruence (mod 9) namely,

7x ≡ 41 (mod 9) (4)

which reduces to

7x ≡ 5 (mod 9) (5)

the unique solution of congruence (5) is given by

x ≡ 2 (mod 9) (6)

which we convert the equation

x = 2 + 9t (7)

Note that x0 = 2. Now y0 = [41− 7 · 2]|9 = 3, so we have
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y = 3− 7t (8)

To complete solution to the equation (3) is given by equations (7) and (8),
where t is an arbitrary integer.

Example 3.2.2. Solve 7x ≡ 5 (mod 9) by using diophantine equation.
To find a solution, we need only obtain a solution of the linear diophantine
equation 7x− 9y = 5. The euclidean algorithm gives

9 = 7 · 1 + 2

7 = 2 · 3 + 1

3 = 3 · 1 + 0.

By extended euclidean algorithm

1 = 7− 2 · 3
= 7− 3 · (9− 7)

= 4 · 7− 3 · 9.

Therefore a particular solution to the linear diophantine equation is

x0 = 4

y0 = 3.

The general solution is
x = 4 · 5 + 9r

It means x = 20 + 9r, namely x ≡ 20 (mod 9) which reduces to x ≡ 2
(mod 9).

You can find more detail, look at [13].
Remark: When the refer to the numbers of solutions of ax ≡ b

(mod m), we mean the number of incongruent integers satisfying this con-
gruence.

Theorem 3.2.2. The linear congruence ax ≡ b (mod m) has a solution if
and only if d|b, where d = (a,m). If d|b, then it has d incongruent solutions
modulo m.

Proof. We already known that the given congruence is equivalent to the
linear diophantine equation(ax − my = b). From Theorem 2.3.1, the dio-
phantine equation can be solved if and only if d|b; also if it is solvable and
x0, y0 are one specific solutions, then any other solution has the form

x = x0 +
m

d
· t, y = y0 +

a

d
· t
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for some t.
Among the several integers satisfying the first of these formulas, consider
those that result when t takes on the consecutive values, t = 0, 1, 2, · · · , d−1:

x0, x0 +
m

d
, x0 +

2m

d
, · · · , x0 +

d− 1

d
·m.

We claim that these integers are incongruent modulo m, and all other such
integers x are congruent to some one of them. If it happened that

x0 +
m

d
· t1 ≡ x0 +

m

d
· t2 (mod m)

where 0 ≤ t1 < t2 ≤ d− 1, then we would have

m

d
· t1 ≡

m

d
· t2 (mod m)

Now, (md ,m) = m
d and by Theorem 3.1.2 the factor m

d cancel to arrive at
the congruence

t1 ≡ t2 (mod d)

This shows that all values of set of incongruent solutions are by taking
x = x0 + (md ) · t, where t ranges with a complete system of residues modulo
d. One set is given by x = x0 + m

d · t, where t = 0, 1, 2, · · · , d− 1.

Corollary 3.2.1. If (a,m) = 1, then the linear congruence ax ≡ b (mod m)
has a unique solution modulo m.

Proof. (a,m) = 1 and (a,m)|b. So, by Theorem 3.2.2, the congruence ax ≡ b
(mod m) has exactly (a,m) = 1 incongruent solution modulo m.

Example 3.2.3. Consider the congruence 9x ≡ 30 (mod 42). (9, 42) = 3
and 3 divides 42. And the Theorem 3.2.2 guarentees the existence of exactly
3 solutions, which are incongruent modulo 42. By inspection, one solution is
found to be x = 8. Our analysis tells us that three solutions are as follows:

x ≡ 8 + (
42

3
) · t ≡ 8 + 14 · t.

where t = 0, 1, 2 and then x ≡ 8, 22, 36.

Example 3.2.4. 35x ≡ 9 (mod 13) , if we want to solve that congruence, we
will find by inspection x = 1. According to Corollary 3.2.1 if (a,m) = 1,there
is a unique solution and for that example (35, 13) = 1,then we have a unique
solution. Let’s prove it. Suppose, the general solutions are x1 = 1 + 13 · t1
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and x2 = 1+13·t2. Suppose two solutions of this form are congruent modulo
13. If there is a unique solution ; it should be x1 = x2 (mod 13).

x1 ≡ x2 (mod 13)

1 + 13 · t1 ≡ 1 + 13 · t2 (mod 13)

13 · t1 ≡ 13 · t2 (mod 13).

If divide both sides by 13

t1 ≡ t2 (mod 1).

Hence x1 always congruent to x2. We have a unique solution.

Definition 3.2.1. Given an integer a with (a,m) = 1, a solution of ax ≡ 1
(mod m) is called an inverse of a modulo m.

Example 3.2.5. Assume that a = 20 and m = 11, 20x ≡ 1 (mod 11), by
trial and error x = 5 (mod 11), 5 and all integers congruent to 5 and modulo
11, are inverse of 20 modulo 11.

Theorem 3.2.3. The linear congruence a1x1+ · · ·+anxn ≡ b (mod m) has
solutions if and only if d = (a1, · · · , an,m)|b.

Proof. ⇒ Suppose that x1, · · · , xn, y0 are solutions for the equation. Then
a1x1 + · · ·+ anxn −my0 = b. Since d|x1, · · · , xn,m , we get d|a1x1 + · · ·+
anxn −my0, then d|b.
⇐ Suppose that d|b. Then d = bk where k is an integer. We know by

theorem 2.1.5. d = (a1, · · · , an,m) can be written as a linear combination of
a1, · · · , an,m. So there exist e, · · · , v, w ∈ Z with a1e+ · · ·+ anv−mw = d.
If we multiply both of sides with k, we get a1ek + · · · + anvk − mwk =
dk = b. So the equation a1x1 + · · ·+ anxn −my = b has a solution, namely
x1 = ek, · · · , xn = vk.

Theorem 3.2.4. The congruence a1x1 + · · · + anxn ≡ b (mod m),m1 6= 0
with (a1, · · · , an,m) = d and d|b has d · |m|n−1 incongruent solutions.

Proof. Because a1x1 + · · · + anxn ≡ b (mod m) ⇔ a1x1 + · · · + anxn ≡ b
(mod −m), we can consider m > 0. We use induction.
For n = 1, we have proved by Theorem 3.2.2.
Suppose that it is true for n − 1. Let’s prove that it is true for n. Let
the congruence with n variables a1x1 + · · · + anxn ≡ b (mod m), namely
a1x1 + · · ·+ an−1xn−1 ≡ b− anxn (mod m). If we consider that xn is fixed,
the congruence a1x1 + · · ·+ an−1xn−1 ≡ b− anxn (mod m) is a congruence
with n− 1 variables. To have solutions we must have (a1, · · · , an−1,m) = s
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and s|b− anxn ⇔ b− anxn ≡ 0 (mod s).
It is clear, s|m⇒ m

s ∈ Z, therefore we can multiply the previous congruence
with m

s . It results that

man
s

xn ≡
mb

s
(mod s

m

s
) (9)

which has (man
s , sms ) = m

s (an, (a1, · · · , an−1,m)) = m
s (a1, · · · , an−1, an,m)

and m
s ·d incongruent solutions for xn. Let x0n be a particular solution of the

congruence (9). It results that a1x1 + · · ·+ an−1xn−1 ≡ b− anx
0
n (mod m)

has, assimilate to the induction’s hypothesis, s ·mn−2 incongruent solutions
for x1, · · · , xn−1 where s = (a1, · · · , an−1,m). Therefore the congruence
a1x1 + · · ·+ an−1xn−1 + anxn ≡ b (mod m) has m

s · d · s ·m
n−2 = d ·mn−1

incongruent solutions for x1, · · · , xn−1, xn.

You can look also [14].

Corollary 3.2.2. If we have linear congruence in two variables ax+ by ≡ c
(mod m) and if (a, b,m)|c, there is a solution and we have d · m distinct
solutions.

Proof. Applying the above Theorem 3.2.4 with n = 2, we saw that there are
m2−1 · d, namely m · d incongruent solutions.

Example 3.2.6. Consider the linear congruence 2x + 6y ≡ 4 (mod 12).
First, we must check (2, 6, 12)|4 and 2|4, then we have a solution.
We can solve the congruence above as linear diophantine equation in three
variables.
The given equation is equivalent to

2x + 6y − 12z = 4

for some z.
(2, 6)x + 3y − 12z and if we say to w = x + 3y.
We get;
2w − 12z = 4 and simply w − 6z = 2, now we got the diophantine equation
in two variables.
The general solution is;

w = 8 + 6k

z = 1 + k

where k ∈ Z.
And then;

x + 3y = 8 + 6k
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The general solution;
x = 8 + 3t

y = 2k − t

where t ∈ Z.
So, we found our general solution for x and y.
And t = 0, 1, · · · , 11 will produce incongruent values of x modulo 12. We
found y = 2k−t and in the linear diophantine it is equal to 3y = 3·(2k−t) =
6k − 3t. So if we choose k = 2 ,it will be equal to 12 and it repeat itself in
y mod 12. So, the all possibilities for y mod 12 by letting k = 0, 1. In this
question we have 12 t values and 2 k values, so we find 24 solutions. It is
also true with theorem, m = 12 and d = 2, we have 12 · 2 = 24 incongruent
solutions.
All incongruent solutions mod 12 are;

x = 8 + 3t

y = 2k − t

where t = 0, 1, · · · , 11 and k = 0, 1.

Example 3.2.7. And also,we can calculate the number of solution in Ex-
ample 2.4.3. Remember the question; 3x + 5y + 10z = 151 and if we write
as a linear congruence 3x + 5y ≡ 1 (mod | − 10|). If we use the theorem
3.2.4 for that question, a = 3, b = 5, c = 1 and m = 10. Since (3, 5, 10)|1,
then there is a solution. The number of solution mn−1 · d. In our question
m = 10 and d = 1 and we have two variables. 102−1 · 1 = 10, so we have 10
incongruent solution.We found that the general solution

x = 47 + 5k

And we can write for x modulo 10

x = 7 + 5k

y = 2 + 2t− 3k.

Hence k = 0, 1 produce incongruent values of x mod 10. Because if
k = 2, it will repeat itself in mod 10. And t = 5, it will be equal to 10 and
repeat itself. That’s why, the all possibilities for y mod 10 t = 0, 1, 2, 3, 4.
The incongruent solutions are;

x = 7 + 5k

y = 2 + 2t− 3k
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where k = 0, 1 and t = 0, 1, 2, 3, 4.
Then, we have two k values and five t values. We find 5 · 2 = 10 values. It
confirms the Theorem 3.2.4.
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4 Conclusion

As has been explained above, linear diophantine equation in two variables
can be solved by euclidean algorithm and extended euclidean algorithm.
When the solution has been searched for linear diophantine equation in two
variables, as ax + by = c, first should be checked (a, b)|c. If (a, b)|c, then
there is a solution. To find the solution for linear diophantine equation
in n variables, as a1x1 + a2x2 + · · · + anxn = c, again should be checked
(a1, a2, · · · , an)|c by mathematical induction.
The linear congruences and linear diophantine equations are relatable. As
seen above that the linear congruences in one variable ax ≡ b (mod m) can
be written ax −my = b as a linear diophantine equation in two variables.
We can generalize the method to more variable. The number of solutions
can be found to

a1x1 + a2x2 + · · ·+ anxn ≡ b (mod m)

as |m|n−1d.
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