Solving Linear System of Equations

4 ™
The “Undo” button for Linear Operations

Matrix-vector multiplication: given the data x and the operator A,
we can find y such that

y=Ax A
X Emmm———) Y

transformation

What if we know 7y but not x? How can we “undo” the
transformation?

Y — X Solve A x = y for x

™~

Demo “Image Blur Inverse”

g
Image Blurring Example

0

L TIOLT
F A

30

1 AGC
Fln e

0 20 40 60 80

* Image is stored as a 2D array of real numbers between 0 and 1

(0 represents a white pixel, 1 represents a black pixel)
* xmat contains the 2D data (the image) with dimensions 100x40
* Flatten the 2D array as a 1D array
* X contains the 1D data with dimension 4000,
* Apply blurring operation to data X, i.e.

y=Ax

where A is the blur operator and Y is the blurred image

- /

4 ™
Blur operator

X
0
10
2 FTa0_27_AGLC 1
fF dFTAET T2 |
30
0 20 40 60 80
blurred "original”
_ Blur operator .
AT (4000,4000) 0SS 0
(4000,) (4000,)

N\

y=Ax

30

0 20 40 60 80

o A
"Undo” Blur to recover original image
y

0

10

20 _.“ -..l .i_ .
S .

—
30 Assumptions:
0 20 40 60 80 1. we know the blur
A
Solve operator
Ax = 2. the data set Yy does not
r=DY have any noise (“clean
for x data”
5 X What happens if we add
" some noise to y?
2 F20_2_AGL T
f AFTIHET T

30

4 o
"Undo” Blur to recover original image

y+ax=107°(a € (0,1)) y+ax10"*(a € (0,1))
0 0
10 10
. MENER - TR e
30 30
0 20 80 0 80
‘ Solve A x =
0 e b R
. o g 1 ole i)
. 730-32-405] 2:4951 -
30 ..., .I.l-.: I..I -E.Il
0 20 40 60 80 . 8l° :

How much noise can we add and still be able to recover meaningful information from the original

image? At which point this inverse transformation fails?
k We will talk about sensitivity of the “undo” operation later.

™

/

g
Linear System of Equations

How do we actually solve A X = b ?

We can start with an “easier” system of equations. ..

Let’s consider triangular matrices (lower and upper):

L, O 0 X1 b
L1 Ly 0 X2 | _ [b2
Lnl an Lnn Xn bn
U1 Up Uin X1 b
0 Uz Upn || X2 | _ [b2
0 0 Unn Xn bn

™
Example: Forward-substitution for lower

triangular systems

2 0 X1 2
1 2 X3 6
1 3 X4 4

1/2

- .
Triangular Matrices

Ull UlZ Uln xl b
O Uzz UZTl xz — bz
0 0 .. Uy/ \Xn b,

Recall that we can also write U X = b as a linear combination of the columns of U

- .
Triangular Matrices

Forward-substitution for lower—triangular systems:

L4 0 .. 0
Ly; Ly, .. 0
Lnl an Lnn

X1 =by/L11

4 . .
Cost of solving triangular systems

b; — Y™ . U;ixi
Xn = by /Unn X;= — JU‘“ v i=n—1n—-2..1
ii

4 . .
Cost of solving triangular systems

n
b — Lj=i+1UijX;
)
Uii

Xn = bp/Unn Xi= i=n—1,n-2,...,1

n divisions
n(n — 1)/2 subtractions/additions ‘ Computational complexity is O (n?)

n(n — 1)/2 multiplications

i—1
_ bi —2j=1Liyx

X1 = by/L14 X;= T) I =23, ..,n
L

n divisions
n(n — 1) /2 subtractions/additions ‘ Computational complexity is O (n?)

nn—1)/2 multiplications

Demo “Coding Back-substitutio

”»
n

/

g
Linear System of Equations

U such that
A=LU

where we set the diagonal entries of L to be equal to 1.

1 0 ... 0\ /U1 Uz .. Up A1 Ar
L, 1 .. 0 0 Uz o Upn|_ [421 Az
Lnl an | 0 0 Unn Anl Anz

We can perform LU factorization: given a X7 matrix A,

How do we solve A X = b when A is a non—triangular matrix?

obtain lower triangular matrix L and upper triangular matrix

LU Factorization

1 O .. 0 Uy, Ui ... Uiy Ay Aqp
L, 1 .. 0 0 Uz o Upp | _ [A21 A
Lnl an R | 0 0 Unn Anl Anz

Assuming the LU factorization is know, we can solve the general system

Ain
Azn

r~ ™
Example

Assume the A = LU factorization is known, yielding:

1 0 00 2 8 4 1
L=[05 1 00} ,_(0 -2 1 25
05 1 1 0 {00 3 -1

0.5 05 05 1 0 0 0 075 2
Determine the solution X that satisfies AX = b, when b = %
LUx=Db 4

y

First, solve the lower-triangular

system L y = b for the variable y

Then, solve the upper-triangular
system U X =y for the variable X

4 ™
2x2 LU Factorization (simple example)

(A11 A12)=(1 O)(Un U12)
Ay Ay L,y 1)\ 0 Uy

e

Example

Which of the following statements about the A = LU

factorization are true?

1) It can happen that A is invertible, but U is not.
2) U has a diagonal that is full of ones.
3) A factorization A = LU does not always exist.

4—) L has a diagonal that is full of ones.

A)1 and
B)1 and
C)2 and
D)2 and
E)3 and 4

oW W N

e
Example

Computing the Lower-Triangular 1 poin
Factor in LU

Consider the matrix

2 3
A=
1 4
and its corresponding LU factorization (A = LU), where the lower and upper triangular matrices given respectively
by
1 O
L=[] and U=[”“ ”12].
121 1 O Upy
by =
U =
Upp =
U =

LU Factorization

Ay A o Ay
A21 A22 nna A2n —
Ay Ay o Apn

LU Factorization

ai;
A,

1

(

)
e

ulz

: scalar

: row vector (1X(n — 1))
: column vector ((n — 1)X1)
: matrix ((n — 1)><(n — 1))

1) First row of U is
the first row of A

™

0
L,

Uiy
U,,

) (5 o))

V)

a1 \ a;
A1 | A12 Ain
Az1 | [A23 Ay ((111
: : : a,q
Anl AnZ . Ann
a;, \
AZZ
('a11 aiz\ (U1
~a21“ Azzf\ Uqq Ipq

lyuy; + Ly, Uzz)

1
2)ly; = —ay,

U1
First column of L is the first

@

kcolumn of A/ uqq

\

[\
3YM = Ly, Uy, = Ayy — Liuy,

Need another factorization!

Known!

\

/

Example

o OO

o OO

0.5 [0.5] 0 O
0.5 05 [(05]0

0.5

05,0 0 O

<t N \O

O NN N

2
1
1
1

(

2
1
1
1

M =

1
:E) Lz(
-1 2 15
1
1 25) !
—1
/

4
3

4

-1 1.5 0.25

-2 1 2
-2 4 1

38
38
—2
—2

2
1
1
1

(
(

M
M

0
0
0

0 0
1 0
1 1
05 05 05 1

0.5
0.5

e
LU Algorithm

A = np.array([[2.0,8,4,1],[1,2,3,3],[1,2,6,2],[1,3,4,2]1])

Algorithm 1
Factorization using the block-format,
creating new matrices L and U
and not modifying A
print("LU factorization using Algorithm 1")
L = np.zeros((n,n))
U = np.zeros((n,n))
M = A.copy()
for i in range(n):
Ufi,i:] = M[i,1i:]
L{i:,i] = M[i:,i1/U[i,1]
M[i+l:,i+1l:] -= np.outer(L[i+l:,1i],U[i,i+1l:])

Algorithm 2
Factorization using the block-format
Matrices L and U are stored in the input matrix
that could be a copy of A or A itself
print ("LU factorization using Algorithm 2")
M = A.copy()
for i in range(n):
M[i+1l:,i] = M[i+1:,i]1/M[i,1]
M[i+l:,i+1l:] -= np.outer(M[i+l:,i],M[i,i+1:])

Demo “LU-Factorization”

-

e
LU Algorithm

A = np.array([[2.0,8,4,1],[1,2,3,3],[1,2,6,2],[1,3,4,2]1])

Algorithm 2
Factorization using the block-format
Matrices L and U are stored in the input matrix
that could be a copy of A or A itself
print("LU factorization using Algorithm 2")
M = A.copy()
for i in range(n):
M[i+1l:,i] = M[i+1l:,1]/M[1i,1]
M[i+l:,i+1l:] -= np.outer(M[i+1l:,i],M[i,i+1:])

| Forj=i+1:n—-1
M[j,] = M{j, il/Mli, i)

Forj=i+1:n—-1
Fork=i+1n-1

M[j, k] —= M[j,i] = M[i,k] & _ 2-S°oPY0)

for i in range(n-1):
for j in range(i+l,n):
M[j,1] = M[J,i]1/M[i,1i]
for k in range(i+l,n):

M[],k] -= M[]J,1]*M[1,k]

/

/ Side note: \
Cost of LU factorization .

Zi=lm(m+1)
2

Algorithm 1 i=1

Factorization using the block-format, m
creating new matrices L and U ziz — 1m(m+ DC2m+1)
and not modifying A 6

print("LU factorization using Algorithm 1")

L = np.zeros((n,n))

U = np.zeros((n,n))

M = A.copy()

for i in range(n):

i=1

Uli,i:] = M[i,1:]
L[i:,i] = M[i:,i]/0[1,1i]
M[i+1l:,i+1l:] -= np.outer(L[i+1:,1i],U[i,i+1:])

e
Example

Which of the following statements are true about the LU factorization of an n X n
matrix A, assuming LU factorization of A exists and not considering any
row/column interchanges?

Select all that apply:
1) A=LU. A)1,2,3

2) LU factorization is exactly performing Gaussian elimination. B) 1 2 3 5
y“<— 97

4—) L is a lower triangular matrix, and is exactly the lower part of A but with C) 1) 3
unit diagonal. D) 1 :) : 3 ,4_, 5

) U is an upper triangular matrix, and is exactly the upper part of A E 4 5
(including diagonal).))

3) We can solve for LUx = b instead of solving Ax = b to obtain x.

Solving linear systems

In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix A : A = LU (complexity O(n?))

2) Solve Ly = b (complexity 0(n?))

3) Solve U x = y (complexity O(n?))

But why should we decouple the factorization from the actual solve?

Remember from Linear Aloebra. Gaussian Elimination does not
g)

decouple these two steps...)

Example

Let’s assume that when solving the system of equations K U = F, we observe the
following:

* When the matrix K has dimensions (100,100), computing the LU factorization takes
about 1 second and each solve (forward + backward substitution) takes about 0.01

seconds.

Estimate the total time it will take to find the response U corresponding to 10 different
vectors F when the matrix K has dimensions (1000,1000)?

A) ~10 seconds

B) ~10? seconds
C) ~103 seconds
D) ~10* seconds
E) ~10° seconds

-

What can go wrong with the previous

algorlth m? Demo “Little ¢”
2 8 4 1\ 1 0 0 0 218 4 1)
(1[4 3 3 _[flos{ 0o 0 o0 (o 0 0 o
M‘<1 2 6 2) L‘(o.s 0 0 o) U‘(o 0 0 0)
1L.3 4 2 0.5/ 0 0 0 00 0 0

4 2 05 i g ‘11 215\

lyui; =14 2 05 M—lyu,=| |5 2 02

205 1/-1 2 15

The next update for the lower triangular matrix will result in a

division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

™

g

Pivoting

Approach:

1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and

swap it to the top row.
The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

((111 a12) _(Uq1 U)
aj, Ay Uyq by Lyugpy + LUy,

\ Find the largest entry (in magnitude)

LU Factorization with Partial Pivoting

Example

o OO

-
-
o OO O
LN
o

CO NN M

AN v v v

1
2.5
0 O
0 O

4
1

38
—2
0 0
0 0

2
0

0
1
05 |1
0.5 [0.5] 0 O

] -

1
-1 2 1.5

4
-2 1 2
-2 1 1

8

2

_ |1
M_<1
1
M=<

1
2.5

0 0
0 0

4
1

38
—2

2
0
0 O
0 O

0
0
0
0

0
0
0

0.5 [1.0f O

\
4
\
/

1
2.5

4
1
0

-1 15 0.25

38
—2
—2

2
1
1
1

L =

1
1 2.5

4
0

—1| 1.5 0.25

8
—2
—2

2
1
1
1

|

M

-

g

Demo “Pivoting example”

|

O — LN O

— N O O

— MDD~

)

4.5

3.5
=175 225 1.25
525 6.75 3.75

I uq,

n oo O

o OO O

>~ OO O

~

LN
a0
LN v v -
B
LN LN
o =N
_42
n 1 n
NOoO o Y
__1
®© F a0
(

[l

(q\]

—

=1

i

[q\]

—~—

_

<

/ . : "
Demo “Pivoting example

Z = Z — l21u12 =
0 0 1
2_pa_|0 0 O
A=PA= 1.0 0
0 1 0
1 0
L 0.75 1
0.25 -—-0.428
0.5 —0.285
A=A-lu,=

8

4
2
6

o O O

o OO O

8

6
2

4

7 9 5
—05 | —1.5 —-15
—0.75 | —1.25 —1.25
1.75 | 225 4.25

8 7 9 5

6 175 225 4.25

2 —075 —1.25 -1.25

4 -05 -15 -—15

0 8 7 9 5
0) ,_(0 175 225 425
0 0 0 0 0
0 0 0 0 0
7 9 5
1.75 2.25 425
—0.75 [—0.287| 0.569
—0.5 |-0.8587| —0.2887

1.75
—0.75
—0.5

9 5
2.25 4.25
—-1.25 —-1.25
—-15 —15

—0.963

L1tz = (—0.6412

—1.819
—1.2112

)

Demo “Pivoting example”

g8 7 9 5
— [6 175 225 425
A=A—-lhuiz =\ 5" (75 [Z0287] 0569
4 —05 |-0.8587| —0.2887
00 1 0N/8 7 9 5 8 7 9 5
d-pi—[0 0 0 1) 6 175 2.25 4.25 6 1.75 225 425
010 0/l2 —075 —0287 0569 4 —05 [—08587] —0.2887
1 0 0 0/\4 —05 —08587 —02887 2 —0.75 | —0.287 | 0569
0 0 0 g8 7
075 1 0 0 v-|0 175
0285 10 =l 0 o
025 —0.428 |0.334| 0 0 0
0 0 g8 7 9 5
075 1 0 0 p-[0 175 225 425
0285 1 0 0 0 —086 —0.29
025 0428 0334 1 0 0 0 0.67
0O 01 0
[0 0 0 1
P=10 10 o0
1 0 0 O

