Solving Linear System of Equations




4 ™
The “Undo” button for Linear Operations

Matrix-vector multiplication: given the data x and the operator A,
we can find y such that

y=Ax A
X Emmm———) Y

transformation

What if we know 7y but not x? How can we “undo” the
transformation?

Y — X Solve A x = y for x
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Demo “Image Blur Inverse”

g
Image Blurring Example
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* Image is stored as a 2D array of real numbers between 0 and 1

(0 represents a white pixel, 1 represents a black pixel)
* xmat contains the 2D data (the image) with dimensions 100x40
* Flatten the 2D array as a 1D array
* X contains the 1D data with dimension 4000,
* Apply blurring operation to data X, i.e.

y=Ax

where A is the blur operator and Y is the blurred image
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4 ™
Blur operator
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"Undo” Blur to recover original image
y
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4 o
"Undo” Blur to recover original image

y+ax=107°(a € (0,1)) y+ax10"*(a € (0,1))
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How much noise can we add and still be able to recover meaningful information from the original

image? At which point this inverse transformation fails?
k We will talk about sensitivity of the “undo” operation later.
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g
Linear System of Equations

How do we actually solve A X = b ?

We can start with an “easier” system of equations. ..

Let’s consider triangular matrices (lower and upper):

L, O 0 X1 b
L1 Ly 0 X2 | _ [ b2
Lnl an Lnn Xn bn
U1 Up Uin X1 b
0 Uz Upn || X2 | _ [ b2
0 0 Unn Xn bn
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Example: Forward-substitution for lower

triangular systems

2 0 X1 2
1 2 X3 6
1 3 X4 4
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Triangular Matrices

Ull UlZ Uln xl b
O Uzz UZTl xz — bz
0 0 .. Uy/ \Xn b,

Recall that we can also write U X = b as a linear combination of the columns of U
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Triangular Matrices

Forward-substitution for lower—triangular systems:

L4 0 .. 0
Ly; Ly, .. 0
Lnl an Lnn

X1 =by/L11




4 . .
Cost of solving triangular systems

b; — Y™ . U;ixi
Xn = by /Unn X;= — JU‘“ v i=n—1n—-2..1
ii




4 . .
Cost of solving triangular systems

n
b — Lj=i+1UijX;
)
Uii

Xn = bp/Unn Xi= i=n—1,n-2,...,1

n divisions
n(n — 1)/2 subtractions/additions ‘ Computational complexity is O (n?)

n(n — 1)/2 multiplications

i—1
_ bi —2j=1Liyx

X1 = by/L14 X;= T ) I =23, ..,n
L

n divisions
n(n — 1) /2 subtractions/additions ‘ Computational complexity is O (n?)

nn—1)/2 multiplications

Demo “Coding Back-substitutio
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g
Linear System of Equations

U such that
A=LU

where we set the diagonal entries of L to be equal to 1.

1 0 ... 0\ /U1 Uz .. Up A1 Ar
L, 1 .. 0 0 Uz o Upn|_ [ 421 Az
Lnl an | 0 0 Unn Anl Anz

We can perform LU factorization: given a X7 matrix A,

How do we solve A X = b when A is a non—triangular matrix?

obtain lower triangular matrix L and upper triangular matrix




LU Factorization

1 O .. 0 Uy, Ui ... Uiy Ay Aqp
L, 1 .. 0 0 Uz o Upp | _ [ A21 A
Lnl an R | 0 0 Unn Anl Anz

Assuming the LU factorization is know, we can solve the general system

Ain
Azn
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Example

Assume the A = LU factorization is known, yielding:

1 0 00 2 8 4 1
L=[05 1 00} ,_(0 -2 1 25
05 1 1 0 {00 3 -1

0.5 05 05 1 0 0 0 075 2
Determine the solution X that satisfies AX = b, when b = %
LUx=Db 4

y

First, solve the lower-triangular

system L y = b for the variable y

Then, solve the upper-triangular
system U X =y for the variable X




4 ™
2x2 LU Factorization (simple example)

(A11 A12)=(1 O)(Un U12)
Ay Ay L,y 1)\ 0 Uy
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Example

Which of the following statements about the A = LU

factorization are true?

1) It can happen that A is invertible, but U is not.
2) U has a diagonal that is full of ones.
3) A factorization A = LU does not always exist.

4—) L has a diagonal that is full of ones.

A)1 and
B)1 and
C)2 and
D)2 and
E)3 and 4

oW W N
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Example

Computing the Lower-Triangular 1 poin
Factor in LU

Consider the matrix

2 3
A=
1 4
and its corresponding LU factorization (A = LU), where the lower and upper triangular matrices given respectively
by
1 O
L=[ ] and U=[”“ ”12].
121 1 O Upy
by =
U =
Upp =
U =




LU Factorization

Ay A o Ay
A21 A22 nna A2n —
Ay Ay o Apn




LU Factorization

ai;
A,

1

(

)
e

ulz

: scalar

: row vector (1X(n — 1))
: column vector ((n — 1)X1)
: matrix ((n — 1)><(n — 1))

1) First row of U is
the first row of A

™

0
L,

Uiy
U,,

) (5 o))

V)

a1 \ a;
A1 | A12 Ain
Az1 | [A23 Ay ((111
: : : a,q
Anl AnZ . Ann
a;, \
AZZ
('a11 aiz\ ( U1
~a21“ Azzf\ Uqq Ipq

lyuy; + Ly, Uzz)

1
2)ly; = —ay,

U1
First column of L is the first

@

kcolumn of A/ uqq

\

[ \
3YM = Ly, Uy, = Ayy — Liuy,

Need another factorization!

Known!
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Example
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LU Algorithm

A = np.array([[2.0,8,4,1],[1,2,3,3],[1,2,6,2],[1,3,4,2]1])

## Algorithm 1
## Factorization using the block-format,
## creating new matrices L and U
## and not modifying A
print("LU factorization using Algorithm 1")
L = np.zeros((n,n))
U = np.zeros((n,n))
M = A.copy()
for i in range(n):
Ufi,i:] = M[i,1i:]
L{i:,i] = M[i:,i1/U[i,1]
M[i+l:,i+1l:] -= np.outer(L[i+l:,1i],U[i,i+1l:])

## Algorithm 2
## Factorization using the block-format
## Matrices L and U are stored in the input matrix
## that could be a copy of A or A itself
print ("LU factorization using Algorithm 2")
M = A.copy()
for i in range(n):
M[i+1l:,i] = M[i+1:,i]1/M[i,1]
M[i+l:,i+1l:] -= np.outer(M[i+l:,i],M[i,i+1:])

Demo “LU-Factorization”

-
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LU Algorithm

A = np.array([[2.0,8,4,1],[1,2,3,3],[1,2,6,2],[1,3,4,2]1])

## Algorithm 2
## Factorization using the block-format
## Matrices L and U are stored in the input matrix
## that could be a copy of A or A itself
print("LU factorization using Algorithm 2")
M = A.copy()
for i in range(n):
M[i+1l:,i] = M[i+1l:,1]/M[1i,1]
M[i+l:,i+1l:] -= np.outer(M[i+1l:,i],M[i,i+1:])

| Forj=i+1:n—-1
M[j, ] = M{j, il/Mli, i)

Forj=i+1:n—-1
Fork=i+1n-1

M[j, k] —= M[j,i] = M[i,k] & _ 2-S°oPY0)

for i in range(n-1):
for j in range(i+l,n):
M[j,1] = M[J,i]1/M[i,1i]
for k in range(i+l,n):

M[],k] -= M[]J,1]*M[1,k]

/




/ Side note: \
Cost of LU factorization .

Zi=lm(m+1)
2

## Algorithm 1 i=1

## Factorization using the block-format, m
## creating new matrices L and U ziz — 1m(m+ DC2m+1)
## and not modifying A 6

print("LU factorization using Algorithm 1")

L = np.zeros((n,n))

U = np.zeros((n,n))

M = A.copy()

for i in range(n):

i=1

Uli,i:] = M[i,1:]
L[i:,i] = M[i:,i]/0[1,1i]
M[i+1l:,i+1l:] -= np.outer(L[i+1:,1i],U[i,i+1:])
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Example

Which of the following statements are true about the LU factorization of an n X n
matrix A, assuming LU factorization of A exists and not considering any
row/column interchanges?

Select all that apply:
1) A=LU. A)1,2,3

2) LU factorization is exactly performing Gaussian elimination. B) 1 2 3 5
y“<— 97

4—) L is a lower triangular matrix, and is exactly the lower part of A but with C) 1 ) 3
unit diagonal. D) 1 : ) : 3 ,4_, 5

) U is an upper triangular matrix, and is exactly the upper part of A E 4 5
(including diagonal). ) )

3) We can solve for LUx = b instead of solving Ax = b to obtain x.




Solving linear systems

In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix A : A = LU (complexity O(n?))

2) Solve Ly = b (complexity 0(n?))

3) Solve U x = y (complexity O(n?))

But why should we decouple the factorization from the actual solve?

Remember from Linear Aloebra. Gaussian Elimination does not
g )

decouple these two steps...)




Example

Let’s assume that when solving the system of equations K U = F, we observe the
following:

*  When the matrix K has dimensions (100,100), computing the LU factorization takes
about 1 second and each solve (forward + backward substitution) takes about 0.01

seconds.

Estimate the total time it will take to find the response U corresponding to 10 different
vectors F when the matrix K has dimensions (1000,1000)?

A) ~10 seconds

B) ~10? seconds
C) ~103 seconds
D) ~10* seconds
E) ~10° seconds
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What can go wrong with the previous

algorlth m? Demo “Little ¢”
2 8 4 1\ 1 0 0 0 218 4 1)
(1[4 3 3 _[flos{ 0o 0 o0 (o 0 0 o
M‘<1 2 6 2) L‘(o.s 0 0 o) U‘(o 0 0 0)
1L.3 4 2 0.5/ 0 0 0 00 0 0

4 2 05 i g ‘11 215\

lyui; =14 2 05 M—lyu,=| |5 2 02

205 1/-1 2 15

The next update for the lower triangular matrix will result in a

division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

™




g

Pivoting

Approach:

1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and

swap it to the top row.
The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

((111 a12) _( Uq1 U )
aj, Ay Uyq by Lyugpy + LUy,

\ Find the largest entry (in magnitude)




LU Factorization with Partial Pivoting
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Demo “Pivoting example”
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Demo “Pivoting example
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Demo “Pivoting example”
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