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Gaussian elimination

Gaussian elimination solves a linear system by reducing to
REF via elementary row ops and then using back substitution.

Example

3x1 − 2x2 + 2x3 = 9
x1 − 2x2 + x3 = 5

2x1 − x2 − 2x3 = −1
 

3 −2 2 9
1 −2 1 5
2 −1 −2 −1


→

1 −2 1 5
0 1 3 5
0 0 1 2

  x1 − 2x2 + x3 = 5
x2 + 3x3 = 5

x3 = 2

Steps

1. P12

2. A12(−3)
3. A13(−2)
4. A32(−1)

5. A23(−3)
6. M3

(−1
13

)
Back substitution gives the solution (1,−1, 2).
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Gauss-Jordan elimination

Reducing the augmented matrix to RREF makes the system
even easier to solve.

Example1 −2 1 5
0 1 3 5
0 0 1 2

 →
1 0 0 1
0 1 0 −1
0 0 1 2

  x1 = 1
x2 = −1

x3 = 2

Steps

1. A32(−3) 2. A31(−1) 3. A21(2)

Now, without any back substitution, we can see that the
solution is (1,−1, 2).

The method of solving a linear system by reducing its
augmented matrix to RREF is called Gauss-Jordan
elimination.
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The rank of a matrix

Definition
The rank of a matrix, A, is the number of nonzero rows it has
after reduction to REF. It is denoted by rank(A).

If A is the coefficient matrix of an m× n linear system and
rank(A#) = rank(A) = n then the REF looks like

1 ∗ ∗ · · · ∗
1 ∗ . . . ∗

. . .
...

0 1 ∗
0 . . . . . . . . . . . 0

  
x1 = ∗
x2 = ∗

...
xn = ∗

Lemma
Suppose Ax = b is an m× n linear system with augmented
matrix A#. If rank(A#) = rank(A) = n then the system has a
unique solution.
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The rank of a matrix

Example

Determine the solution set of the linear system

x1 + x2 − x3 + x4 = 1,
2x1 + 3x2 + x3 = 4,
3x1 + 5x2 + 3x3 − x4 = 5.

Reduce the augmented matrix.1 1 −1 1 1
2 3 1 0 4
3 5 3 −1 5

 A12(−2)
A13(−3)−−−−−→
A23(−2)

1 1 −1 1 1
0 1 3 − 2 2
0 0 0 0 − 2


The last row says 0 = −2; the system is inconsistent.

Lemma
Suppose Ax = b is a linear system with augmented matrix
A#. If rank(A#) > rank(A) then the system is inconsistent.
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The rank of a matrix

Example

Determine the solution set of the linear system

5x1 − 6x2 + x3 = 4,
2x1 − 3x2 + x3 = 1,
4x1 − 3x2 − x3 = 5.

Reduce the augmented matrix.5 −6 1 4
2 −3 1 1
4 −3 −1 5

→
1 0 − 1 2
0 1 − 1 1
0 0 0 0

  x1 − x3 = 2
x2 − x3 = 1

The unknown x3 can assume any value. Let x3 = t. Then by
back substitution we get x2 = t+ 1 and x1 = t+ 2. Thus, the
solution set is the line

{(t+ 2, t+ 1, t) : t ∈ R} .
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The rank of a matrix

Definition
When an unknown variable in a linear system is free to assume
any value, we call it a free variable. Variables that are not free
are called bound variables.

The value of a bound variable is uniquely determined by a
choice of values for all of the free variables in the system.

Lemma
Suppose Ax = b is an m× n linear system with augmented
matrix A#. If rank(A#) = rank(A) < n then the system has
an infinite number of solutions. Such a system will have
n− rank(A) free variables.
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Solving linear systems with free variables

Example

Use Gaussian elimination to solve

x1 + 2x2 − 2x3 − x4 = 3,
3x1 + 6x2 + x3 + 11x4 = 16,
2x1 + 4x2 − x3 + 4x4 = 9.

Reducing to row-echelon form yields

x1 + 2x2 − 2x3 − x4 = 3,
x3 + 2x4 = 1.

Choose as free variables those variables that do not have a
pivot in their column.

In this case, our free variables will be x2 and x4. The solution
set is the plane

{(5− 2s− 3t, s, 1− 2t, t) : s, t ∈ R} .
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The inverse of a square matrix

Can we divide by a matrix? What properties should the inverse
matrix have?

Definition
Suppose A is a square, n× n matrix. An inverse matrix for A
is an n× n matrix, B, such that

AB = In and BA = In.

If A has such an inverse then we say that it is invertible or
nonsingular. Otherwise, we say that A is singular.

Remark
Not every matrix is invertible.

If you have a linear system Ax = b and B is an inverse matrix
for A then the linear system has the unique solution

x = Bb.
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The inverse of a square matrix

Example

If

A =

1 −1 2
2 −3 3
1 −1 1

 and B =

0 −1 3
1 −1 1
1 0 −1

 = A−1

then B is the inverse of A.

Theorem (Matrix inverses are well-defined)

Suppose A is an n× n matrix. If B and C are two inverses of
A then B = C.

Thus, we can write A−1 for the inverse of A with no ambiguity.

Useful Example

If A =

[
a b
c d

]
and ad− bc 6= 0 then A−1 = 1

ad−bc

[
d −b
−c a

]
.
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Finding the inverse of a matrix

Inverse matrices sound great! How do I find one?
Suppose A is a 3× 3 invertible matrix. If A−1 =

[
x1 x2 x3

]
then

Ax1 =

10
0

 , Ax2 =

01
0

 , and Ax3 =

00
1

 .

We can find A−1 by solving 3 linear systems at once!

In general, form the augmented matrix and reduce to RREF.
You end up with A−1 on the right.[

A In

]
 
[
In A−1

]
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Finding the inverse of a matrix

Example

Let’s find the inverse of A =

1 −1 2
2 −3 3
1 −1 1

.

Take the augmented matrix and row reduce.1 −1 2 1 0 0
2 −3 3 0 1 0
1 −1 1 0 0 1

  
1 0 0 0 −1 3
0 1 0 1 −1 1
0 0 1 ︸ ︷︷ ︸

A−1

1 0 −1


Steps

1. A12(−2)
2. A13(−1)
3. M2(−1)
4. M3(−1)

5. A32(−1)
6. A31(−2)
7. A21(1)
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Finding the inverse of a matrix

In order to find the inverse of a matrix, A, we row reduced an
augmented matrix with A on the left. What if we don’t end up
with In on the left?

Theorem
An n× n matrix, A, is invertible if and only if rank(A) = n.

Example

Find the inverse of the matrix A =

[
1 3
2 6

]
.

Try to reduce the matrix to RREF.[
1 3
2 6

]
A12(−2)−−−−−→

[
1 3
0 0

]
Since rank(A) < 2, we conclude that A is not invertible.
Notice that (1)(6)− (3)(2) = 0.
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Finding the inverse of a matrix

Diagonal matrices have simple inverses.

Proposition

The inverse of a diagonal matrix is the diagonal matrix with
reciprocal entries.a11 0. . .

0 ann


−1

=

a
−1
11 0. . .

0 a−1
nn


Upper and lower triangular matrices have inverses of the same
form.

Proposition

The inverse of an upper triangular matrix is upper triangular.
The inverse of a lower triangular matrix is lower triangular.
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Properties of inverse matrices

Suppose A and B are n× n invertible matrices.

I A−1 is invertible and
(
A−1

)−1
= A.

I AB is invertible and (AB)−1 = B−1A−1.

I AT is invertible and
(
AT
)−1

=
(
A−1

)T
.

Corollary

Suppose A1, A2, . . . , Ak are invertible n× n matrices. Then
their product, A1A2 · · ·Ak is invertible, and

(A1A2 · · ·Ak)
−1 = A−1

k A−1
k−1 · · ·A

−1
1 .
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Using inverse matrices

Recall that if A is an invertible matrix then the linear system
Ax = b has the unique solution x = A−1b.

Example

Solve the linear system

x1 + 3x2 = 1,
2x1 + 5x2 = 3.

The coefficient matrix is A =

[
1 3
2 5

]
, so A−1 =

[
−5 3
2 −1

]
.

The inverse of a 2× 2 matrix is[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
when ad− bc 6= 0.

Hence,

[
x1
x2

]
=

[
−5 3
2 −1

][
1
3

]
=

[
4
−1

]
.
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Conclusion

Inverse matrices are an elegant way of solving linear systems.
They do have some drawbacks:

I They are only applicable when the coefficient matrix is
square.

I Even in the case of a square matrix, an inverse may not
exist.

I They are hard to compute, at least as complicated as
doing Gauss-Jordan elimination.

However, they can be useful if

I the coefficient matrix has an obvious inverse,

I you need to solve multiple linear systems with the same
coefficients.
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