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Abstract. We present a new algorithm for deciding satisfiability of non-linear arith-
metic constraints. The algorithm performs a Conflict-Driven Clause Learning (CDCL)-
style search for a feasible assignment, while using projection operators adapted from
cylindrical algebraic decomposition to guide the search away from the conflicting
states.

1 Introduction

From the early beginnings in Persian and Chinese mathematics [24,25,50] until the present
day, polynomial constraints and the algorithmic ways of solving them have been one of the
driving forces in the development of mathematics. Though studied for centuries due to the
natural elegance they provide in modeling the real world, from resolving simple taxation
arguments to modeling planes and hybrid systems, we are still lacking a practical algorithm
for solving a system of polynomial constraints. Throughout the history of mathematics, many
brilliant minds have studied and algorithmically solved many of the related problems, such as
root finding [15,48,43] and factorization of polynomials [36,19,20]. But, it was not until Alfred
Tarski [44,45,47] showed that the theory of real closed fields admits elimination of quantifiers
that it became clear that a general decision procedure for solving polynomial constraints
was possible. Granted a wonderful theoretical result of landmark importance, with its non-
elementary complexity, Tarski’s procedure was unfortunately totally impractical.

As one would expect, Tarski’s procedure consequently has been much improved. Most
notably, Collins [11] gave the first relatively effective method of quantifier elimination by
cylindrical algebraic decomposition (CAD). The CAD procedure itself has gone through
many revisions [31,22,12,5]. However, even with the improvements and various heuristics, its
doubly-exponential worst-case behavior has remained as a serious impediment. The CAD
algorithm works by decomposing Rk into connected components such that, in each cell,
all of the polynomials from the problem are sign-invariant. To be able to perform such
a particular decomposition, CAD first performs a projection of the polynomials from the
initial problem. This projection includes many new polynomials, derived from the initial
ones, and these polynomials carry enough information to ensure that the decomposition is
indeed possible. Unfortunately, the size of these projections sets grows exponentially in the
number of variables, causing the projection phase to be a key hurdle to CAD scalability.

We propose a new decision procedure for the existential theory of the reals that tries
to alleviate the above problem. In the spirit of our recent decision procedure for linear
integer arithmetic [26], the new procedure performs a backtracking search for a model in R,
where the backtracking is powered by a novel conflict resolution procedure. Our approach
takes advantage of the fact that each conflict encountered during the search is based on the
current assignment and generally involves only a few constraints, a conflicting core. When in
conflict, we project only the polynomials from the conflicting core and explain the conflict in



terms of the current model. This means that we use projection conservatively, only for the
subsets of polynomials that are involved in the conflict, and even then we reduce it further.
As another advantage, the conflict resolution provides the usual benefits of a Conflict-Driven
Clause Learning (CDCL)-style [40,35] search engine, such as non-chronological backtracking
and the ability to ignore irrelevant parts of the search space. The projection operators we
use as part of the conflict resolution need not be CAD based and, in fact, one can easily
adapt projections based on other algorithms (e.g [32,3]).

Due to the lack of space and the volume of algorithms and concepts involved, we concen-
trate on the details of the decision procedure in this paper and refer the reader to the existing
literature for further information [8,9,10,27,3]. Acknowledging the importance that the de-
tails of a particular implementation play, we do include an appendix with the description of
particular algorithms we chose for our implementation.

2 Preliminaries

As usual, we denote the ring of integers with Z, the field of rational numbers with Q, and the
field of real numbers as R. Unless stated otherwise, we assume all polynomials take integer
coefficients, i.e. a polynomial f ∈ Z[y, x] is of the form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are in Z[y] with am 6= 0. We call x the
top variable and refer to y as variables of lower levels. The highest degree dm is the degree
of the polynomial f in variable x, and we denote it with deg(f, x). The set of coefficients
of f is denoted as coeff(f, x). We call am the leading coefficient in variable x, and denote
it with lc(f, x). If we exclude the first term of the polynomial f , we obtain the polynomial
R(f, x) = am−1x

dm−1 + · · · + a0, called the reductum of f . We denote the set of variables
appearing in a polynomial f as vars(f) and call the polynomial univariate if vars(f) = {x}
for some variable x. Otherwise the polynomial is multivariate, or a constant polynomial (if
it contains no variables). Given a set of polynomials A ⊂ Z[x1, . . . xn], we denote with Ak

the subset of polynomials in A that belong to Z[x1, . . . , xk], i.e. Ak = A ∩ Z[x1, . . . , xk].3

A number α ∈ R is a root of the polynomial p ∈ Z[x] iff f(α) = 0. We call a real number
α ∈ R algebraic iff it is a root of a univariate polynomial f ∈ Z[x], and we denote the field
of all real algebraic numbers by Ralg. We can represent any algebraic number α as (l, u)f ,
where α is a root of a polynomial f , and the only root in the interval (l, u), with l, u ∈ Q.

Example 1. Consider the univariate polynomial f1 = 16x3 − 8x2 + x + 16. This polyno-
mial has only one root, the irrational number α1 ≈ −0.840661 and we can represent it as
(−0.9,−0.8)f1 .

Given a set of variables X = {x1, . . . , xn}, we call υ a variable assignment if it maps
each variable xk to a real algebraic number υ(xk), the value of xk under υ. We overload υ,
as usual, to obtain the value of a polynomial f ∈ Z[x1, . . . , xn] under υ and write it as υ(f).
We say that a polynomial f vanishes under υ if υ(f) = 0. We can update the assignment υ
to map a variable xk to the value α, and we denote this as υ[xk 7→ α].

Under a variable assignment υ that interprets the variables y, some coefficients of a poly-
nomial f(y, x) may vanish. If ak is the first non-vanishing coefficient of f , i.e., υ(ak) 6= 0, we

3 We thus have A0 ⊆ A1 ⊆ · · · ⊆ An, with A0 being the constant polynomials of A, and An = A.



write R(f, x, υ) = akx
dk + · · ·+a0 for the reductum of f with respect to υ (the non-vanishing

part). Given any sequence of polynomials f = (f1, . . . , fs) and a variable assignment υ we
define the vanishing signature of f as the sequence v-sig(f , υ) = (f1, . . . , fk), where k ≤ s is
the minimal number such that υ(fk) 6= 0, or s if they all vanish. For the polynomial f(y, x)
as above, we define the vanishing coefficients signature as v-coeff(f, x, υ) = v-sig(am, . . . , a0).

A basic polynomial constraint F is a constraint of the form f O 0 where f is a polyno-
mial and O ∈ {<,≤,=, 6=,≥, >}. We denote the polynomial constraint that represents the
negation of a constraint F with ¬F .4 In order to identify the polynomial f of the constraint
F , and the variables of F , we write poly(F ) and vars(F ), respectively. We normalize all
constraints over constant polynomials to the dedicated constants true and false with the
usual semantics. We write υ(F ) to denote the evaluation of F under υ, which is the con-
straint υ(f)O 0. If f does not evaluate to a constant under υ, then υ(F ) evaluates to a new
polynomial constraint F ′, where poly(F ′) can contain algebraic coefficients.

Borrowing from the extended Tarski language [4, Chapter 7], in addition to the basic
constraints, we will also be working with extended polynomial constraints. An extended
polynomial constraint F is of the form

x Or root(f, k) , (1)

where Or ∈ {<r,≤r,=r, 6=r,≥r, >r}, f is a polynomial in Z[y, z̃], with x 6∈ vars(f), and the
natural number k ≤ deg(f, x) is the root index. Variable z̃ is a distinguished free variable
that cannot be used outside the root object. To be able to extract the polynomial of the
constraint, we define poly(F ) = f(y, x). Note that, poly(F ) replaces z̃ with x.

The semantics of the predicate (1) under a variable assignment υ is the following. If the
polynomial υ(f) is univariate, and υ assigns x to α, the (Boolean) value of the constraint
can be determined. If the univariate polynomial υ(f) ∈ Ralg[z̃] has the roots β1 < · · · < βn,
with k ≤ n, and αOβk holds, then (1) evaluates to true. Otherwise it evaluates to false.
Note that the real roots of a polynomial in Ralg[z̃] are still algebraic. We denote the number
of real roots of a univariate polynomial f as rootcount(f). Naturally, if F is an extended
polynomial constraint, so is the negation ¬F .5

Example 2. Take the bivariate polynomial f = 2y z̃3−8 z̃2 + z̃ +3y − 8 and the variables
assignment υ1, with υ1(x) = −1 and υ1(y) = 8. Under this assignment we have that
p(y) = 16 z̃3−8 z̃2 + z̃ +16 and, as in Ex. 1, it has only one root α = (−0.9,−0.8)f . Now
consider the constraints

x <r root(f, 1), x ≥r root(f, 1), ¬(x <r root(f, 1)), ¬(x <r root(f, 2)).

The value of the above constraints under υ1 are true, false, false, true, correspondingly.
The fourth constraint evaluates to true as f does not have 2 roots, and the predicate thus
evaluates to false. Now consider the assignment υ2 = υ1[y 7→ 0]. Under υ2 we have that
p(y) = −8 z̃2 + z̃−8 which now does not have any real roots. The value of the constraints
above under υ2 is therefore false, false, true, true. Note that the second and third constraint
might be mistaken to be equal, but are not – as can be seen, they have different semantics.

A polynomial constraint is either a basic or an extended one. Given a set of polynomial
constraints F , we say that the variable assignment υ satisfies F if it satisfies each constraint

4 For example ¬(x2 + 1 > 0) ≡ x2 + 1 ≤ 0.
5 Note that, for example, ¬(x <r root(f, k)) is not necessarily equivalent to x ≥r root(f, k).



in F . If there is such a variable assignment, we say that F is satisfiable, otherwise it is
unsatisfiable. A clause of polynomial constraints is a disjunction C = F1 ∨ . . . ∨ Fn of
polynomial constraints. We use literals(C) to denote the set {F1,¬F1, . . . , Fn,¬Fn}. We say
that the clause C is satisfied under the assignment υ if some polynomial constraint Fj ∈ C
evaluates to true under υ. Finally, a polynomial constraint problem is a set of clauses C, and
it is satisfiable if there is a variable assignment υ that satisfies all the clauses in C.

3 An Abstract Decision Procedure

We describe our procedure as an abstract transition system in the spirit of Abstract DPLL
[37,29]. The crucial difference between the system we present is that we depart from viewing
the Boolean search engine and the theory reasoning as two separate entities that commu-
nicate only through existing literals. Instead, we allow the model that the theory is trying
to construct to be involved in the search and in explaining the conflicts, while allowing new
literals to be introduced so as to support more complex conflict analyses. Additionally, our
presentation makes the concept of relevancy inherent to procedure (e.g. [13]). The transition
system presented here applies to non-linear arithmetic, but it can in general be applied to
other theories.

The states in the transition system are indexed pairs of the form 〈M, C〉n, where M is
a sequence (usually called a trail) of trail elements, and C is a set of clauses. The index
n denotes the current level of the state. Trail elements can be decided literals, propagated
literals, or a variable assignment.

A decided literal is a polynomial constraint F that we assume to be true. On the other
hand, a propagated literal, denoted as E→F , marks a polynomial constraint F ∈ E that is
implied to be true in the current state by the clause E (the explanation). In both cases,
we say that the constraint F appears in M , and write this as F ∈ M . We denote the set
of polynomial constraints appearing in M with constraints(M). We say M is non-redundant
if no polynomial constraint appears in M more than once. A trail variable assignment,
written as x 7→α, is an assignment of a single variable to a value α ∈ Ralg. Given a trail
M , containing variable assignments xi1 7→α1, . . . , xik 7→αk, in order, we can construct an
assignment

υ[M ] = υ0[xi1 7→ α1] . . . [xik 7→ αk] ,

where υ0 is an empty assignment that does not assign any variables. We say that the sequence
M is increasing in level when the sequence is of the form

M = J
Mk︷ ︸︸ ︷

N1, x1 7→α1, . . . , xk−1 7→αk−1, Nk, xk 7→αk, . . . , xn−1 7→αn−1, NnK ,

where, for each level k, the sequence Nk does not contain any variable assignments, each
constraint F ∈ constraints(Nk) contains the variable xk, and (optionally) the variables
x1, . . . , xk−1 (and z̃). In such a sequence M , we denote with level(M) = n the level of
the sequence, and identify the subsequence of level k by writing Mk, as depicted above. Note
that Mk does not include the assignment of xk, and in general Mn is different from M if M
includes the assignment of xn.

If a sequence M , of level n, is increasing in level, with F = constraints(M), we say that
it is feasible, when the set of univariate polynomial constraints υ[Mn](F) has a solution.



We write feasible(M) to denote the feasible set of υ[Mn](F). Given an additional polyno-
mial constraint F ∈ Z[x1, . . . , xn], we say that F is compatible with the sequence M , when
feasible(JM,F K) 6= ∅ and denote this with a predicate compatible(F,M). In our actual imple-
mentation, we represent feasible sets using a set of intervals with real algebraic endpoints.
The predicate compatible(F,M) is implemented using real root isolation and sign evaluation
procedures. In the Appendix, we sketch the algorithms used to implement these procedures,
and provide references to the relevant literature.

Definition 1 (Well-Formed State). We say a state 〈M, C〉n is well-formed when M is
non-redundant, increasing in level, level(M) = n, and all of the following hold.

1. Clauses up to level n are satisfied, i.e. we have that υ[Mn](Cn−1) = true.
2. Literals up to level n are satisfied, i.e. for each F ∈ constraints(Mn−1) we have that that

υ[Mn](F ) = true.
3. Literals of level n are consistent, i.e. we have that feasible(M) 6= ∅.
4. Propagated literals E→F are implied, i.e. for all literals F ′ 6= F in E, υ[Mn](F ′) = false

or ¬F ′ ∈ constraints(M).

Intuitively, in a well-formed state we commit to the variable assignment of lower levels,
and we make sure that the current level is still consistent. With this in mind, given a poly-
nomial constraint F over variables x1, . . . , xn, and a well-formed state M with level(M) = n,
we define the state value of F in M as

value(F,M) =


υ[Mn](F ) xn 6∈ vars(F ) ,

true F ∈ constraints(M) ,

false ¬F ∈ constraints(M) ,

undef otherwise.

Naturally, we overload value to also evaluate clauses of polynomial constraints, and sets
of clauses, i.e. for a clause C we define value(C,M) to be true, if any of the literals evaluates
to true, false if all literals evaluate to false, and undef otherwise.

We are now ready to define the transition system. We separate the transition rules into
three groups: the search rules, the clause processing rules, and the conflict analysis rules.
The search rules are the main driver of the procedure, with the responsibility for selecting
clauses to process, creating the variable assignment while lifting the levels, and detecting
Boolean conflicts. The search rules operate on well-formed states 〈M, C〉n. If the search rules
select a clause C to process, we switch to a state 〈M, C〉n � C, where we can apply the set
of clause processing rules. The notation � C designates that we are performing semantic
reasoning in order to assign a value to a literal of C. If the search rules detect that in the
current state some clause C ∈ C is falsified, we switch to a state 〈M, C〉n ` C, where we can
apply the conflict analysis rules. The notation ` C denotes that we are trying to produce a
proof of why C is inconsistent in the current state.

Finally, given a polynomial constraint problem C, with vars(C) = {x1, . . . , xn}, the overall
goal of the procedure is, starting from an initial state 〈JK, C〉1, and applying the rules, to end
up either in a state 〈υ, sat〉, indicating that the initial set of clauses C is satisfiable where
the assignment υ is the witness, or derive unsat, which indicates that the set C unsatisfiable.

Search Rules. Fig 1 presents the set of search rules. The Select-Clause rule selects one of
the clauses of the current level, whose value is still undetermined, and transitions into the



clause processing mode that will hopefully satisfy the clause. The Conflict rule detects if
there is a clause of the current level that is inconsistent in the current state, and transitions
into the conflict resolution mode that will explain the conflict and backtrack appropriately.
On the other hand, if all the clauses of the current level are satisfied, we can either transition
to the next level, using the Lift-Level rule, or conclude that our problem is satisfiable,
using the Sat rule. Since at this point the current level is consistent, in addition to formally
introducing the new level, the Lift-Level rule selects a particular value for the current
variable from the feasible set of the current level. Note that once we move to the next level,
all the clauses of previous levels have values in the state, and can never be selected by the
Select-Clause or the Conflict rules. We conclude this set of rules with the Forget rule
that can be used to eliminate any learned clause (a clause added while analyzing conflicts)
from the current set of clauses.

Select-Clause

〈M, C〉k −→ 〈M, C〉k � C if
C ∈ Ck
value(C,M) = undef

Conflict

〈M, C〉k −→ 〈M, C〉k ` C if
C ∈ Ck
value(C,M) = false

Sat

〈M, C〉k −→ 〈υ[M ], sat〉 if xk 6∈ vars(C)
Lift-Level

〈M, C〉k −→ 〈JM,xk 7→ αK, C〉k+1 if

xk ∈ vars(C)
α ∈ feasible(M)
value(Ck,M) = true

Forget

〈M, C〉k −→ 〈M, C \ {C}〉k if
C ∈ C
C is a learned clause

Fig. 1. The search rules.

Clause Processing Rules. In this set of rules, presented in Fig 2, we are trying to assign
a currently unassigned literal of the given clause C, hoping to satisfy the clause. When
one of the clause processing rules is applied, we immediately switch back to the search
rules. As usual in a CDCL-style procedure, the simplest way to satisfy the clause C is
to perform the Boolean unit propagation, if applicable, by using the B-Propagate rule.
We restrict the application of this rule so that adding the constraint to the state keeps it
consistent, i.e., it is compatible with the current set of constraints. If this is the case, we add
the constraint to the state together with the explanation (clause C itself). To allow more
complex propagations, the ones that are valid in R modulo the current state, we provide the
R-Propagate rule. This rule can propagate a constraint from the clause, if assuming the
negation would be incompatible with the current state. The R-Propagate rule is equipped
with an explanation function explain. The explain function, given a polynomial constraint
F , and the trail M , returns the explanation clause E = explain(F,M) that is valid in R,
and implies the constraint F under the current assignment (i.e., F ∈ E, all literals in E but



Decide-Literal

〈M, C〉k � C −→ 〈JM,F1K, C〉k if

F1, F2 ∈ C
∀i : value(Fi,M) = undef
compatible(F1,M)

B-Propagate

〈M, C〉k � C −→ 〈JM,C→F K, C〉k if

C = F1 ∨ . . . ∨ Fm ∨ F
value(F,M) = undef
∀i : value(Fi,M) = false
compatible(F,M)

R-Propagate

〈M, C〉k � C −→ 〈JM,E→F K, C〉k if

F ∈ literals(C)
value(F,M) = undef
¬ compatible(¬F,M)
E = explain(F,M)

Fig. 2. The clause satisfaction rules.

F are false, and the B-Propagate rule applies to E and F ). The clause E may contain
new literals that do not occur in C, but they can only contain variables from lower levels.
Now, it becomes clear the motivation for the definition of the state value function value.
Given a new literal Fi from E, ¬Fi 6∈ constraints(M), but value(Fi,M) = false because
υ[M ](Fi) = false. In R-Propagate, the clause E is eagerly generated, this simplification
clarifies the presentation, but in our actual implementation, we compute them only if they
are needed during conflict resolution. Finally, if we cannot deduce the value of an unassigned
literal, we can assume a value for such a literal using the Decide-Literal rule.

Conflict analysis rules. The conflict analysis rules start from an initial proper state 〈M, C〉n `
C, where C ∈ C is the conflicting clause. The conflict analysis is a standard Boolean conflict
analysis [40] with a model-based twist. As the rules move the state backwards, the goal is to
construct a new resolvent clause R, that will explain the conflict and ensure progress in the
search. This means that, when we backtrack the sequence M just enough, the addition of R
will ensure progress in the search by eliminating the inconsistent part from the state, and
thus forcing the search rules to change some of the choices made. On the other hand, if the
conflict analysis backtracks the state all the way into an empty state, this will be a signal
that the original problem is unsatisfiable. Once the conflict analysis backtracks enough and
deduces the resolvent R, then we pass it to the clause processing immediately.6

Termination. Our decision procedure consists of all three sets of rules described above. Any
derivation will proceed by switching amongst the three distinct modes. Proving termination
in the basic CDCL(T ) framework is usually a fairly straightforward task, as the new expla-
nation and conflict clauses always contain only literals from the finite set of literals in the
initial set of constraints. In our case, the main conundrum in proving termination is that we
allow the explanations to contain fresh constraints, which, if we are not careful, could lead
to non-termination. We therefore also require the set of new constraints to be finite.

We call an explanation function explain a finite basis explanation function with respect
to a set of constraints C, when there is a finite set of polynomial constraints B such that

6 This is crucial in order to ensure termination.



Resolve-Propagation

〈JM,E→F K, C〉k ` C −→ 〈M, C〉k ` R if
¬F ∈ C
R = resolve(C,E, F )

. resolve returns the standard Boolean resolvent

Resolve-Decision

〈JM,F K, C〉k ` C −→ 〈M, C ∪ {C}〉k � C if ¬F ∈ C
Consume

〈JM,F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C
〈JM,E→F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C

Drop-Level

〈JM,xk+1 7→αK, C〉k+1 ` C −→ 〈M, C〉k ` C if value(C,M) = false

〈JM,xk+1 7→αK, C〉k+1 ` C −→ 〈M, C ∪ {C}〉k � C if value(C,M) = undef

Unsat

〈JK, C〉1 ` C −→ unsat

Fig. 3. The conflict analysis rules.

for any derivation of the proof rules, the clauses returned by applications of explain always
contain only constraints from the basis B. Having such an explanation function will therefore
provide us with a termination argument, and we will provide one such explanation function
for the theory of reals in the next section.

Theorem 1. Given a set of polynomial constraints C, and assuming a finite basis expla-
nation function explain, any derivation starting from the initial state 〈JK, C〉1 will terminate
either in a state 〈υ, sat〉, where the assignment υ satisfies the constraints C, or in the unsat
state. In the later case, the set of constraints C is unsatisfiable in R.

Proof. Assume we have a set of polynomial constraints C0, over the variables x1, . . . , xn,
and a finite-basis explanation function explain. Starting from the initial state 〈JK, C0〉1, we
claim that any derivation of the transition system (finite or infinite), satisfies the following
properties

1. the derivation consists of only well-formed states;
2. the only possible “sink states” are the sat and the unsat states;
3. all ` C clauses are implied by the initial constraints C0;
4. during conflict analysis the ` C clause evaluates to false;

Assuming termination, the above properties the statement can be proven easily. Since
sat and unsat are the only sink states, the derivation will terminate in one of these states.
Since the Lift-Level rule considers the variables x1, . . . , xn in order, we can only enter
the satisfiable state if it is of the form 〈υ, sat〉n+1. Consequently, by the precondition of the
Lift-Level rule, and the fact that we never remove the original constraints from C0, all
the constraints in C0 are satisfied by υ. Therefore if we terminate in a sat state, the original
problem is indeed satisfiable. On the other hand, if we terminate in the unsat state, by above
properties, the conflicting clause is implied by C0 and evaluates to false in the state 〈JK, C〉1.
But, since there are no assertions in the trail, and variable assignment υ(JK) does not assign
any variables, it must be that the constraint is trivially false. Having that falsity implied by
the original constraints, the initial constraints themselves must truly be unsatisfiable.



The first two properties in the list above are a fairly easy exercise in case analysis and
induction, so we skip those and concentrate on the more interesting properties. Proving the
properties of conflict analysis is also quite straightforward, via induction on the number of
conflicts, and conflict analysis steps. Clearly, initially, we have that C evaluates to false (the
precondition of the Conflict rule), and is implied by C by induction. Then, every new
clause that we produce during conflict resolution is obtained by the Boolean resolve rule,
which will produce a valid deduction. Additionally, since the clause we are resolving with
is a proper explanation, it will have all literals except the one we are resolving evaluate to
false. Therefore, the resolvent also evaluates to false. As we backtrack down the trail with
the conflicting clause, by definition of value and the preconditions of the rules, the clause
still remains false.

Now, let us prove that the system terminates. It is clear that both the clause processing
rules (one step transitions) and the conflict analysis rules (always removing elements from
the trail) always terminate in a finite number of steps, and return to the search rules (or
the unsat state). For the sake of the argument, let us assume that there is a derivation that
does not terminate, and therefore does not enter the unsat state. We can define a big-step
transition relation −→bs that covers a transition from a search state, applying one or more
transitions in the processing or analysis rules, and returns to a search state.

By assumption, we have a finite-basis explanation function explain, so we can assume a
set of polynomial constraint literals B from which all the clauses that we can see during the
search are constructed. In order to keep progress of the search, we first define a function
search-level that, given the trail M , returns a pair (k, l), where k is the index of the next
variable we are trying to assign, i.e. k is one more than the number of variable assignments
in M , and l is the number of decided literals (applications of the Decide-Literal rule) in
M . Note that the search-level of any state that we can encounter is always a pair (k, l) with
1 ≤ k ≤ n and l ≤ |B|. Given such a pair (k, l) we define the function search-subseq(M,k, l)
to be the largest prefix that contains at most k variable assignments and at most l decided
literals, i.e. the largest prefix of M with search-level(M) ≤ (k, l).

To define the measure of a state, we first define a series of weight functions ωk that,
given of a sequence M , returns

ωk(M) =

{
|{ F ∈ Bk | value(Mk, F ) = undef }| (k, 0) ≤ search-level(M),

∞ otherwise.

In other words, if we are trying to assign the variable xk, where we already performed a
number of literal decisions, this state is as heavy as the number of literals left in the basis
containing only variables x1, . . . , xk that could still possibly be assigned.

In order to prove termination, we will track the progress of all levels simultaneously. We
define the function Ω to map a sequence well-formed state 〈M, C〉k into a n(|B|+1)+2-tuple
as

Ω(M) = 〈ω1(search-subseq(M, 1, 0)), . . . , ω1(search-subseq(M, 1, |B|)),
ω2(search-subseq(M, 2, 0)), . . . , ω2(search-subseq(M, 2, |B|)),

...

ωn(search-subseq(M,n, 0), . . . , ωn(search-subseq(M,n, |B|)),
ωn+1(M), |C|〉 .



Given two well-formed states with trails M1 and M2, we write M1 lM2 if Ω(M1) <lex

Ω(M2), where <lex is the natural lexicographical extension of the order < on N ∪ {∞}. Now
consider a transition of the search 〈M1, C1〉k1

−→bs〈M2, C2〉k2
and the following cases.

– If this transition was initiated by the Select-Clause rule, a new literal was assigned
at the current literal decision level, or a new decision was introduced. In both cases
M2 lM1 as either one element of the sequence decreased by 2 (literal and its negation
were assigned), or the next element of the sequence decreased from ∞ to a finite value.

– If this transition was initiated by the Lift-Level rule, switching to level k, the first
element of row k in Ω(M) decreased from ∞ to a finite value, so M2 lM1 again.

– If we went into conflict analysis mode via the Conflict rule, we will backtrack accord-
ingly, learn a new clause, and then assign at least one new literal of the learned clause.
Here note that if we used the Decide-Literal to assign this literal, it must be that
we stepped out of conflict analysis with an application of the Drop-Level rule. If not,
then we must have used the Resolve-Decision rule, which would force us to apply
the B-Propagate rule instead. Therefore, in such a case, we didn’t remove any literal
decisions at the level k we backtracked to, but have in fact introduced a new one, again
decreasing an element of the measure from ∞ to a finite value. Otherwise, if the value
of the literal is assigned by one of the propagation rules, the measure decreases as in
the first case. In both cases, it follows, we have that M2 lM1 again.

– If we applied the Forget rule, it is clear that only last element of the measure decreases,
and hence also M2 lM1.

Since, we covered all cases, the function Ω is always decreasing, and termination of the
system follows. ut

Example 3. First, for the sake of this example, let us restrict ourselves to the case of linear
constraints. When solving a set of linear constraints C, one can use the Fourier-Motzkin
elimination rule to define the explain function. As shown in [33,28], this will give a finite-basis
B with respect to C that is obtained by closing C under the application of Fourier-Motzkin
elimination step. It is fairly easy to show that the closure is a finite set, since we always
produce constraints with one variable less.

We explain the search rules by applying them to the following set of linear polynomial
constraints

C = { (x+ 1 ≤ 0 ∨ x− 1 ≥ 0︸ ︷︷ ︸
C1

), x+ y > 0︸ ︷︷ ︸
C2

, x− y > 0︸ ︷︷ ︸
C3

} .

During the search, we associate x with level 1, and y with level 2. Therefore the constraints
of level 1 are C1 = {C1}, and the constraints of level 2 are C2 = {C2, C3}. The following is a
derivation of the transition system, starting from the initial state 〈JK, C〉, applying the rules



until we encounter a conflict.

〈JK, C〉1
↓ Select-Clause (x+ 1 ≤ 0) ∨ (x− 1 ≥ 0), Decide-Literal (x+ 1 ≤ 0)

〈J(x+ 1 ≤ 0)K, C〉1
↓ Lift-Level
〈J(x+ 1 ≤ 0), x 7→−1K, C〉2
↓ Select-Clause (x+ y > 0), B-Propagate (x+ y > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K, C〉2ySelect-Clause (x− y > 0)
R-Propagate (x− 1 ≤ 0) with E1 ≡ (x+ y ≤ 0) ∨ (x− y ≤ 0) ∨ (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2
↓ Conflict

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)

The derivation above assigns the first literal of C1 to true, and then selects the value of
−1 for x. With this value we go to the next level, and we then propagate C2 to true by unit
propagation. We continue by processing the clause x − y > 0. But, under the assignment
υ[M2](x) = −1 the constraints x + y > 0 and x − y > 0 evaluate to y − 1 > 0 and
−y − 1 > 0, respectively, which taken together are inconsistent. This means that x− y > 0
is incompatible with the current state, and we use the R-Propagate rule to propagate
¬(x − y > 0) ≡ x − y ≤ 0. In order to explain the propagation of x − y ≤ 0, we use a
Fourier-Motzkin elimination step to obtain E1 ≡ (x+ y > 0)∧ (x− y > 0) =⇒ (x > 0) As
soon as we propagate x− y ≤ 0, we enter a conflict with the clause C3, and we continue to
conflict analysis mode.



Below is the continuation of the derivation that uses the conflict analysis rules to explain
the conflict and backtrack.

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)yResolve-Propagation
resolve(x− y > 0, E1, (x− y ≤ 0)) = (x+ y ≤ 0) ∨ (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1, C2→(x+ y > 0)K, C〉2 ` (x+ y ≤ 0) ∨ (x > 0)yResolve-Propagation
resolve((x+ y ≤ 0) ∨ (x > 0), (x+ y > 0), (x+ y > 0)) = (x > 0)

〈J(x+ 1 ≤ 0), x 7→−1K, C〉2 ` (x > 0)

↓ Drop-Level

〈J(x+ 1 ≤ 0)K, C ∪ {x > 0}〉1 � (x > 0)

↓ R-Propagate (x ≤ 0) with E2 ≡ (x+ 1 > 0) ∨ (x ≤ 0)

〈J(x+ 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1
↓ Conflict

〈J(x+ 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1 ` (x > 0)yResolve-Propagation
resolve((x > 0), E2, (x ≤ 0)) = (x+ 1 > 0)

〈J(x+ 1 ≤ 0)K, C ∪ {x > 0}〉1 ` (x+ 1 > 0)

↓ Resolve-Decision (x+ 1 ≤ 0)

〈JK, C ∪ {x > 0, x+ 1 > 0}〉1 � (x+ 1 > 0)

↓ B-Propagate (x+ 1 > 0)

〈J(x+ 1 > 0)→(x+ 1 > 0)K, C ∪ {x > 0, x+ 1 > 0}〉1

4 Producing Explanations

Given a polynomial constraint F s.t. poly(F ) ∈ Z[y, x], and a trail M such that ¬F is
not compatible with M , the procedure explain(F,M) returns an explanation clause E that
implies F under the current assignment. This clause is of the form E ∧ F =⇒ F , where
E and F are sets of literals with poly(E) ⊂ Z[y] and poly(F) ⊂ Z[y, x]. All literals in F
occur in M , and all literals in E evaluate to true in the current assignment. Note that E may
contain new literals, so we must ensure that the new literals in poly(E) are a subset of some
finite basis.

In principle, for any theory that admits elimination of quantifiers, it is possible to con-
struct an explanation function explain. In this section, we describe how to produce an explain
procedure based on cylindrical algebraic decomposition (CAD). Before that, we first make
a short interlude into the world of CAD.

4.1 Cylindrical Algebraic Decomposition

Delineability plays a crucial role in the theory of CADs and in the construction of our explain
procedure. Following the terminology used in CAD, we say a connected subset of Rk is a
region. Given a region S, the cylinder Z over S is S ×R. A θ-section of Z is a set of points
〈α, θ(α)〉, where α is in S and θ is a continuous function from S to R. A (θ1, θ2)-sector
of Z is the set of points 〈α, β〉, where α is in S and θ1(α) < β < θ2(α) for continuous



functions θ1 < θ2 from S to R. Sections and sectors are also regions. Given a subset of S
of Rk, a decomposition of S is a finite collection of disjoint regions S1, . . . , Sn such that
S1 ∪ . . . ∪ Sn = S. Given a region S, and a set of continuous functions θ1 < . . . < θn from
S to R, we can decompose the cylinder S × R into the following regions:

– the θi-sections, for 1 ≤ i ≤ n, and
– the (θi, θi+1)-sectors, for 0 ≤ i ≤ n,

where, with slight abuse of notation, we define θ0 as the constant function that returns −∞
and θn+1 the constant function that returns ∞.

A set of polynomials {f1, . . . fs} ⊂ Z[y, x], y = (y1, . . . , yn), is said to be delineable in a
region S ⊂ Rn if the following conditions hold:

1. For every 1 ≤ i ≤ s, the total number of complex roots of fi(α, x) remains invariant for
any α in S.

2. For every 1 ≤ i ≤ s, the number of distinct complex roots of fi(α, x) remains invariant
for any α in S.

3. For every 1 ≤ i < j ≤ s, the number of common complex roots of fi(α, x) and fj(α, x)
remains invariant for any α in S.

Theorem 2 (Corollary 8.6.5 of [34]). Let A be a set of polynomials in Z[y, x], delineable
in a region S ⊂ Rn. Then, the real roots of A vary continuously over S, while maintaining
their order.

Example 4. Consider the polynomial f = x2 + y2 + z2 − 1, with zeros of f depicted in
Fig 4(a) together with two squiggly regions of R2. In the region S1 that does not intersect
the sphere, polynomial f is delineable, as the number of complex (and real) roots of f(α, x)
is 2 for any α in S1. In the region S2 that intersects the sphere, f is not delineable, as the
number of real roots of f varies from 0 (α’s outside the unit circle), 1 (on the circle), and 2
(inside the unit circle).

We will call a projection operator any map P that, given a variable x and set of polyno-
mials A ⊂ Z[y, x], transforms A into a set of polynomials P(A, x) ⊂ Z[y]. We call P(A, x)
the projection of A under P with respect to variable x. In his seminal paper [11], Collins
introduced a projection operator which we denote with Pc. In order to define the operator
Pc, we first need to define some “advanced” operations on polynomials, and we refer the
reader to [30,3,7] for a more detailed exposition.

Let f, g ∈ Z[y, x] be two polynomials with n = min(deg(f, x), deg(g, x)). For k =
0, . . . , n − 1, we denote with Sk(f, g, x) the k-th subresultant of f and g. The k-th sub-
resultant is defined as the determinant of the k-th Sylvester-Habicht matrix of f and g, and
is a polynomial of degree ≤ k in x with coefficients in Z[y]. The matrix in question is a
particular matrix containing as elements the coefficients of f and g. Additionally, we denote
with psck(f, g, x) the k-th principal subresultant coefficient of f and g, which is the coeffi-
cient of xk in the polynomial Sk(f, g, x), and define pscn(f, g, x) = 1. We denote the sequence
of principle subresultant coefficients as psc(f, g, x) = (psc0(f, g, x), . . . , pscn(f, g, x)).

Theorem 3 (Theorem 2 in [11]). Let f, g ∈ Z[y, x] be non-zero polynomials. Then
deg(gcd(A,B), x) = k if and only if k is the least j such that pscj(f, g) 6= 0.

Since the number of common complex roots of two polynomials corresponds to the degree
of their gcd, the previous theorem provides us with a way to describe this number.



Definition 2 (Collins Projection). Given a set of polynomials A = {f1, . . . , fm} ⊂
Z[y, x] the Collins projector operator Pc(A, x) is defined as⋃

f∈A

coeff(f, x) ∪
⋃
f∈A

g∈R(f,x)

psc(g, g′x, x) ∪
⋃
i<j

gi∈R(fi,x)
gj∈R(fj,x)

psc(gi, gj , x) ,

In order to denote the individual parts of the projection, in order, we designate them as
P1
c(A, x), P2

c(A, x) and P3
c(A, x).

Let A = {f1, . . . , fm} ⊂ Z[y] be a set of polynomials, where y = (y1, . . . , yn), and S be
a region of Rn. If for any assignment υ such that υ(y) = α ∈ S, the polynomials in A have
the same sign under υ, we say that A is sign-invariant on S.

Theorem 4 (Theorem 4 in [11]). Given a finite set of polynomials A ⊂ Z[y, x], where
y = (y1, . . . , yn), and let S be a region of Rn. If Pc(A) is sign invariant on S, then A is
delineable over S.

The projection operator Pc guarantees delineability on any region S where the projection
set Pc(A, x) is sign-invariant, due to the following:

1. The degree of fi(α, x) (and the total number of complex roots) remains invariant for
any α in S, by P1

c(A, x) being sign-invariant.
2. The multiplicities of complex roots of fi(α, x) remains invariant for any α in S, by

P2
c(A, x) being sign-invariant and Theorem 3

3. The number of common complex roots of fi(α, x) and fj(α, x) remain invariant for any
α in S, by P3

c(A, x) being sign-invariant and Theorem 3.

A sign assignment for a set of polynomials A is a mapping σ, from polynomials in A to
{−1, 0, 1}. Given a set of polynomials A ⊂ Z[y, x], we say a sign assignment σ is realizable
with respect to some α in Rn, if there exists a β ∈ R such that every f ∈ A takes the
sign corresponding to its sign assignment, i.e., sgn(f(α, β)) = σ(f). The function sgn maps
a real number to its sign {−1, 0, 1}. We use signs(A,α) to denote the set of realizable sign
assignments of A with respect to α.

Lemma 1. If a set of polynomials A ⊂ Z[y, x] is delineable over a region S, then signs(A,α)
is invariant over S.

Proof. Since A is delineable over S, by Theorem 2, there are real functions θi, continuous on
S and ordered, corresponding to roots of polynomials in A. We can therefore decompose the
cylinder S×R into θi-sections and (θi, θi+1)-sectors, where each of these regions is connected
and the signs of polynomials from A do not change. Let σ1 ∈ signs(A,α1) be a realizable
sign assignment, with β1 ∈ R, such that at (α1, β1) every polynomial f ∈ A takes a sign
corresponding to signs(A,α1). Lets pick an arbitrary other other α2 ∈ S, and show that we
realize σ1 at α2. We can pick an arbitrary point β2 in the same sector (or section) R where
β1 came from. We claim that at 〈α2, β2〉 the polynomials in A have the signs required by
σ1.

Assume the opposite, i.e. that there is a polynomial f ∈ A with σ1(f) = sgn(f(α1, β1)) 6=
sgn(f(α2, β2)). Since R is connected we can connect 〈α1, β1〉 and 〈α2, β2〉 with a path π
that does not leave R. Having that the sign of f is different at the endpoints of π, it must
be that there is a point 〈α3, β3〉 on the path, where the sign of f is 0, and at least another
point where the sign of f is not 0. Now we distinguish the following cases



– If R is a (θi, θi+1)-sector, then we have isolated a root of a polynomial in A that is
between θi(α3) and θi+1(α3), which is impossible by the construction of the decompo-
sition.

– If R is a θi-section, then the polynomial f(α3) has a root, and this root diverges from
θi on R, which is impossible due to delineability.

4.2 Projection-Based Explanations

Suppose that we need to produce an explanation for propagating a polynomial constraint
F , i.e. we are in a state such that ¬ compatible(¬F,M), with poly(F ) ∈ Z[y, x], where
y = (y1, . . . , yn). To simplify the presentation, in the following, we write υ for υ[M ]. A
model-based explanation procedure explain(F,M) consists of the following steps:

1. Find a minimal set F of literals in M , with poly(F) ⊂ Z[y, x], such that υ(F) still does
not allow a solution for x. We call this set (not necessarily unique) a conflicting core.
Let A be the set of polynomials poly(F) ∪ { poly(F ) }.

2. Construct a region S of Rn where A is delineable, and υ(y) is in S. Note that, ¬F is
incompatible with F for any other α′ in S. This follows from the fact that signs(A,α)
remains invariant for any α in S.

3. Define S using extended polynomial constraints, obtaining a new set of constraints E .
Then, we define explain(F,M) = E ∧ F =⇒ F .

We later explain how we obtain the minimal set F . We now focus on the second step
of the procedure. We first observe that our procedure just requires a connected subset S
which contains the current assignment υ(y) = α. We therefore add the assignment υ as an
additional argument to the projection operator, and call such a projection operator model-
based. Given a variable assignment υ, we denote the vanishing signature of a principle
subresultant sequence as v-psc(f, g, x, υ) = v-sig(psc0(f, g, x), . . . , pscn(f, g, x)). Now, we
define our model-based projection operator Pm(A, x, υ) as follows.

Definition 3 (Model-Based Projection). Given a set of polynomials A = {f1, . . . , fm} ⊂
Z[y, x] and a variable assignment υ, the modified model-based Collins projector operator
Pm(A, x, υ) is defined as⋃

f∈A

v-coeff(f, υ, x) ∪
⋃
f∈A

g=R(f,x,υ)

v-psc(g, g′x, x, υ) ∪
⋃
i<j

gi=R(fi,x,υ)
gj=R(fj,x,υ)

v-psc(gi, gj , x, υ) .

We use the projection operator Pm to compute the region S which contains the current
assignment υ(y), and show that A is delineable in S. Assume A is a set of polynomials in
Z[y1, . . . , yn, x]. First, we will close the set of polynomials A under the application of a pro-
jection operator Pm. We compute this closure by computing sets of polynomials Pn, . . . ,P1

iteratively, starting from Pn = Pm(A, υ, x), and then for k = n, . . . , 2, compute the subse-
quent ones as

Pk−1 = Pm(Pk, yk, υ) ∪ (Pk ∩ Z[y1, . . . , yk−1]) .

Each set of polynomials Pk ⊆ Z[y1, . . . , yk] is obtained by projecting the previous set Pk+1

and adding all the polynomials from Pk+1 that do not involve the variable yk.



With the projection closure of A computed, we can now start building the region S
inductively, in a bottom up fashion, by constructing a sequence of regions Sk ⊂ Rk s.t. Pk

is sign invariant in Sk, and Pk+1 is delineable in Sk. For each k = 1, . . . , n− 1, assume that
Sk−1, and its defining constraints Ek, have already been constructed. Let us now consider
the set of root objects

Rk =
{

root(f, i) | f ∈ Pk, 1 ≤ i ≤ rootcount(υ(f))
}
.

Under the assignment υ each of the root objects root(f, i) is defined and evaluates to some
value ωi

f ∈ Ralg. Moreover, since the polynomials in Pk are delineable over Sk−1, for any

other assignment υ′ that maps y1, . . . , yk−1 into Sk−1, the polynomials f ∈ Pk will have the
same number of roots, and the same number of common roots. Therefore, the root objects
in Rk will also be defined under any such υ′, and will evaluate to values that are in the same
exact order.

The values ωi
f partition the real line into intervals where in each interval, the polynomials

f ∈ Pk are sign invariant. We will pick the interval that contains υ(yk) = αk to construct
Sk by selecting one of the appropriate cases

αk ∈ (ωi
f , ω

j
g) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i), yk <r root(g, j) } ,

αk ∈ (−∞, ωi
f ) =⇒ Ek = Ek−1 ∪ { yk <r root(f, i) } ,

αk ∈ (ωi
f ,+∞) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i) } ,

αk = ωi
f =⇒ Ek = Ek−1 ∪ { yk =r root(f, i) } .

Finally, we guarantee that Pk+1 is delineable in Sk because the set of polynomials
P∗ = P1 ∪ . . .∪Pk is sign invariant in Sk, and Pm(Pk+1, υ, yk+1) is a subset of P∗. Now, it
becomes clear why Pm is sufficient. Pm does not need to include all coefficients, reductums,
and the whole psc chain, like Pc does, because the current assignment indicates which
coefficients will (and will not) vanish in any element of Ek. This follows from the fact that
(υ(y1) = α1, . . . , υ(yk) = αk) is in Ek, and all polynomial ins P∗ are sign invariant in Ek.

Once we have computed the regions S1, . . . , Sn, we can use the region S = Sn and the
corresponding constraints E = En to explain why ¬F is incompatible with F . Thus, we set
explain(F,M) ≡ E ∧ F =⇒ F .

Theorem 5. The explanation function explain(F,M) is a finite-basis explanation function
for the existential theory of real closed fields.

Proof. The key observation is that Pm(A, x, υ) ⊆ Pc(A, x), for any A, x and υ. Let A0 ⊂
Z[x1, . . . , xn] be the set of polynomials in the initial set of constraints C0. Using Collins
projection operator Pc(A, x) we define the sets of polynomialsAn, . . . ,A1 iteratively, starting
from An = A0, and then for k = n, . . . , 2,

Ak−1 = Pc(Ak, xk) ∪ (Ak ∩ Z[x1, . . . , xk−1])

Now, let Ac be the set An ∪ . . . ∪A1. The set Ac is finite and for any A ⊆ Ac and variable
x, we have Pc(A, x) ⊆ Ac. Consequently, for any A ⊆ Ac, variable x, and assignment υ,
Pm(A, x, υ) ⊆ Ac.

Given a finite set of polynomials A, we have finitely many different polynomial constraints
F s.t. poly(F ) ∈ A. This is clear for basic constraints, there are 6 × |A| different basic
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Fig. 4. (a) The sphere corresponding to the roots of x2 + y2 + z2 − 1, and regions of Ex 4 and
Ex 6. (b) Solutions of f2 = x2 + y2 − 1 = 0 and f3 = −4xy − 4x + y − 1 = 0 in blue, solutions of
f4 = x3 + 2x2 + 3y2 − 5 = 0 in orange. Solution set of {f2 < 0, f3 > 0, f4 < 0 in green. The dashed
lines represent the zeros of the projection set (2).

.

constraints. For extended constraints x Or root(f, k), we recall that k ≤ deg(f, x). Let Bc
be the set {F | poly(F ) ∈ Ac}. Thus, Bc is finite.

Now, it is clear that explain(F,M) is a finite basis explanation function. Given an initial
set of constraints C0, for any application of Pm(A, x, υ) in any application of explain(F,M)
in any derivation of our procedure, we have that Pm(A, x, υ) ⊆ Ac, and consequently Bc is
a finite basis for explain(F,M).

Example 5. Consider the variable assignment υ, with υ(x) = 0, and the set A containing
two polynomials polynomials f2 = x2 + y2 − 1 and f3 = −4xy − 4x+ y − 1. The projection
operator Pm maps the set A into Pm(A, y, υ)

{ (16x3 − 8x2 + x+ 16︸ ︷︷ ︸
f1

)x, −4x+ 1, 4(x+ 1)(x− 1), 2, 1 } , (2)

where f1 is the polynomial from Ex. 1. The zeros of f2 and f3 are depicted in Fig. 4(b),
together with a set of important points {−1, α1, 0,

1
4 , 1}, where α1 is the algebraic number

from Ex. 1. These are exactly the roots of the projection polynomials (2). It is easy to
see from Fig. 4(b) that both f2 and f3 are delineable in the intervals defined by these
points. Since, in this case, A is delineable on any region of R where the projection set is
sign invariant, A is also delineable in the region [0, 0] containing υ(x) = 0. But, considering
another polynomial f4 = x3 + 2x2 + 3y2 − 5, we can see that it is not delineable on the
interval (1,+∞).

Example 6. Consider the polynomial f = x2 + y2 + z2 − 1, from Ex. 4, and the constraint
f < 0 corresponding to the interior of the sphere in Fig. 4(a). Under an assignment υ with
υ(x) = 3

4 and υ(y) = − 3
4 (the red point in Fig 4(a)) this constraint does not allow a solution



for z (it evaluates to z2 < − 1
8 ). In order to explain it, we can compute the projection closure

of A = {f}, using Pm, obtaining P3 = A and

P2 = Pm(P3, υ, z) = { 4x2 + 4y2 − 4, 2, 1 } ,
P1 = Pm(P2, υ, y) = { 256x2 − 256, 8, 4, 2, 1 } .

The sets of root objects under υ are then

R2 = { root(z̃2 +x2 − 1, 1), root(z̃2 +x2 − 1, 2) } ,
R1 = { root(z̃2−1, 1), root(z̃2−1, 2) } .

Since υ(x) = 3
4 = 0.75 and the root objects of R1 evaluate to −1 and 1, respectively, we

need to fit x between the two of them, and so the constraints corresponding to the region

S1 are (x > −1) and (x < 1). The root objects of R2 evaluate to −
√
7
4 ≈ −0.6614 and

√
7
4 ≈ 0.6614. Since υ(y) = − 3

4 = −0.75, which is below the first root, the single constraint

corresponding that we add to describe the region S2 is (y < root(z̃2−x2 − 1, 1)). Having
computed S2, we have obtained the region of delineability that contains the assignment υ,
and we are ready to construct the explanation explain[Pm](f < 0, υ) as

(x ≤ −1) ∨ (x ≥ 1) ∨ ¬(y < root(z̃2−x2 − 1, 1)) ∨ (f ≥ 0) .

The explanation clause states that, in order to fix the conflict under the assignment υ,
we must change υ so as to exit the region −1 < x < 1 below (in y) the unit circle. This is
the region in Fig 4(a) containing (x, y) = ( 3

4 ,−
3
4 ), colored red.

Isolating the conflicting core. Given a constraint F incompatible with a trail M , we now
discuss how to compute a minimal set of constraints F from M that is not compatible
with F . We start with an approximated method. It is based on the observation that every
polynomial constraint F in M can be associated with a finite set of infeasible intervals
infset(F, υ) for its maximal variable. For example, assume the constraint F = x22 − x1 < 0
is in M , and x1 is assigned to 2, then infset(F, υ) = {(−∞,−

√
2), (
√

2,∞)}. Additionally,
for each variable xk, we maintain a disjoint set of infeasible intervals infset(xk), where each
interval I is tagged with a constraint in M that implies I. Whenever a constraint F is
added to M , we update infset(xk). Let F be a a new constraint with poly(F ) ∈ [x1, . . . , xk].
If infset(¬F, υ) ∪ infset(xk) contains the whole real line, then we know F is incompatible
with M , and the constraints tagging the intervals in infset(xk) are a superset of the minimal
set. We now can refine this approximation by trying to eliminate constraints from the check
while checking whether the infeasible sets of each remaining constraints still cover the whole
real line.

Example 7. Consider the set of polynomial constraints C = {f2 < 0, f3 > 0, f4 < 0}, where
the polynomials f2 and f3 are from Ex. 5. The roots of these polynomials and the feasible
region of C are depicted in Fig. 4(b). Our decision procedure could choose 0 as the first value
for x, and end up in a state

〈Jx 7→0, (f2 < 0), (f4 < 0), E→(f3 ≤ 0)K, C〉2
We now need to compute the explanation E to explain the propagation. But, although
the propagation was based on the inconsistency of C under M , we can pick the subset
{f2 < 0, f3 > 0} to produce the explanation. It is a smaller set, but sufficient, as it is also
inconsistent with M . Doing so we reduced the number of polynomials we need to project,
which, in CAD settings, is always an improvement.



5 Related Work and Experimental Results

In addition to CAD, a number of other procedures have been developed and implemented in
working tools since the 1980s, including Weispfenning’s method of virtual term substitution
(VTS) [49] (as implemented in Reduce/Redlog), and the Harrison-McLaughlin proof pro-
ducing version of the Cohen-Hörmander method [32]. Abstract Partial Cylindrical Algebraic
Decomposition [38] combines fast, sound but incomplete procedures with CAD. Tiwari [46]
presents an approach using Gröbner bases and sign conditions to produce unsatisfiability
witnesses for nonlinear constraints. Platzer, Quesel and Rümmer combine Gröbner bases
with semidefinite programming [39] for the real Nullstellensatz.

In order to evaluate the new decision procedure we have implemented a new solver
nlsat, the implementation being a clean translation of the decision procedure described in
this paper. We compare the new solver to the following solvers that have been reported to
perform reasonably well on fragments of non-linear arithmetic: the z3 3.2 [14], cvc3 2.4.1
[2], and MiniSmt 0.3 [51] SMT solvers; the quantifier elimination based solvers Mathematica
8.0 [42,41], QEPCAD 1.65 [6], Redlog-CAD and Redlog-VTS [16]; and the interval based iSAT
[17] solver.7

We ran all the solvers on several sets of benchmarks, where each benchmark set has
particular characteristics that can be problematic for a non-linear solver. The meti-tarski
benchmarks are proof obligations extracted from the MetiTarski project [1], where the con-
straints are of high degree and the polynomials represent approximations of the elementary
real functions being analyzed. The keymaera benchmark set contains verification conditions
from the Keymaera verification platform [39]. The zankl set of problems are the benchmarks
from the QF NRA category of the SMT-LIB library, with most problems originating from
attempts to prove termination of term-rewrite systems [18]. We also have two crafted sets of
benchmarks, the hong benchmarks, which are a parametrized generalization of the problem
from [23], and the kissing problems that describe some classic kissing number problems, both
sets containing instances of increasing dimensions.

Table 1. Experimental results.

meti-tarski (1006) keymaera (421) zankl (166) hong (20) kissing (45) all (1658)

solver solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

nlsat 1002 343.48 420 5.73 89 234.57 10 170.33 13 95.62 1534 849.73

Mathematica 1006 796.90 420 171.96 50 366.10 9 208.04 6 29.01 1491 1572.01

QEPCAD 991 2616.94 368 1331.67 21 38.85 6 43.56 4 5.80 1390 4036.82

Redlog-VTS 847 28640.26 419 78.58 42 490.54 6 3.31 10 275.44 1324 29488.13

Redlog-CAD 848 21706.75 363 730.25 21 173.15 6 2.53 4 0.81 1242 22613.49

z3 266 83.18 379 1216.04 21 0.73 1 0.00 0 0.00 667 1299.95

iSAT 203 122.93 291 16.95 21 24.52 20 822.01 0 0.00 535 986.41

cvc3 150 13.52 361 5.45 12 3.11 0 0.00 0 0.00 523 22.08

MiniSmt 40 697.46 35 0.00 46 1370.14 0 0.00 18 44.67 139 2112.27

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with individual
runs limited to 2GB of memory and 900 seconds. The results of our experimental evaluation

7 We ran the solvers with default settings, using the Resolve command of Mathematica, the rlcad

command for Redlog-CAD, and the rlqe for Redlog-VTS.



are presented in Table 1. The rows are associated with the individual solvers, and columns
separate the problem sets. For each problem set we write the number of problems that
the solver managed to solve within the time limit, and the cumulative time for the solved
problems. A plot of solver behavior with respect to solved problems is presented in Fig 5.
All the benchmarks, with versions corresponding to the input languages of the solvers, the
accompanying experimental data, are available from the authors website.8

Fig. 5. Number of problems solved by each solver against the cumulative time of the solver (loga-
rithmic time scale).

The results are both revealing and encouraging. On this set of benchmarks, except for
nlsat and the quantifier elimination based solvers, all other solvers that we’ve tried have
a niche problem set where they perform well (or reasonably well), whereas on others they
perform poorly. The new nlsat solver, on the other hand, is consistently one of the best
solvers for each problem set, with impressive running times, and, overall manages to solve
the most problems, in much faster time.

6 Conclusion

We proposed a new procedure for solving systems of non-linear polynomial constraints. The
new procedure performs a backtracking search for a model, where the backtracking is pow-
ered by a novel conflict resolution procedure. In our experiments, our first prototype was
consistently one of the best solvers for each problem set we tried, and, overall manages to
solve the most problems, in much faster time. We expect even better results after several
missing optimizations in the core algorithms are implemented. For example, our implemen-
tation does yet support full factorization of multivariate polynomials, or algebraic number
computations using extension fields.

8 http://cs.nyu.edu/~dejan/nonlinear/

http://cs.nyu.edu/~dejan/nonlinear/


We see many possible improvements and extensions to our procedure. We plan to design
and experiment with different explain procedures. One possible idea is to try explain proce-
dures that are more efficient, but do not guarantee termination. Heuristics for reordering
variables and selecting a value from the feasible set should also be tried. Integrating our
solver with a Simplex-based procedure is another promising possibility.

Acknowledgements. We would like to thank Grant Passmore for providing valuable feedback,
the Meti-Tarski benchmark set, and so many interesting technical discussions. We also would
like to thank Clark Barrett for all his support.
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8. Bruno Buchberger, George Edwin Collins, Rüdiger Loos, and Rudolf Albrecht, editors. Com-
puter algebra. Symbolic and algebraic computation. Springer, 1982.

9. Bob F. Caviness and Jeremy R. Johnson, editors. Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, 2004.

10. Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1993.
11. George Edwin Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern,
May 20–23, 1975, pages 134–183. Springer, 1975.

12. George Edwin Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.

13. Leonardo de Moura and Nikolaj Bjørner. Relevancy propagation. Technical Report MSR-TR-
2007-140, Microsoft Research, 2007.

14. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.
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Mathématique, 9, 1930.
45. Alfred Tarski. A decision method for elementary algebra and geometry. Technical Report

R-109, Rand Corporation, 1951.



46. Ashish Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints. In
Computer Science Logic, pages 248–262. Springer, 2005.

47. Lou van den Dries. Alfred Tarski’s elimination theory for real closed fields. The Journal of
Symbolic Logic, 53(1):7–19, 1988.

48. Alexandre Joseph Hidulphe Vincent. Note sur la résolution des équations numériques. Journal
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A Implementation Details

Acknowledging the importance that the details of a particular implementation play, in this
section we describe which particular algorithms we used in our implementation, provide
additional references, discuss alternatives, and analyze the impact of different optimizations
we tried. Our procedure is based on several algorithms for manipulating polynomials and real
algebraic numbers. Although most of the operations in these two modules have polynomial
time complexity, they are the main bottleneck of our procedure. In our set of benchmarks,
we identified two clear bottlenecks: the computation of principal subresultant coefficients
(psc); and checking the sign of a multivariate polynomial in an irrational coordinate. In all
benchmarks our prototype failed to solve, the computation was “stuck” in one of these two
procedures.

A.1 Polynomials

We represent a multivariate polynomial using a sparse representation based on the sum-
of-monomials normal form. Each monomial is basically a sorted vector of pairs: variable
and degree. For example, the monomial x31x

2
3x4 is represented as (〈1, 3〉, 〈3, 2〉, 〈4, 1〉). A

monomial also has a unique integer identifier that is used to implement mappings from
monomials to values of some type T as vectors. We store monomials in a hash-table in order
to have a unique reference for each monomial. A multivariate polynomial consists of two
vectors: monomials and coefficients. The coefficients are arbitrary precision integers. The
first monomial m in every non constant polynomial p always contain the maximal variable
x in p, and deg(p, x) = deg(m,x). Thus, the maximal variable of a polynomial and its degree
can be quickly retrieved. Moreover, each polynomial has a unique integer identifier and a flag
for marking whether the monomials are sorted using lexicographical order or not. Univariate
polynomials are represented as a dense vector of coefficients. For example, the polynomial
2x5 + 3x+ 1 is represented using the vector (1, 3, 0, 0, 0, 2).

The polynomial arithmetic operations are implemented using the straightforward algo-
rithms. Faster polynomial multiplication algorithms based on Fast-Fourier Transforms only
outperforms the näıve algorithms for polynomials that are well beyond the current capabil-
ities of our decision procedure. We use the standard polynomial pseudo-division algorithm
([10,27]). In many algorithms (GCD, resultant, psc), exact multivariate polynomial division
is used. We say the division of a polynomial p by a polynomial q is exact when there is



a polynomial h such that p = qh. We use the exact division algorithm described at [3]
(Algorithm 8.6) . We implemented three different multivariate polynomial GCD algorithms:
subresultant GCD (Chapter 3 [10]), Brown’s modular GCD and Zippel’s sparse modular
probabilistic GCD (Chapter 7 [21]). Although the resultant of two polynomials is formally
defined as the determinant of the Sylvester-Habicht Matrix, we used the algorithm based
on polynomial pseudo-division, GCD and exact division described at [10] (Algorithm 3.3.7).
We also implemented the principal subresultant coefficient algorithm in a similar fashion.
The resultant of two polynomials can also be computed using modular techniques similar to
the ones used to compute the GCD of two polynomials. However, we did not implement the
modular resultant procedure yet. To the best of our knowledge, QEPCAD uses this modular
algorithm to control the coefficient growth in the resultant computation.

Regarding polynomial factorization, we perform square-free factorization of a polynomial
f using the GCD and its derivative with respect to some variable in f . The polynomial is
then put into the form

∏
fkk , where each fk is the product of all factors of degree k. We

extract content and primitive parts of a polynomial using the GCD and exact division. We
use the standard approach for univariate factorization, where we first factor a square free
polynomial in a finite field GF (p) for some small prime p s.t. the factorization is also square
free. Then, the factorization is lifted using Hensel’s lemma, and finally we search for factors
in the result set of polynomials. Further details can be found in [10,27]. In the current
prototype, we do not have support for full multivariate factorization.

We implemented two algorithms for root isolation of univariate polynomials with integer
coefficients. One is based on Sturm sequences, and another on the Descartes’ rule of signs
[8]. In both cases, the computations are performed using binary rational numbers [9], also
known as dyadic rationals. The ring Z[1/2] of binary rational numbers is the smallest subring
of Q that contains Z and 1/2. Binary rationals are rational numbers of the for a/2k. Z[1/2]
is not a field, but it is closed under division by 2. We represent binary rationals using an
arbitrary precision integer for a, and a machine unsigned integer for k. The procedures for
computing with binary rational numbers are more efficient than the equivalent ones for
rational numbers.

A.2 Real algebraic numbers

In our implementation, a real algebraic number is a rational number or a square free polyno-
mial f in Z[x] and an isolating interval of binary rational numbers. Moreover, zero is not a
root of f , and the isolating interval does not contain zero. Several algorithms for manipulat-
ing algebraic numbers are greatly simplified when square free polynomials are used. Recall
that a square free polynomial for f can be computed using exactdiv(f, gcd(f, f ′)), where f ′

is the first derivative of f . The arithmetical operations +, −, ×, / on algebraic numbers are
implemented using resultants [10,34]. To evaluate the sign of a polynomial p(x1, . . . , xk) at
(α1, . . . , αk), we first use interval arithmetic. If the result interval does not contain zero, we
are done. Otherwise, we replace all rational αi’s, and try to use interval arithmetic again.
We also refine the intervals of each irrational algebraic number until the result interval does
not contain zero or the αi’s intervals have size less that 1/232. If the result interval still
contains zero, let us assume without loss of generality that none of the αi’s are rationals.



Then, we compute

R1 = Res(y − p(x1, . . . , xn), q1, x1)

. . .

Rk = Res(Rk−1, qk, xk)

where Res(p, q, x) is the resultant of polynomials p and q with respect to variable x, and qi
is the defining polynomial for αi. Rk is a polynomial in y, by resultant theory, p(α1, . . . , αk)
is a root of Rk. Now, we compute a lower bound for the nonzero roots of Rk. This can be
accomplished using the same algorithm used to compute a upper bound for the roots of a
polynomial. We use the polynomial root upper bound algorithm described in [9]. Using this
bound we can keep refining the αi’s intervals until the result interval for p(α1, . . . , αk) does
not contain zero, or it is smaller than the lower bound for nonzero roots. In the second case,
we have show that p(α1, . . . , αk) is zero.

For isolating the roots of p(α1, . . . , αk, y), we use a similar approach. We compute

R1 = Res(p(x1, . . . , xk, y), q1, x1)

. . .

Rk = Res(Rk−1, qk, xk)

However, Rk vanishes if p(x1, . . . , xn, y) vanishes for some roots of q1, . . . , qk. Example,
p(x1, x2, y) = x1y + x2y, and α1 = α2 = (x2 − 2, (0, 2)). That is, α1 and α2 are the

√
2.

However, p vanishes for p(
√

2,−
√

2, y). Thus, R2 is the zero polynomial. To cope with
this issue, we use a technique described in [41]. The basic idea is to use algebraic number
arithmetic to evaluate the coefficients of p until we find one that does not vanish, or we
prove that p(α1, . . . , αn, y) is the zero polynomial.

Finally, computation with algebraic numbers can be greatly improved if they are all
elements of the extension field Q(α), if we know the minimal polynomial for the algebraic
number α. QEPCAD and Mathematica have support for extension fields. Moreover, given
a set of algebraic numbers {α1, . . . , αn}, there is a procedure for computing an algebraic
number α s.t. α1, . . . , αn ∈ Q(α) [8,10]. Our prototype currently has no support for Q(α).

A.3 Analysis

In this section, we analyze the impact of different algorithms and optimizations we tried.
For that, we used an extended set of benchmarks containing 8928 problems. It was not
computationally feasible to execute all other systems in this extended set. We remark that
all benchmarks that our procedure could not solve or took more than one millisecond to
solve are included in the results described in Section 5.

Benchmarks. The first observation is that most benchmarks can be solved with very few
conflict resolution steps. Only 23 problems required more than 1000 conflict resolutions to
be solved. The number of psc chain computations is also very small. Only 17 problems
required more than 1000 psc computations. In our prototype, if possible we select a rational
number in the rule Lift-Level. Therefore, many benchmarks can be solved without using
any irrational algebraic number computation. Only 1826 benchmarks required irrational
algebraic number computations to be solved.



Sparse modular GCD. The use of the sparse modular GCD algorithm instead of the subre-
sultant GCD greatly improved the performance of our procedure. For 43 Meti-Tarski and
Zankl benchmarks, we observed a two order of magnitude speedup.

Factorization. A standard technique used in CAD consists in factoring the polynomials
obtained using the projection operator. If we disable factoring, 30 benchmarks from Meti-
Tarski, Zankl and Hong families cannot be solved anymore, and another 18 benchmarks
suffer from a two orders of magnitude slowdown. This suggests we may obtain even better
performance results after we implement full multivariate polynomial factorization in our
procedure.

Minimal polynomials. The minimal polynomial f of an algebraic number α is the unique
irreducible polynomial of smallest degree with integer coefficients such that f(α) = 0. Min-
imal polynomials are obtained using univariate polynomial factorization. Note that every
minimal polynomial is square-free. By default, we use minimal polynomials for representing
algebraic numbers. If we just use arbitrary square-free polynomials (that are not necessarily
minimal) for encoding algebraic numbers, our procedure fails to solve 5 Meti-Tarski bench-
marks, and suffers a two orders of magnitude slowdown in 12 other Meti-Tarski benchmarks.

Root isolation. By default, our procedure uses the Descartes’ rule of signs procedure for
isolating the roots of univariate polynomials. If we switch to a procedure based on Sturm
sequences, the performance impact is negligible. Only one Meti-Tarski benchmark suffers
from one order of magnitude slowdown.

Full dimensional. We say a problem is full dimensional if it contains only strict inequalities.
A satisfiable full dimensional problem always has rational solutions. A standard optimiza-
tion used in CAD-based procedures consists in ignoring sections when processing existential
problems. This optimization is justified by the fact that in a full dimensional problem adding
a constraint of the form f 6= 0, for some nonzero polynomial f , does not change the satisfi-
ability of the problem. To the best of our knowledge, both QEPCAD and Mathematica use
this optimization. We implement this approach in our procedure by simply using polynomial
constraints of the form yk ≤r root(f, i) and yk ≥r root(g, j) instead of yk <r root(f, i) and
yk <r root(g, j) when a problem is in the full dimensional fragment. With this optimization
our prototype solved extra 12 problems.

Variable reordering. Variable order has a dramatic impact on CAD-based procedures. Math-
ematica uses heuristics for ordering variables, but we could not find any reference describ-
ing the actual heuristics used. We used a simple variable reordering heuristic, we com-
pute the maximal degree maxdeg of each variable in the initial set of constraints. Then,
before starting our procedure, we sort the variables using the total order xi ≺ xj iff
maxdeg(xi) > maxdeg(xj) ∨ (maxdeg(xi) = maxdeg(xj) ∧ i < j). With this simple heuristic,
our prototype can solve 54 (35 from the Meti-Tarski, and 15 from the Zankl set) problems
that it could not solve. However, the heuristic also prevents our procedure from solving 3 (2
from Meti-Tarski, and 1 from the Zankl set) that could be solved without using it. These
results suggest that further work should be invested in developing variable reordering tech-
niques. Dynamically variable reordering during the search is also a promising possibility.
However, to guarantee termination it should be eventually disabled.
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