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What are we doing when
numerically solving ODE’s?

Numerical methods are used to solve initial value
problems where it is difficult to obtain exact solutions

• An ODE is an equation that contains one independent variable (e.g. time)
and one or more derivatives with respect to that independent variable.

• In the time domain, ODEs are initial-value problems, so all the conditions
are specified at the initial time t = 0.

• Matlab has several different functions (built-ins) for the numerical
solution of ODEs. These solvers can be used with the following syntax:

[outputs] = function_handle(inputs)
[t,state] = solver(@dstate,tspan,ICs,options)

Matlab algorithm
(e.g., ode45,

ode23)

Handle for function
containing the

derivatives

Vector that specifiecs the
interval of the solution

(e.g., [t0:5:tf])

A vector of the
initial conditions
for the system

(row or column)

An array. The solution of
the ODE (the values of
the state at every time).
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+1



What are we doing when
numerically solving ODE’s?

Integrators compute nearby value of y(t) using
what we already know and repeat.

Higher order numerical methods reduce error at the cost of speed:
•  Euler’s Method - 1st order expansion

•  Midpoint method - 2nd order expansion
•  Runge-Kutta - 4th order expansion

tt0

y(t)

y(t0)
y!

* *
*

* * *
*

We know t0 and y(t0)
and we know the slope of

y(t), dy/dt =f(t,y).

We don’t know y(t) for any
values of t other than t0.



Use if ode45
fails because the
problem is stiff*

Low to
medium

ode15s

For
computationally

intensive
problems

Low to highode113

Less accurate
than ode45

Lowode23

This should be the
first solver you try

Mediumode45

DescriptionAccuracySolver

Runge-Kutta
(4,5) formula

*No precise definition of stiffness, but the main idea is that the equation
includes some terms that can lead to rapid variation in the solution.



[t,state] = ode45(@dstate,tspan,ICs,options)

Defining an ODE function in an M-file

1. Define tspan, ICs and options in one file (e.g.
call_dstate.m), which sets up ode45

2. Define your constants and derivatives in another file
(e.g. dstate.m) or as a function dstate within the call
file

3. Run call_dstate.m

4. Analyze the results as a plot of state vs. t



II. Solving first-order ODEs

! 

dy

dt
= y'(t) ="y(t) # $y(t)2

! 

y(0) =10

Example:

function [t,y] = call_dstate()
tspan = [0 9]; % set time interval
y0 = 10; % set initial condition
% dstate evaluates r.h.s. of the ode
[t,y] = ode45(@dstate,tspan,y0);
plot(t,y)
disp([t,y]) % displays t and y(t)

function dydt = dstate(t,y)
alpha=2; gamma=0.0001;
dydt = alpha*y-gamma*y^2;

end
end
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Save as call_dstate.m in some directory, and cd to that directory in the matlab GUI



Matlab ode45’s numerical solution

At t = 9, have we reached
steady state?! 

dy

dt
= y'(t) ="y(t) # $y(t)2

! 

y(0) =10

! 

limt"># y(t) =
$

%
= 20,000

EDU>> [t, y] = call_dstate;
EDU>> steady_state = y(end)

steady_state =

   1.9999e+04

From the command line:



III. Solving systems of first-order ODEs

• This is a system of ODEs because we have more than one derivative with
respect to our independent variable, time.

• This is a stiff system because the limit cycle has portions where the
solution components change slowly alternating with regions of very sharp
change - so we will need ode15s.

• This is a example from mathworks, a great resource @ mathworks.com or
the software manual.

• This time we’ll create separate files for the call function (call_osc.m) and
the ode function (osc.m)
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van der Pol equations in relaxation oscillation:



III. Solving systems of first-order ODEs
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dt
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(0) = 0

y
2
(0) =1

van der Pol equations in relaxation oscillation:

To simulate this system, create a function osc containing the equations. 
Method 1: preallocate space in a column vector, and fill with derivative functions
function dydt = osc(t,y)
    dydt = zeros(2,1);    % this creates an empty column 
    %vector that you can fill with your two derivatives:
    dydt(1) = y(2);
    dydt(2) = 1000*(1 - y(1)^2)*y(2) - y(1);
    %In this case, y(1) is y1 and y(2) is y2, and dydt(1) 
    %is dy1/dt and dydt(2) is dy2/dt.
end
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Save as osc.m in the same directory as before.



III. Solving systems of first-order ODEs
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van der Pol equations in relaxation oscillation:

function dydt = osc(t,y)
    dydt = [y(2)
         1000*(1 - y(1)^2)*y(2) - y(1)];
    %Still y(1) is y1 and y(2) is y2, and dydt(1) 
    %is dy1/dt and dydt(2) is dy2/dt.
end
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6-

Save as osc.m in the same directory as before.

To simulate this system, create a function osc containing the equations. 
Method 2: vectorize the differential functions



III. Solving systems of first-order ODEs
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van der Pol equations in relaxation oscillation:
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Save as call_osc.m in the same directory as before.

Now solve on a time interval from 0 to 3000 with the above initial conditions.
Create a scatter plot of y1 with time.

function [T,Y] = call_osc()
    tspan = [0 3000];
    y1_0 = 2;
    y2_0 = 0;
    [T,Y] = ode15s(@osc,tspan,[y1_0 y2_0]);
    plot(T,Y(:,1),'o')
end
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van der Pol equations in
relaxation oscillation:

Plot of numerical solution



IV. Solving higher order ODEs

• Second order non-linear ODE
• Convert the 2nd order ODE to standard form:

2

2

2

2

sin

sin

d
ML MG

dt

d G

dt L

!
!

!
!

= "

= "

MG

Simple pendulum:

! 

z1 = ", z2 = d" /dt

dz1

dt
= z2

dz2

dt
= #

G

L
sin(z1)



Non-linear pendulum function file

• G = 9.8 m/s
• L = 2 m
• Time 0 to 2π
• Initial θ = π/3
• Try ode23
• Plot θ with time

! 

z1 = ", z2 = d" /dt

dz1

dt
= z2

dz2

dt
= #

G

L
sin(z1)

function [] = call_pend()
    tspan=[0 2*pi]; % set time interval
    z0=[pi/3,0];  % set initial conditions
    [t,z]=ode23(@pend,tspan,z0);
    plot(t,z(:,1))
function dzdt = pend(t,z)
    G=9.8; L=2;         % set constants
    z1=z(1);            % get z1
    z2=z(2);            % get z2
    dzdt = [z2 ; -G/L*sin(z1);];
end
end
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