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Abstract – Waiting lines and service systems are important parts of the business world .In 

this article we describe several common queuing situations and present mathematical models

for analysing waiting lines following certain assumptions. Those assumptions are that (1) 

arrivals come from an infinite or very large population, (2) arrivals are Poisson distributed,(3) 

arrivals are treated on a FIFO basis and do not balk or renege,(4) service times follow the 

negative exponential distribution or are constant, and (5) the average service rate is faster than 

the average arrival rate. 

The model illustrated in this airport for  passengers on a level with reservation is the multiple-

channel queuing model with Poisson Arrival and Exponential Service Times (M/M/S).After a 

series of operating characteristics are computed, total expected costs are studied, total costs is 

the sum of the cost of providing service plus the cost of waiting time.

We also study the Tunisian aerial transport, while analysing the situation of the latter, we 

have privately chose to develop the waiting line’s problem on a level with landing on a 

runway. Among the different cause of this waiting, we were limited in which that in relation 

to the weakness on a level with the programming of flights by the civil aviation direction, as 

far as that goes we have been enumerated the main studies which have been consecrated in 

this reason.  Finally, one way to resolve the waiting problem, a good linear programming is 

taken into consideration. On the basis of this analysis, we have chosen to apply the developed 

model in to real case in order to value the contribution which is able to generate the settling in 

such models in Tunisian airport.

 Keywords: Service; FIFO; M/M/s; Poisson distribution; Queue ; Service cost; Unlimited or 

Infinite Population  ; Utilisation Factor; Waiting cost ; Waiting Time, Landing, agents , the 

approach control, estimated time of arrival , linear programming ,optimisation; waiting in air, 

Congestion.

HISTORY:

Queuing theory had its beginning in the research work of a Danish engineer named A. K.  

.Erlang. In 1909 Erlang experimented with fluctuating demand in telephone traffic. Eight 

years later he published a report addressing the delays in automatic dialling equipment. At the 

end of World War II, Erlang’s early work was extended to more general problems and to 

business applications of waiting lines.

1-Introduction:
The study of waiting lines, called queuing theory, is one of the oldest and most widely used 

quantitative analysis techniques. Waiting lines are an everyday occurrence, affecting people 
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shopping for groceries buying gasoline, making a bank deposit, or waiting on the telephone 

for the first available airline reservationists to answer. Queues, another term for waiting lines, 

may also take the form of machines waiting to be repaired, trucks in line to be unloaded, or 

airplanes lined up on a runway waiting for permission to take off. The three basic components 

of a queuing process are arrivals, service facilities, and the actual waiting line. 

   The linear programming (LP) models-seem to be particularly suitable for the queuing theory 

because the solution time required to solve some of that may be excessive even on the fastest 

computer. We demonstrate how each the formulation of (LP) can be used on the following 

example of waiting lines of the aeroplanes. The numerous applications and the rapidly 

growing interest in the solution of (LP) take this fact into account. 

   We briefly study characteristics and exploit advantages and disadvantages of some of the 

most relevant queuing theory models in section 2 and 3  .In section 2, we discuss how 

analytical models of waiting lines can help managers evaluate the cost and effectiveness of 

service systems, we begin with a look at waiting line costs and then describe the 

characteristics of waiting lines and the underlying mathematical assumptions used to develop 

queuing models ; we also provide the equation needed to compute the operating 

characteristics of a service system and show in our case how they are used .Section 3, presents 

the (LP) and discussions the empirical results of the specific implementation. Later in these 

sections, you will see how to save computational time by applying queuing tables and by 

running waiting line computer programs .Finally, we conclude the paper with some remarks 

and future research directions.  

2- Application The Basic Queuing System Configurations And Discussion 

The Waiting line Costs On A Level With Passengers Checking-in: Case 

Study Tunisair Company at A.I.M.H.B  (At Rush Hour)  

2- 1 CHARACTERISTICS OF A QUEUING SYSTEM:

We take a look at the three part of a queuing system (1) the arrival or inputs to the system 

(sometimes referred to as the calling population),(2) the queue* or the waiting line itself, and (3) 

the service facility. These three components have certain characteristics that must be 

examined before mathematical queuing models can be developed.

Arrival Characteristics

The input source that generates arrivals or passengers for the service system has three major 

characteristics. It is important to consider the size of the calling population, the pattern of 

arrivals at the queuing system, and the behavior of the arrivals.

Size of the Calling Population    : Population sizes are considered to be either unlimited

(essentially infinite) or limited (finite).When the number of passengers or arrivals on hand at any 

given moment is just a small portion of potential arrivals, the calling population is considered 

unlimited. For practical purpose, in our examples the unlimited passengers arriving to check-

in for traveller at airport (an independent relationship between the length of the queue and the 

arrival rate moreover the arrival rate of passengers lower). Most queuing models assume such 

an infinite calling population. When this is not the case, modelling becomes much more 

complex. An example of a finite population is a shop with only eight machines that might 

break down and require service.

* The word queue is pronounced like the letter Q, that is, “kew”.

Pattern of arrivals at the System: Passengers either arrive at a service facility according to 

some known schedule (in our case, 13.361 regular passengers every 95 minutes or 0.140 



3

Passenger every one minute) or else they arrive randomly. Arrivals are considered random 

when they are independent of one another and their occurrence cannot be predicted exactly. 

Frequently in queuing problems, the number of arrivals per unit of time can be estimated by a 

probability distribution known as the Poisson distribution .For any given arrival rate, such as 

two passengers per hour, or four airplanes per minute , a discrete Poisson distribution can be 

established by using the formula : 

P(n ;t)= e
n

t t

n  
!

)(
         for  n =0 ,1 ,2 ,3 ,4 ,….

Where                             

                                        P(n ;t)            = probability of n arrivals                                                     

                                                       = average arrival rate  

                                       e               = 2, 7183

                                    n               = number of arrivals per unit of time

Behavior of the Arrival    : Most queuing models assume that an arriving passenger is a 

patient traveller .Patient customer is people or machines that wait in the queue until they are 

served and do not switch between lines. Unfortunately, life and quantitative analysis are 

complicated by the fact that people have been known to balk or renege .Balking refers to 

passengers who refuse to join the waiting lines because it is to suit their needs or interests. 

Reneging passengers are those who enter the queue but then become impatient and leave the 

need for queuing theory and waiting line analysis. How many times have you seen a shopper 

with a basket full of groceries, including perishables such as milk, frozen food, or meats, 

simply abandon the shopping cart before checking out because the line was too long? This 

expensive occurrence for the store makes managers acutely aware of the importance of 

service-level decisions.

  Waiting Line Characteristics

  The waiting line itself is the second component of a queuing system. The length of a line can 

be either limited or unlimited. A queue is limited when it cannot, by law of physical restrictions,

increase to an infinite length. Analytic queuing models are treated in this article under an 

assumption of unlimited queue length. A queue is unlimited when its size is unrestricted, as in 

the case of the tollbooth serving arriving automobiles.

   A second waiting line characteristic deals with queue discipline. This refers to the rule by 

which passengers in the line are to receive service. Most systems use a queue discipline 

known as the first-in, first-out rule (FIFO)¤.This is obviously not appropriate in all service 

systems, especially those dealing with emergencies.

In most large companies, when computer-produced pay checks are due out on a specific date, 

the payroll program has highest priority over other runs.

Service Facility Characteristics

The third part of any queuing system is the service facility. It is important to examine two 

basic properties :(1)the configuration of the service system and (2)the pattern of service times.

Basic Queuing System Configurations   : Service systems are usually classified in terms of 

their number of channels, or number of servers, and number of phases, or number of service 

stops, that must be made. 

¤    The term FIFS (first in, first served) is often used in place of FIFO .Another discipline, LIFS(last in, first   

served),is common when material is stacked or piled and the items on top are used first.  

A single-channel system, with one server, is typified by the drive-in bank that has only one open 

teller. If, on the other hand, the bank had several tellers on duty and each customer waited in 
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one common line for the first available teller, we would have a multi-channel system at work. 

Many banks today are multi-channel service systems, as are most large barbershops and many 

airline ticket counters.

    A single-phase system is one in which the customer receives service from only one station and 

then exits the system. Multiphase implies two or more stops before leaving the system. 

Service Time Distribution     : Service patterns are like arrival patterns in that they can be 

either constant or random. If service time is constant, it takes the same amount of time to take 

Care of each customer. More often, service times are randomly distributed In many cases it 

can be assumed that random service times are described by the negative exponential probability

distribution. This is a mathematically convenient assumption if arrival rates are Poisson 

distributed.

The exponential distribution is important to the process of building mathematical queuing 

models because many of the models’ theoretical underpinning are based on the assumption of 

Poisson arrivals and exponential services. Before they are applied, however, the quantitative 

analyst can and should observe, collect, and plot service time data to determine if they fit the 

exponential distribution.

Identifying Models Using Kendall Notation

D.G. Kendall developed a notation that has been widely accepted for specifying the pattern of 

arrivals, the service time distribution, and the number of channels in a queuing model. This 

notation is often seen in software for queuing model. The basic three-symbol Kendall notation 

is in the form: arrival distribution/service time distribution/number of service channels open.

  Where specific letters are used to represent probability distributions. An abridged version of 

this convention is based on the format A/B/C/D/E/F. These letters represent the following 

system characteristics:

                                       A = represents the interarrival-time distribution.

                                       B = represents the service-time distribution.

[Common symbols for A and B include M (exponential), D (constant or deterministic), Ek (

Erlang of order k), and G(arbitrary or general)]                    

                                       C = represents the number of parallel servers. 

                                       D = represents the queue discipline.

                                       E = represents the system capacity.

                                       F = represents the size of the population.

2-2 SINGLE-CHANNEL QUEUING MODEL WITH POISSON ARRIVALS AND

EXPONENTIAL SERVICE TIMES (M/M/1) :

   We present an analytical approach to determine important measures of performance in a 

typical service system. After these numeric measures have been computed, it will be possible 

to add in cost data and begin to make decisions that balance desirable service levels with 

waiting line service costs. 

Assumptions of the Model

The single-channel, single-phase model considered here is one of the most widely used and 

simplest queuing models. It involves assuming that seven conditions exist:

1. Arrivals are served on a FIFO basis.

2. Every arrival waits to be served regardless of the length of the line; that is, there is no 

balking or reneging.

3. Arrivals are independent of preceding arrivals, but the average number of arrivals(the 

arrival rate) does not change over time.

4. Arrivals are described by a Poisson probability distribution and come from an infinite 

or very large population.

5. Service times also vary from one passenger to the next and are independent of one 

another, but their average rate is known.
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6. Service times occur according to the negative exponential probability distribution.

7. The average service rate is greater than the average arrival rate.

  When these seven conditions are met, we can develop a series of equations that define the 

queue’s operating characteristics.

Queuing Equations  

                   =   mean number of arrivals per time period (for example, per hour)

                  = mean number of people or items served per time period

When determining the arrival rate ( ) and the service rate (  ), the same time period must be

Used. For example, if the  is the average number of arrivals per hour, then  must indicate 

the average number that could be served per hour.

  The queuing equations follow:
1.   The average number of passengers or units in the system, Ls, that is, the number in line 

plus the number being served:  

                                             Ls    =  1
2. The average time a passenger spends in the system, Ws, that is, the time spent in line plus 

the time spent being served:

                                               Ws   =  
1

.

3. The average number of passengers in the queue, Lq:

                                       Lq   =  


2

4.  The average time a passenger spends waiting in the queue, Wq:

                             

Wq=    



5. The utilisation factor for the system,  , that is, the probability that the service facility is 

being used:


 

6.  The present idle time, Po, that is, the probability that no one is in the system:

                                               Po = 1- 


7.  The probability that the number of passengers in the system is greater than k, P n >k  :

                                                       P n>k  =

1



 k




2-3 MULTIPLE-CHANNEL QUEUING MODEL WITH POISSON ARRIVALS AND 

EXPONENTIAL SERVICE TIMES (M/M/S):

The next logical step is to look at a multiple-channel queuing system, in which two or more 

servers or channels are available to handle arriving passengers. Let us still assume that 

travellers awaiting service form one single line and then proceed to the first available server. 

Each of these channels has an independent and identical exponential service time distribution 

with mean 1/ . The arrival process is Poisson with rate . Arrivals will join a single queue 

and enter the first available service channel. 
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The multiple-channel system presented here again assumes that arrivals follow a Poisson 

probability distribution and that service times are distributed exponentially. Service is first 

come, first served, and all servers are assumed to perform at the same rate. Other assumptions 

listed earlier for the single-channel model apply as well.

Equations for the Multichannel queuing Model:

   If we let

                                             S    = number of channels open,

                                             = average arrival rate, and

                                                = average service rate at each channel.

The following formulas may be used in the waiting line analysis:

1. The probability that there are zero passengers or units in the system:

                                                    Po =       

 
1

0 )1(!

)(

!

)(

1

S

n

S
n

S
S

n      

2. The average number of passengers or units in the system:

                                              Ls =  
µ

P

S
SµS

S

1

)²1(!

)(
0


    λ

3. The average time a unit spends in the waiting line or being serviced(namely, in the 

system):

               
µ

P

S
SµS

Ws

S
1

)²1(!

)(
0 

 
    Or                Ws = Ls / λ

4. The average number of passengers or units in line waiting for service:

        P

S
SS

L
S

q 0

1

)²1(!

)( 
 

                      Or                       Lq = Ls – ρ

5. The average time a passenger or unit spends in the queue waiting for service:

           P

S
SµS

W

S

q 0

)²1(!

)( 


             Or                             Wq = Ws - 
1

  

6. Utilisation rate:

                                                        

s


These equations are obviously more complex than the ones used in the single-channel model, 

yet they are used in exactly the same fashion and provide the same type of information as did 

the simpler model. 

SOME GENERAL OPERATING CHARACTERISTIC RELATIONSHIP :

Certain relationships exist among specific operating characteristics for any queuing system in 

a steady state. A steady state condition exists when a queuing system is in its normal 

stabilized operating condition, usually after an initial or transient state that may occur. John 

D.C. Little is credited with the first of these relationships, and hence they are called little’s 

Flow Equations.

                                                   Wq = Lq / λ     (or   Lq =   λWq  )        

                                                     Ws = Ls / λ    (or   Ls = λ Ws )
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A third condition that must always be met is:

            Average time in system = average time in queue + average time receiving service

                                                         Ws = Wq + 
1

     The advantage of these formulas is that once one of these four characteristics is known, the 

other characteristics can easily be found. This is important because for certain queuing 

models, one of these may be much easier to determine than the other. There are applicable to 

all of the queuing systems except the finite population model.                                        

2-4 WAITING LINE COSTS:

One of the goals of queuing analysis is finding the best level of service for an organization. 

When TUNISAIR Company does have control, its objective is usually to find a happy medium 

between two extremes. On the one hand, a firm can retain a large staff and provide many 

service facilities. This, however, can become expensive.

  The other extreme is to have the minimum possible number of checkout lines, gas pumps, or 

teller windows open. This keeps the service cost down but may result in customer 

dissatisfaction. How many times would you return to a large discount department store that 

had only one cash register open during the day you shop? As the average length of the queue 

increases and poor service results, customers and goodwill may be lost.

Managers must deal with the trade-off between the cost of providing good service and the 

cost of customer waiting time. The latter may be hard to quantify.

 One means of evaluating a service facility is thus to look at a total expected cost; is the sum 

of expected service costs plus expected waiting costs. As service improves in speed, however, 

the cost of time spent waiting in lines decreases. This waiting cost may reflect lost 

productivity of workers while their tools or machines are awaiting repairs or may simply be 

an estimate of the costs of customers lost because of poor service and long queues.

The objective is to minimize total expected costs. This analysis is summarized in table II. To 

minimize the sum of service costs and waiting costs, the company makes the decision to 

employ ten travelling agents for registration at rush hours.

         
FIGURE:

Queuing Costs and Service

Levels

2-5 NUMERICAL EXAMPLE AND DISCUSSION:

As an illustration, let’s look at the case of  TUNISAIR company at rush hours (To 20/09/03 

from 07/10/03) all flights are charters flights.

Characteristics of Queuing Systems:

1-Arrivals are served on a FIFO basis.

2- The Calling Population size is considered infinite.
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3- The system is a multiple-server operating in parallel (S=10).

So, we can test if the arrivals are described by a Poisson probability distribution and if 

the service times occur according to the negative exponential probability distribution (as well 

if the service times are a Poisson probability distribution).

The estimated Arrivals’ Characteristic at the System:

(a) Average number of travellers arriving at  reservation counter per 95 minutes :

     361.13X

(b) The variance of the distribution from the passengers number  is :

V(X) =   26.453

(c) The Standard Deviation is :

453.26 x
= 5.1430

Arrival’s validation with Karl-Pearson’s Test:










n

i

ith

i

n

i

ith

c

F

FF

1

1
2

)²(
 If ( 2

c
< 

2

)(
): We accept that the arrivals distribution is Poisson (Ho).

 If ( 2

c
> 

2

)(
): We reject the hypothesis (Ho).

For our case, we have: 2

c
 = 2.2641

d = 5- 2 = 3

The decision‘s rule :

    For all α< 66, 28%, we assert that the distribution of arrivals at a single counter follows a 

Poisson distribution of expected value λi = 13.361
The estimated Characteristic of Service System:

 (a) Average number of passengers checked in / 95 minutes:

X 17.083

(b) The variance of the distribution from the service number is :

      V(X) =  43.032 

(c) The Standard Deviation is:

032.43 x  = 6.56.

(Ho): The observed distribution of service times is a Poisson probability 

(H1): It is not be a question of a Poisson probability distribution for the service times.

Service Times Validation with Karl-Pearson’s Test: 2

c
= 2.9902

  d =5 – 1 – 1 = 3

The decision‘s rule  :

We accept the hypothesis Ho for all α < 56.032%.
So; for all α < 56.032% the service times are described by a Poisson probability 

distribution of average  µ=17.083 called the mean number of passengers served per time 

period (Service rate).
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The estimated Characteristic of the System:

Average number of travellers arriving at the system λ = 133.61 = (13.361x10) ;
The mean number of passengers served per 95 minutes µ = 17.083;

The utilisation factor for the system ρ=λ/μ = 7.821;

The  traffic intensity for the system S/  = 7.821/10 = 0.7821 < 1 ;

Probability that there are zero travellers in the system Po = 0.00034 ;

The average number of passengers in line waiting for service (check in) Lq = 1.3298;
The average number of travellers in the system Ls = 9.1508 ;

The average time a passenger spends in the queue waiting for service Wq =  0.01;

The average time a traveller spends in the waiting line or being serviced (namely, in the 

system) : Ws = 0.0685 ;

The number of unoccupied stations   = 10(1-0.7821) = 2.179 (nearly two counters are 

inactive) ;  

The probability that the passenger wait before to be served  P(>o) ≈  36.82% ;

The inactivity factor per agent Ki = 21.8%.

 The probability that the system is empty (Po) increases;

 The average length of the queue (Lq) and in the system (Ls) decline;

 The average waiting time in the queue (Wq) and the average time in the system (Ws) 

decrease also;

 Our problematical:
What is the optimal number of station’s Tunisair Company to install, in order to minimise the 

sum of service costs and waiting costs?  We let the arrival rate (λ) and that of service (μ) are

fixed.

The objective Function:
Min {E (TC) = E (SC) + E (WC)}

   Where

          TC:    Total Expected Cost;

          SC:    Cost of Providing Service;

         WC:   Cost of Waiting Time.

E (TC) = Co + S.Cs + Ca.Ls 

   Co: The fixed cost of operation system per unit of time;

   Cs:  The marginal cost of a registration agent per unit of time (or Total hourly service cost);         

   Ca:  The cost of waiting based on time in the queue and in the system.

 Note : For this problem , an analytical solution does not exist , and it be necessary to solve 

the problem  by groping  especially that to be question of convex function in other words 

whether her curve is in form  of U , therefore it just takes to estimate E(TC) for the values of

S  growing up until the cost cease to decrease .

Cost of Waiting Time (WC :)

 One unit of waiting time of a traveller was estimated on the basic wage of the latter.

 The mean waiting time cost per passenger is: Ca = Σ WiCi .

      Where

Ci: Hour-wage of a passenger belong to the socio-professional category i.
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            Wi: Weight of the category i is extracted from the total of the sample.

Empirical Result:

Size of the sample: N = 1000 passengers after a questionnaire accomplished by Tunisair

company .As mentioned inside of this sample , Tunisair was found  among  these categories :  

students, children ,handicapped person and the unemployed. 

Our effective sample is of size N =897 travellers  .

This analysis is summarized in Table I : 

Remark: We have cancel the socio-professional category [0; 700 [because the lack into gain 

for this class is low. 

    Ho:  The old distribution (observed by the airport’s responsible) is still valid .

    H1: The old distribution is not valid.

     2

C
=9.235

    
 2

(α ; k-1) =
 2

(0.05 ; 4) = 9.488

                                                                 
 2

C  < 
 

2

)1;( k

Therefore, we have accepted the hypothesis Ho.

C1 = 850 / 192 = 4.4270 DT/H         ;  W1 = 30% = 0.3

C2 = 1150/192 = 5.9896 DT /H         ; W2 = 21% = 0.21

C3 = 1450/192 = 7.5520 DT/H          ;  W3 = 25% = 0.25

C4 = 1750/192 = 9.1146 DT/H          ;  W4 = 14% = 0.14sw 

C5 = 2050/192 = 10.6770 DT/H        ; W5 = 10% = 0.10

In this way, Ca = 6.818 DT/ hour: on average, a passenger lost 6.818 DT per hour of time 

spent waiting in line. 

  

Total waiting cost :
        E (WC) = Ca..Ls = 62.3916 DT/H

The passengers do lose (on average) 62.3916 DT/H per hour of time spent waiting in the 

system.

Analysis The Cost of Providing Service 

The wage of  travelling agent  per unit of time :

               Sh = 3.41 DT/H

The wage of  packer man per unit of time :

              SEh = 2.16 DT/H
The amortized of  electronic weighing machine :

socio-

professional 

category

Number of 

passengers

Theoretical

Frequency         

(in %)

[700 ; 1000[ 332 37

[1000 ; 1300[ 251 28

[1300 ; 1600[ 170 19

[1600 ; 1900[ 90 10

[1900 ; et + [ 54 6

Total 897 100
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        ABh = 0.123 DT/H
The amortized of  reservation system (Gaetan) :

              AGh = 1.462 DT / H 

The cost of occupied surface:

        Lh = 0.146 x 1.70 = 0.248 DT/H.

Cost analysis for service is then: Cs = Sh + SEh + ABh + AGh + Lh + F
    Where: 

F: It is the imputation factor of indirect charges to total cost (F= 5% from the   indirect 

charge by hypothesis)

                       Cs     = 7.773 DT/H

 Total hourly service cost  : E(SC)= S.Cs

                                                                            E (SC) = 10 x 7.773 = 77.73 DT

On average, one hour of service costs 77.73 DT by the company.

Total Expected Cost

      E(TC) = E(WC) + E(SC) 

                  = 140.1216 DT/H

One hour of time spent waiting in system costs on average 140.1216 DT.

55.5% of this cost is endured by Tunisair company, whereas the rest (44.5 %) by the 

passengers.

Table II: The Optimal Configurations

    
Number 

of 

trav

ellin

g 

agen

ts

S

Total Hourly 

Service 

Cost 

E(SC)=S.

CS

The Average 

Number of 

Passengers 

In The 

System

Ls =Lq +ρ

Total 

Hourly 

Service 

Cost

E(WC) =Ca 

Ls

Total Expected Cost

E(TC)=E(SC)+E(WC)

8 62.184 48.39 329.923 392.107

9 69.957 11.79 80.3842 150.3412

10 77.73 9.1508 62.3916 140.1216

11 85.503 8.3495 56.926 142.429

12 93.276 8.0502 54.886 148.162

13 101.049 7.9198 53.997 155.046

14 108.822 7.863 53.609 162.431

15 116.595 7.838 53.439 170.034

16 124.368 7.828 53.371 177.739

17 132.141 7.823 53.337 185.478

18 139.914 7.822 53.330 193.244

19 147.687 7.8213 53.325 201.012

20 155.46 7.8211 53.324 208.784

 S* = 10

2-6 ENHANCING THE QUEUING ENVIRONMENT:

Although reducing the waiting time is an important factor in reducing the waiting time cost of 

a queuing system, Tunisair Company might find other ways to reduce this cost. The total 

waiting time cost is based on the total amount of time spent waiting and the cost of waiting. 

Reducing either of these will reduce the overall cost of waiting. Enhancing the queuing 
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environment by making the wait less unpleasant may reduce (WC) as travellers will not be as 

upset by having to wait .There are magazines in the waiting room of the airport A.I.M.H.B for 

passengers to read while waiting. Music is often played while telephone callers are placed on 

hold. At major amusement air terminal there are video screens and televisions in some of the 

queue lines to make the wait more interesting .For some of these, the waiting line is so 

entertaining that it is almost an attraction itself.

  All of these things are designed to keep the passenger busy and to enhance the conditions 

surrounding the waiting so that it appears that time is passing more quickly than it actually is. 

Consequently, the cost of waiting becomes lower and the total cost of the queuing system is 

reduced. Sometimes, reducing the total cost in this way in this way is easier than reducing the 

total cost by lowering Ws or Wq. In this case of Monastir’ s airport , Tunisair  might consider 

putting a television in the waiting room and remodelling the air terminal so passengers feel 

more comfortable while waiting for their aircraft to be travelled.  

3-Analysis The Waiting Lines Theory In A.I.M.H.B For The movement’s 

Traffic  On A Level With Landing ( In  Arrival At Rush Hour) :

The purpose of this section is to discuss the concept and approach of the waiting in airspace 

on the level with landing of aeroplane on the runway. Among the different causes of this 

waiting, we are limited to the weakness of flight programming by the civil aviation‘s office. 

In this way, we are enumerated the main researches that been consecrated at this problem.

3-1 PREVIOUS WORKS:

3-1.1-The « flow control »:  

    Until to eighty year, the only method of the « flow control » has been used for palliate the 

congestion’s problem on the level with landing.

The basic principle :

This method principle consists in convert the estimated waiting in area into linear waiting. 

This operation consists in estimate, in step with the runway’s capacity, the eve of the 

concerned day, The expected approach time of programmed flight for this day; and if a 

congestion is expected on the level with landing traffic, in that case the different controls 

centres will be contacted in order to compel the aeroplanes affected by the congestion to 

reduce their speed whole of the track flight.   

Calculation of the expected approach time :

The expected approach time is the time to which it is anticipated that the aeroplane at its 

arrival will be authorized for begins its approach for the landing. In other words the time to 

which the aircraft will be able to leave the waiting point .This time lies with the elapsed time 

that we desire to maintain between the arrivals of the aircrafts above the aerodrome. The 

calculation principle of the expected approach time (HAP) is done of the following manner*:    

  HAP= QRE+ D

 Where QRE designates the time of which the aeroplane will wait the admission point in the 

Delegated zone at the approach; whereas D appointed to the calculated delay in step with the 

runway’s capacity and the spacing between two successive arrival in the same waiting point.

  Distribution the waiting between the area control and the approach control:

Consider that the forecast of crossing on the point is not always easy, only for the some part 

* E. Legrand : “L’approche”, Annexe VIII, Ecole Nationale de l’Aviation Civile, Toulouse.

of the total waiting anticipated is absorbed in advance, the rest of this waiting , called 

“buffer”, is absorbed in the level of waiting approach way.

As an illustration, let’s look at this simple example: it is estimated that an aeroplane:

- To leave the beginning approach point at 12H07mn;
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- To leave at 12H00 the airspace under the responsibility of the area control service;

- To be at the runway at 12H17mn;

If the calculation does indicate a waiting of 11 minutes and if the value of the “buffer” is fixed 

at 5 Minutes then an aeroplane ought to undergo in advance a waiting of 6 minutes. The 

supervisor will indicate to the aeroplane that ought to:

-Leave the controlled airspace by the area control service at 12H06 mn

12H00mn + 6mn = 12H06 mn

- Leave the waiting point for begin the approach at 12H18 mn

12H06 mn + 5mn + (12H07mn-12H00 mn)= 12H06mn + 5mn + 7mn= 12H18mn

- And to settle on the runway at 12H28mn

12H18mn + (12H17 – 12H07 mn)= 12H28mn

  Advantages and Disadvantages: 

The method of the « flow control »permits to reduce a part of the waiting area on the level 

with the approach .The rest of the waiting is effected in the removing air traffic .This method 

allows to reduce the congestion in the area, however it don’t permit to reduce the total waiting 

and the delay undergo by a flight during its execution.       

3-1.2- The Application Of N-Job One-Machine Scheduling Programming Models:

In 1981, BIANCO and RICCIARDELL
 (1)

had developed a study concerning the automation’s 

problem of landing on the runway.

The basic principle :

The approach base’s principle is to determine the landing order permitting to reduce the 

waiting in area.  They have used the programming models of N jobs for one machine (N –

job, one – machine scheduling).

Model :

The landing of N flights on the runway, have been considered like being N jobs differences to 

achieve through one machine (runway).They had supposing that every job i employ the 

machine during the elapsed-time (meantime) equal to Pi .If ti is the beginning expected time 

of the job i and if i the beginning actual time of this machine in that case the relative delay to

the di=ti – i. It is necessary to determine the succession order of the jobs which reduce the total 

delay, Di , N jobs:

 N

i
i

i dD
1

 (H1): All the delay are possible.

      (H2): The discipline of the first in, first served (FIFO) could be replaced by anything 

other discipline.

Resolution :

For the resolution of this model BIANCO and RICCIADELLI have used the concept of« 

Branch and bound ». This concept is an algorithm for solving all- integer and mixed-integer 

linear programs and assignment problems. It divides the set of feasible solutions into subsets 

that are examined systematically. It consists in found the whole branch of the algorithm

choice, in which all nodes of the level k stand for a partial succession Sk of k jobs (k  N). 

The divided feasible region results in sub-problems that are then solved .Bound on the value 

of the objective function are found and used to help determine which sub-problems can be 

eliminated from consideration and when the optimal solution has been found. If the solution 

to a sub-problem does not yield an optimal solution, a new sub-problem is selected and 

branching continues. 

                                                
1
 L. Bianco and S. Ricciadelli : “Automated Management in the terminal Area”, Scientific Management of 

transport systems, N.K Jaiswal, pp.9-18.



14

The specific steps involved when dealing with the N-Job One-Machine Scheduling 

Programming Models:

(a) If a branch yields a solution to the Sk (the partial succession for the N jobs) that is not 

feasible, terminate the branch.

(b) If a branch yields a solution to the Sk that is feasible, but not optimal solution, go to     

the last step.

(c) If the branch yields a feasible Sk solution, examine the value of the objective function.          

If this value equals the upper bound, an optimal solution has been reached. If it is not 

equal to the upper bound, but exceeds the lower bound, set it as the new lower bound and 

go to the last step. Finally, if it is less than the lower bound, terminate this branch.  

(d) Examine both branches again and set the upper bound equal to the maximum value of 

the objective function at all final nodes. If the upper bound equals the lower bound, stop. 

If not, go back to step (a).

  Advantages and Disadvantages:

This approach allows to reduction of the waiting in the air in acting simply on the landing 

order .Yet, it not be able applied for a high number of landing. Indeed, starting from 15 

landings, the necessary time for the model resolution become enormous.

3-1. 3 The Application From Process Of Decision Markov Analysis: 

In 1985, RUE and ROSENSHINE
 (2)

 have developed a new approach have had for objective 

the programming of day’s flight so as to eliminate the expected waiting in air. 

The basic principle :   

The principle of this approach is to limit the queue’s length of aeroplanes waiting for 

landing on the runway during the rush period. The restricted aeroplane’s number in the 

queue for different category describes the rejection points of the system formed by the 

runway and the airspace understand as for the waiting. In this way, RUE and 

ROSENSHINE have used the issues from two process of Markov decision with type 

(M/M/1) and (M/ Ek/1). It is necessary to determine the optimal decision of system 

which permits to maximize the profit. Two kind of solution have been enumerated, the 

individual solution (optimal on the level with every classes) and the global solution 

(optimal for all system).

The Optimal Solution with The M/M/1 Process : 

In their article, RUE and ROSENSHINE have used the result from the M/M/1 model that they 

have already expanded in 1981.

a/ The optimal individual solution :

If an aeroplane from the m classes comes and finds i aeroplanes in front it, one’s net profit 

anticipated if it joins the system is equal to:  CR mm
i )1( 

An airplane can to join the system if the number of the aeroplane be situated there is inferior 

to nsm defined by:      


0

)1(

 CnR msmm  CnR msmm


                                                
2
 R.C. RUE and M. Rosenshine : “The application of Semi-markov decision process to queueing of aircraft at an 

airport”, Transportation science, vol. 19, N°2, pp.154-172.



15

nsm represents the limit number of aeroplanes that which any aircraft, from the m class, will  

undergo a loss while meeting to the system, the aeroplane are supposed join the system when 

the net profit is zero.

 So, nsm  be resolved by the entire part of :   C
R

m

m


       







C
R

n
m

m

sm


The brackets indicates the entire part of 

C
R

m

m


b/ The optimal solution of the system :

In this case, the decision-maker decides if an aeroplane from the m classes can to join the 

system whether the i aeroplanes that had before proceeded. Then, he determines the vector 

n0= ( n01, n02,…n0n) of the rejection point that maximizes the total system‘s profit. In other 

words the maximum of profit is generated in the system when the member of the class m is 

not authorized to join the system whether the aeroplane number that we had proceeded is 

inferior than n0m .If n = ( n1, n2,….. nm) represent any vector of rejection point ,then the total net 

profit of the system tally with n is :

g )()()(
1

'
nnn LCR mmm

M

m
m

 
Where  '

m (n) represents the arrival real rate from the class m and Lm (n) represents the 

contribution from the m classes to aeroplane’s number in the system when the n vector of 

rejection point is used. RUE and ROSENSHINE have showed that the total net profit of the 

system can be computed by means of formula:

]/)1([)()()(
1

*

1

 CR mm

M

m
mm

n

i
i

iinng   

Where

- n* = Max [nm]

- Φi (n) is the probability that i aeroplanes being in the system knowledge that the 

rejection point of the system are described by the n vector :








n
n

m

m

m
isi

isi
i

0

1
)(

For each m classes the research of the optimal rejection point of system has been limited 

between 0 and nsm. Be learning that the two authors had already showed for all m varied 

between 1 and M, n0m ≤ nsm    

The Optimal Solution Of  K-Erlang Model :                                    
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RUE and ROSENSHINE
 (3)

had used in this case the results of the model M/Ek/1 which

they had developed in them article published in 1983:
a/  The individual optimal solution :

     If an aeroplane from m class comes and finds i aeroplanes in front it, its anticipated net 

profit to join the system is equal to:

    CCR mmm
kki )/)2/)1((/  

An aeroplane joins to system whether the number of aeroplane that we had preceded is 

inferior to nsm such as nsm defined by:

CRnCR mmsmmm
kk  0)]2/)1(()/[(  )]2/)1(()/)1[((  kknsm


In this way, nsm is computed by:

]2/)1(/[ kkCRn mmsm
 

b/ The optimal solution of  system :

If v represents the any vector of rejection point, at that the total net profit of the system 

correspond with v is calculated by:

]/)([)()()(
1

*

1

 kkiivvg CR mm

M

m
mm

n

i
i

  

Where

v*=max m (vm)

Φi andm  are defined in the same manner that in the case of the exponential model.

This formulation is resolved by the iterative algorithm, the optimal solution is gave in 

words of service’s phase in the system, since the system’s states are defined into the 

number of service’s phases. The service corresponds to k phases. So, if i aeroplanes are in 

the system then the state of the system could be from anything what phase between (i -1) 

k +1 and ik.

Advantages and Disadvantages:

This approach allows reducing the aeroplane’s number while waiting for the landing by a 

good flight’s programming enough in advance. She also permits to reduce the lateness 

generated during the execution’s flights , however it presents some disadvantages, the 

hypothesis concerning the discipline’s arrivals and service didn’t been justified. Otherwise in 

the calculation the rejection point of the system, the authors didn’t take from consideration the 

problem of availability the aircraft parking .In this way of an airport had been a limited space 

for the aeroplane’s parking, a like approach don’t permit to lead to an optimal decision.   

                                                
3
 R.C. RUE and M. Rosenshine : “Optimal control for entry of many classes customers to an M/Ek/1 queue”, 

Naval Research Logistics Quarterly, vol. 30,  pp.217-228.
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3-1.4- Application Of Dynamic Programming Modeling:

In 1987, ANDREATTA and ROMANIN – JACUR
 (4)

 have developed an other approach.

The basic principle :

The principle of this approach is the transformation of the waiting in air‘s part into ground 

waiting. The choice of the flights that it is necessary to delay at the departure airport is based 

on the reduction of the total waiting cost‘s criterion. They have considered for that the 

following hypothesis:  

(H1) It is anticipated that N aeroplanes take off from different airport at different timetables ti

(supposed negative) and land at a same moment t=0 in a same airport.

(H2) Be given a lot of factor can affect the airport’s capacity (specially the meteorological 

circumstance), the estimation of an airport’s capacity at t=0 is defined. K is supposed taken 

the values 0, 1, 2,…, n with the respectively probability P(0), P(1), P(2),…P(n).

(H3) The whole retarded aeroplanes will been able to land at the moment t=1.

The mathematical modelling:  

It is necessary to decide for each aeroplane i (i=1, 2,…, n)if it is preferable to inflict a delay to 

the ground at the departure airport or to it authorize the takeoff at the expected time ti .Two 

kind of costs are defined for the delayed aeroplane i: The cost gi for the delay to the ground 

and the cost ai for the waiting in air. Otherwise, the other model’s variable is:

The probability which the capacity K of an airport don’t exceed k (k=0, 1,…, n) is defined 

by :

][)()(
0

kKPhPKP
k

h

prob 
For each aeroplane i a delay decision variable di is defined by:

  1     if i is delayed on the ground 

di   0    elsewhere

                                                                 d= (d1, d2,…dn)

The aeroplanes are classed by the priority order of landing according to one landing priority π
defined by the index πi for every aeroplane i .So if πi> πj then the aeroplane i is having 

priority upon the aeroplane j .The number of aeroplanes having priority to landing upon the 

aeroplane i are defined by :

 n

h
i

ihSS
1

),(

                                                
4
 G. Andretta and G. Romanin Jacur : « Aircraft flow management under congestion », transportation science, 

vol 21, N°4, pp.249-253.
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Where

S (h,i) 

 


elsewhere

if
ih

0

1 

The number of aeroplanes having a priority of landing on the aeroplane i and that will 

undergo a waiting on the ground is Di

 n

h
hi

ihSdD
1

),(

The probability which aeroplanes didn’t been authorized to landing at moment t=0, namely 

that Di aeroplane having priority on i be came under a delay on the ground is:

)(),/( DSDS iiii
PiP 

The delay cost for each aeroplane i is computed by:

Ci(di, Di) =gi    if  di = 1

ai P(i/si, Di)     if  di = 0

This is equivalently:

Ci(di, Di) = digi + (1-di)aiP(i/Si, Di)
Thus the total cost to minimize is:

C (d) = nh 1

[digi+(1-di)aiP(i/Si, Di)]

 n

h
iii DdC

1

),(

Solution :

To determine the optimal delay decision, the aeroplanes are firstly in the increasing order of 

priority. In other words an aeroplane i be having priority on an aeroplane j if i>j. In that case 

we have had:  

The number of aeroplanes having priority on the aeroplane j is calculating by: 

inS i


The number of aeroplanes having priority on the aeroplane i, and they do undergo a delay to 

ground is computed by:

DddD ii

n

jh
hi  


11
1

So, the optimal vector d*= (
),,,

**

2

*

1 ddd n


satisfied the following recursive equation :

Ci(di, Di) =
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di

Min DdCDdCDC iiiiiiii
)](),([)(

1
 

With the initial condition:

DdDdC 11110
,0)( 

The amount Ci( Di) is interpreted like being the optimal value of the delay cost in i first 

aeroplanes knowledge that Di aeroplanes having priority than i had undergo a lateness in to 

ground. In this way the optimal total cost is given by: C
*
 = C (d

*
) = Cn(0).

In basing on this recursive relation, ANDREATTA and ROMANIN-JACUR had expanded an 

algorithm of dynamic programming making it possible to lead to the optimal solution.   

Advantages and Disadvantages:

This study can be considered like being an initial development of a new approach, be given 

that ANDREATTA and ROMANIN- JACUR have used the hypothesis which do simplify 

enormously the reality. They have supposed that the congestion in the waiting level didn’t last 

whether one unit of time; in other words whether the all aeroplanes will be able to land at the 

extremity of the one unit of times. In the same way they have supposed that the distribution of 

the probability relative to an airport’s capacity don’t change in time. Otherwise, seeing that 

the case for the others researches, the problem of assignment the aircrafts parking is not taken 

by consideration.

3-1.5- An Assignment Problem From The Aircrafts Parking:

On the contrary with the latter, an other researches have been limited at the assignment from 

the aircrafts parking. We enumerate in this frame the developed model on 1985 by     

MANGOUBI and MATHAISEL.
 (5)

The basic principle :

The principle of this assignment is to reduction of the distance travelled through the 

passengers between the aircrafts parking and the air terminal. Two approaches had been 

developed; the first uses the linear programming with integer values whereas the second uses 

the heuristic formula‘s problem.      

 The linear formulation :

a/ Notations :      

A separate 0-1 variable can be defined for each position to assignment of the flight i into the 

aircraft parking j.

1            if    the flight i is assigned to the parking j .

O            if    not

                                                
5
 R.S. Mangoubi and D.F.X. Mathaisel : « Optimizing gate assignements at airport terminals », 

transportation science, vol 19, pp173-188.

Xij =
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The passengers’ flight are  classified by three category: The arrivals passengers, P
a

i , the

departures passengers, P
d

i , and  the transits passengers, P
t

i .The distance travelled through 

by these three typical passengers from the parking j is as followd
a

j ,d
d

j andd
t

j .The total 

distance covered with  all passengers is written down Z. 

The number of flights to assign into an aircraft parking is written down M.

The number of the aircrafts parking is written down N.

b/ The objective function :

The objective of this formulation consists in reducing the total distance covered with  all 

passengers, it is formulated as: 

XdPdPdPMinZ
ji

t

j

t

i

d

j

d

i

a

j

a

i

N

j

M

i
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c/ The constraints :

Two types of constraints are possible: those which are own to an assignment problem and 

those that depend on the airport or else the airline company using the airport.

The constraints of the first type are:

-Every flight ought to be associated in one and only aircraft parking.

        Xij = 
 Mi 11 

The number of these typical constraints is equal to the flights number, M.

- Two aeroplanes didn’t should to be associated in a same aircraft parking at the same 

time :

Xhj + Xij ≤ 1                   Nj
Mi
iLh



1
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L(i) designates the set of flights have which landed before the i flight and they which still in 

the parking when the flight i comes. So whether the flights are indicated in the order of their 

arrivals, L (i) can be defined as follow:  11,/)(  ihhiL tt
a

i

d

h


Where t
d

h
 is the departure time of the flight h and t

a

i
is the arrival time of the flight i.

The second type of constraints depends on the airport in question. Two constraints of this type 

have been developed:

- Subdivision the aircrafts parking on independent areas for each company: Some airports are 

subdivided on the reserved areas for exclusive use by the airline company. If S represents the 

number of company using the airport, in that case the flights will be divided into S groups   

I1, I2,…,Is .In the same way the aircrafts parking will be also divided into S groups  J1, J2,…,Js. 

S sub-terminals are also obtained for which S under integer linear programming  similar to the 

previous formulation are developed. 

- Some parking are too smaller for some aeroplanes. If I represents the biggest size of set  

aeroplanes and J represents the set parking don’t be able to accept in such aeroplanes, then: 

Xij =    
Jj

Ii
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 The Heuristic Formulation :

This approach consists in to assign the aeroplanes that have had the greatest number of 

passengers into parking tally with the smallest distance covered. The specific steps involved 

in this algorithm are as follows:

Step 1: Classify the flights into decreasing order from the passenger’s number;

Step 2: Consider the first flight in the list and note F ;

Step 3: Be reassemble on the set S all the aircrafts parking being able to accept the flight 

F and which were available at the arrival of the flight F;

Step 4: Assign the flight F at parking s S, that tally with the minimal distance covered 

with the passengers of flight F:

       dPdPdPdPdPdP
t

j

t

F

d

j

d

F

a

i

a

F

t

S

t
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d
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S

a

F
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       Step 5: If the all flights are affected at the aircrafts parking, the procedure is then            

terminated. Otherwise, it be necessary to consider the following flight and go back to step (3). 

Those both approach have been applied at an international airport of Toronto in Canada. The 

improvement has been noticed in relation to the initial assignment from the aircrafts parking.  

Indeed, the application of the first approach has allowed the reduction of covered distance 

with the passengers of 32% in relation to initial assignment, at a time when the application of 

the second approach has reduced this same distance of 28, 1%.  

Advantages and Disadvantages:

The application of these both approaches has supplied with considerable improvements 

concerning the covered distance. However the objective used in the assignment don’t be the 

first importance, particularly what the transport’s means between the air terminal and the 

aircrafts parking are became more and more available at the airports.

3-2 A PROBLEM FORMULATION FROM THE PROGRAMMING OF

DAY’S FLIGHTS:
The landing of aeroplanes at an airport generally became according to the discipline known as 

the first-in, first-out rule. The authorizations of landing were agreed by the approach control 

office particularly basis on the both following parameters:

- At the rate of the using of the runway.

- And the availability of an aircraft parking for the aeroplane in question.

It follows then, that for avoid the expected waiting in air by aeroplanes, it is necessary to take 

into account of these both parameters in the programming of day’s flights.   

3-2-1- Notations and Abbreviations:

N The number of aircrafts parking

M The number of programmed flights for the designed day 

t
a

i

Estimated time of arrival flight i 

t
d

i

Estimated  off-block time flight i 
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tij Landing time proposed by civil aviation centre if the aeroplane i will be assigned into 

parking j    (tij is supposed not null in this case).

C The  runway’s rate

T  An upper bound for tij variables  

Wi The weight of the flight i in relation to others flights’ day

ti Landing time proposed by the civil aviation centre for the aeroplane i

ti  Takeoff time flight i whether it did land at time ti.

yi The assigned aircraft parking to the flight i

yij  An integer variable with Zero-one values 

DAC  Civil aviation direction

Card The  cardinal of the set 

3-2-2- The Model:

We proposed to formulate the programming problem from flights’ day in the form of linear 

programming. 

The objective function:

The objective of this formulation is to maintain or to delay as minimum as possible the 

timetables asked for the airlines company .The objective function will express then the total 

reduction of estimated waiting.

It is necessary to decide the proposed timetables by the airlines company or to suggest of 

again timetables for the M flights at the designed day.

Hence, we do consider the integer decision variables tij bounded is defined as follows:

- If the flight i will be assigned in to parking j in that case tij will take a not null value 

lower or equally than T. T is the upper bound for the variables tij.   

- If the flight i won’t be assigned in to parking j then the variable tij  will take a null 

value.

The variable tij (not null) represents the landing time that will propose the civil aviation

direction (DAC) in to flight i if it will be assigned to the parking j, known that the airline 

company had organized this flight asks for the landing timet
a

i , and the takeoff timet
d

i .

tij can be also  interpreted  as being the minimal time to which the flight i be able to start her 

procedure of landing known that it will be in to approach point at time t
a

i .  

We suppose that the airlines company don’t ask for the zero time as the landing time. The 

minimal time asked for is equal to one minute. We suppose as well as the DAC won’t suggest 

the zero time like the landing time. The minimal time proposed is supposed equal to one 

minute. Thus, if tij will take a zero value, that won’t mean what the DAC will propose in to 

flight i the parking j , and the zero time for his landing; but that will mean what the flight i 

won’t be assigned in to parking j after his landing.   

Note that for each flight i, an only one variable tij will be not null, since it will be assigned in 

to single parking j. 

The number of variables tij so defined is equal to N.M.

In this way if the landing time asked for the airlines company will be kept then the estimated 

waiting for every flight i before its landing, be calculate by:
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The expected total waiting for the M flights is expressed by:
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In the same way it be sometimes finds that some airport use the discriminately policy between 

the flights or between the airlines company, such as favour some company by supplying its 

minimum timetable’s gap.

As it were of the same cases, we do propose to introduce a positive factor Wi≤1 for every 

flight i expressing the weight of the flight i in relation to others flights. Note that if Wi> Wi’ 

in that case the flight is more favour than the flight i’.

We do thus lead to following objective function:
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       (3)

Constraints :

We have classified the constraints in two groups. The constraints which are inherent in 

problem and the constraints that depend on the airport in question or on the used rule by the 

decision maker.

We do distinguish, in the first group, four different constraints ((C1),(C2),(C3) and (C4)). 

When into second group, we have chosen to formulate an only constraint (C5), being gave 

that it is commonly in the whole Tunisian airports. This constraint does express the 

assignment problem of aircrafts parking from different model of aeroplanes.     

a/ Constraints(C1):

The time which have to suggest the DAC for each flight i, is at least equal to the wanted time 

for this flight, by the correspondent airline company. This constraint results from the 

objective problem which consists in decide to keep or to delay, for every flight, the wanted 

landing time.

We obtain then:

                                        tt
a

i

N

j
ji
1

        Mi 1               (4)

The number of these constraints is equal to the number of flights programming for a day, M.

b/ Constraints (C2) :

If the runway can’t accept so an only landing at a gave instant, any aeroplane be found at the 

approach point can’t land only when the runway will be free.
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So whether  i+1 is the aeroplane coming after the aeroplane i  at that time the landing time of 

the aircraft i+1 ought to be at least equal to the leaving time on the runway. Being gave that 

the medium spacing between two landings correspond to the rate C of the runway.  

The constraints (C2) are doing express by:

                                  C
N

j
ji
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11
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         11  Mi              (5)

The number of these constraints is equal to M-1

c/ Constraints (C3) :

An only aircraft parking is assigned at every aeroplane i after its landing. It follows that if tij

takes a not null value then anybody else variables til (l being a parking different to j)will do 

necessary take the null value.

Mathematically, the constraints (C3) take the following form:

If 0t ji
then 0t il

        

    jland

Nj

Nl

Mi











1

1
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Lemma 1 :

For all i  M1 and j  N1 , let yij an integer variable with 0-1 values defined by the both 

equations (7) and (8) 

        yij ≤ til (7)

        tij ≤ T yij (8)

The equation  til ≤ T(1-yij)            
    jlet

Nj
Nl
Mi   




1
....1

1

Is equivalent to the expression (6). 

 Proof:

Let  Mi 1 and let  Nj ,,1 .               

* If 0t ji
, then it follows according to the equation (8) that yij ≠ 0; yij being not null at that

time 1y
ji

      

The equation (9) be wrote then 0t li
which proved that 0t li

(being gave that til is a

variable) for all jl and  Nl 1 .

Thus, whether the equation (9) is confirmed then the expression (6) is it also.

*Let 1 an element of  N1 such as jl
If 0y

ji
then  til ≤ T (1-yij) is confirmed since  Tt li

 for all   jlandNl  ,,1    

If 1y
ji

then we obtain according to equation  (7), 0t ji
;it follows on  (6) that, for all

 Nl 1 and jl , 0t li
(which be also wrote too 0t li

) which proved that til ≤ T (1-yij) 

(6)

(9)
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Thus if the expression (6) is confirmed then the equation (9) is it also. The constraints (C3) 

will be expressed by the equations in (7),(8) and (9). The number of constraints which are 

given from (7),(8) and (9) is equal to :

    N.M+ N.M+ N.M.(N-1)= N.M+N
2 

.M

These constraints do introduce more and more N.M integer variables yij

d/ Constraints (C4) :

Two aeroplanes don’t should be assigned at a same aircraft parking at a same time. In other 

words if an aeroplane h be found in a parking j just when the aeroplane i is arrived in that case 

the latter doesn’t ought to be assigned in the parking j.

From the definitions of this type of constraints we do consider for each flight i the set of 

aeroplanes which they went to land and which they also will were, in the parking at its arrival. 

We take again the notation, L (i), from MANGOUBI and MATHAISEL, for this set :

L(i)   tt
a

i

d

h
ih  /1,1

Mathematically these constraints are defined as follows:

If 0thj
 then 0t ji

        Nj
Mi
iLh



1
1

)(

  

Lemma. 2 : 

Let yij an integer variable confirmed the equations (7) and (8).

The inequality )1( yt jiji
T         Nj

Mi
iLh



1
1

)(

  

Is equivalent to the expression (10). 

Proof. :

Let  Mi 1   and let  Nj 1
* Let )(iLh such as 0thj

then it follows, according to (11), that 01 y
ji

in other words that

0y
ji

y
ji
Being null, then according to (8) we deduce that   0t ji

In this way, if the inequality (11) is verified then the expression (10) is it too.

*If 0y
ji

at that time the inequality (11) is confirmed as:

Tt hj
 For all )(iLh and  Nj 1

If 1y
ji

then it follows, according to (7), that 0t ji
which proved, according to (10), that

0thj
for all )(iLh

Thus if the inequality (10) is checked, in that case the inequality (11) is it also.
The constraints (C4) will be expressed by the equations (7), (8) and (11) for every flight i, the 

number of constraints defined in (11) is equal to N. card (L (i)) which give a total number of 

constraints (for all flights)

       
M

i

M

i

iLcardNiLcardN
1 1

..

Where (L (i)) designates the element’s number of set L (i).

e/ Constraints (C5) : 

(10)

(11)
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A second group of constraints depends on the airport in question or on decision maker. In the 

way of we have it already mentioned; we have chose to develop the constraint which does 

actually expressed that some aeroplanes type can’t be parked in some aircrafts parking. In be 

basing on the distribution ,the aircrafts parking and the flights we obtain thus, for all k varying 

from 1 to q : 

0t ij I k
i and Jj U

q

kp 1
 p

At each value k correspond, to (12), a number of constraints are equal to: 

   
 

q

kp
Pk JI cardcard

1

..

By definition, the total number of constraints is expressed in (12) equal to: 

   
  

q

kp
Pk

q

k
JI cardcard

11

..

The complete formulation problem :

Subject to:

This linear programming defined 2.M.N decision variables and  M + (M-1) + M .N + M . N 

+ M. N. (N-1)+N.       
    

q

kp
P

M

i

q

k
k JI cardcardiLcard

11 1

. constraints.

Furthermore:

2M-1 +M .N + M. N
2
 + N.       

    

q

kp
P

M

i

q

k
k JI cardcardiLcard

11 1

. Constraints.
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44-- CCOONNCCLLUUSSIIOONN ::

  Queuing models have found widespread use in the analysis of service facilities, production

and many other situations where congestion or competition for scarce resources may occur. 

This paper has introduced the basic concepts of queuing models, and shown how linear 

programming, and in some cases a mathematical analysis, can be used to estimate the 

performance measures of a system. The key operating characteristics for a system are shown 

to be (1) utilization rate,(2) percent idle time, (3) average time spent waiting in the system and 

in the queue, (4) average number of travellers in the system and in the queue , and (5) 

probabilities of various numbers of passengers  in the system.

     We have just seen a lot of special types of programming models for instance assignment 

models, flow control method, dynamic programming…etc; that were handled by making 

certain modifications to the general approach. This article presents a series of other important 

mathematical programming models that arise when some of the basic assumptions of LP are 

made more or less restrictive. The latter can, of course, be applied only to cases in which the 

constraints and objective function are linear.

    In our case study with using the software Hyper-Lindo the optimal solution is obtained 

after 801 iterations and 16 branches. The objective function does take an optimal value equal 

to 45176. Be given that the factor Wi has been supposed equal to 1 then this value tally with 

the amount of landing hours proposed by the DAC for the 46 flights. while deducting from 

this value the whole minutes of landing hours asking for the airlines company for these flights 

(45966) we obtain the total lateness which ought to inflict the DAC on these flights in relation 

to wanted hours, in order to avoid the waiting in air of aeroplanes in the course of  the 

designed day (15 July 2003). This waiting is estimated to 790 minutes in other words 13H 

and10min, the analysis of results indicates that the linear modelling gives to a minimum 

shifting timetable. Only, be given its enormous cost of execution (in time) the setting up in 

such model at airport less interesting.

     Unlike the discrete and continuous probability distribution, simulation is often used in the 

analysis of queuing models (can be used to generate one or more artificial histories of a 

complex system). As mentioned earlier, the assumptions required for solving waiting lines 

problems analytically are quite restrictive. For most realistic queuing systems, simulation may 

actually be the only approach available. Models to handle have been developed by operations 

researchers. The computations for the resulting mathematical formulations are somewhat 

more complex than the ones covered in our case, and many real-world queuing applications 

are too complex to be modelled analytically at all. When this happens, quantitative analysts 

usually turn to computer simulation.
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