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Solving Optimization Problems with MATLAB
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▪ Introduction

▪ Least-squares minimization

▪ Nonlinear optimization

▪ Mixed-integer programming

▪ Global optimization

Topics
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Optimization Problems

Minimize Risk

Maximize Profits

Maximize Fuel Efficiency
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Manually (trial-and-error or iteratively)

Why use Optimization?

Initial 

Guess
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Automatically (using optimization techniques)

Initial 

Guess

Why use Optimization?
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Why use Optimization?

▪ Finding better (optimal) designs and decisions

▪ Faster design and decision evaluations

▪ Automate routine decisions

▪ Useful for trade-off analysis

▪ Non-intuitive designs may be found

Antenna Design Using Genetic Algorithm
http://ic.arc.nasa.gov/projects/esg/research/antenna.htm

http://ic.arc.nasa.gov/projects/esg/research/antenna.htm
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Curve Fitting Demo

Given some data:

Fit a curve of the form:

teccty 
21

)(

t = [0   .3   .8   1.1   1.6   2.3];

y = [.82   .72   .63   .60   .55   .50];
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How to solve?
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As a linear system of equations:
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Nonlinear Optimization

min
𝑥

log 1 + 𝑥1 −
4

3

2

+ 3 𝑥1 + 𝑥2 − 𝑥1
3 2
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Nonlinear Optimization - Modeling Gantry Crane

▪ Determine acceleration profile that 

minimizes payload swing

s25s4

s20s1

s20s1

:sConstraint
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Symbolic Math Toolbox

▪ Perform exact computations using familiar 

MATLAB syntax in MATLAB

– Integration

– Differentiation

– Equation solving

– Transformations

– Simplification

– Unit conversion

– Variable precision arithmetic

▪ Results in typeset math in Live Editor

▪ Integrates with MATLAB, Simulink, Simscape
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Mixed-Integer Programming

▪ Many things exist in discrete amounts:

– Shares of stock

– Number of cars a factory produces

– Number of cows on a farm

▪ Often have binary decisions:

– On/off

– Buy/don’t buy

▪ Mixed-integer linear programming:

– Solve optimization problem while enforcing that certain variables need to be integer
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Continuous and integer variables

𝑥1 ∈ 0, 100 𝑥2 ∈ {1,2,3,4,5}

Linear objective and constraints

min
𝑥

−𝑥1 − 2𝑥2

ቊ
𝑥1 + 4𝑥2 ≤ 20
𝑥1 + 𝑥2 = 10

such that

Mixed-Integer Linear Programming
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Optimize Gift Card Spending

Problem: 

▪ Given gift cards to different stores and a shopping list of desired purchases, decide how to 

spend the gift cards to use as much of the gift card money as possible.

Constraints:

▪ You cannot overspend the gift card.

▪ You can purchase one of any item, and must purchase one of a specific item.
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Traveling Salesman Problem

Problem

▪ How to find the shortest path through a series of points?

Solution

▪ Calculate distances between all combinations of points

▪ Solve an optimization problem where variables correspond to trips between two points

1

1
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1

1

0

0

0
0
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Example Global Optimization Problems

Why does fmincon have a hard time finding the 

function minimum?
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Initial 

Guess

Example Global Optimization Problems

Why didn’t fminunc find the maximum efficiency?
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Example Global Optimization Problems

Why didn’t nonlinear regression find a good fit?
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Global Optimization

Goal:

Want to find the lowest/largest value of 

the nonlinear function that has many local 

minima/maxima

Problem:

Traditional solvers often return one of the 

local minima (not the global)

Solution:

A solver that locates globally optimal 

solutions

Global Minimum at [0 0]

Rastrigin’s Function
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Global Optimization Solvers Covered Today

▪ Multi Start and Global Search

▪ Pattern Search

▪ Genetic Algorithm

▪ Surrogate Optimization

▪ Particle Swarm 

▪ Simulated Annealing
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MultiStart Demo – Nonlinear Regression

lsqcurvefit solution MultiStart solution
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MULTISTART
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What is MultiStart?

▪ Run a local solver from each set 

of start points

▪ Option to filter starting points 

based on feasibility

▪ Supports parallel computing
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MultiStart Demo – Peaks Function



30

GLOBAL SEARCH
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What is GlobalSearch?

▪ Multistart heuristic algorithm

▪ Calls fmincon from multiple 

start points to try and find a 

global minimum

▪ Filters/removes non-promising 

start points
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GlobalSearch Overview 
Schematic Problem
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Three minima
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GlobalSearch Overview – Stage 1
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GlobalSearch Overview – Stage 2
Expand basin of attraction if minimum already found

Current penalty threshold value : 2
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GlobalSearch Demo – Peaks Function



46

PATTERN SEARCH

(DIRECT SEARCH)
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What is Pattern Search?

▪ An approach that uses a pattern 

of search directions around the 

existing points

▪ Expands/contracts around the 

current point when a solution is 

not found

▪ Does not rely on gradients: works 

on smooth and nonsmooth

problems
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Pattern Search Overview – Iteration 1
Run from specified x0
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Pattern Search Overview – Iteration 1
Apply pattern vector, poll new points for improvement
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First poll successful

Complete Poll (not default)
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Continue expansion/contraction until convergence…
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Pattern Search – Peaks Function
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Pattern Search Climbs Mount Washington
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GENETIC ALGORITHM
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What is a Genetic Algorithm?

▪ Uses concepts from evolutionary 

biology

▪ Start with an initial generation of 

candidate solutions that are tested 

against the objective function

▪ Subsequent generations evolve 

from the 1st through selection, 

crossover and mutation
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How Evolution Works – Binary Case

▪ Selection

– Retain the best performing bit strings from one generation to the next. Favor these for 

reproduction

– parent1 =   [ 1  0  1  0  0  1  1  0  0  0 ]

– parent2 =   [ 1  0  0  1  0  0  1  0  1  0 ]

▪ Crossover

– parent1 =   [ 1 0 1  0  0 1  1 0 0  0 ]

– parent2 =   [ 1 0 0  1  0 0  1 0 1  0 ]

– child =   [ 1 0 0  0  0 1  1 0 1  0 ]

▪ Mutation

– parent =   [ 1 0  1 0  0  1 1 0  0  0 ]

– child =   [ 0  1 0  1 0  1 0  0  0  1 ]    
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Genetic Algorithm – Iteration 1
Evaluate initial population
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Genetic Algorithm – Iteration 1
Select a few good solutions for reproduction
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Genetic Algorithm – Peaks Function



67

Genetic Algorithm – Integer Constraints

Mixed Integer Optimization

s.t. some x are integers

Examples

▪ Only certain sizes of components 

available

▪ Can only purchase whole shares of stock

)(min xf
x
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Application: Circuit Component Selection

▪ 6 components to size

▪ Only certain sizes available

▪ Objective: 

– Match Voltage vs. Temperature 

curve

Thermistor Circuit

300 Ω

330 Ω

360 Ω

…

180k Ω

200k Ω

220k Ω

Thermistors: 

Resistance varies 

nonlinearly with 

temperature

?

𝑅𝑇𝐻 =
𝑅𝑇𝐻,𝑁𝑜𝑚

𝑒
𝛽
𝑇−𝑇𝑁𝑜𝑚
𝑇∗𝑇𝑁𝑜𝑚



69

SURROGATE OPTIMIZATION
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What is Surrogate Optimization?

▪ An approach that creates and 

optimizes a surrogate of the 

function

▪ Searches randomly to explore 

and adaptively to refine

▪ Does not rely on gradients: works 

on smooth and nonsmooth

problems
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Surrogate Optimization Overview
Construction phase – evaluate at random points to construct surrogate
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Surrogate Optimization Overview
Search phase – minimize merit function of surrogate and point spread
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Continue process until stopping criteria are met
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Surrogateopt Demo – Peaks Function
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PARTICLE SWARM
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What is Particle Swarm Optimization?

▪ A collection of particles move 

throughout the region

▪ Particles have velocity and are 

affected by the other particles in 

the swarm

▪ Does not rely on gradients: works 

on smooth and nonsmooth

problems
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Particle Swarm Overview – Iteration 1
Initialize particle locations and velocities, evaluate all locations
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Particle Swarm Overview – Iteration N
Update velocities for each particle
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Velocity

Best Location 

for this Particle
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Neighbor Particles
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Particle Swarm Overview – Iteration N
Update velocities for each particle
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Particle Swarm Overview – Iteration N
Move particles based on new velocities
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Continue swarming until convergence
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Particle Swarm – Peaks Function
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SIMULATED ANNEALING
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What is Simulated Annealing?

▪ A probabilistic metaheuristic

approach based upon the physical 

process of annealing in 

metallurgy. 

▪ Controlled cooling of a metal 

allows atoms to realign from a 

random higher energy state to an 

ordered crystalline (globally) lower 

energy state 
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Simulated Annealing Overview – Iteration 1
Run from specified x0
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Simulated Annealing Overview – Iteration 1
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Standard Normal N(0,1) * Temperature

Temperature = 1
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3

x

y 0.9

Temperature = 1

11.0
1

1
/)9.03(





 Taccept
e

P



89

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Simulated Annealing Overview – Iteration 1

3

x

y 0.9

Temperature = 1

0.3



90

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Simulated Annealing Overview – Iteration 1
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Simulated Annealing Overview – Iteration 2
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Simulated Annealing Overview – Iteration N
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Simulated Annealing – Peaks Function
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Global Optimization Toolbox Solvers

▪ GlobalSearch, MultiStart

– Well suited for smooth objective and constraints

– Relies on gradient calculations

– Return the location of local and global minima

▪ ga, simulannealbnd, particleswarm

– Many function evaluations to sample the search space

– Work on both smooth and nonsmooth problems

▪ patternsearch, surrogateopt

– Fewer function evaluations than ga, simulannealbnd, particlewarm

– Work on both smooth and nonsmooth problems
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Optimization Toolbox Solvers

▪ fmincon, fminbnd, fminunc, fgoalattain, fminimax

– Nonlinear constraints and objectives

– Gradient-based methods for smooth objectives and constraints

▪ quadprog, linprog

– Linear constraints and quadratic or linear objective, respectively

▪ intlinprog

– Linear constraints and objective and integer variables

▪ lsqlin, lsqnonneg

– Constrained linear least squares

▪ lsqnonlin, lsqcurvefit

– Nonlinear least squares

▪ fsolve

– Nonlinear equations
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Speeding-up with Parallel Computing

▪ Global Optimization Toolbox
– patternsearch, surrogateopt, ga, 

gamultiobj, particleswarm: Points 

evaluated in parallel at each iteration

– MultiStart: Start points evaluated in parallel

▪ Optimization Toolbox

– fmincon, fminunc, fminimax,  

fgoalattain, fsolve, lsqcurvefit, 

lsqnonlin: Parallel evaluation of objective function 

for finite differences

▪ Parallel Computing can also be used in the 

Objective Function
– parfor
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▪ Speed up parallel applications

▪ Take advantage of GPUs

▪ Prototype code for your cluster

Parallel Computing Toolbox for the Desktop

Simulink, Blocksets, 

and Other Toolboxes

Local

Desktop Computer

MATLAB

……
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Scale Up to Clusters and Clouds

Cluster

Scheduler

Computer Cluster

…

…

…

…

…

…

… … …

Simulink, Blocksets, 

and Other Toolboxes

Local

Desktop Computer

MATLAB

……
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Learn More about Optimization with MATLAB

Recorded webinar: Optimization in 

MATLAB: An Introduction to Quadratic 

Programming

Optimization Toolbox Web demo: 

Finding an Optimal Path using MATLAB 

and Optimization Toolbox

MATLAB Digest: Improving 

Optimization Performance with Parallel 

Computing

MATLAB Digest: Using Symbolic 

Gradients for Optimization

Recorded webinar: Linear and Mixed 

Integer Linear Programming in MATLAB

Recorded webinar: Optimization in 

MATLAB for Financial Applications

1 2 3 4 5
0
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3000

Bonds
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Cash Flow Matching Example
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Key Takeaways

▪ Solve a wide variety of optimization problems in MATLAB 

– Linear and Nonlinear

– Continuous and mixed-integer

– Smooth and Nonsmooth

▪ Find better solutions to multiple minima and non-smooth problems using global 

optimization

▪ Use symbolic math for setting up problems and automatically calculating gradients

▪ Using parallel computing to speed up optimization problems
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MATLAB 
Answers

Blogs

Cody

File 
Exchange

and 
more…

Answers Blogs

ThingSpeak

Every month, over 2 million MATLAB & Simulink users visit MATLAB Central to get questions answered, 

download code and improve programming skills. 

MATLAB Central Community

MATLAB Answers: Q&A forum; most questions get 

answered in only 60 minutes

File Exchange: Download code from a huge repository of 

free code including tens of thousands of open source 

community files

Cody: Sharpen programming skills while having fun

Blogs: Get the inside view from Engineers who build 

and support MATLAB & Simulink

ThingSpeak: Explore IoT Data

And more for you to explore…

Learn ConnectContribute

http://www.mathworks.com/matlabcentral/answers/index
http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/cody
http://blogs.mathworks.com/
https://thingspeak.com/
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Training: Optimization Techniques in MATLAB

After this 1-day course you will be able to:

▪ Write objective function files and          

pass extra parameters

▪ Add different types of constraints

▪ Select an appropriate solver and algorithm

▪ Interpret the output from the solver and 

diagnose the progress of an optimization
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