
Solving Recurrence Relations



Motivation

We frequently have to solve recurrence relations in computer 
science. 

For example, an interesting example of a heap data structure is a 
Fibonacci heap. This type of heap  is organized with some trees. 
It’s main feature are some lazy operations for maintaining the 
heap property. Analyzing the amortized cost for Fibonacci heaps 
involves solving the Fibonacci recurrence. We will outline a general 
approach to solve such recurrences. 

The running time of divide-and-conquer algorithms requires 
solving some recurrence relations as well. We will review the most 
common method to estimate such running times. 



Linear Hom. Recurrence Relations

A linear homogeneous recurrence relation of de-
gree k with constant coefficients is a recurrence rela-
tion of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k,

where c1, . . . , ck are real numbers, and ck �= 0.

linear: an is a linear combination of ak’s
homogeneous: no terms occur that aren’t multiples of ak’s
degree k: depends on previous k coefficients. 
 



Example

fn = fn-1+fn-2 is a linear homogeneous recurrence 
relation of degree 2. 

gn = 5 gn-5 is a linear homogeneous recurrence 
relation of degree 5.

gn = 5 gn-5 + 2 is a linear inhomogeneous 
recurrence relation. 

gn = 5 (gn-5)2 is a nonlinear recurrence relation.



Remark

Solving linear homogeneous recurrence relations can be 
done by generating functions, as we have seen in the 
example of Fibonacci numbers. 

Now we will distill the essence of this method, and 
summarize the approach using a few theorems. 



Fibonacci Numbers

Let F(x) be the generating function of the Fibonacci numbers. 

Expressing the recurrence fn = fn-1+fn-2 in terms of F(x) yields

F(x) = xF(x)+x2F(x) + corrections for initial conditions 

(the correction term for intial conditions is given by x).

We obtained: F(x)(1-x-x2) = x or F(x) = x/(1-x-x2)

We factored 1-x-x2 in the form (1-α1x)(1-α2x) and expressed 
the generating function F(x) as a linear combination of 

1/(1-α1x) and 1/(1-α2x)



A Point of Confusion

Perhaps you might have been puzzled by the 
factorization

p(x) = 1-x-x2  = (1-α1x)(1-α2x)

Writing the polynomial p(x) backwards, 

c(x) = x2p(1/x) = x2-x-1 = (x-α1)(x-α2)

yields  a more familiar form. We will call c(x)  the 
characteristic polynomial of the recurrence fn = fn-1+fn-2



Characteristic Polynomial

Let

an = c1an−1 + c2an−2 + · · ·+ ckan−k

be a linear homogeneous recurrence relation. The
polynomial

xk − c1x
k−1 − · · ·− ck−1x− ck

is called the characteristic polynomial of the recur-
rence relation.

Remark: Note the signs!



Theorem

Let c1, c2 be real numbers. Suppose that

r2 − c1r − c2 = 0

has two distinct roots r1 and r2. Then a sequence
(an) is a solution of the recurrence relation

an = c1an−1 + c2an−2

if and only if

an = α1r
n
1 + α2r

n
2

for n ≥ 0 for some constants α1,α2.



Idea of the Proof

The proof proceeds exactly as in the case of the 
Fibonacci numbers. Try to prove it yourself!

You might have noticed that it was assumed that the 
two roots of the characteristic polynomial are the not 
the same. 



Example

Solve the recurrence system

an = an−1 + 2an−2

with initial conditions a0 = 2 and a1 = 7.



The characteristic equation of the recurrence is

r2 − r − 2 = 0.

The roots of this equation are r1 = 2 and r2 = −1.

Hence, (an) is a solution of the recurrence iff

an = β12
n
+ β2(−1)

n

for some constants β1 and β2. From the initial con-

ditions, we get

a0 = 2 = β1 + β2

a1 = 7 = β12 + β2(−1)

Solving these equations yields β1 = 3 and β2 = −1.

Hence,

an = 3 · 2n − (−1)
n.



Further Reading

Our textbook discusses some more variations of the 
same idea. For example: 

- How to solve recurrences which have characteristic 
equations with repeated roots

- How to solve recurrence of degree > 2 

- How to solve recurrences of degree > 2 with repeated 
roots. 

- How to solve certain inhomogeneous recurrences. 



Divide-and-Conquer Algorithms 
and Recurrence Relations



Divide-and-Conquer

Suppose that you wrote a recursive algorithm that 
divides a problem of size n into 

- a subproblems,

- each subproblem is of size n/b.

Additionally, a total of g(n) operations are required to 
combine the solutions.

How fast is your algorithm? 



Divide-and-Conquer Recurrence

Let f(n) denote the number of operations required to 
solve a problem of size n. Then

f(n) = a f(n/b) + g(n)

This is the divide-and-conquer recurrence relation.



Example: Binary Search

Suppose that you have a sorted array with n elements. 
You want to search for an element within the array. 
How many comparisons are needed? 

Compare with median to find out whether you should 
search the left n/2 or the right n/2 elements of the 
array. Another comparison is needed to find out 
whether terms of the list remain. 

Thus, if f(n) is the number of comparisons, then 

f(n) = f(n/2) + 2 



Example: Mergesort

• DIVIDE the input sequence in half

• RECURSIVELY sort the two halves

• basis of the recursion is sequence with 1 key

• COMBINE the two sorted subsequences by merging them



Mergesort Example

1 32 42 5 66
2 64 5 1 2 63

5 2 64 1 3 62
5 2 64

2 5 64
1 3

1 3
62

62

5 62 4
5 62 14 3 62

1 3 62



Recurrence Relation for 

• Let T(n) be worst case time on a sequence of n keys

• If n = 1, then T(n) = Θ(1) (constant)

• If n > 1, then T(n) = 2 T(n/2) + Θ(n) 

• two subproblems of size n/2 each that are solved 
recursively

• Θ(n) time to do the merge



Theorem

Let f(n) be an increasing function satisfying the re-
currence

f(n) = af(n/b) + c

whenever n is divisible by b, a ≥ 1, b > 1 an integer,
and c a positive real number. Then

f(x) =

�
O(nlogb a) if a > 1

O(log n) if a = 1



Proof

Suppose that n = bk for some positive integer k.

f(n) = af(n/b) + g(n)
= a2f(n/b2) + ag(n/b) + g(n)
= a3f(n/b3) + a2g(n/b2) + ag(n/b) + g(n)
...

= akf(n/bk) +
�k−1

j=0 a
jg(n/bj)



Suppose that n = bk. For g(n) = c, we get

f(n) = a
k
f(1) +

k−1�

j=0

a
j
c.

For a = 1, this yields

f(n) = f(1) + ck = f(1) + clogb n = O(log n).

For a > 1, this yields

f(n) = a
k
f(1) + c

ak − 1

a− 1
= O(nlogb a).

If n is not a power of b, then estimate with the next
power of b to get the claimed bounds.


