
Solving SAS® Performance Problems: Employing Host-Based Tools
Tony Brown, SAS Institute Inc., Dallas, TX

ABSTRACT

The SAS® System is composed of a large family of products and solutions, each with varying performance paradigms
and machine resource utilization patterns. Today’s greatly increased data scales and heavy use of intensive analytic
procedures, coupled with server consolidations placing mixed workloads on shared server and storage are resulting in
occasional performance issues.

A previous SAS White Paper, “A Practical Approach to Solving Performance Problems with the SAS System,”
detailed the role of the FULLSTIMER option in diagnosing and solving performance problems. It introduced the
usage of host-based performance monitors for further investigation. This paper continues with that approach, detailing
the use of the most commonly available host-based performance monitors. It will discuss how to employ them in
performance testing, interpret them with a SAS mindset, and reconcile them to FULLSTIMER output to determine
problem causes.

INTRODUCTION

Performance is crucial, and when performance problems arise, many SAS users do not have a well defined process
for dealing with them. In the SAS Performance Lab we regularly help internal and external customers diagnose and
correct performance issues. One of the most valuable techniques we utilize is overlaying host performance monitor
output with the SAS Logs to understand what resource stresses or bottlenecks exist during the execution of SAS
processes.

In the last two years we have seen an increase in the requests for performance help due to several factors:
♦ Very large scales of data or analytic operations now being used
♦ Increased use of heavy statistical procedures for prediction and analytics
♦ Server consolidations driving mixed use communities to share server, OS, and storage environments
♦ Sub-optimal setup of storage arrays (including SANs)

This paper is intended to discuss the value, deployment, interpretation, and use of host monitor output in the
performance resolution process; from within the framework of an iterative, disciplined approach.

By using this approach, and employing host-base monitors in the process, you can significantly shorten the problem
diagnostic and solution lifecycle. This will allow more time for performing analysis instead of getting jobs to run.

PERFORMANCE RESOLUTION PROCESS

UNDERSTAND THE PROBLEM AND GOAL

In order to begin the Performance Resolution Process, you must first clearly understand the problem itself, and the
performance goal that will solve it.

Define the problem in Specific Terms. Consider the following common examples:
♦ My job(s) run well sometimes, at others they take 2 – 10 times as long to finish.
♦ My job(s) cannot fit within the batch window I have to run it in.
♦ My BI applications response time gets very slow at times.
♦ A few jobs run fast, but when many run, or I mix interactive BI work (e.g. Web Report Studio, Enterprise, Cube

Report Studio, etc.) with other SAS jobs, things slow way down, and some things do not finish.

You then have to define the performance/behavior that will resolve the problem.

Consider the following examples:
♦ This job must run within 30 minutes.
♦ Users must get 20 second complex query response from Enterprise Guide on a heavily used system
♦ This job has to run as fast as it used to, from x minutes down to y minutes

Keep in mind that the performance/behavior goals must be attainable. Do not expect a job to finish in 30 minutes if
you are processing two terabytes of data serially on an I/O subsystem that only delivers 600 megabytes per second.

1

You must confine your expectations within the abilities of your server and storage system (unless you upgrade), and
within the generally accepted realm of physics.

UNDERSTAND ANY CONSTRAINTS YOU MUST WORK WITHIN

The second thing to keep in mind is to understand any constraints you may be placed under. For example, you may
not be allowed to upgrade or expand your server or storage system. You may not be able to tune your server or
storage system to favor your SAS processes due to mixed workloads with other software (e.g. RDBMS, etc.).

Understanding such limitations up front can immediately direct you to the options you have besides tuning or
expansion.

UNDERSTAND THE HARDWARE ENVIRONMENT

Once you understand the problem and what you wish to attain, you must clearly understand the hardware
environment you are working in, its performance limitations, and what you are asking of it via SAS.

SERVER

The first thing to do is to capture a detailed definition of the server, network, and I/O subsystem. You need to know:
♦ Model, make and patch-level of server and operating system
♦ In Unix, the kernel parameter settings
♦ The number and speed of processors
♦ The amount of Physical RAM
♦ How much storage is available and the logical and physical configuration of that storage:

 Volume/LUN arrangement

 Physical Disk layout characteristics (size of disks, stripe characteristic, RAID level, SAN, NAS, DA, etc.)

Your Systems Administrator should be able to help you with this. Some common utilities to run to find out Server
information are:
♦ Solaris – prtdiag
♦ AIX – lsattr, lsconf, oslevel
♦ LINUX – /proc/cpuinfo, /proc/meminfo, /proc/slabinfo, /etc/issue
♦ Windows – c:\Program%20Files\Common%20Files\Microsoft%20Shared\MSInfo\msinfo32.exe

STORAGE

Understanding your storage arrangement may require help from your Systems Administrator. They can detail for you
how it is set up. This setup will largely dictate I/O performance. The performance aspects of storage concern read and
write throughput. Not all storage is created equally, and not all storage is setup optimally for SAS usage. Storage can
be architected to favor sequential or random access, or compromised to both.

UNDERSTANDING AVAILABLE THROUGHPUT

Why is understanding all this important? Are we trying to turn you into hardware experts? Not necessarily. But, in
today’s environment of large data, complex analytics, and heavy server workload environments, having some
understanding of your system, and what it can deliver are crucial to your planning and expectations. This knowledge
will help you understand if you are asking more of your system than it can deliver, or if you are not getting the most
from your system. It arms you with the intelligence you need to effectively deal with your Systems Administrator to
maximize resources.

BEST GENERAL ENVIRONMENT CONFIGURATION – SAS PROCESSING

I/O

Unfortunately, many storage systems default arrangements are set up to favor RDBMS processing. The setup is
generally characterized by fewer, larger disks (300 GB), small stripe widths, and fewer disks per RAID group (3+1,
4+1). This setup is okay for most non-SAS work. SAS generally performs a lot of heavy sequential I/O (especially to
SAS Work). SAS performance is generally favored by I/O subsystems that favor high sequential throughput. This
generally entails <more> smaller disks (e.g. more 73 GB vs. fewer 300 GB disks to get more spindles), stripe widths
of 64 or 128K, and high throughput host bus adaptors (two gigabit).

2

Consider separating SAS work and SAS data file systems onto separate mount points, on separate controller
channels. Multiple SAS work and utility (UTILLOC) spaces are an effective way to “cool down” hot disks from a large
number of users heavily using work and utility space.

Memory

The minimum recommendation for general SAS use is 4 GB per processor for UNIX/LINUX and Windows 64-bit
servers. For Windows 32-bit servers, 4 GB RAM is all that needs to go into the entire server. SAS performs many
memory intensive operations in some of its procedures, so more memory is better. Consider your workload when you
set your memory up.

The MEMSIZE option defaults to 96 MB, and the SORTSIZE to 80 MB for UNIX/LINUX servers. It is not
recommended to set the MEMSIZE option to 0 on UNIX/LINUX servers. On Windows systems, MEMSIZE is 0 by
default, and SORTSIZE is 64 MB. If you change from the defaults, intelligently set MEMSIZE, SORTSIZE,
REALMEMSIZE, etc. to settings that will allow your job to run, without over-allocating. Over-allocating can actually
hurt performance in some cases.

Side Note: There is a problem with the AIX operating system before version 5.3 ML3. When SAS allocates memory,
AIX allocates twice what was asked for. Be aware of this when you set your memory options!

Swap

When setting SAS swap space it is generally recommended to set a swap space up to 1.5 times the size of the
physical memory available to SAS. Some SAS procedures will look to see if this swap space is available and may fail
with an “Out Of Resource” error it is not, even if the physical memory is sufficient.

Buffering

SAS generally uses a small buffer allocation, 8 – 16K. If you choose to change the buffer size of a dataset, using a
buffer setting that is a multiple of the disk stripe size has shown to generally give the best SAS performance,
balancing large-block, sequential I/O with random I/O (heavy index usage) requests.

Data Compression

Data compression can often save twice the disk space as uncompressed data, and alleviate I/O traffic. SAS must
uncompress this data at the CPU for processing. If your system is experiencing I/O issues and you have a lot of extra
CPU cycles this may be a good trade, if not you may end up binding the CPUs!

CPU

Testing has proven that faster CPU’s do make a difference. In fact when you become CPU bound, the only thing you
can do is to get more or faster CPUs. Very rough usage rules of thumb are fewer users should share a CPU for
statistically (CPU) intensive operations, and more for general reading and writing of data (up to 25). A big push is on
to sell hyper-threaded CPUs, and well as multi-core chips. There are pro’s and cons to using them. SAS long
processes typically have not favored hyper-threading CPUs, because the floating point unit is still shared. In addition,
multi-core processors still share the same bus, and do not exhibit a 2X performance for example for a dual-core
processor. We are seeing more on a 1.5X increase. Consider these things when buying CPU architectures, and don’t
“under-allocate”.

SAS USAGE

In addition, knowing something about the throughput demand your SAS process is placing on the system, will help
you realize what you are asking of your system, and if it is there to deliver.
♦ What is being done exactly (Job Load Mix)?
♦ By How Many Concurrent Users/Processes?
♦ Single Server or Multi-Tiered Environment?
♦ Outside SAS Products Used (web servers, RDBMS, etc.)
♦ How much does all this add up?

If you are considering deploying an enterprise-level system and are unsure if you are sizing your server correctly, it is
worth the minimal expense to engage SAS or SAS Quality Partners to perform a system sizing. This will help you and
your Systems Administrator to plan your environment, and expectations more realistically.

TEST PROCESS

Once you understand your environment and what it can deliver in terms of throughput, and your SAS processes and

3

what they are generally demanding, you are prepared to move to the test process.

MONITOR AND MEASURE

The first step in the Test Process is to establish a baseline measure of the problem by monitoring and measuring the
process(es) in question.

To accomplish this, do the following:

1. Add the job header in Attachment (A) to the beginning of the job-stream in question. It will turn on FULLSTIMER
and other output options to enrich log output. Make sure that no options statements placed under this header
over-ride the options it sets!

2. Start the host based monitors (discussed in detail below) before initiating the job.

3. Execute the job stream.

Once the job stream has finished, collect the SAS log(s), and host monitor output described in the attached scripts for
the interpretation process.

INTERPRET RESULTS

Once the job stream has completed, examine the SAS log and interpret the findings, along with the findings of the
host monitors, and any involved pertinent server logs (e.g. web services providers). Interpretation of the
FULLSTIMER information in SAS logs is discussed in detail in the following paper:

http://support.sas.com/rnd/scalability/papers/solve_perf.pdf

The initial effort should be to examine your SAS code and processes. This is where the largest payoffs generally are.
Examine your SAS application coding for process efficiency and make sure you cannot make any changes to improve
it. Some of the things to look for are:
♦ Read and write data selectively (V-shaped data operations)
♦ Execute only the statements you need, in the order you need them
♦ Take advantage of SAS PROCEDURES
♦ Know SAS System defaults
♦ Control sorting
♦ Know your data and test programs

There are many books and classes available to help with building efficient SAS code on our website.

Once you have determined your code to be efficient, examine the application process. Sometimes breaking up large
sequential processes into smaller parallel ones can yield significant performance gains. SAS/CONNECT® for MP has
been very successfully employed in this fashion, as well as some of the new threaded PROCEDURES in SAS 9.

Interpretation of the host based monitors is discussed in detail below.

Look for any hotspots and bottlenecks. If any are found, work with your Systems Administrator to determine which
corrective tuning actions to take.

MAKE CORRECTIONS

Once you have decided with your Systems Administrator what corrective tuning actions to make, change only one
thing at a time. By changing one thing, testing and interpreting results iteratively, you will limit the affect of the
outcome to one variable. This is crucial for interpretation in the complex inter-workings of a modern server and
storage system!

Document every finding set and change so you can keep track of what you have done. As you progress through what
could be several changes, this will help you keep track of where you have been.

Iterate this process until the desired result has been achieved. Compare the FULLSTIMER logs and host monitor
output between the test runs for improvement.

To recap, a disciplined process dictates that you establish a well defined baseline measurement to improve upon.
Then design and deploy the test, with careful measurement capture. Interpret the measures and take corrective
action, changing one thing at a time, documenting your changes. This is an iterative process that is followed until the
problem is resolved. (This was been said twice now, so it must be important!)

4

HOW TO EMPLOY HOST-BASED MONITORS

Host-based monitors collect statistics from kernel layer activity. They yield a fairly accurate picture of CPU, memory,
I/O, and other resource activity over time.

This information can be collated, overlaid with the SAS process in question, and used to help determine if system
resources are getting bottlenecked.

Deploying some of the host-based monitors requires root-level privileges which you may not have. Please work with
your Systems Administrator to accomplish this. They can not only help you get the monitors run, but accurately
interpret them as well.

At the back of this paper are several attachments. Attachment (A) has been described previously and will turn on
enriched SAS log output. The other attachments (B – I) represent monitoring scripts that run basic System V
performance monitors: iostat, vmstat, sar, prstat for Solaris, and ps. These monitors were chosen because they are
almost universally available on UNIX and LINUX systems.

HOW TO USE THE COMPUTER MONITORING SCRIPTS

The {hostname}monitor.txt files (e.g. aixmonitor.txt) are scripts that will use common UNIX monitoring tools (available
with any UNIX system) to gather what computer resources are being used on computer hardware during the
execution of a SAS application that you wish to assess performance on.

To use the monitors, copy the code and paste it into a text file. FTP it (ASCII format) to the machine you wish to run it
on, and make it executable:

 e.g. chmod 777 aixmonitor.txt

Now that the script is ready, this is how you run it:

1) You will need to be root to execute the aixmonitor.txt script since it runs the monitoring tools described in the next
section, some of which have to be run from the root id.

2) You will need to have a SAS job ready that can produce log output. Preferably use a batch job with the content of
Attachment (A) included at the top as discussed previously. Start the job after the monitoring script has been started.

3) Execute the monitoring script. This script takes three parameters; date, interval, and count. Here is what each of
the parameters does so you will know which value is needed.

 Date – is the date the information was collected in the DDMMYYYY format.

 Interval – tells the monitor how often to collect statistics in seconds

 Count – tells the monitor how many collections to make

So if you want to make a collection every 10 seconds for an hour, you would use the following command to gather the
information:

 nohup ./aixmonitor.txt 15022006 10 360 &

Please note that the above assumes that the script file is in the directory where you currently are and that you have
write permission to this directory.

Start the aixmonitor.txt script and then start the SAS job that showcases the performance issue that you are
experiencing. In our example above, the SAS job runs in just under an hour, which is why we set the collection
interval to capture data for an hour.

After the aixmonitor.txt script finishes, all of the files are immediately readable except for the sar file. It still needs to
be parsed into its various output reports. Run the accompanying hostsarsplit.txt script (in this case aixsarsplit.txt) to
accomplish this. Read the instruction comments at the top of the script and follow them. They will tell you to invoke
the script with the name of the output sar file you just created as a parameter:

nohup ./aixsarsplit.txt 15022006.aixsar &

Once this is all complete, the available sar reports of interest will reside in your directory as sara, sarb, sard, etc. Not
all of the hosts will utilize all of the sar reports due to host reporting differences.

If you wish to learn more about the individual monitors and their execution and parameters, please see the man
pages on your system. Note: The monitor execution parameter set is different for UNIX/LINUX hosts (e.g. Solaris vs.
AIX vs. HP vs. LINUX)! Interpretation of some monitor output measures may differ from host releases (e.g. Solaris 9
to Solaris 10). Please consult the man pages carefully with questions about any measures not covered in this paper.

5

This paper will point out any of the measures it introduces that change meaning within the same UNIX host across os
releases.

IOSTAT, VMSTAT, SAR, PS, PERFMON

iostat is a monitor which will yield general I/O information, or down to the device (disk) level depending on which
parameters it is run with. It also captures tape, terminal, and some CPU utilization metrics. It is important to work with
your Storage Administrator when using iostat if you are using SANs, NAS, or other network storage. The
interpretation may not be direct to the physical devices of the networked storage depending on how it is setup (LUNS,
Volumes, etc.).

vmstat will monitor virtual memory statistics for kernel thread, virtual memory, disk, trap, and some CPU activity. On
systems with more than one CPU, it averages the output from all the CPUs.

mpstat yields per-processor CPU statistics. The first row in the output represents the activity since the last boot of the
server and should be ignored. This is also true of iostat.

sar gives reports on a variety of subsystems, and differs from host to host. In general it yields CPU, I/O, memory,
swapping, and other reports. It runs, like the previous monitors on a count and interval basis. Every “n” seconds
(interval) it collects statistics for the system and averages them over those “n” seconds, for however many collection
instances you wish (count). If you choose an interval of less than 5 seconds, sar itself may affect the output because
it uses resources to do its job. In general, for long running jobs on heavily loaded systems, the monitors deployed
here are not too “invasive” and will not consequentially affect the output results.

The ps monitor can be used to tell what is running on the system at the time of your test, and can be manipulated to
produce the top ‘N’ jobs by CPU consumption. This can tell you how much competition your job has while it is running.
This monitor is a “run once” monitor. To iterate it to report on the same “counts and intervals” on which the previous
monitors run, you must put it into a loop as in the attached scripts.

For Windows servers, Perfmon, or its batch counterparts – Logman and its batch counterpart, Relog, will yield a very
broad array of statistics across all subsystems.

It is wise to execute the in a script like those attached, so you only have one command to kick off to run them. That
way they all start at about the same time, and can end about the same time. This is much easier to implement and
control.

OTHER MONITORS

There are host specific monitors as well as the generics which are extremely useful too. Examples are top, topas,
prstat, etc. If you have them, work with your Systems Administrator to use them.

HOW TO INTERPRET RESULTS

SAS®FULLSTIMER RESULTS

Analyze the SAS logs and process for inefficiencies. Look for large disparities between the FULLSTIMER real time
and combined system and user CPU time. If the difference is greater than 20 – 25%, and associated complaints
about the performance exist, corroborate the SAS log with the host performance monitors. Ideally, you would tie any
hotspots in the host monitors to the SAS log. The attached scripts output the system time to the output logs for a
beginning time reference.

Once you have identified a problem job or step, the questions is “Can it be alleviated by coding changes, data model
changes, application setup, etc.?” Those changes often bring the largest performance payoffs. If the process is
efficient and you cannot find room for improvement, turn to hardware and kernel parameter changes as a last resort.
Use the host monitors to guide this.

HOST MONITOR RESULTS

The host monitor commands are run with specified parameters that differ from one host to the next (e.g. SUN may be
slightly different than AIX, which may be different than LINUX). Most Monitors run with the count and interval
specified, some, like ps, have to run in a logic loop for continuous monitoring

MOST COMMON PROBLEMS & METRICS TO CONSIDER

UNIX/LINUX

I/O

6

The most common SAS problems to encounter in performance involve I/O. SAS generally utilizes long sequential
reads and writes to disk. You want to look for high average wait queues, I/O wait on the CPU, coupled with disks that
stay 100% busy with high average service times. This will likely occur most on your SAS WORK file systems, but also
the file systems your permanent SAS data resides on.

Some of the monitor metrics that can help you find this are listed in the following table:

Monitor Metric SOLARIS AIX LINUX HP Note

iostat– these
measures are
averages of the
statistics
during the
interval.

Average
Queue Size

wait

This definition
has changed
slightly in
Solaris 10 – it
incorporates
sum of avg
wait + avg
service time.

avgwqsz (wait),
avgsqsz (service)

avgqu-sz <use sar *> This generally represents
the average queue length,
or how many transactions
are waiting for service. In
general if this number gets
above 5 it is a concern and
should be watched.

 CPU Wait
on IO Time

wt %iowait avwait Note that for AIX this is the
percentage of time the
CPU was waiting on I/O for
service, on the others it is
the time in milliseconds.
Before AIX 4.1.3 this
metric may be somewhat
inflated – use it only with
care. Anything chronically
above 0 represents an
opportunity for tuning and
improvement. Chronically
high numbers point can
point to a serious
bottleneck.

 Average
Service
Time

avgserv

(either read or
write report –
write a single
block of data
from disk)

svc_t avwait This time is represented in
milliseconds by default.
Watch for it to climb high
(10’s of milliseconds is not
good) in conjunction with
the other metrics listed
here.

 Disk busy %b This is the percentage of
time the disk is busy during
the interval. If it chronically
stays at 100% then look at
the other I/O metrics to see
if it is possibly to an I/O
bottleneck. This often
occurs in /saswork.

 Service
Queue Full

 qfull The number of times the
service queue fills up and
cannot accept more
requests. If this happens
chronically there is a
problem.

sar - these
measures are
averages of the
statistics
during the
interval.

7

Monitor Metric SOLARIS AIX LINUX HP Note

sar –d (block
device activity)

Average
Queue Size

avgque

This definition
has changed
slightly in
Solaris 10 – it
incorporates
sum of avg
wait + avg
service time

avque avque This generally represents
the average queue length,
or how many transactions
are waiting for service. In
general if this number gets
above 5 it is a concern and
should be watched.

 Disk Busy %busy %busy %busy This is the percentage of
time the disk is busy during
the interval. If it chronically
stays at 100% then look at
the other I/O metrics to see
if it is possibly to an I/O
bottleneck. This often
occurs in /saswork.

 Average
Service time

avserv avserv This time is represented in
milliseconds by default.
Watch for it to climb high
(10’s of milliseconds is not
good) in conjunction with
the other metrics listed
here.

 Service
Queue is
Full

sqfull The number of times the
service queue fills up and
cannot accept more
requests. If this happens
chronically there is a
problem.

sar –q (queue
statistics)

Run Queue
of run-able
processes

%runocc %runocc %runocc If %runocc is continually
higher than the number of
processors in the server,
this could be a problem.

mpstat CPU Wait
on IO Time

wt Again, we like to see this
as low as possible, 0
preferably. When it gets at
or above the 20% range I
begin corroborating it with
the other I/O measures
mentioned here to see if I
have an I/O bottleneck.

*(Some iostat and vmstat collectors represent a subset of the sar collectors on HP-UX and Linux and we tend to skip
them and rely on sar)

Caution in using the previous and following reference markers.

The caution in using the above reference markers is that they are general, can be individually misinterpreted, and
used individually are not always hard evidence. You must consider them collectively, and be careful of using an
individual counter to dictate that a problem exists. They are very good indicators, and often, but do not always serve
as hard evidence. One of the most important things to note is they are collecting statistics for EVERYTHING running
on the computer, including host OS tasks – not just your SAS processes. Please keep this in mind when interpreting
results. When in doubt, work with your Systems Administrator on interpretation and determination of issues. Further
testing may sometimes be necessary with more detailed monitors based on evidence given by the general monitors
above.

CPU

Many SAS PROCEDURES can be very CPU intensive (e.g. PROC REG). If you feel that you are getting undesirable
performance, examine the CPU statistics recommended below to determine if you are CPU bound. Remember that
many SAS 9 PROCEDURES are threaded and can utilize more than one CPU. Our best results involve utilizing no

8

more than four CPUs for threaded PROCEDURES. Look for CPUS that chronically stay 100 percent busy, or have
very high Involuntary Context Switch Rates (too much competition for the CPU time slices), or if compressed data is
being uncompressed at the CPU for SAS usage.

Monitor Metric Solaris AIX LINUX HP Notes

iostat Total CPU
Busy

us + sy =id us + sy =id %user +

%system=

%idle

 User is CPU time spent on
executing user’s code. System is
CPU time spent executing os
tasks that support user-written
code. Combined these measures
show the total %busy of the CPU
(which should equal %idle).

System CPU time should be low
compared to User CPU Time.
High System CPU time in relation
to User CPU Time should be
investigated.

sar -u Total CPU
Busy

 %user +

%sys =

%idle

 %user +

%sys =

%idle

 %user +

%system =

%idle

%user +

%sys =

%idle

System CPU time should be low
compared to User CPU Time.
High System CPU time in relation
to User CPU Time should be
investigated.

vmstat Total CPU
Busy

us + sy =id us + sy =id *subset of
sar

 System CPU time should be low
compared to User CPU Time.
High System CPU time in relation
to User CPU Time should be
investigated.

 Blocked
Threads

b b b This is the average number of
kernel threads in the wait queue.
It this number stays consistently
above 0, CPU performance can
degrade.

mpstat Involuntary

Context
Switches

Icsw Very high numbers of involuntary
context switches may indicate too
much stress on the CPUs from
too many processes. Work with
your Sysadmin to determine what
is normal for your system, and
what threshold you should look
for. Note: Involuntary Context
Switches are also in the SAS
FULLSTIMER output.

MEMORY/PAGING/SWAPPING

New BI interfaces have made it easier for larger sets of users to request many, memory intensive, simultaneous
tasks. Look for a low free list (available virtual memory), anticipated memory shortfalls, and low available swap.

The same goes for paging and swapping. Look for high page-in/page-out rates, high scan rates (Pages scanned by
the clock algorithm - looking for pages), coupled with low swap space, or running out of swap space altogether. If you
get an “Out of Resource” error in the SAS log, immediately check your swap space allocation.

Monitor Metric Solaris AIX LINUX HP Notes

9

Monitor Metric Solaris AIX LINUX HP Notes

vmstat Free Memory free fre free *subset of
sar

Size of the free list (list
of available pages) If
the free list goes to 0 it
is not good. If it
chronically goes low it
can indicate a need for
more memory.

 Swap Space si, so Swapped in, swapped
out in Kb. Watch the
swap out rates. If they
are chronically high look
at more memory/swap/
paging metrics to see if
there is a problem.

 Scan Rate
Pages
scanned by
the clock
algorithm
(looking for a
pages)

sr sr If the scan rate goes
very high (check w/your
Sysadmin) it could
indicate memory stress.

 Page-Ins/

Page-outs –
Not to high,
and balanced

pi vs. po pi vs. po KB pages paged-in, vs.
paged-out. These
should balance
somewhat. If both page-
ins and page-outs are
very high, or if you have
very high page-outs with
little nor no page-ins,
you could have an
issue. Examine memory
further.

 Anticipated

Memory

Shortfall

de Anticipated memory
shortfall. If this is
chronically above 0
examine memory
carefully to see if you
need more.

 Kthr - w kthr – w w Threads swapped out. If
this is very high you
may want to examine
memory very closely.

sar –g Pages freed
by the paging
deamon per
second

pgfree/s If this is > 1000, it is
concerning. Possible
paging issue, memory
under stress

 Pages
Scanned by
paging
deamon/sec

pgscan/s Greater than 200 per
second can possibly
indicate trouble – check
other paging and
memory stats for
corroboration

 The % of
inodes taken
of f the free list
by iget. (igets
with page
flushes)

%ufs_ipf Ideally you want this to
be less than 10%

10

Monitor Metric Solaris AIX LINUX HP Notes

sar –p Virtual
Address
Translation
Page Faults

vflt/s fault/s This should ideally be
less than 15/second. If
it is very high examine
closer.

sar –r Free Memory
– Available
pages

freemem slots kbmemfree

Vs.

kbmemused

Note this is in
kb not in
pages!

%memused

 Virtual memory
available for use. If free
memory goes
chronically low (down to
10% or less) check with
your Sysadmin on your
memory tuning

 Free Swap
Space (disk
blocks)

freeswap

(disk blocks)

 kbswpfree
(kb!)

Vs.

kbswpused

%swpused

 If this goes to 0 you are
in deep trouble. A SAS
“out of resource error” is
likely to have resulted.
Allocated swap space
should be as much as
allocated memory,
preferably 1.5 x as
much

 Pages freed
by the paging
deamon per
second

 frmpg/s Greater than 200 per
second can possibly
indicate trouble – check
other paging and
memory stats for
corroboration

 Transfers for
swapins &
swapouts/sec

 swpin/s,
swpot/s

If swapin/swapout
transfers or blocks stay
chronically high, check
with your Sysadmin to
monitor swapping. Get a
baseline figure from the
Sysadmin to use as a
reference.

BUFFER

Watch the Cache hit ratios (%rcache and %wcache). If they go chronically low (less than 40 percent) bring it to the
attention of your Systems Administrator for possible file cache tuning, or the need to increase file cache.

PROCESS MONITOR

I usually use ps to determine how many processes are currently running on the system the same time as I am. This
can give some relative information as to why my performance may not be good. For example if there are eight other
long SAS processes running on the server, sharing the same work and data that I am, and I see a noticeable
slowdown in my I/O performance I can understand why.

The command I typically use is:

ps –eo user, pid, ppid, etime, pcpu, args

This will give me the user, process id, parent process, elapsed time the processes been executing, percentage of
CPU currently utilized, and the process itself. Since ps is a “one-time snapshot”, I put it in a loop as in the attached
scripts with the same interval and count as the other monitors so I can determine throughout the test period what was
going on.

WINDOWS MONITORS

There are two primary tools we use to monitor Windows performance, Task Manager, and Perfmon (and its
counterparts Logman and Relog). Task Manager can be used much as ps above, to see what processes are running

11

on your Windows system during the time of your testing.

Perfmon is the performance monitor most widely available for Windows systems. There is not room in his paper to
give a tutorial on how to use Perfmon, so please see the following Microsoft® tutorial:

http://www.microsoft.com/technet/archive/mcis/perfmon.mspx

The following is a document provided on the internal SAS R&D web that details which Perfmon counters and objects
to use, and what performance thresholds to look for in interpreting them.

Recommended Performance Counters for Windows Performance Monitor

SAS users on Windows should start with these Perfmon counters to understand the performance of their system and
understand where their memory, CPU, and I/O resources are going. There are numerous counters, many of which
have complicated explanations. These counters are among the more intuitive to understand.

Performance Object: Physical Disk (recommended) or Logical Disk. On Windows 2000 or Windows NT, these
counters may not be enabled. Ensure that physical disk counters are enabled with the command diskperf –YD and
that logical disk counters are enabled with the command diskperf –YV. If counters are not already enabled, you
will need to reboot your system. However, on Windows 2003 Server or Windows XP, the disk counters should be
enabled by default.

Instances: Available on a per-physical disk (0 C:, 1 D: E:, etc), per-logical disk (C:, D:, E:, etc), or _Total instance
basis.

Counter Definition Guidance

Avg. Disk Queue
Length

Avg. Disk Queue Length is the average number of
both read and write requests that were queued for
the selected disk during the sample interval.

This counter is derived from the product of Avg. Disk
sec/Transfer and Disk Transfers/sec. If this exceeds 2
for an extended period of time on a disk, that disk may
be becoming a bottleneck. You should correlate this
with Current Disk Queue Length to be sure. If Current
Disk Queue Length is fairly stable over the time in
which you observe a high Avg. Disk Queue Length,
then you likely have an overloaded disk. If Current Disk
Queue Length is not stable, then you are likely to see
spikes in Avg. Disk Queue Length that aren’t
meaningful.

Recommended Scale: 100.0

Current Disk Queue
Length

Current Disk Queue Length is the number of
requests outstanding on the disk at the time the
performance data is collected. It also includes
requests in service at the time of the collection.
This is a instantaneous snapshot, not an average
over the time interval. Multi-spindle disk devices
can have multiple requests that are active at one
time, but other concurrent requests are awaiting
service. This counter might reflect a transitory
high or low queue length, but if there is a
sustained load on the disk drive, it is likely that
this will be consistently high. Requests
experience delays proportional to the length of
this queue minus the number of spindles on the
disks. For good performance, this difference
should average less than two.

The number of waiting I/O requests should be
sustained at no more than 1.5 to 2 times the number of
spindles making up the physical disk.

Recommended Scale: 10.0

Disk Read Bytes/sec Disk Read Bytes/sec is the rate at which bytes
are transferred from the disk during read
operations.

Lets you see the disk read throughput on your system.
Values less than 10 MB/sec during sustained I/O
suggests slow read disk performance.

Recommended Scale: 0.000001

12

http://www.microsoft.com/technet/archive/mcis/perfmon.mspx

Counter Definition Guidance

Disk Write Bytes/sec Disk Write Bytes/sec is rate at which bytes are
transferred to the disk during write operations.

Lets you see the disk write throughput on your system.
Values less than 10 MB/sec during sustained I/O
suggests slow write disk performance.

Recommended Scale: 0.000001

Disk Transfers/sec Disk Transfers/sec is the rate of read and write
operations on the disk.

This counter gives you an idea of how many I/O
operations are happening on the disk. During sustained
I/O you should see a value for this in the hundreds or
above. Values above a thousand may indicate a large
number of relatively small I/O operations on the disk.

Look at this in conjunction with “Avg. Disk
sec/Transfer”.

Recommended Scale: 0.1

Avg. Disk sec/Transfer Avg. Disk sec/Transfer is the time, in seconds, of
the average disk transfer.

This counter lets you know how long it is taking for the
transfers to and from the disk. The smaller the value of
this counter, the better. A small value (0.001 - 0.009)
during sustained I/O suggests fast disk performance. A
large value (0.01 or greater) during sustained I/O
suggests slow disk performance.

Look at this in conjunction with “Disk Transfers/sec”.

Recommended Scale: 10000.0

Performance Object: Memory

Instances: None

Counter Definition Guidance

Available Mbytes Available MBytes is the amount of physical
memory available to processes running on the
computer, in Megabytes, rather than bytes as
reported in Memory\\Available Bytes. It is
calculated by adding the amount of space on the
Zeroed, Free, and Stand by memory lists. Free
memory is ready for use; Zeroed memory are
pages of memory filled with zeros to prevent later
processes from seeing data used by a previous
process; Standby memory is memory removed
from a process' working set (its physical memory)
on route to disk, but is still available to be
recalled. This counter displays the last observed
value only; it is not an average.

When the Committed Bytes exceeds the RAM on your
system, it will begin paging and sending the most
recently used pages to disk. In Perfmon the displayed
value is limited to 1E10.though the real value may be
higher. Use in conjunction with Memory\% Usage.

Available Bytes and Available Kbytes counters are also
available.

Recommended Scale: 1.0

Committed Bytes Committed Bytes is the amount of committed
virtual memory, in bytes. Committed memory is
the physical memory which has space reserved
on the disk paging file(s). There can be one or
more paging files on each physical drive. This
counter displays the last observed value only; it is
not an average.

When the Committed Bytes exceeds the RAM, your
system will begin paging and sending the least recently
used pages to disk. In Perfmon the displayed value is
limited to 1E10, though the real value may be higher.
Use in conjunction with Paging File\% Usage.

If you see this value growing during an ongoing job, it
may be an indication of a memory leak.

Recommended Scale: 0.0000001

13

Counter Definition Guidance

Pages/sec Pages/sec is the rate at which pages are read
from or written to disk to resolve hard page faults.
This counter is a primary indicator of the kinds of
faults that cause system-wide delays. It is the
sum of Memory\\Pages Input/sec and
Memory\\Pages Output/sec. It is counted in
numbers of pages, so it can be compared to other
counts of pages, such as Memory\\Page
Faults/sec, without conversion. It includes pages
retrieved to satisfy faults in the file system cache
(usually requested by applications) non-cached
mapped memory files.

If this value is above 100 for long amounts of time write
disk performance, then hard page faults may be
bottlenecking the system. If you see a consistently high
value for this counter, look at Memory\Available
MBytes and if that counter is consistently less than 4
MB, then this indicates ongoing paging activity and a
possibly thrashing system. In this situation you may
see that Processor\%Processor Time goes down close
to 0.

Another indicator of paging is the product of Pages/sec
and Avg. Disk sec/Transfer on the disk(s) containing
the paging file(s). If this product exceeds 0.1
consistently then the system may need more memory.

Recommended Scale: 1.0

Performance Object: Paging File

Instances: _Total or per disk (C:, D:, E:, etc.)

Counter Definition Guidance

% Usage The amount of the Page File instance in use in
percent. See also Process\\Page File Bytes.

When this value grows it indicates that Windows is
growing the paging file, and possibly that memory
demands have exceeded RAM. If the value appears
stable and you see that Memory\Available Mbytes is
plentiful (above 4) then it indicates that Windows is
probably handling the memory demands well.

Recommended Scale: 1.0

Performance Object: Processor

Instances: 1 per CPU and _Total.

Counter Definition Guidance

% Processor Time % Processor Time is the percentage of elapsed
time that the processor spends to execute a non-
Idle thread. It is calculated by measuring the
duration of the idle thread is active in the sample
interval, and subtracting that time from interval
duration. (Each processor has an idle thread that
consumes cycles when no other threads are
ready to run). This counter is the primary indicator
of processor activity, and displays the average
percentage of busy time observed during the
sample interval. It is calculated by monitoring the
time that the service is inactive and subtracting
that value from 100%.

A sustained value greater than 80% where you do not
also see substantial activity in disk counters indicates
that the processor may be a bottleneck.

Recommended Scale: 1.0

14

Counter Definition Guidance

% Privileged Time % Privileged Time is the percentage of elapsed
time that the process threads spent executing
code in privileged mode. When a Windows
system service in called, the service will often run
in privileged mode to gain access to system-
private data. Such data is protected from access
by threads executing in user mode. Calls to the
system can be explicit or implicit, such as page
faults or interrupts. Unlike some early operating
systems, Windows uses process boundaries for
subsystem protection in addition to the traditional
protection of user and privileged modes. Some
work done by Windows on behalf of the
application might appear in other subsystem
processes in addition to the privileged time in the
process.

This gives an indication of the CPU time being spent in
the operating system.

Recommended Scale: 1.0

Performance Object: Process

Instances: Per process name, and _Total. Recommend adding these counters for the SAS instance. Multiple
instances of a process are identified with #1, #2, etc.

Counter Definition Guidance

% User Time % User Time is the percentage of elapsed time
that the process threads spent executing code in
user mode. Applications, environment
subsystems, and integral subsystems execute in
user mode. Code executing in user mode cannot
damage the integrity of the Windows executive,
kernel, and device drivers. Unlike some early
operating systems, Windows uses process
boundaries for subsystem protection in addition to
the traditional protection of user and privileged
modes. Some work done by Windows on behalf
of the application might appear in other
subsystem processes in addition to the privileged
time in the process.

This counter can go over 100% with a multithreaded
application running on a system with more than one
CPU. For example, an application maxing all CPUs on
a 4-way server should show a value close to 400%.

Compare with Processor\% Processor Time to get an
idea of how much User CPU Time this process is
taking.

Recommended Scale: 1.0

% Privileged Time % Privileged Time is the percentage of elapsed
time that the process threads spent executing
code in privileged mode. When a Windows
system service in called, the service will often run
in privileged mode to gain access to system-
private data. Such data is protected from access
by threads executing in user mode. Calls to the
system can be explicit or implicit, such as page
faults or interrupts. Unlike some early operating
systems, Windows uses process boundaries for
subsystem protection in addition to the traditional
protection of user and privileged modes. Some
work done by Windows on behalf of the
application might appear in other subsystem
processes in addition to the privileged time in the
process.

This gives an indication of the CPU time being spent in
the operating system by the process. This number will
probably be higher for processes doing significant
amounts of I/O or repeatedly allocating and freeing
memory.

Recommended Scale: 1.0

15

Counter Definition Guidance

IO Read Bytes/sec The rate at which the process is reading bytes
from I/O operations. This counter counts all I/O
activity generated by the process to include file,
network and device I/Os.

Compare this with Logical Disk\Disk Read Bytes Sec.
If file data is cached in the Windows Cache Manager,
many read operations will not physically impact the
disk. However, the read operations will still be reflected
in IO Read Bytes/sec, so you may see a much lower
value for Disk Read Bytes/sec. However, on a stressed
system where the cache is being overrun, these values
should be closer together.

Recommended Scale: 0.000001

IO Write Bytes/sec The rate at which the process is writing bytes to
I/O operations. This counter counts all I/O activity
generated by the process to include file, network
and device I/Os.

Compare this with Logical Disk\Disk Write Bytes Sec.
The Windows Cache Manager lazily writes file data to
disk from the file cache. If the file is removed before it
is physically written to disk, then you may see a much
lower value for Disk Write Bytes/sec. Write operations
will still be reflected in IO Write Bytes/sec. However, on
a stressed system where the cache is being overrun,
these values should be closer together.

Recommended Scale: 0.000001

Working Set Working Set is the current size, in bytes, of the
Working Set of this process. The Working Set is
the set of memory pages touched recently by the
threads in the process. If free memory in the
computer is above a threshold, pages are left in
the Working Set of a process even if they are not
in use. When free memory falls below a threshold,
pages are trimmed from Working Sets. If they are
needed they will then be soft-faulted back into the
Working Set before leaving main memory.

Compare this with Memory\Committed Bytes. If the
application is the main consumer of memory, then
Working Set will be approach the value of Committed
Bytes.

Recommended Scale: 0.0000001

TYING HOST MONITOR RESULTS TO SAS LOGS

If you output the system date and time at the start of your performance logs, those monitors which don’t timestamp
each interval entry can be calculated in time by adding the interval amount to the beginning time stamp successively.
The same can be done in the SAS output log. The timestamp generated by the header information in Attachment (A)
can be roughly added to the real time of each step to yield an approximate beginning and end of each job step.

By doing this you can equate the external monitors intervals with the SAS job steps in the log, and correlate any
monitor “hotspots” from the tables above to the SAS FULLSTIMER information in the log. This match-up will tell you
what your system was experiencing at the time of the job-step run. This correlation will prove valuable in helping to
guide your tuning efforts.

WHEN TUNING ISN’T ENOUGH

If your expectations cannot be met by adding or tuning your host system or storage array, you are left to the gains that
can be made via changes to your SAS code and processes as noted above. Go back and look at them again to see if
they can be made any more efficient.

If the problem relies on server load, you can work with your Systems Administrator to use nice, kernel parameters, or
any employed third-party resource managers to allocate you the maximum resources and business priority that the
system can allow you.

RESOURCE MANAGERS

If you find yourself on a very crowded system with a mixed workload, you may need to consider a resource manager.
The major vendors provide them, and they can be very effectively used in prioritizing users and workloads, and
allocating resources to particular groups to ensure the critical things get done on systems that cannot be expanded. A
few examples of resource managers are:
♦ Sun – Solaris Resource Manager
♦ HP – Workload Manager

16

♦ IBM – Workload Manager

Contact your hardware vendor to discuss the options available to you, and their costs and benefits.

SUMMARY

This paper discussed an iterative, disciplined approach to diagnose performance problems with the SAS System. It
detailed the employment and interpretation of the most commonly available host-based performance monitors, to help
understand what resource bottlenecks existed during the job run. Finally it detailed how to overlay this information
with SAS logs to reconcile episodes of bad performance on the host and storage systems to the SAS job steps. This
process can help quickly identify the performance restraints with SAS processes, and in doing so, lead to their quick
resolution.

ACKNOWLEDGMENTS

This paper is a compilation of the work and experience of SAS R&D personnel, including Leigh Ihnen, Margaret
Crevar, myself and others; as well as years of collaboration with our Hardware Vendor Partners, SUN, IBM, HP, Intel,
UNISYS, and others.

RECOMMENDED READING

Please see our Hardware Vendor Partner white papers and pages at:

http://www.sas.com/partners/directory/hp/papers.html

http://www.sas.com/partners/directory/ibm/papers.html

http://www.sas.com/partners/directory/intel/papers.html

http://www.sas.com/partners/directory/sun/papers.html

http://www.sas.com/partners/directory/unisys/papers.html

SAS®R&D White Papers:

http://support.sas.com/rnd/scalability/papers/solve_perf.pdf

Microsoft® White Papers:

http://www.microsoft.com/technet/archive/mcis/perfmon.mspx

CONTACT INFORMATION

 Your comments and questions are valued and encouraged. Contact the author at:

Tony Brown
SAS Performance Lab
Host Systems Research & Development
SAS Institute Inc.,
15455 N. Dallas Pkwy,
Dallas, TX 75001
Work phone: (214) 977-3916
Fax: (2214) 977-3921
tony.brown@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

17

http://www.sas.com/partners/directory/hp/papers.html
http://www.sas.com/partners/directory/ibm/papers.html
http://www.sas.com/partners/directory/intel/papers.html
http://www.sas.com/partners/directory/sun/papers.html
http://www.sas.com/partners/directory/unisys/papers.html
http://support.sas.com/rnd/scalability/papers/solve_perf.pdf
http://www.microsoft.com/technet/archive/mcis/perfmon.mspx
mailto:tony.brown@sas.com

18

ATTACHMENT (A) – LOG INFORMATION MACRO

/***
 * LOG INFO MACRO CODE - DO NOT EDIT
 * This section controls information printed to the log for
 * performance analysis.
 ***/

options fmterr fullstimer source source2 mprint notes msglevel=i;
Proc options group=memory;
Proc options group=performance;
Run;
Libname _ALL_ list;

%macro loginfo;
 data _null_;
 temp=datetime();
 temp2=lowcase(trim(left(put(temp,datetime16.))));
 call symput('datetime', trim(temp2));

 %if (&SYSSCP = WIN)
 %then call symput('host', "%sysget(computername)");
 %else call symput('host', "%sysget(HOST)");
 ;
 run;

 %put LOG HEADER BEGIN;
 %put LOG HEADER os=&sysscp;
 %put LOG HEADER os2=&sysscpl;
 %put LOG HEADER host=&host;
 %put LOG HEADER ver=&sysvlong;
 %put LOG HEADER date=&datetime;
 %put LOG HEADER parm=&sysparm;

 proc options option=MEMSIZE; run;
 proc options option=SUMSIZE; run;
 proc options option=SORTSIZE; run;

 %put LOG HEADER END;
%mend loginfo;
%loginfo;
run;

19

ATTACHMENT (B) – SOLARIS MONITOR SCRIPT

INSTRUCTIONS:
This script is for SOLARIS systems. Some of these commands
are only available for this operating system.

To run this script, make sure the permissions on solarismonitor.txt
are an octal that will allow execution - easiest is 777.
after solarismonitor.txt is copied to your host enter on the command line:
chmod 777 solarismonitor.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute solarismonitor.txt
On the command line of your home directory enter:

nohup ./solarismonitor.txt date interval count

You must fill the date interval and count variables above.
nohup iostat -csD be in format DDMMYYYY.

Interval tells the monitor how often to collect statistics
Count tells the monitor how often to do it

Do NOT EDIT BELOW THIS LINE

Start the iostat monitor
iostat reports I/O statistics.

date > $1.solarisiostat
echo 'Interval' $2 >> $1.solarisiostat
echo 'Count' $3 >> $1.solarisiostat

nohup iostat -cdDemMpsxX $2 $3 >> $1.solarisiostat &

Start the sar monitor

sar is a system activity reporter. In this case we are
collecting all information on all processes running. The
piping to /dev/null is to keep sar from echoing data back
to the terminal screen.
NOTE: YOU MAY HAVE TO BE ROOT TO RUN SAR ON SOLARIS
If so, have your SYSADMIN execute this script

 nohup sar -A -o $1.solarissar $2 $3 > /dev/null &

Start the vmstat monitor
Output is piped to solarisvmstat.txt
date > $1.solarisvmstat
echo 'Interval' $2 >>$1.solarisvmstat
echo 'Count' $3 >> $1.solarisvmstat

nohup vmstat $2 $3 >> $1.solarisvmstat &

Start the mpstat monitor

20

date > $1.solarismpstat
echo 'Interval' $2 >> $1.solarismpstat
echo 'Count' $3 >> $1.solarismpstat
mpstat -p $2 $3 >> $1.solarismpstat &

Start the ps monitor
Use ps to gather information regarding what processes are running
on the server and what resources they are using
Output is piped to solarisps.log

date>solarisps.log
echo 'Count' $2 >> solarisps.log
echo 'Interval' $3 >> solarisps.log
i=1
while [$i -le $3]
 do
 ps -eo user,pid,ppid,etime,pcpu,args >> solarisps.log
 sleep $2
 i=`expr $i + 1`
 done

echo "All Done..."

21

ATTACHMENT (C) – AIX MONITOR SCRIPT

INSTRUCTIONS:
This script is for AIX systems. Some of these commands
are only available for this operating system.

To run this script, make sure the permissions on aixmonitor.txt
are an octal that will allow execution - easiest is 777.
after aixmonitor.txt is copied to your host enter on the command line:
chmod 777 aixmonitor.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute aixmonitor.txt
On the command line of your home directory enter:

nohup ./aixmonitor.txt date interval count

You must fill the date interval and count variables above.
nohup iostat -csD be in format DDMMYYYY.

Interval tells the monitor how often to collect statistics
Count tells the monitor how often to do it

when the information was collected; and userid is the userid
you want to track information about.

Do NOT EDIT BELOW THIS LINE

Start the iostat monitor
iostat reports I/O statistics.

echo 'IOSTAT' > $1.aixiostat
date >> $1.aixiostat
echo 'Interval' $2 >> $1.aixiostat
echo 'Count' $3 >> $1.aixiostat

nohup iostat -D $2 $3 >> $1.aixiostat &

Start the sar monitor

sar is a system activity reporter. In this case we are
collecting all information on all processes running. The
piping to /dev/null is to keep sar from echoing data back
to the terminal screen.
NOTE: YOU MAY HAVE TO BE ROOT TO RUN SAR
If so, have your SYSADMIN execute this script
Run the aixsarsplit.txt script to seperate into reports

22

 nohup sar -A -o $1.aixsar $2 $3 > /dev/null &

Start the vmstat monitor
Output is piped to aixvmstat.txt

echo 'VMSTAT' > $1.aixvmstat
date >> $1.aixvmstat
echo 'Interval' $2 >>$1.aixvmstat
echo 'Count' $3 >> $1.aixvmstat

nohup vmstat $2 $3 >> $1.aixvmstat &

Start the mpstat monitor

echo 'MPSTAT' > $1.aixmpstat
date >> $1.aixmpstat
echo 'Interval' $2 >> $1.aixmpstat
echo 'Count' $3 >> $1.aixmpstat
mpstat $2 $3 >> $1.aixmpstat &

Start the ps monitor
Use ps to gather information regarding what processes are running
on the server and what resources they are using
Output is piped to ps2.log

echo 'PS' > aixps2.log
date>>aixps2.log
echo 'Count' $2 >> aixps2.log
echo 'Interval' $3 >> aixps2.log
i=1
while [$i -le $3]
 do
 ps -eo user,pid,ppid,etime,pcpu,etime,args >> aixps2.log
 sleep $2
 i=`expr $i + 1`
 done

echo "All Done..."

23

ATTACHMENT (D) – HP MONITOR SCRIPT

INSTRUCTIONS:
This script is for HP-UX systems. Many of these commands
are only available for this operating system.

To run this script, make sure the permissions on aixmonitor.txt
are an octal that will allow execution - easiest is 777.
after hpmonitor.txt is copied to your host enter on the command line:
chmod 777 hpmonitor.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute ./hpmonitor.txt
On the command line of your home directory enter:

nohup ./hpmonitor.txt date interval count

You must fill the date interval and count variables above.

Interval tells the monitor how often to collect statistics
Count tells the monitor how often to do it

when the information was collected; and userid is the userid
you want to track information about.

Do NOT EDIT BELOW THIS LINE

Start the iostat monitor
iostat reports I/O statistics. The command below is for HP-UX 11.11 and
11.12.

echo 'IOSTAT' > $1.hpiostat
echo 'Interval' $2 >> $1.hpiostat
echo 'Count' $3 >> $1.hpiostat
date >> $1.hpiostat
nohup iostat $2 $3 >> $1.hpiostat &

Start the sar monitor

sar is a system activity reporter. In this case we are
collecting all information on all processes running. The
piping to /dev/null is to keep sar from echoing data back
to the terminal screen.
NOTE: YOU MAY HAVE TO BE ROOT TO RUN SAR ON HP

 nohup sar -A -o $1.hpsar $2 $3 > /dev/null &

Start the vmstat monitor

24

Output is piped to hpvmstat.txt

echo 'VMSTAT' > $1.hpvmstat
echo 'Interval' $2 >> $1.hpvmstat
echo 'Count' $3 >> $1.hpvmstat

date >> $1.hpvmstat
nohup vmstat -S $2 $3 >> $1.hpvmstat &

Start the ps monitor
Use ps to gather information regarding what processes are running
on the server and what resources they are using
Output is piped to hpps1.log and hpps2.log

echo 'PS' > $1.hpps.log
echo 'Interval' $2 >> $1.hpps.log
echo 'Count' $3 >> $1.hpps.log
date >> $1.hpps.log

i=1
while [$i -le $3]
 do
 ps -ef >> hpps.log
 sleep $2
 i=`expr $i + 1`
 done

25

ATTACHMENT (E) – LINUX MONITOR SCRIPT

INSTRUCTIONS:
This script is only for Linux Redhat Systems. Some of the flags on
these commands are only available for this operating system for this
particular type of output.

To run this script, make sure the permissions on linuxmonitor.txt
are an octal that will allow execution - max is 777.
After linuxmonitor.txt is copied to your host enter on the command line:
chmod 777 linuxmonitor.txt.

If you do not have permission to do this , have it done as root by the
systems administrator.

To execute linuxmonitor.txt, on the command line of your home directory enter:

nohup ./linuxmonitor.txt data interval count sasworkdir

You must fill hte date interval and count variables above.

Interval tells the monitor how often to collect statistics.
Count tells the monitor how often to do it.

DO NOT EDIT BELOW THIS LINE

Start the IOSTAT Monitor
echo 'IOSTAT' > $1.linuxiostat
echo 'Interval' $2 >> $1.linuxiostat
echo 'Count' $3 >> $1.linuxiostat
date >> $1.linuxiostat

nohup iostat -kt $2 $3 >> $1.linuxiostat &

Start the sar Monitor - Note: You may have to be root to run sar.
nohup sar -A -o $1.linuxsar $2 $3 > /dev/null &

Start the VMSTAT Monitor
echo 'VMSTAT' > $1.linuxvmstat
echo 'Interval' $2 >> $1.linuxvmstat
echo 'Count' $3 >> $1.linuxvmstat
date >> $1.linuxvmstat

nohup vmstat $2 $3 >> $1.linuxvmstat &

Start the MPSTAT Monitor
echo 'MPSTAT' > $1.linuxmpstat
echo 'Interval' $2 >> $1.linuxmpstat
echo 'Count' $3 >> $1.linuxmpstat
date >> $1.linuxmpstat

nohup mpstat $2 $3 >> $1.linuxmpstat &

Start the ps monitor - it must run in a loop

echo 'PS' > linuxps.log

26

echo 'Interval' $2 >> linuxps.log
echo 'Count' $3 >> linuxps.log

i=1
while [$i -le $3]
do

date >> linuxps.log
ps -eo user,pid,ppid,etime,pcpu,args >> linuxps.log
sleep $2
i='expr $i + 1'
done

27

ATTACHMENT (F) – SOLARIS SAR REPORT GENERATION

INSTRUCTIONS:
This script is for SOLARIS systems. Some of these commands
are only available for this operating system.

To run this script, make sure the permissions on solsarsplit.txt
are an octal that will allow execution - easiest is 777.
after solsarsplit.txt is copied to your host enter on the command line:
chmod 777 solsarsplit.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute solarismonitor.txt
On the command line of your home directory enter:

nohup ./solsarsplit.txt sarfile

You must fill the name of the sar file in above. this name came from
solarismonitor.txt and is a date preceeding a period followed by
'solarissar'

Do NOT EDIT BELOW THIS LINE

Start the iostat monitor
iostat reports I/O statistics.

nohup sar -a -f $1 > solsara.txt &
nohup sar -b -f $1 > solsarb.txt &
nohup sar -c -f $1 > solsarc.txt &
nohup sar -d -f $1 > solsard.txt &
nohup sar -g -f $1 > solsarg.txt &
nohup sar -p -f $1 > solsarp.txt &
nohup sar -q -f $1 > solsarq.txt &
nohup sar -r -f $1 > solsarr.txt &
nohup sar -u -f $1 > solsaru.txt &
nohup sar -w -f $1 > solsarw.txt &

28

ATTACHMENT (G) – AIX SAR REPORT GENERATION

INSTRUCTIONS:
This script is for AIX systems. Many of these commands
are only available for this operating system.

To run this script, make sure the permissions on aixsarsplit.txt
are an octal that will allow execution - easiest is 777.
after aixsarsplit.txt is copied to your host enter on the command line:
chmod 777 aixmonitor.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute ./aixsarsplit.txt
On the command line of your home directory enter:

nohup ./aixsarsplit.txt sarfile

You must fill the sarfile above with the name of the sar output from
aixmonitor.txt -- in the form of <date>aixsar.txt.

Interval tells the monitor how often to collect statistics
Count tells the monitor how often to do it

when the information was collected; and userid is the userid
you want to track information about.

Do NOT EDIT BELOW THIS LINE

sar -a -f $1 > aixsara.txt &
sar -b -f $1 > aixsarb.txt &
sar -c -f $1 > aixsarc.txt &
sar -d -f $1 > aixsard.txt &
sar -q -f $1 > aixsarq.txt &
sar -r -f $1 > aixsarr.txt &
sar -u -f $1 > aixsaru.txt &
sar -w -f $1 > aixsarw.txt &

29

ATTACHMENT (H) – HP SAR REPORT GENERATION

INSTRUCTIONS:
This script is for HP-UX systems. Many of these commands
are only available for this operating system.

To run this script, make sure the permissions on hpsarsplit.txt
are an octal that will allow execution - easiest is 777.
after hpsarsplit.txt is copied to your host enter on the command line:
chmod 777 hpmonitor.txt
If you do not have permission to do this, have it done as root by the
sysadmin

To execute ./hpsarsplit.txt
On the command line of your home directory enter:

nohup ./hpsarsplit.txt sarfile

You must fill the sarfile in above with the name of the sar output
file from hpmonitor.txt -- in the form of <date>hpsar.txt

Do NOT EDIT BELOW THIS LINE

nohup sar -a -f $1 > hpsara.txt &
nohup sar -b -f $1 > hpsarb.txt &
nohup sar -c -f $1 > hpsarc.txt &
nohup sar -d -f $1 > hpsard.txt &
nohup sar -q -f $1 > hpsarq.txt &
nohup sar -u -f $1 > hpsaru.txt &
nohup sar -w -f $1 > hpsarw.txt &

30

ATTACHMENT (I) – LINUX SAR REPORT GENERATION

INSTRUCTIONS:
This script is only for Linux Redhat Systems. Some of the flags on
these commands are only available for this operating system for this
particular type of output.

To run this script, make sure the permissions on linsarsplit.txt
are an octal that will allow execution - max is 777.
After linuxmonitor.txt is copied to your host enter on the command line:
chmod 777 linsarsplit.txt.

If you do not have permission to do this , have it done as root by the
systems administrator.

To execute linsarsplit.txt, on the command line of your home directory enter:

nohup ./linsarsplit.txt sarfile

You must fill the sarfile above. It is the name of the sar output generated
by linuxmonitor.txt in the form of <date>sar.txt

DO NOT EDIT BELOW THIS LINE

nohup sar -b -f $1 > linuxsarb.txt &
nohup sar -d -f $1 > linuxsard.txt &
nohup sar -q -f $1 > linuxsarq.txt &
nohup sar -r -f $1 > linuxsarr.txt &
nohup sar -u -f $1 > linuxsaru.txt &
nohup sar -w -f $1 > solsarw.txt &
nohup sar -W -f $1 > solsarW.txt &

31

