
SOLVING SUDOKU PUZZLES WITH THE COUGAAR

AGENT ARCHITECTURE

by

Michael Ray Emery

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

July 2007

c©COPYRIGHT

by

Michael Ray Emery

2007

All Rights Reserved

ii

APPROVAL

of a thesis submitted by

Michael Ray Emery

This thesis has been read by each member of the thesis committee and has been
found to be satisfactory regarding content, English usage, format, citations, biblio-
graphic style, and consistency, and is ready for submission to the Division of Graduate
Education.

Dr. John Paxton

Approved for the Department of Computer Science

Dr. Michael Oudshoorn

Approved for the Division of Graduate Education

Dr. Carl A. Fox

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master’s

degree at Montana State University, I agree that the Library shall make it available

to borrowers under rules of the Library.

If I have indicated my intention to copyright this thesis by including a copyright

notice page, copying is allowable only for scholarly purposes, consistent with “fair

use” as prescribed in the U. S. Copyright Law. Requests for permission for extended

quotation from or reproduction of this thesis in whole or in parts may be granted

only by the copyright holder.

Michael Emery

July, 2007

iv

ACKNOWLEDGEMENTS

I deeply thank Dr. John Paxton, my advisor, for providing direction to my

research, reviewing my work, and editing this thesis; my wife, Ginny, for her endless

love, support, encouragement, and thesis editing; SRI International for their flexibility

in allowing me to take 2 weeks off work to complete this thesis; the Meyers for

providing hot meals and a place to stay during my final push for completion; and

God, with whom, all things are possible.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT .. ix

1. PROBLEM STATEMENT .. 1

2. RELATED WORK.. 3

Introduction to Sudoku . 3
Solving Sudoku . 3

Computer Algorithms . 4
Human Techniques . 5

3. COUGAAR .. 6

Introduction . 6
The Decision to Use Cougaar . 6
Alternative Agent Architectures . 7
The Cougaar Problem Domain . 7

Cougaar Components . 8
The Community. 8
The Node . 8
The Agent . 9
Inter-Agent Communication. 10

4. THE AGENT APPROACH TO SUDOKU .. 11

Key Objects . 11
Number . 12
Status . 12
Command . 14

The Cell Agent . 14
Starting . 15
Solving . 16
Rolling Back. 17

The Board Master Agent . 18
Starting . 19
Solving . 19
Detecting a Stalled Puzzle . 20

vi

Guessing . 20
Rolling Back. 21
Completion . 21

Illustrative Example. 21

5. EMPIRICAL ANALYSIS . 26

Methodology . 26
Metrics . 26
Test Sets . 27
Cougaar Environment . 27

Experiments on Verified Sudoku Puzzles . 28
Backtracking . 28
DLX.. 30
Random Choice, Random Worst Agent . 31
Random Choice, Random Agent . 33
Random Choice, Random Best Agent . 35
Conclusions . 37

Experiments on Random Sudoku Puzzles . 37
Backtracking . 38
DLX.. 39
Random Choice, Random Worst Agent . 41
Random Choice, Random Agent . 42
Random Choice, Random Best Agent . 44
Conclusions . 46

Final Analysis . 46

6. FUTURE WORK .. 48

Role of the Board Master . 48
Pre-guess Analysis . 48
Guess Techniques. 48
Performance Measurement. 49
Fault Tolerance . 49
Puzzle Subtleties . 50

REFERENCES CITED .. 51

vii

LIST OF TABLES

Table Page

1. Backtracking Experiment One . 29

2. DLX Experiment One . 31

3. Random Worst Agent Experiment One . 32

4. Random Agent Experiment One . 34

5. Random Best Agent Experiment One . 36

6. Backtracking Experiment Two . 39

7. DLX Experiment Two . 40

8. Random Worst Agent Experiment Two . 42

9. Random Agent Experiment Two . 44

10. Random Best Agent Experiment Two. 45

11. Time Limit and Communication Failures . 46

viii

LIST OF FIGURES

Figure Page

1. A Sudoku Puzzle and its Solution . 4

2. Internal Agent Structure . 9

3. Communication Points for Agent A00 . 11

4. Internal Structure of a Cell Agent . 15

5. Internal Structure of the Board Master Agent . 19

6. Example Sudoku Puzzle: Cell Agents at Startup. 22

7. Example Sudoku Puzzle: Cell Agents After Round One 23

8. Example Sudoku Puzzle: Cell Agents After Round Two 23

9. Example Sudoku Puzzle: Cell Agents After Round Three 24

10. Example Sudoku Puzzle: Cell Agents After Guess . 24

11. Example Sudoku Puzzle: Cell Agents At Completion . 25

12. Experiment One Time Results for Backtracking. 29

13. Experiment One Guess Results for Backtracking . 29

14. Experiment One Time Results for DLX. 30

15. Experiment One Guess Results for DLX . 31

16. Experiment One Time Results for Random Worst Agent 32

17. Experiment One Guess Results for Random Worst Agent 32

18. Experiment One Message Results for Random Worst Agent 32

19. Experiment One Time Results for Random Agent . 33

ix

20. Experiment One Guess Results for Random Agent . 34

21. Experiment One Message Results for Random Agent . 34

22. Experiment One Time Results for Random Best Agent 35

23. Experiment One Guess Results for Random Best Agent. 36

24. Experiment One Message Results for Random Best Agent 36

25. Experiment Two Time Results for Backtracking . 38

26. Experiment Two Guess Results for Backtracking . 38

27. Experiment Two Time Results for DLX . 39

28. Experiment Two Guess Results for DLX. 40

29. Experiment Two Time Results for Random Worst Agent 41

30. Experiment Two Guess Results for Random Worst Agent. 41

31. Experiment Two Message Results for Random Worst Agent 41

32. Experiment Two Time Results for Random Agent . 43

33. Experiment Two Guess Results for Random Agent . 43

34. Experiment Two Message Results for Random Agent 43

35. Experiment Two Time Results for Random Best Agent 44

36. Experiment Two Guess Results for Random Best Agent 45

37. Experiment Two Message Results for Random Best Agent 45

x

ABSTRACT

The Cougaar distributed agent architecture, originally a DARPA-funded research
project, provides a platform for developing distributed agent systems. Testing its
ability to solve complex problems using a large number of agents in an interesting
topic of research.

In this thesis, the Cougaar distributed agent architecture is studied from the
standpoint of Sudoku. Through analysis and experimentation, insight is gained into
both the properties and weaknesses of Cougaar. Cougaar’s performance when solving
Sudoku puzzles is then compared with other Sudoku solving techniques. The Cougaar
agent approach solves Sudoku puzzles in a human-like fashion, reaching solutions
using both analysis and guessing.

Cougaar is shown to be capable of solving Sudoku puzzles in a distributed agent
architecture. Although not as fast as traditional techniques, the Cougaar distributed
agent approach is able to provide solutions to Sudoku puzzles using fewer guesses.
Additionally, solving Sudoku puzzles with Cougaar exposed some reliability issues
and demonstrated the overhead required for communication. These results open the
way for additional study of Cougaar.

1

PROBLEM STATEMENT

The purpose of this thesis is to study the Cougaar distributed agent architecture

by applying it to the Sudoku problem and to understand some of the properties and

weaknesses of Cougaar. Cougaar provides a stable platform for distributed agent

work by handling many of the basic requirements for an agent system, such as agent-

to-agent communication and service discovery.

Sudoku is an interesting problem to solve with the Cougaar distributed agent

architecture. Each square on the Sudoku board can be treated as an autonomous

agent. These agents then communicate with neighbors to gather enough information

to solve the Sudoku puzzle as a community. This distribution creates a large number

of agents and provides an environment to study Cougaar. Traditional, single CPU

approaches to solving Sudoku puzzles are also discussed. These provided a baseline

for comparison in the experiments.

Each agent in the Cougaar system only had a limited amount of analytical power.

More difficult Sudoku puzzles required an additional agent to make guesses when

needed. Three Sudoku problem solving methods were tested: a random choice from a

random worst agent, a random choice from any random agent, and a random choice

from a random best agent. Here, best indicates an agent is from the set of agents

with the fewest possibilities, and worst is the set with the most possibilities.

2

Two sets of Sudoku puzzles were tested. The first consisted of actual Sudoku puz-

zles from WebSudoku.com [1]. The second was randomly generated. For both sets,

the single CPU approaches performed faster and more reliably than the Cougaar dis-

tributed agent Sudoku problem solving techniques. Although the Cougaar Sudoku

problem solving techniques were much slower, they consistently solved each Sudoku

puzzle with significantly fewer guesses. The testing showed that the Cougaar dis-

tributed agent architecture is capable of being applied to solve Sudoku puzzles.

During testing, Cougaar was shown to have some reliability issues. Agents would

become unresponsive and would no longer receive messages sent to them. Restarting

the agent was the only way to return the system to a working state. Additionally,

messages between functional agents would not be delivered. The overhead required

to send messages among agents and ensure the delivery of commands and information

greatly outweighed any work done by individual agents focused toward solving the

Sudoku puzzle itself. These findings show some of the weaknesses of Cougaar and

open the way for additional research.

3

RELATED WORK

Introduction to Sudoku

Sudoku is often thought to have originated in Japan, due to the name and its

popularity as a Nikoli-published puzzle game in Japan since the 1980’s [2]. However,

Dell Magazines previously published it under the name Number Place in the late

1970’s [3]. The game also has roots in Latin Squares, a game thought to have been

invented by Leonhard Euler in the 1700’s [4]. Regardless of origin, the game has

recently become internationally popular and can be found in a number of mainstream

newspapers.

Solving Sudoku

Sudoku is a number logic game where the goal is to fill a square grid with numbers

relating to the size of the puzzle. The typical Sudoku puzzle is a nine by nine grid

that must be filled using the numbers one through nine. The grid is divided into rows,

columns, and subsquares. A subsquare is an n by n square, where n is the square

root of the number of columns or rows. For a standard Sudoku puzzle, n is three. All

standard Sudoku puzzle will be already partially filled in (Figure 1, left puzzle). The

information provided by these preexisting numbers determines the general difficulty

level of the puzzle. The goal is to arrange numbers on the grid so that every number

appears only once in each row, column, and subsquare (Figure 1, right puzzle).

4

Figure 1. A Sudoku Puzzle and its Solution.

A properly formed Sudoku puzzle has only one correct solution. Showing that a

candidate Sudoku puzzle has more than one solution was proved to be NP-Complete

by Yato and Seta [5]. The total number of properly formed Sudoku puzzles is

6670903752021072936960, as enumerated by Felgenhauer and Jarvis [6]. Algorithms

for solving Sudoku generally follow two styles: rapid computer algorithms and human

techniques.

Computer Algorithms

Popular rapid solvers are based on backtracking and dancing links. Rapid style

Sudoku solvers are preferred for verifying large sets of randomly generated Sudoku

puzzles due to their ease of implementation and quick results. Backtracking, a com-

mon technique in artificial intelligence, is a refined brute force search that explores a

constrained set of possibilities until reaching a solution [7]. Donald Knuth suggested

5

Dancing Links (DLX) as an implementation of his Algorithm X which solves the exact

cover problem [8].

Since Sudoku is a subset of the exact cover problem, DLX provides a quick and

efficient Sudoku solver. Each space is treated as a vertex on the Sudoku grid, yielding

81 vertices. The driving force behind DLX is the concept that nodes in a circular,

doubly-linked list can be quickly inserted or removed. DLX operates on a matrix of

possible decisions where each column and row is a circular, doubly-linked list. The

way DLX inserts and removes nodes from the matrix was the inspiration for the name

Dancing Links.

Human Techniques

Human style solving is generally used as a way to estimate the difficulty level

of a puzzle. Human solvers commonly employ techniques such as cross-hatching,

counting, and marking up [9]. Cross-hatching is a scanning technique that uses the

process of elimination to identify lines where a number must be. Counting is the

opposite of cross-hatching because it eliminates numbers that cannot be assigned to

a cell. Marking up is used after applying cross-hatching and counting. A cell is

marked up by listing all possible remaining valid numbers. After all cells have been

marked up, they can be compared and analyzed.

6

COUGAAR

Introduction

COGnitive Agent Architecture (Cougaar) is a Java-based agent architecture [10].

Cougaar is capable of handling large-scale distributed applications and was developed

as part of the solution to the DARPA UltraLog project, a distributed logistics appli-

cation comprised of more than 1000 agents distributed over 100 physically dispersed

hosts [11]. A primary goal of UltraLog was to maintain communication among all

hosts even with 40% of the communication network disabled by asymetrical attacks.

The resulting system is completely open-source. Due to the size and complexity of

Cougaar, only the components used for this research will be discussed. For a more

complete description, see the Cougaar Developer’s Guide [12].

The Decision to Use Cougaar

The decision to investigate Cougaar, instead of another agent architecture, was

based on the author’s previous work with Cougaar. A grant by the Transportation

Security Administration [13] to Rocky Mountain Agile Virtual Enterprises at Montana

Tech [14] funded research and development of an airport security system distributed

across multiple agents using Cougaar. The author worked on a part of the project

devoted to door access control using distributed agents. A paper presented at the

7

Computational Intelligence conference in Calgary in 2005 provides details of the door

access control project and how it was tested [15].

Alternative Agent Architectures

Although the Cougaar distributed agent architecture is the focus of this thesis,

other alternative agent architectures are available. The Open Agent Architecture

(OAA), developed by SRI International, primarily focuses on the concept of a dele-

gated computing model where agents are assigned tasks by a controller agent based on

their capabilities [16]. The Common Object Request Broker Architecture (CORBA),

developed by OMG, is a widely used platform that provides the infrastructure and ar-

chitecture needed to develop a distributed agent architecture [17]. Jini, an open source

project supported by Sun Microsystems [18] and SolutionsIQ [19], is a service oriented

architecture that can support intelligent agent systems [20]. The Reusable Environ-

ment for Task-Structured Intelligent Networked Agents (RETSINA), developed at

Carnegie Mellon, is a research platform for studying agent architecture related prob-

lems such as reliable communication and agent reuse [21]. Finally, The Knowledgeable

Agent-oriented System (KAoS), developed by Boeing, provides an agent architecture

that attempts to address the common distributed agent architecture problem caused

by a lack of semantics and lack of extensibility for agent communication languages

[22].

8

The Cougaar Problem Domain

Cougaar is suited for use in a wide range of distributed or agent related prob-

lems. Any autonomous group of robots could utilize an agent architecture to provide

software infrastructure for tasks such as communication and task delegation. The

adaptive logistics required for inventory management dispersed across multiple phys-

ical locations would be another problem suited to an agent architecture. Other prob-

lems that could be explored with an agent architecture such as Cougaar are security

systems, data mining, load balancing, and certificate authorities.

Cougaar Components

The Community

Cougaar supports the segmenting of agents into communities [23]. A community

is composed of logically related agents. An agent can belong to an unlimited number

of communities. It may join or leave a community as its goals change. From a

communication standpoint, this function allows a single message to be addressed to

an entire community without regard to a community’s current membership.

The Node

A Node is a single Java Virtual Machine [24] that may contain and maintain

multiple agents [12]. Generally, Nodes share a 1:1 correspondence with a CPU. For

example, a node may contain all agents requiring access to a restricted resource. A

node can be treated logically as a community restricted to a single CPU. A node is

9

similar to a community because an agent on one node can move to another. A node

provides several services to its agents, such as message routing, logging, and resource

access.

The Agent

Each Cougaar agent is composed of plugins, a blackboard, and support services

(Figure 2). The plugins provide the behavior of an agent. They communicate with

other plugins, agents, and communities using the blackboard. The blackboard sup-

ports the publish/subscribe semantic for object handling [25]. A plugin indicates the

types of object it is interested in by registering a subscription with the blackboard.

After an object is published to the blackboard, the agent checks all subscriptions and

activates relevant plugins. The plugin can then retrieve the object and perform any

tasks. Any plugin may publish objects to the blackboard. Plugins normally only

activate when one of their subscriptions is triggered.

Figure 2. Internal Agent Structure.

10

Inter-Agent Communication

Agents communicate with each other using a built-in, asynchronous message-

passing protocol called the Message Transport Service (MTS) [26]. The MTS provides

an API for sending messages to agents by name. For solving Sudoku puzzles, messages

take the form of a relay. A relay combines send and receive blackboard interfaces to

share messages between agents. Source object data appears on the blackboard of

the target agent and can return to the source agent’s blackboard as a reply [27]. A

white pages service, similar to DNS, performs address resolution for the agents [28].

Additional nodes can run the white pages service to provide redundancy.

11

THE AGENT APPROACH TO SUDOKU

The agent approach to Sudoku is based on dividing the workload evenly among

many agents. One agent is assigned to each of the 81 cells on the board. A final agent,

the board master, has the task of maintaining a complete picture of the board’s state

and makes any decisions that require a knowledge of each agent’s status. Each cell

agent is only allowed to communicate directly with the board master and the cell

agents in its row, column, and three by three square. For example, cell agent A00

communicates with 20 other cell agents and the board master (Figure 3).

Figure 3. Communication Points for Agent A00.

12

Key Objects

There are three key objects that play an important role in how agents relate to

each other and how decisions are made: the number, the status, and the command.

Number

The Number object is a pair of integers. The first represents a possible value on

the Sudoku board, ranging from one to nine. The second is a guess ID that indicates

the point at which the Number was removed as a candidate. An active Number is any

Number object that has not been eliminated or uniquely selected as the choice for a

particular cell. Active Numbers are designated by a guess ID of -1. For example, a

cell might have the following un-eliminated choices: 1, 5, and 7. The active Number

associated with 7 would be [7,-1]. If it were eliminated as a candidate for the cell

after the first guess was made, it would become [7,1]. The purpose of storing the

guess ID along with the candidate number is discussed in the Rollback subsection of

The Board Master Agent section.

Status

The Status object represents all important external information about a cell agent

to other cell agents and the board master. Depending on the situation, a Status object

may contain any or all of the following elements:

• The cell agent’s name. For example, the top-left cell’s name is “A00” and the

bottom right’s is “A88.”

13

• A list of the nine Number objects, reflecting their current status.

• The message ID. This is an increasing number that is never reset. The mes-

sage ID is used to eliminate out-of-order messages, only the latest message is

important.

• The reset ID. This is an increasing number that is never reset. After a puzzle

is completed, every cell agent must be reset to its starting configuration for the

next puzzle. A cell agent with the wrong Reset ID is clearly still referencing an

old puzzle and can be corrected by the board master.

• The guess ID. This is a varying number that resets on completion of a puzzle.

The guess ID indicates the cell agent’s understanding of the current guess level.

This is used in combination with the command ID to ensure that cell agents

are following the guess and roll-back sequence correctly.

• The command ID. This is an increasing number that resets on completion of a

puzzle. Since the guess ID can increase or decrease, the command ID is used

to guarantee that the cell agent has rolled back appropriately before analyzing

data from the current guess ID.

• The change counter. This is used internally by the board master to count the

number of consecutive times a cell agent has sent the same Status.

• Neighbor completeness. This is set by the cell agent to indicate that it has

received Status objects from all of its neighbors. The board master will not

signal for solving to begin until all cell agents report this as true.

14

A Status contains almost all relevant data for a cell agent and is capable of producing

guesses based on the currently active Numbers. Therefore when multiple guesses are

made for the same cell, it will not produce the same guess twice.

Command

The Command object is the only message passed from the board master to the

cell agents. The board master uses five types of commands:

• Startup: Before a cell agent can begin its part in solving a Sudoku puzzle, the

board master must tell it whether has a starting value or not.

• Reset: After a puzzle is complete, every cell agent is sent the same reset com-

mand. The command contains an ID to be stored by the cell agents.

• Guess: Whenever the board master makes a guess, it sends this command to

the chosen cell agent, along with the guessed value for that cell agent and an

increased guess ID.

• Rollback: If the puzzle enters an invalid state, the board master instructs all

cell agents to rollback to the guess ID provided.

• Report: The board master instructs the cell agent to respond with its current

status.

The Cell Agent

For a 9x9 Sudoku grid, there are 81 total cell agents, one for each space on the

Sudoku board. Each is only aware of the neighbors in its row, column, and three by

15

three square. The cell agents are completely unaware of the overall board status. A

cell agent’s only goal is to reduce its set of active Numbers to one. As a result, the

system exhibits an emergent behavior by solving the Sudoku puzzle. In this case, the

emergent behavior is known formally as a weak emergence because the new property

(the completion of a Sudoku puzzle) comes directly from the interaction of individual

elements (the cell agents) [29]. Arrangement of the cell agent within Cougaar is shown

in Figure 4.

Figure 4. Internal Structure of a Cell Agent.

16

Starting

Before starting work on a Sudoku puzzle, all cell agents need to be communi-

cating successfully with their neighbors. Each cell agent is explicitly aware of other

cell agents in its row, column, and three by three square. Communication lists are

composed at startup based on the cell agent’s name. Each cell agent sends a message

to the other cell agents on its lists. For efficiency, cell agents appearing on more than

one list only receive one message. A cell agent has two opportunities to receive a

response. First, when the target cell agent starts and sends messages of its own, and

second, when it responds to a request. To prevent endless respond-respond looping,

each cell agent keeps a list of other cells it knows to be responsive. When the list

contains all cells a cell agent needs to communicate with, it sends a Status message

to the board master indicating it is ready to begin. At this stage, all cells consider

1-9 to be valid choices.

Solving

Work on the puzzle begins when the board master sends replies to the first round

of Status messages. If this response indicates the cell agent is constrained to a specific

number, the cell agent sends the updated Status to its neighbors (row, column, and

three by three square). As other cell agents receive these messages, they deactivate

the appropriate Number in their local Status. The cell agent then sends the updated

Status to all its neighbors. These two types of Status messages (one with a single

active Number, one with many) allows for two types of analysis. The first is the

17

elimination of all choices but one for a specific cell. The second type is when the cell

agent compares the local Status to the received Status from its neighbors. By process

of elimination, a cell agent may constrain itself to a single active Number if no other

cell agents in its row, column, or three by three square show that Number as active.

Rolling Back

When a cell agent reports to the board master with a duplicate value already

contained in its row, column, or three by three square, the entire puzzle has entered

an invalid state. The board master issues a rollback to restore the board to a state

where a solution is still possible. Also, if a cell agent reports that it has eliminated all

candidate Numbers as valid choices, a rollback is needed. The board master triggers

a rollback by sending a rollback command to all cell agents. Each cell agent then

reverts itself to the state before the most recent guess was made. Describing how

guesses and rollbacks are handled at the cell agent level is best shown by example.

A cell agent’s Number list, before startup:

[1, -1] [2, -1] [3, -1] [4, -1] [5, -1] [6, -1] [7, -1] [8, -1] [9, -1]

A constrained cell agent’s Number list (constrained to 5), after startup:

[1, 0] [2, 0] [3, 0] [4, 0] [5, -1] [6, 0] [7, 0] [8, 0] [9, 0]

A cell agent’s Number list with 3, 5, and 6 as candidates, before the board master

makes a guess:

[1, 0] [2, 0] [3, -1] [4, 0] [5, -1] [6, -1] [7, 0] [8, 0] [9, 0]

18

The same cell agent’s Number list, after the board master makes a guess (ID 1) which

sets a neighbor to 3:

[1, 0] [2, 0] [3, 1] [4, 0] [5, -1] [6, -1] [7, 0] [8, 0] [9, 0]

The same cell agent’s Number list, after the board master makes a guess (ID 2) which

sets a neighbor to 5:

[1, 0] [2, 0] [3, 1] [4, 0] [5, 2] [6, -1] [7, 0] [8, 0] [9, 0]

Now the cell agent is constrained to 6. If the board master issues a rollback for guess

ID 2, the cell agent reverts the Number list by reactivating any Number with a guess

ID of 2 or higher. The board master can issue multiple simultaneous rollbacks by

using a lower guess ID. The same cell agent’s Number list, after rollback with guess

ID 2:

[1, 0] [2, 0] [3, 1] [4, 0] [5, -1] [6, -1] [7, 0] [8, 0] [9, 0]

Cell agents constrained before a given guess ID have no rollback work to do.

The Board Master Agent

The board master agent is responsible for keeping the system synchronized, hand-

ing out starting and guess values, rolling back guesses, and tracking the overall state

of the board. The board master agent only receives Status object messages from the

cell agents, but the state of the board determines how the messages will be used.

Arrangement of the board master agent within Cougaar is shown in Figure 5.

19

Figure 5. Internal Structure of the Board Master Agent.

Starting

The board master creates a list of cell agents as they request their startup values

in order to ensure that all cell agents are online. When the list reaches 81 (for a nine

by nine Sudoku board), the board master agent sends all starting values to the cell

agents. If a cell agent is supposed to be constrained to a single starting value, but

reports a list of several values, the board master agent sends the startup message

again.

Solving

As cell agents become constrained, they send status messages to the board master

that reflect their constraints. The board master keeps a 2D array of all cell agents’

status. A timer periodically requires all cell agents to report to the board master with

their Status. The timer only triggers if there have been no Status reports for a period

of time, set at the start of the system. The slowest CPU in the system determines the

20

necessary wait time, to allow for late coming messages. If the cell agents are reporting

updates to the board master, the timer will not trigger to avoid unnecessary traffic.

Detecting a Stalled Puzzle

If all cell agents are responding with unchanging Status, none are able to make

further restrictions to their number lists, and the board is considered stalled. When

the board has stalled, the board master starts guessing.

Guessing

The board master uses several methods to choose which cell agent should make

a guess.

1. Random Guess from a Random Agent: The board master randomly selects a

cell agent from the set of all cell agents with any active Numbers. This is the

most basic Sudoku problem solving method.

2. Random Guess from a Random Best Agent: The board master randomly selects

a cell agent from the set of cell agents with the lowest amount of active Numbers.

3. Random Guess from a Random Worst Agent: The board master randomly

selects a cell agent from the set of cell agents with the highest amount of active

Numbers.

Once the board master has selected a cell agent to make a guess, the cell agent’s

Status is added to a guess stack. The size of the stack is the board’s guess ID. Each

21

Status provides a method to return possible guesses until none remain. Once the

board master has exhausted all guesses for a cell agent without reaching a completed

puzzle state, the cell agent’s Status is removed from the guess stack. The next Status

on the stack will provide the next guess. Whenever a guess leads to an invalid board

state, the board master issues a rollback that reverts the board to its state before the

current guess.

Rolling Back

All cell agents perform rollbacks if needed and respond with a Status that reflects

the new guess ID. After all cell agents have reported back, the board master selects

the next guess from the Status on top of the guess stack. If no more guesses remain

for a given Status, it issues another rollback before moving to the next Status on

the stack. Once the board master finds a suitable guess, it sends the guess to the

corresponding cell agent and solving resumes. By process of elimination, the first

chosen cell agent must yield a guess that leads to a correct solution. If the board

master exhausts all guesses for this cell agent, the Sudoku puzzle has no solution.

Completion

Once the system has solved the board correctly, all cell agents become dormant.

If the board master is loaded with another puzzle, it sends a reset command to the

cell agents, and the system returns to the Startup stage.

22

Illustrative Example

Although all testing and design is centered around the standard nine by nine

Sudoku puzzle, it is more insightful to use a smaller four by four Sudoku puzzle as an

example. The guessing method used will be Random Guess from a Random Agent.

Throughout this example, italics indicate changes between previous and current fig-

ures. At startup, A11 and A30 are constrained to 2. A23 is constrained to 1. All cell

agents not provided an initial constraint have all active Numbers, as shown in Figure

6.

Figure 6. Example Sudoku Puzzle: Cell Agents at Startup.

Immediately following startup, non-constrained cell agents determine which of

their active Numbers can be deactivated. 7 shows this change in all active cell agents

except A02.

Now that all cell agents have an accurate representation of their neighbors, anal-

ysis can occur. For this, each cell agent scans its neighbor’s active Numbers against

its own. If a Number is active for the current cell agent, but not for any of that cell

23

Figure 7. Example Sudoku Puzzle: Cell Agents After Round One.

agents neighbors in a row, column, or two by two square, the current cell agent is the

only remaining candidate. For this example, A23 uses this process to constrain itself

to 2 (Figure 8).

Figure 8. Example Sudoku Puzzle: Cell Agents After Round Two.

A second round of messages and analysis yields one more constrained cell agent,

A03 to 2 (Figure 9).

At this point, no further work can be done by the cell agents with their current

analysis tools. The puzzle will not move closer to a solution without a guess from the

24

Figure 9. Example Sudoku Puzzle: Cell Agents After Round Three.

board master. Selecting a random Number from a random agent, the board master

chooses 3 from agent A10 (Figure 10).

Figure 10. Example Sudoku Puzzle: Cell Agents After Guess.

After a final round of messages, every cell agent has constrained itself to a single

active Number, and the Sudoku puzzle has been successfully solved (Figure 11).

25

Figure 11. Example Sudoku Puzzle: Cell Agents At Completion.

26

EMPIRICAL ANALYSIS

Methodology

Metrics

Because it is difficult to measure space in a distributed agent-based architecture,

only time and guesses were considered in this study. For backtracking, the raw time

to solve the problem was measured, and each recursive call was treated as a guess.

For DLX, only the measurement of time could be accurately compared to the other

Sudoku solving techniques. Work done by DLX was measured by recording the re-

moval or addition of links to the matrix. For consistency, each of these changes to

the matrix was referred to as a guess.

For the Cougaar approach, measurements included the raw time to solve the

problem, the number of messages passed, and the number of guesses made. Although

message counts cannot be effectively compared to backtracking or DLX, they provide

a useful metric for comparing Sudoku problem solving strategies within the Cougaar

approach.

Each Sudoku solver had 10 recorded attempts at every puzzle. On each puzzle,

averages and standard deviations of the metrics were recorded. For backtracking and

DLX, this applied to time and guesses. For the Cougaar Sudoku system, this applied

to time, guesses, and messages.

27

Test Sets

Two test sets were used to measure the performance of the Agent-based Sudoku

solver. The first consisted of verified Sudoku puzzles, and the second consisted of

randomly generated, unverified puzzles. A verified Sudoku puzzle has been shown to

only have one solution. All of the verified Sudoku puzzles used for testing were taken

from WebSudoku.com. Ten puzzles were taken from each of the available difficulty

levels, Easy, Medium, Hard, and Evil, yielding 40 total puzzles for testing. For

reference, the difficulty levels are classified by WebSudoku.com as follows:

“The difficulty of a puzzle is related to the depth of thinking required. An
easy Sudoku can be solved using more simple logic, whereas an evil puzzle
needs deeper analysis. Obviously there is also variation between different
puzzles, so even within a level some puzzles may seem harder than others.”
[1]

A Sudoku puzzle was selected at random to provide the base puzzle for generating

additional puzzles. The Sudoku puzzle starts in a completed state and cells are

blanked at random in groups of nine. This is repeated, saving the resulting Sudoku

puzzle at each step, until the entire Sudoku puzzle is blank. The entire reduction

from a completed Sudoku puzzle to a blank one was repeated four times to yield a

total of forty puzzles. These randomly reduced Sudoku puzzles will be referred to by

the number of blanks they contain. For example, the 0 puzzle contains no blank cells

and the 81 puzzle is completely blank.

28

Cougaar Environment

One of Cougaar’s key features is the ability to connect agents regardless of their

location on a network. During development, the agent system was tested on networks

of up to five desktop computers. For the experiments, 82 agents ran on a single

workstation. The GUI proved an effective tool for developing, testing, and debugging

the agents on single boards but was impractical for any large scale analysis. To enable

repetitive batch-processing for large numbers of puzzles with varying decision making

constraints, a separate board master was developed. At the Cougaar level, the second

board master is identical to the first. In the place of a GUI, all commands came from

the command line and all results were logged in separate files according to puzzle

number, date, and time. Finally, several scripts were used to compile the results into

meaningful formats.

Experiments on Verified Sudoku Puzzles

Each of the Sudoku puzzles used in this section were verified by WebSudoku.com

to only have one solution. During the testing of the Cougaar agent approach, one

or more Cougaar agents occasionally became unresponsive. This seemingly happens

at random and appears to be a messaging break down within Cougaar while under

high messaging loads. Each of the times this occurred, testing had to be restarted

manually.

Backtracking

29

Figure 12. Experiment One Time Results for Backtracking.

Figure 13. Experiment One Guess Results for Backtracking.

Table 1. Backtracking Experiment One.
Time Guesses

Average σ Average σ

Easy 0.16 0.51 816.70 837.78
Medium 0.79 1.12 4027.90 4067.09
Hard 2.06 3.10 8320.50 7308.03
Evil 12.99 11.79 34694.30 32137.32

30

The backtracking solver successfully found a solution for all of the Sudoku puzzles

in this test set. For all but the Evil puzzles, backtracking was able to solve the

Sudoku puzzles within 10 milliseconds using a low number of guesses. For most of

the puzzles, backtracking reached a solution in an amount of time that was too small

to be measured by the testing computer. Figure 12 and Figure 13 show a strong

correlation between time to solve and guesses made. This is especially apparent in

the results of Evil 1: 40 milliseconds and over 100,000 guesses. This correlation

between times and guesses exists for all of the solving methods tested.

DLX

Figure 14. Experiment One Time Results for DLX.

The DLX solver successfully found a solution for all of the Sudoku puzzles in

this test set. DLX took longer than backtracking in almost all cases. A notable

exception is DLX’s overall time on the Evil puzzles (Table 2), which was very close to

backtracking (Table 1). This is likely attributable to DLX being a more complicated

algorithm than straightforward backtracking. For the easier Sudoku puzzles, this

31

Figure 15. Experiment One Guess Results for DLX.

Table 2. DLX Experiment One.
Time Guesses

Average σ Average σ

Easy 4.67 2.63 949.50 998.27
Medium 5.32 5.17 6163.30 8679.90
Hard 8.27 9.05 29154.10 38082.75
Evil 12.77 5.75 38513.40 26903.39

slowed DLX down when compared to backtracking. On the more difficult Evil puzzles,

the same complexity allowed it to quickly solve the puzzles. Backtracking, on the

other hand, experienced a significant time and guess increase when compared to the

other three categories of puzzle. Note that although Figure 14 scales into negative

time, negative values are only shown for the sake of graphing the standard deviation.

This occurs throughout the results and should be ignored.

Random Choice, Random Worst Agent

Random Choice with Random Worst Agent (Random Worst) is the first of the

Cougaar Sudoku problem solving methods. Random Worst experienced a messaging

32

Figure 16. Experiment One Time Results for Random Worst Agent.

Figure 17. Experiment One Guess Results for Random Worst Agent.

Figure 18. Experiment One Message Results for Random Worst Agent.

Table 3. Random Worst Agent Experiment One.
Time Guesses Messages

Average σ Average σ Average σ

Easy 1753.34 236.50 0.00 0.00 4.75 0.33
Medium 1891.06 186.36 0.00 0.00 5.29 0.31
Hard 3296.10 1987.08 0.81 1.40 8.00 3.60
Evil 12221.46 6806.97 7.09 5.26 26.90 15.17

33

failure on four occasions: three Evil boards and one Medium board. Easy and Medium

required no guessing, so interesting results do not occur until the second half of Hard

and all of Evil. In sparsely populated initial Sudoku puzzles, Random Worst is very

likely to make an incorrect guess early on. Figure 17 shows that Evil 8 was particularly

difficult for this Sudoku problem solving method. The large deviation from average

indicates that some attempts made good guesses, while others made very bad ones.

Backtracking and DLX greatly outperformed Random Worst with regard to time, but

Random Worst used fewer guesses in all cases. This is attributable to the analysis

the Agent Method performs at each step. It is interesting to note that the most

difficult puzzle for Random worst (Evil 8) was different from the most difficult puzzle

for backtracking (Evil 1) and DLX (Evil 5). Clearly, subtleties in these puzzles favor

one solving method over another. Finding the specific reasons for this is mentioned

in the Future Work chapter.

Random Choice, Random Agent

Figure 19. Experiment One Time Results for Random Agent.

34

Figure 20. Experiment One Guess Results for Random Agent.

Figure 21. Experiment One Message Results for Random Agent.

Table 4. Random Agent Experiment One.
Time Guesses Messages

Average σ Average σ Average σ

Easy 1603.27 241.87 0.00 0.00 4.48 0.32
Medium 1862.89 192.81 0.00 0.00 5.16 0.28
Hard 3102.60 1627.65 0.63 1.04 7.44 2.75
Evil 13156.62 11521.59 7.65 8.43 27.16 23.73

35

Random Choice with Random Agent (Random) failed to solve the Sudoku puzzle

on two Evil boards. Random performed very similarly to Random Worst. Of particu-

lar interest is Random’s average number of guesses (Figure 20) compared to Random

Worst’s average number of guesses (Figure 17) on the third-to-last Evil board. The

difference of 10 guesses shows that in some cases, guessing from a smaller set of agents

(Random Worst) could reach a solution more quickly than guessing from a larger set of

agents. Compared to backtracking, Random’s performance is very similar to Random

Worst’s.

Random Choice, Random Best Agent

Figure 22. Experiment One Time Results for Random Best Agent.

Random Choice with Random Best Agent (Random Best) failed to solve the

Sudoku puzzle on two occasions: one Evil board and one Hard board. Random Best

predictably shows the best overall performance of the three Cougaar Sudoku problem

solving methods. It consistently outperforms the other two Cougaar Sudoku problem

solving methods for every metric. On Evil 8 puzzle, Random Best makes the fewest

36

Figure 23. Experiment One Guess Results for Random Best Agent.

Figure 24. Experiment One Message Results for Random Best Agent.

Table 5. Random Best Agent Experiment One.
Time Guesses Messages

Average σ Average σ Average σ

Easy 1703.64 223.13 0.00 0.00 4.65 0.30
Medium 2009.71 177.80 0.00 0.00 5.42 0.30
Hard 2955.28 1184.41 0.44 0.72 7.01 1.71
Evil 10090.55 5006.66 5.34 3.56 19.77 9.04

37

guesses. This hierarchy (Random Best, Random Worst, Random) indicates that the

Cougaar Sudoku problem solving methods might perform better with smaller sets of

agents to guess from. Compared to backtracking, Random Bests’s performance is

very similar to the other two Cougaar Sudoku problem solving methods.

Conclusions

Backtracking and DLX were substantially quicker than any of the Cougaar Su-

doku problem solving methods. All of the Cougaar Sudoku problem solving methods

required fewer guesses to reach a solution than backtracking. Random and Ran-

dom Worst performed very similarly. Random Best was predictably the clear winner

among the Cougaar methods.

Experiments on Random Sudoku Puzzles

In the previous section, the verified Sudoku puzzles were all known to have only

one solution. In this section, the Sudoku puzzles might have one or more solutions.

For example, an initially empty nine by nine Sudoku puzzle has a very large number

of solutions. Due to the large number of unconstrained cells in some of these Sudoku

puzzles, it is possible for the random Sudoku problem solving methods to take a very

long time. A time limit of five minutes was set for each solver to reach a solution

before moving on to the next Sudoku puzzle. For each of the Cougaar Sudoku problem

solving types tested, this time limit failure is mentioned along with any failures in

38

message communication. The full set of puzzles in this section will be referred to by

the number of blanks they contain: 0, 9, 18, 27, 36, 45, 54, 63, 72, and 81.

Backtracking

Figure 25. Experiment Two Time Results for Backtracking.

Figure 26. Experiment Two Guess Results for Backtracking.

The backtracking solver successfully found a solution for all of the Sudoku puz-

zles in this test set. Figure 25 and Figure 26 show that none of the randomly-

reduced Sudoku puzzles posed as much solving difficulty for backtracking as did the

Easy/Medium/Hard/Evil Sudoku puzzles (Figure 12 and Figure 13). In Table 6, the

39

Table 6. Backtracking Experiment Two.
Time Guesses

Average σ Average σ

0 0.00 0.00 81.00 0.00
9 0.00 0.00 81.00 0.00
18 0.00 0.00 82.25 1.89
27 0.00 0.00 93.00 15.77
36 0.00 0.00 159.75 103.03
45 0.00 0.00 744.50 682.69
54 2.38 2.74 7260.50 2775.53
63 3.52 3.45 5523.75 8100.84
72 0.00 0.00 506.25 191.37
81 0.38 0.75 391.00 0.00

0 puzzle results show the minimum number of recursive calls backtracking performs

on an already-completed Sudoku puzzle. It is interesting that only the 45, 54, and 63

puzzles caused backtracking to do any work. These results indicate that backtrack-

ing is extremely effective at solving over-constrained and under-constrained Sudoku

puzzles.

DLX

Figure 27. Experiment Two Time Results for DLX.

40

Figure 28. Experiment Two Guess Results for DLX.

Table 7. DLX Experiment Two.
Time Guesses

Average σ Average σ

0 3.12 3.05 0.00 0.00
9 5.05 2.86 9.00 0.00
18 3.15 1.27 19.00 1.15
27 3.17 1.27 34.50 11.12
36 3.92 2.74 95.00 55.73
45 1.98 1.97 492.00 445.52
54 3.07 1.76 1240.50 696.27
63 3.47 4.02 576.50 712.93
72 5.50 3.70 565.00 507.24
81 3.40 1.46 701.00 0.00

The DLX solver successfully found a solution for all of the Sudoku puzzles in this

test set. DLX took longer to solve each puzzle (Figure 27) than backtracking (Figure

25). In Table 7, the 0 puzzle results show that DLX performs some analysis of a

puzzle before doing any work. Puzzles 0, 9, 18, and 27 on Table 7 show that DLX is

capable of making about one change to the matrix (guess) per blank on the board,

when the choices are from a sufficiently constrained set.

41

Random Choice, Random Worst Agent

Figure 29. Experiment Two Time Results for Random Worst Agent.

Figure 30. Experiment Two Guess Results for Random Worst Agent.

Figure 31. Experiment Two Message Results for Random Worst Agent.

42

Table 8. Random Worst Agent Experiment Two.
Time Guesses Messages

Average σ Average σ Average σ

0 354.72 143.03 0.00 0.00 0.51 0.33
9 1081.80 52.67 0.00 0.00 3.16 0.09
18 1148.40 204.42 0.00 0.00 2.98 0.31
27 1351.92 120.73 0.00 0.00 3.73 0.20
36 2981.22 997.17 0.75 0.50 5.82 1.10
45 3853.52 1449.05 1.10 0.84 7.51 2.11
54 12155.10 2051.22 7.08 1.68 21.71 4.63
63 21971.80 610.34 13.60 0.49 36.34 1.60
72 40208.98 10824.08 26.49 8.03 65.88 22.69
81 71155.77 34313.10 40.96 11.32 98.74 32.79

Random Worst failed to solve the Sudoku puzzle on seven occasions: twice for

9, three times for 72, and twice for 81. Additionally, 24 attempts were halted after

reaching the time limit. For each of these failures, the puzzles were from the 63, 72,

and 81 sets. Unlike backtracking, the number of guesses made by Random Worst

(Figure 30) did not peak at the 53 and 63 puzzles but increased steadily throughout.

The exact reason for this is unknown, but the steady increase is a common theme

throughout the Cougaar random Sudoku problem solving techniques.

Random Choice, Random Agent

Random failed to solve the Sudoku puzzle on four occasions. Additionally, nine

attempts were halted after reaching the time limit. For each of these failures, puzzles

were from the 63, 72, and 81 sets. The overall performance of Random (Table 9) was

slightly better than Random Worst (Table 8) for a majority of sets. This is possibly

43

Figure 32. Experiment Two Time Results for Random Agent.

Figure 33. Experiment Two Guess Results for Random Agent.

Figure 34. Experiment Two Message Results for Random Agent.

44

Table 9. Random Agent Experiment Two.
Time Guesses Messages

Average σ Average σ Average σ

0 304.12 102.64 0.00 0.00 0.59 0.33
9 1064.60 133.90 0.00 0.00 3.12 0.14
18 1082.86 91.45 0.00 0.00 2.91 0.11
27 1307.31 164.90 0.00 0.00 3.72 0.22
36 3032.95 1104.55 0.75 0.50 5.78 1.27
45 3803.89 1555.45 1.12 0.83 7.35 1.87
54 13299.98 2327.06 7.60 1.71 21.71 3.83
63 22461.45 367.69 13.93 0.35 35.75 0.80
72 36548.60 3036.95 23.39 2.12 54.41 5.97
81 52775.97 3917.06 34.11 2.27 76.10 7.33

caused by Random’s access to slightly better agents to guess from than Random

Worst.

Random Choice, Random Best Agent

Figure 35. Experiment Two Time Results for Random Best Agent.

Random Best failed to solve the Sudoku puzzle on four occasions. No attempts

were halted due to reaching the time limit. Random Best successfully solved each

of the Sudoku puzzles in this test set within 80 seconds. Random Best appears to

45

Figure 36. Experiment Two Guess Results for Random Best Agent.

Figure 37. Experiment Two Message Results for Random Best Agent.

Table 10. Random Best Agent Experiment Two.
Time Guesses Messages

Average σ Average σ Average σ

0 263.83 79.57 0.00 0.00 0.35 0.18
9 1020.47 23.97 0.00 0.00 2.96 0.08
18 1020.03 79.94 0.00 0.00 2.79 0.09
27 1207.97 92.48 0.00 0.00 3.47 0.12
36 2924.35 874.62 0.75 0.50 5.69 1.07
45 3991.12 1594.27 1.15 0.86 7.45 1.92
54 15594.60 2055.84 8.90 1.47 23.61 2.67
63 33836.05 2551.76 21.25 1.64 48.10 3.35
72 54349.30 729.20 34.95 0.21 74.99 0.67
81 70580.57 1807.07 45.60 1.20 95.33 2.40

46

perform more poorly (Table 10) than Random Worst (Table 8) and Random (Table

9), but these tables to not take into consideration attempts prematurely ended by

reaching the time limit.

Table 11. Time Limit and Communication Failures.
Time Limited Failures Communication Failures

Random Worst 24 7
Random 9 4
Random Best 0 4

Table 11 shows that Random Best has a better overall performance than Random

Worst or Random, once time-limited failures are taken into consideration. In the set

of solutions excluding time-limited failures, Table 8 shows that selecting guesses from

the set of least-constrained cell agents tends to lead to solutions with fewer guesses.

Conclusions

As with the Easy/Medium/Hard/Evil Sudoku test set, backtracking and DLX

reached a solution much more quickly than any of the random methods. The Cougaar

random methods required significantly fewer guesses than backtracking. Random

Best was again the superior random Sudoku problem solving method, but only after

time-limited failures were considered.

47

Final Analysis

These tests clearly show the brute force solving method used by backtracking

was the fastest. Random Best consistently produced solutions using the least number

of guesses. The performance of Random Worst and Random Best on the randomly

generated Sudoku puzzles indicated that a good guessing strategy could be devised

by restricting the set of agents available for guessing. Although several of Random

Worst’s attempts exceeded the time limit, the rest were completed with relatively

few guesses. Differing performances of DLX, backtracking, and the Cougaar approach

showed that certain Sudoku puzzles were more suitable for a particular solving method

than others. However, the exact cause of this was not apparent. Overall, the Cougaar

distributed agent approach demonstrated itself capable of solving all Sudoku puzzles

tested.

The Cougaar approach showed weakness in one area specifically. Occasionally,

messages would not be delivered to the intended agent, or would arrive later than

usual. To compensate for this, time delays and the resending of messages was needed.

In some cases, an agent would cease to receive messages entirely. Only restarting the

node containing the agent could restore communication with the agent. These factors

caused the overhead needed for message passing to greatly outweigh the time spent

actually executing code at the agent level. Additional research is needed to search

for a solution to these problems.

48

FUTURE WORK

Role of the Board Master

Currently, the board master fulfills several roles in the system. It loads new

boards, logs results, keeps cell agents synchronized, provides interfaces for user con-

trol, and handles guessing. To create a more interesting environment for study, some

of these tasks could be shifted from the board master to cell agents or communities of

cell agents. For example, the cell agents could be individually responsible for making

sure their neighbors are synchronized with each other. Communities of cell agents

could handle stall detection, guessing, and rolling back.

Pre-guess Analysis

Some Sudoku fans are of the opinion that any well-formed Sudoku puzzle can be

solved without guessing. The current implementation of the Agent Method resorts

to guessing early on. Certainly the board master or individual cell agents could do

more analysis to delay or eliminate the need for a guess. Certain types of analysis,

such as looking at groups of related cells which share the same n-choices, would be

particularly suited to an agent-based solver.

49

Guess Techniques

The potential for solutions with fewer guesses was demonstrated for the Random

Worst method. This could be explored by changing the random number selected from

a random worst agent to some fixed selection, such as first or last. Undocumented

tests on a completely empty Sudoku puzzle seem to indicate that a first choice from

a random worst agent leads to a solution with fewer guesses than any of the random

Sudoku problem solving methods discussed in this paper. A possible cause of this is

the potential guess size reduction resulting from taking the first or last guess.

Performance Measurement

As mentioned in the Measurable Results section, measuring the time required by

the Agent Method to solve a Sudoku puzzle currently does not yield a useful metric

for measuring performance. Time spent waiting for additional messages quickly over-

whelms time spent actually solving the puzzle. Separating the recorded work times

from the recorded wait times may potentially yield meaningful data that could be

compared to other Sudoku solving programs.

Fault Tolerance

Fault tolerance is critical to the success of any agent system where communica-

tions may be lost or individual agents may become unresponsive. Message sending

in Cougaar is generally very fault tolerant. The board master keeps track of what

50

it expects to hear from each cell agent, so that a lost message can be re-sent or an

out-of-sync cell agent can be reset. In what is likely to be a Cougaar implementation

issue, a random agent may become unresponsive. The agent will continue to operate

but can no longer send or receive messages. When this problem occurs, the system

completely fails. Every agent must be responsive for a solution to be reached. Im-

plementing a function where the board master detects dead cell agents and restarts

them could be a potential solution to the problem. Another solution would be to

use an environment where each cell agent resides in a separate Cougaar instance, so

that an agent’s entire Cougaar instance could be restarted. For the experiments, all

82 agents were in the same Cougaar instance therefore restarting the instance meant

restarting the entire test sequence.

Puzzle Subtleties

The experiments showed that specific Sudoku puzzles were more easily solved

by one Sudoku problem solving technique over another. For example, Evil 1 was

most difficult for backtracking while Evil 5 was most difficult for DLX. The exact

reasons causing a Sudoku puzzle to be more easily solved using one technique instead

of another would be an excellent topic for further research.

51

REFERENCES CITED

[1] Websudoku.
Available at: http://www.websudoku.com.

[2] Puzzle communication nikoli.
Available at: http://www.nikoli.co.jp/en/.

[3] Dell magazines.
Available at: http://www.dellmagazines.com/.

[4] M. Kraitchik. Mathematical Recreations, page 178. W. W. Norton, 1942.

[5] T. Yato and T. Seta. Complexity and completeness of finding another solution
and its application to puzzles. IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sciences, E86-A(5):1052–1060,
2003.

[6] Bertram Felgenhauer and Frazer Jarvis. Mathematics of sudoku i. Preprint,
2006.

[7] Roberto Tamassia and Michael Goodrich. Algorithm Design, pages 627–631.
PWS Publishing Company, 2002.

[8] Donald Knuth. Dancing links. Millennial Perspectives in Computer Science,
pages 187–214, 2000.

[9] Peter Gordon and Frank Longo. Mensa Guide to Solving Sudoku. Sterling, 2006.

[10] Aaron Helsinger, Michael Thome, and Todd Wright. Cougaar: A scalable, dis-
tributed multi-agent architecture. In IEEE International Conference on Sys-
tems, Man, and Cybernetics, pages 1910–1917, 2004.

[11] Michael Thome, Todd Wright, and Sebastien Rosset. Ultralog: The cougaar
component model. Technical report, BBN Technologies, 2004.

[12] BBN Technologies. Cougaar developersǵuide. Technical report, BBN Technolo-
gies, 2004.

[13] The transportation security administration.
Available at: http://www.tsa.gov/.

52

[14] Rocky mountain agile virtual enterprises at montana tech.
Available at: http://www.mtech.edu/.

[15] Michael Emery, John Paxton, and Richard Donovan. Application and testing
of a cougaar agent-based architecture. In Computational Intelligence: Multi-
Agent Systems, pages 153–157, 2005.

[16] Philip Cohen, Adam Cheyer, Michelle Wang, and Soon Choel Baeg. An open
agent architecture. In AAAI Spring Symposium, pages 1–8, 1994.

[17] Jon Currey. Real-time corba theory and practice: A standards-based approach
to the development of distributed real-time systems. In Embedded Systems
Conference San Jose, 2000.

[18] Sun microsystems.
Available at: http://www.sun.com/.

[19] Solutionsiq.
Available at: http://www.solutionsiq.com/.

[20] Frank Sommers. Dynamic clustering with jini technology. Artima Developer,
2006.

[21] K. Sycara, M. Paolucci, M. van Velsen, and J. A. Giampapa. The retsina mas
infrastructure. Autonomous Agents and MAS, 7(1, 2), 2003.

[22] Jeffrey Bradshaw, Stewart Dutfield, Pete Benoit, and John Woolley. KAoS:
Toward an Industrial-strength Open Agent Architecture, pages 375–418. MIT
Press, 1997.

[23] Ronald Snyder and Douglas MacKenzie. Murdoch: Publish/subscribe task allo-
cation for heterogeneous agents. In Proceedings Open Cougaar, pages 143–
147, 2004.

[24] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1999.

[25] Brian Gerkey and Maja Mataric. Murdoch: Publish/subscribe task allocation for
heterogeneous agents. In Proceedings of Autonomous Agents, pages 203–204,
2000.

53

[26] The Foundation for Intelligent Physical Agents. Fipa agent message transport
service specification. Technical report, The Foundation for Intelligent Physi-
cal Agents, 2001.

[27] BBN Technologies. Cougaar architecture document. Technical report, BBN
Technologies, 2004.

[28] Todd Wright. Naming services in multi-agent systems: A design for agent-
based white pages. In Proceedings 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1478–1479, 2004.

[29] Mark Bedau. Weak emergence. Philosophical Perspectives: Mind, Causation,
and World, 11:375–399, 1997.

