Solving Systems Using Elimination

1. Plan

What You'll Learn

- To solve systems by adding or subtracting
- To multiply first when solving systems
... And Why
To analyze a ticket-sales
situation, as in Example 2

Check Skills You'll Need

Solve each system using substitution.

1. $y=4 x-3$
2. $y+5 x=4$
$y=7 x-20(2,-6)$
$y=2 x+13(8,29)$

Adding or Subtracting to Solve Systems

Vocabulary Tip

Addition Property
of Equality
If $a=b$,
then $a+c=b+c$
Subtraction Property
of Equality
If $a=b$,
then $a-c=b-c$

The Addition and Subtraction Properties of Equality can be extended to state,

$$
\text { If } a=b \text { and } c=d, \text { then } a+c=b+d . \quad \text { If } a=b \text { and } c=d, \text { then } a-c=b-d .
$$

You can use the Addition and Subtraction Properties of Equality to solve a system by the elimination method. You can add or subtract equations to eliminate a variable.

1) Exajuple Adding Equations

Solve by elimination. $5 x-6 y=-32$

$$
3 x+6 y=48
$$

Step 1 Eliminate y because the sum of the coefficients of y is zero.

$$
\begin{aligned}
& 5 x-6 y=-32 \\
& 3 x+6 y=48 \\
& \quad \begin{array}{l}
\text { Add the two equations. } \\
\hline 8 x+0
\end{array}=16 \quad \text { Addition Property of Equality } \\
& x=2 \quad \\
& \text { Solve for } x .
\end{aligned}
$$

Step 2 Solve for the eliminated variable y using either of the original equations.

$$
\begin{array}{rlrl}
3 x+6 y & =48 & & \text { Choose the second equation. } \\
3(2)+6 y & =48 & & \text { Substitute } 2 \text { for } x . \\
6+6 y & =48 & & \text { Simplify. Then solve for } y . \\
y & =7 &
\end{array}
$$

Since $x=2$ and $y=7$, the solution is $(2,7)$.
Check $5(2)-6(7) \stackrel{?}{=}-32$ See if $(2,7)$ solves $5 x-6 y=-32$.

$$
10-42 \stackrel{?}{\underline{?}}-32
$$

$$
-32=-32 \downarrow
$$

Quick Check
(1) So

Solve by elimination. $\quad 6 x-3 y=3(2,3)$

$$
-6 x+5 y=3
$$

D)fferentiated Instruction Solutions for All Learners

Special Needs L1

To help students understand why they can add equations, remind them that an equation must always be in balance. So, on a set of scales, if you add one side of each equation on the left, and the other two sides on the right, the scales will still be in balance.
learning style: visual

Below Level L2

Help students understand that they can either add or subtract equations to solve a system by elimination. Have them examine the methods used in Examples 1 and 2.
3. $y=-2 x+2$
$3 x-17=2 y$
$(3,-4)$
for Help Lesson 7-2

2. Teach

Guided Instruction

Error Prevention

When subtracting the second equation, some students may fail to subtract every term. Suggest to students that they write parentheses around the whole second equation and then write a subtraction sign in front of the parentheses.Solve by elimination.
$2 x+3 y=11$
$-2 x+9 y=1(4,1)$
(2) On a special day, tickets for a minor league baseball game cost \$5 for adults and \$1 for students.
The attendance that day was 1139, and $\$ 3067$ was collected. Write and solve a system of equations to find the number of adults and the number of students that attended the game.
$a+s=1139$
$5 a+s=3067$
482 adults and 657 students

2) 3 xiuply
Real-World Problem Solving
Ticket Sales Suppose your community center sells a total of 292 tickets for a basketball game. An adult ticket costs $\$ 3$. A student ticket costs $\$ 1$. The sponsors collect $\$ 470$ in ticket sales. Write and solve a system to find the number of each type of ticket sold.

Define Let $a=$ number of adult tickets.
Let $s=$ number of student tickets.
Relate total number of tickets total amount of sales
Write $a+s=292 \quad 3 a+1 s=470$
Solve by elimination.
Step 1 Eliminate s because the difference of the coefficients of s is zero.

$a+s$	$=292$		
$3 a+s$	$=470$		
$-2 a+0$	$=-178$		Subtract the two equations.
a	$=89$		Solve for a.

Step 2 Solve for the eliminated variable using either of the original equations.

$$
\begin{aligned}
& a+s=292 \quad \text { Choose the first equation. } \\
& 89+s=292 \quad \text { Substitute } 89 \text { for } a . \\
& s=203 \text { Solve for } s .
\end{aligned}
$$

There were 89 adult tickets sold and 203 student tickets sold.
Check Is the solution reasonable? The answers 89 and 203 are close to 90 and 200. The total number of tickets is about $90+200=290$, close to 292 . The total sales is about $\$ 3(90)+\$ 1(200)$ or $\$ 470$. The solution is reasonable.

There are 188 basketball teams in 26 conferences in the National Wheelchair Basketball Association.
(2)

Your class sells a total of 64 tickets to a play. A student ticket costs $\$ 1$, and an adult ticket costs $\$ 2.50$. Your class collects $\$ 109$ in total ticket sales. How many adult tickets did you sell? How many student tickets did you sell? 30 adult; 34 student

2 Multiplying First to Solve Systems

From Examples 1 and 2 you can see that to eliminate a variable its coefficients must have a sum or difference of zero. Sometimes you may need to multiply one or both of the equations by a nonzero number first.

EXAMIPLE Multiplying One Equation

Solve by the elimination method. $2 x+5 y=-22$
$10 x+3 y=22$
Step 1 Eliminate one variable.

Start with the given system.		To prepare for eliminating x, multiply the first equation by 5 .		Subtract the equations to eliminate x.
$2 x+5 y=-22$	\rightarrow	$5(2 x+5 y=-22)$	\rightarrow	$10 x+25 y=-110$
$10 x+3 y=22$	\rightarrow	$10 x+3 y=22$	\rightarrow	$10 x+3 y=22$

Chapter 7 Systems of Equations and Inequalities

Differentiated Instruction solutions for All Learners

Advanced Learners L4

Have students solve by elimination then describe the solution.
$2 x+y=4$
$-6 x-3 y=-12$

English Language Learners ELL

Explain that elimination is a process of removing. Display the system in Example 1, cross out and then erase $-6 y$ and $6 y$, and write only $8 x$ below the left side of the system. Explain that you eliminated the variable y.
learning style: verbal

Step 2 Solve for y.

$$
\begin{aligned}
22 y & =-132 \\
y & =-6
\end{aligned}
$$

Step 3 Solve for the eliminated variable using either of the original equations.

$$
\begin{array}{rlrl}
2 x+5 y & =-22 & & \text { Choose the first equation. } \\
2 x+5(-6) & =-22 & & \text { Substitute }-6 \text { for } y . \\
2 x-30 & =-22 & & \text { Solve for } x . \\
2 x & =8 & & \\
x & =4 \\
\text { The solution is }(4,-6) &
\end{array}
$$Solve by elimination.

$$
\begin{aligned}
& -2 x+15 y=-32 \quad(1,-2) \\
& 7 x-5 y=17
\end{aligned}
$$

To solve problems that arise from real-world situations, you can also use the elimination method.

4 ExADPLE Real-World 3, Problem Solving

Gridded Response Suppose your class sells gift wrap for $\$ 4$ per package and greeting cards for $\$ 10$ per package. Your class sells 205 packages in all and receives a total of $\$ 1084$. Find the number of packages of gift wrap and the number of packages of greeting cards sold.
Define Let $w=$ number of packages of gift wrap sold.
Let $c=$ number of packages of greeting cards sold.
Relate total number of packages total amount of sales
Write $w+c=205$

$$
4 w+10 c=1084
$$

Step 1 Eliminate one variable.
Start with the To prepare for eliminating w, Subtract the equations given system. multiply the first equation by 4.

$$
w+c=205 \rightarrow 4(w+c=205)
$$ to eliminate w.

$4 w+10 c=1084 \rightarrow 4 \quad \rightarrow \quad \rightarrow \frac{4 w+10 c=1084}{0-6 c=-264}$
Step 2 Solve for c.

$$
\begin{aligned}
-6 c & =-264 \\
c & =44
\end{aligned}
$$

Step 3 Solve for the eliminated variable using either of the original equations.

$$
\begin{aligned}
w+c & =205 & & \text { Use the first equation. } \\
w+44 & =205 & & \text { Substitute } 44 \text { for } c . \\
w & =161 & & \text { Solve for } w .
\end{aligned}
$$

The class sold 161 packages of gift wrap and 44 packages of greeting cards.
Suppose your younger brother's elementary school class sells a different brand of gift wrap, which costs $\$ 2$ per package, and cards, which cost $\$ 5$ per package. His class sells 220 packages in all and earns a total of $\$ 695$. Find the number of each type of package sold. 85 cards, 135 gift wrap

Exanjple Math Tip

Encourage students to find the least common multiple of the coefficients of one variable, since working with lesser numbers tends to reduce the likelihood of errors.

Additional Examples

Solve by elimination.
$3 x+5 y=10$
$5 x+7 y=10(-5,5)$

Resources

- Daily Notetaking Guide 7-3 L3
- Daily Notetaking Guide 7-3Adapted Instruction

Closure

Ask students to explain when it is best to solve a system by using elimination, and when it is best to use substitution. You should use elimination if the two coefficients of a variable are the same or opposites, or one is a multiple of the other. Use substitution if one equation is easy to solve, or is already solved, for one of the variables.
pages 390-393 Exercises
3. $(5,-17)$
4. $(-3,4)$
5. $\left(-9, \frac{1}{2}\right)$
6. $\left(-\frac{1}{2}, 10\right)$

15a. $30 w+\ell=17.65$, $20 w+3 \ell=25.65$
b. $\$ 0.39$ for a wallet size, $\$ 5.95$ for an 8×10

23-28. Choice of method may vary. Samples are given.
23. (-1, -2); substitution; both solved for y
24. (15, -10); elimination; equations not solved for y
25. (10, 2); substitution; one eq. solved for x
26. (-3, 11); elimination; eqs. not solved for a variable

Video Tutor Help
Visit: PHSchool.com Web Code: ate-0775

To eliminate a variable, you may need to multiply both equations in a system by a nonzero number. Multiply each equation by values such that when you write equivalent equations, you can then add or subtract to eliminate a variable.

5 EXANPLE Multiplying Both Equations

Solve by elimination. $\quad 4 x+2 y=14$

$$
7 x-3 y=-8
$$

Step 1 Eliminate one variable.
To prepare for eliminating y_{1} given system. and the other equation by 2 .
$4 x+2 y=14 \rightarrow 3(4 x+2 y=14)$
Add the equations to eliminate y.
$7 x-3 y=-8 \rightarrow \underline{2(7 x-3 y=-8)} \rightarrow \frac{14 x-6 y=-16}{26 x+0=26}$
Step 2 Solve for x.

$$
\begin{aligned}
26 x & =26 \\
x & =1
\end{aligned}
$$

Step 3 Solve for the eliminated variable y using either of the original equations.

$$
\begin{aligned}
& \qquad \begin{aligned}
4 x+2 y & =14 \quad \text { Use the first equation. } \\
4(1)+2 y & =14 \quad \text { Substitute } 1 \text { for } x . \\
2 y & =10 \\
y & =5
\end{aligned} \\
& \text { The solution is }(1,5) . \\
& \text { Solve by elimination. } \\
& \qquad \begin{array}{l}
15 x+3 y=9 \quad(1,-2) \\
10 x+7 y=-4
\end{array}
\end{aligned}
$$

When you solve systems using elimination, plan a strategy. A flowchart like the one below can help you to decide how to eliminate a variable.

EXERCISES

For more exercises, see Extra Skill and Word Problem Practice.

Practice and Problem Solving

Solve by elimination. 3-6. See margin.

1. $2 x+5 y=17$ $6 x-5 y=-9(1,3)$
$6 x-5 y=-9(1,3)$
$5 x-11 y=-59$
2. $7 x+2 y=10$
3. $2 x-3 y=61$
$-7 x+y=-16(2,-2)$
4. $2 x+18 y=-9$
5. $20 x+3 y=20$
$4 x+18 y=-27$
$-20 x+5 y=60$

Chapter 7 Systems of Equations and Inequalities
27. (5, 1); substitution; one eq. solved for x
28. $\left(\frac{1}{3}, 2 \frac{1}{3}\right)$; substitution; eqs. solved for y

$$
\begin{aligned}
& \text { 16a. } x=\text { burritos } \\
& \quad y=\text { tacos } \\
& 3 x+4 y=11.33 \\
& 9 x+5 y=23.56
\end{aligned}
$$

Example 5
(page 390)

Apply Your Skills
7. The sum of two numbers is 20 . Their difference is 4 . $x+y=20$,
a. Write a system of equations that describes this situation $x-y=4$
b. Solve by elimination to find the two numbers. 12 and 8
8. Ticket Sales Your school sold 456 tickets for a high school play. An adult ticket cost $\$ 3.50$. A student ticket cost $\$ 1$. Total ticket sales equaled $\$ 1131$. Let a equal the number of adult tickets sold, and let s equal the number of student tickets sold. a. $a+s=456,3.5 a+s=1131$
a. Write a system of equations that relates the number of adult and student tickets sold to the total number of tickets sold and to the total ticket sales.
b. Solve by elimination to find the number of each type of ticket sold.

270 adult, 186 student

Solve by elimination.

9. $3 x-10 y=-25$
10. $7 x+15 y=32$
11. $x-8 y=18$
$4 x+40 y=20(-5,1)$
$x-3 y=20(11,-3)$
12. $24 x+2 y=52$
$6 x-3 y=-36(1,14)$
13. $88 x-5 y=39$
$-8 x+3 y=-1\left(\frac{1}{2}, 1\right)$
$-16 x+16 y=-8$
14. $2 x+4 y=8\left(-2,-\frac{5}{2}\right)$
$5 x+y=-7(-2,3)$
15. Sales A photo studio that takes school pictures offers several different packages. Let w equal the cost of a wallet-sized portrait, and let ℓ equal the cost of an 8×10 portrait.

a. Write a system of equations that relates the cost of wallet-sized portraits and 8×10 portraits to the cost of the basic and deluxe packages.
b. Find the cost of each type of portrait. a-b. See margin.
16. Two groups of students order burritos and tacos at a local restaurant. One order of 3 burritos and 4 tacos costs $\$ 11.33$. The other order of 9 burritos and 5 tacos costs \$23.56.
a. Write a system of equations that describes this situation. See left.
b. Solve by elimination to find the cost of a burrito and the cost of a taco.
$\$ 1.79$ for a burrito, $\$ 1.49$ for a taco

Solve by elimination.

17. $3 x+2 y=-9(-1,-3)$
$-10 x+5 y=-5$

$$
6 x-4 y=11 \quad(2.5,1)
$$

19. $3 x-2 y=10(2,-2)$
20. $-2 x+5 y=20$
$3 x-7 y=-26(10,8)$
21. $10 x+8 y=2$
$8 x+6 y=1\left(-1, \frac{3}{2}\right)$

$$
\text { 22. } \begin{aligned}
2 x+3 y & =-2 \\
9 x+5 y & =34 \\
8 x-2 y & =-2(1,5)
\end{aligned}
$$

Solve each system using any method. Tell why you chose the method you used. 23-28. See margin.

> 23. $y=2 x$
> $y=x-1$
> 26. $-20 x+7 y=137$
> $4 x+5 y=43$

$$
\text { 24. } 7 x+8 y=25
$$

27. $5 y=x$
$2 x-3 y=7$
28. $x=12 y-14$ $3 y+2 x=26$
29. $y=x+2$
$y=-2 x+3$

3. Practice

Assignment Guide

1 A B 1-8, 32, 39-41	
2 A B $9-31,33-38$	
C Challenge	$42-46$
Test Prep	$47-50$
Mixed Review	$51-60$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 8, 16, 30, 34, 40.

Exercises 23-28 Suggest to students that they first write the equations in standard form making sure they align matching variables.

Exercises 33-38 Suggest to students that they first multiply by the least common denominator or the appropriate multiple of 10 to eliminate fractions and decimals.

Differentiated Instruction Resources

4. Assess \& Reteach

Solve using elimination.

1. $3 x-4 y=7$
$2 x+4 y=8(3,0.5)$
2. $5 m+3 n=22$ $5 m+6 n=34(2,4)$
3. $-6 x+5 y=4$
$3 x+4 y=11(1,2)$
4. $7 p+5 q=2$
$8 p-9 q=17(1,-1)$

Alternative Assessment

Give students blue, red, green, and yellow counters. Let blue represent positive x and red represent negative x. Let green represent positive y and yellow represent negative y. Give students systems of equations in standard form to model and solve using the counters. Pairs of blue and red counters eliminate each other, as do pairs of green and yellow counters.

pages 390-393 Exercises

40. Answers may vary.

Sample: You solve a system using the elimination method by adding or subtracting the eqs. to eliminate one of the variables. This sum or difference is one eq. with one variable that can be solved.
Use addition:
$3 x+2 y=6$
$-x-2 y=4$
Use subtraction:
$5 x+3 y=15$
$5 x-2 y=10$
Use multiplication:
$4 x+5 y=20$
$2 x-y=10$

29. Vacation A weekend at the Beach Bay Hotel in Florida includes 2 nights and 4 meals. A week includes 7 nights and 10 meals. Let $n=$ the cost of 1 night and $m=$ the cost of 1 meal. Find the cost of 1 night and the cost of 1 meal. one night: \$81.25; one meal: \$8.13
30. a. Business A company sells brass and steel machine parts. One shipment GPS contains 3 brass and 10 steel parts and costs $\$ 48$. A second shipment contains 7 brass and 4 steel parts and costs $\$ 54$. Find the cost of each type of machine part. brass: \$6; steel: \$3
b. How much would a shipment containing 10 brass and 13 steel machine parts cost? \$99
31. Error Analysis Beth is solving a system by elimination. Her work is shown below. What error did she make? She forgot to multiply -8 by 6.

$$
\begin{aligned}
& 4 x-6 y=1 \longrightarrow 20 x-30 y=5 \\
& 3 x+5 y=-8 \longrightarrow \quad 18 x+30 y=-8
\end{aligned}
$$

32. Answers may vary. Sample: $2 x-3 y=6$, $x+3 y=9 ;\left(5, \frac{4}{3}\right)$
33. Open-Ended Write a system of equations that can be solved by elimination. Solve your system. See left.

Solve by elimination.

33. $\frac{1}{2} x+y=-1$
34. $\frac{1}{4} x-6 y=-70$
35. $-0.2 x+4 y=-1$
$16 x-\frac{1}{2} y=163(10,-6)$

$$
5 x+\frac{3}{4} y=49(8,12)
$$

$x+0.5 y=-15.5$
36. $y=0.5 x+2$
37. $\frac{1}{4} x+\frac{33}{2}=y$
$y-12=-2 x(-2,16)$
38. $\frac{2}{3} x-y=70$
$\frac{1}{3} x-\frac{2}{3} y=43$
(33, -48)
39. Critical Thinking Find a value of n such that the x-value of the solution of the system at the right is 4.9

$$
5 x-10 y=50
$$

$$
n x+10 y=6
$$

40. Writing Explain how to solve a system using elimination. Give examples of when you use addition, subtraction, and multiplication. See margin.
41. Electricity Two batteries produce a total voltage of 4.5 volts $\left(B_{1}+B_{2}=4.5\right)$. The difference in their voltages is 1.5 volts $\left(B_{1}-B_{2}=1.5\right)$. Find the voltages of the two batteries. $B_{1}=3$ volts; $B_{2}=1.5$ volts

Challenge

Solve by elimination.

42. $\frac{6}{x}-\frac{4}{y}=-4$ $\frac{3}{x}+\frac{8}{y}=3(-3,2)$
43. $a x+y=c$
44. $x+y+z=41$
$a x+b y=c$
$\left(\frac{c}{a}, 0\right)(a \neq 0, b \neq 1)$
$x-y+z=15$
$3 x-z=4$
$(8,13,20)$
45. Music Suppose your band wants to sell CDs and cassette tapes of your music. You use a production company that offers two different production packages.

	CDs	Tapes	Mastering	Artwork	Total Cost
Package \#1	300	400	\checkmark	\checkmark	$\$ 2080$
Package \#2	500	600	\checkmark	\checkmark	$\$ 3120$

Both companies charge $\$ 100$ to master your original recording and $\$ 240$ to create cover artwork. Find the average production cost of each CD and cassette tape. CD: \$3.40, cassette: \$1.80

Vocabulary Tip

46. Jewelry A ring is made out of gold and copper. Gold has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. Copper has a density of $9 \mathrm{~g} / \mathrm{cm}^{3}$. Mass m, density d, and volume v
Density is the ratio of mass to volume.
Since $d=\frac{m}{v}, m=d v$. are related by the formula $m=d v$. The ring has a volume of $4.2 \mathrm{~cm}^{3}$, and a mass of 52.22 g .

Let $a=$ volume of gold. \quad mass of gold $=d v=19.3 a$
Let $c=$ volume of copper. \quad mass of copper $=d v=9 c$
a. Solve the following system by elimination to find out how many grams of gold are in the ring. 27.02 g of gold

$$
a+c=4.2
$$

$$
19.3 a+9 c=52.22
$$

b. What is the percent of gold by mass? about 51.7%

Test Prep

Multiple Choice

Short Response

Extended Response
47. Which of the following systems does NOT have the same solution as the system at the right? D

$$
\begin{aligned}
& 7 x-4 y=5 \\
& 6 x+7 y=-11
\end{aligned}
$$

A. $49 x-28 y=35$
B. $42 x-24 y=30$
$24 x+28 y=-44$
$42 x+49 y=-77$
C. $-14 x+8 y=-10$
$12 x+14 y=-22$
D. $\begin{aligned} & 21 x+12 y=15 \\ & -24 x-28 y=44\end{aligned}$
$-24 x-28 y=44$
48. Use the solution of the system below to find $x-y$. H
$4 x-2 y=11$
$3 x-4 y=-6$
F. 11.3
G. 0.1
H. -0.1
J. -11.3
49. Solve the following system by elimination. Show your work. See margin. $y-x=13$
$7 y+x=11$
50. A trapezoid is formed by lines with the following equations.
$2 x+4 y=16 \quad x=4 \quad x=0 \quad y=0$
Find the area of the trapezoid. See margin.

Mixed Review

Solve using substitution. Give the solutions in alphabetical order.
51. $y=4 x+2$
$y=6 x-10(6,26)$
52. $p=q-5$
$3 p+q=1(-1,4)$
53. $w+a=4$

$$
w+2 a=13(9,-5)
$$

Lesson 2-7 You have a bag with two red marbles, three blue marbles, and five green marbles. You choose a marble at random. Without replacing the marble, you choose a second marble. Find each probability.
54. $P($ red then green $) \frac{1}{9}$
55. P (two greens) $\frac{2}{9}$
56. $P\left(\right.$ blue then red) $\frac{1}{15}$

Lesson 1-7 Write and solve an equation to find the value of x. 57-60. See margin.
57. $5,7,3,4,8, x$; mean 5
58. 1.2, 1.4, 1.5, 1.1, x; mean 1.2
59. $10,15,9,11,8, x$; mean 10.5
60. $4,1,3$, x; mean 3.25

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 425
- Test-Taking Strategies, p. 420
- Test-Taking Strategies with Transparencies

49. [2] $y-x=13$

$$
\begin{aligned}
7 y \pm x & =11 \\
8 y & =24 \\
y & =3
\end{aligned}
$$

$$
3-x=13
$$

$$
x=-10(-10,3)
$$

[1] no work shown
50. [4]

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& =\frac{1}{2}(4)(4+2) \\
& =2(6) \\
& =12
\end{aligned}
$$

The area is 12 square units.
57. $\frac{5+7+3+4+8+x}{x=3}=5$; $x=3$
58. $\frac{1.2+1.4+\frac{1.5}{5}+1.1+x}{x}=1.2 ;$ $x=0.8$
59. $\frac{10+15+9+11+8+x}{x-10}=10.5$; $x=10$
60. $\frac{4+1+3+x}{4}=3.25 ; x=5$

